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Abstract

The thesis entitled with Study on Elliptic Partial Differential Equations is a serious and a keen study
towards the ambit of most influential and practical scenario of Mathematics i.e. Partial Differential
Equations. Before in-sighting towards PDE, this thesis includes two chapters dedicated to partial dif-
ferential equations. Chapter 1 discusses the classification of partial differential equations providing its
detailed classification and definitions (see 1.1.1) and also, insight classification of partial differential
equations is also included in B. Chapter 1 is an introductory step towards chapter 2 which provides the
basic knowledge of symbols and notations that are immensely used in chapter 2. Chapter 1 keeps its
concerns with Quasi-Linear Partial Differential Equations and Semi-Linear Partial Differential Equations.

Chapter 2 has a serious agenda of this thesis. Moving further in chapter 2, the governing definition of
elliptic partial differential equations is provided (see 2.1.1) which is all the way important in the course
of thesis. The section 2.1 provides the outline of all those aspects which have to analysed in section 2.2
which is, thus very important. Chapter 2 begins with the Reisz- Representation Theorem. This theorem
establishes an important connection between a Hilbert space and its (continuous) dual space. Moving on,
this thesis presents the Bilinear Forms in Elliptic Partial Differential Equations. The second last topic is
Poincr̃e Inequality which helps in estimating the norm of a function in terms of a norm of its derivative.
The Lax-Milgram Theorem incorporates as more general form of Reisz-Representation Theorem, as it
applies to bilinear forms that are not necessarily symmetric.
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Chapter 1

Introduction to Partial Differential
Equations

As far as the laws of mathe-
matics refer to reality, they are
not certain; and as far as they
are certain, they do not refer
to reality.

Albert Einstein (1879–1955)

Before making any introductory step towards the ambit of Partial Differential Equation (PDEs), it
must be subsumed that PDEs allows one to flex mathematical muscles which empowers one to overcome
and provide the solution of many problems that arises in many fields of research principally in physics
and engineering.

1.1 Partial Differential Equation
The key defining property of a PDE is that there is more than one independent variable x, y . . .. There is
a dependent variable that is an unknown function of these variables u(x, y . . .). We will often denote its
derivatives by subscripts; thus ∂u/∂x = ux, and so on. A PDE is an identity that relates the independent
variables, the dependent variable u, and the partial derivatives of u. It can be written as

F (x, y, u(x, y), ux(x, y), uy(x, y)) = F (x, y, u, ux, uy) = 0

This is the most general PDE in two independent variables of first order. The order of an equation is
the highest derivative that appears. The most general second order PDE in two independent variables
is

F (x, y, u, ux, uy, uxx, uxy, uyy) = 0.

In the context of more mathematical profound grounds, one encounters partial differential equation as an
equation involving an unknown function of two or more independent variables and certain of its partial
derivatives with respect to those variables.
Say Ω as an open subset of Rn, with n ≥ 2, and for k ≥ 1 a fixed integer, an expression of the form

(1.1) E(x, u(x), Du(x), . . . , Dku(x)) = 0 in Ω

is called a kth order partial differential equation, where E : Rn×R× . . .×Rnk → R is a given function
and u : Ω→ R is an unknown function.
The partial differential equation can be classified as follows: (for insight classification of partial differential
equations see B equations (B.10), (B.11) and (B.12) and (B.13) with definition B.2.2.)

Definition 1.1.1. The partial differential equation (1.1) can be studied by classifying them as follows
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1.1. PARTIAL DIFFERENTIAL EQUATION

Figure 1.1: Diagramatic representation of MoC

1. linear if it has the form of ∑
|α|≤k

aα(x)Dαu(x) = f(x);

where aα (with |α| ≤ k, α a multindex) and f are given functions. This linear pde is homogeneous
if f = 0.

2. semilinear if it is able to satisfy

(1.2)
∑
|α|≤k

aα(x)Dαu(x) + E0(x, u(x), Du(x), . . . , Dk−1u(x)) = 0

3. quasilinear if possess

(1.3)
∑
|α|≤k

aα(x, u(x), Du(x), . . . , Dk−1u(x))Dαu(x) + E0(x, u(x), Du(x), . . . , Dk−1u(x)) = 0

4. fully non-linear otherwise, i.e. if it depends non-linearly upon the highest order derivatives.

Partial differential equations arise naturally as models for many physical phenomena. The unknown
function u then describes the state of a physical system (for example, the temperature distribution or
the shape of a soap film realizing the least surface area amongst all surfaces spanned by a wire) and the
given function E describes the physical laws according to which the state evolves or behaves (possibly
also including interaction with external forces).

1.1.1 Discussion on Quasilinear and Semi-linear PDE
1. Quasilinear Partial Differential Equation

Eq. (1.3) can be transform in simpler terms as follows

(1.4) a(x, y, u)ux + b(x, y, u)uy = c(x, y, u)

where a, b nd c are continuous in x ,y and u (function of two variables). By [1] we subsumed the
fact that U is an open subset of Rn and u : U → Rn is unknown.

§ Method of Characteristic (MoC)

Method of Characteristic abbreviated as MoC is a technique for solving partial differential equation
applied over first order PDE, which reduces PDE to a family of ordinary differential equaitons along
with the solution can be integrated from some initial provided data.
1.1 describes diagrammatically in a simpler way of inference of MoC.

Letting z = u(x, y) and assuming it to be the solution of eq. (1.4), then we must construe the
representation depicted in the figure 1.2 As we see clearly in 1.2, the surface z = u(x, y) has the
normal N0 = <− ux,−uy, 1> at (x0, y0, u(x0, y0)) and the vector V0 (say) defined as

V0 = <a(x0, y0, z0), b(x0, y0, z0), c(x0, y0, z0)>

and one can easily realize that V0 is ⊥ to N0 as V0 is the tangent plane to the graph of z = u(x, y)
(see 1.2).
Generalising V = <a, b, c> on (x, y, z) defines a vector field in R3 surface which are tangent to a
vector field in R3 are called as Integral Surfaces and same goes for Integral Curves.
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1.1. PARTIAL DIFFERENTIAL EQUATION

Figure 1.2: Vector field V tangent to the graph

The Cauchy Problem Our aim is to find the integral surface containing a given curve Γ ⊂ R3

which leads to the following problem stipulated as

Can we find a solution u of the first order partial differential equation for a curve Γ
in R3 whose graph contains Γ.

Methodology to solve the Cauchy Problem Using the characteristics curves which are the
integral curves of V i.e.

χ = (x(t), y(t), z(t))

is characteristics if it is able to satisfy following system of ordinary differential equations generally
called as characteristic equations

(1.5a)

(1.5b)

(1.5c)



dx

dt
= a(x, y, z)

dy

dt
= b(x, y, z)

dz

dt
= c(x, y, z)

Now, (1.5) can be solved uniquely for |t− t0|, provided the initial conditions as

x(t0) = x0; y(t0) = y0 & z(t0) = z0

assuming a, b and c are all continuously differentiable in x, y and z.
Note 1.1.1. z = u(x, y) is a smooth surface S which is a union of characteristic curve, then at each
point of (x0, y0, z0) the tangent plane contains the vector V (x0, y0, z0) hence S is supposed to be
integral surface (see 1.3)

Figure 1.3: Smooth Surface

realising that x0 = f(s), y0 = g(s) and z0 = h(s) as initial conditions which suggests analytically
that, the construction of an integral surface Γ as to be contained (see [3]).
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1.1. PARTIAL DIFFERENTIAL EQUATION

2. Semi-linear Equations
Cauchy problem for semi-linear equations in two variable is given as

(1.6) a(x, y)ux + b(x, y)uy = c(x, y)u

and Γ is parametrised as (f(s), g(s), h(s) and characteristic equations (as in (1.5)) with initial
conditions formulated as

(1.7a)
(1.7b)
(1.7c)


x(s, 0) = f(s)
y(s, 0) = g(s)
z(s, 0) = h(s)

and we have projected characteristic curve χ.

Example 1.1.1. Consider semi-linear problem ux + 2uy = u2 with u(x, 0) = h(x) assuming Γ lies in xz
plane.

Solution. Parametrising Γ as (s, 0, h(s)) and also, we see that,

(1.8a)

(1.8b)

(1.8c)



dx

dt
= 1

dy

dt
= 2

dz

dt
= z2

which makes us to realise that

x = t+ c1(s)
y = 2t+ c2(s)

z = −1
t+ c3(s)

So, the solution of the given problem is supposed to be z = h(x− y
2 )

1− y
2 h(x− y

2 ) ♠

Note 1.1.2. If h(x) = cosx, then the solution to the above problem can be evaluated analytically as
follows

Figure 1.4: Example 1.1.1 with h(x) = cosx
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Chapter 2

Elliptic Partial Differential
Equations

“There has to be a mathemat-
ical explaination for how bad
that tie is” .

Russell Crowe as
John Forbes Nash Jr. in

A Beautiful Mind (2001)

2.1 Definition
If the boundary problem is posed as follows

(2.1a)
(2.1b)

{
Lu = f in U

u = 0 on ∂U

where U is open bounded subset of Rn and u : Ū → R with f : U → R, where L is second order partial
differential operator having following form

(2.2) Lu = −
n∑

i,j=1
aij(x)uxixj

+
n∑
i=1

bi(x)uxi
+ c(x)u

for given coefficients aij , bi and c and for symmetry condition aij = aji (for more details see B.2 of B ).

Definition 2.1.1. We say the partial differential operator L is uniformly elliptic ∃ a constant θ > 0
such that

(2.3)
n∑

i,j=1
aij(x)ξiξj ≥ θ |ξ|2

for a.e. x ∈ U and ∀ ξ ∈ Rn.

Ellipticity thus means that for each point x ∈ U , the symmetric matrix A(x) = (aij(x)) is positive
definite, with smallest eigenvalue greater than or equal to θ.

2.1.1 Adjoints and Weak Solutions
In particular, weak solutions may be defined for linear equations using integration by parts and a ‘test
functions’: this leads to the notion of the “adjoint”of a linear operator.

Definition 2.1.2. A function f defined on Ω is called as test function if f ∈ C∞(Ω) and there is a
compact set K ⊂ Ω such that the support of f lies in K. The set of all test function is represented as
D(Ω) = C∞0 (Ω).

8



2.1. DEFINITION

Consider

〈Lu, v〉 =
∫
U

(
∑

aij(x)uxixj
)v

=
∑∫

U

aij
∂2u

∂xi∂xj
v

= −
∑∫

U

aij
∂u

∂xi

∂v

∂xj

=
∑∫

U

aiju
∂2v

∂xj∂xi

=
∫
U

u
∑

aij
∂2v

∂xi∂xj

= 〈u, L∗v〉

thus,

(2.4) 〈Lu, v〉 = 〈u, L∗v〉

Here, we have repeated the integration by parts process and also, we can repeat integration by parts
with any combination of derivatives (see [3]), Dα = (∂/∂x1)α1 . . . (∂/∂xn)αn to obtain

(2.5)
∫
U

(Dαu)v dx = (−1)m
∫
U

uDαv dx (m = |α|)

∀ u ∈ Cm(U) and v ∈ Cm0 (U). After confronting eqs. (2.4) and (2.5), we deduce that

(2.6) L∗v =
∑
α≤m

(−1)|α|Dα(aα(x)v)

referring L∗ as the adjoint of L and is anmth -order linear differential operator with continuous coefficients
(aα ∈ Cα(U)).
Now, if u satisfies Lu = f in U , then

(2.7)
∫
U

uL∗v dx =
∫
U

fv dx

holds for every v ∈ Cm0 (U). But (2.7) no longer requires u to have continuous derivatives; in general, u
(and f) need only be integrable function compact subsets of U (i.e. belong to L1

loc(U)) and thus, this
leads to define a function u ∈ L1

loc(U) to be a weak solution of Lu = f if (2.7) holds for every v ∈ Cm0 (U).
Particularity, if L = ∂/∂xk and u is a weak solution of ∂u/∂xk = f , then we say f is the weak derivative of
u.

2.1.2 Distributions
We now define the space of distributions. Here, we wish to have a generalized notion of a ‘function’.

Definition 2.1.3. A distribution or generalized function is a linear mapping φ 7→ (f, φ) from D(Ω)
to R which is continuous in the following sense: If φn → φ, then (f, φn) → (f, φ). The set of all
distributions is called as D′(Ω).

Example 2.1.1. A current flowing along a curve C ⊂ R3 is an example of a vector-valued distribution.
If j : C → R3 is integrable, then for φ ∈ R3 we define

(j,φ) =
∫
C

j(x) · φ(x) dσ(x)

where dσ(x) indicates integration with respect to arc length on C.

The most important example for distributions is Dirac delta function. We assume that Ω contains
the origin, and we define

(2.8) (δ, φ) = φ(0)

9



2.1. DEFINITION

It must be noted that the continuity of the functional follow from the fact that convergence of a sequence
implies point wise convergence.
Figure 2.1 is the schematic representation of the Dirac delta function by a line surmounted by an arrow.
The height of the arrow is usually used to specify the value of any multiplicative constant, which will
give the area under the function.

Figure 2.1: Dirac delta function

2.1.3 Notion of Weak Derivative
We denote by L1

loc(R) the space of locally integrable functions f : R → R. These are the Lebesgue
measurable functions which are integrable over every bounded interval.

Definition 2.1.4. The support of a function φ, denoted by supp(φ), is the closure of the set x : φ(x) 6= 0
where φ does not vanish.

(2.9) supp(φ) = {x ∈ Ω | φ(x) 6= 0}

Equation (2.9) can also be construed as follows (for details; follow [9],[10])

(2.10) supp(φ) = Ω\{y ∈ Ω | ∃ neighbourhood y ∈ U : φU = 0}

Example 2.1.2. Consider

(2.11) φ(x) =
{

1− x2 if |x| < 1
0 if |x| ≥ 1

then the supp(φ) is [−1, 1] and because φ 6= 0 in (−1, 1), also the closure of (−1, 1) is [−1, 1].

Observation 2.1.1. We have following properties of supp as follows:

Let f and g ∈ C(Ω), then

1. if f = 0⇔ supp(f) = ∅

2. supp(f) is closed in Ω

3. supp(f · g) ⊆ supp(f) ∩ supp(g)

4. supp(f) is the compliment of the largest open subset of Ω where f does not vanish.

By C∞c (R) we denote the space of continuous functions with compact support, having continuous
derivatives of every order. Every locally integrable function f ∈ L1

loc(R) determines a linear functional
Λf : C∞c (R 7→ R) namely

(2.12) Λf (φ) =
∫
R
f(x)φ(x) dx

well defined ∀ φ ∈ C∞c (R) as φ vanishes outside a compact set.

10



2.1. DEFINITION

Moving further assuming that f is continuously differentiable, in turn f ′ determines a linear functional
on C∞c R as follows

(2.13) Λf ′(φ) =
∫
R
f ′(x)φ(x) dx =

∫
R
f(x)φ′(x) dx

Definition 2.1.5. Given an integer k ≥ 1 the distributional derivative of order k, of f ∈ L1
loc is the

linear functional
ΛDkf (φ) = (−1)k

∫
R
f(x)Dkφ(x) dx

If there exists a locally integrable function g such that ΛDkf (φ) = Λg as∫
R
g(x)φ(x) dx = (−1)k

∫
R
f(x)Dkφ(x) dx ∀ φ ∈ C∞c (R)

then we say that g is the weak derivative of order k of f .

Example 2.1.3. Consider the function

(2.14) f(x) =
{

0 if x < 0
x if x ≥ 0

. Equation (2.14) subsumes the distributional derivative which is as follows

Λ(φ) =
∫ ∞

0
x · φ′(x) dx =

∫ ∞
0

φ(x) dx = −
∫
R
H(x)φ(x) dx

where

(2.15) H(x) =
{

0 if x < 0
1 if x ≥ 0

The Heaviside function H in eq (2.15) is the weak derivative of f .

Figure 2.2: Plot of H in (2.15)

§ Discussion on H(x)
As eq (2.7) suggests that (with the advantage of formal integration by parts), we deduce that H ′(x)
should satisfy ∫ ∞

−∞
H ′(x)v(x) dx = −

∫ ∞
−∞

H(x)v′(x) dx

= −
∫ ∞

0
v′(x) dx = v(0)− v(∞) = v(0)

11



2.1. DEFINITION

for every v ∈ C1
0 (R) and because H ′(x) = 0 for x 6= 0, this suggests that H ′(0) = ∞ in such a manner∫

H ′(x)v(x) dx = v(0) and thus∫ ∞
−∞

H ′′(x)v(x) dx =
∫ ∞
−∞

H(x)v′′(x) dx =
∫ ∞

0
v′′(x) dx = −v′(0)

∫ ∞
−∞

H ′′′(x)v(x) dx =
∫ ∞
−∞

H(x)v′′′(x) dx = −
∫ ∞

0
v′′′(x) dx = v′′(0)

provided v is sufficiently smooth and has compact support v ∈ c∞0 (R). This is called as distributional
derivatives and the function in C∞0 (R) are called as test functions.
In the context of delta distribution (see eqs (2.5), (2.7) & (2.8)) δ(x), we have

(2.16)
∫
Rn

δ(x)v(x) dx = v(0)

and we also construe that H ′(x) = δ(x) if Dαδ(x) is something satisfying

Dα(x)δ(x)v(x) dx = (−1)|α|
∫
δ(x)αv(x) dx = (−1)|α|Dαv(0)

Note 2.1.1. The vector space C∞0 (Ω) of test functions is often denoted as D(Ω) (see 2.1.3) & the space of
distributions is denoted as its dual space D′(Ω). If v ∈ D(Ω) and F ∈ D′(Ω), we also denote the action
of F on v by 〈F, v〉 or even

∫
Ω F (x)v(x) dx which is called as a distributional integral.

2.1.4 Convolutions and Fundamental Solutions
Firstly, defining the convolutions for two functions f and g supposing that they lie in Rn as follows

(2.17) f ? g(x) =
∫
Rn

f(x− y)g(y) dy

considering the situation when the integral converges. Say for instance, f, g ∈ L1
loc(Rn), and at least

one exhibiting one compact support, then (2.17) converges and f ? g is well defined.1 Assuming that
v ∈ C∞0 (Rn), considering f ? g as a distribution, then the following computations explains about the
value of linear functional f ? g on v;

〈f ? g, v〉 ≡
∫
Rn

f ? g(x)v(x) dx

=
∫
Rn

∫
Rn

f(x− y)g(y)v(x) dydx

=
∫
Rn

∫
Rn

f(z)g(y)v(z + y) dydz,

(2.18)

Therefore, defining the convolutions of distributions F and G:

(2.19) 〈F ? G, 〉
∫
Rn

∫
Rn

F (z)G(y)v(z + y) dydz

which is well defined provided that F or G has compact support.

Lemma 2.1.1. If f ∈ C(Rn) and g ∈ L1
loc(R)n, one of which has compact support, then f ? g ∈ C(Rn).

Corollary 2.1.1. If f ∈ Ck(Rn) and g ∈ L1
loc(R)n, one of which has compact support, then f ? g ∈

Ck(Rn).
1And, one can show with the help of change of variables z = x− y, that

f ? g = g ? f,

thus commutative property is not annihilated in the scenario of convolution.
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2.2. ANALYSIS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

Discussing about the distributional derivatives of a convolution as follows:

〈Dα(F ? G), v〉 = (−1)|α|〈F ? G,Dαv

= (−1)|α|
∫
Rn

∫
Rn

F (z)G(y)Dα
z v(z + y) dydz

= (−1)|α|
∫
Rn

∫
Rn

F (z)G(y)Dα
y v(z + y) dydz

which in turn implies

(2.20) Dα(F ? G) = (DαF ) ? G = F ? DαG

The convolution used in solving non-homogeneous equation;

(2.21) Lu =
∑
|α|=m

= aα(x)Dαu = f2,

where aα are constants. Solution u = F being the fundamental solution of L, and

〈F,L′v〉 =
∫
Rn

F (x)L′v(x) dx = v(0)

for all v ∈ C∞0 (Rn). Therefore, f is a distribution with compact support and form the convolution with
F

u(x) = F ? f(x) =
∫
Rn

F (x− y)f(y) dy

Then u is a distribution solution of eq (2.21) because Lu =
∑
α aαD

α(F ?f) =
∑
α aαD

αF ?f = δ?f = f

2.2 Analysis of Elliptic Partial Differential Equations
2.2.1 Reisz-Representation Theorem
Theorem 2.2.1. The dual space of a Hilbert space is an isometric3 to the Hilbert space itself. In
particular, ∀ x ∈ H the linear functional on H is defined by

(2.22) lx(y) = (x, y)

is bounded with norm ‖lx‖H∗ = ‖x‖H . Moreover, ∀ l ∈ H ∃ ! x ∈ H, such that

(2.23) l(y) = (x, y) ∀ y ∈ H

and furthermore, ‖x‖H = ‖l‖H∗

In other words, every bounded linear functional φ on H can be represented uniquely in the form of
φ(u) = (u, v) with a suitable element v of H.

2.2.2 Bilinear Forms
Definition 2.2.1. 1. The bilinear form B[ , ] associated with divergence form elliptic operator L

defined by (2.2) is

(2.24) B[u, v] =
∫

Ω

n∑
i,j=1

ai,juxi
vxj

+
n∑
i=1

biuxi
v + cuv dx

∀ u, v ∈ H1
0 (Ω).

2. Also, we say that u ∈ H1(Ω) is a weak solution of the boundary problem (2.1) if

(2.25) B[u, v] = (f, v) ∀ v ∈ H1
0 (Ω)

where ( , ) denotes the inner product in L2(Ω).
2Particluarly, replace f by the delta distribution δ, refer (2.8) here.
3 distance-preserving map between metric spaces
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2.2. ANALYSIS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

In more formal manner of defining Bilinear form, one can easily define as follows; (for more details
see [11])

Definition 2.2.2. H being a Hilbert space, then B : H ×H → R such that a(x, y) is a linear in each
x, y ∈ H i.e. ∀ u1, u2, w ∈ H and c1, c2 ∈ R, we have

B(c1u1 + c2u2, w) = c1B(u1, w) + c2B(u2, w)

B(w, c1u1 + c2w2) = c1B(w, u1) + c2B(w, u2)

2.2.3 The Poincaŕe Inequality
We cannot, in general, estimate a norm of a function in terms of a norm of its derivative since con-
stant functions have zero derivative. Such estimates are possible if we add an additional condition that
eliminates non-zero constant functions. For example, we can require that the function vanishes on the
boundary of a domain, or that it has zero mean.

Theorem 2.2.2 (The Poincaŕe Inequality). Suppose that Ω is an open set in Rn that is bounded in some
direction. Then ∃ a constant C such that

(2.26)
∫

Ω
u2 dx ≤

∫
Ω
C |Du|2 dx ∀ u ∈ H1

0 (Ω)

2.2.4 The Lax-Milgram Theorem
Theorem 2.2.3. Assume that

B : H ×H → R

is a bilinear mapping, for which ∃ constants α and β ≥ 0 such that

(2.27) |B[u, v]| ≤ α‖u‖‖v‖ u, v ∈ H

and

(2.28) β‖u‖2 ≤ B[u, v] u ∈ H.

Finally, let f : H → R be a bounded linear functional on H. Then ∃ a ! element u ∈ H such that

(2.29) B[u, v] = 〈f, v〉 ∀ v ∈ H

Note 2.2.1. With the assurance of [12], it should be noted that the Lax-Milgram theorem is not a
particular case of the Riesz theorem. It is actually more general, since it applies to bilinear forms that
are not necessarily symmetric, and it implies the Riesz theorem when the bilinear form is just the scalar
product. An example of bilinear form is

∫
Ω∇u · ∇v dx on H1

0 (Ω).
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Part III

Final Discussion

15



Chapter 3

Final Discussion

“Mathematics knows no races
or geographic boundaries; for
mathematics, the cultural
world is one country ” .

David Hilbert (1862-1943)

Chapter 1 deals with the introduction of partial differential equations on the grounds of mathematical
terms which are sincerely adopted and implemented in chapter 2. The Method of Characteristic is
a tool that is discussed in chapter 1 to reduce a partial differential equation to a family of ordinary
differential equations along which the solution can be integrated from some initial data given on a
suitable hypersurface1. The method of characteristics discovers curves (called characteristic curves or
simply characteristics) along which the PDE becomes an ordinary differential equation (ODE). Once the
ODE is found, it can be solved along the characteristic curves and transformed into a solution for the
original PDE. A detailed procedure is stipulated in example 1.1.1.

3.1 Observation on MoC
Observation 3.1.1 ([17]). One can use the crossings of the characteristics to find shock waves for
potential flow in a compressible fluid. Intuitively, we can think of each characteristic line implying
a solution to u along itself. Thus, when two characteristics cross, the function becomes multi-valued
resulting in a non-physical solution. Physically, this contradiction is removed by the formation of a shock
wave, a tangential discontinuity or a weak discontinuity and can result in non-potential flow, violating
the initial assumptions.

Chapter 2 is the main concern of this course which focusses its interest on elliptic partial differential
equations, mathematically defined by eq. (2.3). Proceeding further, we have adjoint of second order
partial differential equation operator defined by eq. (2.2). Some serious topics also encounters on this
platform which are weak solutions, distributions, weak derivatives and convolutions and fundamental
solutions. The last section of chapter 2 has the prime motive of the thesis, which has to be finally
discussed here.

3.2 Observation on Elliptic Partial Differential Equations
Observation 3.2.1 (see [1] and [4]). The inequality that appears in eq. (2.28) of the Lax-Milgram
Theorem is referred as coercive when the mapping B is able to satisfy if for some β > 0. The inequality
(2.28) can be thought of as an energy estimate. The inequality says that the energy (the norm squared)
can only blow up as fast as the bilinear form). The Lax-Milgram Theorem incorporates as more general
form of Reisz-Representation Theorem, as it applies to bilinear forms that are not necessarily symmetric.

1A generalization of the concept of an ordinary surface in three-dimensional space to the case of an -dimensional space.
The dimension of a hypersurface is one less than that of its ambient space (for more details see [16].
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Part IV

Appendix
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Appendix A

Differences between Ordinary and
Partial Differential Equation

A.1 Preliminaries
Let us recall that a differential equation is an equation for an unknown function of several independent
variables (and of functions of these variables) that relates the value of the function and of its derivatives of
different orders. An ordinary differential equation (ODE) is a differential equation in which the functions
that appear in the equation depend on a single independent variable.

A.2 Differences
1. A general solution of an ODE involves arbitrary constants. Obtaining a general solution for PDEs

is difficult and a general solution would involve arbitrary functions. Let us look at a simple example
now. Consider the PDE ux = 0. Any arbitrary function of y solves this PDE. This is the simplest
possible linear equation of first order and it has an infinite dimensional space of solutions. Compare
this situation with that of a linear first order ODE dy

dt = 0 where y = (y1, . . . , yp), whose solution
space is Rp which is finite dimensional.

2. In differential equations the unknown function has the interpretation of the state of a system when
the equations describes the evolution of a physical system in time. For ODEs the independent
variable is time and for PDEs one of the independent variables has the interpretation of time. Now
the initial state (state of the system at time t = 0) for ODEs is prescribed as an element of Rn(n
is the length of the unknown vector y); while for PDEs the initial state varies in a function space.
Thus solving a PDE means finding the states of the system at different times and each of these
states vary in an infinite dimensional space of function while solving ODE means finding the states
of the system but are in a finite dimensional space.

3. Linear ODEs have global solutions. Linear PDEs posed on R2 do not necessarily have solutions
defined on R2.
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Appendix B

Insight Classification of PDEs

Some linear, second-order partial differential equations can be classified as parabolic, hyperbolic and
elliptic. The classification provides a guide to appropriate initial and boundary conditions, and to
smoothness of the solutions.

B.1 The Symbol of a Differential Equation
The notation of multi-indices is very convenient in avoiding excessively cumbersome notations in PDEs.
A multi-index is a vector

α = (α1, α2, . . . , αn)
whose components are non-negative integers. The notation α ≥ β indicates that αi ≥ βi ∀ i . For any
multi-index α, we make the following definitions:

(B.1) |α| =
n∑
i=1

αi

Moreover, any vector x = (x1, x2, . . . , xn) ∈ Rn, we set

(B.2) xα = xα1
1 xα2

2 . . . xαn
n

The following notation goes for partial derivatives:

(B.3) Dα = ∂|α|

∂xα1
1 ∂xα2

2 . . . ∂xαn
n

For example, if aα = (1, 2)

Dαu = ∂3u

∂x1∂x2
2

Now, consider linear differential expression

(B.4) L(x, D)u =
∑
|α|≤m

aα(x)Dαu

where u : Rn → R. With this analytic operation on functions we associate an algebraic operation called
the symbol.
Definition B.1.1. The symbol of (B.4) is given by

(B.5) L(x, ιξ) =
∑
|α|≤m

aα(x)(ιξ)α

and the principal part of the symbol is

(B.6) Lp(x, ιξ) =
∑
|α|=m

aα(x)(ιξ)α

Example B.1.1. Symbol of Laplace’s operator ∂2

∂x2
1

+ ∂2

∂x2
2

is −ξ2
1− ξ2

2 , heat operator ∂
∂x1
− ∂2

∂x2
2

is ιξ1 + ξ2
2

and that of wave operator ∂2

∂x2
1
− ∂2

∂x2
2

is −ξ2
1 + ξ2

2 . For the Laplace and wave operator, the symbols are
equal to their principal parts; the principal part for the heat operator is ξ2

2 .
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B.2. SCALAR EQUATION OF SECOND ORDER

B.2 Scalar Equation of Second Order
Say

(B.7) Lu = a(x, y)uxx + b(x, y)uxy + c(x, y)uyy + d(x, y)ux + e(x, y)uy + f(x, y)u = g(x, y)

The principal part of symbol of (B.7) is

(B.8) Lp(x, y; ιξ, ιη) = −a(x, y)ξ2 − b(x, y)ξη − c(x, y)η2

One should realize that (B.8) is quadratic form, and hence after deducing the matrix form of the same
is as follows

(B.9) Lp(x, y; ιξ, ιη) = (ξ, η)
(
−a(x, y) −1/2b(x, y)
−1/2b(x, y) −c(x, y)

)(
ξ
η

)
Recall that a quadratic form is called definite if the associated symmetric matrix is (positive or negative)
definite, it is called indefinite if the matrix has eigenvalues of both signs, and it is called degenerate if
the matrix is singular.

Definition B.2.1. The differential equation (B.7) is called elliptic if the quadratic form given by (B.8)
is strictly definite, hyperbolic if it is indefinite and parabolic if it is degenerate.

Example B.2.1. Laplace’s equation is elliptic, the heat equation is parabolic and the wave equation is
hyperbolic. For these three cases, the matrices associated with the principal part of the symbol are

Elliptic

(B.10)
(
−1 0
0 −1

)
Parabolic

(B.11)
(

0 0
0 1

)
Hyperbolic

(B.12)
(

0 0
0 1

)
Consider, now a second-order PDE in n space dimensions:

(B.13) Lu = aij(x) ∂2u

∂xi∂xj
+ bi(x) ∂u

∂xi
+ c(x)u = 0

Because the matrix of second partials of u is symmetric, we may assume without loss of generality that
aij = aji. The principal symbol of this second-order PDE is still a quadratic form in ξ; we can represent
this quadratic form as ξTA(x)ξ, where A is the n× n matrix with components −aij .

Definition B.2.2. Equation (B.13) is called elliptic if all eigenvalues of A have the same sign, parabolic
if A is singular and hyperbolic if all but one of the eigenvalues of A have the same sign and one has the
opposite sign.
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