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Abstract 

 

           In many underground nuclear waste disposal facilities, bentonite has been referred as buffer and 

backfilling materials due to its high swelling capability, high water holding ability and low permeability. 

Since bentonite gets limited space for occupying itself around the underground nuclear waste containers and 

in case of water intrusion to the nuclear waste disposal repository, it exerts swelling pressure, therefore, the 

determination of swelling pressures of compacted bentonites is a significant aspect for such kind of 

bentonite-built barrier systems. Many of the waste repositories are commissioned in locations where the 

ground water either contains significant amount of salts or the repositories are anticipated to receive saline 

water from sea. Hence in this current research, an effort has been made to find out the swelling pressure of 

compacted bentonites under the influence of dry density and salt solution. Constant volume swelling 

pressure tests were carried out with compacted bentonite specimens of  targeted dry densities  varying 

between 1.2 to 1.8 Mg/m
3
 using distilled water and solutions of NaCl (0.5 and 1.0 M) as the hydrating fluids.  

 

It was found that the swelling pressure of compacted bentonite specimens increased with increase in 

dry density. In all the cases, the equilibrium swelling pressures were found to reach within about 7 days for 

all cases irrespective of the dry density and the bulk solution. However, the influence of saline solutions was 

found to decrease the swelling pressure of the bentonite.  

  

iv 



                           CHAPTER 1 

 

INTRODUCTION                                            
 

 

In present situation, environment conservation has become a very important issue of our society. 

With the rapid growth in exercising nuclear technology, the stockpiling of hazardous nuclear waste from 

nuclear power stations has also increased. So these radioactive wastes, mainly grouped as high-level and 

low-level radioactive wastes, have nowadays created a greater threat to the environment. So to separate 

them from human life and environment, it has become an essential requirement to install waste 

repositories for their proper disposal in many countries. The present idea which has been found 

appropriate by most countries is to keep the radioactive waste inside some containers which are 

better known as canister and bury them below ground to some depth where those canisters can reach a 

hard geological formation. These canisters are also sealed and surrounded by the safety barriers.  

 

The materials used in the safety barriers act mainly as buffer and backfilling material. Normally, 

the material which remains next to the surroundings of the waste container is known as the buffer 

material and the material which is used to seal the passageway i.e., the access tunnel after placing the 

waste containers is recognized as the backfilling material. The placement of radioactive waste and 

bentonite barrier system is shown in Figure 1.1. 

 
 
 
 

 
 

 

Figure 1.1: Example of nuclear waste disposal facility in Japan (after Ogata et al. 1999).
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The three elementary functions of a barrier material are as follows: 

 

1. To support the nuclear waste containers structurally so that they can remain firmly in their places and 

stop crash down of the excavation. 

  

2. To form a waterproof zone around the containers so that water cannot enter into the waste containers 

and high-level radioactive waste cannot migrate into the geosphere. 

 

3.  To translocate the heat produced inside the waste containers to the host rock (Tripathy et al. 2004; 

Komine and Ogata 2004). 

 

The basic operation of a backfill material is to build a water-resistant and sealed zone in the 

excavated tunnel of a disposal facility (Komine and Ogata 2004). 

 

In the past years, compacted bentonites and bentonite-sand mixtures have been recommended as 

proper barrier and backfilling materials for repository sites of high-level nuclear waste disposal facility. 

This is because of some advantageous properties of bentonite. Bentonite shows low permeability and 

has good swelling ability. It also shows good thermal conductivity and low ion diffusivity, i.e., high 

radionuclide adsorption capacity (Agus and Schanz 2008). 

 

It has been found that the utilization of bentonite-sand mixtures as backfilling material is more 

advantageous rather than other natural clays. This is because of the fact that they shrink very less on 

drying. During the process of drying, the void ratio of bentonite decreases which brings the sand 

particles present in the sand-bentonite mixture into contact. This phenomenon reduces the decrease in the void 

ratio giving an overall mechanical stability and also reduces further shrinkage. During freezing, ice 

growth is equally distributed everywhere in the mixture providing a very little change in the 

macrostructure. However, once liquated and saturated, the bentonite swells to fill voids and as an effect 

of which bentonite sand mixture shows very low hydraulic conductivity (Studds et al. 1998). 

 

Bentonite may come in contact with other liquids from the surrounding medium when used as 

barrier material in deep underground repositories. Upon absorbing water or electrolytes, compacted 

bentonites exhibits considerable volume change.  If  the  volume  change  is  restricted,  the  clay  

applies  pressure  (i.e., swelling pressure) on the nearby surroundings. Therefore, the study of swelling 

pressure is an important topic when it comes in the context of picking it as buffer and sealing material 

for such kind of an application. This is a very important characteristic while designing and constructing 

a nuclear waste disposal facility (Agus and Schanz 2008).  
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                   CHAPTER 2 

 

LITERATURE REVIEW 
 
 

2.1 Mineralogy of bentonite: 
 

 

Bentonite is an industrial name given to those natural clays which are formed by weathering of 

volcanic ash or tuff and contains montmorillonite clay as the chief constituent. The basic desirable 

characteristic of bentonite clays is that they possess a high water soaking capability which allows them 

to swell highly. However the characteristics of different bentonites depend on the mineralogical 

composition of the materials. This is because of the different geological history of their sources. 

Bentonite is primarily made up of montmorillonite which belongs to smectite family, a class of 

expansive clay minerals with a large variety of chemical compositions. Besides, except montmorillonite, 

bentonites may have some other accessory minerals as well. Bentonites may contain clay minerals like 

kaolin, illite, mica etc. in minor quantities and some non-clay minerals like quartz, feldspar, gypsum 

calcite etc. depending  on  the  geological  conditions through which  the bentonite is  formed. 

 

Bentonite is 2:1 clay with 1 aluminum oxide sheet surrounded by 2 silicon oxide sheets. The 

internal aluminum sheet and external silicon oxide sheets share oxygen atoms. Such an arrangement 

would be electrically neutral, but the silicon ion and the aluminum ion frequently undergo substitution by 

some lower valence metals, such as iron and magnesium, but  without a significant change in the crystal 

structure and resulting in net negative charge. 
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2.1.1 Structure of Montmorillonite: 

 

Montmorillonite consists of the unit layers made up ofaan aluminium octahedralasheet packed in 

betweenatwo silica tetrahedralasheets. The tetrahedral sheet or silica sheet consists of silica tetrahedron 

units each of which contains fouraoxygen atoms occupyingathe fouracorners of aatetrahedron with one 

siliconaatom at theacentre of the tetrahedron. Three of the four oxygen atoms rest on a triangular face of 

the tetrahedron, each of which share themselves with another one tetrahedron to form a hexagonal net. 

The aluminium octahedral sheet consists of aluminium octahedron units made up of six oxygen or 

hydroxyl groups at six corners of a octahedron and aluminium atom at the centre.The two silica sheets 

and the aluminium sheet of each unit layer combine together in such a way that tipsaof theatetrahedron 

of each silica sheet and one hydroxyl layer of the aluminium sheet form a common layer. The silica-

gibbsite-silica layers continues in „a‟ and „b‟ direction and stack together one above another in „c‟ 

direction. However while stacking oxygen layer on the faces of each unit layer comes close the other 

oxygen layer of nearby units causing a weak bond between negatively charged faces. Since thereaare 

negative andapositive charges on the edge, the charge isacompensated because the cationsaare adsorbed 

fromathe edgealayer to the sheetaface. 

 

Water andaother polar moleculesacan enter amongathe unitalayers, causingaexpansion in lattice 

to „c‟ direction. Hence a montmorillonite structure expands along the „c‟ direction depending on the 

polar molecules present between the silica layers and „c‟ axis. The thickness of water layer depends on 

the nature of exchangeable cations. A typical structure of montmorillonite isashown in figure 2.1. 

 

 

 
 

 

Figure 2.1: Typical structure of montmorillonite. 
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2.2 Formation of diffuseadouble layer and expansion mechanism: 
 
 

The behavior ofa the swellinga pressure ofa compacted bentonite cana be understood from the 

afollowing figure shown below. 

 

 
 

 

Figure 2.2: Swelling pressure mechanism of compactedabentonite from Komine and 

Ogata(1996).  
 
 

 

In  dry  condition,  compacted  bentonite contains montmorillonite,avoids andaother non-swelling 

minerals. Theseavoids remain filled withaair and freeawater. During saturation, montmorillonite absorbs 

water into its interlayers and swells. As a result of which the voids in theabentonite are occupied by 

these swelled amontmorillonites. Therefore, thea volume ofa montmorillonitea increases and 

thea swelling pressure occurs. Finally, there remains no void to soak water and hereafter theavolume 

of montmorilloniteacannot increaseamore. At thisapoint, the swellingapressure of compactedabentonite 

can beameasured (González 2013). 

 

The swelling of bentonite occurs mainly dueato twoamechanisms namely crystallineaswelling 

and osmotica swelling (González 2013).Botha mechanisms rely onathe extenta of hydration andathe 

amountaof cations present  inathe interlayers. 

 

The first mechanism that seems to occur when the montmorillonite imbibes water is the crystalline 

swelling. This mechanism enlarges the distance betweenathe montmorillonite unitalayers. As a resultaof 

which theavolume ofathe montmorillonite increasesaand therefore yields the swellingapressure. The 

dominant force which acts and controls the crystalline swelling when the clay comes into contact with the  

water is theahydration of theainterlayer cations andathe clayasurface.  
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Theaother force which balances the crystalline swelling is the van deraWaals attractionaor the 

Bornarepulsion. The hydration occurs due to theaattraction between wateramolecules and theapolar 

surfaceagroups and also due to theacharge site and exchangeableacations. 

 

In dry condition, the montmorillonite layers remain very close to each other for which the 

exchangeable cations in between the layers can be found either on theasurface of thealayers or inathe 

hexagonalaholes of the tetrahedralasheets which hold the negatively charged layersatogether. The van der 

Waals force is also accountable for the union of the negatively charged layers. When the exchangeable 

cations come into the contact with water, they arrange themselves midway between two clay layers. It  is  

assumed  that  at first  a  layer  of  water molecules encloses the  clay  surface fully. Then another 

molecular layer will get its normal pattern or function disrupted. By this way the insertion of water 

molecules takes place layer after layer. In sodium montmorillonite, zero to four separate layersaof  water 

molecules are inserted betweenathe layers of a montmorilloniteaparticle. 

 

 

 

Figure 2.3: Process of water absorption from Madsen and Müller-Vonmoos (1989).  
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The second mechanism that seems to occur when the montmorillonite imbibes water is the 

osmotic swelling. This mechanism is responsible for the increase in the distance between the 

montmorillonite layers. The osmoticaswelling occursadue to the concentration variation in the ions 

adjacent to theasurface layers ofamontmorillonite and in theapore water. The diffuseadouble layers and 

the vanader Waals attraction influence this mechanism. 

 

Due to the presence of negative charges in clay layers, a repulsion always follows in between 

them. However, the nearby cations adjacent to the surface of the layer satisfy these negative charges. 

Since these exchangeable cations are strongly held by the external surfaces, they always show a affinity 

to diffuse from high concentration regions to low concentration regions in the bulk solution and as an 

effect of which ions spread out around a clayaparticle. This isacalled diffuseadouble layer. 

 

 

 

 
 

 

Figure 2.4: Diffuseadouble layer from Madsen and Müller-Vonmoos (1989).  
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2.3 Different laboratory methods for determining the swelling pressure: 
 
 
 

 

The most commonly used apparatus for determining swelling pressure of expansive soils is the 

one-dimensional consolidometer. For a consolidometer test, the swelling pressure represents that pressure 

which stops allowing the swell of the specimen or that essential pressure which tries to bring a swelled 

specimen back to its usual position i.e., to its original void ratio, height etc. (ASTM D454-96,1997). 

However, there is no standard or universally accepted method that has been found out to carry out 

consolidometer test for getting the swelling pressure.Sridharanaet al. (1986) mentioneda three different 

methodsafor assessing swellingapressure, viz., the free swellatest, the swellaunder load test and 

constantavolume test. Justo et al. (1987) presented four descriptions of swelling pressure with the help 

of the "loading after soaking" method, "soaking under load" methodaand "constantavolume" method. 

The procedure for finding swellingapressure by the "soaking under loading" method and "swell under 

load" method is almost identical but provides two dissimilar values of swellingapressure. Itawas 

suggested that a correctionais needed to apply to theaswelling pressure in order to compensate for soil 

disturbance through sampling for the constant volume test (Fredlund et al. 1980). 

 
 

 

2.4 Descriptions of the test methods for laboratory measurement of 

swelling pressure: 
 

 
 
 

2.4.1 Method-I: Conventional consolidation test/the swell-consolidation/swell load 
method: 

 

 

According to this method, a seating pressure of 6.25 kPa (0.0625 kg/cm2) is first applied to the 

specimen and then permitted to swell fully after saturation. After that only successive loading is allowed 

to take it back to its normal volume which provides the maximum swelling pressure (Nagaraj et al. 

2009). In Figure6, Curve 1 represents a percentage change in volume against logarithmic plot of 

pressure for a consolidation test. This curve intersects the horizontal initial state line at point 1. The 

pressure Pl analogous to point 1 represents the swelling pressure. This is because, at point 1  the 

specimen find its original state after swelling fully at seating load and on complete 

consolidation(Sridharan et al. 1986).However it is a time consuming method but one specimen is enough 

to find out swelling pressure. The test provides the highest value for the swelling pressure of the soil.  
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2.4.2 Method-II: The method of equilibrium void ratios for different consolidation 
loads: 

 
 
 

 

According to this method, three or more identical soil specimens with same initial condition are 

kept in oedometers at equal seating pressure. The dry specimens are then loaded to different pressures 

P1, P2, and P3 which are likely to be around the assessed swelling pressure. When the equilibrium is 

reached due to these loadings, water is supplied to the oedometer cells and the samples are permitted to 

swell or compress to reach equilibrium void ratios. In Curve 2 of Figure 6 the equilibrium void ratios 

are symbolized by A, B, C and so on. A straight line can be drawn through these equilibrium points A, 

B, C and so on, lie on which crosses the horizontal zero volume change line or the line through the 

starting point at point 2 and the corresponding pressure is P2.Thus P2 denotes the pressure beyond 

which the specimen would not experience change in volume on saturation which ultimately represent 

the swelling pressure (Sridharan et al. 1986). However, out of the three methods, this provides the 

smallest value of the swelling pressure. If this method is applied to a field sample, the probable 

difficulty one may face is that at least three identical specimens are required which are very problematic 

to prepare and as well as time consuming (Nagaraj et al. 2009).  

 

 
 
 

2.4.3 Method-III: The constant volume method/zero-swell method: 
 

 
 
 

 According to this method, load is applied to the specimen unceasingly so that the change in  

volume remains practically zero and then water is allowed to enter to the specimen to undergo complete 

saturation (Nagaraj et al. 2009). It is noteworthy that a slight increment in the loading may compress the 

sample beyond the initial reading which is not desirable because the initial reading should always be 

maintained. However, in this method minor variations are not avoidable. When the specimen reaches 

very near to equilibrium, a slight increase i n  load compresses the sample to an extent that it crosses 

the line of the original condition. Pressure p3 which corresponds the intersection point 3 of curve 3 

signifies the swelling pressure. This is a less time consuming method and only one sample is adequate 

(Sridharan et al. 1986).  
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Figure 2.5: Schematic diagram showing the methods of tests to determine swelling pressure 
 

(Sridharan et al.1986) 
 

8 
 
 
 
 

2.5 Influence of salt on swellingapressure of bentonite: 
 
 
 

 

The swellingapressure of bentonite and bentonite-sand mixture is affected by the presence of 

electrolytes in bulk fluids. 

 

The swelling behavioraof a bentonite-sand mixtureadepends on the concentration of the pore fluid, 

the applied effective stress and the amount of the clay content. In dilute solutions, at low stresses 

condition bentonite present in theamixture swellsasufficient enough toaseparate the sandaparticles and 

theabehavior of the bentonite-sand mixturesais similar to that of the bentoniteaalone because it reaches a 

clay-voidaratio similar toathat achievedaby bentonite alone. At highastresses, or in stronga solutions, the 

bentonitea has insufficient swelling capacity toa force the sand particles apart andaswelling is limited 

by theasand poreavolume (Studds et al. 1998).  
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Theaswelling behavior of a bentonite-sand mixture in aqueousasolutions can be predicted from 

the swelling properties of the bentoniteain the appropriate solution, andathe load-deformation properties 

ofathe sand (Studds et al. 1998). 

 
 
 
The influence of high-pH solutions on the characteristic of swelling pressure decreased 

concomitantly with increasing initial dry density and higher  montmorillonite contents in  the bentonite 

samples. Therefore, samples are apparently less susceptible to the high-alkali solutions according to their 

montmorillonite contents (Sugiura et al. 2010). 

 
 
 
The influence of the high-pH solution on the swelling deformation characteristics did not depend 

on  the  montmorillonite content  in  the  bentonite  samples  and  initial  dry  density.  Increasing volume 

of the bentonite specimen settles at the maximum swelling strain on the effective montmorillonite 

density of the constant value in solutions of each concentration (Sugiura et al. 2010). 

 
 
 
The swellingapressure decreasesawith the increasingaof concentrationaof poreasolution. If the 

concentrationsaof injectedasolution are lowerathan thataused to prepareathe sample, theaswelling 

pressures areanot always largerathan the ones thatathe concentrations ofasolutions areasame whenaused 

to prepareathe sample andato inundateathe sample. This is due to the fact that while preparingathe  

specimens, the watera molecules of  theasolution  penetratea into the  clay layers, andasome solutions 

leftaout  arounda the  clayalayers. So when the concentration of the flooding or bulkasolution, is lower 

than the original solution to prepare the specimens, the concentrations of the solutions around the clay 

layers are not necessarily affectedaby the bulk solutions. So the swelling pressures, in this case, are not 

always largerathan the cases where the concentrations ofasolutions to prepare and inundate the 

specimens areaequal to each other (Jia and Yang 2010). 

 

2.6 Constant volume method: 

 

In this method, the change in volume is prevented and consequent pressure is measured. 

Generally, this test is based on the strain-controlled technique, i.e., the most important characteristic of 

this test is that constant volume is maintained. The apparatus used for constant volume test is Constant-

Volume Cell. The Constant-Volume Cell consists mainly of three parts:  

Page 11 



 

 

Figure 2.6: Schematic diagram of the constant volume swelling pressure cell 

(after Tripathy et al. 2014). 

 

 

 

1. The bottom part consists of a porous stone which remains in contact with the soil specimen and inlet 

for the circulation of liquid water or solution. 

 

2. The middle cell contains specimen chamber where the  cylindrical specimen is established. 

 

3. At the top, a total pressure sensor/load cell/transducer is fixed for monitoring the swelling pressure and 

put into direct contact with the top surface of the specimen. It is restrained against volume 

change/swelling.  
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2.7 Density of water and degree of saturation of compacted bentonite: 

 

                It was found by several researchers that the density of adsorbed water during the hydration of 

compacted bentonites increases or decreases as compared to that of water. Anderson and Low (1957) 

noted the density of water as 0.97 Mg/m
3
. Skipper et al. (1995) showed that the density of water in Na-

montmorillinite as 1.14 Mg/m
3
.This is due to change in the structure of water molecules and in their 

properties while in contact with montmorillonite surfaces. Low (1979) concludedathat the hydrogen-

bonded structure of water adsorbedaby Na-montmorillonite is moreaextensible and compressible but also 

less easilyafractured than the structure of the bulk liquidawater. 

 

The degree of saturation is the ratio of volume of water in voids to the total volume of voids. 

Therefore, the degree of saturation of the specimens should not exceed 100%. But several researchers 

have reported that the degree of saturation of bentonite specimens may exceed 100%. Villar and Lloret 

(2008) noted that for compacted bentonites hydrated with water, the calculated degree of saturations 

based on the compaction dry densities and final water contents were greater than 100 %.This is due to the 

variation in the density of water in bentonite-water systems. Villar and Lloret (2008) noted that by 

keeping the degree of saturation of compacted saturated specimens at 100 %, the density of the pore fluid 

increased as compared to that of water. 

 

 

 

2.8 Objective of the study: 
 
 

The objectives of the present study are as follows: 
 
 

 To determine the swelling pressure of bentonite at different dry densities. 
 
 

 To study the effect of different concentration of NaCl salt solutions on the measured the swelling 
pressure of bentonite.  
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CHAPTER 3 

 

MATERIAL CHARACTERISTICS AND EXPERIMENTAL PROCEDURE 

 

3.1 General: 

 

The material used in this study is bentonite which was collected from Bikaner, Rajasthan to find 

out its swelling pressure under constant volume condition. The experiments conducted for the 

characterization of bentonite and the results observed are reported as follows. 

 

3.2 Method: 

 

3.2.1 Atterberg’s Limits: 

 

aAtterberg‟s limitatests wereaconducted toastudy the plasticityaproperty of theasoils. Thealiquid 

limit and plasticalimit areathe wateracontents atawhich theasoils exhibitaboth liquid andaplastic property, 

respectively. Thealiquid and plasticalimits testsawere conducted accordingato IS: 2720-Part 5 anda6 

(1985) and thearesults areapresented inatheatable1. Thealiquid limitawas determinedausing theafall-cone 

method andathe plasticalimit wasadetermined byarolling 3amm diameterathreads of theasoils untilathey 

began toacrumble. The differenceabetween thesealiquid limit andaplastic limitais known asatheaplasticity 

index, whichais generallyaused toacharacterize theaplastic natureaofasoils.  

 

 

Limits and Indices Values 

LiquidaLimit a140 % 

PlasticaLimit a61 % 

ShrinkageaLimit a40 % 

PlasticityaIndex a79 % 

 

Table 3.1: Atterberg‟s limits of Bentonite.  
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3.2.2 Specific Gravity:  

 

Specificagravity isathe ratioaof densityaor specificaweight ofathe particlesato theadensity oraunit 

weightaofawater. Theaspecific gravityaof bentoniteawas determinedausing pycnometeramethod asaper IS: 

2720-Part 3a(1980) andait isafound toabe 2.67. 

 

3.2.3 Particle Size Distribution:  

 

Particleasize distributionaof bentoniteawas determinedausing hydrometeramethod inaaccordance 

withaIS: 2720- part 4a(1975). Bentoniteasieved througha75μm sieveasize wasacollected carefullyaand 

usedafor particleasize analysis andathe analysisawas performedausing Hydrometeramethod. Valueaof D10 

(Diameteraof particleacorresponding toathe 10%afiner), D30 (Diameteraof particleacorresponding toathe 

30%afiner) andaD60 (Diameteraof particleacorresponding toathe 60%afiner) areato beaobtained. Butasince 

particles areaveryafine, it isanot possibleato getathose values andathe distributionais shownain figure 3.1. 

Arounda69% ofaparticles are clayasized. 

. 

 

 

Figure 3.1: Particle SizeaDistribution curve of Bentonite.  
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3.2.4 X-Ray Diffraction Analysis: 

 

 Theamineral compositionaof bentoniteawas determinedaby X-rayadiffractionamethod. According 

toaBragg‟s law, theaXRD identifiesathe mineralsabased onathe relationshipabetween theaangle of 

incidenceaof theaX-rays, θ, toathe c-axisaspacing, d. A Philipsaautomated powderadiffractometer was 

usedafor XRDaanalysis inathisastudy.  

1.5 g ofafine grainedasample isakept inaoven dryingafor 2ahours and allowedato coolainaroom 

temperature. Then, sampleais filledain theasample holderaof diffractometeraand the XRDapattern is 

obtainedaby scanningaover anglearange of 20° to 100°, 2 θ ata0.25°/min. In theastep mode, a 0.05° - 2θ 

step for 2 saisagiven. Results areaanalysed usingaXpert HighaScore software andamineral composition 

hasabeenafound. Quartz, Montmorillonite,aMuscovite andaCalcite areathe mineralsafound. Resultais 

shownain figure 3.2. 

 

 

 

 

Figure 3.2: XRD analysisaofaBentonite.  
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3.2.5 BET Analysis: 

 

 Specificasurface areaabeing theasignificant physicalaparameter has a greataimpact onatheaquality 

andautility ofasolid phaseasamples. Gasaadsorption analysisais theawidely usedamethod forameasurement 

ofaspecific surfaceaarea. Thisamethod involvesaexposure ofagas to theasolid sampleaunder various 

environmentalaconditions therebyameasuring volumeaofasample. TheaBrunauer, Emmett andaTeller 

(BET) techniqueais commonlyaemployed toolato determineathe surfaceaarea ofapowderasample. Here, 

nitrogenagas isaused asaprobe thatais exposedaon theasolid materialaunder standardaconditions. Thus, 

surfaceaarea ofathe sampleacan beameasured fromathe monolayeraadsorbed usingathe prioraknowledge 

ofacross sectionalaarea ofaprobe beingaused. Activation ofasample mustabe doneato ensureathat no airaor 

gasahas been adsorbedaon theasolid particleabefore evaluationawhich mayaaffect theasampleaquality. 

Activationacan beadone byaheating theasample underavacuum conditions. SpecificaSurface Area has 

beenadetermined by BETaanalyser andavalue isafound toabe 79.23am²/g. 

 

3.2.6 Cation Exchange Capacity (CEC): 

 

CationaExchange Capacitya(CEC) isadefined asathe amount ofaexchangeable ionsathat a soilacan 

hold at abgiven pHavalue. TheaCation ExchangeaCapacity (CEC) ofathe soilasample andasoil lime 

mixtureawas found asaper ASTM D7503 – 10amethod. TheaNitrogen concentrationawas determinedaby 

spectrophotometer asaper modifiedaParsons et al. (1984). Theanitrogen concentrationawas determinedaby 

the graphaobtained byathe absorbance ofathe standardasolution of knownaconcentration. AfteraNitrogen 

Concentration isaknown, the CEC ofathe sampleais calculatedaby theaequation 

 

 

    (
    

  
)   

        

                      
      

 

where N = nitrogenaconcentration in mg/L andathe CEC valueaof bentoniteais calculated asa54.71 meq/100 

g.  
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3.3 Experimental procedure: 

 

Bentonite has been considered as the buffer material around the nuclear waste containers in several 

projects associated with the underground disposal of nuclear waste. Since bentonite gets limited space for 

swelling below the ground whose swelling pressure measurement is important for design purpose so in this 

study measurement of swelling pressure is done with the help of constant volume method. 

 

The apparatus used in this study is the conventional Consolidometer (Oedometer) cell with floating 

type ring. It consists of a base with drain tube, a bottom porous stone disc, a specimen ring to 

accommodate a compacted bentonite specimen and is provided with a collar which rests securely on the 

specimen ring, a top porous stone disc, a pressure pad and a locking collar withalocking keys to hold the 

specimen ring inaplace. 

 

 

 

 

Figure 3.3: Components of a conventional oedometer. 
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  3.3.1 Compaction: 

 

 Firstly, based on assumed targeted dry density and initial moisture content, calculated amount 

of bentonite powder is statically compacted within thick-walled oedometer ring which is first 

lubricated with technical grade silicon grease to minimize the side friction. A high capacity 

compression testing machine is used for preparing the compacted specimen. 

  

 After compaction the height of the specimen is measured to find the actual dry density of the 

specimen. The consolidation specimen ring with the specimen in then placed in between two 

porous stones providing filter paper between the specimen and the each porous stone. A 

pressure pad is then placed on top of the top porous stone and the arrangement is kept fixed 

with the help of locking collar and screws. 

 

 

 

 

 

Figure 3.4: Compaction of bentonite powder within thick-walled oedometer rings.  
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Figure 3.5: Compacted bentonite specimen. 

 

 

3.3.2 Swelling pressure measurement: 

 

 Then the assembly is placed on the platen of the loading unit. A transducer/load cell with a 

precision of 0.01 kN is attached on the pressure pad with the help of a pressure ball. The 

function of the load transducer is to monitor the transient vertical thrusts exerted by the 

specimens during the swelling pressure test. Initially a seating pressure is applied to the 

pressure pad and the initial reading of the load cell is noted. Then the distilled water is 

supplied from the bottom and the soil is allowed to swell. 

 

 The readings are taken till equilibrium is reached. This is ensured by making a plot of swelling 

pressure reading versus time whose plot becomes asymptotic with abscissa (time scale) the 

equilibrium swelling is normally reached in a period of 6 to 7 days in general for all expansive 

soil. 

 

 During the test procedure, the volume change is considered to be negligible.  
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                                                 1. Consolidometer with specimen. 

                                                 2. Water tank. 

                                                       3. Transducer 

Figure 3.6: Constant volume swelling pressure test set up. 

 

SL No. Targeted Dry density 

(Mg/m
3
) 

Initial water 

content 

(%) 

Bulk fluid used 

1 1.2 

11.6 

Distilled water 

2 1.3 

3 1.4 

4 1.5 

5 1.6 

6 1.7 

7 1.8 

8 1.3 0.5 M NaCl 

solution 9 1.5 

10 1.8 

11 1.3 1.0 M NaCl 

solution 12 1.5 

13 1.8 

Table 3.2: Initial details for conducting each swelling pressure test.  

1 

2 

3 
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CHAPTER 4 

 

RESULTS AND DISCUSSION 

 

4.1 Introduction:  

 

Based on the targeted dry density and initial moisture content swelling pressure test is conducted 

by adopting constant volume method as discussed earlier to find out the swelling behavior of the 

bentonite. The results are shown in following section. 

 

Table 4.1 presents the loads applied during preparing the compacted specimens, the dry densities of 

the specimens after removal of the compaction loads, the measured swelling pressures, and the measured 

water contents of the specimens after the swelling pressure test. 

 

SL 

No. 

Applied 

static 

load(kN) 

Targeted 

dry density 

(Mg/m
3
) 

Dry density 

after release 

of static load 

(Mg/m
3
) 

Bulk fluid 

used 

Swelling 

pressure(kPa) 

Water content 

after swelling 

pressure test 

(%) 

1 12.64 1.2 1.19 Distilled 

water 

62.0 63.3 

2 18.39 1.3 1.26 203.0 56.7 

3 33.91 1.4 1.32 207.0 46.1 

4 40.23 1.5 1.42 353.0 50.5 

5 73.56 1.6 1.51 738.99 47.6 

6 112.07 1.7 1.60 903.21 52.6 

7 195.3 1.8 1.68 1367.31 48.8 

 

Table 4.1: Swelling pressure test results using distilled water as bulk fluid.  
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4.2 Loading History of Compacted Specimens Prior to Swelling Pressure Tests: 

 

 The maximum applied load at the highest targeted dry density was 195.3 kN whereas the applied 

loads were less at smaller dry densities. The applied static loads during specimen preparation are plotted 

against the corresponding targeted dry densities of the specimens before the swelling pressure tests 

which is shown in figure 4.1. 

 

 

 

 

 

 

                                             Figure 4.1: Load-deformation curve.  
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4.3 Time-swelling pressure behaviour in distilled water: 

 

The time versus swelling pressure plots for the compacted bentonite specimens hydrated with the 

distilled water as bulk fluid are shown in Figure 4.2. All the tests were conducted at ambient 

temperature. The compacted bentonite specimens were tested immediately after completion of the 

compaction process and further hydrating the specimens using distilled water. The equilibrium swelling 

pressures were found to reach within about 7 days for all cases irrespective of the dry density and the 

bulk solution. The time-swelling pressure results in this study showed that interlayer expansion was 

more dominant than collapse of the bigger voids upon hydration leading to single maxima for all 

swelling pressure tests.  

 

 

 

 

 

Figure 4.2: Typical time-swelling pressure plots with distilled water as inundating fluid.  
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4.4 Dry-density swelling pressure plot: 

 

Figure 4.3 shows the dry densities of the bentonite at the end of the tests and the 

corresponding maximum swelling pressures of the specimens tested in the laboratory. The dry 

densities of the bentonite at the end of the tests may slightly vary from the dry density to which the 

sample was initially compacted. This is due to the small deformations allowed by the equipment and 

to inaccuracies in the application of loads. Compacted bentonite specimens in all the tests were 

hydrated with distilled water. It has been found that with increase in dry density swelling pressure 

increases. This behaviour is due to the fact that as the dry density increases which causes a decrease in 

the interlayer spacing and an increase in the osmotic pressure between the clay platelets and thus the 

swelling pressure of the clay increases An increase in the swelling pressure due to an increase in the 

dry density of swelling clays occurs due to a decrease in the magnitude of suction stress associated 

with a decrease in suction and development of the interparticle repulsive pressure (i.e., the swelling 

pressure). The magnitude of interparticle repulsive pressure in saturated bentonites increases with an 

increase in the dry density. 

 

 

 

                                      Figure 4.3: Dry density-swelling pressure curve.  
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4.5 Dry density-water content plot: 

 

Figure 4.4 shows the dry density and the corresponding water contents of the specimens after 

completion of the swelling pressure tests. The water contents remained in between 46% and 64% but 

almost remained constant for dry densities greater than 1.3 Mg/m
3
. 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Dry density-water content curve.  
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4.6 Time-swelling pressure behaviour of compacted bentonites in salt solutions: 

 

A typical swelling pressure variation with time of compacted bentonite specimens are shown in 

figure 4.5 and figure 4.6 when saturated with 0.5 M NaCl and 1.0 M NaCl solution. The equilibrium 

swelling pressures were found to reach within about 7 days for all cases irrespective of the dry density 

and the bulk solution. 

 

 

 

 

 

Figure 4.5:  Typical time-swelling pressure plot with 0.5 M NaCl solution as inundating fluid.  
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Figure 4.6: Typical time-swelling pressure plot with 1.0 M NaCl solution as inundating fluid. 

 

 

 

4.7 Dry-density swelling pressure plot for salt solution: 

 

Figure 4.7 shows the relationship between the maximum swelling pressure and the initial 

targeted dry density of compacted bentonite material. The figures portray the influence actual dry 

density immediate after compaction maximum swelling pressure in distilled water and each 

concentration salt solution.  
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Figure 4.7: Dry density-swelling pressure curve for NaCl solution. 

 

 

4.8 Dry density-water content plot for salt solution: 

 

Figure 4.8 shows the dry density and the corresponding water contents of the specimens after 

completion of the swelling pressure tests. When the compacted bentonite specimens are hydrated with 

distilled water, water contents remained in between 46% and 64% but almost remained constant for dry 

densities greater than 1.3 Mg/m
3
.In case of salt solutions, the water contents of the specimens after 

swelling pressure tests was found to decrease with an increase in the targeted dry density for all the 

tests.  
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Figure 4.8: Dry density-water content curve for NaCl solution.  
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           Chapter 5 

CONCLUSIONS 

 

The effect of dry density and electrolytic solution on swelling pressure of bentonite are brought 

out in this chapter. The measured water contents of specimens after swelling pressure tests are shown 

in the experimental results. Based on above experimental results the following concluding remarks 

can be drawn. 

 

Higher load required for compaction of bentonite at higher dry density. The equilibrium 

swelling pressures were found to reach within about 7 days for all cases irrespective of the dry density 

and the bulk solution. With increase in dry density swelling pressure increases. Water uptake capacity 

was found to be decreased at lower dry densities, whereas, beyond targeted dry density of 1.4 Mg/m
3
 

it was remain constant when swelling pressure tests of bentonite specimens were conducted with 

distilled water as a bulk fluid. When swelling pressure tests of bentonite specimens were carried out 

with different concentrations of NaCl solution, water contents of specimens after swelling pressure 

tests were found to be decreased with the increase in dry densities. The influence of higher NaCl 

concentration in the bulk fluid was found to reduce the swelling pressures of compacted bentonite 

specimens. 

 

 

5.1 Future scope of the work: 

 

Base on the current investigation following future research works are suggested 

  

 Theoretical swelling pressure - dry density relationship can be found out using diffuse 

double layer and stern layer theory. 

 

 Carry out test at higher temperature. 

 

 Swelling pressure tests to be carried out with sand-bentonite mixture specimens.  
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