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Abstract

In software development, Quality is an important thing. We get the best qual-

ity of software when we test it properly. In present day the size and complexity in

object oriented software are increased , Due to this manual testing become very

resource consuming and not able to provide proper results. To handle this we need

automatic test case generation which helps in finding the errors and bugs. Test

cases we generate in design phase only, which is very early in software development

process. We use unified modelling language (UML) to visualise the designs and

structure of object-oriented software. From UML diagram, we generate efficient

test cases which gives proper results during testing.

We first focus on the generation of test cases from the Activity diagram. Activity

Diagrams are used to describe the behaviour of the models i.e. dynamic aspects of

model. In activity diagram we describe the flow of activity from one to another.

Every activity represents a different operation. We first use Rational Software

Architect (RSA) to develop the Activity Diagram. From here we generate XMI

(XML metadata interchange). We generate the intermediate graph by parsing the

XMI code automatically. After developing the intermediate graph , by using it,

in our proposed algorithm topdown test case generation algorithm we generate

test cases. The generated test cases are used in testing to find out the errors, by

removing erros we increase the quality of the software.

In our next work, we focus on the UML composite structure diagram (CSD).

CSD defines the interaction between components because of this we use these

generated test scenarios in the integration testing. We first use Rational Software

Architect (RSA) to develop the CSD. From here we generate XMI (XML meta-

data interchange). We generate the intermediate graph by parsing the XMI code

automatically. By using intermediate graph, in our algorithm we generate test

scenarios. The generated test scenarios are used in integration testing to find out

the errors.
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Chapter 1

Introduction

In software testing we generally prefers that we execute the software on a certain

conditions and we then compare the expcted output and the output which we

actually needed i.e. actual output [1]. In testing we try to findout the errors, bugs

etc. to free the system from the failure and to increase the quality of the software.

We do the testing in three stages: generating of test cases, executing the these

generated testcases and test results evolution [2]. In these three stages the first one

i.e. generating the test cases is the difficult task comapared to the other two tasks.

In present day the size and complexity in object oriented software increased , due

to this manual testing become very resource consuming and not able to provide

proper results. To handle this we need automatic test cases generations which

helps in finding the errors and bugs. Test cases we generate in design phase only,

which is very early in software development process which helps in reducing the

development cost of the software. Additionally measures the product quality as

far as its ability for dependability, accuracy, practicality, testability, ease of use

and re-convenience. A percentage of the goals of testing are as per the following:

� A quality test case ought to have high likelihood of discovering a error

� Meets the necessities that guided its design and advancement

� It guarantees quality of the software

� testing of software minimizes the failure of the product

1



Chapter 1 Introduction

1.1 Overview of UML diagrams

Unified modelling language(UML) is explains the graphical structure for system

for imagining, identifying, developing and documenting of the artifacts of product.

UML is a blueprint of the product which we want to develop and it helps in

the making of the documentation of the product [3]. By using Unified modelling

language we can make any system easily understandable to various developers who

are participating in the developing that product and working on the various types

of platforms. The main advantage of the unified modelling language is that in

not depends on system or platform. Modeling is an essential piece of the software

product, which also helps in the development medium and small products. In UML

2.0 we in total have 14 diagrams which are used to model different artifacts of the

project. The use of these diagrams are increasing day by day which encourages us

in using these diagrams to develop test cases for the product.

we mainly have three types of UML diagrams

1. Structure diagram: The structure diagram maily deals with the static

parts of the software. These diagrams basically highlights the important

things which are present in product being modelled. Various types of struc-

tural diagram are Object diagram, Component diagram, Class diagram,

Package diagram, Composite structure diagram and Deployment diagram.

2. Behavioral diagram: These behavioral diagrams mainly deals with how

the system is interacting i.e. how the interaction will occurs in the system.

These diagrams deals with the dynamic behaviour of the system. Various

types of the Behavioral diagram are Activity diagram, Use case diagram,

State machine diagram.

3. Interaction diagrams : These diagrams deals with the how the data will

flow and control handling among the various parts of the system which we

are going to modelled. Various types of the interaction diagrams are Interac-

tion overview diagram, Sequence diagram, Communication diagram, Timing

diagram.
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Chapter 1 Introduction

1.2 Motivation

Present day situations and requirements are demanding the project to be devel-

oped in object oriented method. In actual these object oriented methods are huge

in nature and compare to other methods it is some what complex because of its

characters like polymorphism and inheritance. Because of there characteristics

object oriented methods , generating the test cases automatically from object

oriented methods is very difficult. To do this task we use the unified modelling

language which is easy to generate test cases from object oriented methods. Now

a days we have different type of unified modelling diagrams which are acting as

main source of developing the required test cases of the product. By using the uni-

fied modelling language we can find out the errors in the design phase only rather

than finding after developing phase, which will reduce the development cost and it

helps in reducing the wastage of resources. In our paper, we are going to generate

test cases from activity diagram and composite structure diagram which helps in

integration testing.

1.3 Problem Statement and Objectives

In software development most important and difficult task is testing. The most

expensive part of the software life cycle is testing. In starting days testing is

conducted after completion of the code for the product. After performing the

test on that code and if they found the errors they will go back to design phase

and starts preparing of another documentation which will lead to wastage of the

valuable resources and money. But in model based testing, using unified modelling

language we can develop the test cases at desing phase which is the second step

in SDLC. Unified modelling language is very highly used by different persons to

show the models of the system. Form these models we can develop test cases

easily. Objectives,

� To propose a methodology to automatically generate the test scenarios using

the UML Activity diagram
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Chapter 1 Introduction

� To propose an methodology to automatically generate test cases using com-

posite structure diagram.

1.4 Thesis Organization

The rest of the thesis is organized as follows.

Chapter-2, In this chapter we discussed basic terms which we are used in the

paper. The terms are like test case, test scenarios, testing etc In this chapter we

discussed basic terms which we are used in the paper. The terms are like test case,

test scenarios, testing etc

Chapter-3, In this chapter we discussed about some work which is used in

our contribution. We discussed about integration testing , designing methods of

test cases.

Chapter-4, In this we discuss how to design the the test cases from Activity

Diagram. In starting we explain basic conept and used terms. Secondly we explain

how to develop test cases with example

Chapter-5, In this we discuss how to design the the test cases from Composite

Structure Diagram. In starting we explain basic conept and used terms. Secondly

we explain how to develop test cases with example.

Chapter-6, concludes the thesis with a summary of our contributions. We

also briefly discuss the possible future extensions to our work.
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Chapter 2

Basic Definitions and Concepts

To understand thesis we are discussing some terms which we used throughout in

the paper and discussed the very basic concepts which are used in the paper. By

explaining like this it is easy to understand the paper without much effort.

2.1 Test Case

Generally we develop the required test cases based on the speficifications of the

product and the requirements of the product. These both specifications , require-

ments are stored in the SRS document on which we develop the required test

cases. Test case is combination of three units. First one is input, second one is

system conditions i.e. state to which we are taking the input and finally third one

is, after performing the required calculations we get an output from the system [4]

i.e. expected output. We can form the test suite my combining the test cases [5].

2.2 Test Scenario

Test scenarios are nothing but combination of the test cases, which executes in a

specific order to give some required result [6]. So, test scenarios are combination of

test cases which will test the flow of data from one end of the product to the other

end. Test scenarios are nothing but set of test cases which arranged in proper

order to execute , to check the flow of the system.

5



Chapter 2 Basic Definitions and Concepts

2.3 Testing Techniques

Testing techniques are mainly divided into three categories: We Generally found

the three techniques for testing. Those are Black box testing White box testing

Graybox testing

2.3.1 Black Box Testing Technique

In this type of testing as name suggests we cant consider the internal structure

of the product. In this testing we test the product by giving the required input

and we wait for the output and we compare the actual output and real output.

During the output generation we not consider the how the output is generating.

We normally call this test as functional testing

2.3.2 White Box Testing Technique

Compare to the black box testing the white box testing talks about the internal

structure of the product. So, in this testing we discuss about input , output and

the most important the internal coding structure of the product i.e. we discuss

how we are getting the output. We also known this testing as glass or open box

or structural testing.

2.3.3 Grey Box Testing Technique

This testing is combination of the black box and white box testing techniques.

In this type of method we generally observe the important the internal coding

structure of the product i.e. we discuss how we are getting the output. As said it

is a combo of both techniques we also observe the outer structure of the system and

we discuss what are the inputs and what outputs we expecting and we compare

the outputs we obtained.

2.4 Model Based Testing

Model based testing, as name suggests we mainly depends on the models to test

the product we designed. In this test cases we develop the test cases using models

6



Chapter 2 Basic Definitions and Concepts

of the system. Model is nothing but which explains some parts of the product.

compare to total system , models are easier to understand the product and very

easy to develop the test cases which are used in the testing. By using These models

we can understood the actually what the product is. In this testig we have three

main stages:

1. Designing the model for system requirements which are used in testing.

2. Developing the test cases from the designed model considering the require-

ments.

3. Developing the test cases from the designed model considering the require-

ments.

In companies deployment of model based testing conducted mainly in follow-

ing steps. 2.1 The model is generally created from the requirement specification

Figure 2.1: Model Based Testing Process

document. The model is then used to generate the test suites. These test suites

contain both the test oracle and test sequence. Test sequence is used to control the

system under test. Test Oracle is used for determining whether a test has failed

or passed. A failure indicates that the system does not perform according to user

requirement. The required model is developed on the basis of the specifications

7
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and requirements of the system i.e. SRS documents. From these developed models

we develop the test suites which contains test cases which are used for testing. By

using these test suites we generally check how the flow is going in the system and

the result of the product i.e. whether the product is working properly or not.

2.4.1 Benefits of Model Based Testing

1. The main benefit of the MBT is it is easy to understand for clients and the

software developers groups.

2. Model-based testing separates business process and testing of the code .

3. By using MBT we can use automated testing method very quickly.

4. We mainly concentrate on the coverage of requirement in MBT.

5. In MBT we have design work is more compared to code .

2.5 Coverage Criteria

Coverage code is nothing but how effectively the program source code is tested by

the particular test suit. We do it because if the coverage of code is very high then

the there is a chance of reducing the bugs in the product, by that we get quality

product.

Some of the coverage criteria are.

1. Statement coverage: In code we encounter number of statements. This

coverage will explains about the all present statements in the code must

execute minimum one time

2. Branch Coverage: This coverage will explains about the all present deci-

sion in the code must execute minimum of one time with all outcomes.

3. Condition Coverage: This coverage will explains about the all present

condition in the code must execute minimum one time with all outcomes.

8



Chapter 2 Basic Definitions and Concepts

4. Decision/Condition Coverage: This coverage will explains about the all

present decision in the code must execute minimum of one time with all

outcomes. All present condition in the each decision must execute minimum

one time with all outcomes.

5. Path Coverage:This coverage will explains about the all present paths in

the code must execute minimum of one time.

2.6 Integration Testing

As name suggests we combine all components and perform the test on the newly

developed component [7]. This testing will starts when every components finishes

its own testing i.e. individual. i.e. nothing but after the unit testing is terminated.

We do integrating the components and performing the test because when single

component is tested separately it may perform the correct behaviour but when we

integrate that component with the other component then there is no guarantee

that the component once performed correctly will perfume once again correctly.

So we do this testing because we check the components working properly or not

even after the combining those components with other components [8]. In this

testing we encounter with stub and driver. Some times some of the components

are not built properly at that time for integration, so at that time use stub and

driver concept

Stubs: To check the behaviour of the lower level components we add the stub i.e.

we use the stub .

Driver: To check the behaviour of the upper level components we add the driver

i.e. we use the driver.

We generally have following type of integration techniques for testing:

1. Top-Down: In this testing techniques we first perform the testing on the

higher stage components by integrating them. After completing higher stage

components we then go for lower stage components one by one. In this

technique we create stub to test the lower stage components [9].

9
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2. Bottom-Up: In this testing techniques we first perform the testing on the

lower stage components by integrating them. After completing lower stage

components we then go for higher stage components one by one. In this

technique we create driver to test the higher stage components.

3. Sandwich: Sandwich integration testing is the combo of Top Down and

Bottom Up integration testing.

4. Big Bang:In this testing we integrate all components or part of components

and we perform the testing on the integrated new component.

In all these four techniques we mostly use the top down or bottom up techniques in

todays companies. The big bang techniques is we can integrate components in less

time and form integrating these components it cost is also low but disadvantage of

this technique is we can not find out in which component the error is exist. After

completing of this integration testing next stage is system testing. In this paper

we worked with top down and bottom up approach.

2.7 Equivalence Class Partitioning

In the approach of equivalence class partitioning, we divide the inputs in sets

equivalence classes, which we are going to use those inputs in the system which is

under test. After dividing the equivalence classes, we generally form one test case

for the one equivalence class. We develop these equivalence classes of input based

on the system requirements for the data which we are giving as input. By using

this technique we diminishes the time required for testing the product wih help of

effective test cases.

This testing is very useful because we can use this method at any stage of the

testing and it is generally good technique to utilize first. For each class partition we

try a one condition because we agree that the conditions present in one partition

will behave as same. We know that in one partition if one condition performs

well, then the other condition also performs well. Like this, if one condition not

10



Chapter 2 Basic Definitions and Concepts

performs well, then the other remaining conditions in that partitions also not

perform as expected.

� Suppose you have a programme which takes input between 100-200, so the

valid partition will be (100-200), equivalence partitions will be like:

Invalid partition below to 99, valid partition 100-200, invalid partition above

200 201 and above

2.7.1 Boundary Value Analysis

In this we develop the test cases depending on the values present at end of the

equivalence classes. One good test case requires that test cases should developed

in such way that it will find the more number of errors. 2.7.

� Test Cases 1: Designing the test cases at the extremes of given domain i.e.

200 , 300.

� Test Cases 2: Designing the test cases below the given domain i.e. 199

and 299.

� Test Cases 3: Designing the test cases above the given domain i.e. 201

and 301.

2.8 XML Metadata Interchange (XMI)

XML Metadata Interchange (XMI) , an interchange structure for the metadata

which is discussed as Meta-Object Facility (MOF) standard [10]. XMI plays a very

important role in IBM Rational Software Architecture to design UML models in

XMI metadata structure [11].
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Chapter 3

Review of Related Work

In this chapter we discuss about previous existed related work done by different

research people in the area of generating test cases from using UML diagrams

for integration testing and next we given an overview about the present related

work which we did in the generating the test scenarios using UML diagrams. We

worked on the developing of test cases from the activity diagram and developing

test scenarios from the composite structure diagram.

3.1 Test Case Generation for Integration testing

Using UML diagrams

Number of researchers are working on the designing the test cases using various

UML diagrams. Here we discuss the existing work which is related to our work.

Sarma et al [12]. have proposed a model how to design the test cases using UML

sequence diagram. In his method first he designed the sequence diagram , from

it he developed the sequence intermediate graph which is used for developing the

test cases. These test cases which he designed are used to test the system to find

out the errors and to check the correctness of the system.

Traon et al [7]. given a procedure to use the object oriented model for regression

testing and also for integration testing. By using the refinement process in object

oriented model, he developed a model for structural system dependency graph

which helps in the ordering of methods and classes to test for the purpose of the

integration testing and regression testing. He reduced stubs count which are used

12



Chapter 3 Review of Related Work

in the testing process.

Hartmann et al [13]. given an methodology for designing the components and

how those components will interact with each other. They took the help of the

statecharts to desing the dynamic character of the components and they also used

the these statecharts to explain how the components will interact with each other.

By using the messages, the interaction occurs between the components where the

messages containing no parameters and required values. In our methodology there

is no constraint on the messages ,they can use parameters and required values.

Hanh et al. [8] given two testing techniques for integration testing. The first

method is depends on the deterministic procedure and the second method depends

on the particular algorithms i.e. genetic algorithm. They first developed the class

diagram and also developed the package diagram to find out the what dependency

exist between the different components. The data received till now is used to

develop a test intermediate graph. Their main motto is to reduce the count of

the stub. Compare to this approach in our approach , finding the error contained

component is more.

Wu et al. [14] given an approach for testing the product which is dependent on

the component based with help of the UML diagrams. They took the help of the

statecharts to desing the dynamic character of the components and they also used

the these statecharts to explain how the components will interact with each other.

Wang et al. [15] proposed a methodology to generate the test case from a class

diagram and an interaction diagram. The test adequacy criteria they used is the

coverage of the design model elements, also called the building blocks in the class

diagrams and the interaction diagrams. They have adopted the category partition

approach to get the function units, then for each function unit, generate test cases

from class diagram criteria. The method sequence from the interaction diagram is

used to generate sequence of the signals in the test case. The generated test cases

are able to meet all message path criteria.

A methodology is proposed by Swain et al. [16] to prioritize test scenario from

UML communication and activity diagrams. They presented an integrated ap-
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proach and a prioritization technique to generate cluster-level test scenarios from

UML communication and activity diagrams. First, they convert the communica-

tion and activity diagrams into a tree representation respectively. Then combines

the tree representation of diagrams into intermediate tree named as COMMACT

tree. The COMMACT tree is then traversed to generate the test scenarios. They

have proposed a prioritization metric considering the coupling or impact or influ-

ence of activity and methods. They considered the criticality of guard conditions

to perform those activities and methods. Their approach generates prioritized test

scenarios and test scenarios are not redundant.

Pilskalns et al. [17] presented a graph based approach to combine the informa-

tion form sequence diagrams and class diagrams. In this approach, first sequence

diagram is transformed into an object-method directed acyclic graph (OMDAG).

The values of variable in class diagram are then associated with objects in OMDAG

during path traversal. The execution sequence and attribute value of generated

test cases is stored into an object method execution table (OMET). This approach

achieves the All message paths and Attribute criteria.

Boghdady et al. [18] given an approach to develop test cases using the UML

activity diagram. They given an algorithm which will generates the activity de-

pendency table automatically. The generated table is then used to develop the

intermediate graph which is activity dependency graph. With help of the gener-

ated table and the generated graph they designed the test cases using the UML

activity diagram. The final designed test cases are used in testing the product.

Kansomkeat et al. [19] have given an approach which is know as Condition-

Classification Tree Method to desingn the test cases using UML Activity diagrams.

They first developed the condition classification trees from activity diagram and

from there the developed the test case table. Finally with help of these test

case tables they designed the test cases. They first developed the input output

explicit activity diagram with help of a basic activity diagram and they generated

intermediate graph, with using this graph they produced the test cases.

Kundu et al. [20] designed the test cases using the UML activity diagrams in
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UML 2.0 notations. Their first step includes augmenting the developing activity

diagram with required test data. Secondly they are designing the an intermediate

graph from the augmented activity diagram later which they using that graph

in designing the test cases. The developed test cases are used in testing the

product and there particularly very helpful in the finding faults in the area of

synchronization and loop faults

Kim et al. [21] proposed a method in which they first developed the input

output explicit activity diagram with help of a basic activity diagram and they

generated intermediate graph, with using this graph they produced the test cases.

The conditions for conversation are depends on the single stimulus principle , we

resolves the state explosion problem. They mainly concentrated on the behaviour

relavant data and designed the model accordingly. They used all-paths test cov-

erage technique.
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Chapter 4

Test Case generation from
Activity Diagrams

Generally we use activity diagrams to show how the different activities are exe-

cuting in a sequence flow. These diagrams displays the path from initial point

to last point which includes number of decisions, which will handled the different

situations of the system. These diagrams are also used to represent the parallel

execution of the activities. We mainly use these diagrams in the modelling of the

business related works

4.1 Basic Concepts and Definitions

1. Initial node: The initial node is nothing but starting node in the diagram.

We represent this initial node with filled in circle. Actually we dont need

this starting node but for our convenience to understand the diagram or any

logic which we represented using the activity diagram are easy to understand

Figure 4.1: Intial node

2. Activity final node: In Activity diagram we represent final node to indi-

cate the diagram is completed there. We represent the final activity node

16



Chapter 4 Test Case generation from Activity Diagrams

by the filled circle with a circle border is the symbol. In activity diagram

we may have zero final nodes or we may have more than one or more than

final nodes in a single diagram

Figure 4.2: Final node

3. Activity: The rounded rectangles represent activities that occur. An ac-

tivity may be physical, such as Inspect Forms, or electronic, such as Display

Create Student Screen. In activity diagram, we use the activities to display

the activities that are happening or to show the actions which we are us-

ing in the diagram. We represent the activity in the diagram by rounded

rectangle.

Figure 4.3: Activity

4. Flow: We see lots of arrows in the diagram. Those arrows shows the flow the

process or control in the sytem. Flow designing is very important because

if we not provide proper flow , it may ruin the whole sytem resulting in the

lot of wastage of resources.

Figure 4.4: Flow
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5. Fork and Join: We use this option in the diagram to show the parallel

activity is happening in the process. We represent this fork with a black

bar which containing one in flow and number of out flows. Fork is wedely

used because generally in a system there happens lot of parallel activites.

To understand them easily we are using the fork. Joion completely opposite

to the fork which we discussed in the above section. If we are using the join

in the diagrams it says that the parallel activities are completing now. We

represent join in the diagram as a black bar in which there are number of

inflows and only one single outflow.

Figure 4.5: Fork and Join

6. Decision: Decision which we use frequently in the activity diagram to take

the decision. When we use the decision, if the condition is true then the

control takes one path and if it wont satisfies then the control takes the

different path other than previous. We represent the decision with a diamond

shape which contains one incoming flow and number of leaving flows.
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Figure 4.6: Decision

7. Merge: Merging is just opposite to the decision. In this merge option we

observe that there are several incoming flows from other sources and only

one flow is leaving the merge option. We represent the merge option with a

diamond which includes the several incoming flows from other sources and

only one flow is leaving.

Figure 4.7: Merge

8. Partition: Some times we use these partitions to represent who actually

participating in the execution of the activities. By using the partitions we

easily understood the which activities are coming under whom and who

executing those activities. This is very useful to understand the process of

the system. We also call these partitions as swimlanes

19



Chapter 4 Test Case generation from Activity Diagrams

9. Flow final: The circle with the X through it. This indicates that the process

stops at this point. Flow final is used to say that the process is stopped at

this time. We represent the flow final using a circle which contain the X

4.2 Proposed Approach

Here, we describe our approach which we proposed to develop test scenario using

UML composite structure diagram. The process we used shown in a diagram be-

low:

Figure 4.8: Proposed framework for test cases and test sequences generation

By using IBM Rational software Architect(RSA) we develop the activity dia-

gram. In RSA we have a option to export the XMI of UML diagram. So we here

extracted the XMI of the developed activity diagram using that option from in

RSA. The developed java code the extractor will extract the required data from

the exported XMI of activity diagram like name of the activities, linkage between

the different activities. Using this extracted data by extractor a graph is gen-

erated which is intermediate graph. Using Gvedit tool we can see the how the

graph is and how the activities are represented as nodes. Each node present in

the intermediate graph is one activity in the diagram. The linkages we used in the

diagram are shown as edges in the intermediate graph which is generated through

extractor. In one pair of nodes we find two types of nodes. One node is represented

as callee node and the second node is known as called node. Callee node are the

activities which obtain the services from other nodes whereas called node are the
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activities which give services to other activities. The starting node which we call

as root node, wont give any service to other nodes and not require any services to

other nodes. Leaf nodes in the intermediate graph shows the activities in diagram

which are not requesting for any services. We made changes in the breadth first

search to develop the test cases from the intermediate graph.

4.3 Case Study

We considered the withdraw of money from the ATM as the example to implement

the our proposed approach. In starting we developed the an activity diagram for

the withdraw of money from the ATM in the RSA. In this example of the with-

draw of money from the ATM we considered the 8 activities such as entercard,

enterpin, pinvalidation, showmenu, enteramount, amountverification, despense-

cash, takemoney. Along with we used starting point and end point also. In this

diagram we used the three partitions i.e. swimlanes like first one user, second one

atm, third one is bank. After developing this diagram in the RSA we export the

XMI of the activity diagram which is used as the input in the extractor. The

extractor i.e. java code will take the xmi as the input and develops the interme-

diate graph which show the different activities present in the activity diagram as

nodes and the flow between those activites as the edges between these new gener-

ated nodes. By applying the proposed algorithm we generate the test cases. The

procedure is shown below step by step with diagram.
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4.3.1 Working of proposed model

Step1: Developing the activity diagram in RSA

Figure 4.9: Activity diagaram for withdarw money from ATM
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step2: extracting XMI

Figure 4.10: Activity diagaram for withdarw money from ATM
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step3: giving this XMI as input to the Java Parser

Figure 4.11: Java parser
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Step4: generatign the intermediate graph

Figure 4.12: interediate graph
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step5: generating the test cases

Figure 4.13: test cases
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Chapter 5

Test Scenario Generation from
UML Composite Structure
Diagram

In software testing we first perform the unit testing i.e. individual testing of each

component. Unit testing guarantees that components individually performs and

developed in proper way. In testing, we find several errors even though we perform

unint testing correctly. After unit testing is completed, we go for integrating

the components and we perform the testing and the components not perform in

a proper manner because of many reasons , and main reason is that interface

between components designed is not in a flexible manner. So, to find out the

errors after integrating the components we need sufficient number of test cases.

After unit test is completed, then the components are integrated and the product

now goes under the integrating testing to find out the errors in the product. The

UML composite structure diagram gives the details how the components behave

and how the pass their data between components once they integrated.

Different components will developed in different programming languages and

those developed components will run on different types of platforms [22]. By

passing control and data the components will interact. Some components in unit

testing they show no error but when it comes to the integrated componets they

are not sure to show correct results. We have two main types of techniques black

box and white box testing. Black box testing not concern about the internal

structure [23] where as white box testing concern about the internal structure of
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the diagram [24].

5.0.2 Black Box Testing Technique

In this type of testing as name suggests we cant consider the internal structure

of the product. In this testing we test the product by giving the required input

and we wait for the output and we compare the actual output and real output.

During the output generation we not consider the how the output is generating.

We normally call this test as functional testing

5.0.3 White Box Testing Technique

Compare to the black box testing the white box testing talks about the internal

structure of the product. So, in this testing we discuss about input , output and

the most important the internal coding structure of the product i.e. we discuss

how we are getting the output. We also known this testing as glass or open box

or structural testing.

5.1 Basic Concepts and Definitions

Here, we discussing some terms which are used throughout the paper mainly when

generating the test scenarios from the composite structure diagram.

5.1.1 Composite structure diagram

This diagrams shows the internal design of the component and also shows how

the data is exchanging between the different components , how the control is pass-

ing between the different components which are connected to one another [25].

This diagram is one diagram which represents the system and used to model the

product. Different symbols which used during the developing of the composite

structure diagram.

1. Component: Component describes a particular part of the code , which

gives servies to other components using some interfaces [26].
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Figure 5.1: Basic Symbols of Composite Structure Diagram

2. Port: Port describes the set of messages and some operations which goes

either in the component or it goes from the component.

3. Interface: As name suggests, interface gives a chance or medium to the

components, with help of this the components will exchange the messages

between them i.e. they can interact using the set of interfaces.

4. Provided interface: Provide interface when situated on particular compo-

nent then that component sends the services to the other components which

requesting that component to send services.

5. Required interface: A component with a required interface port receive

services that are implemented by other components. Required interface when

situated on particular component then that component receive the services

from the other components to which it requested to send services.

Test Criteria: In top-down procedure we create (n-1) stubs. Here n represents

the number of nodes present in the diagram [27].

Composite Structure Graph (CSG): This Graph is generated as interme-

diate graph during the execution. In this graph we have set of nodes and set of

edges which connecting those edges. We developing a intermediate graph of online

hoping system.
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5.2 Proposed Approach

Here, we describe our approach which we proposed to develop test scenario using

UML composite structure diagram. The process we used shown in a diagram

below: 5.2.

Figure 5.2: Block diagram of proposed approach

By using IBM Rational software Architect(RSA) we develop the composite

structure diagram. In RSA we have a option to export the XMI of UML diagram.

So we here extracted the XMI of the developed composite structure diagram using

that option from in RSA. The developed java code the extractor will extract

the required data from the exported XMI of composite structure diagram like

name of the components, linkage between the different components. Using this

extracted data by extractor a graph is generated which is intermediate graph.

Using Gvedit tool [28] we can see the how the graph is and how the components

are represented as nodes. Each node present in the intermediate graph is one

component in the diagram. The interfaces we used in the diagram are shown as

edges in the intermediate graph which is generated through extractor. In one pair

of nodes we find two types of nodes. One node is represented as callee node and the

second node is known as called node. Callee node are the components which obtain
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the services from other nodes whereas called node are the components which give

services to other components. The starting node which we call as root node, wont

give any service to other nodes and not require any services to other nodes. Leaf

nodes in the intermediate graph shows the components in diagram which are not

requesting for any services. To implement the our work we developed the following

algorithm. In this we following the top-down approach. We made changes in the

breadth first search to develop the following proposed algorithm.

5.2.1 Proposed Algorithm

Input: intermediate graph

Output: test scenarios.

1: Stack st= null

2: Queue Q= null

3: s= null

4: testscenario ts: null

5: enque(Q, root)

6: repeat

7: s= Deque(Q)

8: push(st, s)

9: for j=1 to n do

10: Enque(Q,xi)

11: end for

12: ts= elements of Stack s U elements of Q

13: until q is not empty

14: empty(s)

15: exit

5.2.2 Description of Algorithm

This algorithm takes intermediate graph as input and gives back as output, a set of

test scenarios. The algorithm maintain one queue Q, one stack st, one testscenario

ts variable and x variable. At starting of the algorithms the , it maints queue ,
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stack and testscenarios as null. First of all the root node from the intermediate

graph is pushed int to the Queue Q. Next the element is poped out from the

queue and it is inserted into the stack st. Now all the nodes which are linked to

the deleted node which we deleted from in queue are pushed into the Queue Q.

Now, the nodes present in stack and queue are combined and they are inserted in

the testscenario variable to generate the test scenarios. the testscenarios indicates,

the nodes available in stack st , tested using integrating them with the stub nodes

present in the queue Q. to exit the algorithm, if it find q is empty in terminates.

If the queue Q in not yet empty, an node is removed from the queue and the

procedure repeats otherwise s is emptied

5.2.3 Case Study

To implement our proposed algorithm, we have taken the example of online

shopping. In this composite structure diagram we have elven components and

number of interfaces to connect them. The components are mainpage, signin-

page, signuppage, homepage, searchitem, viewcart, logout, addtocart, orderitem,

deleteitem and bankgateway. The interfaces are interface1, interface2, interface3,

interface4, interface5, interface6, interface7, interface8, interface9, interface10 and

interface11. We have following ports, port1, port2, port3, port4, port5, port6,

port7, port8, port9, port10, port11, port12, port13, port14, port15, port16, port17,

port18, port19, port20. The components are connected using the interfaces, re-

quired interface and provided interface. The component which requires data, uses

the required interface and the component which gives services uses the provided

interface.We develop this composite structure diagram in the RSA and we export

its XMI. The java parser will take it as the input and generates the intermedi-

ate graph which contains the dependencies between the components. Form the

intermediate graph, by using algorithm we generate the test scenarios.
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5.2.4 Working of Algorithm

Step1: Developing the composite structure diagram in RSA

Figure 5.3: online shopping composite structure diagram
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step2: Extracting the XMI of the diagram in RSA

Figure 5.4: XMI

step3: giving this XMI as input to the Java Parser

Figure 5.5: java parser
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Step4: generatign the intermediate graph

Figure 5.6: intermediate graph
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step5: generating the test scenarios

Figure 5.7: generated test scenarios
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Conclusion and Future Work

We mainly focused on the how to develop the test cases using UML diagrams

activity diagram and composite structure diagram. Here we are giving some short

notes on our work. Finally we given some ideas for future work.

6.1 Test Scenario Generation from UML Activ-

ity Diagram

In this paper , we explained a technique to develop the test cases automatically

using UML Activity diagram. The discussed technique is totally model based. We

developed extractor which gives the intermediate graph automatically by taking

the input as XMI of the Activity diagram which is exported from the RSA. By

using the our proposed algorithm we produced the test scenarios from the inter-

mediate graph by taking it as the input. The produced test scenarios are enough

to find out in which the maximum error chances are present. In future we plan to

generate test cases using UML composite structure diagram.

6.2 Test Case generation from Composite Struc-

ture diagrams

In this paper , we explained a technique to develop the test cases automatically

using UML composite structure diagram. The discussed technique is totally model

based. We developed extractor which gives the intermediate graph automatically

by taking the input as XMI of the composite structure diagram which is exported
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from the RSA. By using the our proposed algorithm we produced the test scenarios

from the intermediate graph by taking it as the input. The produced test scenarios

are enough to find out in which the maximum error chances are present. In future

we plan to generate test cases using combination of UML activity diagram and

composite structure diagram.
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