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ABSTRACT 

Soil thermal properties are of great importance in many engineering projects and other situations 

where heat transfer takes place in the soil. Estimation of soil thermal properties are of prodigious 

importance in design and laying of buried high voltage power cables, pipe lines of oil and gas, 

nuclear waste disposal facilities, Modification techniques of ground engaging heating and 

freezing  and soil shrinkage studies etc.. Due to daily temperature fluctuations the solar and 

diffuse radiations exchange takes place at the earth‟s surface. Particularly changes in the amount, 

phase and condition of water. This leads to variations in the thermal properties of the soil. The 

present research deals with the thermal properties of soils and the factors influencing them. Heat 

transfer depends upon thermal properties of the soil, such as specific heat, conductivity and 

thermal diffusivity. Thermal properties affect the soil temperature profile and soil heat flux 

transport and distribution. With this in view, efforts were made to develop an apparent soil 

method for long-term scenarios that can be applied to thermal modeling for various soils. 
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CHAPTER 1 

INTRODUCTION 

1.1 General 

The world population reaches to 9 billion by next thirty years; people will consume more energy 

than the whole used in all previous history.  Under existing patterns of energy use, the results 

prove catastrophic.  The ensuing pollution will damage the health of millions of citizens, mainly 

in the developing world. Far worse, the increasing concentration of greenhouse gases will take 

past a point of no come back as difficulty toward climate catastrophe (World nuclear 

association).  

The nuclear renaissance represents a convergence of developments: 

 Enduring advancement in reactor technology 

 Unparalleled levels of efficiency and capacity consumption in key countries 

 A healthy growing record of equipped safety, supported by a persistent global nuclear 

safety culture 

 Growth in executing the scientifically sound concept of waste disposal using deep 

geological repositories 

 Expansive growth planning for nuclear power in major nations in both the developed and 

developing worlds (World nuclear association). 

Wind, solar and biomass will positively play roles in future energy economy, but the energy 

sources cannot develop sufficient enough to transmit cheap and reliable power at the scale the 

global economy requires. While it may be theoretically probable to stabilize the climate 

without nuclear power, in the real world there is no convincing path to climate stabilization 

that does not include a considerable role for nuclear power.  
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A fair assessment shows no reasonable obstacle to a global expansion of nuclear power. As 

categorized by IAEA there are mainly three types of solid nuclear wastes classified in terms of 

its radioactivity. Those are i) Low level waste ii) Intermediate and iii) High-level wastes. Low-

level waste (LLW) consists of daily refuse like paper, gloves, plastic containers, disposable 

overalls and overshoes with low radioactivity. LLW is packed together into drums, stored and 

disposed into repositories. Intermediate-level waste (ILW) mainly consists of radioactive resin 

and chemical sludge, spent filter cartridges etc. composed from waste treatment process and 

maintenance work. ILW will be hardened by mixing it with sand/cement and then poured into 

concrete drums. The ILW will be transported for disposal after temporary storage at the nuclear 

power station. HLW consists near to 95% of hazardous waste. They are rich in fission products 

with transuranic elements. This waste required to be shielded as it is highly hot and radioactive. 

They are usually disposed in deep geological repositories. 

  

 

Fig. 1.1 Waste disposal procedure (modified form Kim et al. 2011) 
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As shown in fig 1.1 the waste which can be recycled will be separated from the waste. The 

remaining high level waste will be disposed deep inside the ground away from living geo 

environment.  

1.2 Scope and Objective 

The purpose of this study is determination of thermal properties of geomaterials i.e. buffer 

materials (sand bentonite mixtures). The main objectives are 

 Developing apparent soil method for long-term scenarios that can be applied to thermal 

modeling for various soils. 

 Determination of thermal conductivity at room temperature with the laboratory 

experimental setup and KD2 Pro. 

 Determination of thermal conductivity at higher temperature with the laboratory 

experimental setup and KD2 Pro. 

 Determination of thermal diffusivity at room temperature with the laboratory 

experimental setup and KD2 Pro. 

 Determination of thermal diffusivity at high temperature with KD2 Pro. 

 Observation of influence of variation of temperature and various factors on thermal 

properties.   

1.3 Organization of Thesis 

Chapter 1: Describes the introduction, scope and objectives of the present study. 

Chapter 2: Presents the review of the literature related to the thermal properties of soil, methods 

of determination of thermal properties and limitations. It also reviews the thermal 

properties associated with various temperatures. Based on the reviewed literature, 

the critical appraisal of the same is also reported. 
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Chapter 3: Discusses the theoretical back ground associated with the thermal studies of porous 

media and the related studies. 

Chapter 4: Describes the methodologies employed to obtain physical, mineralogical and 

geotechnical characteristics of the geomaterials and the obtained basic results are 

reported in this chapter. The methodology to assess the thermal characteristics of the 

geomaterials is also presented in this chapter. 

Chapter 5: This chapter describes the results and discussions related to thermal properties 

experiments and also about the obtained results.  

Chapter 6: Summarizes the findings and major conclusions of this study. 
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CHAPTER 2  

LITERATURE REVIEW 

2.1 General 

This chapter describes available literature regarding thermal conductivity and thermal 

diffusivity, in view of geomaterials. This chapter also presented brief review of studies which 

highlighted the influence of parameters such as the moisture content, dry density etc. Further 

both experimental and analytical methodologies developed by the previous researchers to assess 

the long-term performance of geomaterials in terms of their thermal characteristics, is also 

presented in this chapter. In order to understand the long term behavior of buffer materials, the 

knowledge of thermal behavior and heat migration mechanism through them, is essential. 

In view of this the reviewed literature is purposefully divided into the two categories and 

named as thermal conductivity studies, thermal diffusivity studies. For sake brevity the essence 

of these studies are presented briefly in the following sections. 

2.2 Thermal conductivity studies 

Radhakrishna et al. (1980) studied relation of moisture content and thermal resistivity of the soil. 

Due to the added moisture in the soil, a path for the flow of heat that bridges the air gaps 

between the soil particles provide a thin film around the soil particles or wedges at the contacts. 

By increasing the effective contact areas between particles, these films or wedges greatly reduce 

the thermal resistivity of the soil. As the moisture content increases further, the effective contact 

area no longer increases with increasing moisture content. A considerable decrease in thermal 

resistivity is not obvious when additional moisture is added to fill the pore space. The moisture 

content at which the bridge mechanism breaks down, resulting in an inconsistent increase in the 
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thermal resistivity with small reduction in moisture content, which was termed as the critical 

moisture. 

Salomone et al. (1982) indicated that the critical moisture content of fine-grained soils can be 

defined by the plastic limit for such soils as marine sediments have low natural dry densities. 

Ranges were given for the critical moisture content along with plastic limit. By the studies of 

various compactive efforts a typical compactive effort value was given where the optimum 

moisture content, plastic limit and critical moisture content are equal.     

Salomone and Kovacs (1984) studied the thermal resistivity of various soils. Appraisal was given 

for Salomone et al. (1979), Salomone et al. (1982) and Salomone and Kovacs (1983) by 

comparing those with results obtained. The thermal resistivity influence of a soil was shown 

primarily by Soil composition, soil density, and soil moisture content. The critical moisture 

content was typically observed which is at the knee of the thermal resistivity versus moisture 

content curve. Salomone et al. (1979) presented the variation of thermal resistivity with respect 

to moisture content for various types of soils. It can be observed that thermal resistivity decreases 

as moisture content increases. Salomone et al. (1984) observed the variation of thermal 

conductivity with respect to both water content and dry density in same comportment. 

Salomone and Kovacs (1984), a line was given as line of optimus for the critical moisture 

content with respect to dry density. Line of optimus gives a relation in between critical moisture 

content and dry density. Because for low-density soils (i.e., less than 1.6 Mg/m
3
), as plastic limit 

of the soil is only slightly above the optimum moisture content, Salomon and Kovacs (1984) 

concluded that plastic limit may be used to determine the critical moisture content of soils at low 

dry densities for fine-grained soils from the given range by Salomone (1982).  
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Singh and David (2000) developed a laboratory probe based upon the principle of transient 

method to measure thermal resistivity of different soils for a state of compaction. The types of 

soil tested were clay (black cotton soil), fly ash, silty-sand, fine-sand, and coarse-sand. Black 

cotton soil, fly ash and the fine-sand have also been mixed (by their weight %). Total five mixes 

were prepared. Equations were proposed for the results obtained and the efficiency was well 

given with the experimental results. Probe is smaller in diameter and size. Experiments were 

done till the range of coarse sands only. With this probe further coarser material experiments 

were not conducted.  

Arnepalli and Singh (2004a) proposed a generalized procedure for measuring the thermal 

resistivity of soils. By employing transient heat technique a probe was developed for measuring 

the thermal resistivity of the soil. Generalized equation was proposed and validated with 

experimental values. The thermal resistivity of sand and gravel, obtained from this probe, match 

very well with the results reported in the literature for sand, gravel and the crushed rocks. 

Arnepalli and Singh (2004b) developed a field probe to find the thermal resistivity of soils. 

Transient heat technique was employed to the probe. The developed probe is suitable for both 

fine grained as well as coarse grained soils. A generalized correlation was proposed for thermal 

resistivity with respect to moisture content and dry density for fine grained soils and with respect 

to void ratio for coarse grained soils. The efficiency of the comparison with previous researchers 

results for the results obtained is very high. 

2.3 Thermal diffusivity studies 

Cass et al. (1981) measured both thermal conductivity and thermal diffusivity. An analytical 

expression was developed for thermal conductivity with respect to diffusion. No attempt had 

been done to predict the relation with density and water content. In experimental setup water 
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bath was used. Maintaining and applying the same temperature throughout the sample whole 

period with water bath would be difficult and was not mentioned about it. 

Roos et al. (2002) conducted experiments on blocks, using energy balance equation thermal 

diffusivity was done. As the experiments were on long blocks uniform distribution of 

temperature is big problem. The experiments need and were conducted with strong heat flux 

hence at low heat flux the experiments are to be done.  

Krishnaiah and Singh (2003) Measured thermal diffusivity by developing experimental setup 

called Thermodet and observed that thermal diffusivity is practically independent of dry unit 

weigh. Thermal diffusivity of coarse grained soils is higher than fine grained soils, specific heat 

of the soil is observed to be much sensitive to the moisture content. 

Krishnaiah and Singh (2006) presented soil cementitious materials thermal properties and 

efficiency of Thermo det. The study also indicated that the specific heat does not show any 

variation with dry density. 

Johnson et al. (2007) obtained the relatively stable analytical results using the amplitude and 

logarithmic methods to calculate the apparent soil thermal diffusivity. These methods are 

concluded as sufficient methods for determining the apparent soil thermal diffusivity of given 

regions with reasonable accuracy. 

Tessy and Renuka (2008) made trail by harmonic analysis to find the thermal diffusivity. The 

research insisted to different soil layers. The consistent analysis to find diffusivity was indicated. 

For insitu conditions the study obtained results. For a laboratory purpose it may not be the proper 

method. 
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Gnatowski (2009) measured thermal diffusivity using two groups of methods. First method is 

using amplitude, phase, arctangent and logarithmic equations. Second method is experimental. 

The study was given comparable results and discussed about the non-suitability of phase method. 

Proper correlation was not developed between thermal diffusivity and various factors like 

moisture content and dry density.  

 Danelichen (2013) determined thermal diffusivity by amplitude, logarithmic, arctangent and 

face methods between various depths from 0.01 to 0.15m depth. Out of all these four methods 

when compared with amplitude method logarithmic method gives better result at higher depths 

also. The studies are purely analytical and more observations are to be done. 

Rubio (2014) used experimental soil device, measured thermal conductivity with decagon 

devices. Empirical equation was given for thermal conductivity with respect to volumetric 

moisture content. The study was done on a soil column (gravel) in which density is an important 

factor and the SH-1 sensor of KD 2 Pro. is limited depth restricted. The correlation would have 

been efficient by including whole specimen depth. 

2.4 Summary and Critical appraisal  

As the coarser fraction is increasing, the thermal conductivity increases (Salomone et al., 1979) 

but the stability of the barrier decreases. In transient condition rate of temperature of heated body 

depends on the material in which it is placed; hence depending upon the temperatures in 

experiments the thermo couples can be chosen. Various types of thermal probes were developed 

by previous researchers to measure thermal resistivity. Progress in efficiencies can be observed 

(Singh and David, 2000; Arnepalli and Singh, 2004a; Arnepalli and Singh, 2004b). Composite 

materials also need to be improved for industrial requirements (Singh and David, 2000). 

Regarding thermal diffusivity Krishanaiah and Singh (2003), Krishanaiah and Singh (2004) 
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developed experimental methodology from Shannon and Wells (1947). The method is apparent, 

but showed that diffusivity is independent of dry density. Analytical analysis was done by some 

researchers (Darrell, 2007; Tessy and Renuka, 2009; Gnatowski, 2009) and results obtained were 

compared in between them. The proper relation and consistent variation observation was not 

given.    

          On nuclear waste buffer materials the research is to be done and is needed for modern 

world requirements of hazardous waste management. Generalization to the maximum accuracy 

in the aspect of various factors is very important for thermal properties. The thermal behavoiur at 

various temperatures had not been done which is an important aspect to be observed.   
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CHAPTER 3 

THEORITICAL BACKGROUND 

3.1 General 

 This chapter presents the theoretical background underlying the need of the hour. 

Attempts made by the researchers in the current area of interest have also granted a place in this 

section. 

3.2 Terminologies 

 Temperature is a measure of internal motion of constituent molecules of an object. With 

increase in the motion, internal energy increases and so is the temperature. Heat is the thermal 

energy in transit. Heat is usually measured in calorie and 1 calorie is the amount of heat required 

to increase the temperature of 1g of water by 1
o
C. Thermo osmosis or thermo migration is the 

moisture migration in response to a thermal gradient. Thermal storage capacity is equal to the 

area under the temperature vs. time plot after application of heat from the external source has 

halted. 

 Thermal conductivity (k) is defined as the quantity of heat that flows normally across a 

unit cross sectional area of a material per unit time when subjected to a unit thermal gradient 

along the direction normal to the surface. Evidently, the unit of thermal conductivity is cal/sec-

cm-C or it may also be expressed in terms of Watt/m-

C 

  

  
   

  

  
         (3.1) 

Where, 

  

  
 Rate of heat flow 

 =Thermal conductivity of the material 

 =Cross sectional area of the material normal to the direction of heat flow  
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=Temperature gradient normal to the direction of heat flow 

At a given density and moisture content, thermal conductivity is high for coarse textured 

soils than fine textured soils. Thermal conductivity is more for soils having high quartz content; 

however, it is less for soils rich in plagioclase, feldspar and kaolinite. In general, thermal 

conductivity of kaolinite clay will decrease with decrease in water content and increase in 

porosity (Reno and Winterkorn, 1967). The reciprocal of thermal conductivity is called as 

thermal resistivity and it is expressed in m-
o
C/Watt (thermal ohm). Thermal needle probes find 

their utility for measurement of thermal resistivity (Van Rooyean and Winterkorn, 1959; 

Mitchell and Kao, 1977).  

Dielectric constant ε gives a measure of the ability of a material to reduce the strength of 

the applied electric field or to behave as an insulator. 

 

    
 

 
         

 (3.2) 

Where, 

 =Dielectic constant of the material of interest 

  =Capacitance in Farad 

 =Length of the specimen 

 =Cross sectional area of the specimen 

Volume-mass constitutive relationships 

 Gravimetric water content (w) can be defined as, 
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(3.3) 

where, 

w= Gravimetric water content 

  =Mass of water 

  = Mass of soil solids 

 

 Volumetric water content (θ) may be defined as, 

 

  
  

     
 
  
 
 
  
  
 
  
 
     

(3.4) 

where, 

 

θ= Volumetric water content 

  =Volume of water 

  = Volume of voids 

  = Volume solids 

     = =Total volume 

  
  

 
=Porosity 

  
  

  
=Degree of saturation 

 Degree of saturation is the ratio of volume of water to the instantaneous volume of voids. 

However, the instantaneous variables can be referenced back to the original volume assuming 

that specimen volume changes are not appreciable.  
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(3.5) 

Where, 

S=Degree of saturation 

  =Volume of water 

  = Volume of voids 
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CHAPTER 4 

MATERIALS AND METHODOLOGY 

4.1 General 

This chapter devotes the characterization of selected materials and the methods adopted 

for characterization of materials and to evaluate the thermal properties. This chapter also 

includes description of design and development of experimental setup and detailed methodology 

to obtain thermal characteristics of the selected geomaterials and their variation with moisture 

content. 

4.2 Materials considered in this study 

 As described in the previous chapter the efficiency of sand bentonite mixtures which are 

used as buffer materials in nuclear waste disposal have studied profoundly to evaluate their 

efficiency as buffer material, in terms thermal characteristics, for safe disposal of nuclear waste.  

To generalize the results obtained by the present study, commercial Indian standard sand 

of grade-III (denoted as ISS) and bentonite (denoted as BT) were considered for this study. The 

physical and geotechnical characteristics of these selected materials were obtained using various 

methodologies and details are presented below. 

4.3 Physical Characteristics 

4.3.1 Specific Gravity  

The specific gravity (G) of the selected materials were determined with the help of a 

helium gas pycnometer, as depicted in Fig. 4.1 (make Quantachrome, USA), by following guide 

lines presented in ASTM D5550 (2006). 
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Fig. 4.1 Photographic view of helium gas pycnometer used for determining specific gravity 

of samples 

The samples of the selected materials are oven dried at appropriate temperature till they 

attain constant weight and cooled to ambient temperature in a desiccator where relative humidity 

is controlled in order to prevent the adsorption of moisture from the atmosphere due to the 

hygroscopic phenomena. A known weight of sample is transferred to the pycnometer sample 

holder to measure its solid volume, with the help of Archimedes law, by purging helium gas. 

Prior to the measurement of solid volume, the sample is evacuated to expel the entrapped gases 

present in it. From the measured solid volume and weight of the sample, the solid density (i.e., 

specific gravity) is determined using mass-volume relationships and the obtained results along 

with their designation are presented in Table 4.1. In order to evaluate the thermal characteristics 

of sand-bentonite mixtures, the mixtures with different bentonite fraction in them such as 10, 30, 

50 and 80 percent by weight is prepared based on gravimetric measurements. The specific 
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gravity values of these sand-bentonite mixtures were obtained and the same is presented in Table 

4.1. 

Table 4.1 Designation and specific gravity of the samples considered in this study 

Material Designation Specific gravity (G)
*
 

Indian standard sand of 

grade III 
ISS 2.70 

Bentonite BT 2.58 

Sand-bentonite mixture with 

10% bentonite 
SB 10 2.7 

Sand-bentonite mixture with 

30 % bentonite 
SB 30 2.67 

Sand-bentonite mixture with 

50% bentonite 

SB 50 

 

2.65 

 

Sand-bentonite mixture with 

80 % bentonite 
SB 80 2.61 

*As per Indian standard 

4.3.2. Grain Size Distribution 

The grain size distribution characteristics of these selected materials were obtained by 

conducting both sieve and hydrometer analysis as per the guide lines presented in ASTM. For 

this purpose approximately 500 grams of the sample is considered and washed through 75 

micron sieve under the mild jet of water, the retained material on the sieve is used for sieve 

analysis. Further the material passed through 75 micron sieve is collected and performed 

hydrometer analysis. The results from both sieve and hydrometer analysis are combined to obtain 

grain size distribution characteristics of the chosen materials and the results are presented in Fig. 

4.2 and 4.3.  
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Fig. 4.2 Particle size distribution characteristics of sand and bentonite 

 

 

  
Fig. 4.3 Particle size distribution properties of fabricated materials 

4.4 Geotechnical Characteristics 

 As discussed in the literature review chapter, the role of buffer material in high level 

radioactive waste disposal facilities to isolate the hazardous waste from the surrounding to 

minimize the interaction and possible contamination. For this purpose previous researchers have 
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exploited the strength of sand bentonite mixtures in terms of its hydraulic barrier capabilities and 

efficacy as a sorbent for heavy metals and radioactive elements. Further the limitations of the 

bentonite in terms of its excessive swelling and shrinkage behavior, upon interaction with polar 

liquids, is tackled by adding the non-reactive frictional materials such as quartz based sand. 

Keeping in view of these facts, the present study aims to evaluate the thermal characteristics of 

various sand-bentonite mixtures, in terms of thermal coductivity and thermal diffusivity to assess 

their ability as a buffer material to contain the disposed high level waste. The influence of 

various factors such as dry unit weight and volumetric moisture content on their diffusion 

characteristics need to be elucidated. In order to achieve the above mentioned objective the 

present study established the compaction characteristics of various sand-bentonite mixtures using 

methodology described in the following. 

For the compaction characterization standard proctor is used. The compaction 

characteristics were obtained for SB 10, SB 30, SB 50 and SB 80. The compaction results are 

shown in Fig. 4.4. For determination of thermal properties of geomaterials the compaction 

characteristics both wet side and dry side of optimum are considered and experiments are 

conducted.   
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Fig.4.4 Variation of dry unit weight and gravimetric moisture content of sand-bentonite 

mixtures 

Table 4.2 compaction characteristics of various materials used in this study 

Material 
d max 

(g/c.c) 

OMC 

(%) 

SB-10 1.696 8.55 

SB-30 1.830 13.7 

SB-50 1.474 19.76 

SB-80 1.719 15.1 

4.5. Thermal properties 

As discussed earlier the thermal properties play significant role in selecting the suitable buffer 

material for safe disposal of radioactive nuclear waste. With this in view, the previous 

researchers have conducted experimental and numerical studies to understand the thermal 

properties of soil. In these studies, several methods and newly developed experimental setups 

have been used to obtain the thermal characteristics. These methods are seemed to be technically 

sound and consistent. However the major results obtained for thermal diffusivity depends on 

analytical equations and research restricted to normal temperature. There is a necessity to 

develop and more generalize the thermal properties studies and analysis. With this in view, the 
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objective of the present study is to develop apparatus to obtain the thermal characteristics of 

buffer materials.  

4.5.1 Development of thermal apparatus 

The thermal property determination test setup consists of thermal probe developed by 

Ros (2014) which employs transient heating technique, mild steel moulds, and a constant DC 

supply and data logger. The temperature variation is monitored in the interval of ten seconds. 

The T-type thermocouples are used to measure the temperature which consists of two wires 

made up of copper and constantan. To avoid way in of water into the sample, when the device is 

submerged in water, two rubber washers are provided between the top and bottom caps of the 

mild steel tube. A commercial device available as KD2 Pro. is also used to measure the thermal 

properties of soil which was developed by Decagon devices.  

The major components of the thermal property apparatus can be broadly identified as DC 

supply unit, Data logger and a sample mould. The DC supply unit applies the constant voltage. 

This voltage enables to heat the probe by applying current. The filler material Mgo which is 

having very low resistance uniformly dissipates the heat generated. The rate of temperature of 

the heated body depends on thermal coefficient of the material in which it is inserted. The whole 

experimental setup is shown below from Fig. 4.5 to Fig. 4.7.  
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Fig. 4.5 Photographic view of KD 2 Pro. (Decagon devices) 

 

Fig. 4.6 Photographic view of Mild steel moulds 
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Fig. 4.7 Photographic view of Data logger (Read out unit) 

4.5.2 Calibration of thermal probe 

 The calibration of thermal probes was done using glycerol of known thermal 

conductivity value. The mould was filled with glycerol and the probe was inserted into the 

glycerol. The calibration was done by applying different voltages like 15V, 20V, 25V and 30V. 

For each of these voltages, the variation of temperature with time was recorded. The thermal 

conductivity value obtained by applying each of these voltages was found out and compared with 

the known thermal conductivity value of glycerol. The thermal conductivity value of glycerol is 

0.287 W/mK. From the calibration, the thermal conductivity value of glycerol at 15 V was found 

to be the most accurate. Fig. 4.8 and Fig. 4.9 present the variation of temperature with time 

monitored by the two thermocouples designated by TC1 and TC2 for different applied voltages 

and PT portrays the Panel Temperature (reference temperature). 

A regression analysis was conducted in order to determine the percentage error while 

calibrating. Fig. 4.10 and Fig. 4.11 show the regression analysis done when the voltage applied 

was 15V. Similarly, the regression was done for each of the readings taken in order to determine 

the percentage error while calibrating. Further, the thermal probes were validated by conducting 

experiments using Indian standard sand of grade III temperature variation is as shown in 

Fig.4.12. The thermal conductivity value of sand ranges from 0.2-0.25 W/mK. As given in Table 
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4.3, the thermal conductivity value obtained from experiment lies in between the range and 

hence validated. 
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Fig. 4.8 Variation of temperature with time monitored by TC1when different voltages were 

applied  
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Fig. 4.9 Variation of temperature with time monitored by TC2when different voltages were 

applied 
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Fig. 4.10 Regression analyses of experimental data of TC1for applied flux of 15V 
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Fig. 4.11 Regression analyses of experimental data of TC2for applied flux of 15V 
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Fig. 4.12 Variation of temperature with time at 15V for sand 

 Table 4.3 enumerate calibration of three probes using glycerol and IS sand of grade-III. It 

can be readily observed that at 15V the probes predict the value of thermal conductivity more 

accurately. Hence, for measuring thermal conductivity of the geomaterials considered, a DC 

supply of 15V was applied. 
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Table 4.3 Calibration result using glycerol and sand 

Voltage 

(V) 

Current 

(I) 

Thermo

couple 

Slope RT 

(K-cm/W) 

k 

(W/m-K) 

Percent 

difference 

R
2
 

value 

Glycerol 

15 

0.05 1-TC1 4.356 316.92 0.316 -9.19 0.997 

0.05 1-TC2 5.122 372.67 0.268 6.78 0.970 

0.05 2-TC3 3.971 288.94 0.346 -17.21 0.989 

0.05 2-TC4 3.625 263.75 0.379 -24.43 0.995 

0.05 3-TC5 5.787 421.03 0.238 20.64 0.983 

0.05 3-TC6 6.273 456.45 0.219 30.79 0.984 

20 

0.06 1-TC1 12.362 562.10 0.178 61.06 0.982 

0.06 1-TC2 13.946 634.15 0.158 81.70 0.980 

0.06 2-TC3 9.605 436.74 0.229 25.14 0.986 

0.06 2-TC4 9.716 441.80 0.226 26.59 0.990 

0.06 3-TC5 13.652 620.78 0.161 77.87 0.986 

0.06 3-TC6 16.108 732.43 0.137 109.87 0.984 

25 

0.08 1-TC1 25.090 684.52 0.146 96.14 0.981 

0.08 1-TC2 29.737 811.30 0.123 132.46 0.969 

0.08 2-TC3 12.259 334.46 0.299 -4.17 0.992 

0.08 2-TC4 12.088 329.80 0.303 -5.50 0.990 

0.08 3-TC5 16.388 447.11 0.224 28.11 0.985 

0.08 3-TC6 18.752 511.61 0.195 46.59 0.984 

30 

0.10 1-TC1 22.552 410.19 0.244 17.53 0.990 

0.10 1-TC2 24.575 446.98 0.224 28.08 0.990 

0.10 2-TC3 22.226 404.26 0.247 15.83 0.987 

0.10 2-TC4 22.049 401.03 0.249 14.91 0.984 

0.10 3-TC5 25.567 465.03 0.215 33.25 0.994 

0.10 3-TC6 27.442 499.13 0.200 43.02 0.986 
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Indian Standard Sand-Grade III 

15 

0.05 1-TC1 6.378 464.07 0.215 3.13 0.989 

0.05 1-TC2 6.231 453.341 0.221 0.74 0.987 

0.05 2-TC3 5.961 433.688 0.231 -3.62 0.927 

0.05 2-TC4 5.722 416.301 0.24 -7.49 0.994 

0.05 3-TC5 6.129 445.978 0.224 -0.89 0.972 

0.05 3-TC6 6.101 443.879 0.225 -1.36 0.975 

            

4.5.3 Experimental methodology to obtain thermal properties 

In order to evaluate the thermal characteristics of the selected material, the air dried 

sample is mixed with distilled water. Further the test sample is prepared by compacting the moist 

sample in three layers using a standard proctor into the sample mould to achieve dry density 

corresponding to its moisture content. Compacted samples are drilled for inserting the probe of 

size 10cm length and 10mm diameter. Thermal probe is inserted and sample is kept at room 

temperature for some time. By connecting to DC supply unit and data logger (read out unit) 

thermal conductivity test is conducted simultaneously. The whole setup is kept into oven at  

50°C to 60 °C temperature for 6 to 8 hours with thermal probes. The samples kept in oven are 

taken out after stipulated time and thermal conductivity experiment is conducted again. After 

measuring thermal conductivity at higher temperature the whole mould is kept in water bath 

containing water at room temperature and the measurement with KD2 Pro. is done 

simultaneously. At the completion of every test the data is collected for the analysis of result.  
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CHAPTER 5 

RESULTS AND DISCUSSIONS 

5.1 General 

This chapter presents the results obtained using experimental methodologies described in 

previous chapter. Selected materials were characterized for physical, and geotechnical properties 

by following the procedures mentioned in the previous chapter, their thermal conductivity and 

diffusivity were evaluated using the newly developed experimental setup. The efficiency and 

suitability of selected materials, as buffer materials to dispose the radioactive wastes into it, was 

assessed based on thermal properties. 

5.2 Thermal conductivity characteristics 

 According to the methodology presented in the chapter 4, the samples are prepared for 

required water content and with corresponding dry density. First the thermal conductivity 

experiments are conducted on drilled samples. The voltage set according to the accurate 

calibration. From the read out unit the temperature variation obtained with respect to time. 

Temperature with time is plotted on logarithmic scale as the unit reads the data for every ten 

seconds.  It can be noted that temperature increases gradually and after some time it remains near 

to constant.  
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The thermal conductivity experiments for sand bentonite mixtures first conducted at room 

temperature. Variation of temperature with respect to time is as shown in Fig. 5.1 and the slope 

obtained from regression analysis is also shown in Fig. 5.2 for SB 10 at 10% water content. Fig. 

5.1 shows the temperature variation at thermo couple 1 (TC 1) and thermo couple 2 (TC 2). 
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Fig. 5.1 the variation of temperature with respect to time 
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Fig. 5.2 Regression analysis for the data 

After taking out from oven again thermal conductivity experiment has been conducted on the 

sample. The results at higher temperatures are as shown in Fig. 5.3 and Fig. 5.4.Temperature 

variation took place from 51°
 
C to 54.5. The regression analysis is also shown.  
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Fig. 5.3 Variation of temperature with respect to temperature 
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Fig. 5.4 Regression analysis for data 
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The results include for all mixtures SB 10, SB 30, SB 50 and SB 80. It can be observed that 

thermal conductivity values increase with increase in water content. This can be attributed to 

more bonds will be bridged between molecules due to addition of water. The experiments 

conducted for both dry side and wet side of optimum moisture content. In few experiments the 

thermal conductivity at more water content at wet side of optimum is decreased little bit which 

employs more dispersed in structure as in literature discussed by Radha Krishna et al. (1980), 

Salomone and Kovacs (1982, 1984). At higher temperature the thermal conductivity values are 

almost same to the ordinary temperature. This may enhance the coefficient of thermal 

conductivity is same at higher temperature. From the observations as the bentonite content is 

increasing thermal conductivity increases similarly as concluded by Salomone et al. (1982). This 

study also recommends SB 30 as buffer material which is reasonable in stability and economy 

prospect. 

5.3 Thermal Diffusion Characteristics 

The thermal diffusion experiments were conducted by methodology discussed similar to 

Krishnaiah and Singh (2003) methodology. The variation of temperature with respect to time is 

taken from read out unit.  
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Fig 5.5 Percentage change in temperature with respect to time 

  

The decrease in temperature in percentage is as shown in Fig. 5.5. For time factor calculation 

curve taken is the one used by Shannon and wells (1947), which was taken from Krishnaiah and 

Singh (2003) shown in fig 5.8. The thermal diffusivity results are given below.  

The plot of decrease in temperature percentage with respect to time is given below for SB 

10 at all gravimetric water contents as shown in Fig. 5.6. The time required to reach half of the 

temperature was indicated. 
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Fig 5.6 Percentage change in temperature with respect to time  

for SB 10 

  

It can be observed that thermal diffusivity values increase with increase in water content which 

has been discussed by Krishnaiah and Singh (2006). This can be attributed to more bonds will be 

bridged between molecules due to addition of water. In Grain size aspect the results showing 

independent of percentage of finer fraction.  The experiments conducted for both dry side and 

wet side of optimum moisture content. In few experiments the thermal diffusivity at more water 

content at wet side of optimum is decreased little bit which employs more dispersed in structure. 

At higher temperature the thermal diffusivity values are little higher than ordinary temperature. 

This may enhance the coefficient of thermal conductivity is little higher at high temperature.  
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5.4 Analysis of KD2 Pro. Results  

Fig. 5.7 shows the thermal conductivity results obtained by KD2 pro. and Fig. 5.8 shows the 

thermal diffusion results.  
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Fig. 5.7 Thermal conductivity measured with KD2 Pro.  
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Fig. 5.8 Thermal diffusivity measured with KD2 Pro. 

The KD2 Pro. results are not showing consistent variation according to grain size and water 

content also. The diffusivity at higher temperature is little more by KD2 pro. These results are 

not occurred considerable nearer to experimental and also model results. 

The temperature variations Weiner (1975), Kersten (1949), Johansen (1975), DeVries (1963) 

models have been used for the comparison purpose; the principle and concept were proposed by 

previous researchers. The comparison shows reasonable consistent results. The results are more 

efficient with Johansen (1975) and Kersten (1949) whose deviation is less than 25%. The 

particular results of sand bentonite mixtures (buffer materials) bestow the proper correlation 
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requirement of thermal properties for buffer materials which will be more beneficial to 

understand the behavior of geomaterials.  .   
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CHAPTER 6 

CONCLUSION 

The present study investigated the thermal characteristics of various materials over a wide 

range of moisture contents to evaluate their performance as self-sealing materials for isolated 

radioactive waste. For this purpose the selected geomaterials were characterized for their 

physical and geotechnical characteristics prior to the evaluation of thermal characteristics. 

Further, a new thermal characteristic apparatus is designed and developed for precise 

determination of thermal properties of geomaterials over wide range of moisture contents. The 

thermal conductivity and diffusivity tests have been carried out at various temperatures for 

buffer materials such as sand bentonite mixtures and obtained the corresponding values with 

developed apparatus and also KD2 Pro.. Further the experimental data was compared with 

analytical expressions developed by previous researchers. The observations on the variation of 

thermal conductivity and diffusivity over a wide range of moisture content indicated an 

increase in values with an increase in moisture content. The observations indicated a 

combined influence of sample parameters such as dry unit weight, gravimetric moisture 

contents. The study tried to enumerate the effect of volumetric moisture content on the 

thermal conductivity and diffusivity. The present study satisfied the duplication for results 

obtained by Ros (2014) which indicates the efficiency of probe and the method developed. As 

from the observations in both economical as well as stability purpose SB 30 can be said as the 

optimum mixture for isolation of waste disposal facilities.  

Future Scope of the study: According to methodology presented experiments can be 

conducted more number geomaterials with different sand and bentonite proportions. As the 

method is based on transient condition, thermal characterization can be done over a wide 

range of temperatures.  
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