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ABSTRACT 

 Present work deals with the study of stresses developed in tapered functionally graded (FG) 

shaft system under both thermal and mechanical environment for three nodded beam element by 

using Timoshenko beam theory. The temperature distribution in radial direction is assumed based 

on one dimensional steady state temperature field by Fourier heat conduction equation without 

considering heat generation. Temperature dependent material properties are varied along the radial 

direction using power law gradation. Tapered FG shaft consists of rigid disk attached at its centre 

and shaft is mounted on two flexible bearings acts as spring and damper, inner radius of the tapered 

shaft is varying in x direction keeping thickness of hollow tapered shaft is constant.  For the present 

analysis the Mixture of Stainless steel (SUS304) and Aluminum oxide (Al2O3) are considered as 

inner and outer surface material of the FG shaft. Three dimensional constitutive relations are 

derived based on first order shear deformation theory (FSDT) for Timoshenko beam element 

considering rotary inertia, strain and kinetic energy of shaft and gyroscopic effect. In present study, 

structural and hysteretic damping are incorporated. Hamilton’s principle is used to derive 

governing equation of motion for three nodded beam element for six degree of freedom per node. 

Complete MATLB code is generated and shows that temperature field and power law gradient 

index have important part on material properties. Comparative study is carried out for Stainless 

steel and FG tapered shaft, shows that stress developed in FG shaft is comparatively lower than 

Steel shaft. Various results are obtained for coupled and uncoupled environment. Transient stress 

are obtained for varying power law index value and speed as a parameter. Stress amplitude 

increases for increase in speed and power law index. Results achieved for FG shaft shows 

advantages over steel shaft. 

 Keywords: Functionally graded materials (FGMs), Power law index, Tapered shaft, Timoshenko 

beam theory (TBT), Three nodded beam element,  Finite element method, Thermo-mechanical, 

Stress analysis. 
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CHAPTER 1 

INTRODUCTION 

 

Composite materials are materials, composed of two or more fundamental materials with 

different properties, when combined to get a material with different properties than that of 

individual constituents. Composite material structures are more frequently used in engineering 

fields as their high strength to weight ratio and high stiffness to weight ratio is basically favourable 

for material selection. Main disadvantage with composite material is, weakness in interface 

between neighbouring layers, which is popularly known as delamination phenomenon that may 

cause structural failure. To overcome this problem, a new class of material presented, named as 

Functionally Graded Materials (FGMs). FGMs are recognised as, whose material properties are 

varying in certain direction and thus overcome interface weakness. FGMs are defined as, the 

materials whose volume fractions of two or more materials are varied continuously along certain 

direction to attain required purpose. FGMs provide better material response and excellent 

performance in thermal environments like thermal barrier and space application, where it is used 

to protect space shuttle from heat generated during re-entry to Earth’s atmosphere by modelling 

ceramic material at outer surface metal at inside surface. 

Because of high strength, stiffness and low density material characteristics, brings an idea 

for replacing conventional metallic shafts with FGMs rotor shaft in many application areas like 

design of spinning components such as driveshaft in automobiles, jet engines and helicopters, 

turbine shafts and other rotating machineries. Composite materials has been validated both 

numerically and experimentally in rotor dynamics applications. Along with this various new 

advanced composite materials and material models for rotor shaft has been developed by 

researchers. 

1.1 Background of Rotor Dynamics  

 Rotor dynamics has a significant history, mainly due to its relationship with theory and 

practice. Rotor dynamics is a particular branch of applied mechanics deals with the performance 

and analysis of rotor assemblies. Rotor dynamics mostly used to analyse the performance of a 



 

NIT ROURKELA Page 2 
 

turbine shafts, jet engine to auto engines and computer storage disks. Basically Rotor dynamics 

deals with rotor and stator. Rotating part in mechanical devices are called rotors, which are 

supported on bearings, thus shaft rotate freely about its axis. Many engineering components are 

deals with the subject of Rotor dynamics and which gives better solution for components like 

turbines, compressors, alternators, blowers, motors, pumps, brakes etc.  

Rotor delivers with behaviour of materials to limit their spin axis in a more or rigid way to 

a fixed position in space, those are mentioned to as fixed rotor (considering spin speed is constant), 

while rotors which are not considering in any way are  mentioned as free rotors (considering spin 

speed is governed by conservation of angular momentum). In process, Rotors have excessive deal 

with rotational energy and small amount of vibrational energy. 

In the field of Rotor Dynamics William John Macquorn Rankine (1869) implemented the 

first analysis of rotating shaft. Considering two degree of freedom shaft model attached with rigid 

mass whirling in an orbit, having elastic spring acting in radial direction. Whirling speed of the 

shaft has defined, shows that radial deflection of Rankin’s model increases beyond this whirling 

speed, this speed is termed as threshold speed for the divergent instability.  

Swedish engineer Carl Gustaf Patrik de Laval (1833), for marine application he established 

a single-stage steam impulse turbine and achieved 42000 RPM. He used initially a rigid rotor and 

then used flexible rotor to operate above critical speed by running at a speed around seven times 

the critical speed. 

Stanley Dunkerley (1895) studied the pulley loaded vibration of shafts. It is known that 

shafts are well balanced when rotating at particular speed, bends except the amount of deflection 

is restricted, even shafts may break, though shafts runs at high speed. This critical speed is depends 

on the way in which shaft is supported, modulus of elasticity, size, weight of the shaft and position 

of mass (pulleys). German civil engineer August Foppl (1895) presented another rotor model 

showing stable response above whirling speed. W. kerr (1916) showed experimentally that, second 

critical aped will occurred when rotor crosses first critical speed safely. Ludwig Prandtl (1918) 

studied non-circular cross section Jeffcott rotor. 

Henry Jeffcott (1919) modelled and studied behaviour of simple spinning rotor under 

flexural and dynamic behaviour. Actually in Jeffcott model disk do not wobble. As a result, the 
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angular velocity vector and angular momentum vector are collinear thus no gyroscopic moments 

are generates.  

Aurel B. Stodola (1924) developed dynamics of elastic continuous rotor having discs 

without considering gyroscopic moment, balancing of shaft, secondary resonance phenomenon 

due to gravity effect and methods to determine critical speeds of shafts for variable cross sections, 

also by using Coriolis accelerations supercritical solutions can be stabilized.  

Baker (1933) found and defined that because of contact between rotor and stator system 

exhibits self-exited vibrations. David M. Smith (1933) found formulas for predicting threshold 

spin speed for supercritical instability varied through bearing stiffness and also with ratio between 

external to internal viscous damping. Many variations came closer to practical needs of the rotor 

dynamic field for Jeffcott rotor model. Prohl’s and Myklestad’s (1945) analysed instabilities and 

modelling methods in rotors dynamics by Transfer Matrix Method (TMM). 

In 1960s, for exact solution capabilities, numerical methods are established for structural 

dynamic analysis, rotor dynamics codes and digital computer codes were constructed on TMM 

method. In 1970s alternative fundamental procedure developed that is Finite Element Method 

(FEM), developed for solution of beam type of models. In 21st century, rotor dynamics are 

combined FEM and solids modelling methods to create simulations that adapt the coupled 

behaviour of disks, elastic shafts and elastic support assemblies into a single, multidimensional-

model.  

1.2 Composite Materials  

 Composite materials are materials made by combining two or more materials, in a micro 

scale form and their elements do not dissolve or fuse into each other, to achieve greater improved 

properties. These materials are broadly used in many applications like aerospace vehicles, nuclear 

reactors, buildings, automobile vehicles, turbine parts, medical instruments, sports components 

and in many civil applications. Laminated composite materials contains of several layers of 

different fibre reinforced materials, bonded together to get the required properties like strength, 

stiffness, coefficient of thermal expansion, damping and wear resistance. By changing lamina 

thickness, material properties and stacking sequence preferred properties of the material can be 

achieved. As composite materials gives high stiffness to weight ration and high strength to weight 
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ratio, which motives to use in weight sensitive structures. These kind of structures carry 

improvement of their structural functions especially in aircraft and space applications.  

1.3 Drawbacks of Composite Materials 

Even though composite materials gives many advantages over other conventional 

materials, their main disadvantage are impact load, repeated stress cycles and many more, these 

causes the separation of layers and weakness at interfaces between neighbouring layers, this type 

of failure mechanism is known as delamination phenomenon, which may seriously cause failure 

of structures. Other problems of composite materials are, variation in coefficient of thermal 

expansion and coefficient of moisture of expansion within the materials will leads to residual 

stress. These residual stress may cause failure of structures. Stress concentrations near material, 

geometric interface, which will cause the damage in the form of delamination, matrix cracking and 

parting of adhesive bond, for anisotropic constitution of laminated composite materials. These 

difficulties can overcome by avoiding rapid changes in material properties.  

1.4 Theoretical Understanding about FGMs 

 Concept of FGM came for the First time while space plane project was going on in year 

1984 in Japan. Materials of kind, would serve the purpose of withstanding a surface temperature 

of around 2000 K with temperature gradient of 1000 K through a 10mm thickness. Nowadays 

FGMs are becoming a more popular in Germany. FGMs are those of composite materials where 

the microstructures or composition of materials are locally different so that a definite variation of 

indigenous material properties are attained, variation properties are along certain directions. By 

using gradation factor in FGMs, it can be eliminate the sudden change of material properties as in 

conventional materials, this gradation will helps to eliminate delamination phenomenon, inter 

laminar stresses and gives better bonding within material as a whole.  

 Many components like thin shells, plates, turbine blades and many more machine parts are 

subjected thermal or combined effect of thermo mechanical loading are more likely to fail by large 

deflections, buckling and excessive stresses. Thus, in such a condition, FGMs can be used where 

high temperature environment or high temperature gradient. FGMs are largely manufactured from 

isotropic constituents such as ceramics and metals. Here ceramic portion acts as thermal barrier 
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and metallic portion serves as structural support. In this condition ceramic portion delivers heat 

resistance and corrosion resistance, metallic portion gives strength and toughness.  

 Many problems arises for traditional materials and composite materials can be significantly 

solved by using FGMs, as gradual variation of material properties in FGMs gives better stability. 

This new class of materials and their gradual changes in properties are used to design many 

components and applicable to many areas.  

1.5 Practical Applications of FGMs 

As technology and innovations are growing rapidly, it is desired to meet materials and their 

applications as required. FGMs are new class of materials, which are partially fulfil the present 

need and requirement in engineering field. FGMs are mainly used in high temperature 

environment, as properties are required to vary inside the materials. Following are some of 

noticeable applications for FGMs, 

i. Aerospace application (space components, planes, insulations for body, structures, Rocket 

engine. Aerospace skins, nuclear reactors, vibration control etc.). 

ii. Engineering applications (rotor shaft system, cutting tools, turbine blades, valves etc.). 

iii. Electronic applications (semiconductors, sensors, substrates etc.). 

iv. Chemical industries (Rector Vessels, Heat Exchangers, Heat Pipe etc.). 

v. Goods materials (Sports, building materials etc.). 

vi. Energy exchangers (Thermo ionic converters, solar cells, thermoelectric generators, Fuel 

cells etc.). 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Introduction 

Great number of research has been done in the field of modelling and analysis of FGM’s. 

Some of important workout has been done and presented in following section. Composite materials 

possess high strength and stiffness. This is an outcome for the use of composite materials in field 

of aircraft and space shuttles. In an attempt to develop heat resistant materials FGMs are 

developed. Composition of two or materials and structures changes over volume by using some 

gradation laws such as, exponential law power law, stepwise variation and continuous variation 

[1]. 

2.2 Functionally Graded Materials 

Schmauder et al. [2] investigated mechanical behaviour of ZrO2/NiCr 80 20 compositions 

FGMs are analysed and compared with experimental results. And also found that new parameter 

matricity controls the stress level of composite, globally and also locally. Sladek et al. [3] analysed 

time dependent heat conduction in nonhomogeneous FGMs. Laplace transforms technique is used 

to solve initial boundary value problem. Results obtained for finite strip and hollow cylinder 

having exponential variation of material properties. Shao et al. [4] presented stress analysis of FG 

hollow circular cylinder in combined mechanical and thermal environment by considering linearly 

increasing temperature. Temperature dependent material properties are considered and solution 

for ordinary differential equations are solved by Laplace transforms technique. Farhatnia et al. [5] 

presented stress distribution for composite beam having FGM in middle layer. Temperature 

dependent material properties are considered for uniform temperature gradient. Jyothula et al. [6] 

presented nonlinear analysis of FGMs in thermal environment by changing material variation 

parameter, aspect ratio, and boundary condition re analysed with higher order displacement model. 

Nonlinear simultaneous equation are obtained by Navier’s method and equations are solved by 

Newton Raphson iterative method. Callioglu [7] presented thermoelasticity solution for FG disc. 

By using infinitesimal deformation theory and power law distribution used to get solution. Stress 
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and displacement variation are presented along radial position due to centrifugal action, steady 

state temperature, internal and external pressure. Abotula et al. [8] studied stress field for curving 

cracks in FGMs for thermo-mechanical loading. Using strain energy density criterion effect of 

curvature parameters, temperature gradients on crack growth directions, non-homogeneity values 

are found and discussed. Bhandari et al. [9] studied parametric study of FGM plate by varying 

volume fraction distribution and boundary conditions. Static analysis of FGM plate has studied by 

sigmoid law and compared with literature. Kursun et al. [10] presented stress distribution in a long 

hollow FG cylinder under thermomechanical environment. By using infinitesimal deformation 

theory, solution for displacement model are found.  

2.3 Stresses in FGMs 

Woo et al. [11] reveals effect of thermomechanical coupling in FGMs plays an important 

role. Using von Karman theory, fundamental equation for shallow shells are obtained. Material 

properties and thermomechanical stress field are determined. Reddy and Cheng [12] studied 

thermomechanical deformation of FG simply supported plates, properties of material are valued 

by Mori-Tanaka scheme. Temperature, displacement and stress distribution are computed for 

different volume fraction. Jin and Paulino [13] studied edge crack in a FGM strip under thermal 

environment. Thermal properties of FGM vary over thickness direction, Young’s modulus and 

Poisson’s ratio are assumed to be constant. Temperature solutions are obtained for short time by 

using Laplace transform and asymptotic analysis. Chakraborty et al. [14] examined stress variation 

in FGMs by use of both power law and exponential variation of material properties. New beam 

element is developed for behavioural study of FGMs. Senthil et al [15] presented 

thermomechanical deformation of a simply supported FG plate subjected to thermal loads on its 

top and bottom surfaces. Transient displacement and thermal stresses are obtained for several 

critical location of plate subjected to time dependent temperature and heat flux. Wang et al. [16] 

developed meshless algorithm to simulate thermal stress distribution in two-dimensional FGMs. 

Displacement components are determined by governing equations and boundary condition. Tahani 

et al. [17] presented dynamic characteristics of FG thick hollow cylinder under loading. 

Temperature dependent material properties are considered and vary long radial direction. Dynamic 

behaviour of thermo elastic stresses are discussed for various grading index. Gupta et al. [18] 

studied dynamic crack growth behaviour of FGMs under transient thermo-mechanical loading. 
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Principal stress and circumferential stress are discussed and are associated with propagating crack 

tip. 

2.4 Rotor Dynamics  

Zorzi and Nelson [19] studied damped rotor stability including hysteric and internal 

viscous damping using linear finite element concept. Rouch and Kao [21] presented cubic function 

for mass, stiffness and gyroscopic matrices for a beam element used for transverse displacement. 

Kim and Bert [22] presented critical speed of hollow cylindrical shaft for laminated composite 

materials using thin and thick shell theories. Obtained results are compared with classical beam 

theory, results are well accurate. Bert and Kim [23] presents buckling torque for cylindrical hollow 

laminated composite shaft material. Obtained results are compared with experiments, results are 

well accurate. Dimarogonas [24] reviewed vibration response for cracked structural member. 

Based on vibration amplitude and speed of rotation, crack will open and close. Singh and Gupta 

[25] presented dynamic analysis of composite rotor applying layerwise beam theory and 

conventional equivalent modulus beam theory. Wettergren and Olsson [26] studied instabilities of 

horizontal rotor supported on flexible bearings. Found that critical speed can be reduced 

significantly by internal damping. Abduljabbar et al. [27] presented dynamic vibration control of 

flexible rotor mounted on journal bearing by using feedback controller device and feed forward 

controller device. Reddy and Chin [28] studied thermoelastic response of FG cylinders and plates 

in dynamic in condition. First order shear deformation plate theory is used for transverse shear 

strains, coupled with heat conduction equation. Liew et al. [29] analysed thermomechanical 

behaviour of FG cylinders. Solutions are achieved by novel limiting process. Lin et al. [30] 

presents sensitivity analysis, dynamic behaviour of high speed spindle in thermo-mechanical 

environment. Spindle stiffness is determined for different speed effect, appropriate cooling effect 

and bearing preload. Chang et al. [31] studied laminated composite spinning shaft using first order 

shear deformation theory. Governing equation for rotor derived by employing Hamilton’s 

principle. Shokrieh et al. [32] analysed torsional stability for rotating composite shaft. Effect of 

stacking sequence and boundary conditions on strength and buckling torque of composite drive 

shaft has been calculated using finite element analysis. Shao [33] presented solution for 

displacement, temperature, thermal and mechanical stresses for FG circular hollow cylinder using 

multi-layered method based on laminated composites model. Temperature dependent material 
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properties are assumed along radial direction and equal in each layer. Shao and Ma [34] studied 

stress analysis in FG hollow cylinder subjected to coupled thermal and mechanical environment 

for linearly varying temperature field. Applying Laplace transform technique, solution for time 

dependent temperature field and thermo mechanical stress variation has been calculated. Das et al. 

[35] studied vibration control of transverse vibration of rotor shaft system due to unbalance. 

Vibration control is done by electromagnets. Xiang and Yang [36] studied free and forced vibration 

of laminated FG beam of variable thickness for thermally induced stresses using TBT.  Roy et al. 

[37] studied dynamic behaviour of viscoelastic rotor shaft system introducing internal damping of 

material. Critical speed of rotor can be increased by introducing composite material, aluminium 

matrix with carbon fibre. Bayat et al. [38] presented thermo elastic analysis for FG rotating disks. 

Temperature dependent material properties are considered along radial direction with variable 

thickness of disk. Badie et al. [39] examines natural frequency, buckling strength, failure modes, 

torsional stiffness and fatigue life of composite drive shaft by changing fibre stacking angle and 

orientation angle using finite element analysis (FEA). Poursaeidi and Yazdi [40] presented causes 

of extreme bends in rotor shaft and straightening methods by choosing hot spotting process. 

Sheihlou et al. [41] studied torsional vibration of FG micro-shaft using Hamilton’s principle. 

Vibrations equations are solved by Galerkin’s weighted residual technique. Also studied effect of 

volume fraction and boundary condition on natural frequency and frequency response of micro FG 

shaft.  Rao et al. [42] analysed dynamic behaviour of FG shaft using TBT. Material properties are 

assumed to be vary according to exponential law. 

2.5 Motivation  

Though literature review discloses a lot of research work has been done on thermo 

mechanical stress analysis of composites and FGMs. Research on stress analysis of FG tapered 

shaft system based on TBT has not been yet discussed. Considering shaft rotating in high 

temperature environment like turbine shaft, rocket engine components FGMs gives better solution 

over traditional composite materials. Stress distribution in tapered FG shaft under thermal and 

mechanical environment compared with traditional materials. Present work discloses stress 

analysis of rotor shaft system with FGMs under both thermal and mechanical environment. 
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2.6 Aim of Present Work 

Main objectives of present work has been laid down here, 

i. Material modelling for tapered FG shaft based on power law gradation. 

ii. Modelling of temperature dependent material properties for FG shaft. 

iii. Variation of mechanical properties with respect to temperature and power law indexes 

along radial direction. 

iv. To study stresses developed in tapered shafts made of FGMs. 

v. Comparative study between tapered FG shaft and tapered Stainless Steel shaft. 

vi. To study the stresses developed both in thermal and mechanical environment for different 

speed, varying power law index value.  
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CHAPTER 3 

MATERIAL MODELLING FOR TAPERED FG SHAFT 

  

 Material modelling of FG tapered shaft is explained in detail in this chapter by taking power 

law gradation and exponential gradation.  

3.1 Actual Material Properties of FGM 

 Properties of FGMs are changing along certain directions, so that it is required to find 

effective material properties of FGMs applying to shaft. For exact analysis of FGMs it is required 

to find accurate material properties. Many simulations are established for determining properties 

of FG shaft. Bulk constituent properties assumes no interaction between phases by employing rule 

of mixture. Thermo physical properties are derived by variational approach. Spatial distribution of 

constituent materials are having information about micromechanical approach.  

3.2 Material Modelling of FGMs 

 Considering FG beam of finite length and thickness, made of Aluminum Oxide (Al2O3) as 

a ceramic material and Stainless Steel (SUS304) as a metal. Here material are varying along y 

direction, treating top 
2

h
y

 
  

 
surface as ceramic and bottom 

2

h
y

 
  

 
surface as metal.  

Considering P as an actual material properties, 

m m c cP P V PV                  (1) 

 Where mP , mV  and cP , cV  are material properties, volume fraction of metal and ceramic 

respectively. Also sum of volume fraction of metal  mV  and volume fraction of ceramic  cV  are 

always unity at any graded direction. It is related as,  

 1m cV V                   (2) 
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3.2.1 Laws of Gradation 

There are many laws for varying volume fraction of materials namely, power law 

gradation, exponential law of gradation, step wise gradation and continuous gradation etc. Mainly 

researchers are using power law gradation and exponential law. 

3.2.1.1 Power Law Gradation 

 Here volume fraction of materials changes along certain direction, by using index called as 

power law index k. This factor controls volume fraction of any materials and controls shape, 

strength of material. Figure 3. 1 shows volume fraction of metal in FGMS. This is expressed for 

rectangular block as, 

 
2

2

k

c

y h
V y

h

 
  
 

                     (3) 

Where 0k   

  

Figure 3. 1 Volume fraction of metal in FGM rectangular cross-section. 

If p is temperature dependent material properties, it can be written as, 

 1 2 3

0 1 1 2 31P P P P P P   

                  (4) 

Where P-1, P1, P2 and P3 are temperature coefficients θ-1, θ1, θ2 and θ3 respectively and P0 

material properties at ambient temperature. Here material properties are function of temperature 

and certain direction and it is given by, 
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        

        

        

   

2
,

2

2
,

2

2
,

2

2

2

k

c m m

k

c m m

k

c m m

k

c m m

y h
E y E E E

h

y h
y

h

y h
y

h

y h
y

h

   

       

       

   

 
   

 

 
   

 

 
   

 

 
   

 

            (5) 

Density is assumed to be not dependent on temperature and it is vary along certain 

directions only. 

3.2.1.2 Exponential Law of Gradation 

 In this gradation material properties are vary along certain directions as, 

    2

0

h
k y

P y P e

 
 

                  (6) 

 Where P0 denotes, bottom surface material properties of FGM, ‘k’ is the factor which 

controls gradation across thickness ‘h’. Young’s modulus thermal conductivity, coefficient of 

thermal expansion and density of the FG material are given as, 

   2

0

h
k y

E y E e

 
 

              2

0

h
k y

y e 
 

 
               (7) 

   2

0

h
k y

K y K e

 
 

          2

0

h
k y

y e 
 

 
               (8) 

 This simple rule of mixture is assumes poison’s ratio is constant. 

3.3 Modelling of Material Properties Applicable To tapered FG Shaft 

 Tapered shaft with finite length L, inner radius at beginning and end of shaft are R0 and R1 

respectively having constant thickness of t throughout the tapered shaft. Top surface of shaft is of 

ceramic rich and inner surface of shaft is metal rich.  
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Figure 3. 2 Volume fraction of metal in tapered FG shaft 

3.3.1 Power Law 

 Figure 3. 2 Volume fraction of metal in tapered FG shaft across the radius of tapered shaft, 

it is considered as Two Dimensional variation. FG rotating shaft is a composed of Stainless steel 

(SUS3O4) and Aluminum oxide (Al2O3) as metal and ceramic materials. Volume fraction of these 

materials are varied along Y direction using power law and gradation factor k. Here radius of shaft 

is a function in x as radius is going to change along x direction. Volume fraction for ceramic is 

given by,  

   
k

m
c

c m

r r
V y

r r

 
  

 
                        (9)            

Where, 0k    

Here, sum of volume fraction of metal and ceramic is unity at any particular radius of shaft i.e.  

  1m cV V                  (10) 

Let ‘P’ be temperature dependent material properties and it can be written as, 

   1 2 3

0 1 1 2 31P P P P P P   

                                                                                               (12)  

Where P-1, P1, P2 and P3 are temperature coefficients θ-1, θ1, θ2 and θ3 respectively and P0 

material properties at ambient temperature. Here material properties are function of temperature 

and certain direction and it is given by, 
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        
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        

   
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,

,

k
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c m

k

m
c m m

c m

k

m
c m m

c m

k

m
c m m

c m

r r
E y E E E

r r

r r
y

r r

r r
y

r r

r r
y

r r

   

       

       

   

 
   

 

 
   

 

 
   

 

 
   

 

                                                                      (13)  

Density is assumed to be not dependent on temperature and it is vary along certain 

directions only. One Dimensional steady state temperature field is assumed by Fourier heat 

conduction equation without considering heat generation is given by, 

  0; ;c c m m

d d
K y at y r at y r

dy dy


   

 
     

 
 

Where θm and θc are the temperatures in metal-rich and ceramic-rich surfaces respectively. 

The temperature variation is assumed to occur in the radial direction only, and the temperature 

field is assumed by considering the following polynomial series [43]  

    ( )m c m y   y                                                                                                         (14) 

Where  

       

   

2 3
1 2 1 3 1

2 3

4 5
4 1 5 1

4 5

( 1) (2 1) (3 1)1
( )

(4 1) (5 1)

k k kcm cm cm

m m m

k kcm cm

m m

K K K
r r r r

k K k K k K
y

C K K
r r

k K k K



  

 

 
   

   
 
  

   

                             

Where cm c mK K K  , m

c m

r r
r

r r

 
  

 

 and  

2 3 4 5

2 3 4 5
1

( 1) (2 1) (3 1) (4 1) (5 1)

cm cm cm cm cm

m m m m m

K K K K K
C

k K k K k K k K k K

 
      

     
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CHAPTER 4 

FORMULATION FOR TAPERED FG SHAFT 

   

4.1 Introduction 

FG tapered shaft consists of three nodded Timoshenko beam, based on the First order shear 

deformation theory considering both Gyroscopic and rotary inertia effect. Hollow circular cross 

section shaft is considered for analysis and it is rotating about its longitudinal axis. Figure 4. 1 

shows displacement variables and Figure 4. 2 shows diagram representing the shaft. 

 

Figure 4. 1 Displacement variables 

 

Figure 4. 2 Diagram showing tapered shaft and bearing system 
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4.2 Finite Element Modelling of Shaft 

FG rotating shaft has modelled using Finite element method for three nodded Timoshenko 

beam element having six degrees of freedom at each node. By applying linear elastic and small 

deflection theory is assumed in present work.   

Assumed displacement field as given below [31],  

( , , , ) ( , ) ( , ) ( , )

( , , , ) ( , ) ( , )

( , , , ) ( , ) ( , )

x x y

y

z

u x y z t u x t z x t y x t

u x y z t v x t z x t

u x y z t w x t y x t

 





   


  


  

                                                                                (15)  

 Strain-displacement relations can be written in Cartesian coordinate system as, 

1
;

2

1
; 0

2

yx
xx xy y

xz x yy zz yz

u v
z y z

x x x x x

w
y

x x

 
  


    

    
       
      


             

                                                            (16)  

These strain relations can be transformed in to cylindrical coordinate system by using 

transformation matrix. Strain-displacement relations can now be written in cylindrical coordinate 

system by taking y = r cosθ, z = r sinθ, m = cosθ and n = sinθ.  

1 0 0

0

0

xx xx

x xy

xzxr

n m

m n



 

 



     
    

      
        

                                                                                                             (17) 

Where  

sin cos ; 0

1
sin cos sin cos

2

1
sin cos sin cos

2

yx
xx rr r

x y x

xr x y

u
r r

x x x

v w
r

x x x

w v

x x

 




     


      

      


     
  

   
     

   

  
    

  

             (18)                      

And the above strain displacement relations in cylindrical coordinate can be written in 

matrix form as, 
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2 0 0 2 sin 2 cos 0
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0 sin cos cos sin

2

0 cos sin sin cos 0
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x

x

xr

y

u
r r

vx x x

w
r

x x x

x x



 


    



   


    
         
                                

          (19) 

Stress strain relations in any layer of the FG shaft can be written as [31], 

  

11 16

16 66

55

0

0

0 0

xxxx r s r

x s r s r x

xr s r xr

C k C

k C k C

k C

 



 

 

    
    

     
         

                                                                                                  (20) 

Where ks is the shear correction factor and ijrC represents constitutive element, related to 

elastic constants for transversely isotropic material. 

Coupled (thermo-mechanical) stress strain relations in any layer of FG shaft can be written as, 

11 16

16 66

55

0

0 0

0 0 0

xxxx r s r

x s r s r x

xr s r xr

C k C T

k C k C

k C

 

 

 

 

       
       

        
              

                        (21) 

4.2.1 Kinetic Energy Expression of Shaft 

The effect of both rotary and translation of FG shaft are considered for deriving kinetic 

energy expression, it is written as,  

2 2 2 2 2

2 2 2 2 2
0

( ) ( ) 21

2 2 I ( )

L
m d x y p x y

s

p p p d x y

I u v w I I
T dx

I I I

   

   

      
  

       
                                                         (22) 

Where,  

Ω is rotating speed of the shaft, L is length of the shaft, Ip, Im and Id are polar mass moment 

of inertia, mass moment of inertia and diametrical mass moment of inertia respectively. In above 

equation neglecting some small terms, first variation of kinetic energy is written as, 
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    
  
     
   

            (23) 

4.2.2 Strain Energy Equation for FG Shaft 

Strain energy of FG shaft is given by, 

     
1 1

2 2 2
2 2

T

s xx xx rr rr xr xr x x r r

V V

U dV dV                                  (24) 

 As 0rr r       

Strain energy can be rewritten as,                                                                                              

1
( 2 2 )

2
s xx xx xr xr x x

V

U dV                                                                                                   (25)  

By taking variation in strain energy expression we get, 
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 
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         (26) 

Where, dV rd drdx  

4.2.3 Kinetic energy expression for disks on shaft 

Disks fixed on shaft are treated as isotropic material. Expression for kinetic energy of disks 

is written as, 

   2 2 2 2 2

2 2
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D
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D D D D
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                                          (27)  
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 Where
D

miI , 
D

diI  and 
D

piI  mass moment of inertia, diametrical and polar mass moment of 

inertia of ith disk respectively. The term  Dix x   represents one dimensional spatial Dirac delta 

function. xDi gives location ith disk and ND is the number of disks which are attached to shaft. 

Variation of the kinetic energy of disk given by,  
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   

       (28)  

4.3 Expression for work done to external load and bearings 

Rx, Ry and Rz are external force intensities, Mx, My and Mxθ are external intensities of 

moments distributed along shaft length. Virtual work done by external loads is given by, 

 
0

L

e x y z y y x x xW R u R v R w M M M dx                                                        (29)  

 Spring and viscous damper bearing are modelled here and virtual work done by springs 

and dampers are given by, 
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                                  (30)  

 Where KBi and CBi represents equivalent stiffness and equivalent damping coefficient of ith 

bearing. 

4.4 Governing equation of rotor shaft 

The governing equation of rotating shaft can be derived by using above strain energy 

expression, kinetic energy of shaft and disks, work done expressions by external loads and bearings 

by applying Hamilton’s principle. Which is given by, 

 
2

1

0
t

s e B

t

T U W W dt                                                                                                    (31) 

Total kinetic energy of shaft and disks is given by 
s dT T T   
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 
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T T U W W dt                                                                                              (32)  

Finite element analysis is to find field variables at each nodal points by approximate 

analysis, taking nodes within the elements. These variables is a function of values at nodal points 

of the element, this function is called as interpolation function or shape function. In present model 

three node one dimensional Timoshenko beam element is considered having six degrees of 

freedom at each node. 

Lagrangian interpolation function is used to approximate the displacement fields rotating 

shaft. Elemental nodal degree of freedom at each node are u, v, w, βx, βy, ϕ. Displacement field 

variables are given by, 
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                  (33)                 

One dimensional Lagrangian polynomial is given by,  

 
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r
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k
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
 

Above equation gives value zero at all points except k = 1, Lk is Lagrangian polynomial 

and ψk (k = 1, 2, 3…) interpolation function and η is the natural coordinate whose value varies 

from -1 to +1. For three node element r is equal to three, shape function can be written as, 

1

(1 )

2

 


 
 ;  

2

2 1   ; 
3

(1 )

2

 



                                                                 (34) 

Now by putting above displacement variables into the governing equations we get 

following equation of motion for FG spinning shaft. 

             M q C G q K q F                                                                                    (35)  

 Where [M] is mass matrix, [G] is gyroscopic matrix, [C] is total damping matrix, [K] is 

structural stiffness matrix, {q} is nodal displacement vector and {F} is the external force vector. 

 



 

NIT ROURKELA Page 22 
 

4.5 Contribution of internal damping 

By including both internal viscous and hysteresis damping [19] of shaft and disk elements 

extended final equation of motion can written as, 

          
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2

1

1

1
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H
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H
V cir

H

K

M q C G K q q F

K











  
   
   
     
  
  
    

                      (36)  

Where Kcir is the skew-symmetric circulation matrix [16]. 
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CHAPTER 5 

RESULTS AND DISCUSSION 

  

A complete MATLAB code has been developed and validated for above formulation. 

Results are presented for different stresses, speed and power law index value based on problem 

specified below. 

 5.1 Problem Description and Summarization of Discussion  

 Tapered shaft consists of rigid disk attached at its centre, supported on two similar bearings. 

Shaft is modelled for present analysis using three nodded beam element. Dimensions of shaft and 

rigid disk are presented in Table 5. 1. Tapered shaft is divided into 10 elements, and 8 equal thick 

layers. Stiffness and damping coefficients for two identical bearings are taken as Kyy=7 × 107 

N/m, Kzz=5 × 107 N/m, Cyy=700 Ns/m, Czz=500 Ns/m.  

Table 5. 1 Geometric dimensions of steel and FG tapered shaft 

 

Developed MATLAB code has been validated for present available literatures. Several results for 

FG tapered shaft has presented in this chapter. Primarily, temperature distribution in FG shaft 

along radial direction is shown for different power law index value. Table 5. 2 and Table 5. 3 are 

Parameter FG Shaft Disk 

Shaft length (m) 1.0  

Beginning radius, Ro (m) 0.035  

End radius, Rs  (m) 0.015  

Thickness of hollow shaft, t (m) 0.03  

Coefficient of viscous damping (Ns/m) 0.0002  

Coefficient of hysteric damping (Ns/m) 0.0002  

Density (Kg/m3)  7800 

Outer diameter (m)  0.24 

Thickness (mm)  5.0 
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values for temperature dependent material properties such as young’s modulus, Poisson’s ratio, 

coefficient of thermal expansion (CTE) and density of material are plotted along radial direction 

for different power law index. Next, comparative study between stainless steel shaft and FG shaft. 

Then, transient stress analysis is carried out for different speed and power law index value. 

Table 5. 2 Material properties of FGM [43] 

Properties Stainless Steel Aluminum oxide 

Young’s Modulus (GPa) 210 390 

Poisson’s ratio 0.3 0.26 

 Density 7800 3960 

 

Table 5. 3 Materials and temperature coefficient of mechanical properties [28] 

Property Material P0 P-1 P1 P2 P3 

E (Pa) 
SUS304 201.035×109 0 3.079×10-4 -6.533×10-7 0 

Al2O3 349.548×109 0 -3.853×10-4 4.027×10-7 -1.673×10-10 

K (W/mK) 
SUS304 15.3789 0 -0.00126 0.209×10-5 -7.22×10-10 

Al2O3 -14.087 -1123.6 0.00044 0 0 

CTE (1/K) 
SUS304 12.33×10-6 0 0.0008 0 0 

Al2O3 6.827×10-5 0 0.00018 0 0 

Poisson Ratio 
SUS304 0.3262 0 -2.001×10-4 3.797×10-7 0 

Al2O3 0.26 0 0 0 0 

 

5.2 Validation of Code 

 To verify the developed code, uniform shaft made of graphite epoxy composite material 

with disk at centre of shaft [31] (dimensions are in Table 5. 5). Obtained results are well agreement 

with literature. Figure 5. 1 shows Campbell diagram for first four pairs of modes attained an 

excellent match with published result [31]. Subsequently temperature dependent material property 

are discussed, these Figures are also match with already published results, thus developed codes 

are validated for correctness. 
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Table 5. 4 Dimensions and properties of laminated graphite-epoxy shaft [35] 

Parameters  Composite shaft Disk Bearing 

Length (m) 0.72   

Inner diameter (m) 0.028   

Outer diameter (m) 0.048   

Shear correction factor 0.56   

Model damping ratio 0.01   

D

mI (Kg)  2.4364  

e (10-5 m)  5.0  

D

pI (Kg m2)  0.3778  

D

dI (Kg m2)  0.1901  

Kyy=Kzz (107 N/m)   1.75 

Cyy=Czz (102 Ns/m)   5.0 

 

 

 

Figure 5. 1 Campbell diagram for laminated graphite-epoxy composite material. 
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5.3 Temperature Distribution in Tapered FG Shaft 

 Temperature variation in tapered FG shaft is shown in Figure 5. 2. As material properties 

are functions of temperature and radial direction, presented here temperature distribution. This 

variation is due to thermal conductivity, CTE, young’s modulus of material. Temperature variation 

is obtained at mid-section of tapered shaft, it is observed that, for k zero to one temperature 

decreases gradually and k greater than one temperature increases. 

Table 5. 5 Temperature variation in mid-section of tapered FG shaft. 

Radius (m) 0.0279 0.0316 0.0354 0.0391 0.0429 0.0466 0.0504 0.0541 

k T1(K) T2(K) T3(K) T4(K) T5(K) T6(K) T7(K) T8(K) 

0 471.88 515.63 559.38 603.13 646.88 690.63 734.38 778.13 

0.2 469.67 510.19 552.50 595.90 640.15 685.10 730.68 776.81 

0.5 468.78 507.56 548.46 591.04 635.11 680.60 727.45 775.60 

1 468.82 507.20 547.11 588.66 632.01 677.30 724.73 774.50 

5 470.66 511.98 553.32 594.76 636.55 679.24 724.03 773.58 

10 471.20 513.60 556.00 598.40 640.82 683.41 726.87 774.48 

 

 

Figure 5. 2 Temperature variation in mid-section of tapered FG shaft. 
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5.4 Material properties of tapered FG shaft depends on temperature and power 

law index 

 Tapered FG shaft is modelled by taking Aluminum oxide as a ceramic and Stainless steel 

as a metal, these are rich at top and bottom surfaces respectively. Figure 5. 3 shows volume fraction 

of ceramic material of FGM.  Properties of material are changes along radius of shaft, here power 

law index is significant factor. According to above consideration and formulation, as ‘k’ value 

approaches to zero, material becomes fully ceramic and as ‘k’ value approaches to infinity material 

becomes fully metal. Linear variation of material is obtained by taking k=1. Since shaft is in 

thermal environment, it is necessary to find properties depends on temperature. Figure 5. 4 Figure 

5. 5 and Figure 5. 6 are modulus elasticity, Poisson’s ratio and coefficient of thermal expansion 

(CTE) respectively. Here properties are changing for each element as analysis is progressed. Also 

assumed that properties are average of inner and outer surface of a particular layer is at the middle 

of the layer. 

 

 

 Figure 5. 3 Volume fraction of ceramic material along radius for power law index. 
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Figure 5. 4 Variation of young’s modulus along radius for power law index. 

 

 

Figure 5. 5 Variation of Poisson’s ratio along radius for power law index. 
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Figure 5. 6 Variation of CTE along radius for power law index. 

 

5.5 Stress analysis in tapered FG shaft 

 Objective of present study is to analyse the coupled thermo-mechanical stresses in tapered 

FG shaft. Initially comparative study of FG shaft has carried out over steel shaft. Then, stress 

results are plotted for different values of power law index and speed and also time dependent stress 

are also presented. 

5.5.1 Comparative study of tapered FG shaft over steel tapered shaft 

 It is essential to compare results of stainless steel and FG shaft to show effects of FG shaft 

over steel shaft. In this comparative study section temperature assumed is linear. Material 

properties are functions of temperature and radial direction only. Keeping all parameters (as in 

Table 5. 1) are same for both FG and steel analysis is done.  Figure 5. 7 shows normal and shear 

stress in x and theta direction respectively for Stainless steel material. Normal stress is increasing 

along radius negatively, shear stress also increasing along radius positively. Figure 5. 8 and Figure 

5. 9  shows normal and shear stress in x and theta direction respectively for FGM.  
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Figure 5. 7 Stress developed in tapered Steel shaft along radius. 

Results are presented for shaft running at 6000 RPM, different ‘k’ values. It is easily seen from 

these Figures that, stress developed in FG shaft is lesser than Stainless steel shaft near outer surface 

of shaft. This conclusion influence to study FGMs.  

 

Figure 5. 8 Normal stress in tapered FG shaft along radius. 
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Figure 5. 9 Shear stress in tapered FG shaft along radius. 

5.5.2 Variation of stresses for different values of ‘k’ in radial direction 

In coupled thermal and mechanical environment, thermal strain is in coupled with only 

normal stress and shear stress in theta direction as in equation (21). Temperature dependent 

material properties are considered and temperature variation is as shown in Figure 5. 2. Figure 5. 

10 (a) and (b) shows normal stress on plane perpendicular to x axis in x direction at 6000 RPM 

and 12000 RPM respectively. Maximum stress value is obtained at time t=0.008 sec and t=0.044 

sec for 6000 RPM and 12000 Rpm respectively. Stress increases along radius of shaft negatively 

as thermal stress dominates mechanical stress in coupled environment. Also considering at a 

particular radius, normal stress is increases as ‘k’ value increases, because volume fraction of steel 

material is increases as power law index (k) increases. Fig (a) and Fig (b) are almost same but 

difference is, as speed increases amplitude in stress is more, which is shown and explained in 

succeeding section.  

Figure 5. 10 (a) and (b) shows shear stress on plane perpendicular to x axis in theta direction 

at 6000 RPM and 12000 RPM respectively. Maximum stress values are obtained at time t=0.008 

sec and t=0.044 sec for 6000 RPM and 12000 Rpm respectively. Shear stress increases along radius 

of shaft positively as thermal stress dominates mechanical stress in coupled environment. Also 

considering a particular radius, shear stress is increases as ‘k’ value increases, because volume 

fraction of steel material is increases as power law index (k) increases. Fig (a) and Fig (b) are 
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almost same but difference is, as speed increases fluctuation in stress is more, which is shown and 

explained in succeeding section. 

 

 

Figure 5. 10 Normal stress in tapered FG shaft along radius:      

(a) At 6000 RPM, (b) At 12000 RPM  



 

NIT ROURKELA Page 33 
 

 

Figure 5. 11 Shear stress in tapered FG shaft along radius.      

 (a) At 6000 RPM, (b) at 12000 RPM  
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5.5.3 Transient uncoupled stress analysis for different value of power law index 

 Uncoupled (without considering thermal strain) transient stress obtained by 

equation (20) at the top of the surface. Considering temperature dependent material properties and 

temperature variation as in Figure 5. 2. Figure 5. 12 Shows normal stress on plane perpendicular 

to x axis in x direction, Figure 5. 13 and Figure 5. 14 shows shear stress on plane perpendicular to 

x axis in theta and radial direction respectively also (a) and (b) represents shaft running at 6000 

RPM and 12000 RPM respectively. Maximum stress amplitude developed in tapered shaft for 

initial small time interval, then stress amplitude is decreases as time increases and maintain 

constant amplitude at speed 6000 RPM. For initial small time interval stress amplitude is smaller, 

as time increases stress amplitude increases then attains almost constant amplitude for shaft 

running at 12000 RPM. Also it can be seen that, as power law index increases stress amplitude 

increases, this is based on displacement. Also by looking at y axis values, stress amplitude 

increases as speed increases. 
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Figure 5. 12 Transient uncoupled normal stress in tapered FG shaft:   

(a) At 6000 RPM, (b) at 12000 RPM  
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Figure 5. 13 Transient uncoupled shear stress in tapered FG shaft in theta direction:   

(a) At 6000 RPM, (b) at 12000 RPM  
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Figure 5. 14 Transient uncoupled shear stress in tapered FG shaft in radial direction:  

(a) At 6000 RPM, (b) at 12000 RPM  

 

5.5.4 Transient coupled stress analysis for different value of power law index 

 Coupled (with considering thermal strain) transient stress obtained by equation (21) at the 

top of the surface. Considering temperature dependent material properties and temperature 

variation as in Figure 5. 2. Figure 5. 15 Shows normal stress on plane perpendicular to x axis in x 

direction, Figure 5. 16 shows shear stress on plane perpendicular to x axis in theta direction also 

(a) and (b) represents shaft running at 6000 RPM and 12000 RPM respectively. Maximum stress 

amplitude developed in tapered shaft for initial small time interval, then stress amplitude is 

decreases as time increases and maintain constant amplitude at speed 6000 RPM. For initial small 

time interval stress amplitude is smaller, as time increases stress amplitude increases then attains 

almost constant amplitude for shaft running at 12000 RPM. Also it can be seen that, as power law 

index increases stress amplitude increases, this is based on displacement. Also by looking at y axis 

values, stress amplitude increases as speed increases. 
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Figure 5. 15 Transient coupled normal stress in tapered FG shaft:   

(a) At 6000 RPM, (b) At 12000 RPM  
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 Figure 5. 16 Transient coupled shear stress in tapered FG shaft in theta direction:  

(a) At 6000 RPM, (b) At 12000 RPM  
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CHAPTER 6 

CONCLUSION AND SCOPE OF FUTURE WORK 

  

Important conclusions are drawn in this chapter based on above discussed results. 

Opportunity of future work is also been presented in this chapter. 

6.1 Conclusions 

 Present study supports to draw following important conclusions. 

i. Three nodded Timoshenko beam element has been implemented for modelling and analysis 

of FG tapered shaft by taking into account of structural damping and hysteretic damping 

in temperature environment. 

ii. The temperature distribution is assumed based on one Dimensional steady state 

temperature field by using Fourier heat conduction equation without considering heat 

generation. 

iii. Temperature dependent material properties are established by taking different power law 

index value. 

iv. Stress values are compared between steel and FG shaft by taking temperature dependent 

material properties for linear variation of temperature, it is found that stresses developed 

in FG shaft is lower than Steel shaft. 

v. It is also noted that stress increases as power law index increases. 

vi. Stress amplitude increases as speed of the shaft increases. 

 

6.2 Scope of future work 

i. Nonlinear modelling of FG shaft. 

ii. Active vibration control of FG shaft. 

iii. Analysis and control of breathing crack in FG shaft. 

 



 

NIT ROURKELA Page 41 
 

Appendix 

 

Now simplifying and arranging the above equation gives, 
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Mass, stiffness, circulation and gyroscopic matrices of FG Timoshenko beam element. 
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The general displacement matrix  eq  is given by
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3 3 3 33 3 3 3 3 3 3 3
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0
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K K

K K K

K K K
K

K K K K

K K K

    

    

    

    

  

      

          

          
   

              

        

       

54 55

3 33 3 3 3

61 66

3 3 3 3 3 3 3 33 3 3 3 18 18

0

0 0 0 0

K

K K

 

     

 
 
 
 
 
 
 
 
        
         

 

Where  

11 16

11 16;
xb xb

j ji i
ij ij s

xa xa

K A dx K k B dx
x x x x

    
 

    

 22 24

55 66 16

1
;

2

xb xb
j ji i

ij s ij s

xa xa

K k A A dx K k B dx
x x x x

    
   

    
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55 66
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i
ij s j

xa

K k A A dx
x





  



   33 34

55 66 55 66;
xb xb

ji i
ij s ij s j

xa xa

K k A A dx K k A A dx
x x x

 


 
   

   
35
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1

2

xb
ji

ij s

xa

K k B dx
x x

 
 

 
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16 55 66

1
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2

xb xb
j ji

ij s ij s i
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K k B dx K k A A dx
x x x

 


 
   

   

 44 45
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     
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K k A A dx K k B dx
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
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xb xb
j ji i

ij s j s i ij s i j

xa xa

K k B k B dx K k A A D dx
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     
        
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61 66

16 66;
xb xb

j ji i
ij s ij s

xa xa

K k B dx K k D dx
x x x x

    
 
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Circulatory stiffness matrix 

 
18 18

j

i

x

T

cir

x

K M Mdx


   

Where  
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'' '' '' '' '' ''
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 
 
 
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  
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 

 6 18


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 
 
 
 

 



 

NIT ROURKELA Page 44 
 

Gyroscopic matrix 

           
           
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