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Abstract

In this world of Big Data, large quantities of data are been created everyday from

all the type of visual sensors available in the hands of mankind. One important

data is that we obtain from satellite of the land image. The application of these

data are numerous. They have been used in classification of land regions, change

detection of an area over a period of time, detecting different anomalies in the

area and so on. As data is increasing at a high rate, so manually doing these jobs

is not a good idea. So, we have to apply automated algorithms to solve these jobs.

The images we see generally consists of visible light in Red, Green and Blue

bands, but light of different wavelength differ in their properties of passing

obstacle. So, there has been considerable research going on continuous spectra

images. These images are called Hyper-spectral Image.

In this thesis, I have gone through many classic machine learning algorithms

like K-means, Expectation Maximization, Hierarchical Clustering, some out of box

methods like Unsupervised Artificial DNA Classifier, Spatial Spectral Information

which integrates both features to get better classification and a variant of Maximal

Margin Clustering which uses K-Nearest Neighbor algorithm to cross validate and

get the best set to separate. Sometimes PCA is used get best features from the

dataset. Finally all the results are compared.

Keywords: Hyperspectral Image, Unsupervised Classification, Maximal

Margin Clustering, Artificial DNA
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Chapter 1

Introduction

In recent days, due to advancement of sensors, Hyperspectral images are pretty

normal in todays scientific expedition. Maybe for Body scans, or for land images

taken from satellite, they have got role to play. Hyperspectral sensors gather from

a wide range of wavelength with narrow steps giving an illusion of continuity. [1].

In this project work, I have generally worked on Satellite based Hyperspectral

images of Land cover. Due to huge amount of information available from these

data, they are handy in tasks like segmentation of Land area, detecting changes

or anomalies, also for prediction weather and many more. Manually doing these

task are not possible, so I have to use computers to solve these problems. But

for machines these classification tasks are difficult and hence machine learning

algorithms have to be used to accomplish these problems.

Due to very few availability of ground truth data of a satellite image,

unsupervised classification is much better than its counterpart and would work

on almost all situations. So here, an Hyperspectral image(cube) is taken and from

that segments are found belonging to different content(i.e grass, water, varied

vegetation, soil type, buildings etc).
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1.1 Hyperspectral Images and Multispectral

Images

Its a valid question that both Hyperspectral and Multispectral images contains a

number of bands, then what is the difference between the two of them.

While bands present in Multispectral images are narrow but they are taken

discretely from the light spectrum where as in Hyperspectral image, bands were

taken continuously over a region of spectrum. For example : bands of (10nm-20nm,

30nm-40nm, 50nm-60nm, ...) belongs to category of Multispectral images, whereas

bands of (10nm-20nm, 20nm-30nm, 30nm-40nm, ...) belongs to Hyperspectral

images.

Both Multispectral and Hyperspectral images have their own pros and cons.

In latter the whole spectrum data is acquired and hence no prior knowledge is

required and hence all information available from the dataset can be mined, which

can lead to better clustering. As data present here is very large so complexity of

the methods increases as well as cost. Data storing and transmission becomes

another problem.

1.2 Literature Survey

Hyperspectral data, with the larger volume, high dimensionality, and temporal

and spatial spectral diversity, present a challenge for the traditional unsupervised

clustering processing techniques such as k-means, iterative self-organizing data

(ISODATA), and fuzzy c-means clustering algorithms, which originate from

multispectral imagery. In recent research, some artificial intelligence methods,

such as the unsupervised artificial immune classifier [2], automatic fuzzy clustering

using modified differential evolution (MoDEFC) [3], and multiobjective fuzzy

clustering based on differential evolution [4] and scheme with support vector
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machine classifier [6], have been developed to solve the multiimage clustering

problem. These methods are used to estimate the class number and the

distribution of clusters by multicycle iterative optimization, but when these

methods are introduced to process hyperspectral data, it is difficult to reach

convergence and time-consuming to search the clusters in the sparse and skewed

space.

To avoid the problems resulting from the high dimensionality of hyperspectral

imagery, band selection and dimension reduction are conducted before

hyperspectral image processing. Many feature extraction and dimension reduction

techniques have been developed in hyperspectral imaging, such as principal

component analysis (PCA) [5], independent component analysis [6], discrete

wavelet transform [7], band reduction based on rough sets [8], projection

pursuit algorithm [9], and clonal selection feature-selection algorithm [10]. After

processing, the clustering is carried out on the dimension-reduced data by the

traditional unsupervised classifiers. Recently, some new clustering methods have

been developed to resolve the problems resulting from the high dimensionality.

A divideand-conquer approach for contiguous subsets with similar characteristics

has been proposed, which employs information fusion to classify the hyperspectral

data [11]. A hierarchical clustering with local region-growing segmentation

and global clustering has also been used to classify hyperspectral data [12].

Furthermore, a combination of clustering with feature selection based on particle

swarm optimization has been proposed to cluster hyperspectral data by estimating

the cluster statistical parameters and by detecting the most discriminative

features [13]. Although these proposed methods decrease the computational

complexity for the hyperspectral clustering by different strategies, the dimension

reduction destroys the continuity of the spectral signatures and the spectral

absorption and reflection features, such as the spectral shape, amplitude, and

slope features, which cannot then be easily used to discriminate the categories of
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the spectral signatures.

A spectral-coding-based matching technique retains the potential

discriminative information of the spectra and transforms the spectral values

into a discrete set of symbols in a specific manner so that signatures can be

represented and compared with each other by the new symbols more effectively

[16]. Various spectral encoding and matching methods, e.g., binary coding (BC)

[17], spectral-feature-based BC [18], and spectral derivative feature coding [19],

have been successfully used in supervised hyperspectral data classification

1.3 Challenges faced by Unsupervised

Classification of Satellite Images

Previously I have discussed about the spectral component of Image, which

differentiates Hyperspectral and Multispectral Images, but here the spatial

component creates the problem.

• Sensors present in the satellite are at a huge distance from earth. Although

their zooming and resolution capacities are tremendous, theres a limit to

that. So, when image taken from that far away, one pixel(the smallest unit

in the image) represents an area of 30 X 30 meters or so. In that area there

may be more than on component(for example both soil and water) present.

This leads the sensor to pick up mixed signals. Hence these signals will not

look similar to their parent data.

• In Unsupervised Classification, no prior information is available and with the

large amount of data the ”curse of dimensionality”, Hyperspectral Images

give, this creates a problem for unsupervised Algorithms.
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1.4 Objective

This research project was carried out to satisfy the following objectives :

• To study the approaches taken to find different land cover given a

Hyperspectral Satellite Image.

• To contribute to better classification of the data.

• Finally compare all the methods implemented.

For this project my main goal was to implement the latest classification

algorithms. Extraction of satellite images from their respective formats, noise

removal, number of class determination are not considered. Some of the algorithms

are specifically for images while other can be applied to any data type.

1.5 Theory Required

In this chapter I am going to discuss about basics of classification and some simple

methods that help it.

1.5.1 What is Classification/Clustering

Basically we are given data about something of particular interest. each data

point will contain a array of values, which basically relates what the data is

from a given training set that contains the true class of the data.But When

the data is not available, we go for Unsupervised Learning. In Unsupervised

Classification/Clustering, the task is to group the data that are most similar.

Also termed as segmentation analysis, taxonomy analysis, these methods are most

helpful when ground truth cases are not given.

Many algorithms have been developed to attempt clustering problem. Some

of the classic and well known are : K-Means Clustering, Gaussian Model
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Clustering using Expectation Maximization, Hierarchical Clustering. Here I have

used K-means algorithm for several purposes. Also many supervised algorithms

are used in this project like K-Nearest Neighbor(KNN), SVR(Support Vector

Regression). These supervised algorithms though can’t be directly applied to

the image, they were used with those clustering algorithms to improve the result

obtained from basics.

1.5.2 Feature Extraction

Our data may contain a lot of input features which may or may not be redundant.

Least informant features need to be removed to both decreases the complexity

and dimensionality curse. The minimum discriminative features can be found by

different greedy approaches. Numerous of the features are really a combination of

many information removing which we may lose important data needed. Uprooting

such a highlight would uproot more data than required. In the following passages,

PCA is presented as a feature extraction answer for this issue, and its internal

workings are discussed.

As a rule, features are related. As a sample, consider the situation where

we need to utilize the red, green and blue parts of every pixel in a picture to

arrange the picture (e.g. identify cats versus dogs). Picture sensors that are most

touchy to red light additionally catch some blue and green light. Correspondingly,

sensors that are most touchy to blue and green light likewise show a certain level

of affinity to red light. Thus, the R, G, B parts of a pixel are measurably mixed

up. Subsequently, essentially disposing of the R segment from the feature vector,

likewise certainly removes data from the G and B channels. As it were, before

taking out features, we might want to change the complete feature space such that

the basic uncorrelated segments are acquired.

By and large, PCA permits us to get a M-dimensional subspace of the
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first N-dimensional information, where M ¡= N. Besides, if the obscure,

uncorrelated parts are Gaussian distributed, then PCA really goes about as

an ICA(Independent Component Analysis) since uncorrelated Gaussian variables

are measurably free. Be that as it may, if the hidden segments are not

regularly dispersed, PCA simply creates decorrelated variables. For this situation,

algorithms with dimensionality reduction may be a better option.

The PCA formula : Taking into account the past segments, we can now

list the straightforward formula used to apply PCA for highlight extraction:

1. Center the information :

It is demonstrated that the covariance network can be composed as

a grouping of straight operations (scaling and revolutions). The

eigendecomposition removes these change matrices. The eigenvectors speak

to the pivot framework while the eigenvalues speak to the scaling variables.

Nonetheless, the covariance matrix does not contain any data identified with

the interpretation of the information. For sure, to speak to interpretation, a

relative change would be required rather than a direct change. Any current

move needs to be countered by subtracting the mean of the information from

every information point before applying PCA to uncorrelated the data. This

essentially relates to focusing the information such that its normal turns into

zero.

2. Normalize the information :

The eigenvectors found from the covariance matrix points to the direction

of largest eigenvalue or variance of the data. On the other hand, fluctuation

is a flat out number, not a relative one. This implies that the change

of information, measured in centimeters (or inches) will be much bigger

than the difference of the same information when measured in meters (or
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feet). Consider the sample where one feature speaks to the length of

an item in meters, while the second highlight speaks to the width of the

article in centimeters. The biggest fluctuation, and consequently the biggest

eigenvector, will verifiably be characterized by the first highlight if the

information is not standardized.

To dodge this scale-subordinate nature of PCA, it is helpful to standardize

the information by isolating every highlight by its standard deviation. This is

particularly essential if diverse highlights relate to distinctive measurements.

3. Calculate the eigendecomposition :

Since the information will be anticipated onto the biggest eigenvectors to

diminish the dimensionality, the eigendecomposition needs to be gotten.

Singular Value Decomposition(SVD) standout amongst the most broadly

utilized systems to proficiently ascertain the eigendecomposition

4. Project the information :

To lessen the dimensionality, the information is just anticipated onto the

biggest eigenvectors. Let V be the grid whose segments contain the biggest

eigenvectors and let D be the first information whose sections contain the

diverse perceptions. At that point the anticipated information D’ is gotten

as D′ = V TD . We can either pick the quantity of remaining measurements,

i.e. the sections of V, straightforwardly or we can characterize the measure

of change of the first information that needs to keep while taking out

eigenvectors. If N eigenvectors are kept, and ’e’ speak to the relating

eigenvalues, then the measure of fluctuation that remaining parts in the

wake of anticipating the first d-dimensional information can be computed

as:

sq =
∑N

i=0
ei

∑d
j=0

ej
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1.5.3 K-Means

k-means clustering [14] is a partitioning strategy. Not at all like hierarchical

clustering, k-means grouping works on genuine perceptions (as opposed to the

bigger arrangement of divergence measures), and makes a solitary level of

groups. The qualifications imply that k-means grouping is regularly better than

hierarchical clustering for a large dataset.

K-means treats every perception in your information as an object having an

area in input space. It discovers a partition in which objects inside every group

are as near to one another as would be prudent, and as a long way from objects

in different groups as possible.First, you indicate ahead of time what number of

clusters are being looked for: this is the parameter k. At that point, k points

are picked indiscriminately as bunch focuses. All examples are appointed to their

nearest group focus as per the customary Euclidean separation metric. Next the

centroid, or mean, of the cases in every cluster is computed this is the ”signifies”

part. These centroids are taken to be new central values for their individual

groups. At long last, the entire procedure is rehashed with the new group focuses.

The cycle proceeds until the same centers are appointed to every group in back to

back rounds, at which organize the cluster focuses have settled and will continue

as before for eternity.

Every cluster in the partition is characterized by its part questions and by its

centroid or center. The centroid for every group is the point to which the whole

of separations from all items in that cluster is minimized. means figures group

centroids distinctively for every separation measure, to minimize the aggregate

regarding the measure that you indicate.

Indeed, this is valid for all functional grouping methods: it is quite often

infeasible to discover all around ideal bunches. To expand the possibility of

discovering a worldwide least individuals regularly run the calculation a few times
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Figure 1.1: K-Means Algorithm in 2D space

with distinctive beginning decisions and pick the best last resultthe one with the

littlest aggregate squared separation.

It is anything but difficult to envision circumstances in which k-means neglects

to locate a decent clustering. Consider four examples at the vertices of a rectangle

in the two-dimensional space. There are two regular groups, framed by gathering

together the two vertices at either end of a short side. Anyhow, assume that the

two introductory group focuses happen to fall at the midpoints of the long sides.

This structures a steady setup. The two groups every contain the two examples

at either end of a long side regardless of how awesome the distinction between the

long and the short side is.
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Algorithm: K-Means Clustering

Repeat till convergence

1. for i=1 to m

c(i) := index (from 1 to K) of cluster centroid closest to x(i)

2. for k = 1 to K

myu(k) := average(mean) of points assigned to cluster k.

1.5.4 K-Nearest Neighbor(KNN)

k-Nearest Neighbors is an algorithm that doesn’t use any parameter helps in

regression and classification. Here the input data comprises of the nearest located

k instance in the highlighted domain. The yield relies on upon utilization on

Regression and Classification.:

k-NN method returns class membership values. Maximum vote given by

neighbors characterize the data, with the data being allocated to the class most

regular among its k closest points (k is positive integer and its not very large).

In the event that k is 1, then the item is basically allocated to the class of that

closest neighbor.

k-NN regression returns the estimation of the object. This k closest neighbors

constitute this value by averaging the distance. k-NN is a apathetic realizing,

where the capacity is just approximated by regional standards and all processing

is conceded until order. The k-NN algorithm is one of the easiest in machine

learning.
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Both for regression and classification, it can be valuable to weight. Weight gives

a measure of what neighbors are what distance. Naturally, nearest neighbors give

more weight than the far ones. So one way is to give weight 1/d to the neighbors

where d represents the distance of the neighbors from the test data.A deficiency

of this calculation is that it is sensitive to the nearby structure of the information.

The calculation is not similar to that of k-Means, another well-known machine

learning method.

Figure 1.2: How k-NN classifies test data.

A usually utilized separation metric used while operating on continuous vars

is Euclidean distance. [15] For discrete variables, for example, for content order,

another metric can be utilized, for example, the cover metric. Frequently, the

characterization exactness of k-NN can be enhanced essentially if the separation

metric is found out with specific calculations, for example, Neighborhood

component analysis or Large Margin Nearest Neighbor.

A drawback of the essential ”larger part voting” grouping happens when the

class dispersion is skewed. One approach to defeat this issue is to weight the

12



arrangement, taking into record the separation from the test point to each of its

k closest neighbors. The class (or quality, in classification issues) of each of the

k closest center is reproduced by a weight corresponding to the opposite of the

separation starting there to the test point. Another approach to overcome skew

is by deliberation in information representation. That is, examples of a more

frequent class tend to dominate the prediction of the new example.

1.5.5 Support Vector Regression

Support Vector Machine is basically a Large Margin Classifier. It tries to separate

the data by the maximum margin by which they can be separated. So, it doesn’t

faces the problem of Local Minima. Also using the Kernel trick, this classifier can

extend to a non-linear one.

Although Support Vector Machines are generally used for classification

problems, they can also be applied to regression problems while retaining

properties of Maximum Margin algorithms. Similar to classification approach,

here the aim is to optimize the bounds or distance of separation between data

points. Similarly for regression case, a loss function is defined thats going to

ignore errors that are within a certain distance. this is called epsilon loss function.

According to epsilon-SVR, error for boundary on training is measured for each

data and all points inside the boundary are given a loss value of zero. As the

calculations are done using only the support vectors, so complexity of program

is reduced than the direct approach. So, this regression method finds the global

minimum as well as optimizes the problem to a small subset containing some

specific data(support vector).

For a linear regression problem,

f(x, w) =
∑m

q=1
wqtq(x) + b

where tq(x), q = 1, 2, 3, ..., m denotes non-linear transformation of the data and
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b is the bias term. The estimation accuracy is measured by a loss function, as

proposed by Vapnik:

Ls(y, f(x, w)) = max(0, |y − f(x, w)| − ǫ)

SVM finds the linear regression from the high dimensional data’s feature space

using epsilon-sensitive loss as well as reduces ||w||2. This process can be explained

by taking into consideration non-negative slack variables insertetaiandetai∗. This

measures the error of data points that are outsize the epsilon boundary.

minw,b,ξi,ξ∗i
1

2
||w||2 + C

∑

i(ηiξi + η∗ξ∗i )

s.t.























yi− < w, xi > −b <= η + ξi

< w, xi > +b− yi <= η + ξ∗i

ηi, ξi, η
∗
i , ξ

∗
i >= 0























The ooptimization problem is henced changed to its dual problem and hence

he solution is given by

f(x) =
∑sv

q=1
(α− α∗)K(xi, x);

where sv is the cardinality of set of Support Vectors. and the kernel function is

K(xi, x) =
∑m

q=1
tq(x)tq(xq)

SVR’s performance same way as its counterpart depends on the value of

C(regularization parameter) and epsilon. So to reduce the complexity these

parameters are user defined. Knowledge about the matter we are solving the

problem for is required to give corresponding Kernel function and hence value

of epsilon. Parameter C punishes the deviation from boundary and determines

trade-off between the degree of error and the complexity of the model i.e the

flatness of the model.
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1.6 Dataset

All the algorithms mentioned here were tested using basically two datasets.

1. SalinasA Scene

This scene was collected by the 224-bandAVIRIS sensorover Salinas Valley,

California, and is characterized by high spatial resolution (3.7-meter pixels).

The area covered comprises 86X83 pixels and 224 spectral reflectance bands

.

2. Real and fake fruit dataset

Although this is not a satellite image, it was taken from CAVE laboratory

using Apogee Alta U260 CCD camera with wavelength range of 400-700 nm

with 10 nm steps. This image was taken as there were unavailability of many

small dataset that can be run using all our algorithm.

1.7 Thesis Outline

This thesis contains four main chapters each consisting of sections.

Chapter 2: Theory of Basic Methods

In this chapter, approach to classification, basic theory of PCA Data extraction

Algorithm, basic classification Algorithms like K-Means, K-Nearest Neighbor are

explained. With the basic algorithms that are going to be used here are cleared

in the this chapter, I am going to introduce some new algorithms some of which

are specifically for the task of classification of land cover in Hyperspectral images

and one is a general classifier technique in the next chapter onwards.

Chapter 3: Integrating Spatial Feature in Classification
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This chapter uses the location or nearness information along with spectral data

to cluster the land regions.

Chapter 4: An Unsupervised DNA Classifier

In this chapter implementation of a bio-inspired algorithm is used. Here features

are thought to be as DNA strands and they are used to both compress data as

well as classify it.

Chapter 5: Maximum-Margin Clustering with Hierarchical Tree

In this method, i have implemented a technique to use Support Vector Regression

in an unsupervised approach with validation using k-NN so as to get a better

result.

Chapter 6: Conclusions and future work

Here the conclusion of this research project is discussed along with the trails of it

in the future.
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Chapter 2

Integrating Spatial and Spectral

Data using Spectral Information

Divergence

This algorithm is basically similarity measures calculated between spatially

adjacent pixels using the spectral information of these pixels. So it uses both

spectral as well as spatial information to enhance the performance/accuracy. For

similarity measure of information it uses Spectral Information Divergence(SID)

thats well known in information theory domain.

So, After eliminating noisy bands this algorithm can be divided into 3 parts :

Figure 2.1: This shows the basic steps involved in implementing SPA algorithm
in Hyperspectral Images.
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Figure 2.2: Getting the Maximum Spectral Similarity

• Location-wise Separation

• Class Boundary Correction (CBC)

• Final Clustering

2.1 Location-wise Clustering

The term explains its meaning. Its giving each pixel a score based on how related

they are to their neighboring pixels. This relation is based on the information

obtained from the spectral data.

Let the pixel located at (i,j)th location be X(i,j). So, there are eight pixels

nearest to it. Of those eight, if we start from one corner it is only possible to

compare that pixel with four of those neighbors because taking all eight ones

there is going to be a unreliability in giving acquaintance. For example if we take

the top left corner as our starting point, our nearest points taken into account here

are (i− 1, j − 1), (i− 1, j), (i, j − 1), (i− 1, j + 1) and from these four similarities

only neighboring similarity is considered.

SSmax = maxi{SSi for all i = 1 to 4}

After getting the maximum similarity of each pixel for its neighboring pixel, we

are going to assign to which class current pixel belongs to. It should be the same

as that of the neighboring pixel which had the most similarity. But there may
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happen a condition the maximum similarity is very less(lower than a threshold).

For that case the current pixel is going to be assigned to a new class, and the

process continues for the next pixel.

if SSmax >= threshold then class(i, j) = class(most similar pixel)

else class(i, j) = new class

2.2 Spectral Information Divergence (SID)

Now for similarity measures there are many there is Euclidean distance, SAM

distance, etc but they fail in Hyperspectral dataset. So Spectral Information

Divergence(SID) [16] that comes from Information theory is used here.

Let there be 2 pixels Xi and Xj . with Xi = [di1, di2, ..., diB] and Xj =

[dj1, dj2, ..., djB] and pT = [p1, p2, , pB] and qT = [q1, q2, , qB], where p and q are

probability mass function of Xi and Xj respectively. Then

• Self information from each band is :

Ib(Xi) = −log(pb) and Ib(Xj) = −log(qb)

• Diversity in Band ’b’ is :

Db(Xi||Xj) = Ib(Xj)− Ib(Xi)

• over all bands:

D(Xi||Xj) =
∑

q=1
Dq(Xi||Xj)

• So to make a symmetrical measure

SID(Xi||Xj) = D(Xi||Xj) +D(Xj||Xi)
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2.3 Class Boundary Correction (CBC)

So using both SID and SPA measure we assigned each pixel to the grouping they

belongs to. Now we have to smooth those labels, to remove those labels that do

not have a good support from its neighbors. This is done to remove the problem

of merged adjacent classes [16] due to the particular nature of Land Images. Lets

assume that for each pixel there are less than equal 3 neighboring classes.

• Case 1 : c1 pixels containing all only class c1 neighbors.

• Case 2 : c1 pixels contains c2 or c3 pixel as one or more neighbors.

• Case 3 : c1 pixels contains more neighbors of class c3 or c2.

Generally the pixels that are going to be most affected are the boundary

pixels. So the class bound correction method tries to check it again to observe

which class it belongs to.

• if(central pixel = c1) & ( (case1 |case2 |case3)) class(i, j) = c2

• if(centralpixel = c2) & (c2 neighbor < 2 & c3 neighbor > 5) class(i, j) =

c3

• if(centralpixel = c3) & (c3 neighbor < 2 & c2 neighbor > 5) class(i, j) =

c2

2.4 Clustering

After finding class numbers from Boundary Correction algorithm, we have classes

much more than real number of clusters, but also very few than the data points. So

each class represents a group of data. Now, we take the average of each group and
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put those few values in a unsupervised classifier. Here K-Means is implemented

for these problem due to its simple and less complex calculation.

After K-Means clustering all data points are assigned to the label given by

K-Means.

2.5 Result

I used the threshold parameter to be 0.004 and the number of classes to be 6.

Figure 2.3: Result obtained for salinasA dataset using SPA algorithm.

Table 2.1: Confusion Matrix using UADNA

1 2 3 4 5 6

1 389 0 0 1 0 1

2 0 840 18 487 2 6

3 0 12 58 499 20 7

4 0 5 21 1491 18 0

5 0 0 0 82 560 32

6 0 0 10 14 57 728

21



Table 2.2: Overall Accuracy of Location-wise Clustering using SID

Class 1 2 3 4 5 6 Overall

Accuracy 99.49 62.08 9.73 97.13 83.09 89.99 73.59

2.6 Summary

Here in this method I have implemented the Spatial Clustering of Hyperspectral

Images where I have also used the location/spatial information to cluster the data,

As there are mixed pixels in the image, so we have to take the information about

the nearest classes present in the image to get the required information.

From the result, we found that the overall accuracy is 73.59 percent. This is

due to the fact one of the class is not separated at all. This may result from the

fact that it’s nearest class is much similar to it.
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Chapter 3

Unsupervised Artificial DNA

Classifier

Large dimension is a difficulty for traditional algorithms and all bands are not

relevant to all the clusters. So, here Unsupervised Artificial DNA clustering

technique is introduced. In this method, certain irrelevant bands are neglected

during calculation for each class. This classifier uses the following algorithm :

• All the spectral data are transformed/converted to DNA strands, which help

in bot effective storing and comparison in low dimension space.

• The irrelevant bands are replaced with ’0’ code and are found using voting

method.

• To calculate similarity between DNA strands a normalized spectral similarity

measure is chosen.

Similar to a DNA molecule, these spectral data are converted to string of 4

values G,A,C,T. So data size is decreased as well as complexity also decreases.

Key ideas to solve problems through Artificial DNA Computing is :

• Spectral Features are first encoded to DNA strands.
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• These DNA strands are to be matched to obtain their cluster number.

• Then these DNA strands are recombined to solve the problem.

3.1 ADNA Model

DNA Strand: The whole data is composed of discrete codes similar to DNA as

code(A,G,C,T).

• Length of DNA Code : ||code|| = 1 if code = G,A,C, T

• Length of DNA Strand: ||DNA|| =
∑

i ||codei||

• AND Operation:
⋂M

i=1
codei = maxcode(numcode) if maxcode(numcode)/M >

γ where γ is set as 0.5.

Similarity Measure to be taken care of while using DNA codes.

• DNA Similarity : ||codei ⊕ codej ||DNA =











1, if codei = codej

0, otherwise











• DNA similarity in Real : ||codei ⊕ codej||real =



































4, if codei = G

3, if codei = A

2, if codei = C

1, if codei = T



































• Measure of Similarity in DNA strands :

||DNAi ⊕DNAj||real/DNA =
∑

||codei ⊕ codej||real/DNA

3.2 Pre-processing for Spectral Image Data

Hyperspectral images consist of b bands and T pixels(T = R ∗ C). Pixels are

represented by vector Di = [d1i , d
2

i , d
3

i , ..., d
b
i ], i = 1, 2, 3, ...T . The qth band is

represented as Dq = [dq
1
, dq

2
, ..., dqT ].
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Figure 3.1: Preproceessing is done to get DNA features(from [17]).

DNA encoding for Spectra: DNA encoding is used to extract spectral reflection

features. So, three feature encodings are done :

1. Spectral Shape Feature Encoding.

The original spectrum data is used for ”spectral shape” encoding process.

Let the pixel be Di = [d1i , d
2

i , d
3

i , ..., d
b
i ], where i = 1, 2, 3, ..., T . Now all these

values are sorted in ascending order. Then we have our minimum value as

xmin
i and maximum value as xmax

i .

So three quartile thresholds obtained are: T 1

i = x
b′

4

i , T 2

i = x
b′

2

i , T 3

i = x
3b′

4

i .

So for each pixel the jth data is transformed as:

DNAshapechar
i,j =



































G, if xj
i ǫ[T

3

i , x
max
i ]

A, if xj
i ǫ[T

2

i , T
3

i ]

C, if xj
i ǫ[T

1

i , T
2

i ]

T, if xj
i ǫ[x

min
i , T 1

i ]



































’

2. Spectral Amplitude Feature Encoding.

Here DNA encoding is done for each band separately. Then the procedure

of sorting is applied. Thresholds are taken and the whole band is changed

to string of G,A,C,T. So, for each pixel there are b values.
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3. Spectral Slope Feature Encoding.

First the derivative of the features of Spectral Shape feature is found and

then those slope features are used to do similar encoding as done in ”spectral

shape” encoding. All these strings are stored in DNAderchar
i where i =

1, 2, 3, ..., T represents different bands of image. Here are b− 1 data for each

pixel as derivative is taken.

3.3 Clustering Procedure

We get DNA strands from Hyperspectral Image Cube by using those preprocessing

steps mentioned before. The shape is of measurement R ∗C ∗ b converts to R ∗C

DNA strands each of length 3d − 1. So unsupervised order can be determined

via naturally examining and recognizing sensible features contained in the DNA

strands.

It fundamentally Consists of :

• Closeness Tests.

Similarity evaluates how near the DNAi are to DNADCs. This Algorithm

finds the DNADCs that is closest to the current DNAi. Then index of the

clustering center is assigned to the current DNA. Similarity Condition is

given as :

maxi(
||DNAi

DCs⊕DNAi||

||DNAi
DCs

||
) > β

• Voting Process for overhauling DNAs.

The voting methodology is done to discover predictable DNA highlight codes

in particular position. The are near to specific are utilized to vote in favor

of new DCs in DNA encoding subspace.
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Figure 3.2: Concept Diagram of Similarity test and Heterogeneity test (from [17])

Figure 3.3: Basic Procedure for clustering using ADNA (from [17])

Here the ith code-word will be supplanted by ∩3d−1

q=1
: . The code-word that

remaining parts same are stable code-words and the ones conflicting are

supplanted with ”0” code-word.

We set the parameter γ as 0.5.

The process is continued iteratively, clustering the current DNA strands with

the updated DNA clustering centers and will only stop when the new ones

are same as the old ones.

• After Convergence, grouping of DNA strands to distinctive classes.

After voting more clusters are obtained than whats required. So simple

clustering algorithm is used to classify the small number of data to the the

required number of clusters. Here for simplicity, K-Means is used.

There are maintained few DNA ”clustering centers” called DNADCs. These

clustering centers are empty initially and are gradually filled up. Maximum

number of clustering centers are fixed initially.
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3.4 Result

Taking the value of α = 0.85 and β = 0.75, we get the following result in salinasA

dataset.

Figure 3.4: Different Class shown using UADNA Clustering technique

Table 3.1: Confusion Matrix using UADNA

GT/OUT 1 2 3 4 5 6

1 381 0 0 7 0 3

2 0 730 59 551 1 12

3 0 12 468 89 20 7

4 0 5 81 1431 18 0

5 0 0 0 2 640 32

6 0 0 10 14 6 769

Table 3.2: Overall Accuracy using UADNA
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Class 1 2 3 4 5 6 Overall

Accuracy 97.44 53.95 78.52 93.22 94.96 96.25 85.72

3.5 Summary

This unsupervised Classifier uses method of Artificial DNA to both compress the

data as well as easily cluster it. As it removes irrelevant bands while classification,

it can be improved to get better accuracy. We observed that this method detects

the class that was not earlier detected by the spatial based algorithm. The overall

accuracy we get from this method is 85.72 percent.
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Chapter 4

Maximal Margin Clustering using

Hierarchical Tree

Maximal Margin Clustering, which is the unsupervised counter part of Support

Vector Machine(SVM). As it tries to separate the data maximally, it generally

gives better result than other methods as data is separated maximally. As the

method is comparatively slow, so I am taking 20-25 best features from the data

by first finding the Principal Component Analysis(PCA) of the image data. In

general MMC’s aim is to optimize the problem :

miny maxα,α∗(α− α∗)Ty − 1

2
(α− α∗)K(α− α∗)

s.t. (α− α∗)T = 0

0 <= α, α∗ <= Ce.

4.1 Iterative SVR

Now, this problem can be solved by first taking y constant, solving the dual of

the Iterative SVR problem taking parameters as α,α∗. Then we put α,α∗ constant

and minimize the value of the objective function.

As this algorithm tends to find the maximum distance, so the trivial or most

optimal solution according to the computer is to classify all data as one cluster, so
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margin is infinite. For this reason to check and remove the trivial solution a class

balance constraint parameter is used here. Let that variable be r. The statement

can be represented as − r
n
<=

∑n
i=1

yi <= r
n
. This prevents the trivial solution.

After fixing α,α∗ fixed, we have w fixed, so our problem is reduced to

miny,b | < w, φ(x) > + b − yi|

So, we can now simply shift b in range −rn to rn so that our problem is optimized

and also the maximum balance constraint are satisfied.

4.2 Hierarchical Structure for Multiple Classes

As this Iterative SVR can only solve binary clustering problem and we don’t

have training data with us to create one-vs-one or one-vs-all classifier, we have

to go for some other method to separate all the classes.As the clusters separated

using Iterative SVR must contain at least one class and the separation margin is

maximum in the whole dataset. Then we have 2 clusters, each containing more

than or equal to one class.

Let d be a function that defines how well the clusters are separated.

So, now we maintain a Tree, whose leaf nodes are going to be clustered. The leaf

node with minimum value of d is going to be clustered and the process continues

iteratively until the number of leaf nodes reaches the given number of class(c).

(Here d is taken to be the cross validation after clustering using k-NN algorithm)

Each of the final leaf nodes constitutes a unique label.
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Figure 4.1: Hierarchical Structure used with MMC for Multiple Class Clustering

4.3 Result

Here we had tested this algorithm with both the datasets.The parameter r is taken

here to be 0.3 and ǫ is taken to be 0.1. The results are shown below.

Table 4.1: Confusion Matrix using MMC with Hierarchical Tree

GT/OUT 1 2 3 4 5 6

1 389 0 0 1 0 1

2 0 739 0 537 5 12

3 0 0 563 53 0 0

4 0 0 0 1525 0 0

5 0 0 0 0 672 2

6 0 0 0 3 11 785

Table 4.2: Comparison of Overall Accuracy for UADNA, H2NMF, MMC methods

Method/Class 1 2 3 4 5 6 Overall

UADNA 97.44 53.95 78.52 93.22 94.96 96.25 85.72

H2NMF 99.49 54.15 3.73 100 97.92 98.77 75.69

MMC HT 99.49 55.03 91.40 100 99.70 98.25 90.64
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Figure 4.2: From top left (a) Ground Truth. (b) Clustering using Unsupervised
DNA Classifier(using α = 0.85 and β = 0.75) (c) Clustering using Hierarchical
Rank-2 NMF. (d) Clustering using MMC using Hierarchical Tree with r = 0.3.
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Figure 4.3: From top left (a)Image in RGB Format. (b)Clustering done through
K-Means and PCA. (c) Clustering through Gaussian Expectation Maximization.
(d) Clustering through Hierarchical Rank-2 NMF. (e) Clustering through MMC
using Hierarchical Tree with r = 0.3.
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4.4 Summary

Maximal Margin Clustering is a really challenging task for computers as it

computationally intensive and the exact algorithm is an exponential one. So,

we managed to reduce the algorithm to an iterative polynomial one at the cost

of little approximations and reduced accuracy. Both fruit database and salinasA

dataset are used here.

The result shown from this method surpasses the others mentioned in this

thesis, but they also have a disadvantage of taking more time to execute. This

can be basically termed as an unsupervised Support Vector Machine. Here, we

obtain an overall accuracy of 90.64 percent, which is good for a unsupervised

method. For the fruit dataset, we don’t have any truth case. So only the visual

result are shown.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

Unsupervised Classification/Clustering is a more difficult challenge when

compared to supervised Classification, but it has its merit and is essential when no

truth case is given. This is a totally automated technology. No Human interaction

is needed except for setting some parameters.

In this project, I started with the basic clustering approach, used spatial

location data along with spectral data to increase accuracy. As this method uses

the spectral Information Divergence along with the neighbors data, we can say

that it somewhat removes the mixed pixel problem.

We also tried to implement new algorithm that has theoretical base on DNA

mechanism. Its inspired by our DNA molecules that recombines to get a better

configuration. This mechanism is computationally intensive than the previous one

and parameters like α and β has to be adjusted to get better result.

Finally, I implemented a Maximum Margin Clustering which basically clusters

data to two sets. The parameter we have to change are basically ǫ which is

generally taken as 0.1 and class balance constraint ratio r which everywhere i

have taken as 0.3. So, we have to use a hierarchical tree to get multiple clusters.
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Finally, with the limited dataset I had, we could see that the final one gave the

best result of all.

5.2 Future Work

Maximal Margin Clustering is a really slow method. So, it has difficulty in high

resolution images. Hence, In future my aim would be to decrease the complexity

of the algorithm. Also the cross checking measure used is not that good. So, had

to try for better functions to cross-check.

37



Bibliography

[1] C. L. Chan, A. K. Katsaggelos, and A. V. Sahakian, “Image Sequence Filtering in

Quantum-Limited Noise with Applications to Low-Dose Fluoroscopy,” IEEE Transactions

on Medical Imaging, vol. 12, no. 3, pp. 610 – 621, September 1993.

[2] C. M. Bishop et al., Pattern recognition and machine learning. springer New York, 2006,

vol. 4, no. 4.

[3] Y. Zhong, L. Zhang, B. Huang, and P. Li, “An unsupervised artificial immune classifier

for multi/hyperspectral remote sensing imagery,” Geoscience and Remote Sensing, IEEE

Transactions on, vol. 44, no. 2, pp. 420–431, 2006.

[4] U. Maulik and I. Saha, “Automatic fuzzy clustering using modified differential evolution

for image classification,” Geoscience and Remote Sensing, IEEE Transactions on, vol. 48,

no. 9, pp. 3503–3510, 2010.

[5] A. Mukhopadhyay and U. Maulik, “Unsupervised pixel classification in satellite imagery

using multiobjective fuzzy clustering combined with svm classifier,” Geoscience and Remote

Sensing, IEEE Transactions on, vol. 47, no. 4, pp. 1132–1138, 2009.

[6] M. D. Farrell and R. M. Mersereau, “On the impact of pca dimension reduction for

hyperspectral detection of difficult targets,” Geoscience and Remote Sensing Letters, IEEE,

vol. 2, no. 2, pp. 192–195, 2005.

[7] J. Wang and C.-I. Chang, “Independent component analysis-based dimensionality reduction

with applications in hyperspectral image analysis,” Geoscience and Remote Sensing, IEEE

Transactions on, vol. 44, no. 6, pp. 1586–1600, 2006.

38



[8] S. Kaewpijit, J. Le Moigne, and T. El-Ghazawi, “Automatic reduction of hyperspectral

imagery using wavelet spectral analysis,” Geoscience and Remote Sensing, IEEE

Transactions on, vol. 41, no. 4, pp. 863–871, 2003.

[9] H. Shi, Y. Shen, and Z. Liu, “Hyperspectral bands reduction based on rough sets and fuzzy

c-means clustering,” in Instrumentation and Measurement Technology Conference, 2003.

IMTC’03. Proceedings of the 20th IEEE, vol. 2. IEEE, 2003, pp. 1053–1056.

[10] L. O. Jimenez and D. A. Landgrebe, “Hyperspectral data analysis and supervised feature

reduction via projection pursuit,” Geoscience and Remote Sensing, IEEE Transactions on,

vol. 37, no. 6, pp. 2653–2667, 1999.

[11] L. Zhang, Y. Zhong, B. Huang, J. Gong, and P. Li, “Dimensionality reduction based

on clonal selection for hyperspectral imagery,” Geoscience and Remote Sensing, IEEE

Transactions on, vol. 45, no. 12, pp. 4172–4186, 2007.

[12] Y.-Q. Zhao, D. Zhang, and S. G. Kong, “Band-subset-based clustering and fusion for

hyperspectral imagery classification,” Geoscience and Remote Sensing, IEEE Transactions

on, vol. 49, no. 2, pp. 747–756, 2011.

[13] S. Lee and M. M. Crawford, “Unsupervised multistage image classification using hierarchical

clustering with a bayesian similarity measure,” Image Processing, IEEE Transactions on,

vol. 14, no. 3, pp. 312–320, 2005.

[14] Wikipedia, “K-means clustering — wikipedia, the free

encyclopedia,” 2015, [Online; accessed 9-May-2015]. [Online]. Available:

http://en.wikipedia.org/w/index.php?title=K-means clustering&oldid=660233806

[15] ——, “K-nearest neighbors algorithm — wikipedia, the free

encyclopedia,” 2015, [Online; accessed 9-May-2015]. [Online]. Available:

http://en.wikipedia.org/w/index.php?title=K-nearest neighbors algorithm&oldid=661537193

[16] B. Baassou, M. He, S. Mei, and Y. Zhang, “Unsupervised hyperspectral image classification

algorithm by integrating spatial-spectral information,” in Audio, Language and Image

Processing (ICALIP), 2012 International Conference on. IEEE, 2012, pp. 610–615.

[17] H. Jiao, Y. Zhong, and L. Zhang, “An unsupervised spectral matching classifier based on

artificial dna computing for hyperspectral remote sensing imagery,” Geoscience and Remote

Sensing, IEEE Transactions on, vol. 52, no. 8, pp. 4524–4538, 2014.

39

http://en.wikipedia.org/w/index.php?title=K-means_clustering&oldid=660233806
http://en.wikipedia.org/w/index.php?title=K-nearest_neighbors_algorithm&oldid=661537193


[18] N. Gillis, D. Kuang, and H. Park, “Hierarchical clustering of hyperspectral images using

rank-two nonnegative matrix factorization,” 2013.

[19] K. Zhang, I. W. Tsang, and J. T. Kwok, “Maximum margin clustering made practical,”

Neural Networks, IEEE Transactions on, vol. 20, no. 4, pp. 583–596, 2009.

[20] H. Drucker, C. J. Burges, L. Kaufman, A. Smola, V. Vapnik et al., “Support vector

regression machines,” Advances in neural information processing systems, vol. 9, pp.

155–161, 1997.

[21] B. Schölkopf, P. Simard, V. Vapnik, and A. Smola, “Improving the accuracy and speed of

support vector machines,” Advances in neural information processing systems, vol. 9, pp.

375–381, 1997.

[22] H. Jiao, Y. Zhong, and L. Zhang, “Artificial dna computing-based spectral encoding

and matching algorithm for hyperspectral remote sensing data,” Geoscience and Remote

Sensing, IEEE Transactions on, vol. 50, no. 10, pp. 4085–4104, 2012.

[23] J. R. Jensen and K. Lulla, “Introductory digital image processing: a remote sensing

perspective,” 1987.

[24] Y. Yan, Y. Zhao, H.-f. Xue, X.-d. Kou, and Y. Liu, “Integration of spatial-spectral

information for hyperspectral image classification,” in Geoscience and Remote Sensing

(IITA-GRS), 2010 Second IITA International Conference on, vol. 1. IEEE, 2010, pp.

242–245.

[25] Y. Du, C.-I. Chang, H. Ren, C.-C. Chang, J. O. Jensen, and F. M. DAmico, “New

hyperspectral discrimination measure for spectral characterization,” Optical Engineering,

vol. 43, no. 8, pp. 1777–1786, 2004.

[26] A. Plaza, J. A. Benediktsson, J. W. Boardman, J. Brazile, L. Bruzzone, G. Camps-Valls,

J. Chanussot, M. Fauvel, P. Gamba, A. Gualtieri et al., “Recent advances in techniques for

hyperspectral image processing,” Remote sensing of environment, vol. 113, pp. S110–S122,

2009.

40


	1 Introduction
	1.1 Hyperspectral Images and Multispectral Images
	1.2 Literature Survey
	1.3 Challenges faced by Unsupervised Classification of Satellite Images
	1.4 Objective
	1.5 Theory Required
	1.5.1 What is Classification/Clustering
	1.5.2 Feature Extraction
	1.5.3 K-Means
	1.5.4 K-Nearest Neighbor(KNN)
	1.5.5 Support Vector Regression

	1.6 Dataset
	1.7 Thesis Outline

	2 Integrating Spatial and Spectral Data using Spectral Information Divergence
	2.1 Location-wise Clustering
	2.2 Spectral Information Divergence (SID)
	2.3 Class Boundary Correction (CBC)
	2.4 Clustering
	2.5 Result
	2.6 Summary

	3 Unsupervised Artificial DNA Classifier
	3.1 ADNA Model
	3.2 Pre-processing for Spectral Image Data
	3.3 Clustering Procedure
	3.4 Result
	3.5 Summary

	4 Maximal Margin Clustering using Hierarchical Tree
	4.1 Iterative SVR
	4.2 Hierarchical Structure for Multiple Classes
	4.3 Result
	4.4 Summary

	5 Conclusion and Future Work
	5.1 Conclusion
	5.2 Future Work


