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ABSTRACT: 

 

Both Hiemenz flow and Homann flow are two classical problems in the field of fluid dynamics. 

In this project, both the flows are re-considered and the numerical solutions are obtained. 

Homann flow is studied with and without the presence of partial slip. These partial differential 

equations are reduced to ordinary differential equations using the similarity transformations. 

The obtained highly nonlinear ordinary differential equations with the relevant boundary 

conditions are solved using 4th order Runge-kutta method. The effects of flow parameters on 

the momentum boundary layer are studied in detail. It is observed that slip has significant 

effects on the velocity profiles.  
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INTRODUCTION: 

  In fluid dynamics, stagnation point is a point where the local velocity of the fluid 

is zero. The stagnation point flow problem has attracted many researchers from the past 

decade due to its high industrial applications. The two-dimensional and three-dimensional 

stagnation point flows are considered as the fundamental problems in fluid dynamics.  

  It was the beginning of twentieth century when the solution for Two-

dimensional stagnation point flow was studied. The solution was first investigated by Hiemenz 

(1911). He demonstrated that the Navier Stokes equations governing the flow can be reduced 

to ordinary differential equation using similarity transformations. The reduced differential 

equation was subjected to a numerical approach using the two boundary conditions, one of 

which is at infinity. Some care is needed in the solution of the boundary value problem (BVP) 

because of the asymptotic boundary condition.  Hiemenz’s solution can also be obtained 

without making the simplifications of boundary layer theory, which was first noted by 

Goldstein. Recently, for the planar and axisymmetric stagnation point flows of a viscous fluid 

with surface slip, Wang has obtained an exact similarity solution of the Navier–Stokes equations 

even without the boundary layer approximations. However, his report reveals that the flows 

have boundary layer character, although they are also exact solutions of the Navier–Stokes 

equations. The problem of stagnation point flow has been extended in various ways. Howarth 

has also done similar work to that of that of Hiemenz and found out solutions using the Finite 

scheme method. Yang was the first to work on unsteady two-dimensional stagnation flow. 

Wang and Libby worked on three-dimensional stagnation flow for a moving plate. The 

axisymmetric flow was studied by Homann . Howarth  and Davey extended the axisymmetric 

flow to three-dimensional flow. 

  All the studied mentioned above were considered for a Newtonian fluid. Non-

Newtonian fluids have attracted many researchers because of its wide applications in the 

industry. Srivastava and Sharma have researched the axisymmetric flow of a Reiner-Rivlin fluid 

and found an approximate solution, adopting the Kármán–Pohlhausen method. Jain solved the 

axisymmetric stagnation point flow of a Reiner–Rivlin fluid with and without suction. Rajeswari 

and Rathna used an extension of the Kármán–Pohlhausen integral approach to find the solution 

of the BVP of the two-dimensional and axisymmetric stagnation point flow of a second order 

fluid. Santra et al. have solved the resulting equation due the stagnation point flow of a 

Newtonian fluid over a lubricated surface by the Runge-Kutta method. Like the stretching sheet 

problems, a typical characteristic of the stagnation point flow of the non-Newtonian second 

grade and third grade fluids is that their constitutive equations generate momentum equations, 

which have terms of derivatives whose order exceeds the number of available boundary 

conditions. Davies, Serth , Teipel , and Ariel solved the original BVP using various methods, 

without making any restriction on the size of the non-Newtonian parameters arising due to the 

two-dimensional and axisymmetric stagnation point flows.  
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  The inclusion of magnetic field in the study of stagnation point flow has many 

practical applications, for example, the cooling of turbine blades, where the leading edge is a 

stagnation point, or cooling the nose cone of the rocket during re-entry. Magneto hydro-

dynamics (MHD) may provide a means of cooling the turbine blade and keeping the structural 

integrity of the nose cone. Hence, the boundary layer MHD flows of Newtonian and different 

non-Newtonian fluids have drawn the attention of many researchers since the past few 

decades. Attia has studied the effects of uniform suction and injection on the Homann flow of 

an electrically conducting fluid. 

  In hydro magnetics, Na studied the two-dimensional stagnation point flow of a 

Newtonian fluid. For various values of the Hartmann number (Mn), Na has listed the values of 

ϕ′′(0) at each iteration. From the theoretical point of view, his most important result is that as 

Mn increases from its value = zero, ϕ′′(0) first decreases up to a certain value of Mn, and then it 

increases monotonically. In other flow problems of hydro magnetics, the stress at the wall 

increases steadily as the Hartmann number is increased, which makes the result deduced by Na 

a interesting one. However, the values of ϕ′′(0) obtained by Na correspond to another solution 

of the BVP which does not satisfy the asymptotic boundary condition at infinity and this was 

reported by Ariel. He has reexamined the Hiemenz flow of an incompressible viscous fluid in 

hydro magnetics and reported that. Nachtsheim and Swigert reported these peripheral 

solutions for the nonmagnetic case. Ariel suggested a simple modification in Na’s procedure, 

which eliminated the problem mentioned above. His reported numerical results show that 

ϕ′′(0) increases steadily as Mn is increased from zero. A detailed report on the above problem is 

given by B. Sahoo. 

 

NEWTONIAN FLUID: 

Newtonian fluids are in which the viscous stresses arising from the flow, at every point, are 

linearly proportional to the local strain rate. Local strain rate is nothing but the rate of change 

of deformation over time. More accurately we can say that a fluid is Newtonian if the strain 

rate and the tensors that describe viscous stress are related by a constant viscosity tensor that 

does not depend on the velocity of the flow and stress state. 

𝑇 = µ
𝜕𝑢

𝜕𝑦
 

Where 𝑇 is the viscous stress, µ is the constant scalar viscosity tensor and 
𝜕𝑢

𝜕𝑦
 is the derivative of 

the velocity component that is parallel to the course of shear, in respect to displacement in the 

perpendicular direction. 
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Non-Newtonian REINER-RIVLIN FLUID: 

Reiner-Rivlin fluids are incompressible fluids with constitutive equation  

𝑇 =  𝛼𝐼 + 𝜑1𝐷 + 𝜑2𝐷2 

Here, we assume that 𝑇 is the stress tensor only dependable on D for an incompressible fluid, α 

is the Lagrange multiplier, which can be found by solving the governing equations subject to 

boundary conditions. And 𝜑1, 𝜑2 are functions of the three principal invariants of D as well as 

the mass density 𝜌. 

 

HIEMENZ FLOW: 

 The two-dimensional stagnation point flow was first studied and investigated by 

Hiemenz and thus it was named after the researcher as Hiemenz flow. He demonstrated that 

the Navier-Stokes equations governing the flow can be reduced to an ordinary differential 

equation. In the absence of analytical solution, the equation are solved using numerical 

approach. This research has helped and brought the applications of Hiemenz flow noticeable. 

In this paper, a steady, laminar, incompressible, Newtonian fluid is impenged perpendicularly 

on a infinite flat surface. No body forces are included. Boundary layer assumptions are applied. 

Equations are written in terms of 𝑢 and 𝑣 as the velocity components of x and y respectively. 

No heat transfer, No diffusion. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.1 : Hiemenz flow 
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HOMANN FLOW: 

 The axisymmetric is known as Homann flow. Homann flow is also named after the first 

researcher Homann, who demonstrated the solutions for the axisymmetric flow. In this paper, 

we considered the Homann flow of Reiner-Rivlin fluid in presence of external magnetic fluid.  

         

 

 

 

 

 

 

 

 

 

 

 

 

 

MATHEMATICAL MODELLING: 

Fig. 2 : Homann Flow 
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HIEMENZ FLOW: 

GOVERNING EQUATIONS: 

From Fig. 1 we can see the type of Hiemenz flow. Now we consider the Navier-Stokes Equations 

and Boundary conditions of the flow. We take the velocity components as 𝑢 and 𝑣 for x and y 

axis respectively. Therefore, the corresponding flow equations would be 

Equation of continuity: 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0 

Navier-Stokes Equations: 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= −

1

𝜌

𝜕𝑝

𝜕𝑥
+ 𝑢(

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
) 

𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
= −

1

𝜌

𝜕𝑝

𝜕𝑦
+ 𝑢(

𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
) 

BOUNDARY CONDITIONS: 

𝑢(𝑥, 0) = 0 

𝑣(𝑥, 0) = 0 

 𝑢(𝑥, 𝑦) = 𝑐𝑥 (away from the surface that is𝑦 →  ) 

𝑣(𝑥, 𝑦) = −𝑐𝑦(away from the surface that is𝑦 →  ) 

SIMLARITY TRANSFORMATIONS: 

Now, let us take that 𝑣(𝑥, 𝑦) = 𝑓(𝑦), since there is no 𝑥 in 𝑣(𝑥, 𝑦). 

From the equation of continuity which is 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0, we get 𝑢(𝑥, 𝑦) = −𝑥𝑓′(𝑦) 

Substituting the respective values of 𝑢 and 𝑣 in Navier-Stokes equations we get 

𝑓′2 − 𝑓𝑓′′ + 𝑣𝑓′′′ = −
𝜕𝑝

𝜌𝑥𝜕𝑥
 

𝑓𝑓′ − 𝑣𝑓′′ = −
𝜕𝑝

𝜌𝜕𝑦
 

After integrating the latter equation and puuting the value of 𝑝 in the former, we get 

𝑓′2 − 𝑓𝑓′′ + 𝑣𝑓′′′ = 𝑐2 

And we have boundary conditions transformed to 𝑓(0) = 0 = 𝑓′(0) and 𝑓′() = −𝑐 
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With the use of characteristic scales we change the above equation to a dimensionless form, 

the characteristic scale for length is √
𝑣

𝑐
. Thus 

 =
𝑦

√
𝑣
𝑐

= √
𝑐

𝑣
𝑦 

The characteristic scale for velocity is √𝑣𝑐. Thus 

𝜑() =
−𝑓(𝑦)

√𝑣𝑐
 

From which we get 

𝑓′ = −𝑐𝜑′, 𝑓′′ = −𝑐𝜑′′√
𝑐

𝑣
 and 𝑓′′′ = −

𝑐2

𝑣
𝜑′′′ 

Substituting these values we have  

𝜑′′′ + 𝜑𝜑′′ − 𝜑′2
+ 1 = 0  

and the corresponding boundary conditions change to 

𝜑(0) = 0, 𝜑′(0) = 0, 𝜑′() = 1 

HOMANN FLOW: 

GOVERNING EQUATIONS: 

Fig. 2 in this paper, corresponds to the Homann flow. We here consider the Homann flow of a 

Reiner-Rivlin fluid. The work is done is done both, with and without partial wall slip. First let’s 

consider the work corresponding to Homann flow without slip. 

1.WITHOUT SLIP: 

𝑇 =  𝛼𝐼 + 𝜑1𝐷 + 𝜑2𝐷2 

Since a Reiner-Rivlin fluid is used for this study.  

Equation of continuity: 

𝜕𝑢

𝜕𝑥
+  

𝜕𝑣

𝜕𝑦
+  

𝜕𝑤

𝜕𝑧
= 0 

Navier-Stokes Equations: 
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𝑢
𝜕𝑢

𝜕𝑥
+ 𝑤

𝜕𝑢

𝜕𝑧
= − 

𝜕𝑝

𝜕𝑥
+  𝛻2𝑢 +  

𝜕

𝜕𝑧
[(𝑢

𝜕

𝜕𝑥
+ 𝑣

𝜕

𝜕𝑧
) (

𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
) + 2

𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑧
+ 2

𝜕𝑤

𝜕𝑥

𝜕𝑤

𝜕𝑧
]

+ 𝜆
𝜕

𝜕𝑥
[ 4(

𝜕𝑢

𝜕𝑥
)2 + (

𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
)2] − 𝑀𝑢 

𝑢
𝜕𝑤

𝜕𝑥
+ 𝑤

𝜕𝑤

𝜕𝑧
= −

𝜕𝑝

𝜕𝑧
+ 𝛻2𝑣 +

𝜕

𝜕𝑧
[2𝑢

𝜕2𝑧

𝜕𝑥𝜕𝑧
+ 4(

𝜕𝑤

𝜕𝑧
)2 + 2𝑣

𝜕2𝑧

𝜕𝑥2
+ 2

𝜕𝑢

𝜕𝑧
(

𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
)]

+  𝜆
𝜕

𝜕𝑧
[ 4(

𝜕𝑤

𝜕𝑧
)2 + (

𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
)2] 

BOUNDARY CONDITIONS: 

𝑧 = 0: 𝑢 = 0, 𝑣 = 0 

𝑧 → : 𝑢 → 𝑈 

𝑈 = 𝑎𝑥, 𝑉 = 0, 𝑊 = −2𝑎𝑧 

SIMILARITY TRANSFORMATIONS: 

Now, the Navier-Stokes equations are subjected to similarity transformations such that we 

obtain a dimensionless ordinary differential equation of 3rd order. It has been shown by Jain[13] 

that the similarity transformations for a Reiner-Rivlin fluid are 

𝑢 = 𝑎𝑥𝜑′(𝜉), 𝑤 = −2√
𝑎µ

𝜌
𝜑(𝜉), 𝜉 =  √

𝑎𝜌

µ
𝑧  

Using this similarity transformation, the Navier-Stokes equation is converted to 

𝜑′′′ + 2𝜑𝜑′′ + 1 − 𝜑′2
− 𝐿(2𝜑′𝜑′′′ + 𝜑′′2

) + 𝑀(1 − 𝜑′) = 0 

And the corresponding boundary conditions are changed to 

𝜑 = 0, 𝜑′ = 0 𝑓𝑜𝑟 𝜉 = 0 

𝑎𝑛𝑑 𝜑 → 1 𝑎𝑠 𝜉 →  

2.WITH SLIP: 

The equations of continuity and the Navier-Stokes Equations are same as that of without slip 

condition, the only thing that changes is the boundary condition. The slip condition is 

𝑢𝑦 = 𝐴𝑝

𝜕𝑢𝑡

𝜕𝑛
 

Where 𝑢𝑡is the tangential velocity component, 𝑛 is normal to the plate, and 𝐴𝑝 is almost = 

2(𝑚𝑒𝑎𝑛 𝑓𝑟𝑒𝑒 𝑝𝑎𝑡ℎ)

√П
 



15 | P a g e  
 

This condition was proposed by Navier, nearly two hundred years ago. 

Now, with the same similarity transformations as that of the without slip condition, the 

boundary conditions are changed to 

𝜑 = 0, 𝜑′(0) = 𝜑′′(0) 𝑓𝑜𝑟 𝜉 = 0 

𝑎𝑛𝑑 𝜑 → 1 𝑎𝑠 𝜉 →  

 

NUMERICAL APPROACH: 

For both Hiemenz flow and Homann flow, the Runge-Kutta method has been adopted. 

RUNGE-KUTTA METHOD: 

The Runge-Kutta method for the first order differential equation is given as 

𝑑𝑥

𝑑𝑦
= 𝑓(𝑥, 𝑦), 𝑓(𝑥0) = 𝑦0 

𝑦𝑗+1 = 𝑦𝑗 +
ℎ

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) 

Where, 

𝑘1 = 𝑓(𝑥𝑗 , 𝑦𝑗) 

𝑘2 = 𝑓(𝑥𝑗 +
ℎ

2
, 𝑦𝑗 +

𝑘1

2
) 

𝑘3 = 𝑓(𝑥𝑗 +
ℎ

2
, 𝑦𝑗 +

𝑘2

2
) 

𝑘4 = 𝑓(𝑥𝑗 + ℎ, 𝑦𝑗 + 𝑘3) 

 

HIEMENZ FLOW: 

Here we have 3rd ordered differential equation  

𝜑′′′ + 𝜑𝜑′′ − 𝜑′2
+ 1 = 0  

⇒ 𝜑′′′ = −𝜑𝜑′′ + 𝜑′2
− 1  

We adopt Runge-Kutta method to this differential equation with the boundary conditions 

𝜑(0) = 0, 𝜑′(0) = 0, 𝜑′′(0) = 1.232586 

For C++ code of this particular problem refer Appendix-1 
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HOMANN FLOW: 

For the Homann flow, we have a 3rd order differential equation which can also be solved by 

Runge-Kutta Method. 

𝜑′′′ + 2𝜑𝜑′′ + 1 − 𝜑′2
− 𝐿(2𝜑′𝜑′′′ + 𝜑′′2

) + 𝑀(1 − 𝜑′) = 0 

⇒  𝜑′′′ =
−2𝜑𝜑′′ − 1 + 𝜑′2

+ 𝐿𝜑′′2
−  𝑀(1 − 𝜑′)

1 − 2𝐿𝜑′
 

With and Without slip, the C++ code is same except for the initial condition. Refer Appendix-2 

 

RESULTS AND DISCUSSIONS: 

HIEMENZ FLOW: 

The graphs have been plotted for 𝜑 and 𝜑′.  

 

 

       Fig. 3: Plot of φ versus  of the hiemenz flow 

 

        Fig. 4: Plot of φ’ versus  of the hiemenz flow 
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HOMANN FLOW: 

WITHOUT SLIP: 

For both slip and without slip conditions, as 𝐿 is arbitrary, we have chosen it to be < 0. 

Mn L φ’’(0) 

 -1 1.29903 

0.5 -3 1.29785 

 -5 1.32215 

0  1.29903 

5 -1 2.5857693 

10  3.4360084 

   Table 1: Values of 𝜑′′(0) varying with different values of 𝐿 and 𝑀𝑛 

We have also plotted the grpahs for Homann flow without slip condition, the variation of the 

velocity with different values of Magnetic and non-dimensional parameter L have been verified. 

It has been noticed that there is either continuous increase or decrease with the change in the 

values of the parameters.  

 

 

Fig.5: Variation of 𝜑 with a change in 𝐿, 𝑎𝑛𝑑 𝑀𝑛 = 0.5 
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     Fig.6: Variation of 𝜑′ with change in values of 𝐿 and 𝑀𝑛 = 0.5 

 

     Fig.7: Variation of 𝜑′ with change in values of 𝑀𝑛and 𝐿 = −1 

 

Fig.8: Variation of 𝜑 with change in values of 𝑀𝑛and 𝐿 = −1 
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WITH SLIP: 

L Mn γ φ’’(0) 

-1   0.521666 

-3 0.5 1 0.442406 

-5   0.40055 

 0  0.521666 

-1 1 1 0.560989 

 2  0.589448 

  0 1.29903 

-1 0.5 0.5 0.721849 

  2 0.339982 

          Table 2: Variation of values of 𝜑′′(0) with different values of all  the three parameters. 

          

        Fig.9: Variation of 𝜑 with 𝐿, where 𝑀𝑛 = 0 𝑎𝑛𝑑 𝛾 = 1 
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Fig.9: Variation of 𝜑′ with 𝐿, where 𝑀𝑛 = 0 𝑎𝑛𝑑 𝛾 = 1 

 

CONCLUSIONS: 

The steady Hiemenz flow and Homann flow are examined. It is observed that the value of 𝜑′ 

increases with the increase in the value of 𝑀𝑛 in the no slip case. The skin friction decreases 

with an increase in slip and the flow behaves as inviscid for very high value of slip parameter. 

On the other hand the skin friction increases with an increase in the magnetic parameter Mn. 
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APPENDIX 1 

The C++ code for the Hiemenz flow 

#include<iostream> 

#include<stdio.h> 

#include<conio.h> 

#include<math.h> 

 

using namespace std; 

double fun1(double t, double u1, double v1, double w1) 

{ 

 return (v1); 

} 

double fun2(double t, double u1, double v1, double w1) 

{ 

 return (w1); 

} 

double fun3(double t, double u1, double v1,double w1) 

{ 

 return ((-1)+(v1*v1)-(u1*w1)); 

} 

 

int main() 

{ 

 double h=0.1,t=0,k[4][3],u[3],t1,t2,t3,t4,t5,t6,t7,t8,t9,t10,t11; 

 u[0]=0; 

 u[1]=0; 

 u[2]=1.232586; 

 int i,j; 

 cout<<"R.K. 4th order method to solve a 2nd order diff eqn"<<endl<<endl; 

 cout<<"t \t\tu1 \t\tu2 \t\t"<<endl<<endl; 
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 for(i=0;i<81;i++) 

 { 

   

  cout<<t<<"\t\t"<<u[0]<<"\t\t"<<u[1]<<"\t\t"<<u[2]<<endl; 

   

  k[0][0]=h*fun1(t,u[0],u[1],u[2]); 

  k[0][1]=h*fun2(t,u[0],u[1],u[2]); 

  k[0][2]=h*fun3(t,u[0],u[1],u[2]); 

   

  t1=t+(h/2); 

  t2=u[0]+((k[0][0])/2); 

  t3=u[1]+((k[0][1])/2); 

  t4=u[2]+((k[0][2])/2); 

  k[1][0]=h*fun1(t1,t2,t3,t4); 

  k[1][1]=h*fun2(t1,t2,t3,t4); 

  k[1][2]=h*fun3(t1,t2,t3,t4); 

   

  t5=u[0]+((k[1][0])/2); 

  t6=u[1]+((k[1][1])/2); 

  t7=u[2]+((k[1][2])/2); 

  k[2][0]=h*fun1(t1,t5,t6,t7); 

  k[2][1]=h*fun2(t1,t5,t6,t7); 

  k[2][2]=h*fun3(t1,t5,t6,t7); 

   

  t8=t+h; 

  t9=u[0]+(k[2][0]); 

  t10=u[1]+(k[2][1]); 

  t11=u[2]+(k[2][2]); 

  k[3][0]=h*fun1(t8,t9,t10,t11); 

  k[3][1]=h*fun2(t8,t9,t10,t11); 

  k[3][2]=h*fun3(t8,t9,t10,t11); 
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 for(j=0;j<=3;j++) 

 { 

  u[j]=u[j]+((k[0][j]+(2*(k[1][j]))+(2*(k[2][j]))+k[3][j])/6); 

 } 

 t=t+h; 

} 

getch(); 

return 0; 

} 

 

APPENDIX 2: 

The C++ code for Homann flow is also made for both the cases of with slip and without slip 

conditions. 

#include<iostream> 

#include<stdio.h> 

#include<conio.h> 

#include<math.h> 

 

using namespace std; 

double fun1(double t, double u1, double v1, double w1) 

{ 

 return (v1); 

} 

double fun2(double t, double u1, double v1, double w1) 

{ 

 return (w1); 

} 

double fun3(double t, double u1, double v1,double w1) 

{ 

 int m=2, l=-1;  /*change the values according to the problem*/ 
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 return (((-1-m)+(v1*v1)-(2*u1*w1)+(l*w1*w1)+(m*v1))/(1-(2*l*v1))); 

} 

 

int main() 

{ 

 double h=0.1,t=0,k[4][3],u[3],t1,t2,t3,t4,t5,t6,t7,t8,t9,t10,t11; 

 u[0]=0; 

 u[2]=0.367032;  /*Change the intial value according to the Table 2 and Table 3*/ 

 u[1]= 2*u[2];  /*Replace 2 with the 𝛾 value*/ 

 int i,j; 

 cout<<"R.K. 4th order method to solve a 2nd order diff eqn"<<endl<<endl; 

 cout<<"t \t\tu1 \t\tu2 \t\t"<<endl<<endl; 

 for(i=0;i<81;i++) 

 { 

  cout<<t<<"\t\t"<<u[0]<<"\t\t"<<u[1]<<"\t\t"<<u[2]<<endl; 

   

  k[0][0]=h*fun1(t,u[0],u[1],u[2]); 

  k[0][1]=h*fun2(t,u[0],u[1],u[2]); 

  k[0][2]=h*fun3(t,u[0],u[1],u[2]); 

   

  t1=t+(h/2); 

  t2=u[0]+((k[0][0])/2); 

  t3=u[1]+((k[0][1])/2); 

  t4=u[2]+((k[0][2])/2); 

  k[1][0]=h*fun1(t1,t2,t3,t4); 

  k[1][1]=h*fun2(t1,t2,t3,t4); 

  k[1][2]=h*fun3(t1,t2,t3,t4); 

   

  t5=u[0]+((k[1][0])/2); 

  t6=u[1]+((k[1][1])/2); 

  t7=u[2]+((k[1][2])/2); 
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  k[2][0]=h*fun1(t1,t5,t6,t7); 

  k[2][1]=h*fun2(t1,t5,t6,t7); 

  k[2][2]=h*fun3(t1,t5,t6,t7); 

   

  t8=t+h; 

  t9=u[0]+(k[2][0]); 

  t10=u[1]+(k[2][1]); 

  t11=u[2]+(k[2][2]); 

  k[3][0]=h*fun1(t8,t9,t10,t11); 

  k[3][1]=h*fun2(t8,t9,t10,t11); 

  k[3][2]=h*fun3(t8,t9,t10,t11); 

 for(j=0;j<=3;j++) 

 { 

  u[j]=u[j]+((k[0][j]+(2*(k[1][j]))+(2*(k[2][j]))+k[3][j])/6); 

 } 

 t=t+h; 

} 

getch(); 

return 0; 

} 


