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Abstract

In modern wireless communications the spectrum is allocated to fixed licensed

users and on the other side the number of wireless devices are increasing rapidly,

that has lead to spectrum crunch. As the spectrum is precious it has to be utilized

efficiently. The solution to mitigate this problem is Spectrum Sharing. One of

the innovative approach to recognize and access the spectrum holes present in

the licensed spectrum is Cognitive Radio (CR).

Spectrum sensing is a base for the performance of all functions performed

by the Cognitive Radio (CR). Cognitive radio recognizes the unused spectrum

and shares it to secondary users (SUs) without creating harmful interference to

primary users (E.g. Cellular Networks, TV).

Literature discusses various SS techniques like ED, CSD, CMME with their

advantages and disadvantages. ED is most preferred in CR because of simple

implementation and semi-blind nature. But its performance is very poor at low

SNR bound. So other combined techniques are preferred over the ED to enhance

sensitivity of CR. So, thesis proposes Two Stage Spectrum Sensing as preferred in

IEEE 802.22 standard. Combination of both ED and CMME method to enhance

accuracy and timing of sensing in coarse and fine sensing stage respectively, is

proposed and compared with individual sensing techniques. As the type of sensing

takes place in two-level, the weak primary signals present in the spectrum are

easily detected. If the signal is not identified in the first stage, it will be sensed

in the second stage even if it is not detected, it can be declared as the absence of

PU in the spectrum.

In this thesis, the performance of Single user and Global decision using Mod-

ified Deflection Coefficient (MDC) method is observed. Extensive study of coop-

erative SS and optimal cooperative sensing is done and results are presented.
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1
Introduction

1.1 Background

As the bandwidth of frequency spectrum employed in modern wireless commu-

nication systems is fixed and on the other side the number of wireless devices

are increasing rapidly. To overcome the spectrum scarcity, the unused frequency

bands are accessed by secondary users (SU’s) without interfering with primary

users (PUs). These unused licensed frequency bands of primary users (PUs) or

primary systems technically known as white spaces or spectrum holes. The only

innovative approach to access these white spaces without creating any interfer-

ence to the primary users (PUs) is cognitive radio (CR). While coordinating to

access the frequency channel, the transmitting parameters should be changed in

order to overcome the interference with the PUs. Spectrum sensing (SS) is the

important task to enable dynamic spectrum access without interfering with PUs.

1.2 Cognitive Radio (CR)

Cognitive radio (CR) is an intelligent radio of wireless communication in which

a transceiver identifies which communication channels are busy and which are

free, and immediately move into empty channels while avoiding occupied fre-

quency channels [7]. This optimizes the utilization of available radio frequency

(RF) spectrum while mitigating the interference to other PUs by identifying and

utilizing only the white spaces [1].

CR is a modern technology that is developed on SDR platform.
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Chapter 1 Introduction

1.2.1 Functions of cognitive radio [1]:

� The ability of a transceiver to decide its geographic location.

� Identify and authorize its user.

� Encrypt or decrypt signals.

� Sense adjacent wireless devices in operation and

� Adjusts output power and modulation characteristics.

There are two categories of cognitive radio (CR). They are [1]:

a) Full cognitive radio:

Full CR considers all parameters that a wireless network or node can be aware

of.

b) Spectrum sensing cognitive radio:

Spectrum sensing CR is used to identify channels in the radio frequency (RF)

spectrum. There is a provision for accessing the unutilized parts of the Radio

Frequency (RF) spectrum for public use as per the decision made by the Fed-

eral Communications Commission (FCC). There is a requirement of white space

devices which should contain advanced technologies to block interference. The

proposal for CR was enhanced by J.Mitola at the DARPA in US. Full CR can be

called as ”Mitola radio.”

1.2.2 TV White Spaces (TVWS):

Television White Spaces (TVWS) can be defined as, the frequencies which are

made accessible for unlicensed utilization at the places where licensed users are

not using the spectrum such as TV broadcasting [3], [8].

� Capability to cover a more prominent range at a relatively less cost.

� RF signals has a capability of penetrating through the obstacles in Non-

line-of-sight propagation.

2



Chapter 1 Introduction

Figure 1.1: White Spaces Network [3]

1.2.3 Roles of Cognitive Radio (CR) [1] [2]:

The main roles performed by Cognitive Radio (CR) are [2]:

a) Spectrum Sensing (SS):

The role of SS is to recognize the unused spectrum and shares it to the sec-

ondary users (SU’s) without creating any harmful interference with other licensed

users i.e., primary users (PU’s) (e.g. Television (TV), Cellular Networks).

b) Spectrum Management:

The role of spectrum management is to select the available spectrum and

allocating it to user for better communication.

c) Spectrum Mobility:

In this process exchange of frequency of operation by CR user takes place.

d) Spectrum Sharing:

Spectrum sharing determines the secondary user (SU) that can utilize the

white space (i.e., spectrum hole ) at some particular time.

3



Chapter 1 Introduction

1.2.4 Software Defined Radios (SDRs)

A software-defined radio (SDR) is a wireless communication system. The func-

tionality of the SDR can be configured using software or programmable hardware.

Conventional radio transmitters (Tx) and receivers (Rx) can usually send and re-

ceive a signal of single type. SDRs are more adaptable. Using different software

configurations, software-defined radio (SDR) hardware can communicate at dif-

ferent frequencies using multiple wireless standards such as Global Positioning

System (GPS), Wi-Fi, FM Radio, Bluetooth and LTE technology [1].

A software-defined radio (SDR) has a special portion of the system defined in

software and it has several advantages:

� Ease of advancement

� Flexibility in reconfiguration and

� Cost adequacy

SDRs normally comprise of a RF front end (transmitter or receiver) with an

A/D (analog to digital) or D/A (digital to analog) converter. A general purpose

PC or reconfigurable hardware (e.g., FPGA) is utilized with the SDR for baseband

signal processing [1].

Development Workflow:

An optimal work process for developing software-defined radios (SDRs) in-

volves designing and verifying the system in a single progress environment. Software-

defined radio (SDR) hardware can be incorporated into your design in two ways:

a) Input and Output (I/O):

Connect and configure the software-defined radio (SDR) hardware to send and

receive present radio signals using the transmitter (Tx) and receiver (Rx) terminals

on the radio. These signals are processed to the host, for quick prototyping of

the transmitter (Tx) and receiver (Tx) algorithms.

b) Target:

Deploy the code onto the FPGA or software-defined radio (SDR) hardware

platform. The FPGA is programmed with the precompiled bitstream file or

generate HDL code from the design, compile the code and program the FPGA.

4



Chapter 1 Introduction

1.3 Literature Survey

Spectrum Sensing (SS) is the significant task performed by CR which helps in

identifying the unused spectrum and is allocated to secondary users (SUs) with-

out disturbing the primary users (PUs). The overview of various sensing schemes

and their performance, applicability and effectiveness under various transmis-

sion conditions and advantages and disadvantages with each sensing technique is

explained in [4]. In [2] presents an overview of SS techniques.

In [5] explains the significance of spectrum sensing schemes and used energy

detection technique to show that the formulated problem indeed has one optimal

sensing time which obtain the highest throughput of the secondary network. In

[9] explains the significance of the cyclostationary detection technique, which is

used in fine sensing stage. In ([10], [11]) proposed that the eigen-value detection

technique avoids the effect of noise uncertainty and it has a better probability of

detection compared with the energy detection in both AWGN and fading chan-

nels.

In [12] the comparison between energy detection and cyclostationary detection

technique is explained with respect to Receiver Operating Characteristics (ROC)

by considering BPSK, BFSK and GMSK channels for application in Cognitive

Radio (CR).

In [13], the performance of cooperative SS and optimal soft combination al-

gorithm to enhance the detection probability was proposed. In [14], cooperative

SS when two SU’s collaborate via the relaying scheme was proposed.

1.4 Motivation

According to current scenario the spectrum is allocated to fixed licensed users or

PUs. It leads to underutilization of the spectrum, the unused spectrum (white

space) can be allocated to secondary users (SUs) without creating any harm-

ful interference to the PUs. Spectrum sensing (SS) plays an important role in

identifying the presence of white spaces performed by Cognitive Radio (CR).

After observing the individual performance of spectrum sensing techniques like

energy detection, cyclostationary detection and eigen-value detection technique.

The advantages of two stage SS technique w.r.to individual techniques motivated

5



Chapter 1 Introduction

to implement Two stage SS technique using ED and CMME. As suggested in

IEEE 802.22 standard for CR, novel two stage spectrum sensing based on energy

detection as coarse sensing first stage and combination of maximum-minimum

eigen value based detection technique (CMME) as fine sensing second stage is

proposed which enhances the accuracy, sensitivity and timing.

1.5 Objective of the work

The objective of the research work is summarized as follows :

� To compare the individual techniques in spectrum sensing like energy detec-

tion (ED), Cyclostationary detection (CSD) and combination of maximum

minimum eigen value detection (CMME).

� To implement the two stage spectrum sensing using energy detection (ED)

and combination of maximum minimum eigen value detection (CMME)

technique.

� To analyse the detection performance of the two stage with respect to in-

dividual techniques.

� To implement the diversity techniques like Equal gain combining (EGC)

and Maximal ratio combining (MRC) by considering Rayleigh channel along

with AWGN noise and to compare its detection performance.

� To implement optimal cooperative spectrum sensing by considering single

user and multi user case.

1.6 Thesis format

This thesis is composed of six chapters.The background details of Cognitive Radio

(CR), its functions and roles, information regarding TV White Spaces (TVWS)

and Software Defined Radios (SDRs) are discussed in the current chapter. The

objective for this thesis work is written after literature review and motivation.

This chapter ends with the outline of the thesis.
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Chapter 1 Introduction

Chapter-2 Spectrum Sensing Techniques

This chapter discusses in detail of the basic transmitter detection techniques like

Energy Detection (ED), Eigen-value based detection and cyclostationary detec-

tion (CSD) techniques. The advantages and disadvantages are also discussed

after each technique. Comparison of all the three techniques is presented at the

end of the chapter.

Chapter-3 Two Stage Spectrum Sensing using ED and CMME

This chapter includes the implementation of two stage technique. The mathemat-

ical analysis regarding the thresholds is carried out. The Two Stage Spectrum

Sensing using ED and CMME is implemented by taking BPSK and DVB-T as

input signals. The individual performance of each technique is compared with the

two stage technique using ED and CMME. The comparison between two stage

technique using ED and CSD and two stage technique using ED and CMME is

presented.

Chapter-4 Cooperative Spectrum Sensing

Cooperative Spectrum Sensing describes the drawbacks in Spectrum Sensing and

the advantages in Cooperative SS. Presented diversity techniques like EGC and

MRC. The comparison between two techniques w.r.t Probability of detection

(Pd) is presented. Optimal linear cooperation framework for SS is to identify

the weak PU accurately is presented. Global decision is made by using Modified

Deflection Coefficient (MDC) method. The comparison between single user and

global decision using MDC is presented.

Chapter-5 Conclusion and Scope of Future work

This last chapter is the conclusion and scope of future work of the Optimal

Cooperative Spectrum Sensing.

7



2
Spectrum Sensing Techniques

Spectrum sensing is a base for the performance of all functions performed by

the Cognitive Radio (CR). So the effective performance of spectrum sensing is

very essential for CR. Hence very active research is ongoing on spectrum sensing

over recent years [2]. Cognitive radio has the ability to estimate the information

regarding its operating environment and it recognizes the unused spectrum and

shares it to SUs without creating interference to PU’s (E.g. Cellular Networks,

TV). The possible problems with spectrum sensing are Shadowing, Multi-path

fading and Receiver uncertainty issues etc.

Spectrum sensing techniques are mainly classified into three types [4]:

(i) Transmitter detection

(ii) Interference based detection

(iii) Cooperative detection

Transmitter detection methods are Energy Detection (ED) [15], Matched

Filter (MF), Eigen-value based detection and cyclostationary detection tech-

nique (CSD). Cooperative detection techniques include centralized, distributed

and cluster-based sensing schemes.

(i) Transmitter Detection

2.1 Energy Detection Technique

Energy detection (ED) technique is the simplest and popular spectrum sensing

scheme. The received signal at CR receiver is given by [5],

8



Chapter 2 Spectrum Sensing Techniques

Figure 2.1: Spectrum Sensing techniques [4]

y(n) =

{
s(n) + w(n) H1

w(n) H0

(2.1)

Where s(n) is the PU signal and w(n) is the Additive White Gaussian

Noise (AWGN). The presence of PU signal is represented by the hypothesis H1

and the absence of PU signal is represented by the hypothesis H0.

In any detection technique, while detecting the presence of PU there

are two possibilities of errors that can take place in fixing the threshold value.

In the first case, if the threshold value is too high the detection device fails to

recognize the presence of PU signal even though the PU signal is present. This

type of error in decision making is known as Probability of Misdetection (Pmd)

[16]. Because of this error the SU tries to use that frequency channel which leads

to interference and it is not desirable. In the second case, if the threshold value

is too low the detection device detects the presence of PU signal even though

the PU signal is not present. This type of error in technical terms is known as

Probability of false alarm (Pf ). Because of this error the SU not able to use that

frequency channel which leads to the underutilization of spectrum and it is not

9



Chapter 2 Spectrum Sensing Techniques

diserable [17].

For an optimum detector, it is necessary to minimize both the (Pmd)

and (Pf ) where [12]

Pd = P (H1|H1) (2.2)

Pfa = P (H1|H0) (2.3)

Pmd = 1− Pd (2.4)

The decision statistic for energy detector is given by,

T (y) =
1

NED

NED∑
n=1

|y (n)|2 (2.5)

where NED is the number of samples present in the received signal,

NED = τfs (should not be greater than τfs), τ is the available sensing time and

fs is the sampling frequency if the received signal.

Figure 2.2: Energy Detector block diagram [5]

The probability of detection (Pd,ED) of ED technique is given by [5],

Pd,ED (ΦED, τ) = Q

((
ΦED

σ2
w

− γ − 1

)√
τfs

2γ + 1

)
(2.6)

Q−1 (Pd,ED) =

((
ΦED

σ2
w

− γ − 1

)√
τfs

2γ + 1

)
(2.7)

where γ = σ2
s

σ2
w

, signal to noise ratio (SNR) of the received PU signal

computed at the secondary receiver, ΦED is the detection threshold.

σ2
s , σ

2
w are the variances of the primary signal s(n) and noise w(n).

The relation between the threshold, ΦED and probability of false alarm,

Pf,ED, is given as:

10



Chapter 2 Spectrum Sensing Techniques

Pf,ED = Q

((
ΦED

σ2
w

− 1

)√
τfs

)
(2.8)

Q−1 (Pf,ED) =

((
ΦED

σ2
w

− 1

)√
τfs

)
(2.9)

The probability of detection (Pd,ED) and probability of false alarm

(Pf,ED) are related as follows:

Q−1 (Pd,ED) =

((
ΦED

σ2
w

− 1

)√
τfs

2γ + 1

)
− γ

(√
τfs

2γ + 1

)
(2.10)

Q−1 (Pf,ED)√
2γ + 1

= Q−1 (Pd,ED) + γ

(√
τfs

2γ + 1

)
(2.11)

Q−1 (Pf,ED) = Q−1 (Pd,ED)
(√

2γ + 1
)

+ γ
√
τfs (2.12)

Pf,ED = Q
(
Q−1 (Pd,ED)

(√
2γ + 1

)
+ γ
√
τfs

)
(2.13)

Pd,ED = Q

(
Q−1 (Pf,ED)√

2γ + 1
− γ
√
τfs

)
(2.14)

Simulation Results:

2.1.1 Comparison of energy detection technique (ED) un-
der Rayleigh channel along with AWGN and AWGN:

Rayleigh channel along with AWGN:

The received signal distorted by Rayleigh channel with flat fading (designed as

a filter (single tap) with complex impulse response h) also adds AWGN noise is

represented as,

y = h ∗ s+ n (2.15)

where

n is the AWGN noise which is normally distributed with mean zero and

variance one.

h is the Rayleigh fading response with mean zero and variance one.

11
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Figure 2.3: Pd vs SNR
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Figure 2.4: Pd vs Pf

AWGN:

The received signal under AWGN channel without any Rayleigh fading is repre-

sented as,

y = s+ n (2.16)

Simulation Results:

From Figure 2.6, for Rayleigh channel along with AWGN noise the Probability

of Misdetection (Pmd=0.3) which implies the Probability of Detection (Pd =

1−Pmd=0.7) which is low compared to the performance, when only AWGN noise

is considered. The Probability of Misdetection (Pmd=0.002) which implies the

Probability of Detection (Pd = 1− Pmd=0.998) which is better compared to the

performance of Rayleigh channel along with AWGN noise is considered.
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Figure 2.5: Spectrum Sensing in Rayleigh channel along with AWGN

Figure 2.6: Pd vs Pf
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Advantages:

� Prior knowledge of the licensed user is not required.

� Performs well with unknown dispersive channels.

� Less computational and implementation complexity.

� Less delay relative to other techniques.

Disadvantages:

� ED technique depends on the information of accurate noise power because

of this it is greatly affected by noise uncertainty.

� ED technique gives better performance at high SNRs for detecting indepen-

dent and identically distributed (iid) signals, but not optimal for detecting

correlated signals.

2.2 Cyclostationary detection technique:

A signal consists of frequency or spectral components constant w.r.t time is known

as stationary [18]. For example generate a sine wave by using either a function

generator or software, the selected frequency value is constant. Thus the fre-

quency component of the sine wave is constant with time, which we can consider

as one of the examples of stationary signal. By changing the frequency, it becomes

a new sine wave [9].

x(k) =

{
s(k) + n(k) H1

n(k) H0

(2.17)

For example, consider two dice, one of which comprises of six sides, and

the alternate has nine sides. Roll a six-sided die on Sundays, Mondays, Tuesdays

and Wednesdays, and the nine-sided die for the rest of the days in a week. It is

expected to get a mean of 3.5 on the days where a six-sided die is used, and a

mean of 5 on the days where a nine-sided die is used [19]. Therefore the statistics

do vary with time, so they are not stationary. In fact, they change periodically

(i.e. weekly), and the process is said to be ’cyclostationary’.
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A signal having statistical properties that change periodically with time

is known as cyclostationary process. These processes are not periodic with time

but their statistical properties shows periodicities [20]. These periodicities occur

for signals in precised manner due to processes such as sampling, scanning, modu-

lating, multiplexing, and coding. A signal is said to be wide sense cyclostationary,

if the following conditions are satisfied [9]:

µx(k) = µx(k +K ′),∀ k
Rx(k,K) = Rx(k +K ′, K),∀ (k,K)

(2.18)

where

k = 1, 2, ..., NCSD, NCSD is the number of samples present in the re-

ceived signal of Cyclostationary detection technique.

µx(k) = E[x(k)] is the mean and Rx(k,K) = E[x(k)x∗(k + K)] is the

autocorrelation function and K is called the cyclic period [21].

Because of the periodicity the Fourier-series representation of the au-

tocorrelation function of received signal in Cyclostationary detection technique is

given as [9],

Rx(k,K) =
∑
α

Rα
x(K)ejαk, (2.19)

In ( 2.19) the Fourier series coefficients are

Rα
x(K) = lim

NCSD→∞

1

NCSD

NCSD−1∑
k=0

Rx(k,K)e−jαk (2.20)

with Rα
x(K) is called cyclic autocorrelation function and α is called the

cyclic frequency.

To check whether Rα
x(K) is null for a given candidate cycle [9], take up

R̂α
x(K) = Rα

x(K) + εαx(K) (2.21)

where εαx(K) is the estimation error which vanishes as NCSD →∞
For the simultaneous verification of presence of cycles in a set of lags

K, the vector in ( 2.21) is considered than the single value.

Here K1, K2, ...., KN be the fixed set of lags [9].
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R̂x = [R
{
R̂α
x(K1)

}
, R
{
R̂α
x(K2)

}
, ..., R

{
R̂α
x(KN)

}
,

I
{
R̂α
x(K1)

}
, I
{
R̂α
x(K2)

}
, ..., I

{
R̂α
x(KN)

}
]

(2.22)

represents a 1×2N vector consists of cyclic correlation estimators from Equation

( 2.22) where R and I represents the real and imaginary parts respectively [22].

If the asymptotic value of R̂x is given as Rx where

Rx = [R {Rα
x(K1)} , R {Rα

x(K2)} , ..., R {Rα
x(KN)} ,

I {Rα
x(K1)} , I {Rα

x(K2)} , ..., I {Rα
x(KN)}]

(2.23)

and the estimation error is given as,

εx = [R {εαx(K1)} , R {εαx(K2)} , ..., R {εαx(KN)} ,
I {εαx(K1)} , I {εαx(K2)} , ..., I {εαx(KN)}]

(2.24)

The decision statistic of the Cyclostationary detector is given as,

DCSD = NCSDR̂xĈv
−1
R̂H
x (2.25)

where Ĉv is the covariance matrix of R̂x. From equation ( 2.25) of

Cyclostationary detector, if the DCSD ≥ γ it can be declared that the particular

frequency channel is occupied by PU and α is the cyclic frequency else it can be

declared that the PU is absent and α is not the cyclic frequency, the frequency

channel can be accessed by the SU [23].

We can get the Probability of detection, Pd,CSD, and false alarm, Pf,CSD

as,

Pf,CSD = P (DCSD ≥ γ|H0) =
Γ(γ

2
, N)

Γ(N)
(2.26)

Pd,CSD = P (DCSD ≥ γ|H1) = Q

γ −NCSDR̂xĈv
−1
R̂H
x√

4NCSDR̂xĈv
−1
R̂H
x

 (2.27)

where Γ(a) is the gamma function and Γ(a, x) is the incomplete gamma

function (Γ(a, x) =
∫∞
x
ta−1e−tdt).

17



Chapter 2 Spectrum Sensing Techniques

Simulation Results:

Figure 2.7: Cyclostationary detection technique

From the Fig 2.7, it is observed that the Probability of detection,

Pd,CSD at SNR=-20dB is 0.85 by considering Probability of false alarm, Pf,CSD

as 0.03. Where as the Probability of detection, Pd,ED of ED at SNR=-20dB

is 0.3 by considering Probability of false alarm, Pf,ED as 0.03. It is clear from

the detection values that the performance of CSD is better compared to ED

technique.

Advantages

� Under low SNRs and uncertain noise powers cyclostationary detector can

perform better than the energy detector.

� This technique recognize the signal of PU at low SNR values by taking the

information which is present in the received signal if the signal of PU have

good cyclostationary probabilities.
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Disadvantages

� CSD needs more signal processing capabilities and is complicate to imple-

ment.

2.3 Combination of Maximum Minimum Eigen
value based detection technique:

The decision threshold is the ratio between maximum eigenvalue and noise power,

which is considered in [24]. Due to noise uncertainity MED performance is low.

In [25], it is proposed that Maximum Minimum eigenvalue based method (MME)

which uses the maximum eigenvalue to minimum eigenvalue ratio of the received

signal’s covariance matrix to recognize the existence of signal. This thesis in-

cludes an algorithm which is implemented by taking combination of maximum

and minimum eigenvalues (CMME) as the decision statistic. To analyze the

sensing methodology and to set the threshold random matrix theory is used [26].

Because of the correlations present between the the signal samples which is no-

ticed during the calculation of covariance matrix, the CMME scheme performs

better than the energy detection in case of correlated signals [27].

CMME works better in low SNR with correlated signals without having

prior information about PU and channel noise [27][11][24]. Assuming K ≥ 1 SU’s.

Then the received signal at the ith SU is denoted by xi(k)(i = 1, 2, ...., K). Then

the statistical matrix can be defined as [28]:

x(k) = [x1(k), x2(k), .........., xK(k)]T

s(k) = [s1(k), s2(k), .........., sK(k)]T

n(k) = [n1(k), n2(k), .........., nK(k)]T
(2.28)

Where the received signal is given by x (k), (k = 1, 2, ...., N) where N

is the number of samples in CMME technique. s (k) is the signal transmitted

passed through a wireless channel and n (k) is the AWGN with variance σ2
n and

mean zero.

According to the above definitions, (1) can be written as,

x = s+ n (2.29)

Considering the statistical covariance of the received signal, transmitted
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signal and noise signal as [11],

Rx = E
(
xxT

)
Rs = E

(
ssT
)

Rn = E
(
nnT

) (2.30)

Let us consider N consecutive samples, then the statistical covariance

matrices of the received signal, transmitted signal and noise signal becomes [11],

Rx(N) = 1
N
xxT

Rs(N) = 1
N
ssT

Rn(N) = 1
N
nnT

(2.31)

Assuming that the noise is real. LetA(N) = N
σ2
n
Rn(N), µ =

(√
N − 1 +

√
K
)2

,

ν =
(√

N − 1 +
√
K
)(

1√
N−1

+ 1√
K

)1/3

. Assume that limN→∞
K
N

= α (0 < α < 1).

Then λmax(A(N))−µ
ν

converges (with probability one) to the Tracy-Widom distribu-

tion of order 1 as mentioned in [27][11] [10]. Assuming that the noise is complex.

Let A(N) = N
σ2
n
Rn(N), µ

′
=
(√

N +
√
K
)2

, ν
′

=
(√

N +
√
K
)(

1√
N

+ 1√
K

)1/3

.

Assume that limN→∞
K
N

= α (0 < α < 1). Then λmax(A(N))−µ′

ν′
converges (with

probability one) to the Tracy-Widom distribution of order 2 [11].

If N is large then, µ and µ
′
, ν and ν

′
are nearly same, but their limit

distribution is not same [27]. From [24] which provides details about the tables

for Tracy-Widom distribution function that are calculated by numerical compu-

tation. For example F−1
1 (0.9) = 0.45, F−1

1 (0.5) = 0.98, F−1
1 (0.99) = 2.02

λmax and λmin are the maximum and minimum eigen values of the

received statistical covariance matrix (Rx(N)).

Algorithm [11]

Pf,eig = P
(
λmax > γ

′
(λmax − λmin)

)
(2.32)

From above assumptions, we can get:

Pf,eig = P

(
σ2

N
λmax(A(N)) > γ

′
(λmax − λmin)

)
(2.33)

≈ P

(
λmax(A(N)) > γ

′
(√

N −
√
K
)2
)

(2.34)
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= 1− F1

γ′
(√

N −
√
K
)2

− µ

ν

 (2.35)

Pd,eig = Q

 γ2 −
(

λmax
λmax−λmin

)
√

4N
(

λmax
λmax−λmin

)
 (2.36)

Let

γ
′
=

(√
N +

√
K
)2

(√
N −

√
K
)2

1 +

(√
N +

√
K
)−2/3

(NK)1/6

 ?
(
F−1

1 (1− Pf,eig)
)

(2.37)

The threshold 2 is: γ2 = γ
′
+1

γ′
= 1 + 1

γ′
.

Therefore, the judgment rule for CMME detection technique is [29]

[11]:

Deig =
λmax

λmax − λmin

H1

>

<

H0

γ2 (2.38)

If the decision is more than the threshold, it can be declared that the

PU is present else the particular frequency channel is empty.

Simulation Results:

From the Fig 2.8, it is observed that the Probability of detection, Pd,eig at

SNR=-20dB is 1 by considering Probability of false alarm, Pf,eig as 0.03. Where

as the Probability of detection, Pd of ED and CSD at SNR=-20dB is 0.3 and

0.85 by considering Probability of false alarm, Pf,ED as 0.03. It is clear from the

detection values that the performance of CMME is better compared to ED and

CSD techniques.

Advantages:

� Without having any information of the PU signals, noise power and channel,

high detection probability (Pd) and low false alarm probability (Pf ) can be

achieved by using this technique. Hence this technique avoids the problem
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Figure 2.8: Combination of Maximum Minimum Eigen value based detection
technique

of noise uncertainty experienced by energy detector.

� This technique doesn’t require synchronization.

� Because of the correlations present between the the signal samples which

is noticed during the calculation of covariance matrix, the CMME scheme

performs better than the energy detection in case of correlated signals.

Disadvantages:

� This technique is more complicate than the energy detector.

2.4 Comparison of ED, CSD and CMME tech-
niques

The individual performance of each technique is shown in the Figure 2.9. The

drawbacks of Energy Detection technique (ED) i.e., poor performance at low SNR

which is giving 0 probability of detection (Pd) at -20dB can overcome by using
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CSD and CMME techniques. From the Figure 2.9 we can observe at low SNR

i.e., CSD giving probability of detection (Pd) of 0.85 at -20dB and CMME giving

1 at -20dB, which is better than the ED.

Figure 2.9: Comparison of ED, CSD and CMME techniques
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3
Two Stage Spectrum Sensing using ED

and CMME

In [30], two threshold ED technique is considered in coarse sensing first stage

and single threshold CSD technique is considered in fine sensing second stage

to enhance the sensing speed and accuracy. In [9], the two stage sensing was

proposed by considering ED as coarse sensing first stage and CSD as fine sensing

second stage to enhance the detection performance and timing analysis was also

proposed. The signal should posses cyclostationary feature to implement CSD

technique, which may be caused by modulation and coding or it may be provided

purposely like the cyclic prefix (CP) in an OFDM signal. This chapter includes

the implementation of two stage technique using ED and CMME. The mathemat-

ical analysis regarding the thresholds is carried out. The Two Stage Spectrum

Sensing (SS) using ED and CMME is implemented by taking BPSK and DVB-T

as input signals. The transmitted OFDM signal is organised in frames. Every

frame has 68 OFDM symbols with 1705 sub-carriers in 2k mode and transmitted

with a symbol duration of Ts =244 µsec[31]. The individual performance of each

technique is compared with the two stage technique using ED and CMME. The

comparison between two stage SS technique using ED and CSD [15] and two stage

SS technique using ED and CMME is observed. The Two Stage SS using ED

and CSD is implemented in [9] which is giving good performance than individual

ED and CSD techniques but the Two Stage SS technique using ED and CMME

is giving better detection probability than the Two Stage SS using ED and CSD

techniques.
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3.1 Two Stage Spectrum Sensing Scheme

Analysis for two stage sensing is carried out quite similar to [9] by assumption

to sense L channels. As suggested in IEEE 802.22 standard for CR, novel two

stage spectrum sensing based on energy detection as coarse sensing first stage

and combination of maximum-minimum eigen value based detection technique

(CMME) as fine sensing second stage is proposed which enhances the accuracy,

sensitivity and timing. If the decision is more than the threshold ΦED, then the

channel is decided as occupied. Else the received signal is again sensed by using

the second stage i.e., CMME technique [30]. If the decision is more than the

threshold γ2, then the channel is considered as occupied else it is empty [30].

Proposed two stage sensing shown in Fig 3.1:

Figure 3.1: Two-stage spectrum sensing technique (ED and CMME detection
technique)

3.2 Mathematical Analysis

The total probabilities of false alarm and detection for a single channel are as

follows [9],

Pf = Pf,ED (1− Pf,ED)Pf,eig (3.1)

Pd = Pd,ED (1− Pd,ED)Pd,eig (3.2)

The objective is to determine the thresholds ΦED and γ2 ) to maxi-

mize the probability of detection of each channel subject to a false alarm rate

constraint. Therefore the corresponding problem is given by,

max
(ΦED,γ2)

Pd(ΦED, γ2) (3.3)
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s.t.Pf ≤ β

The inequality constraint in the problem ( 3.3) is reduced to an equality

constraint by using the theorem in [9].

Theorem: The optimal value of detection probability in (19) is obtained

by Pf = β. Proof for the following is analysed similar to the [9] since Pd con-

sists of Tracy-widom distribution function which is similar to Gaussian function

(differentiable) and Q-function (differentiable). Hence Pd is differentiable and

decreasing function w.r.to the thresholds ΦED and γ2 [9]. Consequently, the first

derivative of Pd w.r.t ΦED and γ2 is negative. Hence, the maximum Pd is at-

tained for the lowest possible ΦED and γ2. Same analysis holds for Pf . Assuming

(Φ∗ED, γ
∗
2) to be the optimal solution of ( 3.3) corresponding to Pf < β. With

keeping either of them Φ∗ED or γ∗2 constant and varying one of them produce the

better solution than as assumed. Therefore, (Φ∗ED, γ
∗
2) cannot be the optimal

solution of the problem. Hence, the optimal Pd is obtained by Pf = β. Now

equation ( 3.3) becomes [9],

max
(ΦED,γ2)

Pd(ΦED, γ2) (3.4)

s.t.Pf = β

Solving ( 3.1),

β = Pf,ED (1− Pf,ED)Pf,eig (3.5)

Substituting Probability of false alarm equations of ED and CMME techniques

in ( 3.5), we get,

ΦED = f (γ2) = Q−1

β −
(

1− F1

(
γ
′
(
√
N−
√
K)

2
−µ

ν

))
1−

(
1− F1

(
γ′(
√
N−
√
K)

2
−µ

ν

))
 ?

√
2M cσ4

n +M cσ2
n

(3.6)

since γ
′
= 1

γ2−1
.

Thus,the problem ( 3.4) can be reduced to an unconstrained problem

given as:

max
γ2

Pd(f(γ2), γ2) (3.7)

The optimal γ2 and ΦED = f(γ2) can be obtained from ( 3.7) and
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( 3.6). So the problem is unimodal in γ2 and the optimal value of γ2 is calculated

at each SNR which gives the maximum probability of detection (Pd), which can

be observed from the Figure 3.4. The final optimal equation (Pd) which is the

function of γ2 can be evaluated in MATLAB.

Simulation Results:

Figure 3.2: Pd vs SNR by taking BPSK as input signal (N=100)

3.3 Observation

From Table 3.1 we can observe that the probability of detection (Pd) is better for

Two-stage spectrum sensing schemes compared to individual detection techniques

in both the cases. The probability of detection (Pd) performance of two-stage

spectrum sensing using ED and CMME is better compared to two-stage spectrum

sensing using ED and CSD[9].
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Figure 3.3: Pd vs SNR by taking BPSK as input signal (N=1000)

Figure 3.4: γ2 vs Pd
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Figure 3.5: Pd vs SNR by taking DVB-T as input signal

Figure 3.6: Comparison of Spectrum Sensing techniques
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SNR
(dB)

ED
(Pd,ED)

CSD
(Pd,CSD)

CMME
(Pd,CMME)

Two-stage
spec.sen.
(ED-Cyclo)
(Pd)

Two-stage
spec.sen.
(ED-CMME)
(Pd)

-30 0 0 0.3 0.57 0.79
-23 0.1 1 0.62 1 0.92
-20 1 1 0.78 1 1

Table 3.1: Comparison of Prob. of detection Pd of spec.sen. tech’s with SNR

30



4
Cooperative Spectrum Sensing

Spectrum sensing (SS) is less reliable if multi-path fading is ignored. For next

generation systems using high transmit power or additional bandwidth, SNR im-

provement is not possible as it is against the requirements [32]. CR should approx-

imate the power spectral density (PSD) of the radio spectrum before transmitting

any signal to examine which frequency bands are busy and which are not [33].

Cognitive radio (CR) user and licensed user are separated by a building, the CR

user not able to receive other user’s signal and decides the spectrum is not occu-

pied. The hidden node problem must overcome to protect PUs from interference.

The possibility to avoid this problem is cooperative spectrum sensing technique.

CR cooperative spectrum sensing [33] takes place when the information among

CR’s is shared.

The functioning of this method can be performed as:

� Local sensing is done by all CR’s and a binary decision is made.

� The common receiver (Rx) receives binary decisions from all the cognitive

radios, generally an access point (AP) in a WLAN or a base station (BS)

in a cellular network.

� The common receiver (Rx) combines the received information and takes a

final decision to decide the presence or absence of the PU in the observed

band.

CR cooperative spectrum sensing takes place when a network of CR’s

share the detected information. This provides a better idea of the spectrum
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utilization over the area where the cognitive radios are located.

The two approaches to cooperative spectrum sensing are [33]:

� Centralised approach: In this approach, a master node within the net-

work that collects the detected information from all the sense nodes or

radios. Then the master node analyses the detected information from all

the sense nodes and determines which frequency bands are occupied and

which are not.

The central node or controller organizes various sensor nodes to collect

different measurements at different times. So, it is possible to take different

sense actions at the same time. For example, directions may be given to

some nodes to detect on channel signal levels, while other nodes may be

instructed to measure levels on adjacent channels to determine suitable

choices in case change of channel is required.

� Distributed approach: In this approach, no node takes control. Rather,

communication lies between different nodes and they are able to share de-

tected information. However, this approach requires for the individual ra-

dios have a more elevated amount of self-rule and setting themselves up as

an ad-hoc network.

Advantages of cooperative spectrum sensing:

Cooperative spectrum sensing is more complicated than a single non-cooperative

system, beyond complexity, it has many advantages. For all applications cooper-

ative SS is not applicable. If it is applicable, reasonable improvements in system

performance can be achieved [33].

� Reduction of Hidden node problem: One of the major problems under

non-cooperative SS is that the Cognitive Radio (CR) may fail to recognize

the presence of primary user and also there is a possibility of creating inter-

ference at receiver which can identify both PU and CRs. As the number of

receivers are more in cooperative SS, the accuracy in detecting the presence

of both PU and CRs can be increased.
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� Increase in agility: As the number of spectrum sensing nodes are more

the sensing accuracy is high.

� Reduced false alarms: As it consists of multiple nodes, accuracy is high

in identifying a signal in the channel and this reduces the number of false

alarms.

� Signal detection accuracy: It provides high signal detection accuracy

and greater reliability of the system.

System requirements:

Cognitive Radio cooperative SS provides many advantages which outweigh the

disadvantages [33].

� Control channel: Separate control channel is required for the communi-

cation among the nodes in the sensing network which occupies a proportion

of the overall bandwidth.

� System synchronization: Synchronization is required among all the nodes

in the CR cooperative SS network to keep the channel transmission free dur-

ing the sensing period. Sometimes adaptive scheduling of the sense period

is beneficial. Spectrum sensing requires a long time period to sense accu-

rately than a rough sense to check whether a strong signal has returned.

By adjusting the sense periods, channel throughput can be maximized, in

spite of the fact that synchronization is important to maintain under these

circumstances.

� Suitable geographical spread of sensing nodes: It is necessary to

obtain the best geographical spread to gain the optimum sensing from the

nodes within the cognitive network. In this way the hidden node problem

can be minimized, and the most accurate SS can be attained.

Receiver diversity is a form of space diversity in which multiple anten-

nas at the receiver are considered. It creates an interesting problem of collecting

the data from all the antennas to demodulate the data.
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4.1 Diversity techniques:

4.1.1 Equal Gain Combining (EGC)

Under EGC, the channel assumed as a multi-path Rayleigh flat fading channel

and BPSK modulation is considered. Combining all the signals in a co-phased

manner with unity weights for all signal levels so as to have the highest achievable

SNR at the receiver at all times [34].

Background:

1. Here we assume the number of transmit antennas are one and the number of

receive antennas are N .

2. Here we consider flat fading channel. So, the convolution becomes multiplica-

tion.

3. The channel varies randomly w.r.to time is experienced by each receive an-

tenna. Here each transmitted data is multiplied with complex number hi (which

varies randomly) for the receiver antenna i. The imaginary and real parts of

Rayleigh channel, hi are distributed normally with mean µhi = 0 and variance

σ2
hi

= 1
2
.

4. Each receiver antenna receives different channel and noise.

5. The noise n has the normal probability density function at every receive an-

tenna, with

p (n) =
1√

2Πσ2
e
−(n−µ)2

2σ2 (4.1)

here µ = 0 and σ2 = N0

2

6. Each receiver has a knowledge about channel hi.

7. The bit energy-to-noise ratio at ith receive antenna in the presence of hi is
|hi|2Eb
N0

.

γi =
|hi|2Eb
N0

(4.2)

The pdf of γi is

p (γi) =
1

Eb/N0

e
−γi

(Eb/N0) (4.3)

Here we equalize the ith receiver by dividing the received data yi by phase of

hi. Since the channel hi is complex quantity, it can be denoted in polar form as

34



Chapter 4 Cooperative Spectrum Sensing

|hi| ejθi [35]. The decoded symbol can be determined by the addition of all phase

compensated channel from all the receive antennas, which is given as,

ŷ =
∑
i

yi
ejθi

(4.4)

=
∑
i

|hi| ejθix+ ni
ejθi

(4.5)

=
∑
i

|hi|x+ ñi (4.6)

where

ñi =
ni
ejθi

(4.7)

For demodulation, we use

ŷ > 0→ 1

ŷ ≤ 0→ 0
(4.8)

Simulation Results:

Figure 4.1: Pf vs Pmd by varying the no. of receive antennas

The above procedure can be used to plot BER performance of Equal
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Gain Combining (EGC). To detect the signal, the signals from all the receive an-

tennas are summed after compensating the phase of the channel. Energy detec-

tion technique (ED) is applied to the received signal and performance is observed

by varying the number of receive antennas.

4.1.2 Maximal Ratio Combining (MRC)

Combining all the signals in a co-phased and weighted manner so as to have the

highest achievable SNR at the receiver at all times. Each signal of the branch

is multiplied with the gain factor which is directly proportional to its own SNR

[35].

The received signal at the ith receiver is,

yi = hix+ ni (4.9)

where

yi is the symbol received on the ith receiver,

hi is the channel on the ith receiver,

x is the symbol transmitted and

ni is the noise on the ith receiver.

The received signal in matrix form is,

y = hx+ n (4.10)

where

y = [y1y2...yN ]T is the received symbol from all the receivers,

h = [h1h2...hN ]T is the channel,

x is the transmitted symbol and

n = [n1n2...nN ]T is the noise on all the receivers.

The equalized symbol is,

x̂ =
hHy

hHh
=
hHhx

hHh
+
hHn

hHh
= x+

hHn

hHh
(4.11)

where the sum of channel powers over all the receivers is given by,

hHh =
N∑
i=1

|hi|2 (4.12)

Energy detection technique (ED) is applied to the received signal and performance

is observed by varying the number of receive antennas.
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Simulation Results:

Figure 4.2: Pf vs Pmd by varying the no. of receive antennas

From the above Fig 4.1 and Fig 4.2, it is observed that the detection

probability (Pd) for MRC is good compared to EGC.

4.2 Optimal Cooperative Spectrum Sensing

Let us consider CR network has M number of secondary users. The weighting co-

operation for spectrum sensing in CR network has been schematically represented

in Fig 4.3

The binary hypothesis test for SS at the instant k can be written as

[6],

xi (k) =

{
his (k) + vi (k) H1

vi (k) H0

(4.13)

where signal radiated by the primary user (PU) is represented as s(k)

and signal received by ith secondary user is denoted as xi(k). s(k) is affected by

the channel gain hi due to which the radiated signal by the PU is altered. The
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Figure 4.3: Schematic representation of weighting cooper. for SS in CR networks
[6]

effect of channel hi on s(k) is assumed as constant during the detection period.

Here the signal s(k) is also distorted by the AWGN vi(k) with mean as zero. Here

we take s(k) and vi(k) does not depend on each other, i.e., vi(k) ∼ N(0, σ2
i ) and

variances, σ = [σ2
1, σ

2
2, ..., σ

2
M ]T [6].

As in Fig 4.3, the summary statistic ui is measured by each secondary

user over a detection period of N samples, i.e.,

ui =
N−1∑
k=0

xi(k)2 i = 1, 2, ...,M (4.14)

here N is calculated by the product of time-bandwidth.

Now the summary statistics ui are passed to the fusion center through

a control channel in an orthogonal manner which is denoted as

y1

y2

.

.

.

yM


︸ ︷︷ ︸
y

=



u1

u2

.

.

.

uM


︸ ︷︷ ︸
u

+



n1

n2

.

.

.

nM


︸ ︷︷ ︸
n

(4.15)

where the channel noises ni are zero-mean, spatially uncorrelated Gaus-

sian variables with variances δ2
i ; the variances are collected into the vector form
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δ = [δ2
1, δ

2
2, ..., δ

2
M ]T . The AWGN channel shown in ( 4.15) is validated by the

assumptions we made on analog forwarding process and the moderate changing

behavior of the channels between the SU’s and the fusion centre. Here the as-

sumption is made that the channel coherence time is more than the estimation

period such that once the fusion centre has predicted the gains of the channel

from the SU’s, these channels could be considered as non varying AWGN channels

[6].

The fusion centre calculates a global test statistic, yc ( 4.24) from all

the individual secondary user outputs yi and the spectrum sensor employs yc to

make a global decision. This chapter deals with the design of optimal linear fusion

rules at the fusion center to improve the detection performance as maximum as

possible.

4.2.1 Local Sensing

First let us do local spectrum sensing at each and every SU’s. Using energy

detection the decision statistic of secondary user i is given by ( 4.14).

Central limit theorem states that if the number of samples N is very

large, then the test statistics ui are normally distributed with mean [6], which is

given by Eq ( 4.16).

Eui =

{
Nσ2

i H0

(N + ηi)σ
2
i H1

(4.16)

where the local SNR at ith SU is given by ηi

ηi =
Esh

2
i

σ2
i

(4.17)

and

Es =
N−1∑
k=0

|s (k)|2 (4.18)

and variance

V ar(ui) =

{
2Nσ4

i H0

2(N + 2ηi)σ
4
i H1

(4.19)
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The decision statistic at each and every SU for a single-CR spectrum sensing

method [6], is given by

ui

H1

≥
<

H0

γi i = 1, 2, ....,M (4.20)

where decision threshold is denoted as γi. Therefore, SU i have the probabilities

of false alarm and detection [6]:

P
(i)
f = Pr(ui > γi H0) = Q

[
γi − E (ui|H0)√
V ar (ui H0)

]
(4.21)

and

P
(i)
d = Pr(ui > γi H1) = Q

[
γi − E (ui|H1)√
V ar (ui H1)

]
(4.22)

Spectrum sensing can be simply done by using a single CR, but suffers from either

fading or shadowing. Hence accuracy can be improved by detecting the presence

of primary detection using cooperation between CR’s.

4.2.2 Global Decision

Under global decision multiple SU’s are considered. The ui is passed to the fusion

centre directly through a fixed control channel. The Equation ( 4.15) tells that

the received statistic yi are distributed normally having means Eyi = Eui and

variances [6]

V ar (yi) =

{
2Nσ4

i + δ2
i H0

2 (N + 2ηi)σ
4
i + δ2

i H1

(4.23)

The global test statistic is computed after the reception of yi at fusion

centre by using Eq ( 4.24),

yc =
M∑
i=1

wiyi = wTy (4.24)

where
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w = [w1, w2, ..., wM ]T , wi ≥ 0 (4.25)

The global spectrum detector can be controlled by using weight vector represented

in Eq ( 4.25). Larger weighting coefficient is assigned to the CR which generates

high SNR. Decreased weights should be assigned to the CR’s or SU’s which are

getting deep fading or shadowing to decrease their negative effect to the decision

fusion [6].

Linear combination of yi are normal as the variables yi are normal

random variables. Accordingly, yc has mean

ȳc = Eyc =

{
NσTw H0

(Nσ + Esg)T w H1

(4.26)

where

g =
[
|h1|2 , |h2|2 , ..., |hM |2

]T
(4.27)

represents the squared amplitudes of the channel gains, and variance

V ar (yc) = E (yc − ȳc)2

= wTE
[
(y − ȳ) (y − ȳ)T

]
w

(4.28)

The variances under different hypothesis are respectively given by

V ar (yc|H0) = wTE
[
(y − ȳH0) (y − ȳH0)

T |H0

]
w

=
∑M

i=1 (2Nσ4
i + δ2

i )w
2
i

= wTΣH0w

(4.29)

with

ΣH0 = 2Ndiag2 (σ) + diag (δ) (4.30)
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and
V ar (yc|H1) = wTE

[
(y − ȳH1) (y − ȳH1)

T |H1

]
w

=
∑M

i=1 (2Nσ4
i + 4ηiσ

4
i + δ2

i )w
2
i

= wTΣH1w

(4.31)

with

ΣH1 = 2Ndiag2 (σ) + diag (δ) + 4Esdiag(g)diag(σ) (4.32)

Since ΣH1 is diagonal and positive semi-definite, its square root can be represented

as

Σ
1/2
H1

= diag



√
2Nσ4

1 + 4Es |h1|2 σ2
1 + δ2

1√
2Nσ4

2 + 4Es |h2|2 σ2
2 + δ2

2

.

.

.√
2Nσ4

M + 4Es |hM |2 σ2
M + δ2

M


(4.33)

Considering the linear rule, the test statistic at the fusion centre is

given by,

yc

H1

≥
<

H0

γc (4.34)

The performance of the proposed cooperative spectrum detection tech-

nique can be computed as [6]. The probability of false alarm (Pf ) and Probability

of detection (Pd) under global decision is given as,

Pf = Q

[
γc −NσTw√

wTΣH0w

]
(4.35)

and

Pd = Q

[
γc − (Nσ + Esg)Tw√

wTΣH1w

]
(4.36)
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Optimization of the Modified Deflection Coefficient:

The optimal weights [6], [36] are obtained from the equations ( 4.37) and ( 4.38),

which gives better Probability of detection (Pd).

w’ = Σ
1/2
H1

w (4.37)

The optimal weight equation of the Modified Deflection Coefficient is,

wopt =
Σ
−1/2
H1

w’∥∥∥Σ
−1/2
H1

w’
∥∥∥

2

(4.38)

Simulation Results:

Figure 4.4: Pf vs Pmd

From Figures 4.4 4.5, it is observed that the Probability of Misde-

tection (Pmd) of a single user at probability of false alarm, Pf=0.1 is 0.48 which

implies that the Probability of detection, Pd = 1− Pmd=0.52 where as for multi-

user using Modified Deflection Coefficient the Probability of Misdetection (Pmd)

at probability of false alarm, Pf=0.1 is 0.21 which implies that the Probability
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Figure 4.5: Pf vs Pmd

of detection, Pd = 1−Pmd=0.79. Therefore, the performance of multi-user using

Modified Deflection Coefficient is better than the single user.
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Conclusion

5.1 Conclusion

After observing the performances of Transmitter detection techniques like Energy

detection (ED), Combination of Maximum Minimum Eigen-value based detection

and Cyclostationary detection (CSD) techniques, it is clear that the performance

of Energy detection is poor at low SNR, good at high SNR and complexity is

less whereas the performance of CMME and CSD is giving better Probability of

detection (Pd) at low SNR and the implementation of these two techniques is

complex compared to Energy detection technique (ED).

The Two Stage Spectrum Sensing using ED and CSD motivated to

implement Two Stage Spectrum Sensing using ED and CMME by taking both

BPSK and DVB-T signal because from the simulation results of CSD and CMME,

it is observed that the performance of CMME is better at low SNR compared to

CSD. In this technique, the channel is tested by using energy detection technique

(ED) in the first stage. If the decision is more than the threshold ΦED, then

the channel is decided as occupied, otherwise the received signal is again sensed

by using the second stage i.e., CMME technique. If the decision is more than
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the threshold γ2, then the channel is considered as occupied else it is empty.

The individual performance of each technique is compared with the two stage

technique using ED and CMME. The comparison between two stage SS technique

using ED and CSD and two stage SS technique using ED and CMME is observed.

The Two Stage SS technique using ED and CMME is giving better Probability

of detection than the Two Stage SS using ED and CSD techniques.

Under Cooperative Spectrum sensing the performance of Equal Gain

Combining (EGC) and Maximal Ratio Combining (MRC) is observed. From the

simulation results, it is clear that the Probability of detection (Pd) for Maximal

Ratio Combining (MRC) is good compared to Equal Gain Combining (EGC).

Optimal linear cooperation framework for ss is observed to detect the

weak primary signal accurately. Global decision is made by using Modified De-

flection Coefficient (MDC) method. The performance of single user and global

decision using MDC is observed. From the simulation results, it is clear that the

Probability of detection (Pd) for global decision using MDC is better compared

to single user.

5.2 Scope of Future work

� Performance analysis of two stage spectrum sensing technique based on

timing can be carried out.

� CMME can be used to estimate the noise variance and fed it back to ED

to enhance the performance of first stage in two stage spectrum sensing

technique. Indirectly making the dual stage as full blind and self-adaptive.

� Real-time measured data can be used to check the detection performance.

� Under Optimal Cooperative Spectrum Sensing, the weights can be opti-

mized by using evolutionary optimization techniques like Particle Swarm

Optimization (PSO), Infeasibility Driven Evolutionary Algorithm (IDEA)

etc to obtain better Probability of detection (Pd).
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