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ABSTRACT 

 

The wide use of sensor networks in the day to day communication in recent trends 

made tracking a significant feature in monitoring systems. The automated systems 

capable of detection and tracking of targets is a desirable application in many fields. 

Firstly, deploy a sensor network with appropriate space between sensors and then 

introduce targets into the network. As the sensors detect the targets, each sensor 

communicates with neighborhood sensor nodes and one of those sensors are elected as 

cell-head which will calculate the position of target from the data and transmit that to 

sink. This process is repeated iteratively to track the moving target. Feature extraction 

methods and classification techniques have been studied to classify targets by their type. 

For the challenging task of Multi-target tracking, the methods of sequential Bayesian 

filtering and Sequential Monte Carlo-Particle Hypothesis Density filters are sought. 

Accurate algorithms have been simulated for Localization and tracking of target 

using the data of sensor strengths which are collaboratively communicated among the 

sensors. Direction of moving target inside a cell was estimated. Algorithm for 

Hierarchical multi-hop communication model was established. 
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Chapter 1  

Introduction 
 

1.1 Background and Motivation 
 

In the age of robotic machines, budding towards replacing humans to carry out different tasks, 

there is a demand for surveillance of objects or targets by machines in different environments. 

Distributed sensor networks are one such possibility to detect, track and classify different 

vehicles, moving objects etc. Different sensing modalities such as acoustic, seismic data are 

detected by sensors to accomplish this task. Due to the availability of modern low cost sensors, 

large scale sensor networks are being used in applications such as wide area surveillance, 

disaster response, environmental monitoring, military applications etc.  

These can free human beings from time consuming, labor intensive jobs, related to high risks of 

health and safety. Though radar can monitor across wide area even in dark, it is very highly 

expensive to implement compared to sensor technology. Traffic managements and intelligent 

transport systems of automated driver assistance systems are crucial applications of road vehicle 

recognition. A number of tracking systems have been published and we will be discussing a few 

of them below. 

The instrumentation of a hostile area with conveyed sensors is a thought of decades-old, with 

executions dating at any rate as long back as the Vietnam-period Igloo White project. 

Unattended ground sensors (UGS) do exist today that can identify, characterize, and focus the 

bearing of development of entering faculty and vehicles. The Remotely Monitored and 
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Battlefield Sensor System (REMBASS) illustrates UGS frameworks being used today [12]. 

REMBASS abuses distantly checked sensors, hand-deployed along likely for streets of 

methodology. These sensors react to acoustic-seismic vitality, infrared vitality, and attractive 

changes to field to recognize foe exercises. REMBASS forms the sensor information mainly and 

yields recognition what's more, classification data remotely, either straightforwardly or by radio 

repeaters, to sensor observing set (SMS). Messages are decoded, showed, and recorded to give a 

period staged record of gatecrasher movement at the SMS. Like REMBASS and Igloo White, a 

large portion of the current radio-based unsupervised ground sensor frameworks have 

constrained systems administration capacity and impart their readings of the sensor or 

interruption discoveries over moderately long and habitually one directional radio connections to 

a focal checking station, maybe through one or more straightforward repeater stations. Since 

these frameworks utilize communication of long joins, they use valuable vitality amid 

transmission, which thusly lessens their overall time. For instance, a REMBASS sensor hub, 

once deployed, can be unsupervised for just 30 days. Late research has exhibited the practicality 

of specially appointed elevated organizations of 1 dimensional sensor systems that can recognize 

and follow vehicles. In March 2001, scientists from the University of California at Berkeley 

exhibited the arrangement of a sensor system onto a street from an unmanned aerial vehicle 

(UAV) at Twenty nine Palms, California, at the Marine Corps Air/Ground Combat Center. The 

system set up a period multi-jump communication system, synchronized among the hubs on the 

ground, whose employment was to identify and follow vehicles disregarding through the region a 

soil street. The tracked vehicle data was gathered from the sensors utilizing the UAV as a part of 

an over move and after the transferred to a spectator at the base 
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1.2 Thesis Objective 
 

The objective of the thesis is: 

a)  To design a Target localization algorithm using the detected sensor data and the 

communication among the neighborhood sensors. 

b) To implement single target tracking and model a multi-hop communication system to transmit 

the data to sink. 

c) To study the techniques of multi-target tracking in a distributed sensor network. 

 

 

1.3 Literature review 
 

A literature survey is conducted to understand the past research trends in Detection, classification 

and tracking of targets in a distributed sensor network.  This survey includes the search of single 

target tracking algorithms, efficient multi-hop communication models, Localization algorithms, 

feature extraction methods, classification techniques, multi-target tracking algorithms and 

efficiencies of different combinations. 

Many researches have been done in the field of tracking targets in sensor network. Among them, 

the paper on “Detection, classification and tracking of targets in a distributed sensor 

network” is reviewed to have knowledge on the algorithm of single target tracking and the idea 

of energy based collaborative target localization. It provides the knowledge of different 
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classification techniques that can be used for classification purpose of targets. It also compares 

the efficiency of different classification techniques with results. For feature selection and 

acoustic classification purpose, the paper “Distributed and Efficient classifiers for wireless 

Audio-Sensor Networks” has been studied. In this paper, representative, yet low-dimensional 

feature vectors of the acoustic signals are described using power spectral density. Two popular 

approaches of Data fusion (DAF) and Decision fusion (DEF) are explained in this paper. 

Formation of clusters on demand, when a signal suggests the presence of a target is detected by a 

sensors of minimum number is described. 

The paper “Multi-Target tracking in distributed sensor network” presents the estimation 

algorithms for target tracking such as sequential Bayesian filter, Kalman filter, Bayesian 

formulation of Multi-target tracking, Data association possibilities etc. It also provides you with 

an overview of the traditional approaches of Multi-target tracking such as MHT (Multiple 

hypothesis tracking), JPDAF (joint probabilistic data association filter), Markov chain Monte 

carlo methods and the scenario of crossing targets.  

The paper “Multi-EAP: Approximately Optimal Multiple Estimate Extraction for the SMC-

PHD Filter” describes the Multi-estimate extraction (MEE) which is an essential requirement 

for multi-target tracker. The sequential Monte Carlo implementation of Probability hypothesis 

density (SMC-PHD) filter has been studied here. The decision and association techniques are 

employed to distinguish observations of targets from clutter and to associate particles to 

observations for individual estimate extraction. Here the MEE problem is considered as a family 

of parallel single estimate extraction problems in which the optimal Expected a Posteriori (EAP) 

estimator is employed.  



13 

 

The paper “A security mechanism for clustered wireless sensor networks based on elliptic 

curve cryptography” is referred to implement two-tiered clustered wireless sensor network. 

This network was chosen because of the flexibility to travel in multiple neighborhood paths to 

reach the sink. 

 

 

1.4 Thesis Organization 
 

 The thesis is organized as follows 

Chapter 2 describes different Target localization techniques. 

Chapter 3 is focused on target tracking algorithms and multi-hop communication models. 

Chapter 4 describes the Target classification techniques and feature selection methods. 

Chapter 5 is concentrated on Multi-target tracking techniques in distributed sensor network. 

Chapter 6 presents and discusses the results. 

Chapter 7 gives the conclusion and the scope of any future work in the field. 
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Chapter 2  

Target Localization 
 

Localization is one of the most important task of the wireless sensor networks (WSNs). There are 

lots of localization techniques appropriate to different requirements with and without 

transmitting powers of source node, distance based and angle based localizations etc. Some of 

these different localization techniques are discussed below. 

 

2.1 Gauss Newton Localization 
 

This is a distance-based localization implemented with the assumption that we are aware of 

transmitting power of source node. Though this approach is a simple and efficient technique to 

localize a target, it is not very practical since we do not know the transmitting power of sensor 

nodes in general. The following is the mathematical model to deduce the location of mobile 

target by Gauss-Newton method [3]. 

 

𝑁 = 4;𝑚 = 1, 𝑛𝑜𝑖𝑠𝑒𝑝𝑜𝑤 = 20; 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑠𝑖𝑧𝑒 = 100 

𝑎𝑛𝑐ℎ𝑜𝑟𝑙𝑜𝑐 = [

0 0
100 0
0 100
100 100

] 
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𝑚𝑜𝑏𝑖𝑙𝑒𝑙𝑜𝑐 = [𝑎 𝑏] 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑛)𝑛=1
4 = √((𝑎𝑛𝑐ℎ𝑜𝑟𝑙𝑜𝑐(𝑛, 1) − 𝑎)2 + (𝑎𝑛𝑐ℎ𝑜𝑟𝑙𝑜𝑐(𝑛, 2) − 𝑏)2) 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑛𝑜𝑖𝑠𝑦(𝑛)𝑛=1
4 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑛)𝑛=1

4 [1 +
20

100
× (𝑟𝑎𝑛𝑑(𝑁, 1) −

1

2
)] 

𝑚𝑜𝑏𝑖𝑙𝑒𝑙𝑜𝑐𝑒𝑠𝑡 = (𝑥𝑜 , 𝑦𝑜) 

Iterate : 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑒𝑠𝑡 =

[
 
 
 
 √(𝑥2 + 𝑦2)

√((100 − 𝑥)2 + 𝑦2)

√(𝑥2 + (100 − 𝑦)2)

√((100 − 𝑥)2 + (100 − 𝑦)2)]
 
 
 
 

 

𝑓(𝑥, 𝑦) = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑒𝑠𝑡 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑛𝑜𝑖𝑠𝑦 

𝑓′(𝑥, 𝑦) =

[
 
 
 
 
 
 
 
 

𝑥

√(𝑥2 + 𝑦2)

𝑦

√(𝑥2 + 𝑦2)
𝑥 − 100

√((𝑥 − 100)2 + 𝑦2)

𝑦

√((𝑥 − 100)2 + 𝑦2)
𝑥

√(𝑥2 + (𝑦 − 100)2)

𝑦 − 100

√(𝑥2 + (𝑦 − 100)2)
𝑥 − 100

√((𝑥 − 100)2 + (𝑦 − 100)2)

𝑦 − 100

√((𝑥 − 100)2 + (𝑦 − 100)2)]
 
 
 
 
 
 
 
 

 

𝐴 = 𝑓′(𝑥𝑜 , 𝑦𝑜); 𝐵 = 𝑓(𝑥𝑜 , 𝑦𝑜) 

Δ = −((𝐴𝑡 × 𝐴)−1 × 𝐴𝑡) × 𝐵 

𝑚𝑜𝑏𝑖𝑙𝑒𝑙𝑜𝑐𝑒𝑠𝑡 = 𝑚𝑜𝑏𝑖𝑙𝑒𝑙𝑜𝑐𝑒𝑠𝑡 + Δ′ 

Go to iterate and update mobilelocest and continue this loop until the Δ reaches a very minimum 

amount. Final mobilelocest will give you a value very closer to the exact position. 
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2.2 Temporal Ratio-based localization  

For this localization, we need to know the initial target position and store the observation sensor 

data of previous instant. This is the only drawback of this localization technique. In this 

technique, we take the ratio of received signal strengths of a sensor node at two consecutive time 

instants which are inversely proportional to the square of their distance to the source node. Since, 

we already know the location of source node in the previous time instant, we get a circle 

equation as a solution for one sensor node. Similarly, we can get three more circle equations in 

that cell and these circles will give the target location as we solve them. 

Let (𝑥1, 𝑦1) be the target location at time t. 

𝑟𝑡 = √((𝑎 − 𝑥1)
2 + (𝑏 − 𝑦1)

2 

Where (a, b) is the sensor location. 

𝑝𝑡
𝑝𝑡+1

=
𝑟𝑡+1
2

𝑟𝑡
2  

(𝑥 − 𝑎)2 + (𝑦 − 𝑏)2 = 𝑟𝑡+1
2  

Where (x, y) is the target location, similarly we can derive another few circle equations with 

centers as their corresponding sensor locations. By solving these circles, we get the exact 

location of the target. 
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2.3 Target localization without transmitting power 

In this method, we take the ratios of received powers of any two sensor nodes inside a cell to 

cancel out the transmitted power of source node from the equations [9]. As we solve these 

different ratios, we get different circles with their centers and radii as given below. On solving 

these radii, we get the appropriate location of source node [1]. 

Let 𝑃1, 𝑃2, 𝑃3, 𝑃4 be the received powers at sensor locations of four different corners with their 

locations given as (𝑥1, 𝑦1), (𝑥2, 𝑦2), (𝑥3, 𝑦3), (𝑥4, 𝑦4). 

𝑘𝑖𝑗 =
𝑝𝑖
𝑝𝑗

 

𝐶𝑥𝑖𝑗 =
𝑥𝑗 − 𝑘𝑖𝑗 × 𝑥𝑖

1 − 𝑘𝑖𝑗
           ,           𝐶𝑦𝑖𝑗 =

𝑦𝑗 − 𝑘𝑖𝑗 × 𝑦𝑖

1 − 𝑘𝑖𝑗
 

𝑟𝑖𝑗
2 =

(𝑥𝑗 − 𝑘𝑖𝑗 × 𝑥_𝑖)

(1 − 𝑘𝑖𝑗)
2 −

(𝑥𝑗
2 − 𝑘𝑖𝑗 × 𝑥𝑖

2)

1 − 𝑘𝑖𝑗
+
(𝑦𝑗 − 𝑘𝑖𝑗 × 𝑦𝑖)

(1 − 𝑘𝑖𝑗)
2 −

(𝑦𝑗
2 − 𝑘𝑖𝑗 × 𝑦𝑖

2)

1 − 𝑘𝑖𝑗
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𝐶𝑥𝑖𝑗 , 𝐶𝑦𝑖𝑗  𝑎𝑛𝑑 𝑟𝑖𝑗
2  𝑔𝑖𝑣𝑒𝑠 𝑐𝑖𝑟𝑐𝑙𝑒 𝑓𝑜𝑟 𝑟𝑎𝑡𝑖𝑜 

𝑃𝑖

𝑃𝑗
. By solving different circles resulting from 

different possible ratios, we can derive the target location.

 

Figure 1: Source Localization using CSP of sensor nodes 
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Chapter 3  

Target tracking and MHC 

 

3.1 Tracking of single Target 

 

The below figure outlines the essential thought of area based CSP for the recognition and 

following of a solitary target [1]. Under the supposition that a potential target may enter the 

checked region through one of the four corners, four sensor cells, A, B, C and D. Nodes in each 

of four cells are enacted to distinguish potential targets. Every initiated node runs an energy 

recognition calculation whose yield is examined at the earlier settled rate depending on the 

attributes of expected targets. Assume a target enters Cell A. Following of the target comprises 

of the accompanying five stages:  

a) Some and maybe the greater part of the nodes in Cell A distinguish the target. These nodes are 

the dynamic nodes, Cell A is the dynamic cell. The dynamic nodes additionally yield CPA of 

time data. The dynamic nodes accounts their energy indicator yields to the administrator nodes at 

N progressive time moments.  

b) At every time moment, the administrator nodes focus the area of the focus from the energy 

indicator yields of the dynamic nodes. The easiest assessment of target area at a moment is the 

area of the node with strongest sign right then and there. Be that as it may, more advanced 
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calculations for target confinement may be utilized. Such confinement calculations legitimize 

their higher many-sided quality just if the precision of their area determination is better than the 

node dispersing.  

        

Figure 2: A schematic illustrating detection and tracking of a single target 

 

c) The chief nodes use areas of the focus at the N progressive time moments to foresee the area 

of the focus at M (< N) number of future time moments.  

d) The anticipated positions of target are utilized to make new cells that a target is prone to enter. 

This is outlined in Fig where the three spotted cells speak to the districts that the target is more 

likely to enter after the present dynamic (Cell A in Fig). A subset of all these cells is enacted for 

ensuing recognition and following of the target.  
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e) Once a target is distinguished in one of the new cells, then it is assigned as the new dynamic 

cell and as the nodes in the unique dynamic (Cell A in Fig) may be placed in the standby state to 

save energy.  

Steps (a-e) are rehashed for new dynamic cell, and this frames the premise of distinguishing and 

following a solitary target. For every distinguished focus on, a data field containing following 

data, for example, the area of the focus at sure past times, is normally gone from one dynamic 

cell to the following one. This is especially critical on account of various targets. Comparative 

calculations are being produced by different gatherings also [1]. 

 

3.2 Target tracking by Estimation Algorithms 

 

Sequential Bayesian filtering: 

Let 𝑥𝑡 be the target state at time t which is to be estimated from measurement history of  𝑧̅𝑡, 

where  

𝑧̅𝑡 = {𝑧0, 𝑧1, … , 𝑧𝑡} 

are collection of the measurements from initial time to time t. 

Target dynamics 𝑝(𝑥𝑡/𝑥𝑡−1)  are characterized by a stationary Markov model. The probability 

distribution 𝑝(𝑧𝑡/𝑥𝑡) is an observation model which relates target state 𝑥𝑡   to sensor 

management 𝑧𝑡 and it is conditionally independent. Under these assumptions, tracking is a 

sequential Bayesian filtering [5].  
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𝑝 (
𝑥𝑡

𝑧̅𝑡
) ∝ 𝑝(𝑧𝑡) × ∫ 𝑝 (

𝑥𝑡

𝑥𝑡−1
) × 𝑝(

𝑥𝑡−1

𝑧̅𝑡−1
)

𝑋

 𝑑𝑥𝑡−1 

In prediction step, from the target belief at t-1, the distribution of likely states at time t are 

computed. Contribution of likelihood 𝑧𝑡 is included by multiplication of likelihood function. 

Since, the distribution current filter 𝑝(𝑥𝑡/𝑧𝑡) is computed from the distribution of previous filter 

𝑝(𝑥𝑡/𝑧̅𝑡−1)  and the new observation 𝑧𝑡, this filter equation is recursive in nature. Under the 

assumption that observation model and object dynamics are both linear in 𝑥𝑡 and the uncertainty 

in both models are Gaussian, the sequential Bayesian filter is a Kalman filter. The posterior 

belief of 𝑝(𝑥𝑡/𝑧̅𝑡) is also Gaussian. Since, covariance and mean characterizes some Gaussians, 

the kalman filter equation update the average �̅� ≜ 𝐸[𝑥𝑡/𝑧̅𝑡] and the covariance 𝑃 ≜ 𝐸[(𝑥𝑡 −

�̅�)(𝑥𝑡 − �̅�)′] measurements are observed recursively. 

Particle filter is another alternative for this application. It is a non-parametric monte carlo based 

sampling method, representing a probability distribution as a set of point samples weighted. 

{𝑥𝑖, 𝑤𝑖}𝑖=1
𝑛 , referred to as a particle set. The particle filter algorithm updates the sample points 

{𝑥𝑖} and their weights {𝑤𝑖} based on the target dynamics 𝑝(𝑥𝑡/𝑥𝑡−1) and the observation 

likelihood model which is  (𝑧𝑡/𝑥𝑡) . The non-linear dynamics and multi-modal observation 

models can be accommodated in this filter but at the cost of more storage requirements and 

computation [5]. 
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3.2 Multi-Hop Communication 

In a distributed sensor network, communication, computation, power and sensing are four crucial 

constraints. Let us take a typical sensor network of large number of battery powered tiny nodes 

of sensors with an inexpensive CPU and wireless antenna, mixed with a smaller number of high 

end sensors. The operational capabilities of those sensors for prolonging periods of time is a 

desirable characteristic. Communication requirements of the network should not exceed its 

potential for any application. The computational capabilities of inexpensive sensor nodes are 

often poor. Hence, developers must write algorithms of less complexity which can take 

advantage of distributed computational resources of the sensor network that can even sacrifice 

the quality of sensing, if necessary.  

 

3.2.1 Hierarchical multi hop communication model 

 

In this model, we deploy a two tier sensor network with large number of inexpensive sensor 

nodes and few high-end sensors called cell-heads. All the nodes can receive and transmit signals 

from adjacent nodes which are within the range of that node as long as they are in active mode. 

In the same way, cell-heads can communicate with adjacent cell-heads and nodes except that 

cell-heads have larger range compared to sensor nodes [16]. 
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Figure 3: A schematic illustrating the two-tier clustered sensor network 

In this algorithm, before deploying sensor nodes in the area of interest, we store the value of 

threshold and initial power flags fl(t) and fl(t+1) appropriately. Load the location of 

neighborhood cell-head which is towards sink in every cell-head. Below steps are followed to 

each iteration. 

a) Send all sensor values and their locations to their respective cell heads. 

b) Check if greater than four sensors of that cell have greater than threshold value of sensor 

signal strength. If yes 

c) Take out top four sensor values and their locations. 

d) Using any localization technique, localize the target location. 

e) Send flag 1 to all the neighborhood cell-heads and they update that to fl(t+1) of their sensor 

nodes for next iteration. 

f) Check location of neighborhood cell-head towards sink and transmit the localized target point 

data to that cell-head and that will again send it next one until the sink. 
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g) Shift the flag data fl(t+1) to fl(t) and set fl(t+1) to zero and repeat the steps (a-g) for next 

iteration. 

  

3.2.2 Direction measurement for power conservation  

 

Consider the movement of target from one place to another inside a cell of four nodes. Let 

𝑑(𝑛, 𝑡) be the signal strength of node n at time instant t. Then 

𝐷(𝑛) = 𝑑(𝑛, 1) − 𝑑(𝑛, 2) 

Where 𝐷(𝑛)  is the difference in signal strengths at two time instants of node n. The rest of the 

algorithm written below to determine the direction of moving target inside a cell. 

s=sort(Difference); 

     

    for i=4:-1:3 

         

            if s(i)==D(1) angular spectrum of node at left-bottom 

                ang(k)=135; 

                k=k+1; 

                ang(k)=315; 

                k=k+1; 

            elseif s(i)==D(2) angular spectrum of node at right bottom 

                ang(k)=225; 

                k=k+1; 

                ang(k)=405; 
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                k=k+1; 

            elseif s(i)==D(3) angular spectrum of node at left-bottom 

                ang(k)=45; 

                k=k+1; 

                ang(k)=225; 

                k=k+1; 

            elseif s(i)==D(4) angular spectrum of node at left-bottom 

                ang(k)=315; 

                k=k+1; 

                ang(k)=495; 

                k=k+1;     

            end 

    end 

     

    a=sort(ang); 

     

    if (a(4)-a(1))>360 

        b=[a(1) a(4)]; 

    else 

        b=[a(2) a(3)]; 

    end 

     

    if b(1)>360 

        b(1)=b(1)-360; 

    end 

    if b(2)>360 

        b(2)=b(2)-360; 

    end 
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    b 

 

 

The array b will give the output as an angular spectrum of 90 degrees as the direction in which 

target is moving. From this data we can set all the sensors in that direction to active mode for 

next iteration or time instant and rest of them in sleep mode. 

 

 

 

 

 

 

 

 

 



28 

 

Chapter 4 

Target classification 

 

4.1 Feature Selection 

4.1.1 Power spectral density 

A vehicle sound is generally a stochastic signal, but it can be considered as a stationary signal for 

short period of time. Here 256 data points are sampled at a frequency of 4.96 KHz over the 

signal duration of 51.2 ms.  A linear vector of resolution 38.75 hz and 128 PSD points is yielded 

from the PSD estimates of 256 data points. Though we consider all the 128 dimensions at the 

beginning, we subsequently prune many of them. The frequencies corresponding to maximum 

power are considered and the rest of the dimensions were neglected. All the dimensions 

corresponding to maximum frequency bands which are reported from different samples of a 

particular class were stored in a single set. Based on the repetitions of a particular frequency 

band in that set, we allot rankings to those dimensions. Then, those dimensions are sorted 

according to their rankings. We further prune some more frequency bands by selecting a 

percentage of total bands. These bands constitute a set which characterizes a particular class and 

this process is repeated for all the classes [2].  

In Independent feature selection (IFS) scheme, we create feature vectors by combining all the 

sets corresponding to all the classes. In Global feature selection (GFS) scheme, we create feature 

vectors by taking intersection of all the frequency bands corresponding to all the classes. The 
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problem with GFS scheme is that sometimes we may end up with an empty feature vector. In 

those cases, we combine all the first frequency bands of all the sets corresponding all the 

different classes to create feature vectors [2]. 

Before the deployment of sensors, these feature vectors are uploaded into them. Now the sensors 

can extract PSD points of unknown vehicles, from their sampled acoustic signal, and can directly 

fetch IFS/GFS feature vectors of unknown sample using the selected dimensions learned from 

the training phase. 

 

 

 

 

4.2 Classifiers 

4.2.1 k-nearest neighbor classifier  

In KNN classifier, all the training features are used as a set of prototypes. During the testing 

phase, the distance between all the prototypes and the test vector are calculated. The class of test 

vector is determined by the majority number of classes in the k-nearest neighbor prototypes. If 

k=1, then it is called nearest neighbor classifier. Since it requires too much memory storage and 

processing power for testing, this is not suitable for practical applications. 
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Figure 4: Illustration of KNN classifier 

 

4.2.2 Maximum Likelihood classifier 

 

In case of Gaussian mixture density model, the distribution of training vectors belonging to same 

class are modeled as a mixture of Gaussian density functions. The likelihood function is 

𝑝 (
𝑥

𝜔𝑖
) = 𝐺 (

𝑥

𝜃𝑖
) =∑𝛼𝑖𝑘|𝛿𝑖𝑘|

−
𝑁
2exp (−

1

2
(𝑥 − 𝑚𝑖𝑘)

𝑇𝛿𝑖𝑘
−1(𝑥 − 𝑚𝑖𝑘))

𝑘

 

Where 𝜃𝑡 = [𝛼𝑖1, … , 𝛼𝑖𝑝, 𝑚𝑖1, … ,𝑚𝑖𝑝, 𝛿𝑖1, … , 𝛿𝑖𝑝] are the mixture, mean, covariance parameters 

of the P mixture densities corresponding to class 𝜔𝑡.By applying appropriate clustering 

algorithms like the expectation-maximization algorithm or k-means algorithm, to the each class 
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training vectors, these can be identified as model parameters. Here 𝑔𝑖(𝑥) = 𝐺𝑖(𝑥/𝜃𝑖)𝑝(𝜔𝑖) is the 

discriminant function where the prior probability 𝑝(𝜔𝑖) by the relative number of training 

vectors are approximated in each class i. 

 

4.2.3 Support Vector Machine (SVM) 

 

It is a supervised learning classifier to identify “the hyper plane for which the margin of 

separation is maximized”. The assumptions of standard two-class linear classification algorithm 

is 

(a) Samples from two classes in their feature space are linearly separable. 

(b) There exists a hyper plane that maximizes the margin, or the sum of shortest distances 

between each sample point in each class and a linear line that separates two classes. 

 

By using the method called “kernel mapping” [1] , SVM can perform classification of non-

linearly separable samples. This technique maps the feature vectors in the feature space into a 

higher dimension space, where the samples can be linearly separable. 
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Figure 5: Illustration of Support Vector Machine 

Let 𝜑𝑖(𝑥)𝑖=1
𝑀  be a set of non-linear transformations mapped to an M-dimensional feature space 

(M>N) from the N-dimensional input vector into. The weights {𝑤1, 𝑤2, . . , 𝑤𝑚} characterizing a 

linear classifier operates in the higher dimensional feature space [2]. 

𝑔(𝑥) =∑𝑤𝑗 × 𝜑𝑗(𝑥)

𝑚

𝑗=1

+ 𝑏 

Where b is the bias parameter of the classifier. 

𝑤𝑗 =∑𝛼𝑖 × 𝜑𝑗(𝑥𝑖)

𝑄

𝑖=1

 , 𝑗 = 1,2, . . 𝑀 

𝑔(𝑥) =∑𝛼𝑖 × 𝑘(𝑥, 𝑥𝑖) + 𝑏

𝑄

𝑖=1

 

Where  

𝑘(𝑥, 𝑥𝑖) =∑𝜑𝑗(𝑥) × 𝜑𝑗(𝑥𝑖)

𝑀

𝑗=1

 

is the symmetrical kernel representing SVM. 
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Third degree polynomial kernel: 𝑘(𝑥, 𝑥𝑖) = (𝑥
′ × 𝑥𝑖 + 1)

3 

 

However, high amounts of time and memory consuming is a disadvantage of SVM. Other 

applications where SVM is widely applied are classification of indoor acoustic event and 

automated acoustic wood condition monitoring in the transportation industry   [15]. 
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Chapter 5 

Multi target tracking 

Brief introduction into the approach of higher order voronoi diagram: 

 

The goal is to situate a non-uniform scope inside of the checked zone to permit recognizing the 

target(s) by various sensor nodes [13]. We indicate how the proposed calculation adjusts to the 

circumstance where numerous targets will move in the checked zone. In addition, we acquaint a 

calculation with find excess nodes (which don't give extra data about target position). This 

calculation is indicated to be viable in diminishing the energy utilization utilizing an action 

planning approach. 

 

5.1 Multiple Hypothesis tracking (MHT) and JPDAF 

 

The thought is to comprehensively list the set of all associations recursively, called hypothesis, 

of estimations to existing tracks, false alerts and new tracks while regarding the common 

avoidance association limitation. Preference of this methodology is that the number of tracks 

need not be known from the earlier on the grounds that track starts and terminations are 

expressly guessed. Moreover, information association choices are successfully postponed until 

more information is gotten since various hypothesis are kept. In this way, MHT addresses low 

identification likelihood, high false alert rates, start and end of tracks, and deferred estimations. 
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Then again, this methodology experiences substantial storage room necessities and exponentially 

expanding preparing, so a key piece of making this approach useful is to prune terrible 

hypotheses or consolidate comparable hypotheses [5]. 

The Joint probabilistic data association filter (JPDAF) methodology is to upgrade every 

individual track state with weighted mixes of all estimations. Along these lines, the key piece of 

this methodology is figuring the likelihood that estimations can be connected with tracks so that 

the common avoidance limitation is regarded. A detriment of this methodology is that the 

number of targets needs to be known from the earlier. 

The relationship in the middle of MHT and JPDAF has been underemphasized in the writing. 

JPDAF is a specific method for consolidating the various theories created by MHT into a solitary 

speculation at every time step and, consequently, can be seen as an occasion of MHT. We will 

expound on this relationship now on the grounds that all methodologies to information affiliation 

can be seen as occasions of MHT, and the thought of consolidating theories is the reasonable 

establishment behind new asset mindful representations to be talked about in the accompanying 

segment. 

Consider the target cases, where track B and A are freely dispersed by 𝑝𝐴
𝑡−1(𝑥) and   𝑝𝐵

𝑡−1(𝑥), 

separately. There are two estimations seen at time t given by 𝑧1
𝑡 and 𝑧2

𝑡. Expecting that there are 

no false alerts or missed estimations for the purpose to simplify the discussion, there are two 

speculations created by MHT. 

𝐻0 = 𝑡𝑟𝑎𝑐𝑘 𝑎 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑧1
𝑡 𝑎𝑛𝑑 𝑡𝑟𝑎𝑐𝑘 𝑏 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑠 𝑤𝑖𝑡ℎ 𝑧2

𝑡 . 

𝐻1 = 𝑡𝑟𝑎𝑐𝑘 𝑏 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑧1
𝑡  𝑎𝑛𝑑 𝑡𝑟𝑎𝑐𝑘 𝑎 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑠 𝑤𝑖𝑡ℎ 𝑧2

𝑡 . 
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Figure 6: Data association example. (a) Two target (circles) with two measurements (triangles) 

 

Before predicting association probabilities, Each track’s belief is predicted and forwarded to the 

current time. 

 

𝑝𝑗
𝑡(𝑥) = ∫𝑝 (

𝑥𝑡

𝑥𝑡−1
)𝑝𝑗

𝑡−1(𝑥𝑡−1)𝑑𝑥𝑡−1 

For  𝑗 ∈ {𝐴, 𝐵} .  

𝛾0 = ∫𝑝(
𝑧1
𝑡

𝑥𝐴
) . 𝑃 (

𝑧2
𝑡

𝑥𝐵
) . 𝑝𝐴

𝑡 (𝑥𝐴). 𝑝𝐵
𝑡 (𝑥𝐵)𝑑𝑥𝐴𝑑𝑥𝐵 

𝛾1 = ∫𝑝(
𝑧2
𝑡

𝑥𝐴
) . 𝑝 (

𝑧1
𝑡

𝑥𝐵
) . 𝑝𝐴

𝑡 (𝑥𝐴). 𝑝𝐵
𝑡 (𝑥𝐵)𝑑𝑥𝐴𝑑𝑥𝐵 

The association probabilities are 

𝑝(𝐻0) = 𝛾0/(𝛾0 + 𝛾1) 

𝑝(𝐻1) = 𝛾1/(𝛾0 + 𝛾1) 

𝑝𝐴
𝑡 (

𝑥

𝐻0
) = 𝛼0. 𝑝 (

𝑧1
𝑡

𝑥
) . 𝑝𝐴

𝑡 (𝑥) 
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𝑝𝐴
𝑡 (

𝑥

𝐻1
) = 𝛼1. 𝑝 (

𝑧2
𝑡

𝑥
) . 𝑝𝐴

𝑡 (𝑥) 

JPDAF combines these multiple hypotheses by 

𝑝𝐽𝑃𝐷𝐴𝐹,𝑗
𝑡 (𝑥) = 𝑝𝑗

𝑡 (
𝑥

𝐻0
) . 𝑝(𝐻0) + 𝑝𝑗

𝑡 (
𝑥

𝐻1
) . 𝑝(𝐻1) 

For each track  𝑗 ∈ {𝐴, 𝐵}. 

This soft data association approach of JPDAF is the marginalization of track. 

 

 

5.2 MEAP ESTIMATOR FOR MEE 

5.2.1 SMC IMPLEMENTATION OF PHD FILTER AND 

MEE 

The random finite set (RFS) hypothesis gives a flawless apparatus to speak to the obscure and 

size-fluctuating state set and perception set included in the MTT scene. Let 𝐹(𝑥) characterize the 

space of limited subsets of targets 𝑋 ⊆ 𝑅𝑛𝑥  and 𝐹(𝑧) characterize the space of limited subsets of 

perceptions  𝑍 ⊆ 𝑅𝑛𝑧. Assume that at time k, the accumulations of the conditions of targets are a 

RFS 𝑥𝑘 = {𝑥𝑘,1, … . , 𝑥𝑘,𝑁𝑘} ∈ 𝐹(𝑥) where 𝑁𝑘 is the quantity of targets, and the perceptions 

accessible (that comprises of the genuine perceptions from targets and disorder) are a RFS 𝑧𝑘 =

{𝑧𝑘,1, … , 𝑧𝑘,𝑚𝑘
} ∈ 𝐹(𝑧) where 𝑚𝑘 is the quantity of perceptions [7]. 
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One of the attractive feature of SMC-PHD filter is, its complexity is independent of (time-

varying) number of targets [14]. 

Given a multi-target state 𝑋𝑘−1 at time k-1, each 𝑥𝑘−1 ∈ 𝑋𝑘−1 either keeps on existing at time k 

with the survival likelihood  𝑝𝑠,𝑘(𝑥𝑘−1)  and move to another state with a transition likelihood 

density 𝑓 𝑘

𝑘−1

(𝑥𝑘/𝑥𝑘−1) or vanish with likelihood 1 − 𝑝(𝑠,𝑘)(𝑥𝑘−1). At time k , a given target  

𝑥𝑘 ∈ 𝑋𝑘 is either recognized with identification likelihood  𝑝𝐷,𝑘(𝑥𝑘) and produces a perception 

𝑧𝑘 ∈ 𝑍𝑘 

With likelihood 𝑔𝑘(𝑧𝑘/𝑥𝑘) or miss-detected with probability 1 − 𝑝𝐷,𝑘(𝑥𝑘). 

Assumptions of standard PHD filter: 

(A.1) Each target advances and produces observations autonomously of others;  

(A.2) The disarray dispersion is Poisson and autonomous of the observations;  

(A.3) One target can create close to one observation at every output;  

(A.4) the showing up target procedure is Poisson. 

 

Let 𝐷𝑘

𝑘

  and 𝐷 𝑘

𝑘−1

 be the PHD related to the multi-target posterior and prior thickness, namely  

𝐷𝑘

𝑘

= 𝐷𝑘

𝑘

(𝑥𝑘/𝑍1:𝑘),  𝐷 𝑘

𝑘−1

= 𝐷 𝑘

𝑘−1

(𝑥𝑘/𝑧1:(𝑘−1)) .  

The PHD channel develops after some time through the taking after Bayes recursions which 

comprises of two sorts of overhauling steps [7]:  

1) time-upgrade step (PHD indicator)  
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𝐷 𝑘
𝑘−1

= ∫𝜙 𝑘
𝑘−1

(
𝑥

𝑢
)𝐷𝑘−1

𝑘−1

(𝑢)𝑑𝑢 + 𝛾𝑘(𝑥) 

where the accompanying shortened form is utilized  

𝜙 𝑘
𝑘−1

(
𝑥

𝑢
) = 𝑝𝑠,𝑘(𝑢)𝑓 𝑘

𝑘−1
(
𝑥

𝑢
) + 𝑏𝑘(𝑥/𝑢) 

Where 𝑏𝑘(𝑥/𝑢) means the force capacity of the RFS of targets generated from the past state u, 

and  𝛾𝑘(𝑥) is the conception force capacity of new targets at sweep k. 

2) Information upgrade step (PHD updater)  

𝐷𝑘
𝑘

(𝑥) = [(1 − 𝑝𝐷,𝑘(𝑥)) + ∑
𝑝𝐷,𝑘(𝑥)𝑔𝑘 (

𝑧
𝑥)

𝑘𝑘(𝑧) + 𝐶𝑘(𝑧)
𝑧∈𝑍𝑘

]𝐷 𝑘
𝑘−1

(𝑥) 

 where 𝑘𝑘(𝑧) is the disorder power at time k and 

𝐶𝑘(𝑧) = ∫𝑃𝐷,𝑘(𝑢)𝑔𝑘 (
𝑧

𝑢
)𝐷 𝑘

𝑘−1
(𝑢)𝑑𝑢 

 The PHD channel has roused an assortment of new deductions, translations and executions. 

Specifically, the SMC execution of the PHD channel when all is said in done nonlinear state-

space models where the commotions can be non-Gaussian has pulled in wide hobbies, counting 

progressed PF usage, for example, assistant PF, Gaussian entirety PF, Rao-Blackwellised PF 

furthermore, box-PF. Late improvements incorporate broadened/gathering target following, 

multi-displaying following, multi-sensor following and the augmentation to higher request, 

further principled rough guesses. In this paper, we examine the essential form of the SMC-PHD 

channel for clarity be that as it may, our MEE methodology is normally pertinent to cutting edge. 
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The SMC implementation of PHD filter: 

Given the significance densities  𝑝𝑘(./𝑧𝑘), proposition densities 𝑞𝑘(./(𝑥𝑘−1, 𝑍𝑘)) and assuming 

that there are 𝐿𝑘−1 particles at time k-1  and that 𝑗𝑘 new particles are allotted for conceivable 

new targets at time k, the particle estimate of the indicator 𝐷 𝑘

𝑘−1

 can be composed as   

𝐷 𝑘
𝑘−1

(𝑥𝑘) = ∑ 𝑤 𝑘
𝑘−1

𝑖 𝛿
𝑥𝑘
𝑖 (𝑥𝑘)

𝐿𝑘−1+𝑗𝑘

𝑖=1

 

 where 𝛿𝑥(. ) denotes the delta-Dirac mass situated in x, the anticipated state and weight are 

given individually as  

𝑥𝑘
𝑖~

{
 
 

 
 𝑞𝑘 (.

.

𝑥𝑘−1
𝑖

, 𝑍𝑘) , 𝑖 = 1,… , 𝐿𝑘−1

𝑝𝑘 (.
.

𝑍𝑘
) , 𝑖 = 𝐿𝑘−1 + 1,… , 𝐿𝑘−1 + 𝑗𝑘

 

𝑤 𝑘
𝑘−1

𝑖 =

{
 
 
 
 

 
 
 
 (𝜙 𝑘

𝑘−1
(
𝑥𝑘
𝑖

𝑥𝑘−1
𝑖 )𝑤𝑘−1

𝑖 )

𝑞𝑘 (
𝑥𝑘
𝑖

𝑥𝑘−1
𝑖 , 𝑍𝑘)

, 𝑖 = 1, . . , 𝐿𝑘−1

𝛿𝑘(𝑥𝑘
𝑖 )

𝑗𝑘𝑝𝑘 (
𝑥𝑘
𝑖

𝑍𝑘
)

, 𝑖 = 𝐿𝑘−1 + 1,… , 𝐿𝑘+1 + 𝑗𝑘

 

The particle approximation of the PHD updater 𝐷𝑘

𝑘

 is 

𝐷𝑘
𝑘

(𝑥𝑘) = ∑ 𝑤𝑘
𝑘

𝑖𝛿
𝑥𝑘
𝑖 (𝑥𝑘)

𝐿𝑘−1+𝑗𝑘

𝑖=1

 

Where  
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𝑤𝑘
𝑘

𝑖 =

[
 
 
 
 

1 − 𝑝𝐷,𝑘(𝑥𝑘
𝑖 ) + ∑

𝑝𝐷,𝑘(𝑥𝑘
𝑖 )𝑔𝑘 (

𝑧

𝑥𝑘
𝑖 )

𝐾𝑘(𝑧) + 𝐶𝑘(𝑧)
𝑧∈𝑍𝑘

 

]
 
 
 
 

𝑤 𝑘
𝑘−1

𝑖  

𝐶𝑘(𝑧) = ∑ 𝑐𝑘
𝑗
(𝑧)

𝐿𝑘−1+𝑗𝑘

𝑗=1

 

𝑐𝑘
𝑗(𝑧) = 𝑝𝐷,𝑘(𝑥𝑘

𝑗
)𝑔𝑘 (

𝑧

𝑥𝑘
𝑗
)𝑤 𝑘

𝑘−1

𝑖  

Since the mass of the intensity gives the normal number of targets, the basic way to deal with 

evaluation the number of targets 𝑁𝑘 is adjusting the aggregate weight mass as 

𝑁𝑘 = ∑ 𝑤𝑘
𝑘

𝑖

𝐿𝑘−1+𝑗𝑘

𝑖=1

 

Weight Component of particles: 

     𝑤𝑘
𝑖 (𝑧) =

{
 
 

 
 (1 − 𝑝𝐷,𝑘(𝑥𝑘

𝑖 ))𝑤 𝑘

𝑘−1

𝑖 ,      𝑖𝑓 𝑧 = 𝑧0

𝑃𝐷,𝑘(𝑥𝑘
𝑖 )𝑔𝑘(

𝑧

𝑥𝑘
𝑖 )

𝐾𝑘(𝑧)+𝐶𝑘(𝑧)
𝑤 𝑘

𝑘−1

𝑖 ,          𝑖𝑓 𝑧 ∈ 𝑍𝑘

 

Integrated weight of one particle is  

wk
k

i = ∑ 𝑤𝑘
𝑖 (𝑧)

𝑧∈{𝑧0,𝑍𝑘}

 

The sum of the weight components over all particle corresponding to single observation is  

𝑊𝑘(𝑧) = ∑ 𝑤𝑘
𝑖 (𝑧),         𝑧 ∈ {𝑧0, 𝑍𝑘}

𝐿𝑘−1+𝑗𝑘

𝑖=1
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Weight component based MEE: 

Keeping in mind the end goal to acquire numerous assessments from the joint PHD, 

disintegration can be done on particles or on the weight of particles. Dissimilar to the molecule 

bunching that is taking into account the coordinated weight of particles, two MEE techniques 

that are taking into account weight deterioration have been proposed by Ristic [18] and Zhao 

[17] for quick reckoning. In them, the weights of particles are deteriorated concerning 

observations  and afterward the weight parts are utilized to compute gauges, which require no 

grouping of particles. Zhao [17] chooses 𝑁𝑘 different observation z from {𝑧0, 𝑧𝑘}with the biggest 

𝑤𝑘(𝑧) (as called Largest 𝑁 administer) and for each z, one state-assessment is acquired as the 

mean of the conditions of all segment weighted particles  

𝑥𝑘
𝑍ℎ𝑎𝑜(𝑧) =

∑ 𝑤𝑘
𝑖 (𝑧)𝑥𝑘

𝑖𝐿𝑘−1+𝑗𝑘
𝑖=1

𝑊𝑘(𝑧)
 

Interestingly, Ristic [18] decides to concentrate gauges from 𝑧 ∈ {𝑧0, 𝑧𝑘} if the commitment 𝑊𝑘
𝑧 

is greater than a threshold 𝑊𝑡(as called Threshold guideline). This technique has abstained from 

evaluating the cardinality 𝑁𝑘 by total weight mass equation yet an ad-hoc limit must be 

indicated. The state-gauge comparing to the chose z is given as  

𝑥𝑘
𝑅𝑖𝑠𝑡𝑖𝑐(𝑧) = ∑ 𝑤𝑘

𝑖 (𝑧)𝑥𝑘
𝑖

𝐿𝑘−1+𝑗𝑘

𝑖=1

 

 

To note, the weight is not standardized which is the main contrast to (14). This disappointment of 

standardization (as 𝑊𝑘
𝑖(𝑧) is not precisely one) is rectified, which does not utilize the new-

conceived particles for estimation extraction. The assessment is computed as takes after  
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𝑥𝑘
𝑠𝑐ℎ𝑖𝑘𝑜𝑟𝑎(𝑧) =

∑ 𝑤𝑘
𝑖 (𝑧)𝑥𝑘

𝑖𝐿𝑘−1
𝑖=1

∑ 𝑤𝑘
𝑖 (𝑧)

𝐿𝑘−1
𝑖=1

 

Moreover, this won't report any evaluation for the miss-distinguished target; the same as our 

methodology. On the other hand, there are still much space to further decrease the connection 

between evaluations.  

This gathering of arrangements utilize the weight parts to ascertain every evaluation, which is 

inside diverse to the bunching strategy that concentrates every appraisal in view of just a bunch 

of particles (while utilize the incorporated weight). They isolate the PHD in two unique conduct 

for the comparative MEE objective. The previous partitions the weight (into segments) however 

not the particles while the last isolates the particles (by bunching) yet not the weight. 

5.2.2 MEAP estimator 

 

NNN-PARTICLE TO OBSERVATION ASSOCIATION: 

At the first level, we receive the known closest neighbor association system to separation the 

particles as to their space vicinity to individual observations. Each particle is related to its closest 

observation. To note, alerts ought to be paid to the NN part of particles when two or more 

observations are close. For this situation, the particles are exceedingly blended and the NN 

association is not so much compelling to manage the relationship. Case in point in figure, two 

observations (in shading of beat up) are verging on covered (the targets are additionally close), 

then every observation will be related with just a half number of the particles in the joint cloud 

(green and red) by utilizing the NN association; the assessments given by every a large portion of 

the particle cloud is liable to be floated away from the inside as they exclude the particles on the 
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other side in their estimation even the particles are near to them. The same thing can happen for 

the situation at the point when more observations are near to one another, which is a specific test 

for the SMC-PHD channel [7]. 

Making into note of this particular case, we amplify the NN system to incorporate the exact close 

particles even they are not related to the basic observation agreeing to the NN guideline, in 

particular the NNN association, as takes after 

𝑢(𝑧) = 𝑁(𝑧) ∪ 𝐺𝑎𝑡𝑒(𝑧) 

where N(z) is the RFS of the related particles whose closest observation is z and Gate(z) is the 

RFS of particles that lie in the a predefined entryway scope around observation z (as indicated by 

the red and green circles of Figure). The entryway needs to be appropriately composed as per the 

observation commotion. For our situation we propose an extent of 0.5~2-time standard deviation 

of the observation commotion, which is a level to catch the most huge observations while abstain 

from overshooting. As a result, the particles in the red/green circle will be related to the 

green/red observations and will be taken into record exclusively in their appraisal computation. 

This can be depicted as Algorithm 1, where dis(z,i) is the Euler separation between observation z 

and the position of particle i in the observation space, 𝑖 → 𝑢(𝑧) means particle I is added into the 

RFS u(z). 

Algorithm 1 NNN particle to observation association 

For 𝑖 = 1, … , 𝐿𝑘−1 + 𝑗𝑘 DO 

∀ {𝑧 ∈ 𝑍|𝑧 = max
𝑧
𝑔𝑘(𝑧|𝑥𝑘

𝑖 ) 𝑜𝑟 𝑑𝑖𝑠(𝑧, 𝑖) ≤ 𝑔𝑎𝑡𝑒}: 

𝑖 → 𝑢(𝑧) 
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Figure 7: Different space proximities of observations 

 

DISTINGUISH OBSERVATION OF TARGETS FROM CLUTTER: 

We propose to partition the aggregate observation RFS 𝑍𝑘 into two RFSs: target-observation 

RFS 𝑍𝑘,𝑇 and mess RFS  𝑍𝑘,𝑐, satisfying 𝑍𝑘 = 𝑍𝑘,𝑡 ∪ 𝑍𝑘,𝑐. To execute MEE, the MEAP estimator 

just employ  𝑍𝑘,𝑡. As expected, the condition of targets includes in a Markov procedure while the 

mess generator does not so much develop with the PHD engendering after some time. This could 

be utilized to recognize the observations of targets from mess: the target is equivalently more 

prone to fall in the range of high PHD where the mass of particles is moderately substantial and 

along these lines the observation of a target will contribute all the more fundamentally to the 

PHD, i.e. Rule 1. The observations that contribute more fundamentally to the PHD, as far as a 

larger 𝑊𝑘(𝑧), are more probable produced by the targets. This rule is close to a guideline of the 

thumb which has really been utilized in existing MEE systems, e.g. Ristic's Threshold control, 

Zhao's Largest N guideline and the observation-based grouping [17]. In our methodology, we 
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can utilize either the Threshold standard or the Largest N principle to separation observations to 

obtain 𝑍𝑘,𝑡. They compare to the primary stride of Algorithm 2 and 3 individually as named 

MEAP I and MEAP II. In particular, it is anything but difficult to know, maximally |𝑍𝑘| 

assessments can be separated in both calculations where |𝑍𝑘|is the cardinality of  𝑍𝑘.  

It is important that Rule 1 is prohibitive as mess generators may fall near to existing particles 

accordingly giving critical ascent to the PHD and will be taken as a target. For this situation, 

even the PHD itself will be by regional standards over-assessed and the MEE can't be any better. 

This is a natural disadvantage of the multi-target thickness channel that is in view of 

observations of single-edge just. Now that its out in the open, all MEE strategies include some 

level of choice that is dependably of danger taking. However, we repeat that MEE is an 

autonomous choice procedure to the channel that won't influence the separating result. 

EAP estimator: 

For every sub-issue of single observation and an arrangement of particles, the EAP estimator is 

given as 

𝑥𝑘
𝐸𝐴𝑃(𝑧) = ∑ 𝑥𝑘

𝑖𝑤𝑧
𝑖

𝑖∈𝑢(𝑧)

 

Where the single observation weight 𝑤𝑧
𝑖 is updated by the likelihood of observation 𝑧 ∈ 𝑍𝑘,𝑇 as 

                                    𝑤𝑧
𝑖 = 𝑔𝑘(𝑧|𝑥𝑘

𝑖 ) ∗ 𝑤𝑘|𝑘−1
𝑖 , ∑ 𝑤𝑧

𝑖 = 1𝑖∈𝑢(𝑧) , 𝑧 ∈ 𝑍𝑘,𝑇 
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Figure 8: Illustration of the Multi-EAP estimator 

 

 

 



48 

 

 

 

Chapter 6 

Results and Discussion  

 

Result of Gauss-Newton Localization: 

 

Figure 9: Illustrating the result of Gauss-Newton Localization method 
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Result of temporal ratio based localization technique: 

 

Figure 10: Tracking of target along with temporal ratio based localization technique. 

 

 

 

Result of energy based collaborative target localization:

 

Figure 11: Result of Localization without transmitting power. 
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Result of tracking target using Gauss-newton localization and multi-hop communication 

model: 

 

Figure 12: Gauss-Newton Localization Tracking in MHC 

Determination of Direction of movement inside a cell:

 

Figure 13: Direction  measurement inside a cell,(225-315) 
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Result illustrating the two-tier multi-hop communication model: 

 

Figure 14: Efficient two-tier Multi-hop Communication network. 

Multi-target tracking in polar co-ordinate system [7]: 

 

Figure 15:Multi Target Tracking in polar co-ordinate system 
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Observations of both Distance and Bearing (angle) [7]: 

 

Figure 16: Observations of both Distance and Bearing(angle) 

 

Comparison of different Multi-Estimate Extraction methods [7]: 

 

Figure 17: Comparison of different Multi-Estimate Extraction methods: 
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Discussion: 

 

With the approach of sensor networks, the MTT issue moves from a brought together 

undertaking performed on a modest bunch of radar tracking stations to an omnipresent capacity 

in networks of a great many reasonable sensor nodes. In these frameworks, asset administration 

is significantly more discriminating than in conventional tracking frameworks because of the 

constrained bandwidth of the shared remote channel, the constrained accessibility of battery 

vitality or sun based force, and the restricted computational abilities of sensor nodes. This article 

has exhibited an end-to-end instructional exercise of how numerous target tracking can be 

executed for an asset constrained appropriated sensor network stage. By selecting a suitable 

combination instrument, sensor utility metric and a sensor tasking methodology, one can deliver 

a framework which productively tracks targets as free substances while they are broadly isolated. 

By including calculations for tracking in the joint space for targets in close vicinity to one 

another and a character administration plan to handle potential perplexities between intersection 

targets, we need think about just as a little number of targets at a time, staying away from the 

exponential intricacy when conceivable.  

In adjusting the MTT ideal model for sensor networks, the centrality of sensor administration has 

get to be clear. Specialists need to start considering the bigger issue of asset administration. 

Assets incorporate sensor assets, network assets, computational assets furthermore, 

vitality/power assets. What is basic to see here is that these assets can be exchanged off between 

classifications. Case in point, one may substitute a bank of altered cameras for a container tilt 

unit. In the event that tracking is performed provincially, at that point nearby handling can be 

apportioned to perform tracking for a specific course a virtual container tilt. So also, if tracking is 

performed off board, a unit of network bandwidth spent in transporting information from an 
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extra camera is identical to another virtual container tilt. Previously, these tradeoffs have been 

typical in equipment and framework plan, however in an asset oversaw framework, they may be 

differed progressively as per the framework's current abilities and prerequisites. As sensor 

networks move far from tracking tanks in the abandon and boats adrift, and into swarmed human 

situations, customary different target tracking methodologies will hit their cutoff points. These 

frameworks will need to know their energy, reckoning and correspondence cutoff points, center 

their detecting assets, and part their induction assignments suitably. This is the manner by which 

they can tame an intricate world. 
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Chapter 7 

Conclusions and Future scope 

A multi-EAP (MEAP) estimator is proposed to concentrate state-evaluation of various targets for 

the SMC-PHD channel by planning the issue roughly as a group of parallel sub-issues; each is a 

solitary observation single target state-estimation that is tackled by utilizing the ideal EAP 

estimator. The proposed methodology is free of iterative grouping reckoning and yields exact 

and solid estimation, which is direct to be utilized in propelled forms of the SMC-PHD channel. 

It is moreover suitable for parallel handling. Reproductions have shown its conspicuous 

prevalence over cutting edge strategies as far as both figuring rate and estimation exactness. The 

benefit of MEAP is accentuated when the targets are well inaccessible and when the disarray rate 

is low. By and large, MEAP is qualified to serve as one of the standard MEE answer for the 

SMC-PHD channel. Two testing circumstances stay open issues for dependable and precise 

MEE for the SMC-PHD channel. One is to recognize mess that is produced nearly to genuine 

targets in order to go around overestimation of the PHD as well as the bogus estimation of 

targets. The other is to gauge the condition of miss-identified targets that may be numerous in 

one output. For these two issues, restricted data of one single casing just is not any more 

sufficient. In our perspective, one needs to endeavor various casing data on the other hand even 

amplified data of targets (e.g. the shape, the shading, and so on.). Future scope of this project 
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incorporate taking care of the MEE with "track coherence" and the RFS-based Bayes smoother 

to enhance the incorporated yield for the tracker. 
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