
SIMULATION OF CONTINUOUS STIRRED TANK 

REACTORS (CSTR’S) USING ORTHOGONAL 

FUNCTIONS 
A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE 

REQUIREMENTS FOR THE AWARD OF THE DEGREE OF 
 

Master of Technology 

In 

Chemical Engineering 

Department of Chemical Engineering 

 

By 
 

KAMESWARI MANI PRIYANKA NEMANI 

Roll No: 213CH1125 

 

 

 

Under the Guidance of 

Prof. Madhusree Kundu 

Department of Chemical Engineering 

National Institute Technology, Rourkela-769008 

 



 

ii 
 

 

 

NATIONAL INSTITUTE OF TECHNOLOGY 

ROURKELA 

CERTIFICATE 

This is to certify that the project entitled “SIMULATION OF CONTINUOUS STIRRED 

TANK REACTORS (CSTR’s) USING ORTHOGONAL FUNCTIONS” submitted by 

Kameswari Mani Priyanka Nemani (213CH1125) in partial fulfilment of the requirements 

for the award of Master of Technology degree in Chemical Engineering, Department of 

Chemical Engineering at National Institute of Technology, Rourkela is an authentic work 

carried out by her under my supervision and guidance. 

To the best of my knowledge the matter embodied in this thesis has not been submitted to any 

other university/Institute for the award of any Degree. 

 

 

 

                           

Date:                                                                                                 Prof. Madhusree Kundu            

Place: Rourkela                                                                Department of Chemical Engineering 

                                                                                                                             NIT Rourkela 
 

 

 

 



 

iii 
 

ACKNOWLEDGEMENT 

On the submission of my thesis entitled “SIMULATION OF CONTINUOUS STIRRED 

TANK REACTORS (CSTR’s) USING ORTHOGONAL FUNCTIONS” I would like to 

express my most sincere gratitude to Dr. Madhusree Kundu, my professor and thesis 

advisor, for her continuous guidance, encouragement and patience during the course of my 

project .Her direct contributions helped me in the completion of the thesis. I would like to 

thank the head of the department Prof.P.Rath for supporting me with all the necessary 

equipment and for giving such a supportive advisor.  

And also thank D.Seshu Kumar, Research Scholar for helping me appreciate the underlying 

mathematical aspects of this project and Sujeevan Kumar Agir, Research scholar. Thank you 

to all my professors and technicians in the Department of Chemical Engineering.  

I would like to thank all others who have consistently encouraged and gave me moral support, 

without whose help it would be difficult to finish this project. 

I would like to thank my parents and friends for their consistent support throughout.  

 



 

1 
 

ABSTRACT 

Over the centuries, several numerical methods have been developed to approximate the solution 

of mathematical problems that are difficult to be solved by analytical methods. These numerical 

techniques succeeded in attaining a solution that is close enough to the exact solution with 

minimum errors and maximum stability. However, there may be the development of several 

other numerical methods which can be robust and efficient than the existing methods.My 

proposed research work is about the application of one such method-Orthogonal functions. 

Orthogonal functions can be broadly classified in to three families; namely, the piecewise 

constant, polynomial, and sine-cosine family. Walsh function and block pulse function belong to 

the piecewise constant family. So far orthogonal functions have been used in the optimal control, 

solving integro-differential equations, trajectory problems and so on. However, orthogonal 

functions have not been applied to chemical systems and processes. Hence my work is 

emphasised on simulating reactors using orthogonal functions; mainly block pulse functions and 

triangular functions. 

The continuous stirring tank reactors (CSTR’s) are widely used in the chemical industries. Hence 

the reactions in a CSTR are modelled by a set of differential equations which are discretised to a 

set of algebraic equations by orthogonal functions. Previously many numerical methods such as 

Runge-Kutta method, Euler method have successfully converted the set of differential equations 

into a set of algebraic equations. But the orthogonality of the functions has never been used for 

discretisation. Here orthogonal functions simulate chemical reactors using the principle of 

orthogonality (two functions are said to be orthogonal if the dot product of the approximating 

vectors is zero). Block-pulse functions have been used to obtain the dynamics of concentration 

and temperature of the continuous stirring tank reactors (CSTR’s). Further a recurrence 

relationship developed using block-pulse functions and triangular functions have been used in 

solving linear and non-linear system of differential equations. The major importance of 

orthogonal functions lies in its application to optimal control to systems. A recursive algorithm 

developed using block pulse functions has been applied to a linear control problem to determine 

the states and optimality criterion. 

Keywords: Orthogonal functions, Block pulse functions, Triangular functions, system 

identification and optimal control. 
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1.1 NUMERICAL ANALYSIS 

Numerical analysis is useful in practical mathematical calculations obtaining approximate 

solutions with a reasonable bound of errors. The Babylonian tablet that was the earliest 

mathematical writings approximated √ (2) the length of the diagonal of a unit square. 

Numerical analysis is applicable to all fields of engineering and physical sciences. They were 

used in solving System of Equations, Eigenvalues and Singular value problems, Numerical 

Integration, Ordinary and Partial Differential Equations. The overall goal of the numerical 

analysis is the design and analysis of techniques to approximate solutions of difficult 

problems accurately. A numerical method not only develops methods but also analyses them 

by three central concepts: convergence, stability, order. It works with a wide variety of 

problems such as: 

 It makes weather prediction feasible. 

 Computing the trajectory of a spacecraft requires an accurate numerical solution of a 

system of Ordinary Differential equations (ODE’s). 

 Car companies can improve the crash safety of their vehicles using computer 

simulations of car crashes, which involves solving partial differential equations. 

 Insurance companies use numerical analysis for actuarial analysis. 

Computation of solution to a problem in finite number of steps is possible by direct methods 

giving precise answers. Examples of direct methods include Gaussian elimination, QR 

factorization for solving linear equations and simplex method for linear programming. 

Indirect methods take infinite number of steps to produce output to a problem. It starts with an 

initial guess forming successive approximation and converges to the exact solution with a 

limit. It also includes a convergence test to decide the accuracy of the solution once it has 

been obtained. Examples of such methods are Newton-Raphson method, Bisection method 

and Jacobi iteration. Iterative methods otherwise called as indirect methods are more common 

than the direct methods. 

The important part of the numerical analysis deals with a study of errors, which comprises of 

round-off errors, truncations errors, discretization errors. Round-off errors arise due to non-

representation of all real numbers exactly on a machine with finite memory. Truncation errors 

occur due to termination of an iterative method or a mathematical procedure, which results in 
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approximate solution differing from the exact solution. Discretization error is caused when the 

discretized problem solution does not coincide with that of the continuous problem. 

The other important part of the numerical analysis is stability, i.e. a procedure is said to be 

numerically stable if the error does not grow to a large extent during calculation, which means 

problem should be well conditioned. When the problem was well conditioned, the solution 

changes by a small amount for a small change introduced in the input data. However, an ill-

conditioned problem exhibits significant deviation for small changes in data. Thus, the art of 

numerical analysis is to find a stable algorithm for solving a well-defined mathematical 

problem. 

Most of the chemical reactions we come across in the industry are systems to which certain 

inputs are given and outputs are expected either in terms of mass compositions, temperatures, 

and pressures. We deal with non-ideal systems in which inputs get accumulated within the 

reacting system as time proceeds. Thus, unlike the ideal system for which rate of input is 

equal to rate of output, non-ideal systems have accumulation term equal to the difference 

between the inputs and outputs. When a reaction occurs, reaction rate term gets included. All 

these terms put together in mass balance equation and applying limits gives differential 

equations. Therefore, industrial reacting systems precisely have differential equations to be 

modelled. In order to analyse the real reactor behaviour, the proposed methods are to be 

applied to these model equations (set of differential equation).Thus the proposed work focuses 

on simulating differential equations within a reactor (CSTR).    

1.1.1 Numerical Methods for Ordinary Differential Equations 

Many differential equations cannot be solved by symbolic computation and hence practically 

needs to be approximated to the exact solution. Thus, algorithms which can handle ordinary 

differential equations are developed and used. Ordinary differential equations occur in many 

disciplines such as in physics, biology, chemistry, economics and engineering. To obtain the 

solution of some partial differential equations, they are converted to ODE’s and then solved. 

Numerical methods for initial value problems (IVP’s) differ from that of boundary values 

problems (BVP’s) which require a different set of tools. In a BVP, value or component of the 

unknown variable is defined at more than one point unlike in the IVP, which defines an 

unknown variable at the initial point of the system. Hence, BVP requires separate methods. 
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For solving first order initial value problems, methods are categorized into two types: linear 

multistep methods and Runge-Kutta methods. 

A further classification includes implicit and explicit methods. Implicit linear multistep 

methods are the Adams-Moulton method and backward differentiation method (BDF) 

whereas implicit Runge-Kutta methods include diagonally RK method, singly diagonally 

implicit RK method and Gauss-Radau method. Explicit linear multistep methods are Adam-

Bashforth method and any Runge-Kutta method with lower diagonal Butcher tableau is 

explicit.  The rule of thumb is that for stiff differential equations implicit schemes must be 

used and for non-stiff differential equations explicit methods can be used. 

1.1.2 Euler Method 

Euler method is an SN-order numerical procedure for solving ODE of IVP. It is regarded as 

the primary explicit method for numerical integration of ODE’s and is the simplest of all 

Runge-Kutta methods. Because it is a first-order method, the local error is proportional to the 

square of step size while the global error is proportional to step size. Euler method forms the 

basis for all sophisticated methods. 

Forward Euler Method:-The forward Euler method is an explicit method which means a 

new value 𝒚𝒏+𝟏 is defined in terms of known 𝒚𝒏 

𝒚′(𝒕) =
𝒚(𝒕 + 𝒉) − 𝒚(𝒕)

𝒉
… … … … … … … … … … … … … … … … … … … … … … … … … … … (𝟏. 𝟏) 

𝒚(𝒕 + 𝒉) = 𝒚(𝒕) + 𝒉𝒚′(𝒕) … … … … … … … … … … … … … … … … … … … … … … … … … … (𝟏. 𝟐) 

𝒚(𝒕 + 𝒉) = 𝒚(𝒕) + 𝒉𝒇(𝒕, 𝒚(𝒕)) … … … … … … … … … … … … … … … … … … … … … … … … (𝟏. 𝟑) 

𝒚𝒏+𝟏 = 𝒚𝒏 + 𝒉𝒇(𝒕𝒏, 𝒚𝒏) … … … … … … … … … … … … … … … … … … … … … … … … … … … (𝟏. 𝟒) 

Backward Euler method:-The backward Euler method, unlike the forward Euler method, is 

an implicit method in which the equation has to be solved to find out 𝒚𝒏+𝟏 ,  hence Newton-

Raphson method is used. One disadvantage of an implicit method like Backward Euler 

method is the time for computation that is very high. However, the advantage is that implicit 

methods are more stable for solving stiff differential equations, and a large step size can be 

used. 
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𝒚′(𝒕) =
𝒚(𝒕) − 𝒚(𝒕 − 𝒉)

𝒉
… … … … … … … … … … … … … … … … … … … … … . … … … … … . (𝟏. 𝟓) 

𝒚𝒏+𝟏 = 𝒚𝒏 + 𝒉𝒇(𝒕𝒏+𝟏, 𝒚𝒏+𝟏) … … … … … … … … … … … … … … … … … … … … … … … … … (𝟏. 𝟔) 

The Euler method is often not very accurate as it considers only first order equations ignoring 

higher order equations. In such multistep methods, one gets to use the previously computed 

value 𝒚𝒏 to determine new value 𝒚𝒏+𝟏 . In case if more points are used in the interval, it leads 

to Runge-Kutta method. 

1.2 ORTHOGONAL FUNCTIONS 

In mathematics, two functions 𝑓 and 𝑔 are called orthogonal if their inner product (𝑓, 𝑔) is 

zero for f≠g. A typical definition of inner product is∫  𝑓 ∗ (𝑥)𝑔(𝑥), where 𝑓 ∗ (𝑥)the complex 

conjugate of function is‘𝑓’. The inner product of f and g can be roughly approximated as the 

dot product between two vectors𝑓, 𝑔. Thus, two functions are orthogonal if their 

approximating vectors are perpendicular. Orthogonality of functions is a generalization 

concept of orthogonalization of vectors. Suppose we define 𝑉 to be set of variables on which 

functions 𝑓 and 𝑔 operate then if 𝑉 = {𝑥}, 𝑥 is the only parameter to 𝑓 and 𝑔,  thus there is 

one parameter; hence one integral sign is required to determine orthogonality. 

Orthogonal functions can be broadly classified in to three families; namely, the piecewise 

constant, polynomial, and sine-cosine family. Harr functions, Block pulse functions, Delay-

unit step functions, Slant functions, Triangular functions, Rademacher functions, Walsh 

function and block pulse function belong to the piecewise constant family while Chebyshev 

polynomial of first and second kind, Laguerre polynomial, Hermite polynomials, Jacobi 

polynomials together with their special cases the Gegenbauer polynomials, and Legendre 

polynomials belong to the polynomial family. Functions at any time can be synthesized using 

a set of orthogonal functions with a tolerable degree of accuracy. An orthogonal polynomial 

sequence is a family of polynomials such that any two different polynomials in the sequence 

are orthogonal to each other under some inner product.  

The sine-cosine functions or orthogonal polynomials can represent a continuous function, 

however, becomes unsatisfactory for representing functions with discontinuities, jumps or 

dead-time. For representing such functions, piece-wise constant orthogonal functions such as 

Walsh functions or block pulse functions can be used. Each class of orthogonal functions 

http://en.wikipedia.org/wiki/Jacobi_polynomials
http://en.wikipedia.org/wiki/Jacobi_polynomials
http://en.wikipedia.org/wiki/Gegenbauer_polynomials
http://en.wikipedia.org/wiki/Polynomial
http://en.wikipedia.org/wiki/Orthogonality
http://en.wikipedia.org/wiki/Inner_product
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forms a basis for series expansion of a square integrable function, OFs’ are commonly called 

as basis functions.  

Orthogonal functions are used to construct operational matrices for solving, identification and 

optimization problems of dynamic systems. They help in dealing with various problems of 

dynamic systems as it reduces to those of solving algebraic equations. By using this approach, 

differential equations are converted into integral equations through integration, approximating 

various signals involved in the equation by truncated orthogonal functions and using 

operational matrices of integration to eliminate integral operation. 

1.2.1 Block-pulse Functions 

An orthogonal block-pulse function has been used to obtain the dynamics of concentration 

and temperature of the continuous stirring tank reactors. The operational matrix, P of the 

block-pulse functions eliminates integration operation and hence simplifies the system of state 

equations into a set of algebraic equations. The algorithm using BPF has been developed in 

the MATLAB platform. The idea is to present the states and outputs in terms of these block-

pulse functions. The present method is advantageous over the existing methods like Runge-

Kutta, Laplace transformations, State-space approach in terms of its simplicity in operation 

and accuracy. 

Operational Matrix Derivation 

An m-set of BPF is defined as follows: 

    𝜱𝒊(𝒕) = {
𝟏, 𝒊𝒉 ≤ 𝒕 ≤ (𝒊 + 𝟏)𝒉

𝟎, 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆,     
                             (1.7) 

 

Where 𝑖 =  1,2, . . . . . . . , 𝑚 − 1 with positive integer values for m, and h=T/m, and m are 

arbitrary positive integers. There are some properties for BPFs, e.g. disjointness, 

orthogonality, and completeness. 

Disjointness: - The block-pulse functions are disjoint with each other; i.e., 

    𝜱𝒊(𝒕)𝜱𝒋(𝒕) = {
𝜱𝒊(𝒕), 𝒊 = 𝒋,

𝟎,     𝒊 ≠ 𝒋
              (1.8) 

Where 𝑖, 𝑗 =  0, . . . . . . , 𝑚 − 1. 

 

Orthogonality: - The block-pulse functions are orthogonal with each other i.e., 
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  ∫ 𝜱𝒊(𝒕)𝜱𝒋(𝒕)𝒅𝒕 = {
𝒉, 𝒊 = 𝒋,

𝟎, 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
                                             (1.9) 

 

In the region of 𝑡 ∈   [0, 𝑇 ), where 𝑖, 𝑗 =  1, 2, . . . . . . . , 𝑚 − 1. This property is obtained from 

the disjointness property. 

Completeness:- 

                 

∫ 𝒇𝟐∞

𝟎
(𝒕)𝒅𝒕 = ∑ 𝒇𝟐∞

𝟎 ║𝜱𝒊(𝒕)║
𝟐

… … … … … … … … … … … … … … … … … … … … … … … . (𝟏. 𝟏𝟎)

               

Where, 

                                                    

 𝒇𝒊 = 𝟏/𝒉 ∗ (∫ 𝒇(𝒕)𝜱𝒊(𝒕))𝒅𝒕
𝟏

𝟎

… … … … … … … … … … … … … … … … … … . … … … … . … (𝟏. 𝟏𝟏) 

 

The set of BPFs may be written as an m-vector (t): 

 

                                       𝜱(𝒕)𝜱𝑻(𝒕) = 𝟏, … … … … … … … … … … … … … … … … . . … … … … (𝟏. 𝟏𝟐) 

 

Where t ∈ [0, 1). From the above representation and disjointness property, it follows: 

 

 

𝜱(𝒕) = [𝜱𝟎(𝒕), . . . . . . . , 𝜱𝒎−𝟏(𝒕)]𝑻 

                                                                                           … … … … … … … … … … … … . … . … (𝟏. 𝟏𝟑) 

  𝜱 (𝒕)𝜱𝑻(𝒕) = [
𝜱𝟎(𝒕) ⋯ 𝟎

⋮ ⋱ ⋮
𝟎 ⋯ 𝜱𝒎−𝟏(𝒕)

] … … … … … … … . . . … … … … … … . . … … … . … (𝟏. 𝟏𝟒) 

  

 

                                                     𝜱(𝒕)𝜱𝑻(𝒕)𝑽 = �̃�𝜱(𝒕) … … . … … … … . . … … … … … . . . . (𝟏. 𝟏𝟓) 

 

Where V is an m-vector and 𝑉 =  𝑑𝑖𝑎𝑔(𝑉 ). moreover, it can be clearly concluded that for 

every m x m matrix A: 
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                                                        𝜱(𝒕)𝑻𝑨𝜱(𝒕) = �̂�𝑻𝜱(𝒕) … . . … … … … … … … . … … … . . . (𝟏. 𝟏𝟔) 

Where A is an m-vector with elements equal to the diagonal entries of matrix A. 

Functions approximation:- 

 

A function 𝑓(𝑡), 𝐿€([0,1)) may be expanded by the BPFs as: 

 

                       𝑭(𝒕) = ∑ 𝑭𝒊𝜱𝒊(𝒕) = 𝑭𝑻𝜱(𝒕) = 𝜱𝑻(𝒕)𝑭 … … … … . … … . . … . . … . (𝟏. 𝟏𝟕) 

 

where F is a m-vector given by 

 

 

𝑭 =  [𝒇𝟎, . . . . . . . . 𝒇𝒎−𝟏]𝑻 

                                                                                           … … … … … … … … … … … … … … . . . . . (𝟏. 𝟏𝟐) 

𝜱(𝒕) = [𝜱𝟏(𝒕) , 𝜱𝟐(𝒕), . . . . . . . . , 𝜱𝒎−𝟏(𝒕) ]𝑻 

                                                                             … … … … … … … … … … … … … … … … … … . . . (𝟏. 𝟏𝟑) 

The block-pulse 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 𝑓i are obtained as: 

 

                                               𝒇𝒊 =
𝟏

𝒉
∫ 𝒇(𝒕)𝜱𝒊(𝒕) 𝒅𝒕 … … … … … … … … … … … … … … . . . . . (𝟏. 𝟏𝟒) 

 

such that error between f(t), and its block-pulse expansion in the region of t ∈ [0,1) 

                                              𝜺 =   ∫ (𝒇 −  ∑𝒇𝒊𝜱𝒊(𝒕))𝟐𝒅𝒕
𝒎−𝟏

𝒊=𝟎

… … … … … … … … … … . … … … . (𝟏. 𝟏𝟓) 

 

                                                   𝒌(𝒙, 𝒕) = 𝜱𝑻(𝒙)𝑲𝜱(𝒕) … … … … … … … … … … . … … … . … … (𝟏. 𝟏𝟔) 

 

                           𝒌𝒊𝒋 = 𝒎𝟏𝒎𝟐 ∬ 𝒌(𝒙, 𝒕)𝜱𝒊(𝒙)𝜱𝒋(𝒕)𝒅𝒙𝒅𝒕 … … … … … . . … … . . … … … … … (𝟏. 𝟏𝟕) 
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Operational matrix Integration:- 

 

We compute  ∫  𝜱𝒊(ح)𝒅ح
𝒕

𝟎
  as 

                                             

         ∫  𝜱𝒊(ح)𝒅ح
𝒕

𝟎
= {

𝟎,    𝒕 ≤  𝒊𝒉
𝒕 − 𝒊𝒉, 𝒊𝒉 ≤ 𝒕 ≤ (𝒊 + 𝟏)𝒉

𝒉,     (𝒊 + 𝟏)𝒉 ≤ 𝒕 ≤ 𝟏
                                                                           (1.18) 

Then the above expression can be written as 

 

                       ∫ 𝜱𝒊(ح) 𝒅ح   = (𝒕 − 𝒊𝒉)𝜱𝒊(𝒕) + 𝒉  ∑ 𝜱𝒋(𝒕)

𝒕

𝟎

… … … … … … … … … … . … . . . . (𝟏. 𝟏𝟗) 

we have  

                                  𝑿 =
𝟏

𝟐𝒉
( ∑ [((𝒊 + 𝟏)𝒉)

𝟐
− (𝒊𝒉)𝟐] 𝜱𝒊(𝒕)

𝒎−𝟏

𝒊−𝟏

) … … … … … … … … … . ….  (𝟏. 𝟐𝟎) 

 

By using orthogonal property, for0 ≤  𝑖 ≤  𝑚 , we have 

 

 

            ∫ 𝜱𝒊 (ح) 𝒅 ح 

𝒕

𝟎

= 𝟏/𝟐𝒉( ∑ [((𝒋 + 𝟏)𝒉)𝟐 − (𝒋𝒉)𝟐])𝜱𝒋(𝒕)𝜱𝒊(𝒕)

 𝒎−𝟏

  𝒋=𝟎 

− (𝒊𝒉)𝜱𝒊(𝒕) + 𝒉∑𝜱𝒊(𝒕) 

 

                            = 𝟏/𝟐𝒉[((𝒊 + 𝟏)𝒉)𝟐 − (𝒊𝒉)𝟐]𝜱𝒊((𝒕) − (𝒊𝒉)𝜱𝒊((𝒕) + 𝒉 ∑ 𝜱𝒊(𝒕) 

                                         =𝒉/𝟐𝜱𝒊 + 𝒉 ∑ 𝜱𝒋(𝒕) 

                                                        … . … … … … … … … … … … … … … … … … … … … . … . . … … (𝟏. 𝟐𝟏) 

The integration of the vector 𝛷(𝑡) may be obtained as: 

 

                                         ∫ 𝜱(ح) 𝒅ح    =   𝑷 𝜱(𝒕) … … … … … … … … … … … … … … … … … (𝟏. 𝟐𝟐) 

 

Where P is called operational matrix of integration which can be represented by 
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                                           𝑷 =

𝒉 [
𝟏 ⋯ 𝟐
⋮ ⋱ ⋮
𝟎 ⋯ 𝟏

]

𝟐
 … … … … … … … . … … … … … … … … . . … . (𝟏. 𝟐𝟑) 

And their integrals in matrix form  

 

(
∫ 𝜱𝟎 ⋯ 𝟎

⋮ ⋱ ⋮
∫ 𝜱𝒎−𝟏 ⋯ 𝟎

) =
𝒉

𝟐
[
𝟏 ⋯ 𝟐
⋮ ⋱ ⋮
𝟎 ⋯ 𝟏

] (
𝜱𝟎 ⋯ 𝟎

⋮ ⋱ ⋮
𝜱𝒎−𝟏 ⋯ 𝟎

) … … … … … … … … … … … … . . (𝟏. 𝟐𝟒) 

 

By using matrix we can express the integral of a function f(t) into block pulse series 

 

                              ∫ 𝒇𝒎(ح) 𝒅ح
𝒕

𝟎

      = ∫ 𝑭𝑻𝜱𝒎𝒅𝒕
𝒕

𝟎

= 𝑭𝑻𝑷 𝜱𝒎(𝒕) … … . … … … … . … … . . . (𝟏. 𝟐𝟓) 

Example 

Consider a first order D.E such as 
𝑑𝑦

𝑑𝑡
= 𝑦; 𝑦(0) = 1; 𝑡 ∈ [0,1]; ℎ = 0.25 

From N-fold integration property, the L.H.S of the D.E can be integrated as 𝑦(𝑡) − 𝑦(0) 

Then the R.H.S can be represented as 𝐽𝑦(𝑡) 

Combining the expressions in L.H.S and R.H.S. we get 

𝑦(𝑡) = 𝐽𝑦(𝑡) + 𝑦(0) 

This can be written in terms of BPF coefficients 

𝑪𝑻ѱ(𝒕) − 𝑪𝟎
𝑻ѱ(𝟎) = 𝑪𝑻𝑷ѱ(𝒕) … … … … … … … … … … … … … … … … … … … … . … … . . (𝟏. 𝟐𝟔) 

𝑪 − 𝑪𝟎 = 𝑪 ∗ 𝑷 … … … … … … … … … … … … … … … … … … … … … … … … … … … … … . . . . (𝟏. 𝟐𝟕) 

Now taking m=4; 𝐶0
𝑇 = [1 1 1 1]; 𝑃 =

ℎ

2
[

1 2
0 1

2 2
2 2

0 0
0 0

1 2
0 1

]  

Eqn (1.27) can be rewritten as 

(𝑰 − 𝑷)𝑪𝑻 = 𝑪𝟎
𝑻 … … … … … … … … … … … … … … … … … … … … … … … … … … … … … . . (𝟏. 𝟐𝟖) 

Where I is the identity matrix of order 4x4, P is the operational matrix of order 4x4.On 

solving the eqn. (1.28) gives the unknown BPF coefficient 𝑪𝑻 which is the output of the above 

stated first order D.E 

𝑪𝑻 = [𝟏. 𝟏𝟒𝟐𝟗 𝟏. 𝟒𝟗𝟔𝟒 𝟏. 𝟖𝟖𝟗𝟐 𝟐. 𝟒𝟗𝟐𝟏] … … … … … … … … … … … … … … … … (𝟏. 𝟐𝟗) 
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1.2.2 Triangular function  

Apart from Walsh functions and block pulse functions, the other orthogonal function which is 

equally potential in simulations of process systems is the triangular function set. The 

triangular function set can also approximate function and form operational matrices P1 and P2 

to resolve differential and integral equations. 

1.2.3 Optimal control with BPF 

To derive the control policies, there exists a mathematical optimization method called optimal 

control theory. Optimal control finds a control law for a specific system that achieves certain 

optimality criterion. There exists a cost function in control problems that is a function of state 

and control variables. Therefore in order to minimize the cost functional, optimal control 

describes the paths of control variables. The optimal control problems are nonlinear in nature 

and cannot be solved by analytical methods. Thus, numerical methods can be employed to 

solve them. Block pulse function is applied to the control problem to establish the optimality 

criterion. 

1.3 OBJECTIVE 

The objective of the present dissertation is to utilize the potency of orthogonal functions 

namely block-pulse function (BPF) and triangular function (TF) in simulation and 

control of different kinds of continuous stirred tank reactors.  

 

1.4 SCOPE 

Our work is fragmented into five main divisions in which model equations of various 

reactions in a CSTR are considered. These model equations are simulated by the 

following ways: 

1) Simulation of a reversible reaction, irreversible reaction, and jacketed heater by 

operational matrix derived using block pulse functions. These systems come into 

the category of linear systems. 

2) Simulation of Glucose and Insulin concentrations in a Biochemical Reactor by 

operational matrix derived using block pulse functions (BPF). These are non-

linear systems. 

3) An alternative approach to simulate linear and non-linear systems is the 

recursive relation developed in both BPF and triangular function (TF) domains.  
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The recurrence relation in both domains is applied to two systems of irreversible 

reactions. 

4) Recurrence relation in BPF domain is applied to two non-linear systems: 

Biochemical Reactor and Non-isothermal CSTR. 

5) Optimal Control of CSTR’s using block-pulse functions. 

 

1.5 THESIS ORGANIZATION 

The thesis consists of six chapters in all .They are 

Chapter 1: Introduction of numerical techniques 

Chapter 2: Literature survey; in this chapter the details of other significant works done on the 

applicability of orthogonal functions are presented. 

Chapter 3:  Simulation of linear and non-linear systems using operational matrices of block 

pulse functions; the output variables are determined by converting model equations into a 

system of linear algebraic equations with the help of operational matrix and this technique 

includes no direct integration. 

Chapter 4: Simulation of linear and non-linear   systems via orthogonal functions by 

recurrence relation; the output variables are determined by using the recurrence algorithm 

developed from block pulse functions. The model equations are expressed in state-space 

model and the matrices are substituted in recurrence relation which gives the output variables 

i.e. the dynamics of the system can be established. 

Chapter 5: Optimal control of CSTR’s using block pulse functions; this chapter deals with the 

analysis of linear optimal control by incorporating observers. The error vector, state vector 

and input vector are determined using the optimal control law and recurrence algorithm using 

block pulse functions.  

Chapter 6: Conclusions and Future Scope; in this chapter the extensions of the work and the 

conclusions of present work are presented. 
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LITERATURE SURVEY 

A Substantial amount of research work has been carried out globally on the application of 

orthogonal functions to various fields of engineering. These intensive studies laid a foundation 

stone for the application of orthogonal functions to chemical engineering. Here are a list of 

works briefly detailing their scope and magnitude of orthogonal functions. 

The Legendre polynomial originated in determining the force of attraction exerted by solids of 

revolution and their orthogonal properties were established by A. M. Legendre during 1784-

1790. Piecewise constant OF’s basis functions having constant functional values within any 

subinterval of time period. Block pulse function is a complete OF, which provides elegant 

solution to the areas of parameter estimation, analysis and control. Substantial amount of 

research work has been carried out globally on the application of orthogonal functions to 

various fields of engineering. These intensive researches laid foundation stone for the 

application of orthogonal functions to chemical engineering. Here is a list of works already 

being carried out. 

Solving Integral Equations:- 

Maleknejad et al., (2013) conducted works on the linear Fredholm integral equations of the 

second kind that were solved using a combination of Block pulse functions and orthonormal 

Berstein functions .The integral equations are converted to a system of linear equations, and 

the results of the proposed method are compared with true solutions. The advantage of this 

method is that there is only addition and multiplication of matrices and needs no integration. It 

is an efficient and simple way in terms of applicability. 

Maleknejad et al., (2012) presented the numerical solution of Volterra Integral equations 

using an iterative method, whose results are compared with that of the direct method, 

collocation method and iterated collocation method. The convergence results showed that the 

proposed method is at least as rapid as the direct method. The proposed method is not very 

much efficient than direct method but is of interest in many cases. 
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System Identification:- 

Block pulse functions are used not only in solving various higher order integral equations but 

also in system identification, parameter identification that forms an important part of 

analysing the dynamic systems. One of such significant works on identification of continuous 

systems done by G.P Rao and H.Unbehauen stated that continuous time domain though is 

native to system identification; the advent of discrete time models has undermined 

continuous-time domain models .An orthogonal approach in the continuous time domain has 

been proposed. 

In another research work conducted by Anish et al., (2013) emphasis was given to the 

identification of SISO control systems using non-optimal block pulse functions .The non-

optimal method BPF coefficient computation employs trapezoidal integration instead of exact 

integration that uses only samples of functions expanded via BPF reducing computation 

burden drastically. Further results obtained by this approach contained fewer errors than the 

results obtained by the traditional BPF approach. The results of identification are also found to 

be superior by non-optimal BPF over optimal BPF. 

P. Sannuti worked on development of a recurrence relation using block pulse functions which 

is used in integrating a system of differential equations thereby gives piecewise constant 

solutions with minimal mean square error and is computationally similar to trapezoidal rule of 

integration .This technique can be applied to both linear and nonlinear system of differential 

equations.  This method simplifies the design of piecewise constant controls and feedback 

gains for dynamic systems. 

Triangular function sets are used to determine the convolution of two TF components or 

trains, which in turn determine the output of linear SISO control system via an operational 

matrix technique.  

Optimal Control of Systems:- 

Ogata (2002) proposed a parameter optimization technique for computing feedback controller 

parameters using the downhill simple method that is a pattern search algorithm has been 

proposed. By this method optimal parameter that minimise the objective function and 

performance index are determined. 
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Simulation of control systems can be done more easily via orthogonal functions where the 

expansion coefficients are derived from the samples of the related functions. Microprocessor 

based simulation of discrete time as well as sample and hold systems have been carried out 

via sample-and-hold function set and Dirac delta function set (derived using triangular 

function and BPFs). In identification of control systems with known inputs and outputs, such 

simulations prove to be useful.  

In state feedback controller design, the estimation of state variables is a paramount part. Since 

all the states are immeasurable, design of observers is a necessity; either full order or reduced 

order to estimate the states. Luenberger observer is used in this regard in general, which may 

produce erroneous estimate in the noisy environment. Fortunately the OFs; have some 

inherent filters embedded in them due to the involvement of an integration process, that 

causes a smoothing effect. OFs’ can act as a filter in the noisy environment, while estimating 

the states. From the open literature it is clear that, till date two attempts have been made for 

state estimation problems using BPF and shifted chebyshev polynomial of first kind. 

In comparison with other basis functions or polynomials, BPFs can lead more easily to 

recursive computations to solve concrete problems and among piecewise constant basis 

functions, the BPFs set has proved to be the most fundamental. These functions have been 

directly used for solving different problems especially integral equations. In control 

engineering; the optimal tracking problem is to determine control inputs so that the system 

states track the desired state trajectory. Typically optimal tracking problem of large scale 

systems is to determine control inputs. In this case, optimal trajectory problems will lead to a 

very high order system, thus it cause any difficulties to solve the optimal tracking problem. In 

addition, due to the high order system controller, computational burden can be increased. 

Thus, by applying the hierarchical system theory and orthogonal functions, such as Walsh 

functions, block pulse functions and Haar functions, we can solve these problems. 

The minimization of a quadratic performance index to control the linear systems gives rise to 

a time varying gain for the linear state feedback, and the solution is obtained by the Riccati 

equation. Chen and Shiao (1975) applied the Walsh functions and obtained a numerical 

solution of the Riccati equation and the time varying gain .OF approach was successfully 

applied to problems in systems and control. The problem of optimal control incorporating 

observers has been successfully addressed using different classes of OFs’ including BPFs, 

shifted Ligendre polynomials (SLPs), shifted Jacobi polynomials (SJPs), general orthogonal 
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polynomials (GOPs), among which some are recursive and some are non-recursive in nature.  

Synthesis of optimal control laws by integro- differential equations had been studied using 

dynamic programming method and subsequently by BPFs .The LQG control design problem 

had been solved using GOPs. By using the GOPs the non-linear Riccati equations were 

reduced to non-linear algebraic equations, which then solved to get the final solution. Singular 

systems deserve immense significance so far its control is concerned. Harr wavelet approach, 

sine cosine functions (SCFs), SCP1s, and Legendre wavelets have been applied for solving 

optimal control problems of singular systems. They considered time invariant system with one 

delay in state and one delay in control. Amount of work on optimal control of non-linear 

systems is not substantial so far. Lee and Chang (1975) appeared to be the pioneer researchers 

in optimal control of non-linear system using GOPs. Chebyshev polynomials of first kind 

(CP1s) were used for solving non-linear control problems. A general framework for solving 

non-linear optimal control problems using BPFs has been provided by Shienyu. 
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CHAPTER-3 

SIMULATION OF LINEAR AND NON-LINEAR 

SYSTEMS USING OPERATIONAL MATRICES 

OF BLOCK PULSE FUNCTIONS 
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3.1 LINEAR SYSTEMS 

The system of Differential equations arises quite quickly from naturally occurring situations. 

The mathematical model of the system using a linear operator is said to be a linear system. It 

exhibits simple features and properties, unlike the general case non-linear systems. Linear 

systems are applied in automatic control theory, signal processing and telecommunications. A 

linear system can be defined by the operator H, that maps an input, x(t) as a function of t to an 

output y(t). Linear systems satisfy the properties of superposition and homogeneity. 

Given two valid inputs 𝑥1(𝑡), 𝑥2(𝑡) and their respective outputs 

                                       𝒚𝟏(𝒕) = 𝑯{𝒙𝟏(𝒕)} … … … … … … … … … … … … … … … . … … . … … . . (𝟑. 𝟏) 

                                       𝒚𝟐(𝒕) = 𝑯{𝒙𝟐(𝒕)} … … … … … … … … … … … … … … … . … … . … … . . (𝟑. 𝟐) 

Then the linear system must satisfy  

      𝜶𝒚𝟏(𝒕) + 𝜷𝒚𝟐(𝒕) = 𝑯{𝒙𝟏(𝒕) + 𝒙𝟐(𝒕)} … … … … … … … … … … … … … … … … … … … . (𝟑. 𝟑) 

for any scalar values 𝛼  𝛽 

The system is then defined by the equation 𝑯(𝒙(𝒕)) = 𝒚(𝒕) where 𝑦(𝑡)some arbitrary 

function of time is and 𝑥(𝑡) is the system state. Given 𝑦(𝑡)  and H, 𝑥(𝑡) can be solved for. In 

non-linear systems, there is no such relation that makes the solution to model equations 

simpler than many non-linear systems. Linearity is the basis of impulse response or frequency 

response methods for time-invariant systems. 

Laplace Transforms are used to analyse differential equations of linear time invariant systems 

in the continuous case while Z-transforms are used for analysis in the discrete case. Linear 

models describe the non-linear system by linearization, which is a kind of mathematical 

convenience. 

So far, a formal introduction has been given about various numerical approximation 

techniques that are to be used. These numerical methods are applied to a system of differential 

equations categorized into linear and non-linear differential equations. Appreciating the 

simplicity and flexibility of linear systems, new methods are primarily applied to such 

systems. When results produced using such methods for linear systems are consistent, a 

further step of introducing them to complex non-linear systems can be done. Otherwise, if 
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results turn out to be unsatisfactory, any new numerical method can be terminated at this stage 

itself which saves time and cost of computation. Therefore, orthogonal functions majorly 

block pulse functions with operational matrices are implemented on four set of differential 

equations comprising of chemical reactions in a continuous stirred tank reactor. These four 

systems include reversible reactions, irreversible reactions and jacketed heater. 

3.2 SIMULATION OF LINEAR SYSTEMS 

3.1) Simulation of two reactions occurring in CSTR: -  

Problem Statement: - Consider the following set of differential equations in an isothermal 

CSTR. The block-pulse functions are used in solving the two differential model equations in 

an isothermal CSTR. The states are the concentration of A and B in the reactor.CA is the 

concentration of the reactant A and CB is the concentration of B. The parameter values are 

k1=5/6min
-1

, k2=5/3 min
-1

,k3=1/6mol/lt.min. The input values used in the following simulation 

are F/V=4/7min
-1

, CAf=10 mol/lt are listed in Table-3.1 

Model equations:- 

                                       
𝒅𝑪𝑨

𝒅𝒕
=

𝑭(𝑪𝑨𝒇 − 𝑪𝑨)

𝑽
− 𝒌𝟏𝑪𝑨 − 𝒌𝟑𝑪𝑨 … … … … … … … … . … . … . . . (𝟑. 𝟒) 

                             
𝒅𝑪𝑩

𝒅𝒕
= −

𝑭𝑪𝑩

𝑽
+ 𝒌𝟏𝑪𝑨 − 𝒌𝟐𝑪𝑩. … … … … … … … … … … … … . … . … … . . . (𝟑. 𝟓) 

Now expressing the two differential equations in terms of block-pulse functions as follows: 

Let 𝐶𝐴 = 𝑥1, 𝐶𝐵 = 𝑥2 

After substituting the given parameters in the above differential equations (3.4) and (3.5), we 

get the following equations, 

 

𝒅𝒙𝟏

𝒅𝒕
= 𝟓. 𝟕𝟏𝟒𝟑 − 𝟑. 𝟎𝟕𝟏𝟒𝒙𝟏 … … … … … . … … … … … … … … … … . … … … … . . . . . (𝟑. 𝟔) 

                         
𝒅𝒙𝟐

𝒅𝒕
= 𝟎. 𝟖𝟑𝟑𝟑𝒙𝟏 − 𝟎. 𝟕𝟑𝟖𝟏𝒙𝟐. . … … … … … . . . . . . … … … … … . … … … … . (𝟑. 𝟕) 

On integrating the above equations (3.6) and (3.7), we get  

 

𝒙𝟏(𝒕) − 𝒙𝟏(𝟎) =  𝟓. 𝟕𝟏𝟒𝟑𝑱𝒅𝒕 − 𝟑. 𝟎𝟕𝟏𝑱𝒙𝟏(𝒕) … … . . … … … … . . … … … … . … . . (𝟑. 𝟖) 

𝒙𝟐(𝒕) − 𝒙𝟐(𝟎) = 𝟎. 𝟖𝟑𝟑𝟑𝑱𝒙𝟏(𝒕) − 𝟎. 𝟕𝟑𝟖𝟏𝑱𝒙𝟐(𝒕) … … … … … … … … . … … . . … (𝟑. 𝟗) 
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𝑪𝟏
𝑻ѱ(𝒕) − 𝑪𝟏𝟎

𝑻ѱ(𝟎) = 𝟓. 𝟕𝟏𝟒𝟑𝒕 − 𝟑. 𝟎𝟕𝟏𝑪𝟏
𝑻𝑷ѱ(𝒕) … … … … … … … … … … . … … . . (𝟑. 𝟏𝟎) 

 𝑪𝟐
𝑻ѱ(𝒕) − 𝑪𝟐𝟎

𝑻ѱ(𝟎) = 𝟎. 𝟖𝟑𝟑𝟑𝑪𝟏
𝑻𝑷ѱ(𝒕) − 𝟎. 𝟕𝟑𝟖𝟏𝑪𝟐

𝑻𝑷ѱ(𝒕) … … … … … (𝟑. 𝟏𝟏) 

 

Equations (3.10) and (3.11) are further  solved to obtain the values of C1 and C2.Here J is the 

integration operator, C1 and C2 are the block pulse coefficients, C1 (0), C2 (0) are the initial 

steady state values, P is the operational matrix and ѱ represents block pulse function. 

 

Table-3.1:- Parameter values of series reactions in CSTR 

 

Notations Parameters Steady state values 

CAf 10mol/lt  

k1 5/6 min
-1

  

k2 5/3 min
-1

  

k3 1/6 mol/lt.min  

F/V 4/7min
-1

  

CAs - 2 

CBs - 1.117 

 

 

The Block-pulse function code is compiled which gives a set of output values of CA, CB which 

are plotted against the time intervals t=5, 10 and 20 with matrix sizes 100, 500. 
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Graphs 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-3.1: Concentration CA, CR  vs. time and for n=100, T=5sec 

 

 

 

 

 

 

 

 

 

 

Figure-3.2: Concentration CA, CR  vs. time and for n=100, T=10sec 
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Figure-3.3: Concentration CA, CR  vs. time and for n=100, T=20sec 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-3.4: Concentration CA, CR  vs. time and for n=500, T=5sec 

 

 

 

 

 

 

 



 

31 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-3.5: Concentration CA, CR  vs. time and for n=500, T=10sec 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-3.6: Concentration CA, CR  vs. time and for n=500, T=20sec 
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3.2) Simulation of a Reversible reaction in a CSTR 

 

Problem Statement:-Consider a set of differential equations for a first order reversible 

reaction in an isothermal CSTR. The block-pulse functions are used in solving the two 

differential model equations in an isothermal CSTR. The states are the concentration of A and 

R in the reactor. CA is the concentration of the reactant A and CR is the concentration of R. 

The parameter values are k1=0.125 min
-1

; k2=0.325 min
-1

. The input values used in the 

following simulation are F/V=1/8min
-1

, CAf=1000 mol/lt are listed in Table-3.2 

Model Equations:- 

          

      
𝒅𝑪𝑨

𝒅𝒕
=

𝑭(𝑪𝑨𝒇 − 𝑪𝑨)

𝑽
− 𝒌𝟏𝑪𝑨 + 𝒌𝟐𝑪𝑹. . . . . . … … … . . . . . … . . . . … … … … … … . . … . . . . (𝟑. 𝟏𝟐) 

𝒅𝑪𝑩

𝒅𝒕
= −

𝑭𝑪𝑹

𝑽
+ 𝒌𝟏𝑪𝑨 − 𝒌𝟐𝑪𝑹. … … … . . . … … … . . . . . … … … . . . . . … … … . . . . . … … . . . . . (𝟑. 𝟏𝟑) 

 

Now expressing the two differential equations in terms of block-pulse functions as follows: 

Let 𝐶𝐴 = 𝑥1, 𝐶𝑅 = 𝑥2 

After substituting the given parameters in the above differential equations (3.12) and (3.13), 

we get the following equations, 

 

     
𝒅𝒙𝟏

𝒅𝒕
= 𝟏𝟐𝟓 − 𝟎. 𝟐𝟓𝒙𝟏 + 𝟎. 𝟑𝟐𝟓𝒙𝟐 … … … … … … … … . . . . . … . . . . … … … . … . (𝟑. 𝟏𝟒) 

                
𝒅𝒙𝟐

𝒅𝒕
= −𝟎. 𝟒𝟓𝒙𝟏 + 𝟎. 𝟏𝟐𝟓𝒙𝟐. . . . . . . . . . . . . . … … … … . . . . . . . . … … . … . . . (𝟑. 𝟏𝟓) 

On integrating the above equations (3.14) and (3.15), we get  

 

𝒙𝟏(𝒕) − 𝒙𝟏(𝟎) =  𝟏𝟐𝟓𝑱𝒅𝒕 − 𝟎. 𝟐𝟓𝑱𝒙𝟏(𝒕) + 𝟎. 𝟑𝟐𝟓𝑱𝒙𝟐(𝒕) … . . … . . … … … … . . (𝟑. 𝟏𝟔) 

𝒙𝟐(𝒕) − 𝒙𝟐(𝟎) = −𝟎. 𝟒𝟓𝑱𝒙𝟏(𝒕) + 𝟎. 𝟏𝟐𝟓𝑱𝒙𝟐(𝒕) … … … … … … . . … … . . … … … (𝟑. 𝟏𝟕) 

 

𝑪𝟏
𝑻ѱ(𝒕) − 𝑪𝟏𝟎

𝑻ѱ(𝟎) = 𝟏𝟐𝟓𝒕 − 𝟎. 𝟐𝟓𝑪𝟏
𝑻𝑷ѱ(𝒕) + 𝟎. 𝟑𝟐𝟓𝑪𝟐

𝑻𝑷ѱ(𝒕) … … … … . . … . . (𝟑. 𝟏𝟖) 

𝑪𝟐
𝑻ѱ(𝒕) − 𝑪𝟐𝟎

𝑻ѱ(𝟎) = −𝟎. 𝟒𝟓𝑪𝟏
𝑻𝑷ѱ(𝒕) + 𝟎. 𝟏𝟐𝟓𝑪𝟐

𝑻𝑷ѱ(𝒕) … … … … . . … . (𝟑. 𝟏𝟗) 
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Equations (3.18) and (3.19) are further solved  to obtain the values of C1 and C2.Here J is the 

integration operator, C1 and C2 are the block pulse coefficients, C1 (0), C2 (0) are the initial 

steady state values, P is the operational matrix and ѱ represents block pulse function. 

 

Table-3.2:- Parameter values of reversible reaction 

 

Notations Parameters Steady state values 

CAf 1000mol/lt  

k1 0.125 min
-1

  

k2 0.325 min
-1

  

k3 -  

F/V 1/8min
-1

  

CAs - 782.61 

CRs - 217.39 

 

The Block-pulse function, Runge-Kutta (MATLAB solver) and Euler method codes are 

compiled which gives a set of output values of CA, CR which are plotted against the time 

intervals t=10, 20 and 40 with matrix sizes 100 and 500. 

Graphs:- 

 

 

 

 

 

 

 

 

 

Figure-3.7: Concentration CA, CR  vs. time and for n=100, T=10sec 
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Figure-3.8: Concentration CA, CR  vs. time and for n=500, T=10sec 

 

 

 

 

 

 

 

 

 

 

 

Figure-3.9: Concentration CA, CR  vs. time and for n=100, T=20sec 
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Figure-3.10: Concentration CA, CR  vs. time and for n=500, T=20sec 

 

 

 

 

 

 

Figure-3.10: Concentration CA, CR  vs. time and for n=500, T=20sec 

 

 

 

 

 

 

 

 

 

 

 

Figure-3.11: Concentration CA, CR  vs. time and for n=100, T=40sec 

 

 

 

 

 



 

36 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-3.12: Concentration CA, CR  vs. time and for n=500, T=40sec 

 

The above plots generated from BPF algorithm using MATLAB software and from Euler and 

Runge-Kutta methods (inbuilt MATLAB solver ODE-45), represent the transient response to 

initial conditions from steady state values, CAs=782.61, CRs=217.39.The new steady state 

values reached by the CA and CR are 782.6088 and 217.3915 respectively. The plots show that 

a similar trend in concentrations is observed with three kinds of data (BPF& Euler and Runge 

–Kutta methods) obtained. 

                                                      

3.3) Simulation of an Irreversible Reaction in a CSTR 

 

Problem Statement: - Consider a set of differential equations for a first order irreversible 

reaction in an isothermal CSTR. Ethylene oxide (A) is reacted with water (B) to produce 

ethylene glycol(R). Water is in large excess. A CSTR is used at a constant temperature. The 

block-pulse functions are used in solving the two differential model equations in an isothermal 

CSTR. The states are the concentration of A and R in the reactor. CA is the concentration of 

the reactant A and CR is the concentration of R. The parameter values are k1=0.311 min
-1

. The 

input values used in the following simulation are F/V=0.0777min
-1

, CAf =0.5mol/lt are listed 

in Table-3.3 
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Model Equations:- 

 

𝒅𝑪𝑨

𝒅𝒕
=

𝑭(𝑪𝑨𝒇 − 𝑪𝑨)

𝑽
− 𝒌𝟏𝑪𝑨. . . . . . . . . . . . . . . . . . . … … … … … … … … … … . … … . . . . . . . . . . . (𝟑. 𝟐𝟎) 

𝒅𝑪𝑹

𝒅𝒕
= −

𝑭𝑪𝑹

𝑽
+ 𝒌𝟏𝑪𝑨. . . . . . . . . . . . . . . . . . . . . . . . . . . . … … … … … … … … … … … . . . . . . . . . . . . (𝟑. 𝟐𝟏) 

 

Now expressing the two differential equations in terms of block-pulse functions as follows: 

Let 𝐶𝐴 = 𝑥1, 𝐶𝑅 = 𝑥2 

After substituting the given parameters in the above differential equations (3.22) and (3.23) 

we get the following equations, 

 

𝒅𝒙𝟏

𝒅𝒕
= 𝟎. 𝟎𝟑𝟖𝟗 − 𝟎. 𝟑𝟖𝟖𝟕𝒙𝟏. . . . . . . . . . . . . . . . . . . . . … … … … … … … … … … … . . . . . (𝟑. 𝟐𝟐) 

  
𝒅𝒙𝟐

𝒅𝒕
= 𝟎. 𝟑𝟏𝟏𝒙𝟏 + 𝟎. 𝟎𝟕𝟕𝟕𝒙𝟐 … … … … … … … … … … … … … … … … … … … … . (𝟑. 𝟐𝟑) 

On integrating the above equations (3.24) and (3.25), we get  

𝒙𝟏(𝒕) − 𝒙𝟏(𝟎) = 𝟎. 𝟎𝟑𝟖𝟗𝑱𝒅𝒕 − 𝟎. 𝟑𝟖𝟖𝟕𝑱𝒙𝟏(𝒕). . . . . . . … … … . … … … … … . . . . . (𝟑. 𝟐𝟒) 

𝒙𝟐(𝒕) − 𝒙𝟐(𝟎) = 𝟎. 𝟑𝟏𝟏𝑱𝒙𝟏(𝒕) + 𝟎. 𝟎𝟕𝟕𝟕𝑱𝒙𝟐(𝒕) … … … … … … … . … … … . . . . . (𝟑. 𝟐𝟓) 

 

𝑪𝟏
𝑻ѱ(𝒕) − 𝑪𝟏𝟎

𝑻ѱ(𝟎) = 𝟎. 𝟎𝟑𝟖𝟗𝒕 − 𝟎. 𝟑𝟖𝟖𝟕𝑪𝟏
𝑻𝑷ѱ(𝒕) … … … … … … … … … … … … . . (𝟑. 𝟐𝟔) 

𝑪𝟐
𝑻ѱ(𝒕) − 𝑪𝟐𝟎

𝑻𝑷ѱ(𝟎) = 𝟎. 𝟑𝟏𝟏𝑪𝟏
𝑻𝑷ѱ(𝒕) + 𝟎. 𝟎𝟕𝟕𝟕𝑪𝟐

𝑻𝑷ѱ(𝒕) … … … … … … . . … . . (𝟑. 𝟐𝟕) 

 

Equations (3.26) and (3.27) are further solved  to obtain the values of C1 and C2.Here J is the 

integration operator, C1 and C2 are the block pulse coefficients, C1 (0), C2 (0) are the initial 

steady state values, P is the operational matrix and ѱ represents block pulse function. 
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Table-3.3:- Parameter values of irreversible reactions in CSTR 

 

Notations Parameters Steady state values 

CAf 0.5mol/lt  

k1 0.311 min
-1

  

k2 -  

k3 -  

F/V 0.0777min
-1

  

CAs - 0.1047 

CRs - 0.395 

 

The Block-pulse function, Runge-Kutta (MATLAB solver) and Euler method codes are 

compiled which gives a set of output values of CA, CR which are plotted against the time 

intervals t=10, 20 and 40 with matrix sizes 100 and 500. 

 

Graphs 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-3.13: Concentration CA, CR  vs. time and for n=100, T=10sec 
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Figure-3.14: Concentration CA, CR  vs. time and for n=500, T=10sec 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-3.15: Concentration CA, CR  vs. time and for n=100, T=20sec 
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Figure-3.16: Concentration CA, CR  vs. time and for n=500, T=20sec 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-3.17: Concentration CA, CR  vs. time and for n=100, T=40sec 
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Figure-3.18: Concentration CA, CR  vs. time and for n=500, T=40sec 

 

The above plots generated from BPF algorithm using MATLAB software and from Euler and 

Runge-Kutta methods (inbuilt MATLAB solver ODE-45), represent the transient response to 

initial conditions from steady state values, CAs=0.1047, CRs=0.395.The plots show that a 

similar trend in concentrations is observed with three kinds of data (BPF& Euler and Runge –

Kutta methods) obtained. 

 

3.4) Simulation of a Jacketed Heater 

 

Problem Statement: - Consider a jacketed stirred tank heater in which heat is circulated 

through the jacket and heat flows between the jacket and vessel increase energy content of the 

vessel fluid. The following parameters and steady-state values are used for the simulation. 

Fs=1ft
3
/min,ϼCp=61.3Btu/(

0
F.ft

3
),ϼjCpj=61.3Btu/(

0
F.ft

3
),Tis=50

0
F,Ts=125

0
F,V=10ft

3
,Tjis=200

0
F

,Tjs=150
0
F,Vj=2.5ft

3
,UA=183.9Btu/(

0
F.min),Fjs=1.5ft

3
/min.The states are the fluid 

temperature, T flowing through the stirred tank heater and the jacket temperature flowing in 

the  jacket surrounding the heater, Tj. The rate of heat transfer from jacket fluid to vessel fluid 

is given as: 
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Model Equations:- 

  𝑸 = 𝑼𝑨(𝑻𝒋 − 𝑻) … … … … … … … … … … … … … … … … … … … … … … … … … … … . … … (𝟑. 𝟐𝟖) 

  
𝒅𝑻

𝒅𝒕
 =

𝑭(𝑻𝒊 − 𝑻)

𝑽
 +

𝑼𝑨(𝑻𝒋 − 𝑻)

𝑽𝝆𝑪𝒑
. … … … … … … … … … … … … … … … … … … … . . . . . … (𝟑. 𝟐𝟗) 

   
𝒅𝑻𝒋

𝒅𝒕
= −

𝑭𝒋(𝑻𝒋𝒊𝒏 − 𝑻𝒋)

𝑽𝒋
−

𝑼𝑨(𝑻𝒋 − 𝑻)

𝑽𝒋𝝆𝒋𝑪𝒑𝒋
… … … … … … … … … … … … … … … … … … … . . (𝟑. 𝟑𝟎) 

 

Now expressing the two differential equations in terms of block-pulse functions as follows: 

Let 𝑇 = 𝑥1, 𝑇𝑗 = 𝑥2 

After substituting the given parameters in the above differential equations, we get the 

following equations, 

 

   
𝒅𝒙𝟏

𝒅𝒕
= 𝟓𝟏. 𝟐𝟒𝟓 −  𝟎. 𝟒𝟎𝟖𝟑𝒙𝟏 + 𝟎. 𝟑𝒙𝟐. . . . . . . . . . . . . . . . . . … … … … … . … . . . . . . . (𝟑. 𝟑𝟏) 

                           
𝒅𝒙𝟐

𝒅𝒕
= 𝟏𝟐𝟎 + 𝟏. 𝟐𝒙𝟏 − 𝟏. 𝟖𝒙𝟐. . . . . . . . . … … … … … … … . . . . . . . . . . (𝟑. 𝟑𝟐) 

On integrating the above equations (3.31) and (3.32) we get  

𝒙𝟏(𝒕) − 𝒙𝟏(𝟎) = 𝟓𝟏. 𝟐𝟒𝟓𝑱𝒅𝒕 − 𝟎. 𝟒𝟎𝟖𝟑𝑱𝒙𝟏(𝒕) + 𝟎. 𝟑𝑱𝒙𝟐(𝒕) … … … … … . … . . (𝟑. 𝟑𝟑) 

𝒙𝟐(𝒕) − 𝒙𝟐(𝟎) = 𝟏𝟐𝟎𝒕 + 𝟏. 𝟐𝑱𝒙𝟏(𝒕) − 𝟏. 𝟖𝑱𝒙𝟐(𝒕) … … … … … . . … … … … . . . . . . (𝟑. 𝟑𝟒) 

 

𝑪𝟏
𝑻ѱ(𝒕) − 𝑪𝟏𝟎

𝑻ѱ(𝟎) = 𝟓𝟏. 𝟐𝟒𝟓𝒕 − 𝟎. 𝟒𝟎𝟖𝟑𝑪𝟏
𝑻𝑷ѱ(𝒕) + 𝟎. 𝟑𝑪𝟐

𝑻𝑷ѱ(𝒕) … … … … … . (𝟑. 𝟑𝟓) 

𝑪𝟐
𝑻ѱ(𝒕) − 𝑪𝟐𝟎

𝑻ѱ(𝟎) = 𝟏𝟐𝟎𝒕 + 𝟏. 𝟐𝑪𝟏
𝑻𝑷ѱ(𝒕) − 𝟏. 𝟖𝑪𝟐

𝑻𝑷ѱ(𝒕) … … … … ….  (𝟑. 𝟑𝟔) 

 

Equations (3.35) and (3.36) are further solved  to obtain the values of C1 and C2.Here J is the 

integration operator, C1 and C2 are the block pulse coefficients, C1 (0), C2 (0) are the initial 

steady state values, P is the operational matrix and ѱ represents block pulse function. 
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Table-3.4:- Parameter values of Jacketed Heater 

 

Notations Parameters Steady state values 

Fs 1ft
3
/min  

𝜌Cp 61.3Btu/(
0
F.ft

3
),  

𝜌Cpj 61.3Btu/(
0
F.ft

3
),  

Tis 50
0
F 

 

 

 

Ts  125
0
F 

 

V 10ft
3
 

 

 

Tjis 200
0
F 

 

 

Tjs  150
0
F 

 

Vj 2.5ft
3 

 

 

UA 183.9Btu/(
0
F.min)  

Fjs 1.5ft
3
/min 

 

 

 

The Block-pulse function, Runge-Kutta (MATLAB solver) and Euler method codes are 

compiled which gives a set of output values of CA, CR which are plotted against the time 

intervals t=10, 20 and 40 with matrix sizes 100 and 500. 
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Graphs 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-3.19: Temperature T, Tj vs. time and for n=100, T=10 sec 

 

 

 

 

 

 

 

 

 

 

 

Figure-3.20: Temperature T, Tj vs. time and for n=500, T=10 sec 
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Figure-3.21: Temperature T, Tj vs. time and for n=100, T=20 sec 

 

 

 

 

 

 

 

 

 

 

Figure-3.22: Temperature T, Tj vs. time and for n=500, T=20 sec 

 

 

 

 

 



 

46 
 

 

 

 

 

 

 

 

 

 

Figure-3.23: Temperature T, Tj vs. time and for n=100, T=40 sec 

 

 

 

 

 

 

 

 

 

 

Figure-3.24: Temperature T, Tj vs. time and for n=500, T=40 sec 
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The above plots generated from BPF algorithm using MATLAB software and from Euler and 

Runge-Kutta methods (inbuilt MATLAB solver ODE-45), represent the transient response to 

initial conditions from steady state values, Ts=125,Tjs=150. The plots show that a similar 

trend in temperatures is observed with three the kinds of data (BPF& Euler and Runge –Kutta 

methods) obtained. 

 

3.2.1 Results and Discussions 

 

 The state/output obtained from dynamic simulation using block-pulse functions (BPF) 

is plotted against time. This plot is compared with the plots generated using Euler 

method and Runge-Kutta method (MATLAB solver ODE-45). The plots are in a good 

agreement to each other, which proves the potency of BPF for simulation of such 

kinds of systems considered.  

 Consistent results are obtained for matrix dimensions 100 and 500 at various time 

intervals such as 10, 20 and 40 seconds. Similarly, results can be extended further to 

other matrix dimensions. 

 For small time intervals, the plots show a drop or an increase in concentration in a 

linear manner. However as time proceeds, i.e. for large time intervals, the complete 

curve gets developed. Thus, the results of all four simulations are in a good fit with 

each other.  

 With small operational matrix size, there may be a deviation in the results of BPF 

compared to those obtained using other numerical methods such as Euler and Runge-

Kutta. However, as the operational matrix size increases largely, the deviation from 

the two solutions reduces. Besides existing numerical techniques, block pulse 

functions also provide an efficient solution for the CSTR simulation. 
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3.3 NON LINEAR SYSTEMS 

According to physics and other sciences, a nonlinear system does not obey the superposition 

principle – which means the output of the system is not directly related to the input, contrary 

to the linear systems. Many physical quantities have an upper bound which once reached the 

system loses linearity; these quantities are vehicle’s velocity or electrical signals. The 

differential equations of some thermal, biological systems are inherently nonlinear in nature. 

Thus considering the non-linearity directly while analysing and designing controllers for such 

systems is always an advantage.  In addition, many mechanical systems are subject to non-

linearity by friction. Relays, which are part of many practical control systems, are inherently 

nonlinear. Other examples include ferromagnetic cores in electrical machines and 

transformers are often described with nonlinear magnetization curves and equations. 

Mathematically, a nonlinear system of equations is defined as the set of simultaneous 

equations in which the unknowns (or the unknown functions in the case of differential 

equations) appear as variables of a polynomial of degree higher than one. Otherwise, it can be 

defined as that system of equations to be solved which cannot be written as a linear 

combination of unknown variables or functions that appear in it (them).  Non-linearity in 

known functions within the equations is treated insignificant.  A differential equation is linear 

if it is linear in terms of the unknown function and its derivatives, even if nonlinear in terms of 

the other variables appearing in it. A nonlinear system of equations describes the behaviour of 

a nonlinear system. 

Engineers, physicists, mathematicians and many other scientists are primarily interested in 

nonlinear problems because of their inherent nonlinear in nature. Because of the difficulty 

involved in solving nonlinear equations, they are commonly approximated by linear equations 

(linearization). Linearization achieves some amount of accuracy and some range for the input 

values, but some interesting phenomena such as chaos and singularities are hidden. Behaviour 

of a nonlinear system can be characterized to be chaotic, unpredictable or counter intuitive. 

Although such chaotic behaviour may resemble random behaviour, it is absolutely not 

random. For example, some aspects of the weather are seen to be chaotic, where the system 

becomes very sensitive for small changes in inputs producing complex effects throughout. 

Thus accurate long-term forecasts are impossible with current technology because of non-

linearity in systems. 
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3.3.1 Differences between Linear and Nonlinear systems:- 

 Linear systems obey the properties of superposition and homogeneity. 

 Non-Linear systems do not obey superposition and homogeneity. 

 Linear systems possess one equilibrium point at the origin while many equilibrium 

points are possessed by non-linear systems. 

 For nonlinear systems, stability needs to be defined precisely. 

 For forced response for the nonlinear systems principle of superposition does not hold 

good. 

 Linearity cannot be classified however Non-linearity can be broadly classified. 

 

3.3.2 Definition of Linear and Nonlinear Systems:- 

Linear systems must obey two important properties, superposition and homogeneity. 

According to the principle of superposition for two different inputs, x and y, in the domain of 

the function f, 

𝒇(𝒙 + 𝒚) = 𝒇(𝒙) + 𝒇(𝒚) … … … … … … … … … … … … … … … … … … … … … … … … . … … (𝟑. 𝟑𝟕) 

The property of homogeneity states that for a given input, x, in the domain of the function f, 

and for any real number k, 

𝒇(𝒌𝒙) = 𝒌𝒇(𝒙) … … … … … … … … … … … … … … … … … … … … … … … … . . … … … . . … … (𝟑. 𝟑𝟖) 

Any function that does not satisfy superposition and homogeneity is non-linear; there is no 

unifying characteristic of nonlinear systems, except for not satisfying the two above-

mentioned properties. 

Linear Time Invariant (LTI) systems are commonly described by the equation: 

𝒅𝒙

𝒅𝒕
= 𝑨𝒙 + 𝑩𝒖 … … … … … … … … … … … … … … … … … … … … … … … … . … … … … … … . (𝟑. 𝟑𝟗) 

In this equation, x is the vector of n state variables, u is the control input, and A is a matrix of 

size (n-by-n), and B is a vector of appropriate dimensions. The equation determines the 

dynamics of the response. It is sometimes called a state-space realization of the system. 

Non-Linear Systems are commonly described by the equation: 

 

𝒅𝒙

𝒅𝒕
= 𝒇(𝒙) … … … … … … … … … … … … … … … … … … … … … … … … … … … … . … … . … . . (𝟑. 𝟒𝟎) 
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General Properties of Linear and Nonlinear Systems:- 

 Linear Systems & 

𝒅𝒙

𝒅𝒕
= 𝑨𝒙 

 

Non-Linear Systems & 

𝒅𝒙

𝒅𝒕
= 𝒇(𝒙) 

 

EQUILIBIUM POINTS 

 

A point where the system can 

stay forever without moving. 

UNIQUE 

 

If A has rank n, then 𝑥𝑒=0, 

otherwise the solution lies 

in the null space of A. 

MULTIPLE 

𝑓(𝑥𝑒)=0 

n nonlinear equations in n unknowns 

0 → +∞ solutions 

ESCAPE TIME  

x → +∞ as t → +∞ 

The state can go to infinity in finite 

time. 

STABILITY  

The equilibrium point is 

stable if all eigenvalues of 

A have negative real part, 

regardless of initial 

conditions. 

About an equilibrium point: 

 Dependent on IC 

 Local vs. Global stability 

important 

 Possibility of limit cycles 

LIMIT CYCLES 

 A unique, self-excited  

oscillation 

 A closed trajectory in the state 

space 

 Independent of IC 

 

FORCED RESPONSE  

𝒅𝒙

𝒅𝒕
= 𝑨𝒙 + 𝑩𝒖 

 The principle of 

superposition 

holds. 

 I/O stability → 

bounded input, 

bounded output 

 

𝒅𝒙

𝒅𝒕
= 𝒇(𝒙, 𝒖) 

 The principle of superposition 

does not hold in general. 

 The I/O ratio is not unique in 

general, may also not be 

single valued. 
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 Sinusoidal input → 

sinusoidal output 

of same frequency 

CHAOS 

 

Complicated steady-state behavior, 

may exhibit randomness despite the 

deterministic nature of the system. 

 

3.3.3 Non Linear Differential Equations:- 

A system of differential equations not obeying homogeneity and superposition are said to be 

nonlinear. Extremely diverse are problems involving nonlinear differential equations, and 

methods of solution or analysis are problem dependent and cannot be generalized. The 

Navier–Stokes equations in fluid dynamics, Lotka–Volterra equations in biology and Non-

Isothermal CSTR in reaction engineering are some of the important examples of nonlinear 

differential equations. 

 A combination of known solutions into new solutions is not generally possible when dealing 

with nonlinear problems which can be regarded as one of the greatest difficulties. A family of 

linearly independent solutions can be used to construct general solutions through the 

superposition principle for linear systems. A good example of this is one-dimensional heat 

transport with Dirichlet boundary conditions, the solution of which can be written as a time-

dependent linear combination of sinusoids of differing frequencies; making solutions very 

flexible. For nonlinear equations, several very specific solutions can be found very often; 

however new solutions cannot be constructed as it does not satisfy the superposition principle. 

Ordinary differential equations:- 

First order ordinary differential equations are often exactly solved by separation of variables, 

especially for autonomous equations. For example, the nonlinear equation 

𝒅𝒖

𝒅𝒙
= −𝒖𝟐 … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … . . (𝟑. 𝟒𝟏) 

 𝒖 =
𝟏

𝒙 + 𝒄
… … … … … … … … … … … … … … … … … … … … … … … … … … … . … … … … … . (𝟑. 𝟒𝟐) 

has eq-5 as a general solution (and also u = 0 as a particular solution, corresponding to the 

limit of the general solution when C tends to the infinity). The equation is nonlinear because it 

may be written as 

http://en.wikipedia.org/wiki/Ordinary_differential_equation
http://en.wikipedia.org/wiki/Separation_of_variables
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𝒅𝒖

𝒅𝒙
+ 𝒖𝟐 … … . … … … … … … … … … … … … … … … … . … … … … … … … … … … ….  (𝟑. 𝟒𝟑) 

and the left-hand side of the equation is not a linear function of u and its derivatives. Note that 

if the u
2
 term were replaced with u, the problem would be linear (the exponential 

decay problem). 

Second and higher order ordinary differential equations (more generally, systems of nonlinear 

equations) rarely yield closed form solutions, though implicit solutions and solutions 

involving non-elementary integrals are encountered. 

Common methods for the qualitative analysis of nonlinear ordinary differential equations 

include: 

 Examination of any conserved quantities, especially in Hamiltonian systems. 

 Examination of dissipative quantities (see Lyapunov function) analogous to conserved 

quantities. 

 Linearization via Taylor expansion. 

 Change of variables into something easier to study. 

 Bifurcation theory. 

 Perturbation methods 

 

3.4 SIMULATION OF NON-LINEAR SYSTEMS 

Blood Glucose Control in Diabetic Patients:- 

There are many innate feedback control loops within a human body. For instance, pancreas 

regulates blood glucose by producing insulin. Food is consumed and later broken down by the 

digestive system; as a result blood glucose level rises which in turn stimulates insulin 

production. Glucose is broken down by the cells with the help of insulin. Insulin is not 

produced by diabetes mellitus patients of Type I .Hence patient must be administered insulin 

shots at several regular time intervals to regulate the blood glucose level. Thus, a typical 

patient here is serving as a control system. Administration of insulin shots coinciding with the 

meal concentration comprises the feed forward control nature. Other actions such as dosage 

changes based on glucose measurements obtained from finger pricks and analysis of glucose 

http://en.wikipedia.org/wiki/Exponential_decay
http://en.wikipedia.org/wiki/Exponential_decay
http://en.wikipedia.org/wiki/Closed-form_expression
http://en.wikipedia.org/wiki/Nonelementary_integral
http://en.wikipedia.org/wiki/Conserved_quantities
http://en.wikipedia.org/wiki/Hamiltonian_system
http://en.wikipedia.org/wiki/Lyapunov_function
http://en.wikipedia.org/wiki/Taylor_expansion
http://en.wikipedia.org/wiki/Bifurcation_theory
http://en.wikipedia.org/wiki/Perturbation_theory


 

53 
 

strips. Hyperglycaemia leads to blindness, cardiovascular problems in the long run while 

fainting, diabetic comas are problems due to it in the short run. 

Development of closed-loop insulin delivery systems has been highly motivated and external 

pumps provided with insulin reservoirs which can deliver insulin directly instead of shots are 

used by the current technology. 

3.5) Problem Statement: - Consider a diabetic that is modelled using the following set of 

parameters 

Model equations:- 

𝒅𝑮

𝒅𝒕
= −𝒑𝟏𝑮 − 𝒙(𝑮𝒃 + 𝑮) +

𝑮𝒎𝒆𝒂𝒍

𝑽𝟏
… … … … … … … … … … … … … … … … … … … . . … … (𝟑. 𝟒𝟒) 

𝒅𝑿

𝒅𝒕
= −𝒑𝟐𝑿 + 𝒑𝟑𝑰 … … … … … … … … … … … … … … … … … … … … … … … … … … … … … (𝟑. 𝟒𝟓) 

𝒅𝑰

𝒅𝒕
= −𝒏(𝑰 + 𝑰𝒃) +

𝑼

𝑽𝟏
… … … … … … … … … … … … … … … … … … … … … … … … … … . … (𝟑. 𝟒𝟔) 

Where G and I represent the deviation in blood glucose and insulin concentrations 

respectively. Also X is proportional to insulin concentration in a remote compartment. The 

inputs are 𝑮𝒎𝒆𝒂𝒍, a meal disturbance input of glucose, U manipulated insulin infusion rate. 

The parameters include 𝒑𝟏, 𝒑𝟐, 𝒑𝟑, 𝒏, 𝑽𝟏.Other parameters are 𝑮𝒃, 𝑰𝒃 are the basal values of 

blood and insulin concentration. These values are used to determine the basal infusion rate of 

insulin necessary to maintain a steady state. 

Let G=𝑥1, X=𝑥2, I=𝑥3 

After substituting the given parameters in the above differential equations, we get the 

following equations: 

𝒅𝒙𝟏

𝒅𝒕
= −𝟏𝟔. 𝟔𝟔𝟕𝒙𝟏 − 𝟒. 𝟓𝒙𝟐 − 𝒙𝟏𝒙𝟐 + 𝟎. 𝟑𝟕𝟓 … … … … … … . … … … … … … … … … … . (𝟑. 𝟒𝟕) 

𝒅𝒙𝟐

𝒅𝒕
= −𝟎. 𝟎𝟐𝟓𝒙𝟐 + 𝟎. 𝟎𝟎𝟎𝟎𝟏𝟑𝒙𝟑 … … … … … … … … … … … … … … … … … … … . … … . (𝟑. 𝟒𝟖) 

𝒅𝒙𝟑

𝒅𝒕
= −𝟎. 𝟎𝟗𝟐𝟔𝒙𝟑 + 𝟎. 𝟗𝟕𝟐𝟐 … … … … … … … … … … … … … … … … . … … … … … … … . (𝟑. 𝟒𝟗) 
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On integrating the above equations we get  

𝒙𝟏(𝒕) − 𝒙𝟏(𝟎) = 𝟎. 𝟑𝟕𝟓𝑱𝒅𝒕 − 𝟏𝟔. 𝟔𝟔𝟕𝑱𝒙𝟏(𝒕) − 𝟎. 𝟒𝟓𝑱𝒙𝟐(𝒕) − 𝑱𝒙𝟏(𝒕)𝒙𝟐(𝒕). . (𝟑. 𝟓𝟎) 

𝒙𝟐(𝒕) − 𝒙𝟐(𝟎) = −𝟎. 𝟎𝟐𝟓𝑱𝒙𝟐(𝒕) + 𝟎. 𝟎𝟎𝟎𝟎𝟏𝟑𝑱𝒙𝟑(𝒕) … … … … … … … . . . . . . . .  (𝟑. 𝟓𝟏) 

𝒙𝟑(𝒕) − 𝒙𝟑(𝟎) = −𝟎. 𝟎𝟗𝟐𝟔𝑱𝒙𝟑(𝒕) + 𝟎. 𝟗𝟕𝟐𝟐𝑱𝒅𝒕 … … … … … … … … … … … . … (𝟑. 𝟓𝟐) 

 

𝑪𝟏
𝑻ѱ(𝒕) − 𝑪𝟏𝟎

𝑻ѱ(𝟎) = 𝟎. 𝟑𝟕𝟓𝒕 − 𝟏𝟔. 𝟔𝟔𝟕𝑪𝟏
𝑻𝑷ѱ(𝒕) − 𝟎. 𝟒𝟓𝑪𝟐

𝑻𝑷ѱ(𝒕) − 𝑪𝟏
𝑻𝑷𝑪𝟐

𝑻𝑷ѱ(𝒕) 

                                                                        … … … … … … … … … … … … … … … … … … … . … . (𝟑. 𝟓𝟑) 

𝑪𝟐
𝑻ѱ(𝒕) − 𝑪𝟐𝟎

𝑻ѱ(𝟎) = −𝟎. 𝟎𝟐𝟓𝑪𝟐
𝑻𝑷ѱ(𝒕) + 𝟎. 𝟎𝟎𝟎𝟎𝟏𝟑𝑪𝟑

𝑻𝑷ѱ(𝒕) … … ….   (𝟑. 𝟓𝟒) 

𝑪𝟑
𝑻ѱ(𝒕) − 𝑪𝟑𝟎

𝑻ѱ(𝟎) = −𝟎. 𝟎𝟗𝟐𝟔𝑪𝟑
𝑻𝑷ѱ(𝒕) + 𝟎. 𝟗𝟕𝟐𝟐𝒕 … … … … … … … . … . (𝟑. 𝟓𝟓) 

 

Equations (3.53), (3.54) and (3.55) are further solved  to obtain the values of C1,C2and 

C3.Here J is the integration operator, C1,C2and C3are the block pulse coefficients, C1(0), C2 (0) 

and C3(0)are the initial steady state values, P is the operational matrix and ѱ represents block 

pulse function. 

 

The Block-pulse function and Runge-Kutta (MATLAB solver) method codes are compiled 

which gives a set of output values of CG, CX and CI which are plotted against the time 

intervals t=100, 500 and 1000 with matrix sizes 100, 500 and 1000. 

Graphs 

 

 

 

 

 

 

 

 

 

 

  

Figure-3.25: Concentration CG, CX  and  CI    vs. time and for n=100, T=100sec 
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Figure-3.26: Concentration CG, CX  and  CI    vs. time and for n=500, T=500sec 

 

 

 

 

 

 

 

 

 

 

 

Figure-3.27: Concentration CG, CX and  CI    vs. time and for n=1000, T=1000sec 
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3.4.1 Results and Discussions 

 

 The given steady state values are 4.5, 16.667, 4.5 for G, X, I concentrations 

respectively and new steady state values established are 0.02, 1.356, 10.4984 

respectively. 

 For a matrix size of n=100, t=100 sec, a large aberration observed in the blood glucose 

concentration, G plotted using BPF data from that of the plots obtained by MATLAB 

solver ODE-45 data. 

 Similarly, for the same matrix size but at different time intervals, deviation in insulin 

concentration (I), proportional concentration (X) are observed for plots obtained using 

BPF data from that of the plots obtained by MATLAB solver ODE-45 data. 

 Deviations are observed to be minimizing with an increase in operational matrix sizes, 

such as that observed for n=500, t=500sec in plot-2, and there is even small deviation 

observed in concentrations of G, X, I for n=1000, t=1000sec. 

 By increasing the number of subintervals within an interval the accuracy obviously 

increases because block pulse functions are binary in nature. 

 Large time intervals will not increase the computation time to a great extent as the 

resulting operational matrix comprises of  non-zero elements in the principal diagonal 

of the matrix, zeroes in the upper  triangular matrix and ones in lower triangular matrix 

which makes computation simple even for large matrix sizes such as n=1000 
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A Time- series is a sequence of data points measured typically at successive points in uniform 

intervals of time. Two methods are available for time-series analysis: frequency domain 

analysis, time domain analysis. Modern control theory essentially uses time domain approach 

while conventional control theory uses frequency domain analysis. The present work is 

premised on time domain approach in analysing the dynamic systems in chemical processes 

using two important orthogonal functions: block pulse functions, linear triangular functions 

via state space approach. By using vector-matrix notation, nth order differential equation may 

be expressed as a first order vector-matrix differential equation. The state space approach uses 

this vector-matrix notation to relate the input –output relationship. The knowledge of the state 

variables of a dynamic system at initial value t=t0 combined with input at t≥t0 completely 

determines the behaviour of the system for any time t≥t0 . 

 

4.1 RECURRENCE RELATION USING TRIANGULAR FUNCTIONS 

FOR LINEAR SYSTEMS 

Consider the time –invariant linear SISO dynamic system modelled by 

�̇� = 𝑨𝒙 + 𝑩𝒖 𝒂𝒏𝒅 𝒙(𝟎) = 𝒙𝟎 … … … … … … … … … … … … … … … … … … … … … … … … . . (𝟒. 𝟏) 

∫     𝒙(𝝉)̇

𝒕

𝟎

𝒅𝝉 = 𝒙(𝒕) − 𝒙(𝟎) … … … … … … … … … … … … … … … … … … … … … … … . … … . (𝟒. 𝟐) 

Where, x is a state vector, u is an input vector, and A and B are matrices of appropriate 

dimensions. The rate vector  
𝑑𝑥

𝑑𝑡
 , the state vector x and overall control vector Bu are expanded 

into triangular function domain as given below: 

    𝒙(𝒕)̇ = ∑ 𝑪𝟏,𝒊+𝟏
𝑻 𝑻𝟏,𝒊+𝟏(𝒕)

𝒎−𝟏

𝒊=𝟎

+ ∑ 𝑪𝟐,𝒊+𝟏
𝑻 𝑻𝟐,𝒊+𝟏(𝒕)

𝒎−𝟏

𝒊=𝟎

≜ 𝑪𝟏𝑻𝟏(𝒕) + 𝑪𝟐𝑻𝟐(𝒕) … … … … . … (𝟒. 𝟑) 

   𝒙(𝒕) = ∑ 𝑫𝟏,𝒊+𝟏
𝑻 𝑻𝟏,𝒊+𝟏(𝒕)

𝒎−𝟏

𝒊=𝟎

+ ∑ 𝑫𝟐,𝒊+𝟏
𝑻 𝑻𝟐,𝒊+𝟏(𝒕)

𝒎−𝟏

𝒊=𝟎

≜ 𝑫𝟏𝑻𝟏(𝒕) + 𝑫𝟐𝑻𝟐(𝒕) … … … . . … (𝟒. 𝟒) 

𝑩𝒖(𝒕) = ∑ 𝑬𝟏,𝒊+𝟏
𝑻 𝑻𝟏,𝒊+𝟏(𝒕)

𝒎−𝟏

𝒊=𝟎

+ ∑ 𝑬𝟐,𝒊+𝟏
𝑻 𝑻𝟐,𝒊+𝟏(𝒕)

𝒎−𝟏

𝒊=𝟎

≜ 𝑬𝟏𝑻𝟏(𝒕) + 𝑬𝟐𝑻𝟐(𝒕) … … . . . . … . (𝟒. 𝟓) 
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Here 𝐶1,𝑖+1, 𝐶2,𝑖+1, 𝐷1,𝑖+1,𝑖+1, 𝐷2,𝑖+1, 𝐸1,𝑖+1 and 𝐸2,𝑖+1 are n-vectors and form the (i+1)th 

column of the n-by-m matrices 𝐶1, 𝐶2, 𝐷1, 𝐷2, 𝐸1 and 𝐸2 respectively.For a given input 

u(t), 𝐸1 and 𝐸2 are known using the function approximation. To solve the state vector x in the 

TF domain equation 2 is used. 

Using equation 4.3 in equation 4.22 and the TF property of integration, we get 

[𝑪𝟏 + 𝑪𝟐] ∫ 𝑻𝟏 (𝒕) = 𝑫𝟏𝑻𝟏(𝒕) + 𝑫𝟐𝑻𝟐(𝒕) − 𝟐𝒙�̃� … … … … … … … … . . … … . … … … … … (𝟒. 𝟔) 

Using the TF property of integration and equation 1 and dropping the argument (t), we can 

write 

[𝑪𝟏 + 𝑪𝟐][𝑷𝟏𝑻𝟏 + 𝑷𝟐𝑻𝟐] = 𝑫𝟏𝑻𝟏 + 𝑫𝟐𝑻𝟏 − 𝒙�̃�[𝑻𝟏 + 𝑻𝟏] … … . … … … … . . … … . . … … . (𝟒. 𝟕) 

Equating like coefficients of the basis functions T1 and T2, we obtain 

[𝑪𝟏 + 𝑪𝟐]𝑷𝟏 = 𝑫𝟏 − 𝒙�̃� … … … … … … … … … … … … … … … … … . … … … … … … . … … . . (𝟒. 𝟖) 

[𝑪𝟏 + 𝑪𝟐]𝑷𝟐 = 𝑫𝟐 − 𝒙�̃� … … … … … … … … … … … … … … … … … … … … … . … … . . . . … … . (𝟒. 𝟗) 

Adding equations (4.8) and (4.9), we get  

 [𝑪𝟏 + 𝑪𝟐][𝑷𝟏 + 𝑷𝟐] = [𝑫𝟏 + 𝑫𝟐] − 𝟐𝒙�̃� … … … … … … … … … … … … … … … … … . … . . (𝟒. 𝟏𝟎) 

Putting 𝐶1 + 𝐶2 ≜ 𝐶, 𝐷1 + 𝐷2 ≜ 𝐷 and using the relation 𝑃1 + 𝑃2 ≜ 𝑃, we have 

𝑪𝑷 = 𝑫 − 𝟐𝒙�̃� … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … (𝟒. 𝟏𝟏) 

(𝑪𝑷)𝒊+𝟏 = 𝑫𝒊+𝟏 − 𝟐𝒙�̃� … … … … … … … … … … … … … … … … … … … … … … … … … … … . (𝟒. 𝟏𝟐) 

To proceed with the TF domain solution, we use the property of the matrix P and can write 

(𝑪𝑷)𝒊+𝟏 =
𝑻

𝒎
∑ 𝑪𝒋 +

𝑻

𝟐𝒎
𝑪𝒊+𝟏

𝒊

𝒋=𝟏

, 𝒊 ≤ 𝒋 … … … … … … … … … … … … … … … … … … … … . . (𝟒. 𝟏𝟑) 

Writing in a recurrence relation form 

(𝑪𝑷)𝟏 = 𝟐
𝑻

𝒎
𝑪𝟏 … … … … … … … … … … … … … … … … … … … … … … … … … … . … … . … . (𝟒. 𝟏𝟒) 

                                         (𝑪𝑷)𝒊+𝟐 = (𝑪𝑷)𝒊+𝟏 +
𝑻

𝒎
(𝑪𝒊+𝟏 + 𝑪𝟏𝒊+𝟐) … … … … … … … … . . … (𝟒. 𝟏𝟓) 
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for all 𝑖 ≥ 0 

Combining equations (4.12), (4.14) and (4.15), we get solutions for state vectors as  

𝑫𝟏 =
𝑻

𝟐𝒎
𝑪𝟏 + 𝟐𝒙𝟎 … … … … … … … … … … … … … … … … … … … … … . . . . … … … . … … . . (𝟒. 𝟏𝟔) 

                                      𝑫𝒊+𝟐 = 𝑫𝒊+𝟏 +
𝑻

𝟐𝒎
(𝑪𝒊+𝟏 + 𝑪𝟏𝒊+𝟐) … … … … … … … … … . … . . … … (𝟒. 𝟏𝟕)   

for all 𝑖 ≥ 0 

𝑫𝟏 = 𝟐 [𝑰 −
𝑨𝑻

𝟐𝒎
]

−𝟏

𝒙𝟎 +
𝑻

𝟐𝒎
[𝑰 −

𝑨𝑻

𝟐𝒎
]

−𝟏

𝑬𝟏 … … … … … … … … . . … … … … … … . … … . (𝟒. 𝟏𝟖) 

𝑫𝒊+𝟐 = [𝑰 +
𝑨𝑻

𝟐𝒎
] [𝑰 −

𝑨𝑻

𝟐𝒎
]

−𝟏

𝑫𝒊+𝟏 +
𝑻

𝟐𝒎
[𝑰 −

𝑨𝑻

𝟐𝒎
]

−𝟏

(𝑬𝒊+𝟏 + ⋯ 𝑬𝒊+𝟐) … … … . . … … (𝟒. 𝟏𝟗) 

𝑫𝟏 = 𝑲 [𝑰 −
𝑨𝑻

𝟐𝒎
]

−𝟏

𝒙𝟎 +
𝑻

𝟐𝒎
[𝑰 −

𝑨𝑻

𝟐𝒎
]

−𝟏

𝑬𝟏 … … … … … … … … … … . … … … … . … … . (𝟒. 𝟐𝟎) 

𝑫𝒊+𝟐 = [𝑰 +
𝑨𝑻

𝟐𝒎
] [𝑰 −

𝑨𝑻

𝟐𝒎
]

−𝟏

𝑫𝒊+𝟏 +
𝑻

𝟐𝒎
[𝑰 −

𝑨𝑻

𝟐𝒎
]

−𝟏

(𝑬𝒊+𝟏 + ⋯ 𝑬𝒊+𝟐) … . . … … … … (𝟒. 𝟐𝟏) 

The equations (4.20) and (4.21) represent recurrence relation in TF domain when K=2 and in 

BPF domain when K=1.  

Now these equations are applied to a set of differential equations which are the model 

equations of reactions taking place in a system. Here in our present work two reacting systems 

are considered. The dynamics of these systems is analysed using recurrence relation that was 

developed previously. 
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4.2 SIMULATION OF LINEAR SYSTEMS VIA RECURRENCE 

RELATION 

 

4.1) Simulation of an Irreversible Reaction in a CSTR 

Problem Statement: - Consider a set of differential equations for a first order irreversible 

reaction in an isothermal CSTR. Ethylene oxide (A) is reacted with water (B) to produce 

ethylene glycol(R). Water is in large excess. A CSTR is used at a constant temperature. The 

block-pulse functions are used in solving the two differential model equations in an isothermal 

CSTR. The states are the concentration of A and R in the reactor. CA is the concentration of 

the reactant A and CR is the concentration of R. The parameter values are k1=0.311 min
-1

. The 

input values used in the following simulation are F/V=0.0777min
-1

, CAf =0.5mol/lt. 

Model Equations:- 

 

𝒅𝑪𝑨

𝒅𝒕
=

𝑭(𝑪𝑨𝒇 − 𝑪𝑨)

𝑽
− 𝒌𝟏𝑪𝑨. . . . . . . . . . . . . . . . . . . … … … … … … … … … … . … . … . . . . . . . . . . . (𝟒. 𝟐𝟐) 

𝒅𝑪𝑹

𝒅𝒕
= −

𝑭𝑪𝑹

𝑽
+ 𝒌𝟏𝑪𝑨. . . . . . . . . . . . . . . . . . . . . . . . . . . . … … … … … … … … … . … … . . . . . . . . . . . . (𝟒. 𝟐𝟑) 

Now expressing the two differential equations in terms of block-pulse functions as follows: 

Let 𝐶𝐴 = 𝑥1, 𝐶𝑅 = 𝑥2 

After substituting the given parameters in the above differential equations 42, 43, we get the 

following equations, 

 

𝒅𝒙𝟏

𝒅𝒕
= 𝟎. 𝟎𝟑𝟖𝟗 − 𝟎. 𝟑𝟖𝟖𝟕𝒙𝟏. . . . . . . . . . . . . . . . . … … … … … . … … … … … … . . . . . . . . (𝟒. 𝟐𝟒) 

  
𝒅𝒙𝟐

𝒅𝒕
= 𝟎. 𝟑𝟏𝟏𝒙𝟏 + 𝟎. 𝟎𝟕𝟕𝟕𝒙𝟐 … … … … … … … … … … … … … … . . … … … … … . (𝟒. 𝟐𝟓) 

 

Expressing the above model equations in terms of state space matrices, we get  

𝐴 = [
−0.0389                    0
0.311       −  0.0777

]; 𝑥0 = [
0.5
0

]; 𝐸 = [
0.0389

0
] 

For a given matrix size m and for a given time interval t the matrices A, x0 and E are 

substituted in the recurrence relation to obtain the state vector coefficient in TF domain and 

non-optimal BPF domain. Now the obtained output variables are compared over the variables 

obtained using actual solution, function approximation using BPF and TF domains. 
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The actual solution of the system is obtained as: 

𝒙𝟏(𝒕) = −𝟎. 𝟎𝟗𝟔𝟓𝒆−𝟎.𝟎𝟕𝟕𝒕 + 𝟎. 𝟖𝟒𝟖𝟐𝒆−𝟎.𝟑𝟖𝟗𝒕 + 𝟎. 𝟏𝟎𝟎𝟔 … … … … … … … … … … . … … (𝟒. 𝟐𝟔) 

𝒙𝟐(𝒕) = 𝟏. 𝟐𝟓𝟑𝒆−𝟎.𝟎𝟕𝟕𝒕 − 𝟐. 𝟏𝟖𝟎𝟓𝒆−𝟎.𝟑𝟖𝟗𝒕 + 𝟎. 𝟒𝟎𝟑𝟑 … … … … … … … … . … … … … … . (𝟒. 𝟐𝟕) 

The function approximation using BPF and TF domain is given as following respectively: 

𝒄𝒊,𝑩𝑷𝑭 =
𝟏

𝒉
∫ 𝒙𝟏(𝒕)𝜱𝒊(𝒕)𝒅𝒕

𝟏

𝟎

 … … … … … … … … … … … … … … … … … … … … … … … … . . (𝟒. 𝟐𝟖) 

𝒄𝒊,𝑻𝑭 =  𝒙𝟏(𝒊𝒉); 𝒅𝒊 = 𝒙𝟏((𝒊 + 𝟏)𝒉) … … … … … … … … … … … … … … … … … … … … … . . (𝟒. 𝟐𝟗) 

The results are plotted using MATLAB against various time intervals, t=10,50 and 100 sec for 

various matrix sizes, m=10,50 and 100 as shown below: 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-4.1: Concentration CA, CP  vs. time and for n=10, T=10sec 
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Figure-4.2: Concentration CA, CP  vs. time and for n=50, T=50sec 

 

                                                    

 

 

 

 

 

 

 

 

 

 

Figure-4.3: Concentration CA, CP  vs. time and for n=100, T=100sec 
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Table 4.1:- Results Comparison Table 

 

T(sec) m(size) x1BPF x2BPF x1TF x2TF y1BPF y2BPF y1TF y2TF 

10 10 0.1066 0.3936 0.1148 0.6065 0.0705 0.4676 0.071 0.4784 

50 50 0.1001 0.4003 0.1001 0.4101 0.0988 0.407 0.098 0.4071 

100 100 0.1001 0.4003 0.1001 0.4005 0.1006 0.4034 0.1006 0.4034 

                                                   

4.2) Simulation of a SISO system 

Consider a linear time invariant SISO system whose model equations are given below 

Model Equations:- 

𝒅𝒙𝟏

𝒅𝒕
= 𝒙𝟐. . . . . . . . . . . . . . . . . . . … … … … … … … … … … … … … … … … … … … . … … . . . . . . . . . . . (𝟒. 𝟑𝟎) 

𝒅𝒙𝟐

𝒅𝒕
= −𝟐𝒙𝟏 − 𝟑𝒙𝟐 + 𝟏. . . . . . . . . . . . . . . . . . . . . . . . . . . … … … … … … … … … … … . . . . . . . . . . . .  (𝟒. 𝟑𝟏) 

Expressing the above model equations in terms of state space matrices, we get  

𝐴 = [

                   
  0             1
−2       − 3

]; 𝑥0 = [
0
1

]; 𝐸 = [
0
0

] 

For a given matrix size m and for a given time interval t the matrices A, x0 and E are 

substituted in the recurrence relation to obtain the state vector coefficient in TF domain and 

non-optimal BPF domain: Now the obtained output variables are compared over the variables 

obtained using actual solution, function approximation using BPF and TF domains. 

The actual solution of the system is obtained as: 

𝒙𝟏(𝒕) = −𝒆−𝒕 + 𝟎. 𝟓𝒆−𝟐𝒕 + 𝟎. 𝟓 … … … … … … … … … … … … … … … … … … … … . … … … (𝟒. 𝟑𝟐) 

 𝒙𝟐(𝒕) = 𝒆−𝒕 − 𝒆−𝟐𝒕 … … … … … … … … … … … … … … … … … … … … … . … … … … … … … . (𝟒. 𝟑𝟑) 

The function approximations using BPF and TF domain are calculated using equations (4.28) 

and (4.29).The results are plotted using MATLAB against various time intervals, t=10, 20 and 

30sec for various matrix sizes, m= 100 as shown below: 
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Graphs 

 

 

 

 

 

 

 

 

 

 

 

Figure-4.4: Concentration CA, CP  vs. time and for n=100, T=10sec 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-4.5: Concentration CA, CP  vs. time and for n=100, T=20sec 
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Figure-4.6: Concentration CA, CP  vs. time and for n=100, T=30sec 

 

Table 4.2:- Results Comparison Table 

 

T(sec) m(size) x1BPF x2BPF x1TF x2TF y1BPF y2BPF y1TF y2TF 

10 100 0.5 0 0.9999 0.0001 0.5 0 0.5 0 

20 100 0.5 05 1 0 0.5 0 0.5 0 

30 100 0.5 0.5 1 0 0.5 0 0.5 0 
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4.2.1 Results and Discussions 

 From the two reacting systems, it is clearly seen that TF has greater accuracy than BPF 

and hence TF domain solution is more efficient. The TF function approximation is 

same as the true solution. 

 The non-optimal BPF solution can approach to TF with large matrix dimension size, 

m. Hence for large m, results obtained in TF and BPF domain are almost similar. Non-

optimal BPF solution is the average of TF solution. 

 From the two result tables 4.1 and 4.2, it is observed that the new steady state values 

have been reached by the systems within 30seconds, i.e. response time is very small. 

For the second system, even with large m, say 1000, the x and y values are same in 

recurrence relation (TF &BPF) and function approximation (TF & BPF) as of with 

m=100.Thus, it can be stated that new convergence of plots for second system can be 

achieved even with small matrix size. 

 For the first system, for t=10sec and m=10, small deviations are observed in the plots 

however for large time intervals and matrix sizes, say t=50 and 100seconds and m=50 

and 100 almost zero deviations are observed in all the plots. 

4.3 SIMULATION OF NON-LINEAR SYSTEMS VIA RECURRENCE 

RELATION 

Non-linearity is always a complex issue to deal with, hence any new methodology solving 

non-linear problems involves lot of assumptions and deviations from original solutions. 

Solving non-linear problems analytically becomes tough and almost impossible; as a result no 

method can rightly help in obtaining the exact solution to non-linear differential equations. As 

a result traditional numerical methods like Runge-Kutta been taken as a reference to compare 

the results of simulations produced by recurrence relation using BPF. 

The recurrence relation developed for linear systems in BPF and TF domain cannot be used 

for non-linear systems. For a non-linear system, the functions under consideration should also 

be recurred followed by the recurrence of output variable. The recurrence relation for non-

linear systems is thus an extension to that of the relation developed for linear systems. The 

linear results are used as initial values for the recurrence of non-linear systems. From 

equations (4.20) and (4.21), the linear output values can be determined which are further used 

in calculating the output variable of corresponding non-linear system. 
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Let us consider a general non-linear system of the form 

�̇� = 𝒇(𝒙, 𝒖, 𝒕) … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … . . (𝟒. 𝟑𝟒) 

𝑫𝟏 =
𝟏

𝟐𝒎
𝒇(𝑫𝒍𝒊𝒏𝒆𝒂𝒓, 𝒖𝒊, 𝒕𝒊) + 𝑿𝟎 … … … … … … … … … … … … … … … … … … … … . . … … (𝟒. 𝟑𝟓) 

𝑫𝒊+𝟏 =
𝟏

𝟐𝒎
𝒇(𝑫𝒍𝒊𝒏𝒆𝒂𝒓+𝟏, 𝒖𝒊+𝟏, 𝒕𝒊+𝟏 + 𝑫𝒍𝒊𝒏𝒆𝒂𝒓, 𝒖𝒊, 𝒕𝒊) + 𝑿𝟎 … … … … … … … … … … … … (𝟒. 𝟑𝟔) 

Where 𝑋0 represents the initial values vector of the system, Dlinear is the output vector 

calculated from linear recurrence relation. Now let us apply these equations to the two 

reacting systems: Non-isothermal CSTR and a Biochemical reactor. 

4.3) Simulation of Irreversible reaction in Non-Isothermal CSTR using Recurrence 

relation:- 

 

Problem Statement: - Consider a continuous stirred tank reactor for non-isothermal 

conditions. The reaction 𝐴𝐵 is exothermic and the heat generated in the reactor is removed 

via cooling system. The effluent temperature is different from the inlet temperature due to 

heat generation by exothermic reaction. Assuming constant density, the microscopic total 

mass balance, mass component and energy balance equations are considered. The dependence 

of the rate constant on the temperature; 𝒌 = 𝒌𝟎𝒆
−𝑬𝒂
𝑹𝑻 shall be taken into account. The non-

isothermal CSTR is modelled but three ordinary differential equations (ODE’s). 

 

Model equations:- 

 
𝒅𝑪𝑨

𝒅𝒕
=

𝑭

𝑽
(𝑪𝑨𝒇 − 𝑪𝑨) − 𝒌𝟎𝒆

−𝑬𝒂
𝑹𝑻 𝑪𝑨 … … … … … … . . … … … … … … … … . … … … . … … … . . (4.37) 

 
𝒅𝑻

𝒅𝒕
=

𝑭

𝑽
(𝑻𝒇 − 𝑻) +

(−∆𝑯)

𝝆𝑪𝒑
𝒌𝟎𝒆

−𝑬𝒂
𝑹𝑻 𝑪𝑨 −

𝑼𝑨

𝝆𝑪𝒑
(𝑻 − 𝑻𝒋) … … … … … … … … … … … … … . (4.38) 

 
𝒅𝑻𝒋

𝒅𝒕
=

𝑭𝒋𝒇

𝑽
(𝑻𝒋𝒇 − 𝑻𝒋) +

𝑼𝑨

𝝆𝒋𝑽𝒋𝑪𝒑𝒋
(𝑻 − 𝑻𝒋) … … … … … … … … … … … … … … … … … . … … (4.39) 

 

 

The parameters are substituted in the given differential equations and these differential 

equations are expressed in terms of state-space model. 

 

𝐴 =  [
−0.079907 −0.00013674 0

29.229 0.0456 0.146
0 0.04782 −0.0589

]; 𝑥0 = [
0.132

520.67
460.67

]; 𝐸 = [
0
0

−0.0326
] 
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For a given matrix size m and for a given time interval t the matrices A, x0 and E are 

substituted in the recurrence relation equations (4.34),(4.35) and (4.36) to obtain the state 

vector coefficient in BPF domain. Now the obtained output variables are compared over the 

outputs obtained using Runge-Kutta method. 

The results are plotted using MATLAB against various time intervals, t=50, 100and 500 sec 

for various matrix sizes, m=1, 2 and5 for 30 iterations as shown below: 

 

Graphs 

 

 

 

 

 

 

 

 

 

Figure-4.7: Concentration CA, T and Tj  vs. time and for m=2, T=50sec 

 

 

 

 

 

 

 



 

70 
 

 

 

 

 

 

 

 

 

 

 

Figure-4.8: Concentration CA, T and Tj  vs. time and for m=5, T=50sec 

 
 
 

     
 

 

 

 

 

 

 

 

 

 

 

Figure-4.9: Concentration CA, T and Tj  vs. time and for m=2, T=100sec 
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Figure-4.10: Concentration CA, T and Tj  vs. time and for m=1, T=500sec 

 

Another non-linear system which is simulated using the recurrence form is the biochemical 

reactor in which bold glucose concentration is determined for the corresponding insulin 

injected with the body. The system described previously in problem (3.5) is considered. Those 

differential equations are multiplied by 0.01.The parameters are substituted in the differential 

equations of problem (3.5) and these differential equations are expressed in terms of state-

space model. 

 

𝐴 =  0.01 ∗ [
−16.667 −4.5 0
29.229 −0.025 0.000013

0 0 −0.0926
]; 𝑥0 = [

4.5
16.667

4.5
]; 𝐸 = [

0
0
1

12

] 

For a given matrix size m and for a given time interval t the matrices A, x0 and E are 

substituted in the recurrence relation equations (4.34), (4.35) and (4.36) to obtain the state 

vector coefficient in BPF domain. Now the obtained output variables are compared over the 

outputs obtained using Runge-Kutta method. 

The results are plotted using MATLAB against various time intervals, t=10, 20and 30 sec for 

various matrix sizes, m=2 for 30 iterations as shown below: 
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Figure-4.11: Concentration CG, CX  and  CI    vs. time and for m=2, T=10sec 

 

 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure-4.12: Concentration CG, CX  and  CI    vs. time and for m=2, T=20sec 
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Figure-4.13: Concentration CG, CX  and  CI    vs. time and for m=2, T=30sec 

 

4.3.1 Results and Discussions 

 The two non-linear reacting systems are simulated using recurrence relation and the 

results are compared with those results obtained from Runge-Kutta method. The plots 

clearly show that our proposed method follows the trend of the Runge-Kutta method in 

establishing the dynamics of the two systems.  

 Unlike the previous method of BPF with operational matrix which requires matrix size 

of 100 and 500 to converge, recurrence method requires very small matrix dimension, 

m=2 even for large time intervals of t=500 seconds. Deviations are not completely 

eliminated as observed from the plots however the average deviation in both the 

systems is about 2% and in CSTR the average error percentage is less than 0.5%. 

 These results are produced with less sub iterations say about 30, thus to minimize the 

error or to eliminate it completely sub iterations can be compared when the systems 

are to be simulated for large time intervals say more than 1000 seconds for non-

isothermal system and 100 seconds for biochemical reactor. 
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5.1 OPTIMAL CONTROL OF SYSTEMS 

The basis for conventional control theory is the input-output relationship or transfer function. 

On a contrary, the modern control theory is based on vector-matrix differential equation that 

simplifies the mathematical representation of equations to a large extent. Even though the 

number of states, inputs and outputs get increased, the complexity of the system does not get 

increased. There had been several numerical techniques adopted earlier to obtain the states 

and outputs by solving the matrices in state-space representation. Some of those methods are 

recursive while some are non-recursive. Now, the block pulse functions are employed to 

determine the optimality criterion and states of the system. The recursive computation derived 

from block pulse functions is used in this regard. 

Pole Placement method can determine the states only when all states are measurable, i.e. when 

the system is completely controllable. In practise, not all states are completely measurable; 

hence states estimation is not possible by pole placement method. By incorporating observers 

within the system all states can be estimated. 

Consider a linear time invariant completely observable and controllable system described by 

�̇�(𝒕) = 𝑨𝒙(𝒕) + 𝑩𝒖(𝒕) … … … … … … … … … … … … … … … … … … … … … … … … … . … … . (𝟓. 𝟏) 

𝒚(𝒕) = 𝑪𝒙(𝒕) … … … … … … … … … … … … … … … … … … … … … … . . … … … … … … . … … . . (𝟓. 𝟐) 

Where u (t), x (t) and y (t) are plant input, state and output vectors respectively and A, B, C 

are n×n, n×r and p×n real constant matrices respectively. Assume that the rank of C is p. 

 An observer described by 

�̇�(𝒕) = 𝑭𝒛(𝒕) + 𝑮𝒖(𝒕) + 𝑯𝒚(𝒕) … … … … … … … … … … … … … … . . … … … … … … … … … . (𝟓. 𝟑) 

�̂�(𝒕) = 𝑳𝟏𝒚(𝒕) + 𝑳𝟐𝒛(𝒕) … … … … … … … … … … … … … … … … … … … … … . … … … … … … (𝟓. 𝟒) 

Can provide the estimate �̂�(𝑡) for the stare x (t), where F, G, H, L1, L2 are real constant q×q, 

q×r, q×p, n×p and n×q matrices respectively and q=n-p when the following conditions are 

satisfied. 

𝐺 = 𝓣𝑩 … … … … … … … … … … … … … … … … … … … … … … … … … … … … . … … … … … … (𝟓. 𝟓) 
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Where 𝒯 the q×n matrix which is the solution of the matrix equation 

𝓣𝑨 − 𝑭𝓣 = 𝑯𝑪 … … … … … … … … … … … … … … … … … … … … … … … … … … … … . … ….  (𝟓. 𝟔) 

𝒛(𝒕) = 𝓣𝒙(𝒕) + 𝒆(𝒕) … … … … … … … … … … … … … … … … … … … … … … … … … … … … . . (𝟓. 𝟕) 

�̇�(𝒕) = 𝑭𝒆(𝒕) … … … … … … … … … … … … … … … … … … … … … … … … … … … … … . … ….  (𝟓. 𝟖) 

𝑳𝟏𝑪 + 𝑳𝟐𝓣 = 𝑰𝒏 … … … … … … … … … … … … … … … … … … … … … … … … … … … . . … … … (𝟓. 𝟗) 

When an observer is incorporated to generate an estimate �̂�(𝑡) of the plant state vector, we 

need to choose the matrix K in the feedback law. 

𝒖(𝒕) = −𝑲𝒙(𝒕) … … … … … … … … … … … … … … … … … … … … … … … … . . … … … … … . . (𝟓. 𝟏𝟎) 

So that cost function 

𝐽 =
1

2
∫ [𝑥𝑇(𝑡)𝑄𝑥(𝑡) +

∞

0

𝑢𝑇(𝑡)𝑅𝑢(𝑡)]𝑑𝑡 … … … … … … … … … … … … … … … … … . … … . . (5.11) 

is a minimum. The n×n matrix Q and the r×r matrix R are real symmetric positive semi 

definite and real symmetric positive definite respectively. 

Substituting eqs. (5.2), (5.4), (5.7) and (5.9) into eqn.(5.10), we obtain 

𝒖∗(𝒕) = −𝑲[𝒙(𝒕) + 𝑳𝟐𝒆(𝒕)] … … … … … … … … … … … … … … … … … … … … … … … … . . (𝟓. 𝟏𝟐) 

Inserting eq. (5.12) into eq. (5.1) yields 

�̇�(𝒕) = �̃�𝒙(𝒕) + �̃�𝒆(𝒕) … … … … … … … … … … … … … … … … … … … … … … … … … . … … (𝟓. 𝟏𝟑) 

Where   

�̃� = 𝑨 − 𝑩𝑲 … … … … … … … … … … … … … … … … … … … … … … … … … … … … … . … … . (𝟓. 𝟏𝟒) 

�̃� = −𝑩𝑲𝑳𝟐 … … … … … … … … … … … … … … … … … … … … … … … … … … … … . … … … . (𝟓. 𝟏𝟓) 

From eq. (5.12), it can be seen that the solutions of eq. (5.8) and (5.13) are necessary to 

compute the optimal control law 𝑢∗(𝑡). 
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5.1.1 Analysis of Linear Optimal Control Systems incorporating Observers 

We express the state vector x (t) and error vector e (t) in terms of orthogonal functions as 

 

𝒙(𝒕) ≈ ∑ 𝒙𝒊𝝓𝒊
𝒎−𝟏
𝒊=𝟎 (𝒕) = 𝑿𝝓(𝒕) … … … … … … … … … … … … … … … … … … … . . … … … . . (𝟓. 𝟏𝟔)  

𝒆(𝒕) ≈ ∑ 𝒆𝒊𝝓𝒊

𝒎−𝟏

𝒊=𝟎

(𝒕) = 𝑬𝝓(𝒕) … … … … … … … … … … … … … … … … … … . . … … … … ..    (𝟓. 𝟏𝟕) 

Where 

𝑿 = [𝒙𝟎,𝒙𝟏, … … … … … … … , 𝒙𝒎−𝟏] … … … … … … … … … … … … … … … … … … . … … ….  (𝟓. 𝟏𝟖) 

𝑬 = [𝒆𝟎,𝒆𝟏, … … … … … … … , 𝒆𝒎−𝟏] … … … … … … … … … … … … … … … … … . … … ….      (𝟓. 𝟏𝟗) 

Which are unknowns and 𝜙(𝑡) is a BPF vector 

On integration of equation (5.8), we get 

𝑬 = 𝑬𝟎 + 𝑭𝑬𝑷 … … … … … … … … … … … … … … … … … … … … … … … … … … … . … … … . (𝟓. 𝟐𝟎) 

Where 

𝑬𝟎 = [𝒆(𝒕)𝟎,𝒆(𝒕𝟎), … … … … … … … , 𝒆(𝒕𝟎)] … … … … … … … … … … … … . … … … … … … (𝟓. 𝟐𝟏) 

Similarly from eq. (5.13), we get 

𝑿 = 𝑿𝟎 + (�̃�𝑿 + �̃�𝑬)𝑷 … … … … … … … … … … … … … … … … … … . … … … … … … … … . (𝟓. 𝟐𝟐) 

Where 

𝑿𝟎 = [𝒙(𝒕)𝟎,𝒙(𝒕𝟎), … … … … … … … , 𝒙(𝒕𝟎)] … … . … … … … … … … … … … … … … … … … (𝟓. 𝟐𝟑) 

 Eqs. (5.20) and (5.22) are to be solved for the unknowns E and X, which in turn determines 

the control law u*(t) from eq. (5.12) 

𝒖∗(𝒕) = −𝑲[𝑿 + 𝑳𝟐𝑬]𝝓(𝒕) … … … … … … … … … … … … … … … … … … . … … … … … … . . (𝟓. 𝟐𝟒) 
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Now the eqs. (5.20) and (5.22) are solved by a recursive algorithm via BPF’s 

Substituting the operational matrix P in eqs, (5.20) and (5.22) and simplifying we obtain 

𝒆𝟎 = (𝑰𝒒 − 𝟎. 𝟓𝑻𝑭)
−𝟏

𝒆(𝒕𝟎) … … … … … … … … … … … … … … … … … … … . … … … … … . . (𝟓. 𝟐𝟓) 

𝒆𝟏 = (𝑰𝒒 − 𝟎. 𝟓𝑻𝑭)
−𝟏

(𝑰𝒒 + 𝟎. 𝟓𝑻𝑭)𝒆𝒊−𝟏 … … … … … … … … … … … … . … … … … … … . . (𝟓. 𝟐𝟔) 

For i=1, 2, 3…, m-1 

𝒙𝟎 = (𝑰𝒏 − 𝟎. 𝟓𝑻�̃�)
−𝟏

[𝒙(𝒕𝟎) + 𝟎. 𝟓𝑻�̃�𝒆𝟎] … … … … … … … … … … … … . … … … … . … ..  (𝟓. 𝟐𝟕) 

𝒙𝒊 = (𝑰𝒏 − 𝟎. 𝟓𝑻�̃�)
−𝟏

[(𝑰𝒏 + 𝟎. 𝟓𝑻�̃�)𝒙(𝒕𝟎) + 𝟎. 𝟓𝑻�̃�(𝒆𝒊−𝟏 + 𝒆𝒊)] … … … … … . . … … . . (𝟓. 𝟐𝟖) 

For i=1, 2, 3…, m-1 

Problem Statement: - Consider a linear time-invariant system which is represented by the 

state space matrices given in the following 

[
�̇�1(𝑡)
�̇�2(𝑡)

] = [
0 1
1 0

] [
𝑥1(𝑡)
𝑥2(𝑡)

] + [
0

−1
] 𝑢(𝑡) 

[
𝑥1(0)
𝑥2(0)

] = [
−0.6
0.35

] 

𝑦(𝑡) = [1 0][𝑥1(𝑡) 𝑥2(𝑡)]𝑇 

Where the optimal control law can be taken to be 

𝑢∗(𝑡) = −𝐾�̂�(𝑡) = [1.5 1][�̂�1(𝑡) �̂�2(𝑡)]𝑇 

There is no complete measurement of state, hence �̂�(𝑡) can be obtained by the Luenberger 

observer. Let us choose 

𝐿1 = [1 1.5]𝑇 and 𝐿2 = [0 1]𝑇 

Substituting L1 and L2 in eq. (5.4) we get 

[
�̂�1(𝑡)
�̂�2(𝑡)

] = [
1

1.5
] 𝑦(𝑡) + [

0
1

] 𝑧(𝑡) 

𝒯 is determined from eq. (5.9) , G is known from eq. (5.5) and F,H are known from eq. (5.6). 

The obtained F, G and H values are substituted in eq. (5.3) 
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�̇�(𝑡) = −1.5𝑧(𝑡) − 𝑢(𝑡) − 1.25𝐻𝑦(𝑡) … … … … … … … … … … … . . … … . … . … … … … … . (5.29) 

𝐴 = [
0 1
1 0

] ; 𝐵 = [
0

−1
] ; 𝐶 = [1 0]; 𝐾 = [1.5 1]; 𝐹 = −1.5; 𝐺 = −1; 𝐻 = −1.25; 

𝐿1 = [
1

1.5
] ; 𝐿2 =  [

0
1

]; 𝒯 = [−1.5 1] 

�̃� = 𝐴 − 𝐵𝐾 = [
0 1

−0.5 −1
] and �̃� = −𝐵𝐾𝐿2 

Substituting F in eqs. (5.25) and (5.26) to compute error vector. Similarly �̃� and  �̃� are 

substituted in recursive algorithm in eqs. (5.27)  and (5.28) to compute state vector. Therefore, 

for m=4 and 9, the states and error vector is computed from the recurrence relation via BPF’s. 

The results are plotted against different time intervals and compared with the plots of the true 

solutions. 

Graphs 

 

 

 

 

 

 

 

 

 

Figure 5.1: Error versus time, t=10sec, m=4 
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Figure 5.2: State variables versus time, t=10sec 

 

 

 

 

 

 

 

 

Figure 5.3: Error versus time, t=10sec, m=9 
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Figure 5.4: State variables versus time, t=10sec, m=9 

5.1.2 Results and Discussions 

 The states and error are determined successfully by the recursive algorithm obtained 

via BPF and the results are plotted against different time intervals and matrix 

dimensions. 

 For small matrix dimension say m=4, there is a large difference in the error estimated 

by the proposed method and the error resulting from actual solution. 

 For a little large m say 9, previously observed deviations got minimized. 

 From literature it can be stated that recursive algorithms are computationally more 

attractive than non-recursive methods. 

 As block pulse functions are piece-wise constant, they approach the original solution 

with large matrix sizes however they are computationally very fast. 
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CHAPTER-6 

CONCLUSIONS AND FUTURE SCOPE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

83 
 

CONCLUSION 

 BPF with an operational matrix, P is an efficient method in simulating the differential 

equations of linear reacting systems. 

 However they are not that efficient in simulating all the non-linear systems. Non-linear 

differential equations with exponential terms in them are difficult to be solved by this 

method. 

 Recurrence relation in BPF and TF domain is proved to be effective in solving all the 

linear system of differential equations. 

 Recurrence relation in BPF domain can successfully solve non-linear CSTR system. 

 Optimality criterion for control problems can be achieved by recursive algorithms via 

BPF and also the states, input and error can be determined.  

 

FUTURE SCOPE 

 Block pulse functions can be applied to Heat exchangers, distillation processes and 

coal plant simulations. In addition, the other important orthogonal functions like 

triangular function sets with operational matrices can be applied to these processes. 

 The recurrence relation using triangular functions can be developed and implemented 

on the processes. 

 System identification, parameter estimation and control are the important phenomena 

of system analysis. As system identification has been worked upon, parameter 

estimation of chemical processes can be worked in the future. 
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