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ABSTRACT

Wavelet method is the backbone of various wavelet residue methods. In this context,
Wavelet Galerkin Method is becoming a powerful tool to solve various type of
differential equations. In this method, discrete orthogonal wavelets (family of
functions with compact support) are used as shape functions which are easier to
compute. These discrete orthogonal wavelets form a basis on a bounded domain.
The connecting coefficients obtained by using Daubechies wavelet are presented to
calculate the coefficient matrix.

Initially we have considered an example problem and the general solutions of the
same has been discussed by using wavelet Galerkin method. Then Haar wavelet has
been studied in detail. Finally using wavelet method various example problems have
been investigated. The obtained results are found to be in good agreement.
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Introduction

Wavelet method is very well-known to handle differential equations. Further, wavelet
residue method viz. wavelet Galerkin method has been widely used by various
researchers for solving differential equations. In this context, Chen et al. (1996) used
Daubechies compact orthogonal wavelets as shape functions. These shape functions
are used in Galerkin method. Then the wavelet Galerkin method is being used
to obtain the solution of various differential equations. Further Lepik (2007) used
wavelet method for solving nonlinear integral equations.

In view of the above literature, we have seen that the wavelet method has advantage
over the other numerical techniques due to the involved scaling and shrink functions.
The above idea is used in this thesis. The details and solution of various ordinary
differential equations have been discussed here.

Chen (1997) and Hwang (1996) have used Haar wavelets as a tool to find the
solution of different science and engineering problems. The main goal of this thesis
is to find the solution of ordinary differential equation using wavelet method.

1.1 Wavelet

Wavelet analysis was developed within the mathematical literature in 1980.
Wavelet is nothing but a wave in the form of function. There are many types
of wavelet. Here we have discussed two types of wavelets viz. Haar and
Daubechies wavelet.

1.2 Wavelet Function

Wavelets are well localized, oscillatory functions which provide a basis of L2(R)
and can be modified to a basis of L2[a, b] where [a, b] is a bounded domain.
Where L is the filter coefficient and it must be even. The fundamental wavelet
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CHAPTER 1. INTRODUCTION

function is given by

Ψ(x) =
L−1∑
l=0

(−1)lp1−lφ(2x− l) (1.1)

where φ(x) is the scaling function, L is filter coefficient and Ψ(x) is the wavelet
function.

There has been an increasing interest within the wavelet-based approach in
recent years. Any ordinary differential equation may be solved using wavelet
method. Here wavelet function has been used to investigate various ordinary
differential equations. In this context, various researchers have worked. Few
important and related literatures have been presented.

1.3 Scaling function

Wavelets are outlined by the wavelet function Ψ(x) and scaling function φ(x)
within the bounded domain. Scaling functions are discrete type of functions
which may produce the Daubechies function. We have defined a function to
understand more about the scaling functions.
Scaling function is defined as

Ψj ,k(t) = 2j/2φ(2jt− k) (1.2)

1.4 Haar Wavelet Function

Haar wavelet function is defined as

φ(x) =

 1 if 0 ≤ x ≤ 1
0 otherwise

(1.3)

within the range 0 ≤ x ≤ 1.
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Developed Model

2.1 Galerkin Method

Let us consider a second order differential equation,
d4ũ

dx4 + p(x) = 0, 0 ≤ x ≤ L (2.1)

y(0) = 0
dy
dx (1) = 1

Natural boundary conditions are given below,
d2y

dx2 (L) = M

d3y

dx3 (L) = −v

Let us consider the approximate solution of given equation as

ỹ(x) =
N∑

i=1
ciΩi(x) (2.2)

where Ω is trial function. Now we will find weighted residual equation (Galerkin
method).

∫ L

0

(
d4ũ

dx4 − p(x)
)

Ωi(x)dx = 0 (2.3)

Let us integrate twice Eq.(2.3) and substituting approximate solution, we will
have,

∫ L

0

N∑
j=1

Cj
d2Ωj

dx2
d2Ωi

dx2 dx =
∫ L

0
p(x)Ωi(x)dx− d3ỹ

dx3 Ωi|L0 + d2ỹ

dx2
Ωi

dx
|L0 , i = 1, ..., N (2.4)

4



CHAPTER 2. DEVELOPED MODEL

The matrix form can be written as

[K]n×n {C}n×1 = {F}n×1 (2.5)

where

Kij =
∫ L

0

d2Ωj

dx2
d2Ωi

dx2 dx (2.6)

Fi =
∫ L

0
p(x)Ωi(x) dx− d3y

dx3 Ωi

∣∣∣∣∣
L

0
+ d2y

dx2
dΩi

dx

∣∣∣∣∣
L

0
(2.7)

2.2 Wavelet Galerkin Method

According to the Galerkin method, we consider trial solutions and scaling
functions as

u(x) = 2J
2

2J−1∑
k=2−L

ukφJ,k(x) (2.8)

or

u(x) = 2J
2

2J−1∑
k=2−L

ukφ(2Jx− k) (2.9)

J > 0
φJ,k(x) = φ(2Jx− k) (2.10)

we will write

E(x) = 2J
2

2J−1∑
j=2−L

Ejφ(2Jx− j) (2.11)

where the coefficients Ej are calculated using the inner product,

Ej =
∫ 1

0
E(x)φJ,j(x)dx (2.12)

The Galerkin residual R is found by substituting Eqs.(2.9) and (2.11) in
Eq.(2.12),

R =
2J−1∑

j=2−L

2J−1∑
k=2−L

Ejuk(φ(0)
J,j(x)φ(2)

J,k(x) + φ
(1)
J,j(x)φ(1)

J,k(x)) + β
2J−1∑

k=2−L

ukφ
(0)
J,k(x) (2.13)

The nth derivative of the scaling function φ
(n)
J,j (x) is

φ
(n)
J,j (x) = 2nJ+ J

2 φ
(n)
J,j (2Jx− j), n = 0, 1, ..., L2 − 1 (2.14)
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CHAPTER 2. DEVELOPED MODEL

According to the Galerkin method, scaling functions of level J are selected as
the weighting functions. The inner product of the residual and the weighting
functions is equal to zero.∫ 1

0
RφJ, l(x)dx = 0 for i = 2− L, 3− L, ..., 2J − 1 (2.15)

which using Eq. (2.13),

2J−1∑
j=2−L

2J−1∑
k=2−L

Ejuk(al,j,k + bl,j,k) + β
2J−1∑

k=2−L

ukcl,k = 0 (2.16)

for l = 2− L, 3− L, ..., 2J − 1,
where

al,j,k =
∫ 1

0
φJ,l(x)φ(0)

J,j(x)φ(2)
J,k(x) dx (2.17)

bl,j,k =
∫ 1

0
φJ,l(x)φ(1)

J,j(x)φ(1)
J,k(x) dx (2.18)

cl,j,k =
∫ 1

0
φJ,l(x)φ(0)

J,k(x) dx (2.19)

Hwang (1996) referred to integrals of form Eqs.(2.17) and (2.19) as three term
connection coefficients, and Eq.(2.19) as two term connection coefficients. Zhao
(2010) suggested improved algorithms for exact calculation of these connection
coefficients. The standard notation for the two-term and three term connection
coefficients are as follows

Γn
k(x) =

∫ x

0
φ(y)φ(n)(y − k)dy (2.20)

Ωm,n
j,k (x) =

∫ x

0
φ(y)φ(n)(y − j)φ(n)(y − k)dy (2.21)

Now the value of Γn
k(x) and Ωm,n

j,k (x) can be computed from in Hwang (1996).

2.3 Integration of Haar Wavelet Function

Haar wavelet system and integrals of first four Haar wavelet function can be
expressed as Zhao (2010).
The Haar wavelet function is

φ(x) =

 1 if 0 ≤ x ≤ 1
0 otherwise

(2.22)

Now let us denote the Haar wavelet as φ(x) = h(x) and divide this into first
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CHAPTER 2. DEVELOPED MODEL

four intervals to compute the Haar integral function in the range [0, 1], Lepik
(2007) ∫ t

0
h0(t)dt = {t, 0 ≤ t ≤ 1 (2.23)

∫ t

0
h1(t)dt =

 t, 0 ≤ t ≤ 1
2

1− t, 1
2 ≤ t ≤ 1

(2.24)

∫ t

0
h2(t)dt =

 t, 0 ≤ t ≤ 1
4

1
2 − t,

1
4 ≤ t ≤ 1

2

(2.25)

and ∫ t

0
h3(t)dt =

 t− 1
2 ,

1
2 ≤ t ≤ 3

4

1− t, 3
4 ≤ t ≤ 1

(2.26)

Suppose the integration of first four Haar wavelet function P0, P1, P2 and P3

are defined on the same interval as the interval of Haar wavelet function Lepik
(2007) ∫ t

0
h0(t)dt = P0(t) (2.27)∫ t

0
h1(t)dt = P1(t) (2.28)∫ t

0
h2(t)dt =P2(t) (2.29)

and ∫ t

0
h3(t)dt =P3(t) (2.30)

Let us again consider the function and integrate it function in the range [0, 1].
Hence obtained as, Lepik (2007)∫ t

0
P0(t)dt =

{
t2

2 , 0 ≤ t ≤ 1 (2.31)

t∫
0

P1(t)dt =



0, t ∈ [0, 0)
t2

2 , t ∈ [0, 1
2)

1
4 −

1
2(1− t)2, t ∈ [1

2 , 1)
1
4 , t ∈ [1, 1)

(2.32)

∫ t

0
P2(t)dt =



0, t ∈ [0, 0)
t2

2 , t ∈ [0, 1
4)

1
16 −

1
2(1− t)2, t ∈ [1

4 ,
1
2)

1
16 , t ∈ [1

2 , 1)

(2.33)
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CHAPTER 2. DEVELOPED MODEL

and

∫ t

0
P3(t)dt =



0, t ∈ [0, 1
2)

1
2

(
1− t

2

)2
, t ∈ [1

2 ,
3
4)

1
16 −

1
2(1− t)2, t ∈ [3

4 , 1)
1
32 , t ∈ [1, 1)

(2.34)

Suppose the second integration of Haar wavelet function Q0, Q1, Q2 and Q3

which are defined on the same interval as the interval of Haar wavelet function,

Q0(t) =
∫ t

0
P0(t)dt (2.35)

Q1(t) =
∫ t

0
P1(t)dt (2.36)

Q2(t) =
∫ t

0
P2(t)dt (2.37)

and
Q3(t) =

∫ t

0
P3(t)dt (2.38)

and so on.
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Example Problems

3.1 Example of Galerkin method

Example 1
Let us consider fourth order ordinary differential equation

d4y

dx4 + 5x = 0, 0 ≤ x ≤ 1 (3.1)

subject to the boundary conditions

y(0) = 0

y′(0) = 0

y′′(1) = 2

y′′′(1) = −1

Two trial functions will satisfy the boundary conditions

Ω 1(x) = x2,Ω′

1(x) = 2x,Ω′′

1(x) = 2 (3.2)

Ω 2(x) = x3,Ω′

2(x) = 3x2,Ω′′

2(x) = 6x (3.3)

An approximate solution has been considered which satisfies the essential bound-
ary conditions. Substituting the values of scaling function in approximation
solution of the differential equation, we will get

ỹ(x) =
2∑

i=1
ciΩi(x) = c1x

2 + c2x
3 (3.4)

9



CHAPTER 3. EXAMPLE PROBLEMS

From Eq.(2.1)

p(x) = −5x (3.5)

the coefficient matrix can be mentioned as

K11 =
∫ 1

0

(
Ω′′

1

)2
dx = 4 (3.6)

K12 = K21 =
∫ 1

0

(
Ω′

1Ω′

2

)
dx = 6 (3.7)

K22 =
∫ 1

0

(
Ω′′

2
)2
dx = 12 (3.8)

Putting the value of K11, K12, K21 and K22 in a matrix form

[K] =
 4 6

6 12

 (3.9)

from Eq.(2.7), we will get

F1 =
∫ 1

0
(−5x)x2dx+ 1 + 4 = 15

4 (3.10)

F2 =
∫ 1

0
(−5x)x3dx+ 1 + 6 = 6 (3.11)

We may find
{c} = [K]−1 {F} (3.12)

So we have the approximated solution

ỹ(x) = 3
4x

2 − 1
8x

3 (3.13)

The exact solution of Eq.(3.1) may be written as

y(x) = −1
25 x

5 + 1
4x

3 + 2
3x

2 (3.14)

The comparison of exact and obtained solutions for values of x viz. x =
0.1, 0.2, 0.3 and 0.4 are given in Table 1.

Table 1. comparison of exact and Haar wavelet solutions of example 1.

x y(x) ỹ(x)

0.1 0.00738 0.00692
0.2 0.02900 0.02865
0.3 0.06413 0.0665
0.4 0.11200 0.12226

10



CHAPTER 3. EXAMPLE PROBLEMS

The solutions of Eqs(3.13) and (3.14) have been plotted to show the comparison
between exact and approximated solutions.

Figure 3.1: Comparison between exact and approximated solution in the interval [0,1]
(where light green line for approximate solution and blue line for exact solution)
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CHAPTER 3. EXAMPLE PROBLEMS

3.2 Example of wavelet Galerkin method

Let us consider the second order ordinary differential equation as

d2u(x)
dx2 + β2u(x) = 0 (3.15)

Suppose the solution of Eq (3.15)

u(x) = 2J
2

2J−1∑
k=2−L

ukφ(2Jx− k) (3.16)

where
φJ,k(x) = 2J

2 φ(2Jx− k) (3.17)

and then we have

u(x) = 2J
2

2J−1∑
k=2−L

ukφJ,k(x) (3.18)

The Galerkin residual is found by substituting Eq.(3.18) into Eq.(3.15)
After putting L = 6,J = 0 Simon (2012), we will get

0∑
k=−4

ukφ
2
0,k(x) + β2

0∑
k=−4

ukφ0,k(x) = 0 (3.19)

Using Galerkin Method, scaling functions of level J are selected as the weighing
function .The inner product of residual and the weighing functions is set to be
zero, Simon (2012). ∫ 1

0
Rφ0,l(x) dx = 0 (3.20)

Assume the integral (3.20) to solve Eq.(3.15)

Ωm,n
j,k (x) =

x∫
0

φ(y)φ(m)(y − j)φ(n)(y − k) dy (3.21)

Consider Eqs (3.18),(3.19) and integral (3.21) at β = 1
Eq.(3.19) may be represented in omega integral as, Simon (2012)

u(1) =
0∑

k=−4
Ω0,2

0,k(1) +
0∑

k=−4
Ω0,0

0,k(1) (3.22)

12



CHAPTER 3. EXAMPLE PROBLEMS

3.3 Examples of Haar wavelet method to solve differntial
equation

3.3.1 Example 2

Let us consider another second order differential equation as

d2y

dx2 + 1 = 0, 0 ≤ x ≤ 1 (3.23)

subject to
y(0) = 0

y′(1) = 1

The exact solution of Eq.(3.23) may be obtained as

y(x) = 1.85082 sin(x) (3.24)

Now we will solve this differential equation by Haar wavelet function method
to get the approximate solution.
So, Let us consider

d2y

dx2 =
3∑

i=0
aihi(x) (3.25)

Where function hi(x) is Haar wavelet function. Let us integrate the both side
of Eq.(3.25) with respect to independent variable x, then we will get,

dy

dx
=

3∑
i=0

aipi(x) + k1 (3.26)

Where function pi(x) is the first integration of the Haar wavelet function and
k1 is the constant of integration in Eq.(3.26). Now again Let us integrate the
both side of Eq.(3.26) with respect to independent variable x, then we will get,

y(x) =
3∑

i=0
aiqi(x) + k1x+ k2 (3.27)

where function qi(x) is the second integration of Haar wavelet function and k2

is the constant of integration in Eq.(3.27).
Now substituting the value of Eq.(3.25) in the differential Eq.(3.23) and we
will get,

3∑
i=0

aihi(x) + 1 = 0 (3.28)

13



CHAPTER 3. EXAMPLE PROBLEMS

where i = 0, 1, 2 and 3
Substituting the value of i = 0, 1, 2 and 3 in the Eq.(3.28)

a0h0(x) + a1h1(x) + a2h2(x) + a3h3(x) + 1 = 0 (3.29)

and we will get
a0 + a1 + a2 + a3 = −1 (3.30)

y(x) = a0q0(x) + a1q1(x) + a2q2(x) + a3q3(x) + k1x+ k2 (3.31)

y(x) = (a0 + a1 + a2 + a3)x
2

2 + k1x+ k2 (3.32)

Hence we will get approximated solution as

ỹ(x) = −x
2

2 + 2x (3.33)

we have graph of solution Eqs(3.24) and (3.33) to show the comparison between
exact and approximated solutions.

Figure 3.2: Comparison between exact and approximated solution in the interval [0,1]
(where light green line for exact solution and blue line for approximated solution)
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CHAPTER 3. EXAMPLE PROBLEMS

3.3.2 Example 3

Let us consider the second order differential equation
d2y

dx2 + dy

dx
+ y = 0, 0 ≤ x ≤ 1 (3.34)

subject to
y(0) = 2

y′(0) = 2

The exact solution of Eq.(3.34) may be obtained as

y(x) = e−
x
2

[
2 cos

√
3

2 x+ 2√
3

sin
√

3
2 x

]
(3.35)

Now we will solve the above differential equation by Haar wavelet function
method to get the approximate solution.
So, let us consider

d2y

dx2 =
1∑

i=0
aihi(x) (3.36)

Where function hi(x) is the Haar wavelet function. Integrating both sides of
Eq.(3.36) with respect to independent variable x, we will get,

dy

dx
=

1∑
i=0

aipi(x) + k1 (3.37)

Where function pi(x) is the first integration of the Haar wavelet function and
k1 is the constant of integration in Eq.(3.37). Similarly integrating Eq.(3.37),
we will get,

y(x) =
1∑

i=0
aiqi(x) + k1x+ k2 (3.38)

Where function qi(x) is the second integration of the Haar wavelet function
and k2 is the constant of integration in Eq.(3.38).

Now substituting the values of Eqs.(3.36),(3.37) and (3.38) in Eq.(3.34).
We will get,

1∑
i=0

aihi(x) +
1∑

i=0
aipi(x) + k1 +

1∑
i=0

aiqi(x) + k1x+ k2 = 0 (3.39)

where i = 0, 1
Substitute the value of i = 0, 1 in the Eq.(3.39)

a0h0(x)+a1h1(x)+a0p0(x)+a1p1(x)+k1 +a0q0(x)+a1q1(x)+k1x+k2 = 0 (3.40)

15



CHAPTER 3. EXAMPLE PROBLEMS

we will get

a0 + a1 = −
(
k1 + k2 + k1x

1 + x+ x2

2

)
(3.41)

y(x) = a0q0(x) + a1q1(x) + k1x+ k2 (3.42)

and
y(x) = (a0 + a1)x

2

2 + k1x+ k2 (3.43)

Hence the approximated solution can be obtained as

ỹ(x) = 4 + 4x
2 + 2x+ x2 (3.44)

The comparison between exact and approximated solutions of Eqs(3.35) and
(3.44) have been shown in the Figure 3.3 .

Figure 3.3: Comparison between exact and approximated solution in the interval [0,1]
(where light green line for approximate solution and blue line for exact solution)
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CHAPTER 3. EXAMPLE PROBLEMS

3.4 Conclusion

In recent years wavelet method has gained an important role and become
popular among researchers. The scaling and shrink functions are main tools of
wavelet method which distinguish it from other numerical methods. In view of
this we have considered wavelet and wavelet Galerkin method to investigate
various ordinary differential equations. As such, Haar and Daubechies wavelets
have been used for the investigation. Further, some example problems are
solved and obtained results are compared with exact solutions. Finally we have
seen that the obtained solutions are found to be in good agreement.
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