
Service Level Agreement Aware

SaaS Placement in Cloud

Sumit Bhardwaj

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela, Odisha, 769008, India

May 2015

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ethesis@nitr

https://core.ac.uk/display/80147851?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Service Level Agreement Aware

SaaS Placement in Cloud

Thesis submitted in partial fulfillment of the requirements for the degree of

Master of Technology

in

Computer Science and Engineering
(Specialization: Computer Science and Engineering)

by

Sumit Bhardwaj
(Roll - 213CS1139)

under the supervision of

Prof. Bibhudatta Sahoo

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela, Odisha, 769008, India

May 2015

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela - 769008, Odisha, India

CERTIFICATE

This is to affirm that the thesis entitled Service Level Agreement Aware

SaaS Placement in Cloud submitted by Sumit Bhardwaj , to the Depart-

ment of Computer Science and Engineering, in partial fulfillment for the award

of the degree of Master of Technology (Computer Science), is a record

of factual exploration work did by him under my supervision during the period

2014-2015. The thesis has satisfied all the necessities according to the regula-

tions of the Institute and in my opinion, has come to the standard required for

submission.

Place: NIT Rourkela

Date: May 25, 2015

Dr. Bibhudatta Sahoo

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela-769008, Odisha, INDIA

Dedicated to my Parents and

Siblings

Acknowledgements

I want to express my utmost appreciation to those who have helped throughout

the completion of this thesis.

To my supervisor, Dr Bibhudatta Sahoo, I would like to express my heartfelt

thankfulness for his invaluable support, continuous supervision, and greatly ap-

preciated motivation during my research. I am really grateful for his patience and

encouragement. His guidance has played a vital role in my academic, professional

and personal development and I am very lucky to have had the opportunity to

work with him.

I owe my deepest gratitude to the whole faculty members of Computer Science

and Engineering department for providing me an excellent academic environment

and support.

I must also convey my heartfelt thanks to the ever diligent staff of Computer

Science and Engineering department for providing assent in everything we did.

Special thanks go to my parents and family members, who have been my

source of motivation. This achievement would never have been possible without

their love and support. Last but not least, I would like to thank all my friends,

who have stood by me through thick and thin over the years.

Sumit Bhardwaj

213CS1139

May 25, 2015

Abstract

Cloud computing is an encouraging and favourable paradigm for both providers

and consumers in diverse scopes of endeavors. Software as a Service (SaaS) is a

method of conveying services or applications through the Internet as a service,

and it is known to be one of the very crucial computing services in cloud com-

puting. Cloud computing has become a major medium for the SaaS providers to

provide their applications because required scalability can be achieved through

this. The challenges of SaaS placement process depends on various factors com-

prising cloud network size, resource requirements, and communication among its

components. This thesis analyzes the SaaS Placement Problem (SPP) and pro-

poses a mathematical model for SaaS placement in Cloud. This thesis gives an

evolutionary approach, known as Particle Swarm Optimization (PSO) that has

been applied to find the optimal placement of SaaS component and aiming to min-

imize the total cost incurred to the SaaS provider, and then evaluated against the

traditional Greedy approach in experiments. The obtained results show our pro-

posed algorithm SPPSO generates better solutions than Greedy approach SPGA.

Keywords: Cloud computing, Software as a Service, SaaS Placement Problem,

Particle Swarm Optimization, Greedy approach

Contents

Abstract i

Contents ii

List of Figures iii

List of Tables iv

1 Introduction 1

1.1 Introduction . 1

1.2 Software as a Service . 4

1.3 Service Level Agreement . 5

1.4 SaaS Deployment . 5

1.5 Related Work . 7

1.6 Research Motivation . 9

1.7 Research Objective . 10

1.8 Research Contribution . 10

1.9 Thesis Outline . 10

2 SaaS Placement in Cloud 12

2.1 Introduction . 12

2.2 Cloud Computing . 12

2.2.1 Cloud Architecture . 13

2.2.2 Cloud Service Models . 14

2.2.3 Cloud Deployment Models 16

2.3 Cloud Software as a Service . 17

2.3.1 SaaS Application Model 19

ii

2.3.2 SaaS Examples . 21

2.4 SaaS Placement Problem . 22

2.5 Problem Formulation . 24

2.5.1 Objective . 26

2.5.2 Resource Constraints . 27

2.5.3 SLA and Execution time Constraints 27

2.6 Current State of Work . 28

2.7 Conclusion . 29

3 PSO Framework for SaaS Placement 30

3.1 Introduction . 30

3.2 SaaS Placement using Particle Swarm Optimization 31

3.2.1 PSO Parameters . 33

3.2.2 SPPSO . 34

3.2.3 Working of SPPSO . 38

3.2.4 Example . 39

3.3 SaaS Placement using Greedy Approach 41

3.4 Simulation Results . 43

3.4.1 Performance Evaluation with Different Number of Virtual

Machines . 43

3.4.2 Performance Evaluation with Different Number of SaaS

Components . 45

3.5 Conclusion . 46

4 Conclusions & Future Work 48

Bibliography 49

Dissemination of Work 54

List of Figures

1.1 Different roles for a SaaS . 6

2.1 Cloud Computing Architecture (30) 14

2.2 Cloud Service Architecture . 15

2.3 Micorsoft’s SaaS Maturity Model 19

2.4 A General SaaS Maturity Model 21

2.5 First possible scenario of SaaS Component placement 23

2.6 Second possible scenario of SaaS Component placement 23

2.7 Third possible scenario of SaaS Component placement 24

3.1 Flow chart of SPPSO . 38

3.2 Experiment on number of SaaS Components [for 100 VMs)] . . . 44

3.3 Experiment on number of SaaS Components [for 200 VMs] 44

3.4 Experiment on number of SaaS Components [for 300 VMs] 45

3.5 Experiment on number of VMs [for 20 SaaS Components] 45

3.6 Experiment on number of VMs [for 30 SaaS Components] 46

3.7 Experiment on number of VMs [for 40 SaaS Components] 46

iv

List of Tables

1.1 Main services of Cloud computing 3

2.1 Cloud resources’ attributes . 25

2.2 SaaS components resources’ requirements 26

2.3 Current State of Work for SPP 29

3.1 Direct representation of a position vector 39

3.2 Indirect representation of a position vector 39

3.3 Velocity matrix . 40

3.4 Updated velocity matrix . 40

3.5 Updated position vector . 41

3.6 Direct representation of updated position vector 41

Chapter 1

Introduction

1.1 Introduction

In the previous couple of years, Information Technology (IT) has board up on

a new model - Cloud computing. In spite of fact that Cloud computing is just

a distinct method to convey computer assets, instead of another innovation, it

has sparkled a rotation in the way of providing information and services by an

organization. Cloud computing has turned into an extremely favorable standard

for both consumers and providers in different fields of endeavors. An elemental

change is created in computer architecture, development of software and tools,

and of course, in the way the information is stored, distributed and consumed.

A Cloud normally contains numerous resources considered to be distributed and

heterogeneous. The suppleness is a function of Cloud computing for the resource

allocation on request. Through this, it is possible to use the system’s accumula-

tive resources, invalidating the requirement of assigning a particular hardware to

a task.

Before coming into the perspective of Cloud computing, websites and applications

that were server based used to be executed on a particular system. With the emer-

gence of Cloud computing, resources are utilized as an amassed virtual computer.

This consolidated configuration endows an environment in which applications are

executed independently without considering any specific configuration.

There are legitimate and notable business and IT explanations for the Cloud

computing idea model change.

Reduced cost: With the help of Cloud computing, both capital expense, as well

as operating expense costs are reduced because when there is a need then only

1

Chapter1 Introduction

the resources are acquired and paid according to usage.

Refined usage of personnel: With the use of Cloud computing, free valued person-

nel allows them to revolve around delivering value instead of maintaining software

and hardware.

Robust Scalability: Immediate scaling is allowed in Cloud computing, either up

or down, without long-term responsibility at any time.

Buyya et al. (5) gave the meaning of Cloud as - “The Cloud is a kind of parallel

and distributed system comprising of a gathering of inter-connected and virtualized

computers. These are provisioned dynamically and offered as a single or many in-

tegrated resource(s) for computing rooted in service-level agreements propounded

through a negotiation process between the service consumers and providers.”

A more recent definition can be found in a special publication on Cloud com-

puting by the National Institute of Standards and Technology (NIST), Amer-

ica. According to NIST(35) “Cloud computing is a model that enables universal,

on-demand and convenient accessibility to a shared collection of the computing

resources that can be provisioned dynamically and managed with a very few man-

agement efforts made by the Cloud providers.”

The adoption and deployment of Clouds has many tempting benefits, such as

scalability and reliability. Cloud computing has important characteristics which

includes on-demand self service, broad network access, resource pooling, rapid

elasticity & measured service.(35)

On-demand self service means the clients can ask for their own resources and

can also deal with those processing assets.

Broad network access permits to offer services over the Internet or some other

private networks.

Resource pooling means the clients can use the resources from a collection of

computing resources, mostly in remote data centres. The offered services can be

scaled smaller or larger, and the usage of the service is calculated and service

users are billed accordingly based on pay-as-you-go model.

2

Chapter1 Introduction

The Cloud model comprises of 3 service models(35) i.e. Software as a Service

(SaaS), where the Cloud user is capable of using the applications, which are run-

ning on a Cloud infrastructure, and provided by Cloud service provider, Platform

as a Service (PaaS) and the third is Infrastructure as a Service (IaaS).

Service Type Service Focus Existing Cloud

Provider

Infrastructure as a

Service (IaaS)

Storage, network, computation Amazon EC2, Net-

work Microsoft

LiveMesh, Amazon S2

Platform as a Service

(PaaS)

High level integrated development envi-

ronment, deploying and testing custom

applications

Google App Engine

Software as a Service

(SaaS)

Software Salesforce, Forecast

Table 1.1: Main services of Cloud computing

Table 1.1 depicts the characteristics of these main services, in terms of the service

focus and some examples of existing providers.

The third Cloud service, SaaS, has received considerable recognition from the

providers of software as well as from software users. Software is no more acquired

and run by clients themselves on their own infrastructure but is run on the IT

infrastructure of a hosting company. The demand for the SaaS is increasing every

year (6).

In a report presented by Dubey and Wagle (9), it is reported that companies that

are providing SaaS can create up to an 18% increment in revenue within three

years.

Some other Analyst firms have also reported the positive growth of SaaS, includ-

3

Chapter1 Introduction

ing the IDC, which stated that the worldwide revenue would reach $ 22 billion

by 2015. These reports are evidence that SaaS has become a significant service

to users, in 2009 revenue for SaaS was $13.1 billion, and that it would reach upto

$40.5 billion in 2014 (33). Gartner (34) forecast that the leading to challenges in

providing a better SaaS to meet these. In addition, advancement in Cloud com-

puting infrastructure has given an efficient meaning for hosting SaaS, thereby

making more accessibility of SaaS to a wide range of software users.

1.2 Software as a Service

Software as a Service (SaaS) endows network-dependent accessibility to the com-

mercially available software that is conveying applications over the Internet as

a service. Rather than installing and maintaining the software, consumers sim-

ply get to it through the web, liberating consumer from sophisticated hardware

and software management and consumers pay for service as per use basis(44).

The consumer doesn’t control or manage the hidden cloud infrastructure, which

includes servers, storage, network, operating systems, or even individual appli-

cation abilities, with the possibility of exemption of constrained client-specific

application setup settings(35).

Examples of SaaS include Acrobat.com, Photoshop.com, Intuit, Netflix, Quick-

Books online, Gmail, and Gmail docs.

SaaS describes the prospective for a lower-cost path for organizations to use soft-

ware; instead of buying the licenses for each of the computer, use the software on

demand, especially when it is understood that most of the computers are sitting

idle for 70% of the time.

Over the last few years, the use of SaaS has skyrocketed and hinted at no easing

off. Gartner forecasted that the worldwide market would grow from US$18.2 bil-

lion to US$45.6 billion, from 2012 to 2017. IBM surveyed that among over 800

companies, the top reason given for adopting SaaS was reducing the total cost of

ownership of their applications. 41% reached that goal to a higher degree.

4

Chapter1 Introduction

1.3 Service Level Agreement

An agreement between a service provider and its inward or outer clients that

reports what services the clients are supposed to get, is known as Service Level

Agreement (SLA)(12). It is a formal, discussed document that tries to define

the services being offered to the clients in quantitative manner. Conveying of

applications as services (SaaS) over the Internet and hardware services (IaaS)

are the important sections of cloud computing. As customers or organizations

are adopting such Service Oriented architectures (44), the reliability and quality

of service being offered, becomes main aspects. It is not always possible for

service provider to fulfill the demands of customers and organizations using their

services and thus a balance must be made. So the service providers and service

users commit to an agreement that is referred as SLA (38).

An SLA is composed of three major parts:

1. A collection of promises made to service users.

2. A collection of services not made explicitly to users, i.e. limitations.

3. A set of obligations that user must accept.

The Quality of Service (QoS) attributes that are commonly the SLA parts i.e.

throughput and response time, needs to be closely observed time to time (38).

1.4 SaaS Deployment

The word “SaaS deployment” alludes to the SaaS installation and delivery, rather

than the traditional on premise model of deployment of software. It is similar to

the traditional, accepted state of a utility service that is followed by measuring

& charging at continual periods, for the provided or delivered services (48). The

delivered services must not violate the constraints defined in the SLA.

SaaS is a combination of different type of components; application component

(AC), integration component (IC), business component (BC), and storage com-

ponent (SC) (50). Each component is to satisfy some business function. SaaS

components are deployed on the top of the virtual machines in cloud computing

5

Chapter1 Introduction

infrastructure which is provided by cloud vendors to SaaS provider. A cloud data

center consist two types of servers; storage servers and computation servers. Each

server has some limited processing capacity, I/O capacity, and memory size. On

the top of each server some virtual machines are running with different capaci-

ties. A server capacity is divided among the virtual machines to satisfy the SaaS

components need. SaaS components are then deployed on those virtual machines

based on satisfying the requirements of each component.

Figure 1 depicts the three different role for a SaaS i.e.

1) SaaS Consumer, who uses the service provided through internet,

2) SaaS Vendor, who sells and

3)SaaS Provider, who provides an IT infrastructure for that SaaS.

However, SaaS provider and SaaS Vendor may be the same.

Figure 1.1: Different roles for a SaaS

The chief benefit of SaaS deployment is the reduction in the delivery cost for

both SaaS subscribers and the SaaS providers. Since SaaS providers can deploy

centrally, fix and update their offerings on the cloud, the maintenance cost is also

reduced for the provider of the SaaS. Similarly, the subscribers need not to worry

about the software’s outdated versions or the cost of licensing for multiple users

required for upgrading to the latest version of a software product.

6

Chapter1 Introduction

1.5 Related Work

In this section, existing work done is discussed, related to SaaS components place-

ment problem on the clouds and resource optimization in virtual servers. In cloud

computing environment, it is very common to deploy SaaS components onto the

Clouds as to satisfy the consumers needs. Placing SaaS components onto cloud

servers shares similarities with an existing problem known as Component Place-

ment Problem(CPP) (28). CPP is further categorized into two parts:

1) offline CPP, where component are placed at initial stage,

2) online CPP, where component placement is done during run time.

However, SPP is much similar to offline CPP because the placement is done at

initial stage (48). Existing work on CPP is related with data centre’s resource

allocation to the application components.

Several existing studies formulated CPP as a resource optimization problem and

also as a variant of the multiple knapsack problem (45).

Kichkaylo et al. (28) defined the application by as set of interface and com-

ponent types where each of the component specifies required service for the exe-

cution through interface. In this paper, they proposed a general model for CPP

and presented an algorithm based on efficient planning algorithms developed by

artificial intelligence community. There was a drawback with this algorithm that

it may fail if the resources are tight.

Karve et al. (26) proposed a middleware clustering technology through which

resources can be allocated to web application through dynamic Application In-

stance Placement (AIP). AIP is defined as problem of placing the instances of

application on a server machine set to satisfy the varying demands of application

clusters for resources out of available resources. Their objective was to minimize

the placement changes made during deployment. Karve divided the resources

into two categories, one is load dependent that depends on the intensity of appli-

cation load, and another is load independent that do not completely depend on

the intensity of application workload. SaaS placement is also said to be NP-hard

problem in this paper.

7

Chapter1 Introduction

Zimmerova et al. (53) focused on the relational aspect between components of the

problem presented in (28), and proposed a solution concerning both interaction

and non-interaction properties as well. They used automata language for cap-

turing the inter-component communication. Zimmerova’s proposed method was

to integrate with an existed method on the non-interaction aspects of components.

Urgaonkar et al. (45) used the first-fit based approximation algorithm in plac-

ing component applications in an offline CPP. The algorithm proposed by them

places the component at the first server found that can satisfy its demand.

Zhu et al. (52) addressed the Application Component Problem(ACP) for a data

center. ACP is to decide which physical server should host the application compo-

nent in order to minimize the processing, storage and communication requirement

and resources are effectively used as well. They formulated the ACP problem by

using a mathematical optimization framework and further as a mixed integer

program, and proposed a solver using virtualization technology. The ACP solver

presented by them worked in many scenarios that includes fail-over and migra-

tion, but there was a drawback of not able to deploy several component on the

same server.

Yusoh et al.(48) proposed a Genetic algorithm with penalty, for composite SaaS

placement problem in cloud, considering both software as well as data compo-

nents of SaaS. The objective was to optimize the SaaS performance based on its

total execution time and optimization of resource consumption in each server,

keeping in mind the communication part between data and software components

in cloud storage servers. It is also said that the proposed algorithm is scalable.

Yusoh et al.(50) further enhanced the work done in (48), by presenting evolution-

ary algorithms for placement of Composite SaaS and optimizing resource usage as

well. In this paper the authors have taken care of the response time of the services

being offered to meet the maximum response time defined in SLA. It is a different

8

Chapter1 Introduction

approach to deal with the problem of initial placement of composite SaaS onto

physical cloud servers and, maintenance phase in which reconfiguration is done

for resource usage optimization and subscription cost for users is also minimized.

In this paper, they addressed the problems resulted from composite SaaS place-

ment, which was focused on constraints, requirements and inter-dependencies

rather than from platform aspects.

Zhenzhang et al. (31) presented a model for deploying the SaaS components

in the cloud computing environment and also proposed a method for solving

SaaS placement problem based on the Ant Colony Optimization technique, and

claimed to perform better than the genetic algorithm for the same.

Zhipiao et al. (32) established a request model for cloud service and proposed

a genetic algorithm based cost-aware scheduling technique for servicing request

that too cost effective and not violating SLA constraints. Their approach was not

only limited to reusing the resources but minimizing rental cost and maximizing

providers profit.

1.6 Research Motivation

Software as a service has received a lot of consideration from IT industries. It

is a model of software deployment whereby a provider licenses an application to

customers for use as a service on demand(51). Some leading companies providing

Cloud services are, Media Temple, AT & T, Grid Player, Joynet, Flexiscale and

so on. Most of these also provide hosting services, such as Media Temple, ATT,

Hosting.com, Hosting365, Grid Player, and so on.

A SaaS delivered as a composite application or as multiple components form, in

which the software components are loosely coupled and components communicate

to each other in order to provide a high-level functional system(15). For providing

software as a service first, there is a need to place the saas on the virtual machines

running on the top of cloud servers. The SaaS Placement is said to be NP-Hard

Problem(26)(53)(31).

9

Chapter1 Introduction

Because the problem nature is NP-Hard, finding the solution of the problem via

conventional algorithms is not possible, therefore some heuristic algorithms are

required to find a solution that will provide a sub-optimal solution which is very

near to an optimal solution. Most of the researchers used Genetic Algorithm to

solve this problem, because it is an evolutionary approach. This research will use

Particle Swarm Optimization (PSO)because of its easy handling and evolutionary

nature to handle the problems’ challenges. PSO is a stochastic search terminology

which applies biological evolutions in production of solution.

1.7 Research Objective

SaaS components are deployed on top of the Virtual Machines(VMs) in cloud com-

puting infrastructure which are provided by cloud vendors to the SaaS provider.

A VM can host multiple components with different requirements at a time. As

mentioned in previous section, SaaS Placement is known to be NP-Hard. In this

research an optimal placement strategy will be carried out that will place the

SaaS components on the VMs that will satisfy the resource constraints such that

SLA violations will be minimized considering the QoS parameters as Response

time and Cost.

1.8 Research Contribution

This thesis formulates the service level agreement aware SaaS placement prob-

lem using resource constraints and service level agreement constraints. In this

research particle swarm optimization framework is proposed for placement of

SaaS components onto the virtual machines running on the cloud servers. The

outcomes of this research can benefit entities that are involved in providing the

software as a service.

1.9 Thesis Outline

In this chapter, a brief introduction of Cloud computing, SaaS, Service level

agreement, the motivation toward the SaaS placement problem and the objective

10

Chapter1 Introduction

of this research is discussed.

The rest part of the thesis is organized into the following chapters :

In Chapter 2, Cloud computing, service models of Cloud, Cloud deployment

models, SaaS, SaaS examples are described in brief. The SaaS Placement Prob-

lem is discussed in detail and mathematical formulation with the resource, and

SLA constraints is given for the same. The strategies applied for placement of

components till now is also discussed.

Chapter 3 deals with the proposed approach i.e. based on Particle Swarm Op-

timization, for solving the problem presented in the Chapter 2. Algorithm for

the proposed strategy to solve the research problem with another algorithm for

comparison, results and conclusion based on those are also discussed.

Chapter 4 is the overall conclusion of the this research work and future work

also that can be further done to optimize our approach and to get better results.

11

Chapter 2

SaaS Placement in Cloud

2.1 Introduction

Nowadays Cloud computing is very much popular among IT service providers.

The most spoken term Cloud in the field of IT was coined by the Google CEO

Eric Schmidt (2). In late 2006, he used the term to describe the Google approach

for Software as a Service. According to a study by International Data Corpora-

tion (IDC), a leading IT analysis firm, identified cloud computing as one of the

prevailing technology trends in the new decade (4). Other research by Merrill

Lynch, a global financial services firm, predicted that Cloud providers would gain

huge revenues from the Cloud’s services and advertising (5).

2.2 Cloud Computing

Since the appearance of Cloud computing, several definitions of cloud computing

have been published. Although no standard or exact definition is there, most of

them share common characteristics which describes the cloud computing concept.

Foster et al. (14) defined Cloud computing as a specialized distributed computing

infrastructure with four main characteristics:

1) it is enormously scalable,

2) it is an intellectual entity that delivers different levels of services to clients,

3) it is driven by economics by scale, and

4) its services can be configured dynamically.

12

Chapter2 SaaS Placement in Cloud

According to Vaquero et al. (46), major characteristics of Cloud computing in-

frastructure are 1) a huge collection of virtualized resources, 2) the potential for

dynamically configured resources, 3) a pay-as-you-go model and, 4) an infrastruc-

ture or service provider offering users’ Service Level Agreements (SLAs).

Buyya (5) stated that the resources in Cloud are provisioned based in users’ SLAs

and users are billed according to their usage of services.

Based on the existing definitions, Cloud computing will be referred to as: A

large-scale computing infrastructure that offers on-demand scalable services i.e.,

computation power storage, platform for development and applications as ser-

vices, to the clients over the Internet through thin client devices like web browser.

These services are managed by the Cloud provider. For market purposed Cloud,

the business model is based on a pay-per-use model or on subscription for a fixed

time period. The most important aspect is the services are subject to meet certain

SLA constraints with the users.

2.2.1 Cloud Architecture

Figure 2.1 shows the reference architecture of Cloud computing given by NIST

(30). Through this figure different roles, their activities and functions are identi-

fied. A generic high-level architecture is given to encourage the comprehension of

the prerequisites, uses, qualities and models of cloud computing. This architec-

ture identifies the major roles such as Cloud Consumer, Cloud Provider, Cloud

Broker, Cloud Carrier and, Cloud Auditor and their working in cloud computing.

Each actor in the figure is an entity which may be a person or an organization

that participates in a process and performs tasks in cloud computing.

13

Chapter2 SaaS Placement in Cloud

Figure 2.1: Cloud Computing Architecture (30)

2.2.2 Cloud Service Models

Resources in the Cloud refer to the computation power, storage servers, platforms

and applications based on the previous definition of Cloud computing. These re-

sources are classified into three type of services: 1) Infrastructure as a Service

(IaaS), 2) Platform as a Service (PaaS), and 3) Software as a Service (SaaS) (46)

(35). Other services have also been mentioned in the existing literature, such as

Hardware as a Service (HaaS) (2) and Shared Application Infrastructure as a Ser-

vice (37). However because of non-existence of exact and clear definition of these

service, mainly three of the services are considered. These 3 services are the most

important pillars of the Cloud through which the cloud solutions are provided

to the customers. Figure 2.2 shows the Cloud computing service architecture,

which includes the three services of the Cloud that can also be considered as

14

Chapter2 SaaS Placement in Cloud

Figure 2.2: Cloud Service Architecture

services-by-layer. IaaS offers fundamental computing resources to the end users

such as computation capacity, storage and network(35). The providers of IaaS

usually the service in unit if Virtual Machine (VM) instances where a VM is

an abstraction of the hardware resources of physical servers that includes CPU,

memory and disk drives (43). Example for this category: Amazon web services

offers two IaaS services, Amazon EC2 for computation resources and Amazon S3

for storage.

PaaS provides a high level integrated environment for developers to design, deploy,

maintain, test and implement their applications (36). Programming languages,

libraries, related services and tools are provided to the developers by the providers

for developing or implementing their applications. Examples are GoogleApps En-

gine and Force.com.

SaaS, the most commonly used service, refers to the application hosted by Cloud

providers. The main focus of this research is on SaaS. Salesforce and Foresoft are

15

Chapter2 SaaS Placement in Cloud

the examples of SaaS.

Apart from being the services stack these layers indicates the roles and respon-

sibilities of the users and providers. As the height of the layer increases, the

managing responsibilities are shifted from users to the providers.

2.2.3 Cloud Deployment Models

Cloud deployment models are generally divided into three types: 1)public, 2) pri-

vate, and 3) hybrid (7). These cloud models share common characteristics but

the main difference is because of the different groups of users for whom the Cloud

is built.

A public Cloud is a type of Cloud that offers the services for public use; it is

owned and operated by an entity that is referred to as the Cloud provider (35).

Public clouds are mostly market oriented in which the services are offered on

pay-per-use basis. SLAs are usually established between the Cloud providers and

users to provide Quality of Service (QoS) guarantees. Amazon EC2 (18), Sales-

Force, Google App (19)

A private Cloud, also known as enterprise Cloud, is a type of Cloud in which

the services are exclusive to a single organization only (21). The data center is

owned by the organization and is usually located on the premises. All of the

services are used by the organization and also managed within the organization.

The hybrid Cloud, as suggested by the name, is a combination of both public

and private Cloud.

All the Cloud providers have massive data centers to provide services to millions

of users or more than that. A report by The Economist (1) stated that Google

has three dozen servers with more than one million servers across its global net-

work. The report further stated that Microsoft is trying to catch up by adding

20,000 servers a month to their data centers.

16

Chapter2 SaaS Placement in Cloud

2.3 Cloud Software as a Service

Before Cloud computing came into view, SaaS had been successfully implemented

in the servers of SaaS vendors and it was delivered via Web (37). But, when there

was an increasing demand for SaaS each year (6), SaaS vendors need to find a so-

lution to cope with these growing requests. An obvious solution for this problem

is to host the SaaS in a Cloud computing infrastructure as it provides scalability

to the SaaS that runs in a Cloud.

Based on the published definitions of Software as a Service (SaaS), the best basic

definition of SaaS is provided by Chong and Carraro (8), who referred it as ’soft-

ware deployed as a hosted service and accessed over the Internet. To characterize

it further, various existing definitions of SaaS have been reviewed (3) (17) and it

can be concluded that SaaS differs in three criteria from the conventional software

or ASP-based applications: its 1) software possession, 2) business model, and 3)

software design.

First criterion: Two approaches preceded SaaS: the first, a conventional soft-

ware approach and the second, the Application Service Provider (ASP) approach.

In the conventional software approach, clients need to buy the software licenses

from vendors and install the software on their own machines. The software comes

along with a package of a CD installation and its manual, and the software price

usually includes the maintenance cost by the vendor (22).

In the ASP approach, the software is still bought by customers obtaining a li-

cense, but it is installed at the ASP data center. The software is not shared with

other clients, and the ASP is responsible for maintaining the infrastructure of

data center as well as the software.

In SaaS, however, the software resides at the provider’s servers and customers will

use the software via the Internet. The software’s owner is the vendor and clients

use the software whenever they need only. This eliminates the IT overheads cost

for the clients, as they need not be worried about any other IT infrastructure and

management (except for their personal computers and Internet connections). It

can be clearly seen that the main difference between these approaches is the shift

of software possession from the users to the software providers.

17

Chapter2 SaaS Placement in Cloud

Second criterion: It is the business model. Conventional software providers

offer a one-off price to users, which include the right for using the software as

long as customers want to and the support and assistance directed in the terms

and conditions agreement. In addition, users have to bear the hardware cost and

its maintenance cost. ASP relieves some of the latter cost from users by hosting

the software in their own data center. In this approach, users are charged for

one price that includes the software license, the hosting and the maintenance. It

should be clear that the software is not developed by the ASP or does not belong

to ASP; the ASP companies are middle parties that buys the license from the

software company and provides the hosting infrastructure to users (22).

In SaaS, users are charged on a usage-derived basis via either subscriptions or a

pay-per-use scheme. Users do not need to buy the software license as it is required

in the conventional and ASP approach; they pay only when they use the software

and for the time period they use it. For the hardware and software infrastructure,

as the ownership of the software shifts from the users to the providers, the costs

for these are completely covered by the providers.

Third Criterion: The multi-tenancy concept is the fundamental design of SaaS

that separates it from the approaches of other applications such as conventional

software, ASP or web-based applications. With the help of multi-tenancy, differ-

ent users can use the service concurrently on the shared hardware and software

infrastructure.

A SaaS can be delivered as a composite application, which consists of a group

of loosely-coupled individual applications that communicates with each other in

order to form a higher-level functional application or system. These components

can be either data sources or services that perform a specific function of the SaaS,

and can also be interdependent with one another.

18

Chapter2 SaaS Placement in Cloud

2.3.1 SaaS Application Model

To characterize the SaaS for Cloud, the SaaS application model is developed

based on two existing SaaS maturity models. Although these models have dif-

ferent views in some aspects, yet they target to the same objective, which is to

define the key attributes of a mature SaaS application. The two existing maturity

models are proposed, one by Microsoft and other model proposed by Kitagawa

et al., outlines a composite SaaS application model.

In the SaaS maturity model developed by Microsoft, three key attributes of SaaS

applications are there i.e. configurability, multi-tenant efficiency and scalability

that are indicators of the maturity of a SaaS application. The model has four

incremental levels, each level is considered to be an upgrade from the previous

one in terms of the key attributes.

Figure 2.3: Micorsoft’s SaaS Maturity Model

Figure 2.3 illustrates all of the four levels of the maturity model. In the fig-

ure, an instance is a copy of the SaaS and a tenant is an organization or an

individual that is subscribed to the SaaS. Level 1 in the maturity model, denoted

19

Chapter2 SaaS Placement in Cloud

as L1, allocates an instance to each tenant exclusively; the instance will be con-

figured and developed specifically to meet the need of the tenant. Level 2 also

has a separate instance for each tenant; however, these SaaS instances are not

developed exclusively for each tenant. In this level, there will be configuration

options to meet the tenant’s specific needs. Level 1 and Level 2 apply the multi-

instance concept. In a multi-instance concept, one instance of the application is

set to serve only one tenant. As such, the SaaS providers create several identical

instances of the SaaS in order to serve multiple tenants.

Level 3 introduces multi-tenant support, through which an instance of the appli-

cation can be shared among a number of tenants. The tenants’ functionality will

be configured according to their needs. In Level 4, scalability features are added

through a load balancer mechanism that balances the allocation of the instance

to its tenants. Based on the current technology of Cloud computing and SaaS de-

mand, Level 3 and Level 4 are the mature levels being practiced by SaaS providers.

Kittagawa et al. (24) proposed a more comprehensive SaaS maturity model.

They defined the core criteria of SaaS using two axes: service component as the

x-axis and the maturity level as the y-axis. The service component axis represents

four features of structuring software business: 1) data, 2) system, 3) service and

4) business. The other axis represents the maturity levels of the SaaS in respect

of four types to SaaS offering: 1) ad hoc/base, 2) standardization, 3) integration,

and 4) virtualization.

For the x-axis, only the system and service components are discussed because

these two are relevant to the scope of this thesis. The maturity model is depicted

in Figure 2.4.

In Figure 2.4, each level in the maturity model is described based on the service

components. Level 1 is similar to the Microsoft maturity models that were dis-

cussed before, where the application is developed to cater for a single tenant’s

requirements only. The applications in this level are more akin to the ASP ap-

20

Chapter2 SaaS Placement in Cloud

Figure 2.4: A General SaaS Maturity Model

proach than to the SaaS approach. In Level 2, the configurable application is

introduced with no multi-tenant support. Level 3 applies multi-tenant support

with service connection. The service connection refers to the combination of ser-

vices to serve various users’ functions. Level 4 presents the most mature SaaS,

which uses multi-tenant with load balancing, and the application architecture is

fully on SoA. SaaS at this level largely uses virtualization technology in a Cloud.

Levels 3 and 4 in this model include software with service connection and service

on SoA. The authors further stated that the service connection can be achieved

by web services or mash ups.

The two maturity models discussed above indicate that SaaS deployed in a Cloud

infrastructure is regarded as the most mature SaaS, with several fundamental fea-

tures including 1) configurability, 2) multi-tenancy, and 3) scalability.

2.3.2 SaaS Examples

Several companies are there which offer Software as a Service. Salesforce is one

of the earliest commercial providers, began its SaaS operation in 1998 (20). The

main product of Salasforce, Customer Relationship Management (CRM) solu-

21

Chapter2 SaaS Placement in Cloud

tions, is divided into two parts: 1) Sales Cloud which caters for sales personnel

tasks, including sales managers, sales representative, sales marketers, providing

functionalities such as sales forecast and analysis, customer information man-

agement and others. 2) Service Cloud, through which Salesforce aims to provide

help to sales personnel clients by providing a customer service center with various

means of social media channels including chat, online calls, portals and forums.

Salesforce (20) also offers a development platform, Force.com, where customers

can develop their own applications to be used along with SaaS.

Google also has its own SaaS offerings (19), named as Google Apps, which cov-

ers a large collection of SaaS i.e. 1) communication applications which includes

Gmail, Hangout, Google calendar, 2) office applications which includes Google

docs, spread sheets, and presentations, and 3) a mash-up service (iGoogle) and

Google sites. Google Apps for work with vault is available for $10 per user per

month and Google Apps without vault is for Rs. 150 per month.

IBM also offers “Blue Cloud” named SaaS solution. Via Blue Cloud corporate

data centres will be operated across a globally distributed accessible resources by

enabling computing. It is based on open source software provided by IBM.

Microsoft also offers SaaS named as Microsoft Office Live Small Business. Mi-

crosoft Office Live Small Business offers services i.e. storage manager, an e-

commerce tool to sell products for helping a small business, and E-mail Marketing

Beta. Microsoft also offers Office 365 for home (Rs. 420.0 per month), personal

(Rs. 330.0 per month), and business.

2.4 SaaS Placement Problem

A SaaS is composed of several components. SaaS components are deployed on

top of the Virtual Machines(VMs) in cloud computing infrastructure which are

provided by cloud vendors to the SaaS provider. A VM can host multiple com-

ponents with different requirements at a time.

SaaS Placement problem is known to be NP-Hard. In this research, an optimal

placement strategy will be carried out that will place the SaaS components on

the VMs that will satisfy the resource constraints such that SLA violations will

22

Chapter2 SaaS Placement in Cloud

be minimized considering the QoS parameters as Response time and Cost. The

cloud infrastructure for placing the SaaS components is described below. Let we

are having some virtual machines denoted by a set

VM = {vm1, vm2, vm3, vm4}

And a SaaS composed of 8 components denoted by a set

SC = {sc1, sc2, sc3..., sc8}

These SaaS components are to be placed on top of these available virtual ma-

chines. There may be many possible placements for these components as a VM

can host multiple components at a time based on its capacity.

Figure 2.5: First possible scenario of SaaS Component placement

Figure 2.6: Second possible scenario of SaaS Component placement

Figure 2.5, 2.6 and 2.7 shows three different possible scenarios for placing the

SC on the available VMs. There are various solutions (= 48) possible other than

these but not all are optimal.

Let we are having m virtual machines denoted by a set

VM = {vm1, vm2, vm3..., vmm}

23

Chapter2 SaaS Placement in Cloud

Figure 2.7: Third possible scenario of SaaS Component placement

And n SaaS Components denoted by a set

SC = {sc1, sc2, sc3..., scn}

there will be a large number of placements possible of placing the SaaS com-

ponents on to the Virtual Machines. So, total number of possible solutions for

placing these components will be = mni.e.exponential.

As we know m >> n, finding an optimal solution, that meet our requirement is

NP-Hard.

2.5 Problem Formulation

In the Cloud computing infrastructure, a set of servers with their resource capac-

ities and virtual machines, is connected with the communication network with its

links. To made the service or computing available to the end users Virtual ma-

chines are deployed onto the set of servers available (29). Virtual machines that

are placed on the servers have their own capacities: memory capacity, storage

capacity, processing capability and input output capacity. The set of the SaaS

components with its requirements: memory requirement storage requirement,

processing requirement and input output requirement, is placed on the virtual

machines. The objective is to determine the placement of each SaaS component

onto the virtual machines running on the servers, such that the performance of

the SaaS is optimal based on the cost, while satisfying all the resource constraints.

And SLA’s constraints must not also be violated in placing the SaaS components.

Hence the resulted set of VMs (by the placement of SaaS components) should be

24

Chapter2 SaaS Placement in Cloud

satisfying resource as well as SLA’s constraints.

Cloud infrastructure, consists of cloud data center that is a set of cloud

servers CS = {cs1, cs2, cs3, ..., csp} and a set of Virtual machines (VMs) denoted

as VM = {vm1, vm2, vm3..., vmm} running on those cloud servers. The resource

availability or capacity a VM is represented with a tuple (PCvmi
,Mvmi

, SSvmi
, BWvmi

),

1 ≤ i ≤ m. Where PCvmi
is the Processing Capability of vmi, Mvmi

is Main mem-

ory capacity of vmi, SSvmi
is Storage capacity of vmi, and BWvmi

is IO Capacity

or Bandwidth of vmi. This problem modelling for the cloud gives a general idea

of VMs and their resource capacities.

Resources Description

csx ∈ CS xth cloud server csx in CS, where CS is a cloud server set.

x ≤ p

vmi ∈ VM ith virtual machine vmi in VM, where VM is a virtual

machines set. i ≤ m

PCvmi
Processing Capability of ith vm

Mvmi
Main memory capacity of ith vm

SSvmi
Storage capacity of ith vm

BWvmi
IO Capacity or Bandwidth of ith vm

Table 2.1: Cloud resources’ attributes

SaaS Components, denoted by a set SC = {sc1, sc2, sc3..., scn} that need to be

placed on the top of the VMs running on the cloud servers. The resource require-

ment of a component can be represented with a tuple (TSsci ,MMsci , Ssci , IOsci),

1 ≤ i ≤ n and n � m. Where TSsci is task size of sci, MMsci is main memory

requirement of sci, Ssci is size of sci, and IOsci is IO requirement of sci. The

modelling of SaaS components gives a general idea about the resource needs for

a component.

25

Chapter2 SaaS Placement in Cloud

Resources Description

scx ∈ SC xth saas component scx in SC, where SC is a SaaS com-

ponents set. x ≤ n

TSscx Task size of xth component

MMscx Memory need of xth component

Sscx Storage requirement of xth component

IOscx IO requirement of xth component

Table 2.2: SaaS components resources’ requirements

2.5.1 Objective

Our objective is to find the optimal placement plan of SaaS components onto the

set of available VMs,

P : SC → VM (2.5.1)

where scj −→ P (scj) = vmj, 1 ≤ i ≤ n, 1 ≤ j ≤ m, means the jth SaaS

component is placed on ith virtual machine, such that the placement minimizes

the total cost incurred to the SaaS provider while deploying a SaaS, that can be

mathematically shown as below:

min(Σm
i=1 Σn

j=1xi,j ∗ Ci,j) (2.5.2)

Where,

xi,j =

1 if P (scj) = vmi,

0 otherwise .

(2.5.3)

Ci,j = teti,j ∗ costvmi
(2.5.4)

26

Chapter2 SaaS Placement in Cloud

where Ci,j is the cost incurred due to jth SaaS component placement on ith virtual

machine and is a multiplication of teti,j, which is the total execution time of jth

SaaS component when it is placed on ith virtual machine, costvmi
.

tetscj , the total execution time of scj is calculated based on the processing and

transferring of the component data, and the costvmi
is the cost of ith virtual ma-

chine, which is combination of processing cost, memory cost, storage cost, and

bandwidth cost.

2.5.2 Resource Constraints

While placing the SaaS components, the total resource requirements for those

SaaS components that are to be placed in virtual machines must not exceed the

resource capacities of virtual machines.

∀vmi ∈ VM Σscj∈SC TSscj ≤ PCvmi
| P (scj) = vmi

∀vmi ∈ VM Σscj∈SC MMscj ≤Mvmi
| P (scj) = vmi

∀vmi ∈ VM Σscj∈SC Sscj ≤ SSvmi
| P (scj) = vmi

∀vmi ∈ VM Σscj∈SC IOscj ≤ BWvmi
| P (scj) = vmi

2.5.3 SLA and Execution time Constraints

To ensure the SLA, we have considered QoS parameter response time. For optimal

SaaS performance, the placement or deployment of SaaS components onto the

virtual machines is based on the total execution time. The total execution time

of the SaaS is calculated based on the time for transferring the data between the

virtual machines and storage servers, the processing time of a SaaS component

27

Chapter2 SaaS Placement in Cloud

on a virtual machine on which it is placed, and the total of SaaS workflow critical

paths execution time.

We have considered the following SLA constraint to make this placement plan

SLA aware.

∀sciTETsci ≤ mrtsla

A SaaS must not violate the constraint which says that the total execution time

of a SaaS must not exceed the maximum response time agreed in user’s SLA.

2.6 Current State of Work

Placing SaaS components onto cloud servers shares similarities with an existing

problem known as Component Placement Problem(CPP) (28). CPP is further

categorized into two parts:

1) offline CPP, where component are placed at initial stage,

2) online CPP, where component placement is done during run time.

The following table shows the techniques used for SaaS placement by various

researchers. The approach used in this research is justified by the prior techniques

used for the placement purpose.

28

Chapter2 SaaS Placement in Cloud

Researcher Techniques SLA Considered

Kichkaylo et al.(28) Planning algorithm developed by Artificial

Intelligence community

No

Karve et al.(26) Middleware Clustering technology No

Zimmerova et al.(53) Automata language for inter-component

communication capturing

No

Zhu et al.(52) Virtualization technology for ACP No

Yusoh et al.(48) Genetic Algorithm with Penalty No

Zhenzhang Liu et

al.(31)

Ant Colony Optimization Algorithm No

Yusoh et al.(50) Cooperative Co-evolutionary Genetic Algo-

rithm

Yes (Response

time)

Zhipiao et al.(32) Cost-aware placement of SaaS using genetic

algorithm

Yes

Urgaonkar et al. (45) first-fit approximation algorithm for offline

application component placement

No

Table 2.3: Current State of Work for SPP

2.7 Conclusion

In this chapter we have discussed the Cloud computing service models, deploy-

ment models,and Cloud SaaS with examples. We have formulated the problem

for SaaS placement with all the required assumptions of resources and service

level agreement constraints as well.

Sometimes a simple idea works for the optimization problems. Greedy algorithms

are the first choice to solve an optimization problem because these approach op-

timization problems in a short sighted way and tries to get as close as possible

to a solution quickly, but does not guarantee to provide an optimal solution. By

seeing the current state of SaaS Placement , it is proved that SaaS Placement

Problem is the candidate of Particle Swarm Optimization.

29

Chapter 3

PSO Framework for SaaS Placement

3.1 Introduction

Through Cloud, SaaS models allow software applications to be offered as a service

instead of installing on the individual machines. A SaaS can be offered as a set

of services, which composes of a group of loosely coupled separate components

that communicates each other to form a high-level functional service (24). The

placement of SaaS components onto the cloud infrastructure has to be done tac-

tically. One example of SaaS is Google Apps (19), which is offered by Google.

There are various service categories of the Google Apps, targeted for different

groups. Two different kinds of services are provided through Google Apps, one

is the Google Apps for business without the vault, and another is the Google

Apps with unlimited storage and vault. Multiple services are offered like Gmail,

Hangouts, Calendar, Drive, Docs, and Slides, etc. For both categories, Google

put some usage charges, which are different for the different type. Google also

offers flexible and annual plan so as to provide user convenience.

Most Cloud and SaaS companies do not reveal their model or architecture details;

as such information is regarded as a companys competitive advantage. Several

basic assumptions have to be made regarding the placement of SaaS components

placement in the Cloud discussed in the previous chapter (5)(50).

In this research, SaaS is considered to be in a composite form or a set of com-

ponents called as SaaS components (49) (31). Delivering SaaS in such manner

instead of atomic SaaS allows resilient offerings of the services. SaaS providers

indulge in a numerous benefits by utilizing the SaaS in a composite form. Re-

30

Chapter3 PSO Framework for SaaS Placement

duced resource costs, because components are reused, flexible offerings of SaaS

functions, and reduced subscription cost for clients, are the important benefits.

However, it also elevates some challenges for SaaS providers in SaaS management.

The most important challenge is to place each of the SaaS components onto Cloud

servers. The placement problem of the SaaS components on the VMs, residing

on the top of the servers, is known as SaaS Placement Problem (SPP).

SaaS placement problem deals with discovering the ideal solution that is the set of

VMs on which the components are placed such that all the components resource

requirements are satisfied, response time is meeting the SLA (13) (12) and the so-

lution should minimize the cost incurred to the SaaS provider. A comprehensive

research is being carried out for SaaS placement problem; it closely resembles the

Component Placement Problem (CPP) (28). Although the existing research do

not consider the resource constraints and SLA constraints at the same time. Var-

ious existing studies formulated CPP as a resource optimization problem and also

as a variant of the multiple knapsack problem (26) (45). Another closely related

problem is Task Assignment Problem (TAP) (41) (42), which refers to the prob-

lem of assigning a number of tasks to a number of processors available, in such a

way that the given objective is minimized or maximized. Hence SPP can also be

treated as a multiple knapsack problem because of its nature of many to many

mapping. As the CPP, TAP and multiple knapsack problems have been proven as

an NP-complete problem (26)(28)(48), and SPP closely resembles these, SPP can

be said to an NP-complete problem. NP-complete nature of SPP is proved in pre-

vious chapter also. The proposed algorithm, which is an evolutionary approach,

finds the sub-optimal solution for the SPP.

3.2 SaaS Placement using Particle Swarm Op-

timization

In our research Particle Swarm optimization (PSO) is used for solving the SaaS

placement problem i.e. formulated in Chapter 2. SPP can be considered as a

large-scale and complex combinatorial optimization problem that deals with the

allocation of VMs running on Cloud servers to the SaaS components, subjected

31

Chapter3 PSO Framework for SaaS Placement

to a constraints set (45). It is not advisable option to find an optimal solution

to the large-scale and complex problems because of its extensive amount of time

requirement (10). For finding an ideal or sub-optimal solution, Meta-heuristics

are often used for solving such combinatorial problems (11).

Particle swarm optimization (27) is a population based stochastic optimization

technique developed by Dr. Eberhart and Dr. Kennedy in 1995. PSO is induced

by social behaviour of bird flocking or fish schooling. There are various similari-

ties among PSO and other evolutionary computation techniques such as Genetic

Algorithms (GA). PSO has been successfully applied to a large number of prob-

lems (25), including standard function optimization problems (41), permutation

problems, and to the similar kind of problems like Task Allocation Problem and

Data Placement in Cloud computing (47) (16). The use of Particle Swarm Opti-

mization is rapidly increasing.

In this approach, the system is initialized with a population of random solutions,

known as particles in this case and searches for optima by updating generations

(27). However, opposed to GA, PSO has no evolution operators such as crossover

and mutation found in GA. In PSO, the probable solutions, known as particles,

fly through the problem space by following the current most favorable particles.

PSO might sound complex but it is a very simple optimization technique. Com-

paring with GA, PSO is advantageous because of easier implementation of PSO

and very few parameters to adjust unlike GA. In PSO, the information sharing

mechanism is considerably different. In Genetic Algorithms, chromosomes share

the information with each other. So the complete population moves like one batch

towards an optimal area. In PSO, only the global Best (or local Best) gives out

the information to others. It is a one-way information sharing mechanism. The

evolution only figures for the best solution. In PSO unlike GA, all the particles

tend to converge to the best solution quickly even in the local version in most

cases.

The problem presented in this research is shown to be a combinatorial optimiza-

tion problem (41). The problem is proved to be an NP-complete problem from

computational point of view. Hence, Evolutionary Algorithm (EAs) specifically

Particle Swarm Optimization (PSO) (27) is used to solve this problem. PSO is

32

Chapter3 PSO Framework for SaaS Placement

successfully applied to several optimization problems which were similar to this

and obtained better solutions (42)(23)(40).

3.2.1 PSO Parameters

PSO imitates the behaviour of bird flocking. Consider the following framework: a

group of birds are searching for food in an area randomly. Only one piece of food

is there in the area that is being searched by birds. The birds are not informed

about where the food is. But in each iteration they know how far the food is. So

what’s the master plan to find the piece of food?

The powerful strategy to know where the food is to follow the bird which is near-

est to the food.

PSO acquired a knowledge from the scenario and used it to solve the optimization

problems. In PSO, each single solution is a “bird” in the search space. It is called

a “particle”. All of the particles have fitness values which are evaluated by the

fitness function that needs to be optimized, and have velocities which direct the

flying of the particles. The particles fly from one side to the other in the problem

space by following the current most favorable particles.

There are not many parameters to be taken care of in PSO, unlike pther nature

inspired optimization techniques. (10). The main parameters of PSO are 1) the

particle representation 2) the population size, 3) the dimension of particles, 4)

the range of particles, 6) velocity, 5) the evaluation function 6) learning factors,

and 7) stopping criterion.

� The particle representation, is the way to represent a possible solution. For

SPP the particle consists of the vm# on which the components are to be

placed.

� The population size, tells how many particles in population, typically it

ranges from 20 to 40. For most of the problems, results are obtained using

10 particles only.

33

Chapter3 PSO Framework for SaaS Placement

� The dimension of particles, is determined by the optimization problem,

like number of SaaS components will be the particle size for the proposed

method.

� The range of particles, is also defined by the optimization problem, different

ranges can be specified for different dimension of particles. In this research,

the range is the number of virtual machines.

� velocity, random value assigned to each particle to move about the cost

surface.

� The evaluation function, describes the fitness of the function. Deployment

cost is the fitness function used here.

� Learning factors, usually these are equal to 2. However, other settings are

also used for different problems.

� Stopping criterion, the maximum number of iterations to obtain the solu-

tion. The stop condition also depends on the optimization problem.

3.2.2 SPPSO

The SaaS Placement based on PSO (SPPSO), is a nature inspired heuristic in-

spired from Biological evolution theory. It starts with a particles’ population,

where each particle is a possible solution for SaaS components placement on vir-

tual machines. The population is a random matrix, where each row is a particle or

position vector or the possible solution. Each particle proceeds about the surface

with a velocity (16), which is also initialized randomly. The position vectors (or

particles) and velocities are updated based on the local and global best solutions

obtained using the following equations:

V elnewk (m,n) = V eloldk (m,n) + c1 ∗ r1 ∗ (localbestoldk (m,n)−Xold
k (m,n))

+c2 ∗ r2 ∗ (globalbestoldk (m,n)−Xold
k (m,n))(3.2.1)

34

Chapter3 PSO Framework for SaaS Placement

Xnew
k (m,n) =

1 if V elnewk (m,n) = maxV elnewk (m,n),

0 otherwise .

(3.2.2)

Where,

V elk(m,n) = kth particle velocity,

Xk(m,n) = kth particle variable or position vector,

r1, r2 = independent uniform random numbers,

c1, c2 = learning factors,

lbestk(i, j) = best local solution, and

gbestk(i, j) = best global solution.

In this approach the velocity vector is updated for each particle, in every it-

eration. Velocity updates are affected by both the best global solution associated

with the lowest cost ever found by a particle and the best local solution associ-

ated with the lowest cost in the present population(39). If cost of the best local

solution is less than the cost of the current global solution, then the best local

solution replaces the best global solution.

As our problem of placement of SaaS components on the Virtual Machines is

proved to be an optimization problem previously, there are some constraints also

which needs to be taken care of while optimization. Hence it can be said to a con-

strained optimization problem (28). For this purpose we have adopted Penalty

function method (16), and introduced some penalties. If any constraint is vio-

lated by the solution then only a penalty is added for every constraint violation.

Penalty1 = H
[(
|Mvmj

−MMsci |
)]

(3.2.3)

Penalty2 = H
[(
|SSvmj

− Ssci |
)]

(3.2.4)

Penalty3 = H
[(
|BWvmj

− IOsci |
)]

(3.2.5)

TotalPenalty = Penalty1 + Penalty2 + Penalty3 (3.2.6)

35

Chapter3 PSO Framework for SaaS Placement

Penalty1, Penalty2, and Penalty3 are the penalties resulted from the violation

of constraints. H is the penalty factor, which is a proper positive number.

Total Penalty, is the sum of all the penalties introduced in our optimization prob-

lem. This Penalty is added to the cost calculated in SaaS placement i.e. defined

in the previous Chapter.

The SPPSO is proposed for placement of SaaS components. The algorithm,

SaaS components Placement using Particle Swarm Optimization (SPPSO), allo-

cates a fixed number of Saas components to available VMs. After a number of

iterations the optimal solution is found. Algorithm 3.2.2 describes the SPPSO.

The input to the SPPSO are the SaaS components’ requirements and the vir-

tual machines’ capacities to allocate each of the component to a virtual machine.

In the first step of the SPPSO, a random population of particles and their velocity

matrix is initialized, where each particle represent the possible solution.

In the next step costlocalbest and costglobalbest is initialized to ∞, where costlocalbest

is the local best of a particle obtained so far, and the costglobalbest is the global

cost i.e. best among all of the particle so far. As our objective is to minimize the

total cost, so lesser the cost is, the corresponding placement solution is considered

to be the best.

The for loop of lines 4-16 is used to calculate the cost of each particle using

the function defined in Chapter 2, the cost is considered as the fitness of a so-

lution. If a particle or the solution satisfies the resource constraints and SLA

constraint as well the cost is calculated simply but if any of the constraint is

violated then calculation of the cost is done with penalty. After finding the cost

of each particle, local best and the global best is calculated.

After obtaining the local best and the global best, the for loop of lines 17-19

is used to update the velocity and the particle or the solution based on the local

and global best obtained from previous for loop.

36

Chapter3 PSO Framework for SaaS Placement

Algorithm 1 SPPSO

Input: SCs and VMs with their requirements and capacities respectively

Output: Sub-optimal solution for placement of SaaS

1: Initialize Population (particles)

2: Initialize costlocalbest ←∞ and costglobalbest ←∞

3: repeat

4: for each particle i = 1, ..., P do

5: if sc resource requirements ≤ vm capacity and sc can be placed on vm

then

6: Calculate cost for the particle

7: else

8: Calculate cost with penalty for the particle

9: end if

10: if costXi
< costlocalbesti then

11: localbesti ← Xi

12: end if

13: if costlocalbesti < costglobalbesti then

14: globalbesti ← localbesti

15: end if

16: end for

17: for each particle i = 1, ..., P do

18: Update velocity and particles or position vectors using Equations 3.2.1

& 3.2.2

19: end for

20: until maximum iterations reached

21: return costglobalbesti and Xi

Lines 4-19 are repeated until the defined maximum number of iterations are per-

formed in order to achieve the optimal solution.

37

Chapter3 PSO Framework for SaaS Placement

After all the iterations are performed, most of the particles converge to a

single solution and that is minimum among all. The corresponding particle to

the minimum cost after completion of the iterations is the best placement solution

obtained. SPPSO returns the minimum cot and the corresponding particle.

3.2.3 Working of SPPSO

SPPSO is an approach that emulates the natural evolution process for placing the

SaaS components onto VMs. The working of SPPSO can be easily understood

with the figure 3.1.

After initializing the particles, that are the possible solutions for SaaS compo-

Figure 3.1: Flow chart of SPPSO

nents placement, fitness value is calculated for each based on the optimization

function defined in Chapter 2 and penalty using equation 3.2.6, then this value is

38

Chapter3 PSO Framework for SaaS Placement

compared against the local best obtained so far for the particle and updated ac-

cordingly. Then each particle’s velocity is calculated based on the equations 3.2.1

and then the particle or the solution is updated based on the equation 3.2.2. This

process is followed for the number of iterations defined so as to find the optimal

placement solution for the SaaS components onto the Virtual Machines.

3.2.4 Example

Assume we have 5 VMs on which 6 SaaS components are to be placed. Initially

we have initialized a population of particles or position vector randomly. One

position vector (or a particle) can be shown as in table 3.2.4.

sc1 sc2 sc3 sc4 sc5 sc6

vm# 3 2 1 5 4 2

Table 3.1: Direct representation of a position vector

Each column of the position matrix represents a component placement and each

of the row represents the placed component on a VM. The position matrix is

converted to a matrix of size p x q, where p is the number of VMs and q is the

number of components to be placed. The equivalent indirect representation of

matrix table 3.2.4 is given as in table 3.2.4.

sc1 sc2 sc3 sc4 sc5 sc6

vm1 0 0 1 0 0 0

vm2 0 1 0 0 0 1

vm3 1 0 0 0 0 0

vm4 0 0 0 0 1 0

vm5 0 0 0 1 0 0

Table 3.2: Indirect representation of a position vector

39

Chapter3 PSO Framework for SaaS Placement

Every particle is initialized with a random velocity initially. This velocity is

also a matrix of size p x q. With this velocity the particle tries to find the opti-

mal solution or improvised itself in each iteration. The velocity of the particle is

represented by the table 3.2.4.

sc1 sc2 sc3 sc4 sc5 sc6

vm1 5 -2 5 1 -3 7

vm2 6 3 0 4 -2 5

vm3 -2 6 1 3 1 -3

vm4 1 7 4 2 4 2

vm5 4 8 2 -5 2 4

Table 3.3: Velocity matrix

Local and global solutions are obtained from the initial population of particles

using the Equation 3.2.1.

On the basis of obtained local and global solutions velocity matrix is updated.

Let we have the updated velocity matrix 3.2.4 for the particle which has the po-

sition matrix 3.2.4.

sc1 sc2 sc3 sc4 sc5 sc6

vm1 4 6 9 1 6 5

vm2 -2 3 1 8 5 4

vm3 5 -6 0 3 2 7

vm4 1 5 4 -4 7 -2

vm5 0 4 7 6 8 3

Table 3.4: Updated velocity matrix

Based on the updated velocity matrix shown 3.2.4, corresponding position vector

is also updated using Equation 3.2.2, and can be shown as matrix 3.2.4.

40

Chapter3 PSO Framework for SaaS Placement

sc1 sc2 sc3 sc4 sc5 sc6

vm1 0 1 1 0 0 0

vm2 0 0 0 1 0 0

vm3 1 0 0 0 0 1

vm4 0 0 0 0 0 0

vm5 0 0 0 0 1 0

Table 3.5: Updated position vector

The updated position vector is the indirect representation, it can be converted

back to the direct representation.

sc1 sc2 sc3 sc4 sc5 sc6

vm# 3 1 1 2 5 3

Table 3.6: Direct representation of updated position vector

This example shows how a particle or the position vector for the SaaS place-

ment is updated based on the velocity. In every iteration a particle, which is a

possible solution improvise itself to find an optimal result.

3.3 SaaS Placement using Greedy Approach

Greedy algorithms are used as a first choice to solve optimization problem be-

cause of the nature of algorithm to find the solution very quickly. The Algorithm

3.3 presents greedy algorithm that uses first come first serve as the heuristic for

placement of SaaS components on VMs. This algorithm allocates the SaaS com-

ponents to the VMs. Algorithm terminates with a fixed set of iterations.

41

Chapter3 PSO Framework for SaaS Placement

Algorithm 2 SPGA

Input: SCs and VMs with their requirements and capacities respectively

Output: Sub-optimal solution for placement of SaaS

1: Sort SC in descending order based on its processing requirement, SCsort

2: for sc ∈ SCsort do

3: for vm ∈ VM do

4: if sc resource requirements ≤ vm capacity and sc can be placed on vm

then

5: Calculate ETsc

6: if ETsc < mrtsla then

7: P (sc)→ vm

8: break

9: end if

10: end if

11: end for

12: if P (sc)→ vm then

13: Update vm

14: end if

15: end for

16: Calculate cost for the placement of components.

17: return Cost and corresponding placement solution.

SPGA starts with the SaaS components’ requirements and Virtual Machines’

capacities as inputs to the algorithm. In the first step, SaaS components are

sorted based on the processing requirements of the components. For each of the

SaaS components we need to find a virtual machine, on which it can be placed

with satisfying resource constraints and it must not violate SLA constraint i.e.

the execution time of the component should not exceed the maximum response

time defined in SLA. The for loop of lines 2-15 finds the placement of each SaaS

component or the virtual machine on which a component is placed. For each of

the SaaS component the for loop of lines 3-11 is run. If the a vm satisfies the

component requirements and it can be placed on that particular virtual machine

then ETsc is calculated. After calculation of ETsc, in next step it is checked

42

Chapter3 PSO Framework for SaaS Placement

whether ETsc is less than mrtsla, if the condition is found to be true the com-

ponent is placed on the virtual machine. Same process is repeated for all of the

components.

After all the components are placed on some virtual machines, the cost of deploy-

ment is computed. SPGA returns the cost and the placement solution obtained.

3.4 Simulation Results

Experiments have been conducted using inhouse simulator to study the perfor-

mance of algorithms 3.2.2, 3.3 by varying number of VMs and SaaS components.

The proposed approach SPPSO was compared against the Greedy approach

SPGA for different number of SaaS components.

Assumptions(31): Some basic assumptions made for performance evaluation of

the proposed algorithm are as follows:

For Virtual Machines capacities:

PCvmx= 1 to 10 Gbps,

MMvmx=1000 to 20000 B,

SSVMx= 20 to 2000 MB,and

IOCvmx= 10 Mbps

For SaaS Components requirements:

TSsci = 20 to 200 MB,

Msci = 1000 to 10000 B,

Ssci = 10 to 100 MB,

and IOsci = 100 to 200 MB.

3.4.1 Performance Evaluation with Different Number of

Virtual Machines

The experiment run with varying number of SaaS components on different number

of virtual machines. The population size for the SPPSO algorithm is 30 and

43

Chapter3 PSO Framework for SaaS Placement

the algorithm is run for 200 iterations. Figure 3.2, Figure 3.3, and Figure 3.4

illustrates the cost incurred to the SaaS provider by both SPPSO and SPGA

algorithms. The comparison is made based on the calculated cost using objective

function.

Figure 3.2: Experiment on number of SaaS Components [for 100 VMs)]

Figure 3.3: Experiment on number of SaaS Components [for 200 VMs]

Due to being stochastic nature of SPPSO experiments repeated several times.

It can be observed from the graphs in Figure 3.2, 3.3, and 3.4, the SPPSO has

always a lower cost value than SPGA, which implies SPPSO gives a better place-

ment option for SaaS components placement.

44

Chapter3 PSO Framework for SaaS Placement

Figure 3.4: Experiment on number of SaaS Components [for 300 VMs]

3.4.2 Performance Evaluation with Different Number of

SaaS Components

The experiments run for different number of SaaS components on variable number

of virtual machines. The population size for the SPPSO algorithm is 30 and

the algorithm is run for 200 iterations. Figure 3.5, Figure 3.6, and Figure 3.7

illustrates the cost incurred to the SaaS provider by both SPPSO and SPGA

algorithms. The comparison is made based on the calculated cost using objective

function.

Figure 3.5: Experiment on number of VMs [for 20 SaaS Components]

45

Chapter3 PSO Framework for SaaS Placement

Figure 3.6: Experiment on number of VMs [for 30 SaaS Components]

Figure 3.7: Experiment on number of VMs [for 40 SaaS Components]

Due to being stochastic nature of SPPSO experiments repeated several times.

It can be observed from the graphs in Figure 3.5, 3.6, and 3.7, the SPPSO has

always a lower cost value than SPGA, which implies SPPSO gives a better place-

ment option for SaaS components placement. Deployment cost of SaaS compo-

nents can be minimized by using SPPSO.

3.5 Conclusion

This chapter presented the techniques for SaaS components placement in Cloud.

New challenges and constraints are introduced for SPP. To deal with these chal-

lenges, a nature inspired optimization approach SPPSO is proposed for SPP. The

performance of SPPSO is evaluated by number of experiments performed, with

46

Chapter3 PSO Framework for SaaS Placement

different scenarios, variable number of virtual machines and SaaS components.

The SPPSO performance is than compared against SPGA, which is first come first

serve greedy approach. The evaluation is done so as not to violate the resource

and SLA constraints. The obtained results shows that the proposed heuristic

SPPSO outperforms SPGA in all set of experiments.

47

Chapter 4

Conclusions & Future Work

In this thesis work, we have discussed about different placement strategies for

Software as a Service, proposed by various researchers which mainly considers

the resource constraints i.e. processing capability, main memory and storage.

We have also considered Service Level Agreement constraint i.e. response time.

This research is focused on computing the cost of placement of SaaS components

in the Cloud, while not violating Service level agreement constraint as well as

resource constraints, which makes this placement SLA aware. In our research,

a detailed framework for PSO implementation has been presented. The per-

formance of the proposed algorithm SaaS components Placement using Particle

Swarm Optimization (SPPSO) is compared with Greedy based SaaS components

placement,SPGA. Simulation experiments conducted shows in favor of SPPSO.

SaaS placement problem being an intractable problem some more investigation

is required using the other Nature inspired meta-heuristic techniques like Firefly

technique and Bat technique. Future work can include the issue of scalability,

some more constraints for placing SaaS components like: number of cores, num-

ber of processors etc.

48

Bibliography

[1] Abreu, E., “Down on the server farm,” The Industry Standard, vol. 4, no. 7,

p. 4, 2008.

[2] Aymerich, F. M., Fenu, G., and Surcis, S., “An approach to a cloud

computing network,” in Applications of Digital Information and Web Tech-

nologies, 2008. ICADIWT 2008. First International Conference on the,

pp. 113–118, IEEE, 2008.

[3] Bedin, W. and Moinuddin, M., “An overview of software as a service in

retail,” 2007.

[4] Borovick, L. and Mehra, R., “Architectine the network for the cloud

[white paper].” http://www.idc.com, 2011.

[5] Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., and Brandic,

I., “Cloud computing and emerging it platforms: Vision, hype, and reality

for delivering computing as the 5th utility,” Future Generation computer

systems, vol. 25, no. 6, pp. 599–616, 2009.

[6] Candan, K. S., Li, W.-S., Phan, T., and Zhou, M., “At the frontiers of

information and software as services,” in New Frontiers in Information and

Software as Services, pp. 283–300, Springer, 2011.

[7] Carolan, J., Gaede, S., Baty, J., Brunette, G., Licht, A., Rem-

mell, J., Tucker, L., and Weise, J., “Introduction to cloud computing

architecture,” White Paper, 1st edn. Sun Micro Systems Inc, 2009.

[8] Chong, F. and Carraro, G., “Architecture strategies for catching the

long tail,” MSDN Library, Microsoft Corporation, pp. 9–10, 2006.

49

http://www.idc.com

BIBLIOGRAPHY BIBLIOGRAPHY

[9] Dubey, A. and Wagle, D., “Delivering software as a service,” The McK-

insey Quarterly, vol. 6, no. 2007, p. 2007, 2007.

[10] Eberhart, R. C. and Kennedy, J., “A new optimizer using particle

swarm theory,” in Proceedings of the sixth international symposium on micro

machine and human science, vol. 1, pp. 39–43, New York, NY, 1995.

[11] Eberhart, R. C. and Shi, Y., “Particle swarm optimization: develop-

ments, applications and resources,” in Evolutionary Computation, 2001. Pro-

ceedings of the 2001 Congress on, vol. 1, pp. 81–86, IEEE, 2001.

[12] Emeakaroha, V. C., Brandic, I., Maurer, M., and Breskovic,

I., “Sla-aware application deployment and resource allocation in clouds,”

in Computer Software and Applications Conference Workshops (COMP-

SACW), 2011 IEEE 35th Annual, pp. 298–303, IEEE, 2011.

[13] Farokhi, S., “Towards an sla-based service allocation in multi-cloud en-

vironments,” in Cluster, Cloud and Grid Computing (CCGrid), 2014 14th

IEEE/ACM International Symposium on, pp. 591–594, IEEE, 2014.

[14] Foster, I., Zhao, Y., Raicu, I., and Lu, S., “Cloud computing and

grid computing 360-degree compared,” in Grid Computing Environments

Workshop, 2008. GCE’08, pp. 1–10, Ieee, 2008.

[15] Furht, B., “Cloud computing fundamentals,” in Handbook of cloud com-

puting, pp. 3–19, Springer, 2010.

[16] He, F., “An improved particle swarm optimization for knapsack problem,”

in Computational Intelligence and Software Engineering, 2009. CiSE 2009.

International Conference on, pp. 1–4, IEEE, 2009.

[17] Hudli, A. V., Shivaradhya, B., and Hudli, R. V., “Level-4 saas appli-

cations for healthcare industry,” in Proceedings of the 2nd bangalore annual

compute conference, p. 19, ACM, 2009.

[18] Inc., A., “Amazon elastic compute cloud.” http://aws.amazon.com.ec2,

2015.

50

http://aws. amazon.com.ec2

BIBLIOGRAPHY BIBLIOGRAPHY

[19] Inc, G., “Googleapps for business.” http://www.google.com/apps/intl/

en/business/index.html, 2015.

[20] Inc., S., “Salseforce crm..” http://www.salesforce.com/in/

service-cloud/overview/.

[21] Inc., S. M., “Open source cloud computing: On-demand, innovative it on

a massive scale,” 2009.

[22] Infotech, L., “Difference betweeb the asp model and the saas model,”

URL http://www. luitinfotech. com/kc/saas-asp-difference. pdf, 2013.

[23] Izakian, H., Ladani, B. T., Abraham, A., and Snasel, V., “A discrete

particle swarm optimization approach for grid job scheduling,” International

Journal of Innovative Computing, Information and Control, vol. 6, no. 9,

pp. 1–15, 2010.

[24] Kang, S., Myung, J., Yeon, J., Ha, S.-w., Cho, T., Chung, J.-m.,

and Lee, S.-g., “A general maturity model and reference architecture for

saas service,” in Database Systems for Advanced Applications, pp. 337–346,

Springer, 2010.

[25] Kao, C.-C., “Applications of particle swarm optimization in mechanical

design,” J Gaoyuan Univ, vol. 15, pp. 93–116, 2009.

[26] Karve, A., Kimbrel, T., Pacifici, G., Spreitzer, M., Steinder, M.,

Sviridenko, M., and Tantawi, A., “Dynamic placement for clustered web

applications,” in Proceedings of the 15th international conference on World

Wide Web, pp. 595–604, ACM, 2006.

[27] Kennedy, J., “Particle swarm optimization,” in Encyclopedia of Machine

Learning, pp. 760–766, Springer, 2010.

[28] Kichkaylo, T., Ivan, A., and Karamcheti, V., “Constrained compo-

nent deployment in wide-area networks using ai planning techniques,” in

Parallel and Distributed Processing Symposium, 2003. Proceedings. Interna-

tional, pp. 10–pp, IEEE, 2003.

51

http://www.google.com/apps/intl/en/business/index.html
http://www.google.com/apps/intl/en/business/index.html
http://www.salesforce.com/in/service-cloud/overview/
http://www.salesforce.com/in/service-cloud/overview/

BIBLIOGRAPHY BIBLIOGRAPHY

[29] Kumar, A., “Placement of software-as-a-service components in cloud com-

puting environment,” 2014.

[30] Liu, F., Tong, J., Mao, J., Bohn, R., Messina, J., Badger, L.,

and Leaf, D., “Nist cloud computing reference architecture,” NIST special

publication, vol. 500, p. 292, 2011.

[31] Liu, Z., Hu, Z., and Jonepun, L. K., “Research on composite saas place-

ment problem based on ant colony optimization algorithm with performance

matching degree strategy.,” Journal of Digital Information Management,

vol. 12, no. 4, p. 225, 2014.

[32] Liu, Z., Wang, S., Sun, Q., Zou, H., and Yang, F., “Cost-aware

cloud service request scheduling for saas providers,” The Computer Jour-

nal, p. bxt009, 2013.

[33] Mahowald, R. P., “Worldwide software as a service 2010-2014 forecast:

software will never be the same,” IDC Report, no. 223628, 2010.

[34] McHall, T., “Gartner says worldwide software as a service revenue is fore-

cast to grow 21 percent in 2011,” Gartner. com. Gartner. Retrieved, vol. 28,

2011.

[35] Mell, P. and Grance, T., “The nist definition of cloud computing,” 2011.

[36] Motahari-Nezhad, H. R., Stephenson, B., and Singhal, S., “Out-

sourcing business to cloud computing services: Opportunities and chal-

lenges,” IEEE Internet Computing, vol. 10, 2009.

[37] Natis, Y. V., “Introducing saas-enabled application platforms: Features,

roles and futures,” Gartner Inc, 2007.

[38] Patel, P., Ranabahu, A. H., and Sheth, A. P., “Service level agreement

in cloud computing,” 2009.

[39] Poli, R., Kennedy, J., and Blackwell, T., “Particle swarm optimiza-

tion,” Swarm intelligence, vol. 1, no. 1, pp. 33–57, 2007.

52

BIBLIOGRAPHY BIBLIOGRAPHY

[40] Rapaić, M. R., Kanović, Ž., and Jeličić, Z. D., “Discrete particle

swarm optimization algorithm for solving optimal sensor deployment prob-

lem,” Journal of Automatic Control, vol. 18, no. 1, pp. 9–14, 2008.

[41] Rosendo, M. and Pozo, A., “Applying a discrete particle swarm opti-

mization algorithm to combinatorial problems,” in Neural Networks (SBRN),

2010 Eleventh Brazilian Symposium on, pp. 235–240, IEEE, 2010.

[42] Salman, A., Ahmad, I., and Al-Madani, S., “Particle swarm opti-

mization for task assignment problem,” Microprocessors and Microsystems,

vol. 26, no. 8, pp. 363–371, 2002.

[43] Silberschatz, A., Galvin, P. B., Gagne, G., and Silberschatz, A.,

Operating system concepts, vol. 4. Addison-Wesley Reading, 1998.

[44] Tsai, W.-T., Sun, X., and Balasooriya, J., “Service-oriented cloud

computing architecture,” in Information Technology: New Generations

(ITNG), 2010 Seventh International Conference on, pp. 684–689, IEEE,

2010.

[45] Urgaonkar, B., Rosenberg, A. L., and Shenoy, P., “Application

placement on a cluster of servers,” International Journal of Foundations

of Computer Science, vol. 18, no. 05, pp. 1023–1041, 2007.

[46] Vaquero, L. M., Rodero-Merino, L., Caceres, J., and Lindner,

M., “A break in the clouds: towards a cloud definition,” ACM SIGCOMM

Computer Communication Review, vol. 39, no. 1, pp. 50–55, 2008.

[47] Yin, P.-Y., Yu, S.-S., Wang, P.-P., and Wang, Y.-T., “Task allocation

for maximizing reliability of a distributed system using hybrid particle swarm

optimization,” Journal of Systems and Software, vol. 80, no. 5, pp. 724–735,

2007.

[48] Yusoh, Z. I. M. and Tang, M., “A penalty-based genetic algorithm for

the composite saas placement problem in the cloud,” in Evolutionary Com-

putation (CEC), 2010 IEEE Congress on, pp. 1–8, IEEE, 2010.

53

BIBLIOGRAPHY BIBLIOGRAPHY

[49] Yusoh, Z. I. M. and Tang, M., “Clustering composite saas components

in cloud computing using a grouping genetic algorithm,” in Evolutionary

Computation (CEC), 2012 IEEE Congress on, pp. 1–8, IEEE, 2012.

[50] Yusoh, Z. I. M. and Tang, M., “Composite saas placement and resource

optimization in cloud computing using evolutionary algorithms,” in Cloud

Computing (CLOUD), 2012 IEEE 5th International Conference on, pp. 590–

597, IEEE, 2012.

[51] Zhou, M., Zhang, R., Zeng, D., and Qian, W., “Services in the cloud

computing era: A survey,” in Universal Communication Symposium (IUCS),

2010 4th International, pp. 40–46, IEEE, 2010.

[52] Zhu, X., Santos, C., Beyer, D., Ward, J., and Singhal, S., “Auto-

mated application component placement in data centers using mathematical

programming,” International Journal of Network Management, vol. 18, no. 6,

pp. 467–483, 2008.

[53] Zimmerova, B. and others, “Component placement in distributed en-

vironment wrt component interaction,” in Proceedings of the 2nd Doctoral

Workshop on Mathematical and Engineering Methods in Computer Science,

pp. 260–267, 2006.

54

Dissemination of Work

Published

Sumit Bhardwaj and Bibhudatta Sahoo, “A Particle Swarm Optimization Ap-

proach for Cost Effective SaaS Placement on Cloud”, in Proceedings of the IEEE

International Conference on Computing, Communication and Automation 2015,

pp. 571-575, IEEE, 2015.

55

	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Introduction
	Software as a Service
	Service Level Agreement
	SaaS Deployment
	Related Work
	Research Motivation
	Research Objective
	Research Contribution
	Thesis Outline

	SaaS Placement in Cloud
	Introduction
	Cloud Computing
	Cloud Architecture
	Cloud Service Models
	Cloud Deployment Models

	Cloud Software as a Service
	SaaS Application Model
	SaaS Examples

	SaaS Placement Problem
	Problem Formulation
	Objective
	Resource Constraints
	SLA and Execution time Constraints

	Current State of Work
	Conclusion

	PSO Framework for SaaS Placement
	Introduction
	SaaS Placement using Particle Swarm Optimization
	PSO Parameters
	SPPSO
	Working of SPPSO
	Example

	SaaS Placement using Greedy Approach
	Simulation Results
	Performance Evaluation with Different Number of Virtual Machines
	Performance Evaluation with Different Number of SaaS Components

	Conclusion

	Conclusions & Future Work
	Bibliography
	Dissemination of Work

