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ABSTRACT 
 

Many Sensors show a nonlinear relationship between their input and output. Sometimes the reason 

for nonlinearity is inherent and sometimes it is due to the changes in the environmental parameters 

like temperature and humidity. Ageing is also responsible for the nonlinearity of sensors. Due to 

the presence of nonlinearity, it becomes very difficult to directly read the sensor over its whole 

sensing range. The accuracy of the device is affected if it is used in its full input range. Hence it is 

very much necessary to study the problem of nonlinearity present in sensors and to solve it. 

Thermistor and thermocouple are the temperature sensors that exhibit nonlinear characteristics. 

Thermistor is the most nonlinear device but thermocouple is linear if operated in a specific 

operating temperatures. Thermocouple shows nonlinearity if operated in its entire operating range. 

The nonlinearity of a sensor can be compensated by designing an inverse model of the sensor and 

connecting it in series with the sensor. This enables the digital readout of the output of the sensor. 

So the inverse models of these temperature sensors are designed and connected in series with them, 

so that the associated nonlinearity can be compensated and the output can be read digitally. The 

neural network technique seems to be an ideal technique for designing the inverse model of such 

sensors. Also, a direct model of such sensors is also designed which can be used for calibrating 

inputs and for fault detection. A technique for linearizing the output of the sensor without using 

inverse modeling is also discussed. 
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1  INTRODUCTION 

The devices which convert the physical input quantities into electrical or any different physical 

quantity for the purpose of measurement are known as sensors. The Instrument Society of America 

has defined the sensor as “a device which provides a usable output in response to a specified 

measurand”. Sensors and transducers are the basic devices needed to sense and convert the 

physical parameters to a convenient form. The convenient form of the measurement is, most 

commonly, an electrical signal, which has many advantages compared to other forms such as 

optical, fluidic and mechanical. A sensor is unique while the transducer is composite. A sensor 

structure gets more physically attached to the environment under operation than the transducer. 

1.1  Static Characteristics of a sensor 

Static characteristics are related to the amplitude of the response or the output of the system when 

the measurand or input does not vary with time. The important static characteristics are discussed 

below. 

1.1.1 Accuracy 

Accuracy can be defined as the capacity of an instrument system that gives a result that is near to 

the true or ideal value. The true or ideal value is the standard against which the system can be 

calibrated. The measured value of most systems fails to represent the true value either due to the 

effects inherent to the system or other interfering inputs such as temperature, humidity and 

vibration. The accuracy of the system given by 

 𝐴 = 1 −  |
𝑌 − 𝑋

𝑌
| (1.1) 

where 

 𝑋 is the measured value 

 𝑌 is the true or ideal value 

Accuracy is generally expressed in percentage form as 

 %𝐴 = 𝐴 × 100 (1.2) 

1.1.2 Precision 

Precision is the characteristics of a measuring system that indicates how closely it repeats the same 

value of the outputs when the same inputs are applied to the system under the same operating and 
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environmental conditions. Although there is very less likelihood that the output response is exactly 

repeated, the closeness of repetition can be considered by taking a cluster of repeating points. The 

degree of this precision is expressed as the probability of a large number of readings falling within 

the cluster of closeness. However such closeness may not have closeness to the true value. Hence 

an accurate system is also precise but a precise system may not be accurate. 

Let us take N readings of the measurements of which the mean value is 

 𝑋̅ =  
1

𝑁
∑ 𝑋𝑛

𝑁
𝑛=1      𝑁 = Number of data (1.3) 

The precision of measurement is given by 

 𝑃 = 1 − |
𝑋𝑛 − 𝑋̅

𝑋̅
| (1.4) 

 

1.1.3 Error 

The deviation of the output or response of the system from true or ideal value is defined as the 

error of the system. The difference of the measured value and the true value is taken to calculate 

error. This is called absolute error. Sometimes, the error is calculated as a percentage of the full 

scale range or with respect to the span of the instrument. Therefore the error is expressed is 

 𝜀 = 𝑋 − 𝑌 (1.5) 

and 

 %𝜀 =
𝑋 − 𝑌

𝑌𝐹𝑆
× 100 (1.6) 

where, 𝑌𝐹𝑆 = true or ideal full scale value. 

1.1.4 Correction 

During the calibration of the instrument, the error has to be compensated using a calibrating 

circuit. The correction is the value to be added with the measured value to get the true value. 

Hence the correction can be expressed as 

 Correction = 𝑌 − 𝑋 = −𝜀 (1.7) 

Depending on the polarity of deviation from the true value, the correction can be either positive or 

negative. 
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1.1.5 Uncertainty 

Uncertainty is a term similar to error, which is used to express the deviation of the instrument from 

the actual value. It is the range of the deviation of the measured value from the true value. 

Uncertainty is also alternatively defined as a limiting error and expressed as a percentage of full 

scale reading. 

1.1.6 Hysteresis 

Many sensors with primary sensing devices made of elastic members show a difference between 

the two output readings for the same input, depending on the direction of successive input values 

either incresing or decreasing, This difference in output values is known as hysteresis. Hysteresis 

is a characteristic of not only mechanical or magnetic elements but also of many chemical and 

biochemical devices. A ferromegnetic material shows hysteresis effect upon magnetization and 

subsequent demagnerization. Many chemical sensors upon being exposed to chemicals get their 

sensitivity deformed and show a hysteresis effect. 

1.1.7 Repeatability 

Repeatability of an instrument signifies the degree of closeness of a set of measurements for the 

same input obtained by the same observer with the same method and apparatus under the same 
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operating conditions, but for a short duration of operation. Alternatively, it can be defined as it is 

the degree of conformity by which a set of reading is produced again and again for a particular 

value of input. It must be noted that the surrounding conditions should be same during the entire 

process. 

1.1.8 Sensitivity 

When a measuring instrument is used to measure an unknown quantity 𝑥, we need to know how 

the instrument relates the amplitude of input 𝑥 with the amplitude of output or response 𝑦. This 

input-output- relationship is called sensitivity. Quantitatively, the sensitivity at any measuring 

point 𝑖 is given by the slope 

 𝑆𝑖 =
𝑑𝑦𝑖

𝑑𝑥𝑖
 (1.8) 

where 𝑥𝑖 and 𝑦𝑖 are the input and output at the measuring point 𝑖. It is desirable that a sensor has 

a constant sensitivity so that 

 
𝑑𝑦𝑖

𝑑𝑥𝑖
= 𝐾        for 𝑖 = 1, 2, 3,…, 𝑚 (1.9) 

where 𝑚 is the measuring point of the highest operating range. 

1.1.9 Resolution 

A measuring instrument produces the smallest output quantity on application of smallest input. 

The smallest input for which the system produces the detectable output is called its resolution. The 

resolution is mostly a characteristic inherent to the measuring system that depends on its geometry 

or structural factors. 
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1.1.10 Linearity 

The measuring instruments possess some undesirable characteristics due to which the actual output 

deviates from true or ideal values. The causes of deviation ate various, including the inherent 

design characteristics and interfering inputs. Many instruments show a typical deviation from a 

trend of outputs even without interfering inputs making the system nonlinear. Such a characteristic 

of a measuring system is essential for calibrating the instrument by adopting various linearization 

techniques. In fact, when the sensitivity is constant over the operating range, the calibration 

characteristic is a straight line either passing through the origin or intercepting any one of the axis. 

When the sensitivity changes or does remain constant over the operating range, the instrument is 

said to be non-linear. Linearity is a quantity that denotes the maximum the maximum deviation of 

the output from the true value as the percentage of the true value. The lesser this value, higher is 

the linearity. 
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1.2  Dynamic Characteristics of a sensor 

When the energy storing elements are present in a system then the sensors show dynamic behavior 

for a time varying input than a time-invariant input. The dynamic behavior of these systems 

depends on their own characteristics as well as the dynamic characteristics of the input signal. 

Different types of time varying signals are employed for a measuring system. But the dynamic 

characteristics of the measuring system are explained with respect to few common input signals 

such as step and ramp signals. 

1.3  Motivation 

The sensors shows nonlinear relationship between its input and output which limits their dynamic 

range. It becomes very difficult to read the output digitally over a whole input range of the sensor. 

So it is a challenging task to design and implement sensors which are free from the problem of 

nonlinearity associated with them. Also the accuracy in measurement is affected greatly due to 

ageing of the sensor and environmental parameters like temperature and humidity. 

Thermistor and thermocouple are such sensors that exhibit nonlinear characteristics. The 

nonlinearity of a sensor can be compensated by designing an inverse model of the sensor and 

connecting it in series with it. This enables the digital readout of the output of the sensor. Also, a 

direct model of such sensors can be designed for the purpose calibrating inputs and for fault 

detection. Apart from developing an inverse model, a sensor can be linearized directly using neural 

networks. 

So, the problems associated with the nonlinearity of the sensors along with the variations in 

nonlinearity with environmental changes motivated in the areas of modeling and linearization of 

the sensors. 

 

 



 
 

8 
 

1.4  Literature Review 

I. D. Patranabis, S. Ghosh, C. Bakshi; “Linearizing Transducer Characteristics”. 

In this paper [1], the practical transducers are categorized into two types according to the 

relationship between their inputs and outputs. Type I is the one whose characteristics is 

exponentially rising whereas Type II is having characteristic that is exponentially decaying. 

Transducers with Type I characteristics can be easily linearized using logarithmic converters but 

Type II requires additional inverting ways so that it can be linearized. Although advantages of 

digital linearizing methods are given, the analog linearization schemes are given to linearize the 

transducer in a broad manner particularly of thermistors. Linearization scheme is developed for a 

thermistor using a log converter and an FET inverter. The error produced by this scheme are in the 

acceptable limits. In the end, it is concluded that the analog schemes of linearization are more 

suitable in the applications requiring wide range of operation. The digital scheme, however, leads 

to error which are unacceptable. The digital schemes such as look-up table techniques are expected 

to achieve the desired goal of linearization. 

II. N. Medrano-Marqués, R. del-Hoyo-Alonso, B. Martín-del-Brío, “A Thermocouple Model 

Based on Neural Networks”. 

The classical thermocouple models consist of a set of polynomial expressions reproducing their 

behavior in different temperature ranges. In this paper [2] a new single model covering the whole 

sensing range of the thermocouple is presented. The model is developed using a neural network 

which reproduces the sensor behavior in the operating span of the thermocouple.  To make a 

thermocouple model, a 1-3-3-1 multilayer perceptron is selected and the activation function 

tanh (𝑥) is used as a nonlinear differentiable function. The learning data for a J-type thermocouple 

is obtained from the National Institute of Standards and Technology (NIST) tables. The developed 

model for a J-type thermocouple covers the whole sensor span (-200 to 1200 deg. C).The neural 

model and the classical model of the thermocouple are compared. The neural model yields error 

similar to that of the classical polynomial model. It has been concluded that the model structure 

depends on the thermocouple type in case of polynomial model but it remains the same for every 

type of thermocouple in neural model. 
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III. N. Medrano-Marqués, B. Martín-del-Brío, “Sensor Linearization with Neural Networks”. 

In this paper [3], the linear range of an arbitrary sensor is extended. Here the nonlinear sensor 

response is considered as input and desired linear response is the output. The proposed procedure 

is implemented using a negative temperature coefficient resistor commonly known as thermistor. 

A thermistor is placed in a resistive divider circuit for the conversion of resistance into temperature. 

There is a nonlinear relationship between the voltage obtained from the voltage divider circuit and 

the temperature sensed by the thermistor. The difference between the voltage divider output and 

the ideal linear output is the target of the network. The neural network in the form of multilayer 

perceptron is having two nonlinear hidden nodes. The implementation of the neural network for 

the linearization is done in a low resolution microprocessor. For this the linear approximation of 

the tan sigmoid activation function is explained. 

IV. M. Attari, F. Boudema, M. Heniche; “An Artificial Neural Network to linearize a G 

(Tungsten vs. Tungsten 26% Rhenium) Thermocouple characteristic in the range of zero 

to 2000°C”. 

In this paper [4] an alternative method for correcting the linearity of a sensor is proposed. In this 

paper design and behavior of a neural network is used to linearize the nonlinear characteristics of 

a G type thermocouple whose operating range is from 0 to 2000°C. The application of interpolation 

method is also discussed to linearize the non-linearity of such sensors. The learning algorithms 

used for adjusting the weights of the neural network are backpropagation algorithm and random 

optimization algorithm. After the neural network is trained, it performs as a neural linearizer to 

produce temperature which is the physical variable to be measured from the thermocouple output 

voltage. A comparison is made for the accuracy of this method with the interpolation method. 
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1.5  Overview of Thesis 

This thesis carries out the modeling of thermistor and thermocouple using the neural network 

techniques. Also the linearization of thermistor is carried out using neural networks. The Chapter 

1 provides the introduction to the sensors along with their characteristics. The Chapter 2 provides 

the basics of neural network and the training methods to train the neural network. The application 

of neural network in system identification and developing inverse model is discussed in this 

chapter. Chapter 3 describes the operation of thermistor along with its mathematical models. The 

development of direct and the inverse model of thermistor using neural network is discussed in 

this section. Chapter 4 describes the operation of thermocouple along with its polynomial models. 

The different types of thermocouple are described. The development of the direct and the inverse 

models of the thermocouple using neural network is discussed in this section. Chapter 5 deals with 

the linearization of thermistor using neural networks. Chapter 6 gives the conclusion of the entire 

work. 
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2  ARTIFICIAL NEURAL NETWORK TECHNIQUE 

Artificial Neural Network (ANN) is a network of artificial neurons inspired by the biological 

neural network similar to the network of nerve cells in human brain. The neural network can be 

thought as a machine whose function is to perform a certain task in a way similar to that of brain. 

Usually, the electronic components are used for the implementation of neural networks. The digital 

computers are used for the simulation of neural networks in software. The presentation of the 

neural network is in the form of interconnected neurons in such a manner that they can calculate 

output values from the inputs. The neural network is designed in a manner which enables them to 

learn from the training data. The massively interconnected computing cells plays a very important 

role in making the neural network highly efficient. The ANN is similar to an Adaptive Machine 

which is defined as: 

A neural network is a processor with massively distributed and parallel computing power which 

is capable of learning from its atmosphere. It is consists of simple processing units called neurons 

that are capable of storing knowledge in the form of weights and biases [10]. It is similar to the 

brain in two aspects: 

a. A learning process plays a very important role for a neural network in acquiring 

knowledge from its environment 

b. The synaptic weights which are the interneuron connection strengths stores the acquired 

knowledge during training 

Learning Algorithm is a set of task used to perform the learning of a neural network. In this process, 

the aim is to attain the desired design objective by modifying the synaptic weights of the network 

2.1 Properties of ANN 

Artificial Neural Network (ANN) has remained a topic of interest in the recent past. The artificial 

neural network is having wide range of application ranging from engineering to medicine and 

finance to physics. The important properties leading to the success of ANN are discussed below: 
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2.1.1 Power 

ANN are having a very standardized approach which enables it in modeling very difficult 

functions. It is the nonlinear nature of ANN that makes it more powerful. The linear modeling has 

been the most accepted scheme because of its easy optimization. But the linear model gives 

significant errors, as in the case of thermistors which a highly nonlinear device. ANN proves to be 

a powerful tool in modeling nonlinear systems such as thermistor. 

2.1.2 Ease of use 

A very less user knowledge is involved in the use of neural network. The reason being the way in 

which the neural network learns. It needs an example for learning. A user only needs to gather and 

organize the training data and invoke a learning algorithm to begin the learning of the network. 

This is much simpler than using the traditional nonlinear models of the systems. 

2.1.3 Nonlinearity 

Due to highly distributed structure of the neural network and the presence of neurons which are 

nonlinear themselves, a neural network is always nonlinear. This nonlinearity is having a 

distributed nature in the network and plays a significant role if the systems which are producing 

inputs for the network are nonlinear. 

2.1.4 Adaptivity 

Neural networks are highly adaptive and they can change and adjust their weights in accordance 

with the changes in the environment they are kept. For example consider a neural network is 

trained to perform under certain environment. If certain features of the environment are changed 

suddenly, the network can easily adapt to these changes and retrain itself to work in those changed 

conditions 

2.1.5 VLSI Implementation 

The neural networks are highly parallel by their nature. Their very nature makes them fast for the 

calculation of outputs. Their nature of massive parallelism makes them suitable for VLSI 

technology. 
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2.2 Model of a neuron 

A neuron is the basic and the most important unit of a neural network. The general block diagram 

of a typical neuron is given in Fig. 2.1. The basic units of neuron are discussed below: 

1. The synaptics are described by a weight or strength of its own. A signal 𝑥𝑗 at the input of 

synapse 𝑗 is connected to neuron 𝑘 after multiplying with 𝑤𝑘𝑗. Both the positive as well as negative 

values lies in the range of the synaptic weight of an artificial neuron. 

2. An adder (Summing Junction) is used for summing weighted inputs of each neuron. 

3. An activation function functions as a limiter to keep the output of neuron in specific limit.  

The neuron shown in Fig. 2.1 contains an externally applied offset (bias) given by 𝑏𝑘. When 

bias 𝑏𝑘 is positive, it increases the overall input applied to activation function. It lowers the overall 

input to the activation function for a negative value. 

Mathematically, the neuron 𝑘 in Fig. 2.1 is described as, 

 𝑢𝑘 = ∑ 𝑤𝑘𝑗𝑥𝑗

𝑚

𝑗=1

 (2.1) 

and 

 𝑦𝑘 = 𝜑(𝑢𝑘 + 𝑏𝑘) (2.2) 

φ(.) 
Input 

Signal

s 

 

:                              
:         
:                              
:       

x1 

x2 

xm 

wk1 

wk2 

wkm 

Bias 

bk 

 
Activation 

Function 

Synaptic 

Weights 

Output 

yk 

Summing 

Junction 

Σ  
v

k
 

  

Fig. 2. 1 Model of Neuron 



 
 

15 
 

where 𝑥1, 𝑥2, … , 𝑥𝑚 are the input signals; 𝑤𝑘1, 𝑤𝑘2, … , 𝑤𝑘𝑚 are the respective synaptic weights of 

the neuron 𝑘; 𝑢𝑘 is the linear combiner output due to input signals; 𝑏𝑘 is the bias; 𝜑(. )is the 

activation function and 𝑦𝑘 is the output of the neuron. The use of bias 𝑏𝑘 applies an affine 

transformation to the output 𝑢𝑘 of the linear combiner in the model of Fig. 2.1 shown by 

 𝑣𝑘 = 𝑢𝑘 + 𝑏𝑘 (2.3) 

where 𝑣𝑘 is termed as induced local field. So neuron output becomes 

 𝑦𝑘 = 𝜑(𝑣𝑘) (2.4) 

The activation function 𝜑(𝑣) is the output of the neuron in terms of the induced local field 𝑣. The 

various activation functions along with their definitions are explained below 

(a) Threshold Function 

The Threshold Function is 

 𝜑(𝑣) = {
1, 𝑖𝑓 𝑣 ≥ 0
0, 𝑖𝑓 𝑣 < 0

 (2.5) 

This Threshold Function is also called as Heaviside function. 
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(b) Signum Function 

The Signum Function is 

 𝜑(𝑣) = {

   1, 𝑖𝑓 𝑣 > 0
   0, 𝑖𝑓 𝑣 = 0
−1, 𝑖𝑓 𝑣 < 0

 (2.6) 

The Signum Function is also called as Hardlimiter function. 

 

(c) Sigmoid Function 

The Sigmoid Function is a commonly used activation function in the neural networks. It is strictly 

an increasing function. It is defined below: 

 𝜑(𝑣) =
1

1 + exp (−𝑎𝑣)
 (2.7) 

where 𝑎 is the slope parameter. It is used to vary the slope of the function. 
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Fig. 2. 4 Sigmoid Activation Function 
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(d) Hyperbolic tangent function 

The hyperbolic function limits the output between (-1, 1) and is defined as 

 𝜑(𝑣) = tanh (𝑣) (2.8) 

  

2.3 Multilayer Perceptron (MLP) 

The single layer neural network classifies linearly separable patterns only as it limits the computing 

power. So the neural network structure known as multilayer perceptron is introduced .The scheme 

of MLP is applied to a variety of difficult problems using a very popular supervised training 

algorithm known as Back-propagation Algorithm. The points which highlights the basic features 

of MLP are as shown below: 

1. The activation function used in the neural model is nonlinear and differentiable. 

2. One or more layers which are hidden from both the input and output nodes, i.e. hidden layer, 

are present in the network. 

3. The MLP network is having s high degree of connectivity. 

The Fig. 2.6 depicts the structure of a four layer multilayer perceptron having two hidden layers. 

𝑥𝑖(𝑛) is the input of the first layer, 𝑓𝑗 and 𝑓𝑘 are the output of second and third layer and 𝑦𝑙(𝑛) is 

the output of the last layer of the MLP network. 𝑤𝑖𝑗, 𝑤𝑗𝑘 and 𝑤𝑘𝑙 are the synaptic weights between 

Layer-1 and Layer-2, Layer-2 and Layer-3 and Layer-3 and Layer-4 respectively. 
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Fig. 2. 5 Hyperbolic Tangent Activation Function 
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If 𝑁1 is total number of neurons in the Layer-2 then its output is 

 
𝑓𝑗 = 𝜑𝑗 [∑ 𝑤𝑖𝑗𝑥𝑖(𝑛)

𝐿

𝑖=1

+ 𝛼𝑗] 

𝑖 = 1, 2, … , 𝐿  ; 𝑗 = 1, 2, … , 𝑁1 

(2.9) 

where 𝛼𝑗 is the threshold of neurons of the Layer-2, 𝐿 is total number of inputs and 𝜑(. ) is 

nonlinear and differential activation function in Layer-2 of network. If 𝑁2 is the number of neurons 

in Layer-3 then its output is given by 

 𝑓𝑘 = 𝜑𝑘 [∑ 𝑤𝑗𝑘𝑓𝑗

𝑁1

𝑗=1

+ 𝛼𝑘]          𝑘 = 1, 2, … , 𝑁2 (2.10) 

where 𝛼𝑘 is the threshold of the neurons of Layer-3. If 𝑁3 is total number of neurons in the Layer-

4 then its output is 

         𝑦𝑙(𝑛) = 𝜑𝑙 [∑ 𝑤𝑘𝑙𝑓𝑘

𝑁2

𝑘=1

+ 𝛼𝑙]          𝑙 = 1, 2, … , 𝑁3 (2.11) 
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where 𝛼𝑙 is the threshold of the neurons of Layer-4. The overall output of the network is expressed 

as 

 𝑦𝑙(𝑛) = 𝜑𝑙 [∑ 𝑤𝑘𝑙𝜑𝑘 [∑ 𝑤𝑗𝑘𝜑𝑗 [∑ 𝑤𝑖𝑗𝑥𝑖(𝑛)

𝐿

𝑖=1

+ 𝛼𝑗]

𝑁1

𝑗=1

+ 𝛼𝑘]

𝑁2

𝑘=1

+ 𝛼𝑙] (2.12) 

 

Fig. 2.7 shows a portion of multilayer perceptron neural network. There are two types of signals 

in such a network: 

(a) Function Signals- 

A function signal can be viewed as an input signal (stimulus) that is present at the input end of the 

network, propagated through the network in the forward direction and comes out as an output 

signal at the output end of the network. It is of very significant use at the output of the network. A 

function signal passes through each neuron of the network and calculates signal which is function 

of the inputs and weights applied to the neuron. It functions similar to the input signal. 

(b) Error Signals- 

It is the signal generated at the output neuron and propagated backward in a layer by layer fashion 

in network. 

2.4 Back-propagation Algorithm 

Back-propagation algorithm is the training algorithm for multilayer perceptron. The multilayer 

perceptron training using back-propagation algorithm follows the phases given below: 

Function Signal 

Error Signal 

Fig. 2. 7 Two basic signal flows in a Multilayer Perceptron 
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1. This is the forward phase in which the synaptic weights of the network are kept fixed and the 

input signal propagates, layer by layer, in the network till it is reached at the output. Only the 

activation function and the output of neuron are affected in the network in  this phase. 

2. This is the backward phase in which an error signal is generated by comparison of the output of 

the network and the response that is desired. The error so produced is again passed through the 

network, layer by layer, but in the backward direction. The adjustments are applied to the synaptic 

weights of the network so as to reduce the error signal value. 

 

A multilayer perceptron network with 2-3-2-1 architecture with back-propagation training 

algorithm is shown in the Fig. 2.8. Initially, a small and random value is used to initialize the 

weights and the biases. The comparison is made between the final output yl(n) and the desired 

response d(n) and the error signal el(n) is generated which is given by 

 𝑒𝑙(𝑛) = 𝑑(𝑛) − 𝑦𝑙(𝑛) (2.13) 

The total instantaneous error energy of the whole network is obtained by adding the error energy 

contributions of all the neurons of the output layer. 

 𝜉(𝑛) =
1

2
∑ 𝑒𝑙

2(𝑛)

𝑁3

𝑙=1

 (2.14) 

where 𝑁3 is the number of neurons in the output layer. 

The weights and thresholds of the hidden layers and the output layers are updated through error 

signal. The weights and the thresholds are adjusted iteratively until the error signal becomes 

minimum. The adjusted weights are given by 

 𝑤𝑘𝑙(𝑛 + 1) = 𝑤𝑘𝑙(𝑛) + 𝛥𝑤𝑘𝑙(𝑛) (2.15) 
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Fig. 2. 8 Neural Network employing Back-propagation Algorithm 
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 𝑤𝑗𝑘(𝑛 + 1) = 𝑤𝑗𝑘(𝑛) + 𝛥𝑤𝑗𝑘(𝑛) (2.16) 

 

 𝑤𝑖𝑗(𝑛 + 1) = 𝑤𝑖𝑗(𝑛) + 𝛥𝑤𝑖𝑗(𝑛) (2.17) 

where  𝛥𝑤𝑘𝑙(𝑛), 𝛥𝑤𝑗𝑘(𝑛) and 𝛥𝑤𝑖𝑗(𝑛) are the adjustments in the weights of the second hidden 

layer to output layer, first hidden layer to second hidden layer and input layer to first hidden layer 

respectively. Also 

 

𝛥𝑤𝑘𝑙(𝑛) = −2𝜇
𝑑𝜉(𝑛)

𝑑𝑤𝑘𝑙(𝑛)
= 2𝜇𝑒(𝑛)

𝑑𝑦𝑙(𝑛)

𝑑𝑤𝑘𝑙(𝑛)
 

            = 2𝜇𝑒(𝑛) 𝜑′𝑙 [∑ 𝑤𝑘𝑙𝑓𝑘

𝑁2

𝑘=1

+ 𝛼𝑙] 𝑓𝑘 

(2.18) 

where μ is the convergence coefficient (0 ≤ μ ≤ 1). In similar manner, 𝛥𝑤𝑗𝑘(𝑛) and 𝛥𝑤𝑖𝑗(𝑛) can 

be calculated. 

Similarly, the thresholds of each layer can be updated as under 

 𝛼𝑙(𝑛 + 1) = 𝛼𝑙(𝑛)+𝛥𝛼𝑙(𝑛) (2.19) 

 

 𝛼𝑘(𝑛 + 1) = 𝛼𝑘(𝑛)+𝛥𝛼𝑘(𝑛) (2.20) 

where 𝛥𝛼𝑙(𝑛), 𝛥𝛼𝑘(𝑛) and 𝛥𝛼𝑗(𝑛) are the adjustments in the thresholds of the output layer and 

the hidden layers. The adjustments in the thresholds are given by 

 

𝛥𝛼𝑙(𝑛) = −2𝜇
𝑑𝜉(𝑛)

𝑑𝛼𝑙(𝑛)
= 2𝜇𝑒(𝑛)

𝑑𝑦𝑙(𝑛)

𝑑𝛼𝑙(𝑛)
 

          = 2𝜇𝑒(𝑛) 𝜑′𝑙 [∑ 𝑤𝑘𝑙𝑓𝑘

𝑁2

𝑘=1

+ 𝛼𝑙] 

 

(2.22) 

 

 

2.5 Application of Neural Network 

The neural networks are applied to a wide array of problems prominent being the learning tasks of 

Pattern Association and Pattern Recognition. Neural network can be also be applied to problems 

of other domains such as Function Approximation. Take a nonlinear function given by the equation 

 𝒇 = 𝒈(𝒙) (2.23) 

 𝛼𝑗(𝑛 + 1) = 𝛼𝑗(𝑛)+𝛥𝛼𝑗(𝑛) (2.21) 
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where the vector  𝒙 works as an input, 𝒇 as an output and the function 𝒈(. ) is an unknown vector 

valued function. Although 𝒈(. ) is unknown but a set of sample values {(𝒙𝒊, 𝒇𝒊)}𝑖=1
𝑁  are given 

where 𝑁 is the total training samples. Now a neural network is to be designed which will 

approximate the unknown function 𝒈(. ). Supervised learning can be employed with 𝒙𝒊 as the input 

vector and 𝒇𝒊 being the desired response. 

The unknown functions can be easily approximated by neural network. This ability of neural 

network can be used in two significant ways 

2.5.1 System Identification 

Suppose equation  𝒇 = 𝒈(𝒙) is a function which describes a single input single output system. 

Then the sample points {(𝒙𝒊, 𝒅𝒊)}𝑖=1
𝑁  are used in training the neural network as the model of the 

system. Consider 𝒚𝒊 as the actual output of the neural network produced when input is 𝒙𝒊. The 

difference between  𝒇𝒊 and the network output 𝒚𝒊 gives an error 𝒆𝒊 as shown in the Fig. 2.9. The 

error is used in modifying the weights of the network so as to reduce the difference between the 

output of the unknown system and the neural model. This is repeated for the entire set of sample 

points until the error is minimized to a least desired value. 
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2.5.2 Inverse Modeling 

Suppose a known system described by equation 𝒇 = 𝒈(𝒙). Now its inverse model is to be designed 

that gives the value of  𝒙 when the input is 𝒇, the inverse system is given by 

 𝒙 = 𝒈−𝟏(𝒇) (2.24) 

where the function 𝒈−𝟏(. ) is the inverse of 𝒈(. ). 

In this case the 𝒇𝒊 is the input and the  𝒙𝒊 is the desired response. The error signal 𝒆𝒊 gives the 

difference of  𝒙𝒊 and the actual output 𝒚𝒊 of the neural network as shown in Fig. 2.10. Similar to 

the system identification problem, the error is used in the modification of synaptic weights of the 

network which reduces the difference between the output of the neural model and actual system. 

The inverse modeling requires a more difficult learning than system identification because there 

may not be a unique solution for it. 
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Fig. 2. 10 Block diagram of Inverse System Modeling 
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3  DIRECT MODELING AND INVERSE MODELING 

OF A THERMISTOR USING NEURAL NETWORK 

TECHNIQUE 

This chapter deals with the design and development of direct model and inverse model of very 

important temperature sensor i.e. thermistor. The thermistor finds extensive use in the temperature 

measurements owing to its low cost and high degree of accuracy.  But it exhibit nonlinear 

relationship between its input-output characteristics. This prevents its direct digital readout and 

provides restriction to its dynamic range.  Also the accuracy of the thermistor is affected by ageing 

and variation in environmental parameters. The direct model is similar to a thermistor giving 

similar responses. The design of direct model using neural network is identical to the system 

identification problem of control system. The direct model of a sensor helps in determining the 

faults in sensor. The inverse model compensates for the nonlinearity present in the sensor. The 

inverse model is same as channel equalization issue associated with communication systems 

communication system. 

3.1 Thermistor 

Thermistor is simply a resistor whose resistance varies with the change in temperature. This is the 

reason why they are also called as temperature sensitive resistors. Thermistors are made up of 

semiconductor materials and hence, their resistivity is more sensitive to the temperature. 

3.1.1 Basic Operation 

Taking linear approximation into account, the resistance and temperature relationship is given by 

 𝛥𝑅 = 𝑘𝛥𝑇 (3.1) 

where 𝛥𝑅 is the resistance change, 𝛥𝑇 is the temperature change, 𝑘 is the constant. The value of 

𝑘 determines whether the thermistor is either a positive temperature coefficient (PTC) thermistor 

or a negative temperature coefficient (NTC) thermistor. 

3.1.2 Thermistor Classification 

Thermistors are classified either as a PTC device or an NTC device depending on the value of 𝑘. 

When 𝑘 is positive, the resistance increases with rise in temperature and the device is PTC type. 

When 𝑘 is negative, the resistance decreases with rise in temperature and the device is NTC type. 
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For negative 𝑘 the resistance decreases with the increase in temperature and the device is called as 

a negative temperature coefficient (NTC) thermistor. Resistors that are not meant to work as a 

thermistor are having the value of 𝑘 close to zero so that the resistance does not change with the 

change in temperature. 

a) NTC 

The NTC thermistors are constructed from materials such as sintered metals and oxides that are 

used in semiconductors. The increase in the temperature causes increase in the active charge 

carriers which enables more current through the material, thus, decreasing its resistance. The ferric 

oxide (Fe2O3) with titanium (Ti) doping forms an n-type semiconductor material with electrons as 

active charge carriers. The nickel oxide (NiO) with lithium (Li) doping forms a p-type 

semiconductor material with holes as active charge carriers. 

b) PTC 

PTC thermistors functions similar to a switch. At a particular value of temperature, there is an 

abrupt rise in the resistance of PTC thermistors. They are constructed from doped polycrystalline 

substances like barium titanate (BaTiO3) and similar compounds. With the variation in the 

temperature, the dielectric constant of such substances varies. There is a high dielectric constant 

at temperature below the Curie point temperature preventing the formation of potential barriers 

between the crystal grains. This is the reason for low resistance values under such conditions. At 

this point the material has a small negative temperature coefficient. At the Curie point temperature, 

there is a rise in the resistance value owing to the less value of dielectric constant.  

3.1.3 Thermistor Mathematical Models 

The Steinhart-Hart equation and β equation are the most commonly used thermistor mathematical 

models which are discussed below. 
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a) Steinhart-Hart Equation: 

The linear approximation of temperature resistance relationship in a thermistor works well only 

within a small range of temperature. For error-free temperature measurements, a more accurate 

approximation in the form of an equation is desired. Steinhart-Hart equation is a used widely which 

is described below 

 
1

𝑇
= 𝑎 + 𝑏 ln(𝑅) + 𝑐 (ln (𝑅))3 (3.2) 

where 𝑎, 𝑏 and 𝑐 are Steinhart-Hart parameters; 𝑇 is the absolute temperature; 𝑅 is the resistance. 

The Steinhart-hart equation gives error of 0.02°C. The constants 𝑎, 𝑏 and 𝑐 are calculated from 

experimental measurements of resistance. Consider datapoints of a typical thermistor in the Table 

3.1. 

Table 3. 1 Datapoints of a typical 10 k Ω thermistor 

T (°C) R (Ω) 

0 28063 

25 10000 

50 4136 

 

Using these values, three equations in 𝑎, 𝑏 and 𝑐 are obtained. 

 

1

273
= 𝑎 + 𝑏 ln(28063) + 𝑐 (ln (28063))3 

1

298
= 𝑎 + 𝑏 ln(10000) + 𝑐 (ln (10000))3 

1

323
= 𝑎 + 𝑏 ln(4136) + 𝑐 (ln (4136))3 

(3.3) 

From the above equations, the value of Steinhart-Hart parameters 𝑎, 𝑏 and 𝑐 is computed and given 

as under 

𝑎 = 7.37 × 10−4 

𝑏 = 2.78 × 10−4 

𝑐 = 6.79 × 10−8 
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b) β equation: 

The NTC thermistors are characterized by another type of equation known as B or β parameter 

equation. The β equation is similar to Steinhart-Hart equation with 

 𝑎 =
1

𝑇0
−

1

𝛽
ln(𝑅0);     𝑏 =

1

𝛽
;      𝑐 = 0 (3.4) 

 From (4.2) and (4.4) the following B or β parameter equation is obtained 

 
1

𝑇
=

1

𝑇0
+

1

𝛽
ln (

𝑅

𝑅0
) (3.5) 

where the 𝑇0, 𝑇 are in kelvin and 𝑅0 is the resistance corresponding to temperature 𝑇0. Now solving 

for 𝑅, the following equation is obtained 

 𝑅 = 𝑅0𝑒
−𝛽(

1
𝑇0

−
1
𝑇

)
 (3.6) 

The β parameter is very important as far as thermistor materials and thermistor components are 

concerned. All the commercially available thermistors are having their β parameter values 

specified in their datasheets. The information about the sensitivity of the thermistor material is 

interpreted from the β parameter value. Fig. 3.1 shows the Resistance Temperature curve of a 

typical NTC thermistor which clearly shows the nonlinear relationship between them. 

0

50000

100000

150000

200000

250000

-40 -20 0 20 40 60 80 100 120 140

R
es

is
ta

n
ce

 i
n
 Ω

Temperature in degree Celsius

Fig. 3.1 Characteristic of a thermistor 
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3.1.4 Self-Heating Effect of thermistor 

Heat is generated in a thermistor when current flows through it. This heat is the cause of the rise 

in temperature of the thermistor. This will naturally cause error in the measurement of temperature. 

So compensation mechanism are employed to compensate for the rise in temperature due to self-

heating of thermistor. If the ambient temperature is already known, the thermistor can measure 

altogether different physical quantity other than temperature. For example it can measure the flow 

rate of a liquid as the heat dissipation of the thermistor is proportional to the flow rate of the fluid. 

3.2 Voltage Divider Circuit 

Fig. 3.2 shows a voltage divider circuit (VDC) which provides an equivalent voltage proportional 

to the resistance of thermistor. Also the resistance of the thermistor is related with its temperature. 

It means that the VDC simply acts as a resistance to voltage converter. The voltage 𝑉𝑇 is given by 

 𝑉𝑇 =
𝑅𝑆

𝑅𝑆 + 𝑅𝑇
× 5 (3.7) 

 

Fig. 3. 2 Voltage Divider Circuit for Resistance to Voltage Conversion of a thermistor 
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3.3 Development of Direct Model and Inverse Model of Thermistor 

A scheme for the development of direct and inverse model of the thermistor has been proposed in 

this section. The direct modeling is proposed to calibrate inputs and estimate the intrinsic 

parameters of the thermistor whereas the inverse modelling is proposed for the estimation of the 

temperature sensed by the thermistor. 

3.3.1 Direct Modeling 

 

The direct modeling is similar to the system identification problem of control system. The direct 

model behaves so, that its output and the output of the thermistor with VDC are almost same. The 

thermistor with VDC provides a voltage which is equivalent to the resistance of the thermistor 

which in turn reflects the temperature sensed by the thermistor.  By changing the temperature of 

the thermistor, there is a change in the resistance of the thermistor. By using a voltage divider 

circuit with thermistor an equivalent voltage proportional to the change in the temperature is 

obtained. Fig. 3.3 shows a scheme for direct modeling of thermistor with VDC using neural 

network based model. Here only the temperature is affecting the output voltage of the thermistor 

(VDC) 𝑉𝑇. So the normalized temperature 𝑇 is the input to the VDC circuit. The output voltage 𝑉𝑇 

of the VDC and the output voltage 𝑉′𝑇 of the neural model are compared to produce value of 𝑒. 

This value of 𝑒 is taken to update the neural network model. The neural network model is 

developed by the application of Multilayer perceptron and Back-propagation Algorithm. 
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Fig. 3. 3 A scheme for direct modeling of Thermistor with VDC using neural network based model 
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3.3.2 Inverse Modeling 

 

Fig. 3.4 shows a scheme for inverse modeling of thermistor with VDC involving neural network 

based model for the estimation of applied temperature. This is identical to the channel equalization 

problem in the communication receiver to cancel the adverse effects of the channel for the 

transmitted data. The direct digital reading of the applied temperature is obtained by cascading the 

inverse model of the thermistor with it so as to compensate for the nonlinearity of the thermistor. 

The training and the testing data are used in the same manner as it is used in the direct modeling 

scheme. The only difference is that the normalized voltage 𝑉𝑇 works as input and the normalized 

temperature 𝑇 works as output of the inverse model.  

3.4 Simulation Results 

The neural models, both direct and inverse have been simulated in MATLAB. The Neural Network 

Toolbox of MATLAB is used. The output voltage 𝑉𝑇 of the voltage divider circuit implemented 

using thermistor is obtained from equation (3.7). The value of resistance for different temperature 

for a particular thermistor is obtained from equation (3.6) by using the following values of 

constants 

 𝛽 = 3380 𝑝𝑒𝑟 𝐾; 𝑅0 = 10000𝛺; 𝑇0 = 298𝐾 (3.8) 

The detailed explanation of the neural network based direct and inverse modeling is shown 

below. 
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3.4.1 Neural network based direct modeling of thermistor 

Simulation of the Multilayer perceptron based neural network is carried so as to get the direct 

model of the thermistor. Simulation is done using a two layer multilayer perceptron with 1-5-1 

structure similar to Fig. 2.6 is used which will behave as the direct model of thermistor. Here the 

first layer indicates the input layer with only one input. The second layer is the hidden layer 

consisting of 5 neurons. Finally, the third layer is the output node with only single output. The 

activation function used in hidden and the output layer is 𝑡𝑎𝑛ℎ (. ) as in Fig. 2.5. The Back-

Propagation Algorithm adjusts the weights of the neural network. The normalized temperature 𝑇𝑁 

is the input to the neural network and the normalized output voltage 𝑉𝑇𝑁 is the target. The weights 

of the network are updated as per Back-propagation algorithm after application of input dataset. 

Each iteration comprises of application of all the input datasets. To let the network learn 

effectively, 1000 iterations are made. After completion of training, the weights are stored for future 

use. While testing the network the stored weights are loaded and the input in the form of 

normalized temperature 𝑇𝑁 is fed to the trained neural network (Direct Model of Thermistor). The 

output from the model is compared with the actual output to study the accuracy of the direct model. 

The plot of actual characteristics and the estimated characteristics of the thermistor model is shown 

in Fig. 3.5. 

  
Fig. 3.5 Plot of Actual and Estimated Output of thermistor sensor 
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3.4.2 Neural network based inverse modeling of thermistor 

Same structure 1-5-1 of the multilayer perceptron is used for the simulation of the inverse model 

of the thermistor. Similar training method is used to train the neural network. The network is 

trained for 1000 iterations by Back-propagation algorithm and the adjusted weights are stored in 

the memory. The only difference is the normalized voltage becomes the input and the normalized 

temperature becomes the output. In testing of the inverse model, the thermistor output 𝑉𝑇𝑁 is 

applied to the network and the estimated temperature 𝑇𝑁 is obtained from the neural model. The 

plots in case of neural model are shown in Fig. 3.6. 

 

Fig. 3. 6 Plots of forward, inverse and overall characteristics of the thermistor 
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4  DIRECT MODELLING AND INVERSE MODELLING 

OF A THERMOCOUPLE USING NEURAL 

NETWORK TECHNIQUE  

This chapter deals with the design and development of direct model and inverse model of very 

temperature sensor thermocouple. The thermocouple finds extensive use in the temperature 

measurements owing to their low cost and simplicity. Although the accuracy of thermocouples is 

less than thermistors, still they are widely used due to their wide temperature sensing range. But 

they exhibit nonlinear relationship between their input-output characteristics if used over full 

sensing range. This prevents their direct digital readout and provides restriction to their dynamic 

range.  Also the accuracy of these sensors is affected by ageing and variation in environmental 

parameters. The direct model is similar to a thermocouple giving similar responses. The design of 

direct model using neural network is same as the system identification problem of control system. 

The direct model of a sensor helps in determining the faults in sensor. The inverse model 

compensates for the nonlinearity present in the sensor. The inverse model is same as the channel 

equalization problem of communication system to cancel the adverse effects of channel. 

4.1 Thermocouple 

A thermocouple is a device to measure temperature and it consists of two different conductors that 

are connected to each other at one or more locations which are called junctions. Due to the 

temperature difference at the junctions of a thermocouple, a voltage is produced. Thermocouples 

are most used as a temperature sensor for measurement and control. Junction with dissimilar metal 

produces a voltage related to temperature gradient at its junction. Thermocouples that are used for 

measuring the temperature practically are made up of specific alloys which gives predictable 

relationship between temperature and voltage. Thermocouples made up of different alloys operates 

in varying temperature ranges. 

4.1.1 Principle of operation 

Under the effect of a thermal gradient every conductor generates voltage. This phenomenon is 

called the thermoelectric effect or the Seebeck effect. For voltage measurement, another conductor 

must be connected at the hot end. This additional conductor also experiences the thermal gradient 
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causing a voltage to be developed opposing the previous one. The amount of voltage developed is 

dependent on the type of metal.  

4.1.2 Polynomial Model of thermocouple 

Polynomial model is an approximated equation to show the relationship between the temperature 

sensed and the voltage produced by the thermocouple. It is given as under 

 𝑇 = 𝑑0 + 𝑑1𝐸 + 𝑑2𝐸2 +…..+ 𝑑𝑛𝐸𝑛 (4.1) 

where 𝑇 is sensed temperature; 𝐸 is voltage generated; 𝑑0, 𝑑1, etc. are the polynomial coefficients. 

This polynomial equation is effective only when the reference junction is fixed zero degree celsius. 

Each thermocouple has polynomial equation with different coefficients for different operating 

temperature range. For example, a K-type thermocouple has three different polynomial equation. 

The National Institute of Science and Technology (NIST) has provided the polynomial equations 

for different types of thermocouples along with temperature-emf table for each thermocouple [12].  

4.1.3 Thermocouple Measurement 

The block diagram for thermocouple measurement is shown in the Fig. 4.1. The desired 

temperature 𝑇𝑆𝐸𝑁𝑆𝐸 is acquired by using the three important quantities – the thermocouple 

characteristic function 𝐸(𝑇) , the voltage measured 𝑉 and the reference junction temperature 𝑇𝑅𝐸𝐹. 

These three quantities are combined below 

 𝐸( 𝑇𝑆𝐸𝑁𝑆𝐸) = 𝑉 + 𝐸( 𝑇𝑅𝐸𝐹) (4.2) 

where 𝐸(𝑇) is the voltage produced when the hot junction of the thermocouple is at temperature 𝑇 

and the reference junction is kept constant at zero degree celsius. 

To measure the desired temperature 𝑇𝑆𝐸𝑁𝑆𝐸, the measurement of 𝑉 is not sufficient. As in equation 

(4.2), the value of  𝑇𝑅𝐸𝐹 must be determined.  
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The following two methods are used for solving this problem of 𝑇𝑅𝐸𝐹. 

 Ice Bath Method: In this method the reference junction is kept in a bath of water in such a 

way that the temperature remains at 0°C. Thus the reference junction is fixed at a constant 

temperature of 0°C. 

 Reference Junction Thermometer: In this method, the temperature of the reference junction 

is not fixed and it varies with the ambient temperature. This varying temperature is 

measured by another thermometer (mostly thermistor or RTD). 

In the above two cases equation (4.2) is used for calculating 𝐸( 𝑇𝑆𝐸𝑁𝑆𝐸) and from the temperature-

emf chart for a particular thermocouple the value of 𝐸( 𝑇𝑆𝐸𝑁𝑆𝐸) is obtained. 

4.1.4 Ageing of thermocouple 

Thermocouples are mostly used at extreme temperature with reactive atmospheric conditions. Due 

to such atmospheric conditions the thermocouple is prone to ageing. These extreme conditions 

causes the thermoelectric coefficients of the thermocouple to vary with time resulting in drop in 

the voltage produced. The equation (4.1) alongwith the specific coefficients for a particular 

thermocouple, say K-type, is correct only if each wire of thermocouple is homogeneous. The wires 

of the thermocouple loose this homogeneity owing to the consistent and extreme exposure to high 

temperature resulting in permanent chemical and metallurgical changes.  

Fig. 4. 1 Thermocouple measurement scheme 
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4.1.5 Types of thermocouple 

There are industry standards of thermocouple depending on the certain combination of alloys used. 

The selection of combination of alloys depends on the output, stability, chemical properties, 

melting point and cost. Also the selection of a particular type of thermocouple depends on 

particularly application. The factors important for selection are usually temperature range, 

sensitivity, magnetic properties and chemical inertness of the thermocouple material. The 

thermocouple types are explained in the following section with their characteristic functions shown 

in the Fig. 4.2. 

a) E-Type 

The E-type (chromel-constantan) thermocouple is having a high output (68μV/ °C) which is suited 

for use in cryogenics applications. It is non-magnetic by nature and having range -110°C to 740°C. 

In E-type, the chromel forms the positive electrode and the constantan forms the negative electrode 

provided the junction temperature is above reference temperature. Same thing follows for the rest 

of the thermocouple types. 
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b) J-Type 

The J-type (iron-constantan) thermocouple is having sensitivity 50μV/°C. It is having range -40°C 

to 750°C.  

c) T-Type 

The T-type (copper-constantan) thermocouple is having a having a sensitivity of about 68 μV/ °C. 

It is non-magnetic by nature and having range of operation from -200°C to 350°C. 

d) K-Type 

Type K (chromel-alumel) is having an operating range from -200°C to 1350°C. The sensitivity of 

K-type thermocouple is around 41μV/°C. Since nickel is its constituent metal which is magnetic, 

it undergoes a deviation in output when reaches Curie Temperature. 

e) N-Type 

N-type (nicrosil-nisil) thermocouple is suitable in the range of -270°C to 1300°C. The sensitivity 

of N-type thermocouple is around 39μV/°C. 

f) S- Type 

S-type (platinum 90% / rhodium 10% - platinum) thermocouple can operate up to 1600°C but its 

sensitivity is very less. 

4.2 Development of Direct Model and Inverse Model of Thermocouple 

A scheme for the development of direct and inverse model of the thermocouple has been proposed 

in this section. The direct modeling is proposed to calibrate inputs and estimate the intrinsic 

parameters of the thermistor whereas the inverse modelling is proposed for the estimation of the 

temperature sensed by the thermocouple. 
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4.2.1 Direct Modeling 
 

The direct modeling is same as the system identification problem of control system. The direct 

model behaves so, that its output and the output of the thermistor with VDC are almost same. The 

thermocouple provides a voltage which reflects the temperature sensed by the thermocouple.  By 

changing the temperature of the thermocouple, there is a change in the output voltage of the 

thermocouple. Fig. 4.3 shows a scheme for direct modeling of thermocouple using neural network 

based model. Here only the temperature is affecting the output voltage of the thermocouple 𝐸(𝑇). 

So the normalized temperature 𝑇 is used as the input to the thermocouple. The output voltage 𝐸(𝑇) 

of the thermocouple and the output voltage 𝐸′(𝑇) of the neural model are compared to produce 

error 𝑒. The neural network model is updated using this error information. The neural network 

model is developed by the application of Multilayer perceptron and Back-propagation Algorithm. 
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Fig. 4. 3 A scheme for direct modeling of Thermocouple using neural network based model 



 
 

41 
 

4.2.2 Inverse Modeling 

 

Fig. 4.4 shows a scheme for inverse modeling of thermocouple using neural network based model 

for the estimation of applied temperature. This is similar to the channel equalization problem of 

digital communication system to cancel the adverse effects of the channel on the data which is 

transmitted. The direct digital reading of the temperature is obtained by cascading the inverse 

model of the thermocouple with it so that the nonlinear characteristics of thermocouple are 

compensated. The generation of the training set and the testing set of the data is similar to the 

direct modeling scheme. The only difference is that the normalized voltage 𝐸(𝑇) works as input 

and the normalized temperature 𝑇 works as output of the inverse model. 

4.3 Simulation Results 

The neural models, both direct and inverse, for a K-type thermocouple have been simulated in 

MATLAB. The training data for the K-type thermocouple is obtained from NIST [12]. The 

detailed explanation of the neural network based direct and inverse modeling is shown below. 

4.3.1 Neural network based direct modeling of thermocouple 

Simulation of the Multilayer perceptron based neural network is carried to get the direct model of 

thermocouple. For simulation purpose, a two layer multilayer perceptron with 1-5-1 structure 

similar to Fig. 2.6 is used which will behave as the direct model of thermocouple. Here the first 

layer indicates the input layer with only one input. The second layer is the hidden layer consisting 

of 5 neurons. Finally, the third layer is the output node with only single output. The activation 

function used in both the layers is 𝑡𝑎𝑛ℎ (. ) as shown in Fig. 2.5. The Back-Propagation Algorithm 
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modifies the weights of the neural network. The normalized temperature 𝑇 is the input to the neural 

network and the normalized output voltage 𝐸(𝑇) is the target. The weights of the network are 

updated as per Back-propagation algorithm after application of input dataset. Each iteration 

comprises of application of all the input datasets. To let the network learn effectively, 1000 

iterations are made. After training, the weights are stored for future use. During testing the network 

uses the stored weights and the input in the form of normalized temperature 𝑇 is fed to the trained 

neural network (Direct Model of Thermocouple). Comparison is made between the actual output 

and the output from the model. The plot of actual characteristics and the estimated characteristics 

of the thermocouple model is shown in Fig. 4.5. 
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4.3.2 Neural network based inverse modeling of thermocouple 

Same structure 1-5-1 of the multilayer perceptron is used for the simulation of the inverse model 

of the thermocouple. Similar training method is used to train the neural network. The network 

training is done for 1000 iterations using Back-propagation algorithm and the adjusted weights are 

stored in the memory. The only difference is the normalized voltage becomes the input and the 

normalized temperature becomes the output. In testing of the inverse model, the thermocouple 

output voltage 𝐸(𝑇) is applied to the network and the estimated temperature 𝑇 is obtained from 

the neural model. The plots in case of neural model are shown in Fig. 4.6. 

 

Fig. 4. 6 Plots of forward, inverse and overall characteristics of the thermocouple 
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5  NEURAL NETWORK BASED SENSOR 

LINEARIZATION 

Many sensors provide nonlinear input-output behavior. Analog circuits are used to improve the 

nonlinearity of sensors. But sometimes the complex circuits along with the component tolerances 

and temperature drift makes it impossible to used analog method of linearization. These days 

microcomputer based systems are used for nonlinearity compensation of sensors. For 

compensating the nonlinearity using arithmetic operations, an accurate model of the sensor is 

required. The Look-up table is also used in micro-controller based applications but a large amount 

of memory is required to attain high resolution. Neural network based sensor linearization can be 

achieved by using comparatively less amount of memory and processing power. In neural network 

based sensor linearization, a single input single output (SISO) multilayer perceptron network used 

where input is the sensor measurement output data and the target is the corresponding desired 

linear data [11]. Fig. 5.1 shows the block diagrams of the implementation of neural network based 

linearization. Fig. 5.1(a) illustrates that the neural network is trained with nonlinear sensor 

characteristics data as input and the desired linear characteristics data as target. Fig 5.1(b) shows 

the sensor output 𝑉𝑛𝑙 is input to the neural network that produces corresponding linear output 𝑉𝑙. 

 Fig. 5. 1 Neural Network based Linearization (a) Training and (b) Testing  
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5.1 Simulation Results 

The voltage divider circuit of Fig. 3.2 is used to obtain the nonlinear voltage 𝑉𝑛𝑙 which reflects the 

temperature sensed by the thermistor. For the purpose of simulation study, a two layer multilayer 

perceptron with 1-5-1 structure similar to Fig. 2.6 is used. The normalized nonlinear output voltage 

𝑉𝑛𝑙 is applied as an input to the network and the normalized desired linear voltage 𝑉𝑙 is used as the 

target neural network training. All the other parameters and operations to train the neural network 

are similar to those discussed in section 3.4.1. After training, the weights are stored for future use. 

During the testing of network the stored weights are used in the network and the normalized 

nonlinear output voltage 𝑉𝑛𝑙 is fed to the trained neural network. Comparison is made between the 

output from the neural network 𝑉𝑙 and the actual output to study the effectiveness of the network. 

The plots of actual nonlinear characteristics of the sensor and the estimated linear characteristics 

of the neural network are shown in Fig. 5.2. 
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CONCLUSION 
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6  CONCLUSION 

The direct and the inverse model of thermistor as well as thermocouple are designed using neural 

network technique. The direct model of the thermistor shows the performance similar to the actual 

sensor. The direct model can be used in the detection of faults in the sensor. The nonlinearity issue 

of the thermistor can be compensated by using the inverse model of the thermistor. The overall 

response of the thermistor sensor circuit in series with the inverse model of the thermistor is linear 

which shows the nonlinearity compensation. Similar models are developed for thermocouple. 

Thermocouple is nonlinear when its operating range is extended. So inverse model is developed 

which removes such nonlinearity. Another method to get rid of nonlinearity of thermistor is by 

using the desired linear output voltage as the target of the neural network and the nonlinear output 

voltage as an input to the neural network. In this method, the output voltage obtained is in linear 

relationship with the temperature. 

The models designed using the neural network are having very simple architecture. Such models 

can be implemented in simple microcontrollers reducing the cost of the system. The development 

of the model is done using the supervised learning. In applications where the training data is not 

available, unsupervised learning can be carried out. The sensors used in this work are thermistors 

and thermocouples. This technique can be applied to other sensors with more than one input to 

affect the output of the sensor. 
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