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ABSTRACT 

 

In this work, silica nanoparticles were synthesised using Stöber Method. Compared to other 

synthesis techniques like, Stöber Method is regarded as one of the simplest and most effective 

route for silica nanoparticle synthesis. Low temperature stabilises the nanosilica suspension, 

and low ratio of NH3/TEOS avoids coagulation of particles. 

These nanoparticles (average size less than 1 m) were self-assembled on a glass surface using 

sodium carboxymethyl cellulose (CMCNa) and oxalic acid template. The silica nanoparticle 

self-assembly was validated by the observed fractal-pattern in a sessile drop. For preparing 

superhydrophilic film, sequential adsorption (layer-by-layer coating) of a polyelectrolyte and 

silica nanoparticle suspension on the surface was done for appropriate number of cycles. Layer-

by-Layer assembly is an economical, easy and a fast technique for coating of substrates with 

alternate layers. It is known that superhydrophilicity (and superhydrophobicity) increases with 

increase in surface roughness. By this technique, two different coatings with equal number of 

depositions were created – one consisting of polyelectrolyte and silica nanoparticles and other 

consisting of polyelectrolyte and silica nanoparticle with sodium carboxymethyl cellulose and 

oxalic acid. Contact angle measurement done on these two coating validated the 

superhydrophilic property of the films. The second-type coating had a lower contact angle (less 

than 10°) while the first-type coating had a contact angle slightly greater than 10°.     

 

 

 

 

 

 

 

Key words: self-assembly; Stöber Method; silica nanoparticles; superhydrophilic; layer-by-

layer; sodium carboxymethyl cellulose 
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1   INTRODUCTION 

 

1.1 Self-Assembly 

 

Self-assembly is defined as the spontaneous organisation of individual components into an 

ordered structure without human intervention. Self-assembly is the process where components 

spontaneously organize or assemble into more complex objects, typically by bouncing around 

in a solution or gas phase until a stable structure of minimum energy is reached. These 

processes are common throughout nature and technology, involving components from the 

molecular to planetary scales, under appropriate conditions. Various forces exist which are 

responsible for self-assembly, viz., molecular interactions, electrostatic interaction, hydrogen 

bonding, hydrophobic forces, dispersion forces, etc. Factors responsible for, and affecting, self-

assembly are temperature, reactant concentration and ratios, solution condition (pH), substrate 

property, drop size, time, etc. In recent years, self-assembly has evolved into various other sub-

groups such as Aerial Assembly, Fluid Assembly, Fluid Crystallization, Bio-molecular Self-

Assembly, Autonomous mass-assembly, Chiral Self-Assembly, Self-Assembly Line.  

 

1.2 Types of Self-Assembly 

Based on methods of fabrication self-assembly is classified as (i) Top-down approach, and (ii) 

Bottom-up approach. Based on energy consideration, it can be classified as (i) Static self-

assembly, and (ii) Dynamic self-assembly. In static self-assembly there is no energy dissipation 

during the entire assembly process. Examples of static self-assembly includes formation of 

globular proteins and molecular crystals. In case of dynamic self-assembly, there is a constant 

dissipation of energy by the system, such as in a tissue, a school of fish. Further, based on the 

sizes of self-assembling particles, it may be classified into Atomic Self-Assembly, Molecular 

Self-Assembly, Colloidal Self-Assembly, Biological Self-Assembly, and Interfacial Self-

Assembly. Surface modified silica nanoparticles are classified as molecular self-assembled 

structure.  

1.3 Applications of Self-Assembly 

The idea of a self-assembled, minimum energy and stable structure has attracted considerable 

attention. In recent times, self-assembly has evolved into a span encompassing multifarious 

applications, both on a research and an industrial scale. It is believed to have a great potential 
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in materials and condensed matter science. It has applications in crystallisation (at all scales), 

nanoscience and technology, robotics and manufacturing, microelectronics, etc. 

 

1.4 Hydrophilicity and Superhydrophilicity 

The term “superhydrophilicity” was first used in the year 2000 being derived as an extension 

to the term “superhydrophobicity”. A variety of different definitions of hydrophilic and 

hydrophobic surfaces are used by the scientific community. A hydrophilic surface has a strong 

affinity towards water whereas a hydrophobic surface repels water. Hydrophilic surface 

possesses a water contact angle (WCA) less than 90° while a hydrophobic surface has WCA 

exceeding 90°. Moreover, a superhydrophilic surface has WCA lower than 10° while a 

superhydrophobic surface has a WCA higher than 150°.  Both these properties can be attributed 

to the surface roughness and topography of the surface. Almost all natural materials are 

hydrophilic in nature. 

  

1.5 Layer-by-Layer Assembly 

Layer-by-Layer (LbL) assembly is a cost-effective and simple technique to alternatively 

deposit oppositely charged layers of desired material. The alternate deposition is done till the 

required thickness of film is achieved. This method provides a higher degree of control over 

film thickness compared to other techniques. Other advantages of LbL includes – use of 

aqueous solution, making it more convenient than other techniques; ability for deposition on 

curved surfaces; cost-effectiveness and potential of large-scale production. Literatures have 

shown the possibility of manipulating thickness as low as 1 nm by LbL technique.  

 

1.6 Present Scenario and Future Applicability 

As discussed earlier, almost all natural materials are hydrophilic in nature. It is therefore 

possible to replicate hydrophilic properties in artificial materials. Wide variety of materials are 

already available in the market whose design is based on superhydrophilic phenomenon. 

Biotechnology and Biomedical Engineering are two of the fastest developing fields in modern-

day science and engineering. One of the primary applications of these is in human health. 

Biocompatible scaffolds, devices and implants for in-vivo use require hydrophilicity and 

superhydrophilicity as essential phenomena in the host environment. Other uses of 

superhydrophilic coatings include anti-fogging screens (in cars, mirrors, windows, etc.), 

microfluidic devices in electronics, anti-fouling coatings in heat transfer and mass transfer 

operation, etc. A unique application of superhydrophilic films can be exploited by converting 
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them into superhydrophobic films by depositing the former with a hydrophobic layer. 

Although, in the present scenario, huge applications of superhydrophobic films have been well 

researched and reviewed, there is an increasing emphasis on potential applications of 

superhydrophilic films in other areas. 
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2   LITERATURE REVIEW 

2.1 Introduction 

Silica nanoparticles are of promising application in emerging areas of technology and research 

because of the varied applications that they have. Silica particles obtained from natural sources, 

like sand, contain metal impurities and are therefore unsuitable for advanced scientific research 

and industrial application [1]. Mesoporous silica is a mesoporous form of silica, the most 

common types being MCM-41 and SBA-15. 

Self-assembly is defined as the spontaneous organisation of individual components into an 

ordered structure without human intervention. Much of the work in the field of self-assembly 

has been done on molecular level, but self-assembly at nano level to micro level provides better 

control over reaction conditions [2]. In fact, as the size of assembling particles increases, more 

reaction parameters can be varied to analyse the self-assembly.  

2.2 Synthesis of Silica Nanoparticles 

The first pioneering work in nanosilica synthesis was done by Stöber et al. [3] in that they used 

alkyl silicates in various alcoholic solvents, viz, methanol, ethanol, n-propanol and n-butanol 

in ammonia resulting in particles in 0.05-2 µ range. Particles were grown under various 

conditions by using different component concentration and several alcohols or alcohol mixture 

or solvents. They compared the reaction rates with tetramethyl ester and tetrapentyl ester and 

observed that the former gave fastest rate (less than 1 min.) with smallest sized particle (less 

than 0.2 µ) while reaction with the latter gave slowest rate but big particles. Ammonia 

apparently influenced the morphology, and created spherical particles whenever it was present 

during the reaction. Reaction rate was found to be fastest with methanol while n-butanol 

resulted in slowest rate but with wide-size distribution. Further, a volume ratio 

methanol:butanol of 1:1 resulted in more uniform larger particles. An increase in ammonia 

concentration up to 8M resulted in larger particles. By varying the water concentration, 

maximum particle size was obtained at 6M while different ester concentration between 0.02 

and 0.5M had no significant influence on particle size. The reactions were carried out under 

isothermal condition (22°C). 



7  
   

                    

 

Silica particles in the size range of tens–hundreds nanometers by using microemulsions method 

[4]. Although, reverse microemulsion produces particles with higher average monodispersity 

(particularly in the size range of 30-60 nm) compared to Stöber Method, its main drawback is 

high cost and the difficulty in adequate removal of surfactant in the final product . Synthesis 

by Stöber Method leads to formation of monodispersed spherical particles under mild reaction 

conditions, and it is regarded as the simplest and the most effective route for nanoparticle 

synthesis [5]. 

2.3 Superhydrophilicity and Layer-by-Layer Assembly 

Superhydrophilic and AR (anti-reflective) silica nanoparticle coating was fabricated on poly 

(methyl methacrylate) (PMMA) via LbL assembly of PDDA and SiO2 suspension followed by 

oxygen plasma treatment [6]. Prior to (PDDA/SiO2) coating, a primer layer comprising 

alternatively-deposited PDDA and PSS was coated. Firstly, monodisperse silica nanoparticles 

(ca. 20nm) were synthesised by Stöber Method.  The adsorption of alternate layers of PDDA 

and SiO2 suspension depends on a trade-off between the electrostatic attraction between PDDA 

and SiO2
, and repulsion between similar PDDA and SiO2. The obtained coating was highly 

transparent with a transmittance as high as 99% before oxygen plasma treatment and 98.5% 

after oxygen plasma treatment. The WCA reached below 5° in 0.5 seconds after oxygen plasma 

treatment using water droplets of 1 l. Surface morphology of the coating and structure of the 

nanoparticles was observed by SEM and TEM. 

 

 

Figure 2.1: SEM images of a sample of silica spheres in, (a) ethanol-ethyl ester system, and 

(b) ethanol-pentyl ester system. [3] 

(a) (b) 
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Figure 2.2: (a) TEM image of SiO2 nanoparticles, (b) Schematic of the fabrication procedure. 

[6] 

In another work, two differently sized silica nanoparticles (20 nm and 50 nm) were 

synthesised for developing transparent superhydrophilic films using Layer-By-Layer coating 

process wherein sequential adsorption of silica nanoparticle and poly (allylamine 

hydrochloride) was performed on a glass surface. The authors prepared three main layers on 

the glass surface [7]. These three layers were the adhesion layer, body layer, and the top layer. 

The bottom most layer comprised binder and poly (allylamine hydrochloride) while the other 

two layers comprised mixture of silica nanoparticle and poly (allylamine hydrochloride). The 

final film was made superhydrophobic by CVD of silane. It was observed that as the number 

of mixed nanoparticle bilayers was increased, both the advancing and receding contact angle 

increased. Moreover, after the CVD was done, multilayer films with 20 or more bilayers 

exhibited superhydrophobic properties (contact angle greater than 150° and low contact angle 

hysteresis). An increase in this number to 40 showed nearly same superhydrophobic properties. 

Various properties were measured, namely thickness (nm), refractive Index, rms thickness, 

advancing CA (before and after silane treatment), receding CA (after silane treatment). Their 

study suggested that a trade-off exists between transparency and superhydrophobicity. By 

controlling the placement and level of aggregation of the differently sized nanoparticles within 

the resultant multilayer thin film, it is possible to optimise the level of roughness to achieve 

superhydrophobic behaviour with limited light scattering. 
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Superhydrophobic films using a simpler procedure, as discussed above were developed. 

In this work, mesoporous silica nanoparticle (ca. 70-90 nm in size) of non-spherical 

morphology were synthesised using cetyltrimethylammonium bromide (CTAB) as surfactant 

and TEOS as precursor and Ibuprofen as co-surfactant [8]. The particles were coated on a glass 

surface by Layer-by-Layer technique. The obtained coating was antireflective and 

superhydrophilic which was subsequently converted to antireflective and superhydrophobic 

(sliding angle less than 1°) coating. While micrometer-scale roughness and mesopores of silica 

nanoparticles affect both superhydrophilicity and superhydrophobicity, self-cleaning property 

can be achieved by a low water droplet sliding angle (less than 10°) on the coated substrate [9]. 

In the above literatures, no one explained assembly of silica nanoparticles through spin- 

coating. We will try to further explore this work by studying EISA behaviour of metal nano-

particles on this surface and its application. 

A 400-nm thick superhydrophobic AR (anti-reflective) coating on a quartz and silicon 

substrate in near infrared region (NIR) by LbL deposition was prepared followed by CVD of 

fluoroalkylsilane 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane (POTS) [9]. Firstly, the SiO2 

nanoparticles were synthesised by Modified Stöber method. Then, on a quartz/silicon substrate, 

LbL deposition of (PDDA/SiO2) multilayer film was done, followed by LbL deposition of 

(PDDA/sodium silicate) multilayer film. Finally, the film was surface-modified by fluorination 

treatment (CVD of POTS). The as-fabricated superhydrophobic AR coating was also found to 

prevent water absorption when used in an environment of high humidity. They studied the 

dependence of water contact angle on the number of cycle depositions. With the deposition 

cycle increasing, transmittance increased accordingly. The unique superhydrophobicity 

property of obtained film (WCA of 154°) is credited to a two-level hierarchical rough structure. 

Figure 2.3: Schematic of the multilayer film 

showing the three main assembly blocks. [7] 

Figure 2.4: Image of a glass slide coated 

with transparent, superhydrophobic 

multilayer films. [7] 
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Effect of UV radiation on hydrophilicity and transparency of TiO2 coated glass 

slide has also been studied. It was found that water droplets on the TiO2 coated glass slide, 

initially stored in dark, formed lens cap. Upon illumination with UV radiation, complete 

wetting took place [10].  

 

 

Figure 2.5: Schematic illustration of fabrication of AR coatings on quartz and silicon substrate. [9] 

Figure 2.6: (a) SEM image of the superhydrophobic AR coating. (b)Magnified view of SiO2 

particles in (a). (c) The cross-sectional SEM image of the superhydrophobic AR coating. (d) & (e) 

Shapes of water droplets (4 l) on top of the superhydrophobic AR coatings. [9] 
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3 SYNTHESIS OF SILICA NANOPARTICLES 

 

3.1 Introduction 

 

Materials such as silica exhibit unusual absorption properties, along with useful thermal, 

mechanical and optical properties. Natural silica contains metal impurities which makes it 

unsuitable for advanced scientific and industrial use, thus making it essential to synthesise 

silica artificially. Some of the techniques for silica nanoparticle synthesis are Reverse 

Microemulsion, Flame Synthesis, and Sol-gel method. Among these, Sol-Gel method is widely 

used due to its ability to control particle size and distribution by carefully controlling the 

reaction parameters. The famous Stöber Method is a sol-gel method for synthesising 

monodisperse silica nanoparticles under mild reaction conditions, and it is considered as one 

of the most effective route for silica nanoparticles synthesis. Stöber Method involves synthesis 

of spherical and monodispersed silica particles by hydrolyses and condensation of Tetraethyl 

orthosilicate (TEOS) in aqueous alcohol in the presence of ammonia as catalyst. An optimal 

condition for Stöber Method would result in smallest, homogeneous, and monodispersed 

nanoparticles.  

 

 

3.2 Materials and Methods 

 

Chemical used in the synthesis of silica nanoparticles were: Tetraethyl orthosilicate (TEOS) 

(99%, Sigma Aldrich), aqueous ammonia (25%, Sigma Aldrich), absolute ethanol (99.5%, 

Sigma Aldrich). Deionised water was used for all the experiments. Some of the instruments 

used during synthesis were: Bath Ultrasonicator (Elmasonic PH 10), Probe Ultrasonicator 

(Sonics), Magnetic Stirrer and Heater (IKA® ICT Basic), Air Oven (Reico), Optical 

Microscope (Leica), etc. The size of nanoparticles were determined by SEM (Geol). 

 

Tetraethyl orthosilicate, ethanol and aqueous ammonia were used as obtained from the 

supplier. Firstly, certain amount of ethanol, aqueous ammonia and deionised water were mixed 

in a reaction container. The mixture was then stirred in a magnetic stirrer (IKA® ICT Basic) 

for 3 hours. Three minutes after stirring was started, a known volume of tetramethyl 

orthosilicate was added drop wise into the reaction container. This ensured uniform mixing of 
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tetraethyl orthosilicate in the mixture. The average particle size was determined from DLS 

analysis, and surface morphology was observed by SEM. The experiment was carried out at 

room temperature (27°C), and all the vessels were cleaned with water under sonication at 37 

and 60 kHz before using. 

3.3 Results and Discussion 

The clear solution turned showed turbidity ten minutes after drop wise addition of Tetramethyl 

orthosilicate to the mixture of ethanol, aqueous ammonia and water. This was due to the 

condensation reaction. The solution was completely turbid after 3 hours of stirring. 

Following reactions take place during the synthesis – 

 

Si(C2H5O)4    +   H2O                                           Si(OC2H5)OH    +     C2H5OH…….…(1) 

 

(OR)3       Si    OH  +  OH    Si    (OR)3                                                                 (OR)3    Si     O    Si     (RO)3 

          +  H2O………(2) 

 

(OR)3       Si    OC2H5 +  HO   Si    (RO)3                                                             (OR)3    Si     O    Si     (RO)3                    

          +  C2H5OH….(3)                             

Tetraethyl orthosilicate hydrolyses to form silanol, Si(OC2H5)OH. The silanol molecules 

condense among themselves and/or with the ethoxy groups to form siloxane bridges which 

form the basis of the nanoparticle structure. 

Following observations were made: 

i. Low temperature stabilises the solution. 

ii. Hydrolysis of TEOS is accelerated by increasing the ammonia and water concentration 

till a maximum limit. After this, the hydrolysis rate starts decreasing. 

iii. Low ratio of NH3/TEOS avoids the coagulation of particles. 

The surface morphology of the particle was determined by Scanning Electron Microscopy. 

Particles were chiefly spherical in shape which can be seen in the subsequent figure.  

Hydrolysis 

Water condensation 

Alcohol condensation 
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Figure 3.2: Particle size v/s Intensity (%) from DLS analysis.  

 

From Dynamic Light Scattering (DLS), it was found that maximum detectable particle size of 

955.4 nm were lowest in intensity (0.9%) while lowest detectable particle size had intensity of 

2.7%. It was also observed that particles with the highest mean intensity (23.6%) were of size 

531.2 nm.  

 

 

Figure 3.1: SEM images of synthesised silica nanoparticles. Scales: (a) 

5mbm(c) nm (d) m. 

(a) (b) 

(c) (d) 
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4 SELF-ASSEMBLY OF SILICA NANOPARTICLES AND THEIR 

LAYER-BY-LAYER COATING ON A GLASS SURFACE 

 

4.1 Introduction 

Compared to other techniques like spin coating, spray coating and electrospinning, layer-by-

layer coating is considered as one of the easy and cost-effective techniques to coat thin films. 

As stated earlier, surface thickness as low as 1 nm can be achieved by LbL coating. It has 

several advantages over other techniques: (i) coating can be carried out at low temperature 

which makes it useful for coating polymers that are non-resistant to high temperature, (ii) it 

utilises aqueous solution which makes it more convenient than other coating techniques, and 

(iii) it is comparatively faster than many coating techniques. 

Self-assembly of silica nanoparticles has applications in sensors, membranes, catalyst supports, 

and low dielectric films. Well-ordered arrays of silica nanoparticles, known as self-assembled 

layers (SEMs), can be obtained by evaporation-induced self-assembly of silica nanoparticles. 

Two-dimensional self-assemblies of silica nanoparticles with a surface coverage of almost 

100% has been previously obtained under appropriate conditions. The arraying order of SiO2 

nanoparticles is found to be independent of type of substrate, pH and size regularity of particles.  

 

4.2 Materials and Methods 

The following chemicals were used: Poly (diallyl dimethyl ammonium chloride) (PDDA) (20 

wt%, Sigma Aldrich), sodium carboxymethyl cellulose (0.9 wt %, Sigma Aldrich), oxalic acid 

(100mM, Sigma Aldrich). Deionised water was used in all the experiments. Some of the 

instruments used were: Contact Angle Measurement System (Dataphysics), Optical 

microscope (Leica), Muffle Furnace (Testing Instruments Mfg. Co. Ltd., India), Heating Dry 

Bath (Genetix), Scanning Electron Microscope (Geol), and micro-syringe (Hamilton). 

All the glass slides were initially cleaned with isopropanol to remove dirt and then rinsed with 

deionized water and dried in air oven to remove existent moisture. All the prepared precursors 

were sonicated for 5 minutes before use. 
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 4.2.1 Preparation of Silica nanoparticle and CMCNa template 

Stock solution of sodium carboxymethyl cellulose (0.9 wt%), oxalic acid (100 mM) were 

available. A known volume of oxalic acid and deionised water were blended in a magnetic 

stirrer with a constant drop wise addition of known volume of sodium carboxymethyl cellulose 

in the reaction vessel. As the sodium carboxymethyl cellulose was highly viscous, the stirring 

was continued for 30 minutes to ensure proper mixing of the components. The volume ratio 

was taken to ensure 0.4 wt% of CMCNa, 40 mM of oxalic acid in the final solution. This 

solution, henceforth is named “D”. 

The silica nanoparticle solution obtained in the previous chapter was diluted with ethanol in 

1:10 volume ratio. A solution, denoted by “D5”, was prepared by mixing this diluted nanosilica 

suspension with solution “D” in 1:5 volume ratio. 

 

            4.2.2 LbL Dip Coating of PDDA and Silica Nanoparticles 

Layer-by-Layer assembly of PDDA and nanosilica suspension for appropriate number of 

cycles was done on a glass surface by alternatively dip coating the glass slide in PDDA and 

silica suspension. The following procedure was followed for dip coating. A clean glass slide 

was first dipped in PDDA (20 wt%) for 5 minutes. The glass slide was then shaken in deionized 

water for 2 minutes followed by 1 minute rinsing period. It was then dried in air oven for few 

minutes to ensure removal of excess polyelectrolyte from glass slide. The PDDA coated glass 

slide was then dipped in SiO2 suspension for 10 minutes. The coated slide (named 

(PDDA/SiO2)1) was then dried in heating air bath for 1 hour. Similar procedure was followed 

for 10 number of cycles. The obtained slide was thus denoted by (PDDA/SiO2)10 where the 

subscript “10” denotes 10 number of cycles. 

The (PDDA/SiO2)10 was observed under optical microscope. It was then calcinated in a muffle 

furnace at 900°F to remove all the polyelectrolyte from the film. Further, SEM and contact 

angle measurement was done for observing the surface morphology and studying contact angle, 

respectively.  
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Figure 4.1: Schematic diagram of LbL for (PDDA/SiO2)6 coating. 

 

            4.2.3 LbL Dip Coating of PDDA and Solution “D” 

Similar procedure as discussed in the above section was followed for LbL assembly of PDDA 

and “D5” solution. The final coated slide for 10 number of cycles was denoted by 

(PDDA/D5)10. 

The coated slide was first observed under optical microscope to observe the self-assembled 

fractal pattern formed by CMCNa and oxalic acid along with silica nanoparticles. It was then 

calcinated, initially at 500°F, to remove all the CMCNa and then at 900°F to remove 

polyelectrolyte from the film. It was followed by SEM analysis and contact angle measurement. 

4.3 Results and Discussion 

 4.3.1 Evaporation-Induced Self-Assembly of CMCNa and Oxalic Acid (Solution 

          “D”) 

When a drop of solution “D” was dried and observed under optical microscope, fractal, tree-

like pattern was formed. These patterns, as discussed in the subsequent sections, form the 

template for the assembly of silica nanoparticles. Following images depict the fractal patterns: 

 

Figure 4.2: Tree-like, fractal pattern by EISA of solution “D,” with scales (a) 500 m (b) 50 

m. 
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 4.3.2 Sessile Drop of SiO2 Nanoparticles and Solution “D” 

Sessile drops of various volume ratios – 1:2, 1:3, 1:5, 2:5, 3:5, 1:7 of silica nanoparticles and 

solution “D” were observed under optical microscope. According to observations, best results 

were obtained for volume ratios of 1:5 and 2:5. Following images clearly depict adherence of 

silica nanoparticles with the fractal pattern even after CMCNa was removed by calcination. 

 

 

 

 

Figure 4.3: Fractal pattern with SiO2 nanoparticles and solution “D” (before calcination) for 

the two volume ratios, with scales (a) 50 µm, (b) 50 µm, (c) 500 µm, (d) 50 µm. 
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Figure 4.4: Fractal pattern with SiO2 nanoparticles and solution “D” (after calcination) for the 

two volume ratios, with scales (a) 50 µm, (b) 50 µm, (c)200 µm, (d) 50 µm. 

             4.3.3 LbL Dip Coating of PDDA and SiO2 Nanoparticles 

Since PDDA is a polycation, it is electrostatically attracted to the oppositely charged layer of 

silica nanoparticles. This lead to layer-by-layer deposition of PDDA and silica nanoparticles 

and a stable film. Adherence of the nanoparticles with the film was evident from the fact that 

the areal number density of particles increased with deposition cycles. 

 

Figure 4.5: SEM images of (PDDA/SiO2), (a) n=1, (b) n=4, (c) n=4 (magnified), (d) n=5. 
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             4.3.4 LbL Dip Coating of PDDA and SiO2 Nanoparticles-CMCNa Template 

 (a) Optical Microscopic Analysis 

 Similar to the results obtained in evaporation-induced self-assembly of sessile drops, the dip-

coated glass slides displayed tree-like fractal pattern. The intensity and of these patterns 

increased with the deposition cycles. Silica particles clearly adhered to the fractal pattern, 

forming a self-assembled pattern among themselves. Before calcination, the nanoparticles 

adhered to the CMCNa on the glass slides. These particles retained the assembled pattern even 

after the CMCNa pattern was removed by calcination at 500°F. 

 

 

 

Figure 4.6: Optical Microscopic images of (PDDA/D5)3 coatings before calcination, with 

scales (a) 200 m bm. 

 

 

Figure 4.7: Optical Microscopic image of (PDDA/D5)5 coating after calcination, scale 50m. 
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 (b) Scanning Electron Microscopic Analysis 

Images from SEM validated the fact that particles retained the self-assembled pattern even after 

calcination of the film, although lumps of nanoparticles could also be seen near the fractal 

pattern. Previous literatures have shown that self-assembled structure are more stable. This was 

validated by dipping the coatings in water after 5 days. The coatings were found to be stable 

even which was later confirmed by observing the film under optical microscope.  

 

 

Figure 4.8: SEM images of (PDDA/SiO2)3 after calcination, with scales (a) 5m (b) 10 m. 



4.3.5 Contact Angle Measurements on Dip-Coated slides 

For superhydrophilicity, micro- and nano-level surface roughness is essential. Thus, more 

number of cycles of dip coating should result in lower contact angle. The contact angle obtained 

for both cases – (PDDA/SiO2)n and (PDDA/D5)n were quite satisfactory.  

 

a) Contact Angle with (PDDA/SiO2)10 Coating 

 

Compared to the solution “D” coated film (discussed in the subsequent section), the 

(PDDA/SiO2)10 film exhibited near-superhydrophilic contact angle which was slightly greater 

than 10°. Moreover, water droplet suspended by the micro-syringe immediately wetted the film 

as soon as it came in contact with it. Low contact angle can also be achieved by using smaller 

sized nanoparticles which increases the roughness at the micro- and nano-scale. 
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Figure 4.9: Contact angle on uncoated plane slide, (a) 44.4° (Left CA), 42.4° (Right 

CA).Contact angle on (PDDA/SiO2)10, (b) 8.9° (Left CA), 13.4° (Right CA) (c) 18.2° 

(Left CA), 16.9° (Right CA) (d) 16.1° (Left CA, right CA). 

 

 

b) Contact Angle with (PDDA/D5)10 Coating 

 

It was observed that superhydrophilic contact angles (less than 10°) were exhibit by the 

(PDDA/D5)10 coated film at various locations on the surface. Similar to (PDDA/SiO2)10, the 

drop immediately wetted the film as soon as it came in contact with the film after being released 

by the micro-syringe. Superhydrophilic property was exhibited in less than a second. 
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Figure 4.10: Contact angle on uncoated plane slide, (a) 42.8° (Left CA), 42.0° (Right 

CA). Contact angle on (PDDA/D5)10 slides, (b) 6.7° (Left CA), 6.7° (Right CA) (c) 8.9° 

(Left CA), 8.4° (Right CA), (d) 7.3° (Left CA), 8.7° (Right CA). 

 

The assembly on a substrate by layer-by-layer technique has proven to be an easy and cost-

effective route for coating films to nanometer level. As observed, the glass slide coated 

(PDDA/D5)10 coating exhibited superhydrophilic property with contact angle as low as 6.7°. It 

may be inferred that on increasing the surface roughness by reducing the nanosilica particle 

size and/or by increasing the number of deposition cycle will lead to lesser contact angle, which 

may approach 0°. Using multilayer coatings comprising dual sized nanoparticles also leads to 

increased surface roughness. 
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5. CONCLUSIONS 

 

Compared to top-down approach, bottom-up approach for self-assembly offers higher 

flexibility to manipulate the parameters during the self-assembly process. This was shown by 

the Stöber Method where by careful control of reactant concentration and reaction parameters 

lead to an optimal particle size. Reduction in size of silica nanoparticles can be achieved by 

using ammonium salts of bromine, iodine and chlorine. This will increase the 

superhydrophilicity of silica nanoparticle-coated films. 

 

The self-assembled structure of silica nanoparticles along the sodium carboxymethyl cellulose 

– oxalic acid template is more stable than only-silica nanoparticle-coated glass surface as these 

structures reach a minimum energy level after the spontaneous ordered arrangement brought 

out by evaporation-induced self-assembly. Superhydrophobicity and superhydrophilicity two 

of the most researched topics in material science and engineering because of the varied 

potential applications that they possess. It has thus become essential to analyse the physics 

behind these surfaces – the ability of a surface to either allow liquid penetration or liquid 

suspension. Much research and review work on hydrophobicity and superhydrophobicity has 

been done, but superhydrophilicity still continues to be a relatively younger concept. One of 

the possible reasons for this may be that superhydrophilic films can be subsequently converted 

into superhydrophobic films by deposition of a hydrophobic layer. This conversion has been 

carried out by many researchers because of the immense applications that superhydrophobicity 

has shown in the recent past. 
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