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ABSTRACT 

 

The inverted pendulum has been considered as a benchmark control problem due to its 

nonlinearity and stabilization around the unstable equilibrium point. To achieve stabilization, 

it is well known that all the closed loop system poles should lie in left half of s-plane. In present 

work, different approaches have taken to shift the system poles to left half of the plane. At first 

Linear Quadratic Regulator (LQR) is used, where the desired pole locations can be achieved 

by suitably selecting weight matrix of cost function.  With this guaranteed cost control scheme, 

one does not have to bother about specifying closed-loop poles. Next, a two loop PID is 

designed based on pole matching conditions. Where the closed loop with unknown controller 

coefficient characteristic equation is compared with desired characteristics, to find out the 

controller gains. In both the methods, one has to deal with point wise pole placing, which can 

be tricky sometimes. With the recent development of LMIs tool, regional pole placement is 

well suited to achieve the goal. At last, a regional pole placement controller is synthesized, 

where desired specifications are transformed into LMI regions. In present case, a conical sector 

of left half plane is taken so that stabilisation with better transient performance can be achieved. 
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CHAPTER 1 

1. INTRODUCTION 

 

Balancing a broom stick or a ruler on a palm in the desired upright position by moving 

the hand continuously is a most common play which almost everyone had tried in their 

childhood. The basic working of inverted pendulum is the same too. But the degree of freedom 

for the moment is limited only in one direction unlike your hand moment which is free to move 

in any direction. An inverted pendulum system thus like a broom stick is inherently unstable. 

An external force is necessary to keep the pendulum in upright position. So a proper control 

design is necessary to make the inverted pendulum stable.  

  This inverted pendulum is known since 1960’s. It consists on a rod pivoted at one end 

and that pivot point is mounted on a cart which moves along a smooth track in one dimension 

under the influence of control input. The control task is to stabilize the pendulum in inverted 

position by applying this control force. 

1.1 Applications of Inverted Pendulum 
 

 Control of under-actuated robotic system: 

 

            Fig: 1.1(a) robotic system 

Courtesy: www.reevoseek.com 

 

 

 

 

 

 

Under-actuated systems are the systems having 

fewer actuators than the degree of freedom and 

are to be controlled. Inverted pendulum is one 

such typical system. 
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  Design of mobile inverted pendulum systems:  

 

          Fig: 1.1(b) Segway 

Courtesy: www.msu.edu 

 Rocket launching:     

 

           Fig: 1.1(c) rocket launching 

Courtesy: hrdi.engin.umich.edu 

 Model of human stand still:  

 

Fig: 1.1(d) human stand still model 

Courtesy: flowers.inria.fr 

Other applications include Building under action of earthquake, biped locomotion, model 

of human standstill, seismometers  

 

Mobile wheeled inverted pendulum is used for 

personal transportation like in Segway. Two 

wheeled motorized vehicle provide enhanced 

mobility for the driver. 

 

Inverted pendulum dynamics represent rocket and 

missile launching system whose centre of drag is 

ahead of the centre of gravity which leads to 

aerodynamic instability 

Inverted pendulum model represent human stand still 

position. The muscles and tissues are represented by the 

spring and damper which will be leading to a negative 

feedback loop that is required for the stabilisation of the 

inverted pendulum in the case when the springs are stiff 

enough 
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1.2 Literature Review 
 

Inverted pendulum has been an important benchmark problem in control systems for 

testing various controllers and in robotics since 1960’s. The inverted pendulum was first used 

in the year 1844 in Great Britain in seismometer to detect the slightest vibrations. Later the 

applications of inverted pendulum dynamics had been wide spread as in [6] and hence gained 

its popularity. 

 LQR has been a simple and common controller of all the control techniques. In [7] 

position states are more penalised than the angle states. And the cart position is more penalised 

than angle. Here a superior performance is achieved for LQR compared two loop PID system. 

In [8] both swinging and stabilisation of inverted pendulum are done.  

 For many control applications PID control is the building block which provides optimal 

performance of the system. Several methods of tuning a PID are available. In [11] several 

tuning methods for PID are presented. In [9] PID tuning is done by pole placement technique.  

In [10] a tutorial is presented in which a pole placement technique with and without state 

estimation is introduced. 

 Stability is an important requirement for a control system. A good controller must 

stabilize a system within a specified time. In [12] pole placement in LMI regions are discussed 

and required conditions for stability are given. In [13] two types of regions which constitute 

largest class of S till date. The results when this criterion is presented in both open and close 

regions are used in designing methodology for control systems. 

1.3 Motivation 
 

It is practically impossible to stabilize a pendulum when in inverted position and no 

external force is applied. Even though the inverted pendulum seems simple from the 

construction point of view with force on the cart as input and cart position and pendulum angle 

as output, the controller design for this system is quite challenging owing to the following 

problems. 
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cart
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Fig 1.2 Schematic diagram of IP 

1. It is a non-linear because of the presence of friction on the cart and the gravitational 

pull action on the pendulum. 

2. It is inherently unstable 

3. From the system dynamics it can be observed that the system have right hand pole 

zeroes which makes it a non-minimum phase system. 

4. It has two degree of freedom which are cart moment and pendulum swing but only one 

actuator which makes the system under actuated. 

5. Additionally there are constraints on control input and track length. 

Due to the above challenges inverted pendulum serves as a good test bed for testing various 

controllers. 

1.4 Objective  
 

The aim of the project is to stabilize the inverted pendulum so that the cart position is 

quickly controlled and pendulum remains erect. 

1. To model an inverted pendulum considering all the forces acting on it. 

2. To develop various control schemes like LQR, multi loop PID and Regional pole 

placement technique. 

3. To validate the above compensated schemes on real time model. 

4. To compare the robustness of the above compensating techniques. 
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1.5 Organisation of the Thesis 
 

Chapter 1 this chapter includes brief introduction on Inverted Pendulum and aits applications. 

Chapter 2 This chapter includes Modelling of Inverted Pendulum and its experimental setup 

Chapter 3 this chapter includes LQR control design for stabilization of Inverted Pendulum 

along with Simulation. 

Chapter 4 this chapter includes two-loop PID controller design for Inverted Pendulum along 

with Simulation and Experimental results. 

Chapter 5 this chapter includes Regional Pole Placement design for Inverted Pendulum along 

with Simulation and Experimental results. 

Chapter 6 this chapter includes comparison between all designed controllers, conclusion and 

suggested future work 
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CHAPTER 2 

2. MODELLING AND EXPERIMENTAL SETUP OF CART INVERTED 

PENDULUM 

 

The dynamics of inverted pendulum can be derived from Newton’s laws of motion. The 

system contains two dynamic equation one related to the cart position and the other for the 

pendulum angle. 

 

2.1 Modelling of Inverted Pendulum 
 

 The parametric representation of the Inverted Pendulum system is shown in the below 

diagram. Let x be the distance in metres from the Y-axis, and 𝜃 be the angle in rad w.r.t vertical. 

 

 

Mg

B

Y-axis

X-axis

r

L

x



mg

 

 

Fig2.1: Inverted Pendulum System 
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Fig 2.2: Cart’s Free Body Diagram 

 

From analysing the free body diagram of the cart as in Fig.2.2 we can get following 

conclusions, 

 

First only horizontal forces acting on the system are considered. From this we can get 

the dynamics f the cart as its moment is only along horizontal axis. 

. 

                                                  𝑀𝑎𝑋 = 𝐹 + 𝑁 − 𝐵                                                                 (2.1) 

 

Where 𝑎𝑋 is taken as the acceleration in the horizontal direction. 

The reaction N obtained is shown below in (2.2) 

                     N=𝑚
𝑑2

𝑑𝑡2 (𝑥 + 𝐿 sin 𝜃) = 𝑚�̈� + 𝑚�̈�𝐿 cos 𝜃 − 𝑚(�̇�)2𝐿 sin 𝜃                         (2.2)                                        
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Fig.2.3: Pendulum’s Free Body Diagram  

 

Now let us consider the forces in vertical plane. The vertical reaction P given by  

 

                                   𝑃 + 𝑚𝑔 = 𝑚
𝑑2

𝑑𝑡2 (𝐿 cos 𝜃)                                                               (2.3) 

 

                               P=mL�̈� sin 𝜃 + 𝑚𝐿(�̇�)2 cos 𝜃 − 𝑚𝑔                                                  (2.4) 

 

The moment due to the reaction forces P and N are resolved into X and Y directions. 

𝑉𝑐𝑛𝑡 is taken as the velocity of centre of mass , 𝑉0  is taken as the velocity of point O in the X 

direction.  After summing all the moments across the centre we will get 

 

                                      𝑚𝐿�̈� cos 𝜃 − (𝑚𝐿2 + 𝐽)�̈� = −𝑚𝑔𝐿 sin 𝜃                                          (2.5) 

   

By substituting (2.2) in (2.1) we get 

 

          �̈� =
𝑚𝐿

𝜎
[(F-b𝑥) cos 𝜃 − 𝑚(𝜃) ̇

2

𝐿 cos 𝜃 sin 𝜃 + (𝑚 + 𝑀)𝑔 sin 𝜃]
̇

                            (2.6) 

 

By solving (2.5) and (2.6) for   �̈�  we get after simplification 
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 �̈� =
1

𝜎
[(J+m𝐿2)(𝐹 − 𝑏�̇� − 𝑚𝐿�̇�2 sin 𝜃) + 𝑚𝐿2𝑔 sin 𝜃) + 𝑚𝐿2𝑔 sin 𝜃 cos 𝜃]                  (2.7) 

 

The parameter  in the above equations is given by 

 

                               𝜎=m𝐿2(𝑀 + 𝑚 cos 𝜃2) + 𝐽(𝑀 + 𝑚)                                                   (2.8) 

 

Equations (2.6) and (2.7) give the dynamic equations of the cart-pendulum system dynamics.  

 

2.2 Linearization of Inverted Pendulum model  

 

Inverted pendulum is linearized around the equilibrium point 

      θ =0 

                                                                   sin 𝜃 = 0 

                                                           cos 𝜃 = 1                                                                          (2.9) 

                                                                      

Linearizing (2.6) to (2.8) using (2.9) 

 

�̈� =
𝑚𝐿

�́�
[(F-b�̇�) + (𝑚 + 𝑀)𝑔𝜃]                                           (2.10) 

�̈� =
1

�́�
[(J+m𝐿2)(𝐹 − 𝑏�̇�) + 𝑚𝐿2𝑔𝜃                                       (2.11) 

Here   Mm𝐿2
 J M m                                                

In order to obtain the state model we consider four states cart position x, cart velocity�̇�, 

pendulum angle θ and pendulum angular velocity�̇�.  

The state space will now be of the form 

�̇� = 𝐴𝑥 + 𝐵𝑢                                                           (2.12) 

 

The state space for the Inverted Pendulum system is thus given by 

 

[

�̇�
�̈�
�̇�
�̈�

] =

[
 
 
 
 
0 1

0
−(𝐽+𝑚𝐿2)𝑏

�̇́�

     
0 0

𝑚2𝐿2𝑔

�́�
       0

0                0

0
−(𝑚𝐿𝑏)

�́�

    
0 1

𝑚𝑔𝐿(𝑀+𝑚)

�́�
0]
 
 
 
 

[

𝑥
�̇�
𝜃
�̇�

] +

[
 
 
 
 

0
(𝐽+𝑚𝐿2

�́�

0
𝑚𝐿

�́� ]
 
 
 
 

F                                    (2.13) 
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𝑦 = [
1 0
0 0

0 0
1 0

] [

𝑥
�̇�
𝜃
�̇�

]                                                               (2.14) 

 

If cart friction is neglected then we obtained a more simplified transfer function given by 

 

𝑋(𝑆)

𝐹(𝑆)
=

𝐾𝑎𝑐𝑡𝑢𝑎𝑡𝑜𝑟{(𝐽+𝑚𝐿2)𝑠2−𝑚𝑔𝐿}

𝑠2((𝐽(𝑚+𝑀)+𝑀𝑚𝐿2)𝑠2−𝑚𝑔𝐿(𝑀+𝑚))
                              (2.15) 

 

𝜃(𝑆)

𝐹(𝑆)
=

𝐾𝑎𝑐𝑡𝑢𝑎𝑡𝑜𝑟(𝑚𝐿𝑆2)

𝑆2((𝑀𝑚𝐿2 + (𝑀 + 𝑚)𝐽)𝑠2 − 𝑀𝑔𝐿(𝑀 + 𝑚)
                                  (2.16) 

 

Now if the values from the Feedback Digital Pendulum manual is substituted in (2.15) 

and (2.16) the following state space and transfer functions are obtained 

 

 

Parameter Value 

Mass of Cart, M 2.4 kg 

Mass of pendulum .23kg 

Moment of inertia, J 0.099kg-𝑚2 

Length of Pendulum, L 0.4m 

Cart friction coefficient ,b 0.05Ns/m 

Acceleration due to gravity 9.81m/𝑠2 

Actuator gain ,𝐾𝑎𝑐𝑡𝑢𝑎𝑡𝑜𝑟 15 

 

Table 2.1 System Parameters 

 

[

�̇�
�̈�
�̇�
�̈�

] = [

0 1
0 0

0 0
0.238 0

0 0
0 0

0 1
6.807 0

] [

𝑥
�̇�
𝜃
�̇�

] + [

0
5.841

0
3.957

] 𝑢                                    (2.17) 

 

 

                                     
  𝑋(𝑆)

𝐹(𝑆)
=

5.841(𝑆2−6.8068)

𝑆2(𝑆2−6.807)
≈

5.841

𝑆2
                                                       (2.18) 
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𝜃(𝑆)

𝐹(𝑆)
=

3.957𝑆2

𝑆2(𝑆2−6.807)
≈

3.957

(𝑆2−6.807)
                                                    (2.19) 

 

2.3 Experimental Setup 
 

The setup consists of the following are the requirements [2] 

 

 PC with PCI-1711 card 

 Feedback SCSI Cable Adaptor 

 Digital Pendulum Controller 

 DC Motor (Actuator) 

 Cart 

 Pendant Pendulum with weight 

 Optical encoders with HCTL2016 ICs 

 Track of 1m length with limit switches. 

 Adjustable feet with belt tension adjustment. 

 Software: MATLAB, SIMULINK, Real-Time Workshop, ADVANTECH PCI-1711 

Device driver, Feedback Pendulum Software. 

 Connection cables and wires. 

 

The two main components of the experimental set up include the cart and the pendulum. 

The cart moves on the track and the pendulum is fixed to it. As per the definition of the Inverted 

Pendulum it has to shift its centre of gravity above its reference point which leads to instability. 

The DC servo motor drives the cart and the force with which it drives the cart is proportional 

to the control voltage applied.  
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Fig.2.4: .Feedback’s Digital Pendulum Experimental Setup Schematic [3] 

 

The cart’s moment on the track is limited for the safety. It is done by using two limit 

switches which will shut down the power to the cart when activated. The cut way diagram in 

the fig 1.7 shows the location of sensors and switches on the track. There are digital encoders 

mounted on the track which outputs a signal that is a combination of two signals 900 apart one 

representing shaft position and the other direction of rotation. Two such digital encoders are 

used one for the cart and the other for the pendulum. Fig 1.9 shows the operating principle of 

optical encoder. 
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Fig.2.5: Cutaway Diagram Showing sensors and their mounting [2] 

 

 

 

Fig.2.6 .Digital Pendulum Mechanical Setup [2] 
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Fig.2.7: Optical Encoder operating principle 

 

.  

The implementation of controller in real time is done by designing a specific controller 

in MATLAB Simulink and then applying it on the real time model. The fig 1.10 shows the 

algorithm for working of this Inverted Pendulum Real Time Workshop. 

 

 

 

Fig.2.8: Computer based Control Algorithm [2] 

 

The working of A/D, D/A and control algorithm depends on the clock pulses supplied by the 

clock. 
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2.4 Real-Time Workshop 
 

Continuous programming applications [5]. It has the accompanying highlights  

 Automatic code era customized for different target stages.  

 A fast and direct way from framework configuration to execution.  

 Seamless mix with MATLAB and SIMULINK.  

 A straightforward graphical client interface.  

 An open building design and extensible make process.  

The tool stash has a programmed project building procedure for ongoing procedures. 

Fig.1.11 clarifies the procedure diagrammatically. An abnormal state m-record controls this 

fabricate process. 

Simulink

model.mdl

Real-Time Workshop Build

Target Logic

Compiler

Make

Model.exe

TLC Program:

System target files

Block target files

Inlined S-function

target files

Target language

Compiler function

library

Run-time interface support

files

model.rtw

model.c

model.mk

Real-Time Workshop

 

 

Fig.2.9: .Real-Time Workshop working schematic [5] 
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For a real time build process following steps are involved [5] 

1. Ongoing Workshop examinations the square chart and orders it into a middle of the 

road various levelled representation of the structure model.rtw.  

2. The Objective Dialect Compiler (TLC) peruses the model.rtw and proselytes it into C 

code that is set in the fabricate catalog inside of the MATLAB working index.  

3. The TLC develops a makefile from a suitable target makefile layout and spots in the 

fabricate registry.  

4. The framework make utility peruses the makefile to assemble the source code and 

connections article documents and libraries and create an executable document 

model.exe.  

This basic executable record is effortlessly seen by equipment as it is in double. 

Consequently the control calculation in abnormal state dialect is consistently changed over into 

an executable program by the tool kit. The following segment presents the handy issues that 

need to be tended to while outlining any controller to Inverted Pendulum frameworks. 
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CHAPTER 3 

3. LINEAR QUADRATIC REGULATOR (LQR) DESIGN TO 

STABILIZE INVERTED PENDULUM  

 

In LQR according to the desired characteristics weight matrix is chosen by iterative 

process, depending on the weight provided for the cost function by solving Recatti equation 

optimal control is obtained. The part presents a brief portrayal of the LQR idea. The focuses to 

be remembered before planning a LQR based state criticism are additionally given. Since, the 

decision of the LQR is the key towards LQR outline, a methodical weight choice for the CIPS 

is introduced.. 

LQR state

feedback design

Inverted

pendulum

system

-1

dt
d

dt
d

.

x



.



x

 

Fig: 3.1 Block diagram for LQR on IP 

 

3.1 Introduction 
 

The LQR is a standout amongst the most broadly utilized static state feedback methods, 

basically as the LQR based pole placement helps us to make an interpretation of the 

performance constrints into different weights in the execution record. This flexibility is the sole 

explanation behind its notoriety. As seen in Chapter 1 the inverted pendulum framework has 

numerous physical constraints both in the states and in the control. Consequently, the LQR 
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outline is endeavoured. The decision of the performance indices relies upon physical 

requirements and performance of the system. State feedback of any system can be summed up 

for a LTI framework as given beneath: 

�̇� = 𝐴𝑏 + 𝐵𝑢  

Y=Cx (3.1) 

 

In the event that all the n states are accessible for input and the states are totally controllable 

then there exists a FB gain matrix K, such that the control input would be 

 

u K(𝑥 − 𝑥𝑑) 

 

(3.2) 

Now taking 𝑥𝑑 as the desired state vector we get the closed loop dynamic equations from (3.1) 

and (3.2) given by 

�̇� ABK) x BK𝑥𝑑 

 

(3.3) 

Decision of K relies on upon the pole locations required, where one means to place the 

poles in a way that performance is achieved as per our requirement. On account of LQR the 

control is subjected to a Cost Functional (CF) or Performance Index (PI) which is given as 

 

J=
1

2
[(𝑧(𝑡𝑓) − 𝑦(𝑡𝑓)]

𝑇𝐹(𝑡𝑓)[𝑧(𝑡𝑓) − 𝑦(𝑡𝑓)] +
1

2
∫ {[[𝑧 − 𝑦]𝑇𝑄[𝑧 − 𝑦] + 𝑢𝑇𝑅𝑢}𝑑𝑡

𝑡𝑓
𝑡0

 (3.4) 

 

 

Q--- Error Weighted Matrix 

R--- Control Weighted Matrix 

F--- Terminal Cost Weighted Matrix 

 

Let z be the reference vector of mth dimension and u be the input vector of rth dimension. 

On the off chance that all the states are accessible in the yield for input then m gets to be n. 

Since, the PI (3.4) is seen to be having error and control in quadratic terms it can be termed as 

quadratic CF. In the event that our goal is to keep the state to close to zero then it is called as a 

state regulatory system 

 

 Each and every weighted matrix is symmetric. 
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 To keep the squared error positive the matrix Q (error weighted matrix) is taken to be 

positive semi-definite. In general Q is taken to be a diagonal matrix. 

 In order to keep the control always positive R matrix is chosen to be semi definite one 

 TO make sure that the error e(t) to take a small value within a finite time of 𝑡𝑓 F matrix 

is to be taken as positive semi-definite matrix all the time. 

The CF will now be 

 

𝐽 = ∫
1

2
{�́�𝑄𝑥 + �́�𝑅𝑢}𝑑𝑡

∞

𝑡0

 
 

(3.5) 

 

If we apply Pontryagin’s Maximum Principle for an OL system we get an optimal solution for 

the CL system resulting in the equations given below 

 

�̇� = 𝐴𝑥 + 𝐵𝑢, 𝑥(𝑡0), 𝑥(𝑡0) = 𝑥0 

  �̇� = −𝑄𝑥 − 𝐴𝑇𝜆, 𝜆(𝑡𝑓) = 0

𝑅𝑢 + 𝐵𝑇𝜆 = 0

̇
 

 

 

 

(3.6) 

 

From the nature of the equation (3.6) which is linear and inn order to connect these equations 

we use the following relation 

 

𝜆 = 𝑃𝑥 

�̇� = 𝑃�̇� + �̇�𝑥 

 

(3.7) 

 

Substituting the value of �̇�, �̇� from equation (3.6) in equation (3.7) and then substituting the 

value of u from (3.6) the following equation is obtained 

𝑃𝐴𝑥 + 𝐴𝑇𝑃𝑥 + 𝑄𝑥 − 𝑃𝐵𝑅−1𝑃𝑥 + 𝑃�̇� = 0 (3.8) 

 

Thus the obtained equation is Matrix Ricatti Equation and solution is given by 

 

𝑃𝐴 + 𝐴𝑇𝑃 + 𝑄 − 𝑃𝐵𝑅−1𝑃 = 0 (3.9) 

 

The control input fo the above Algebraic Riccati Equation (ARE) is obtained from 
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𝑅𝑢 + 𝐵𝑇𝜆 = 0 as 

𝑢 = −𝑅−1𝐵𝑇𝑃𝑥 

𝑢 = −𝐾𝑥 

 

 

(3.10) 

 

3.2. LQR Control Design 
 

The decision of Q and R is imperative as the entire LQR state input arrangement relies 

on upon their decision. Typically they are picked as identity values and are progressively 

iterated to get the controller parameter. The value of R is chosen to be a scalar value since it is 

a single input system. 

The excitation because of initial condition observed in the states can be dealt with as an 

undesirable deviation. On the off chance that the system depicted is controllable then it can be 

drive the system to its required equilibrium point. In many cases, it is extremely hard to keep 

the control input inside of bound as chances are such that the control sign would be high which 

will make the actuator to get saturated and would oblige high bandwidth models. Thus, it is 

needed to have an exchange off between the requirement for regulation and the extent of the 

control signal. It can be seen that the decision of R comes helpful in limiting the control signal. 

So by choosing a larger value for R we get a smaller value of control input. It can be seen that 

bigger the weight on R the littler is the control signal. The rationale behind decision of weights 

of Q (normally picked as a slanting grid) is relative that the state that obliges more control 

requires more weightage than the state that obliges less control. 

 

Algorithm: 

The logic behind choosing the weights is that the states which require more control require 

more weight. For the weight(R) on the control signal it is such that larger the value of R smaller 

is the control signal. 

 

 Choose𝑄 = 𝑑𝑖𝑎𝑔(𝑞1, 𝑞2, 𝑞3, 𝑞4) as the weight matrix, where 𝑞1 term corresponds to 

the weight on cart position, 𝑞2 corresponds to the weight on cart linear velocity, 𝑞3 

corresponds to the pendulum angle, and 𝑞4 corresponds to the angular velocity 

 Since the cart position is to be at zero and that constraint is difficult to obtain we add 

more weight to the cart position .thus we choose  𝑞1 ≫ 𝑞2,𝑞3, 𝑞4  



 
 

20 
 

 In order to make up for the falling pendulum the velocity of cart should change rapidly 

compared to the pendulum angular velocity, so  𝑞2 ≫ 𝑞4. 

 Due to the physical constraints imposed on the pendulum angle and cart position we 

We choose  𝑞1 ≫ 𝑞2, 𝑞3≫𝑞4 due to constraints on cart position and pendulum angle.   

 

By iterative process the value of gains obtained are 𝐾1 = -2.2361  𝐾2 =  -3.1803 𝐾3 = 73.8623 

𝐾4 =29.219 

 

3.3 Results and Discussion 
 

SIMULATION RESULTS 

 

 

FIG: 3.2 simulation result for LQR on IP 

 

3.4 Chapter Summary 
 

The Chapter starts with the explanation of LQR how it implemented and its design 

methodology. . Different focuses that need to be considered in the outline of LQR are 

additionally given. Accordingly, the section exhibits a calculation for choice of LQR weights. 

Accordingly, the section exhibits a calculation for choice of LQR weights. The chapter is 

concluded with the simulation result. 
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CHAPTER 4 

4. TWO-LOOP PID CONTROLLER DESIGN FOR INVERTED 

PENDULUM 

 

For many control problems, PID control module is the building block which provides the 

regulation and disturbance rejection for single loop, cascade loop, multi loop and multi input 

and multi output control schemes. Over decades PID control technology has undergone many 

changes and today the controller may be standard utility routine with in supervisory system 

software, a dedicated hardware process control unit which can be used for control system 

construction.  Several methods exist to tune a PID controller but in this design we use pole 

placement method. 

4.1 Introduction 
 

The fig 4.1 shows the block diagram of a PID controller. The controller output depends 

on the error signal generated. The control signal u can be mathematically represented by [14]  

𝑒 = 𝑟 − 𝑦  

𝑢 = 𝐾𝑃𝑒 + 𝐾𝐼 ∫𝑒 𝑑𝑡 + 𝐾𝐷

𝑑𝑒

𝑑𝑡
 

(4.1) 

  

P(s)

+

+

+

+

-

r u

s

K I

K P

sKd

e
Y

plant

 

Fig 4.1: PID Controller for a Closed Loop System 
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It is observed that the error get enormously decreased by increasing the value of 𝐾𝑃 yet 

the reaction turns out to be exceedingly oscillatory. At the same time, a consistent steady state 

error persists. The integral controller term 𝐾𝐼 guarantees that the error goes to zero. Anyway if 

the value of  𝐾𝐼  is increased it leads to a sluggish response. The derivative control term 𝐾𝐷 

makes sure that the system response settles quickly by damping the oscillatory part.  Utilization 

of high estimation of 𝐾𝐷 ma lead to instability. In this way, so as to accomplish acceptable 

execution we have to pick these qualities carefully. There exist numerous blocking tuning 

methods of which Ziegler-Nichols tuning is a well-known one. 

At first, the on-off controller was generally utilized. Yet, because of high oscillatory 

nature of output the on-off offered path to the proportional controller. The control activity on 

account of P sort criticism will be specifically relative to the slip produced. By using this 

Proportional controller the control output form the controller is directly proportional to the 

error signal generated. Decision of 𝐾𝑃 is a compromise between these two clashing necessities. 

It might be noticed that the issue of high gain causes instability while in closed loop. Integral 

action being a necessary activity has been an important abhorrence in control loops. It has the 

benefit of ensuring a zero error, however at the expense of decrease in the speed. On the other 

hand addition of derivative controller improves the speed of the response. 

 

4.2 Controller Design 
 

Control structure for PID is as shown in figure: 4.2. As in [15]   two PID controllers are 

used C1, C2. Reference values for cart position and pendulum angle are taken as 0. 

PID 1

X(s)/U(s)

PID2

)(/)( sUs 

G1

G2

0xr

0 r

u

+

-
+

-

+
-

C1

C2

x

 

Fig: 4.2 block diagram for two loop PID controller 
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The characteristic equation for the controller in fig 4.2 will be 

1 − 𝐺1𝐶1 + 𝐺2𝐶2 (4.2) 

 

Where C1 and C2 are two PID Controllers. 𝐺1  and 𝐺2  are represented by plant transfer 

functions where b1=0.3894, b2=0.2638 and a²=6.807. 

1 −
𝑏1

𝑠2

(𝐾𝑑1
𝑠2 + 𝐾𝑝1

𝑠 + 𝐾𝑖1)

𝑠
+

𝑏2

(𝑠2 − 𝑎2)

((𝐾𝑑2
𝑠2 + 𝐾𝑝2

𝑠 + 𝐾𝑖2)

𝑠
= 0 

 

 

(4.3) 

 

From LQR we get the desired pole locations and from these pole locations the characteristic 

equation formed will be 

𝑠5 + 26.4𝑠4 + 218.6𝑠3 + 871.3𝑠2 + 1721.8s + 1343.7 = 0 (4.4) 

 

Now using pole placement technique the gains of PID controllers are obtained as follows 

1
1 2 1

1 21 2
2

2 1
1 1 2 3

22
41

2
2

51
2

0 0 0 0

0 0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

Kdb b p
Kpb b p a
Ki

a b b b p
Kd

pa b
Kp

pa b Ki

                                          

 

 

 

 

 

(4.5) 

After substitution we get: 

1

1

1

2

2

2

5.841 0 0 3.957 0 0 26.4

0 5.841 0 0 3.957 0 225.07

39.759 0 5.841 0 0 3.957 871.3

0 39.759 0 0 0 0 1721.8

0 0 39.759 0 0 0 1343.7

Kd

Kp

Ki

Kd

Kp

Ki

 
     
     
    
      
    
    
       

  

 

 

 

 

 

(4.6) 

 

1 1 1

For :  

43.3, 33.796, 2.254Kp Ki Kd



  

1C
 

 

(4.7) 
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2 2 2

For :

120.9, 247.43, 10Kp Ki Kd



  

2C
 

 

(4.8) 

 

The obtained controller design is applied on the real time model. Here a second velocity 

filter with the transfer function as shown in (4.9) after the derivative block in PID controller. 

This filters out noise to some extent.  

 

𝐹(𝑠) =
10000

𝑠2 + 70.7𝑠 + 10000
 

 

 

(4.9) 

4.3 Results and Discussion 
 

SIMULATION RESULT 

The figure 4.3 shows the simulation result for two loop PID controller on Inverted Pendulum 

model. 

 

Fig: 4.3 Two-loop PID controller simulation result. 
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EXPERIMENTAL RESULTS 

On the application of controller design on the real time model the following result is 

obtained. It can be seen that the oscillations on the cart position sustain, this is due too the 

unfiltered noise which is not being filtered. 

 

Fig4.4:  Experimental result for two-loop PID controller 

Increase in gain: 

Fig: is obtained by increasing the gain. It can be noted that the system get marginally stable 

when gain is 5 after that point the cart position exceeds 0.3m after which the system becomes 

unstable 

 

Fig 4.5:  Experimental result for two-loop PID controller when gain is increased 
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Decrease in gain: 

Fig: is obtained by decreasing the gain. It can be noted that the system get marginally stable 

when gain is reduced to .5 after that point the cart position exceeds 0.3m after which the system 

becomes unstable 

 

Fig 4.6: Experimental result for two-loop PID controller with decrease in gain 

Delay: 

A delay is introduced in the system and the results are obtained as shown in the fig: Its observed 

that after a delay of .05 the system goes unstable.  

 

Fig 4.7: Experimental result for two-loop PID controller with delay 
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Two loop PID controller Robustness summary 

 Gain margin Gain cross over 

frequency 

Phase margin 

Simulation (.2238,2.2) 27.4 .034 

Experiment (.2,5) ---- .04 

Table 4.1 robustness summary 

4.4 Chapter Summary 
 

The chapter begins with the introduction to PID control and its design constraints. Here 

the closed loop poles obtained from LQR design are taken and by using pole placement design 

Two Loop PID Controller is designed. Its simulation is done in MATLAB and applied on real 

time workshop. From the experimental results it can be observed that WITH a two loop PID 

control sufficient performance is obtained. 
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CHAPTER 5 

5. REGIONAL POLE PLACEMENT TECHNIQUE TO STABLIZE 

INVERTED PENDULAM 

 

The basic necessity of any control system is stability. A good controller has to provide 

well-damped response sufficiently. If the position of the poles are so adjusted in complex plane 

such that the desired performance is achieved then such a technique is called Regional Pole 

Placement. Contrary to the traditional pole placement techniques here a complete region is 

specified instead of specific points. Complex region may include regions like conic sector, disc, 

half plane etc. 

5.1 Introduction 
 

COMPLEX PLANE AS LMI REGION 

A region in complex plane can be represented by means of LMI as in [12]. A function 

is specified as of LMI to describe a region and it’s called as Characteristics equation of the 

region. 

For example left half of complex plane can be described as simple function of  𝑓: 𝑧 + 𝑧̅ < 0. 

All the points in the left of plane satisfies the condition. Similarly we can specify right half of 

plane by reversing the inequality. One can link the above objective to Lyapunov’s stability 

criteria to design pole placement controller. 

An LMI region is any subset 𝒟 of the complex s-plane that can be expressed as  

 𝒟 = {𝑧𝜖∁∶ 𝐿 + 𝑧𝑀 + 𝑧̅𝑀𝑇 < 0} (5.1) 

 

Where 𝐿 and 𝑀 are real matrices and𝐿𝑇 = 𝐿, and 𝑀 = 𝑀1
𝑇𝑀2 the matrix function  

 𝑓𝒟(𝑧) =  𝐿 + 𝑧𝑀 + 𝑧̅𝑀𝑇  

 

 The equation (5.1) is the characteristic function of the complex plane 𝒟.  

 

LMI regions incorporate diverse areas, for example, half s-plane, circles, conics sectors, 

strips, and any convergence of the above. For such diverse LMI areas "Lyapunov theorem" is 

accessible. For entries (𝜆𝑖𝑗)1≤𝑖,𝑗≤𝑚
 and (𝜇𝑖𝑗)1≤𝑖,𝑗≤𝑚

in matrices 𝐿 and 𝑀, matrix A is said to 
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have all its eigenvalues in a specific complex plane 𝒟  only if there is a a positive definite 

matrix 𝑃  which satisfy the equation (5.3) 

 {𝜆𝑖𝑗𝑃 + 𝜇𝑖𝑗𝐴𝑃 + 𝜇𝑗𝑖𝑃𝐴𝑇}
1≤𝑖,𝑗≤𝑚

< 0. (5.3) 

 

 

5.2 LMI Regions 
 

Various LMI regions like half plane, disc, conic and their characteristic equations have been 

described below [12] 

 For a Half-plane region, the characteristic equation is given by (5.4) 

𝑅𝑒(𝑧) < −∝∶  𝑓𝒟(𝑧) = 𝑧 + 𝑧̅ + 2 ∝< 0 (5.4) 

  

 For a disk region centred at (−𝑞, 0) with radius 𝑟 the characteristic equation is  given 

by (5.5): 

 

𝑓𝒟(𝑧) = [
−𝑟 𝑞 + 𝑧

𝑞 + 𝑧̅ −𝑟 ] < 0 
(5.5) 

   

 

 For a conic sector region with inner angle 2𝜃 and apex at the origin the characteristic 

equation is given by(5.6) 

𝑓𝒟(𝑧) = [
𝑠𝑖𝑛𝜃(𝑧 + 𝑧̅) 𝑐𝑜𝑠𝜃(𝑧 − 𝑧̅)
𝑐𝑜𝑠𝜃(𝑧̅ − 𝑧) 𝑠𝑖𝑛𝜃(𝑧 + 𝑧̅)

] < 0 
(5.6) 

   

 .  

 For the entire Left half-plane the characteristic equation obtained is given by equation 

(5.7) 

𝑓𝒟(𝑧) < 0 ⇔ 𝑧 + 𝑧𝑇 < 0 (5.7) 

               

For this section 𝐿 = 0 and 𝑀 = 1has to be taken and the LMI derived is given by (5.8)  

𝐴𝑋 + 𝑋𝐴𝑇 < 0 (5.8) 
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 ∝ −Stability 

 

𝑓𝒟(𝑧) < −∝ ⇔ 2 ∝ +𝑧 + 𝑧𝑇 < 0 (5.9) 

 

For this section 𝐿 = 2 ∝ and 𝑀 = 1has to be taken and the LMI derived is given by (5.8)  

 

 2 ∝ 𝑋 + 𝐴𝑋 + 𝑋𝐴𝑇 < 0 (5.10) 

 Real(s)Real(s)

Imag(s)

00

Fig 4.2 : open left half plane Fig 4.3 : Semi left half plane 

Imag(s)

 

Fig: 5.1 ∝-stable LMI region 

 

Disk 

Disk of Radius 𝑟, Centred at (𝑞, 0) [24], [12] 

 |𝑧 − 𝑞| < 𝑟 ⇔  [
−𝑟 𝑧 − 𝑞

𝑧̅ − 𝑞 −𝑟 ] < 0 (5.11) 

It is sufficient to take the matrices: 

 𝐿 = [
−𝑟 −𝑞
−𝑞 −𝑟] ,𝑀 = [

0 1
0 0

] (5.12) 

 

This gives the following LMI for disk region:  

 
[

−𝑟𝑋 −𝑞𝑋 + 𝐴𝑋

−𝑞𝑋 + 𝑋𝐴𝑇 −𝑟𝑋
] < 0 (5.13) 

For example take 𝑟 = 1 and 𝑞 = 0 we obtain 

 

 𝐴𝑇𝑋𝐴 − 𝑋 < 0. (5.14) 
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Re(s)

Im(s)

0

Fig 4.4: LMI region (Disk)

-q

r

 

Fig 5.2 disc sector LMI region 

 

 

Conical Sector 

 
𝑎. 𝑅𝑒(𝑧) + |𝑏. 𝐼𝑚(𝑧)| < 0 ⇔ [

𝑎(𝑧 + 𝑧̅) −𝑏(𝑧 − 𝑧̅)
𝑏(𝑧 − 𝑧̅) 𝑎(𝑧 + 𝑧̅)

] < 0 (5.15) 

It is sufficient to take the matrices  

 𝐿 = [
0 0
0 0

] , 𝑀 = [
𝑎 −𝑏
𝑏 𝑎

] (5.16) 

 

This gives the following LMI for conic sector region: 

 
[
𝑎(𝐴𝑋 + 𝑋𝐴𝑇) −𝑏(𝐴𝑋 − 𝑋𝐴𝑇)

𝑏(𝐴𝑋 − 𝑋𝐴𝑇) 𝑎(𝐴𝑋 + 𝑋𝐴𝑇)
] < 0 (5.17) 

 

It’s known that 

 
0 < 𝜃 <

𝜋

2
, cos(𝜃) =

−𝑏

√𝑎2 + 𝑏2
, sin(𝜃) =

𝑎

√𝑎2 + 𝑏2
 

 

(5.18) 

 

Thus the obtained LMI region is given by (5.19) 

 
[

sin(𝜃)(𝐴𝑋 + 𝑋𝐴𝑇) cos(𝜃)(𝐴𝑋 − 𝑋𝐴𝑇)

−cos(𝜃)(𝐴𝑋 − 𝑋𝐴𝑇) sin(𝜃) (𝐴𝑋 + 𝑋𝐴𝑇)
] < 0 (5.19) 
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Re(s)

Im(s)

0

Fig 4.5: LMI region (Conic sector)



 

Fig 5.3 conical sector LMI region 

 

OUTPUT FEEDBACK REGIONAL POLE PLACEMENT CONTROLLER 

 

Consider a controller which places poles in a desired LMI region [12] 

Let the state-space equation for an LTI plant be as shown in the equation (5.20) 

 

 

Ṕ{

�̇� = 𝐴𝑥 + 𝐵𝑤𝑤 + 𝐵𝑢
𝑧 = 𝐶𝑧𝑥 + 𝐷𝑧𝑤𝑤 + 𝐷𝑧𝑢
𝑦 = 𝐶𝑥 + 𝐷𝑤𝑤 + 𝐷𝑦𝑢𝑢

 (5.20) 

  

The required LMI region is given by 

 𝒟 = {𝑧𝜖∁∶ 𝐿 + 𝑧𝑀 + 𝑧̅𝑀𝑇 < 0} (5.21) 

 

Let the required controller which places the poles in desired LMI region 𝒟  be given by 

 
𝐾 {

�̇�𝐾 = 𝐴𝐾𝑥𝐾 + 𝐵𝐾𝑦
𝑢 = 𝐶𝐾𝑥𝐾 + 𝐷𝐾𝑦

 (5.22) 

The state space equation for the closed loop transfer function after the introduction of controller 

with control law 𝐾𝑦 is given by   

 

 �̇�𝑐𝑙 = 𝐴𝑥𝑐𝑙 + 𝐵𝑤
𝑧 = 𝐶𝑥𝑐𝑙 + 𝐷𝑤

 (5.23) 
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Where 

 
𝐴 = [

𝐴 + 𝐵𝐷𝐾𝐶 𝐵𝐶𝐾

𝐵𝐾𝐶 𝐴𝐾
] (5.24) 

 

 
𝐵 = [

𝐵𝑤 + 𝐵𝐷𝐾𝐷𝑤

𝐵𝐾𝐷𝑤
] (5.25) 

 

 𝐶 = [𝐶𝑧 + 𝐷𝑧𝐷𝐾𝐶 𝐷𝑧𝐶𝐾] (5.26) 

 

 𝐷 = [𝐷𝑧𝑤 + 𝐷𝑧𝐷𝐾𝐷𝑤]. (5.27) 

 

For robust 𝒟-stability of the system there should exist a positive definite matrix X such that 

 

 

[

M𝒟(A, X) 𝑀1
𝑇⨂(𝑋𝐵) 𝑀2

𝑇⨂𝐶𝑇

𝑀1⨂(𝐵𝑇𝑋) −𝛾𝐼 𝐼⨂𝐷𝑇

𝑀2⨂𝐶 𝐼⨂𝐷 −𝛾𝐼

] < 0 (5.28) 

Where 𝑀1
𝑇𝑀2 = 𝑀  

[13] Theorem: Output feedback controller 𝐾(𝑠)and a symmetric matrix 𝑋 > 0 exist such that 

(21) holds if and only if two  𝑛 × 𝑛 positive symmetric matrices  𝑅  and 𝑆  and 

matrices 𝐴𝐾, 𝐵𝐾, 𝐶𝐾, 𝐷𝐾 exists such that 

 Λ(𝑅, 𝑆) = [
𝑅 𝐼
𝐼 𝑆

] > 0 (5.29) 

and 

 

[

L⨂Λ(𝑅, 𝑆) + 𝑀⨂Φ𝐴 + 𝑀𝑇⨂Φ𝐴
𝑇 𝑀1

𝑇⨂Φ𝐵 𝑀2
𝑇⨂Φ𝐶

𝑇

𝑀1⨂Φ𝐵
𝑇 −𝛾𝐼 𝐼⨂Φ𝐷

𝑇

𝑀2⨂Φ𝐶 𝐼⨂Φ𝐷 −𝛾𝐼

] < 0 (5.30) 

Where 

 
Φ𝐴 = [𝐴𝑅 + 𝐵�̂� 𝐴 + 𝐵�̂�𝐶

�̂� 𝑆𝐴 + �̂�𝐶
] 

 

(5.31) 

Φ𝐵 = [
𝐵𝑤 + 𝐵�̂�𝐷𝑤

𝑆𝐵𝑤 + �̂�𝐷𝑤

] 

Φ𝐶 = [𝐶𝑧𝑅 + 𝐷𝑧�̂� 𝐶𝑧 + 𝐷𝑧�̂�𝐶] 

Φ𝐷 = [𝐷𝑧𝑤 + 𝐷𝑧�̂�𝐷𝑤] 

The controller that robustly put the closed-loop poles of a system in 𝒟 is 



 
 

34 
 

𝐾(𝑠) = 𝐷𝐾 + 𝐶𝐾(𝑠𝐼 − 𝐴𝐾)−1𝐵𝐾 

The matrices 𝐴𝐾 , 𝐵𝐾, 𝐶𝐾 are derived as follows. 

 Compute square matrices 𝑁and 𝑀 such that  𝑀𝑁𝑇 = 𝐼 − 𝑅𝑆. 

 Solve the change of controller variables: 

 

{

�̂� = 𝐶𝐾𝑀𝑇 + 𝐷𝐾 𝐶𝑅

�̂� = 𝑁𝐵𝐾 + 𝑆𝐵𝐷𝐾 

�̂� = 𝑁𝐴𝐾𝑀𝑇 + 𝑁𝐵𝐾𝐶𝑅 + 𝑆𝐵𝐶𝐾𝑀𝑇 + 𝑆(𝐴 + 𝐵𝐷𝐾 𝐶)𝑅.

  

 

5.3 Controller Design 
 

 The region to put the closed loop poles is chosen as conic sector with its tip at -2 

 With an angle of cos−1(.99) 

 The poles of the closed loop function obtained is shown in the fig(5.4) 

 

         

Im(s)

-2

8.1090

X

-2.59-23-45.7-87.9

Re(s)

 

 

Fig 5.4 conic sector chosen for controller design 

 

Transfer function of the controller for cart position obtained is  

𝐺1(𝑠)

=
. 007504 𝑠6 − 9393𝑠5 − 4.142 ∗ 105𝑠4 − 6.123 ∗ 103𝑠3 − 3.613 ∗ 107𝑠2 − 7.28 ∗ 107𝑠 − 3.578 ∗ 107

𝑠6 + 179.2𝑠5 + 1.078 ∗ 104𝑠4 + 2.767 ∗ 105𝑠3 + 3.206 ∗ 106𝑠2 + 1.587 ∗ 107𝑠 + 2.396 ∗ 107
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Transfer function of the controller for the output pendulum angle obtained is  

𝐺2(𝑠)

=
. 08036 𝑠6 + 2.418 ∗ 107𝑠5 + 1.132 ∗ 106𝑠4 + 1.825 ∗ 107𝑠3 + 1.255 ∗ 102𝑠2 + 3.55 ∗ 108𝑠 + 3.467 ∗ 108

𝑠6 + 179.2𝑠5 + 1.078 ∗ 104𝑠4 + 2.767 ∗ 105𝑠3 + 3.206 ∗ 106𝑠2 + 1.587 ∗ 107𝑠 + 2.396 ∗ 107
 

5.4 Results and Discussion 
 

Simulations results

 

Fig 5.5: Simulation result for regional pole placement technique on IP model. 

Experimental result: 

The experimental results obtained for the regional pole placement technique is shown 

in the fig4.3. Oscillation in the cart position sustain due to unfiltered noise.  

 

Fig 5.6: Experimental result for regional pole placement technique on IP model 
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5.4 Chapter summary 
 

The chapter begins with the introduction on Regional Pole placement technique. 

Various LMI regions along with their characteristic equations have been specified. Controller 

design is being illustrated. Finally the chapter is concluded with simulation and experimental 

result 
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CHAPTER 6 

6. CONCLUSION AND FUTURE WORK 

6.1. Conclusions 
 

The proposition introduces various control methodologies, for example, LQR, Two-

loop PID Controller and Regional pole placement technique. These configuration routines have 

been fruitful in meeting the adjustment objective of the CIPS, all the while fulfilling the 

physical requirements in track limit furthermore, control voltage. The LQR, Two-Loop PID 

and RPP are effective in guaranteeing great power on the info side of the CIPS. Due to the 

presence of non-linear friction term in the system dynamics there has been a difficulty in 

obtaining the idealistic behaviour for the cart position. The Linear Quadratic Regulator (LQR) 

weight determination for the Cart Inverted Pendulum has been deliberately given together 

specific algorithm. Unlike other state feedback systems in LQR the selected weights 

automatically takes care of the physical constraints. 

Regional pole placement technique is used and here the pole locations are chosen 

automatically within a specified pole region. But Continuous oscillations persists in the cart 

position. For a Two- Loop PID controller two loops have been used and the controller is 

designed based on pole placement. For Two-Loop PID controlled the oscillation in the cart 

position have been reduced. A Two-Loop PID controller provides a good overall performance. 

 

Fig6.1: Comparison of cart position for different controller 
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Table 6.1: Comparison of cart position for different controller 

 

Controller LQR 2-LOOP PID RPP 

Settling Time 2.97 2.458 2.74 

Undershoot -1.559 -1.307 -1.45 

Overshoot 0.4428 0.4128 0 

 

 

 

Fig6.2: comparison of pendulum angle for different controller 

 

Table 6.2: comparison of pendulum angle for different controller 

Controller LQR 2-LOOP PID RPP 

Settling Time 1.663 1.663 2.79 

Undershoot -.564 -.6646 -.3881 

Overshoot .9 .8 0 
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Fig6.3: comparison of control voltage for different controller 

From the figures it can be observed that for LQR undershoot and overshoot are 

comparatively less but it takes more settling time. Settling time of the three controllers is almost 

same. Control voltage of 2-Loop PID is more compared to the other two controllers.   

 

6.2. Thesis Contributions 
 

The following are the contributions of the thesis 

 A methodical calculation for weight choice for LQR  has been stated 

 Based on pole placement approach Two-Loop PID controller is design which leads to 

overall  improvement of system performance 

 Robust Pole placement technique has been implemented. 

6.3. Suggestions for Future Work 
 

 Convex control method 

From the dynamics of inverted pendulum one can observe the existence of non-linear term 

sin 𝜃. This non-linearity sin 𝜃 is being linearized by using smooth mixing signals as in [18]. 

The paper [18] describes a convex control algorithm that can be applied on Inverted Pendulum. 

The design of [18] has been briefly represented below. Consider the inverted pendulum 

design[18] 
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𝜒1̇ = 𝜒2                                                                  (1) 

�̇�2 = −0.1𝜒1 + sin 𝜒1 + 𝑢                                                      (2) 

Where 𝜒 = [𝜒1 𝜒2]
𝑇 is the state of the pendulum, composed of angular position and angular 

velocity, and u is the control input torque. We are interested in applying the ConvCD technique 

to find a state feedback control that brings the pendulum to the upright unstable equilibrium 

(0,0), while minimizing the criterion 

𝐽 = ∫ (4𝜒1
2(𝑠) + 4𝜒2

2
∞

0

(𝑠) + 𝑢2(𝑠))𝑑𝑠                                          (3) 

A. Adding a Non-linear-Integrator: The first step in this approach is to change the 

dynamics of the system by adding a nonlinear integrator. The reason for adding this nonlinear 

integrator is that because of this addition the constraint imposed on the input is eliminated. But 

for this example no constrain on input is considered. A new control input ‘v’ is calculated as 

follows:    �̇� = 𝑣 
The augmented state vector becomes 

𝑥 = [𝜒𝑇   𝑢𝑇]𝑇 

B. Approximations Using Mixing Signals: There is a nonlinear term of sin 𝜃 in the 

system dynamics. To linearize that term we use five smooth mixing signals which satisfy the 

property inside the convex interval −4 ≤ 𝜒1 ≤ 4 

βi(𝑥)𝜖[0,1],   ∑βi(𝑥) = 1, ∀

5

𝑖=1

𝑥                                                                (4) 

The interval [-4 4] is divided into L=5 overlapping subsets and five mixing signals are 

constructed on the basis of Gaussian function𝜑(𝜒1, 𝜒2,𝜎𝑥) = 𝑒−((𝑥1−𝑥0)2/𝜎2
.   

𝛽�̃�(𝜒1) = 𝜑(𝜒1, 𝜒2,𝜎𝑥) 

Here 𝑥0 is the centre of guassian function taken as [-3.2, -1.6, 0, 1.6, 3.2] and  𝜎𝑥 is the bell 

width taken as .2667. Same bell width is chosen for all signals. 

In order to satisfy normalized set of mixing signals, the mixing signals 𝛽𝑖(𝜒1) are generated by 

normalizing 𝛽𝑖(𝜒1)𝛽�̃�(𝜒1)/∑ 𝛽�̃�
𝐿
𝑗=1 (𝜒1), i=1………L. 

Mixing signals resulting from the procedure are shown in the figure 1 

 
Fig1.mixing signals 

 

sin(𝑥1)=𝛽1(𝑥1). (−𝜃1𝑥1 − 𝜃2) + 𝛽2(𝑥1)(−𝜃3) + 𝛽3(𝑥1)𝜃4𝑥1 + 𝛽4(𝑥1)(𝜃3) + 

𝛽5(𝑥1). (−𝜃1𝑥1 + 𝜃2) 

By using least square approximation we get the values of  𝜃 = [−.005 − .82  .97  1]. 
After PWL approximation the system will be in the form of 
 

�̇� = ∑ 𝛽𝑖(𝑥)(𝐴𝑖�̅�(𝑥) + 𝐵𝑣)𝐿
𝑖=1                                                            (5) 

Where �̅�(𝑥) = [𝜒1   𝜒2  1 𝑢]𝑇 
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               𝐵 = [0 0 0 1]𝑇 
 

𝐴1 = [

0 1
. 005 −.1

0 0
. 82 1

0        0
0          0

0   0
0    0

]     A2 = [

0 1
0 −.1

0 0
−.97 1

0     0
0      0

0      0
0      0

]         A3=[

0 1
1 −.1

0 0
0 1

0 0
0 0

0 0
0 0

] 

 

A4=[

0 1
0 −.1

0 0
. 97 1

0 0
0 0

0 0
0 0

]                A5=[

0 1
−.005 −.1

0 0
−.82 1

0 0
0 0

0 0
0 0

]                                      (6) 

The state equation now will be in the form of:  �̇� ≈ ∅̅(𝑥)𝑧(𝑥) + 𝐵𝑣                                        (7) 

∅̅(𝑥) = [√𝛽1(𝑥)𝐴1    . .      √𝛽2(𝑥)𝐴𝐿]                 

And the vector z(x) is defined as follows   𝑧(𝑥) =

[
 
 
 
 
 √𝛽1(𝑥)�̅�(𝑥)

.

.

.

√𝛽𝐿(𝑥)�̅�(𝑥)]
 
 
 
 
 

                         (8) 

C. Controller Approximations: By applying the above transformations, the optimal 

state feedback design problem will be 
Minimise  𝐽 = ∫ (𝑧𝑇(𝑠)𝑄𝑧(𝑠))𝑑𝑠                                            (10)

∞

0
 

Subjected to   �̇� = ∅̅(𝑥)𝑧(𝑥) + 𝐵𝑣 +  𝐵Γ(𝑥)𝐺                                         (11) 

 

C (ii). Application of  HJB equation: 
 

For a system �̇�(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑡) 

With PI as 

𝐽(𝑥(𝑡0), 𝑡) = ∫ 𝑉(𝑥(𝑡), 𝑢(𝑡), 𝑡)𝑑𝑡.
𝑡𝑓

𝑡0

 

Now we obtain the control law as a function of state variables, leading to closed loop optimal 

control. 

 A scalar function 𝐽∗(𝑥∗(𝑡), 𝑡) = ∫ 𝑉(𝑥∗(𝜏), 𝑢∗(𝜏), 𝜏)𝑑𝜏
𝑡𝑓
𝑡

 

𝑑𝐽∗(𝑥∗(𝑡), 𝑡)

𝑑𝑡
= (

𝜕𝐽∗(𝑥∗(𝑡), 𝑡)

𝜕𝑥∗
)

,

�̇�∗(𝑡) +
𝜕𝐽∗(𝑥∗(𝑡), 𝑡)

𝜕𝑡
, 

 

                                                            =  (
𝜕𝐽∗(𝑥∗(𝑡),𝑡)

𝜕𝑥∗
)
,

𝑓(𝑥∗(𝑡), 𝑢∗(𝑡), 𝑡) +
𝜕𝐽∗(𝑥∗(𝑡),𝑡)

𝜕𝑡
 

 
𝑑𝐽∗(𝑥∗(𝑡), 𝑡)

𝑑𝑡
= −𝑉(𝑥∗(𝑡), 𝑢∗(𝑡), 𝑡) 

 

𝜕𝐽∗(𝑥∗(𝑡), 𝑡)

𝜕𝑡
+ 𝑉(𝑥∗(𝑡), 𝑢∗(𝑡), 𝑡) + (

𝜕𝐽∗(𝑥∗(𝑡), 𝑡)

𝜕𝑥∗
)

,

𝑓(𝑥∗(𝑡), 𝑢∗(𝑡), 𝑡) = 0 

Let us introduce Hamiltonian 

 ℋ = 𝑉(𝑥∗(𝑡), 𝑢∗(𝑡), 𝑡) + (
𝜕𝐽∗(𝑥∗(𝑡),𝑡)

𝜕𝑥∗ )
,

𝑓(𝑥∗(𝑡), 𝑢∗(𝑡), 𝑡) 

Substituting the value of ℋ in the above equation 
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𝜕𝐽∗(𝑥∗(𝑡), 𝑡)

𝜕𝑡
+ ℋ (𝑥∗(𝑡),

𝜕𝐽∗(𝑥∗(𝑡), 𝑡)

𝜕𝑡
, 𝑢∗(𝑡), 𝑡) = 0   ∀𝑡 ∈ [𝑡0𝑡𝑓) 

From boundary conditions we get  

𝐽∗(𝑥∗(𝑡0), 𝑡𝑓), )=0 

Costate function is given by 

𝜆∗(𝑡) =
𝜕𝐽∗(𝑥∗(𝑡), 𝑡)

𝜕𝑥∗
 

State and costate function are related by  

�̇�∗(𝑡) = −(
𝜕ℋ

𝜕𝑥
) 

Optimal control u is obtained from      (
𝜕ℋ

𝜕𝑥
) = 0 

𝑢∗(𝑡) = ℎ(𝑥∗(𝑡), 𝐽𝑥
∗, 𝑡) 

 

Comparing above two equations we get 
𝑑

𝑑𝑡
(
𝜕𝐽∗(𝑥∗(𝑡),𝑡)

𝜕𝑥∗
) =

𝑑

𝑑𝑡
[𝜆∗(𝑡)] 

 

                                = −
𝜕ℋ (𝑥∗(𝑡),

𝜕𝐽∗(𝑥∗(𝑡), 𝑡)
𝜕𝑡

, 𝑢∗(𝑡), 𝑡)

𝜕𝑥∗
 

 

Using 𝐽𝑡
∗ =

𝜕𝐽∗(𝑥∗(𝑡),𝑡)

𝜕𝑡
              and 𝐽𝑥

∗ =
𝜕𝐽∗(𝑥∗(𝑡),𝑡)

𝜕𝑡

𝜕𝐽∗(𝑥∗(𝑡),𝑡)

𝜕𝑡
 

 
HJB equation becomes  

𝑱𝒕
∗ +  𝓗(𝒙∗(𝒕), 𝑱𝒙

∗ , 𝒖∗(𝒕), 𝒕)=0 

Application of the Hamilton–Jacobi–Bellman (HJB) equation to the above problem results in 

the following: 

−𝑧𝑇𝑄𝑧 =
𝜕𝑉𝑇

𝜕𝑥
(𝑥)(∅̅(𝑥)𝑧(𝑥) + 𝐵𝑣∗ + 𝓋)𝑑𝑠                        (12) 

V is optimal cost to go function.  

The optimal cost-to-go function V is a controlled lyapunov function (CLF). 

The CLF can be approximated using piece wise approximation of lyapunov function as follows: 

𝑉(𝑥) ≈ ∑𝛽𝑖(𝑥)�̅�(𝑥)𝑃𝑖

𝐿

𝑖=1

�̅�(𝑥) = 𝑧𝑇(𝑥)𝑃𝑧(𝑥)                                   (13) 

Where P is a positive semi-definite matrix. 

Similar to the approximations for optimal cost to go function V, the optimal controller function 

can be approximated as  

𝑣∗ ≈ ∑𝛽𝑖(𝑥)

𝐿

𝑖=1

𝐺𝑖𝑧(𝑥) = Γ(𝑥)𝑔𝑧(𝑥)                                           (15) 

Where 𝐺𝑖 are constant matrices. 

D. THE CONVCD APPROACH: Using approximation (13), (15) the HJB can be 

represented as  
 

0 = 𝑧𝑇([∅̅(𝑥) + 𝐵Γ(𝑥)𝐺]𝑇𝑀𝑧
𝑇𝑃 + 𝑃𝑀𝑧[∅̅(𝑥) + 𝐵Γ(𝑥)𝐺] + 𝑄)𝑧 − 𝑣 ̅                (16) 

0 = 𝒢𝑃,𝐺(𝑥) − �̅� 

For closed loop stability we have  �̇� < 0 𝑓𝑜𝑟 𝑥 ≠ 0 𝑜𝑟 𝑖𝑓 
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The following inequality holds: 

ℒ𝑃,𝐺 ≈ 𝑧𝑇([∅̅(𝑥) + 𝐵Γ(𝑥)𝐺]𝑇𝑀𝑧
𝑇𝑃 + 𝑃𝑀𝑧[∅̅(𝑥) + 𝐵Γ(𝑥)𝐺])𝑧 < 0 ∀𝑥 ∉ ℬ(�̅�) 

(17) 

 

Equations (16) and (17) indicate that it suffices to choose P,G so that the term 𝒢𝑃,𝐺(𝑥)  is as 

small as possible subject to the constraint ℒ𝑃,𝐺 that  is—almost—negative definite. In other 

words, the problem of constructing an approximately optimal performance can be cast as the 

following optimization problem: 

𝑚𝑖𝑛‖𝒢𝑃,𝐺(𝑥)‖
2
+ 𝛾 

S.T                                                   P > 0 

ℒ𝑃,𝐺 ≤ −𝛾, 𝛾 > 𝑐 > 0, ∀𝑥 ∉ ℬ(�̅�)                                  (18) 

 

The above problem is nonlinear with respect to P,G. So solving a non-convex problem is hard 

so we transform it into convex by multiplying terms inside the parenthesis by 𝑃−1 

ℱ�̅�𝐹�̅�(𝑥) ≜  𝑧𝑇([𝑃∅̅(𝑥) + 𝐵Γ(𝑥)𝐹]𝑇𝑀𝑧
𝑇 + 𝑀𝑧[∅̅(𝑥)𝑃 + 𝐵Γ(𝑥)𝐹] + 𝑄)𝑧 

                               = �̿�                                                                                                               (19) 

�̅� ≜ 𝑃−1 , �̅� ≜ �̅�𝑄�̅� = 𝑃−1𝑄𝑃−1                                                        (20) 
 

F is a matrix satisfying 

F=G�̅� 

 

ℋ�̅�𝐹 ≜ 𝑧𝑇([𝑃∅̅(𝑥)𝑇 + 𝐹𝑇Γ(𝑥)𝐵𝑇]𝑀𝑧
𝑇 + 𝑀𝑧[∅̅(𝑥)𝑃 + 𝐵Γ(𝑥)𝐹])𝑧 < 0 , ∀ 𝑥 ∉ ℬ(�̅�)       (22) 

The above two equations are so the problem statement now will be 

Minimise 𝛾1 + 𝛾2 

                                                            S.T constraints: 

𝛾2𝐼 − 𝐹𝑇𝐹 ≥ 0                                                                                                                      

𝜖1𝐼 ≤ �̅� ≤ 𝜖2𝐼 

𝜖3𝑄 ≤ �̅� 

ℋ�̅�𝐹(𝑥) ≤ −𝛾1,  
𝛾1 > 𝑐 > 0, 

𝛾2 > 𝑐 > 0   ∀ 𝑥 ∉ ℬ(�̅�)                                               (23) 
Since the optimisation problem here is infinite dimension and state dependent problem we 

discretise the state space. The number of discretization points does not have to be as large. 

Minimise 𝛾1 + 𝛾2 

                                                       S.T constraints 

∑ℱ�̅�𝐹�̅�‖(𝑥[𝑖])2‖
2

≤ 𝛾2

𝑁

𝑖=1

 

𝜖1𝐼 ≤ �̅� ≤ 𝜖2𝐼 

𝜖3𝑄 ≤ �̅� 

ℋ�̅�𝐹(𝑥𝑖) ≤ −𝛾1, 

𝛾1 > 𝑐 > 0, 
𝛾2 > 𝑐 > 0   ∀ 𝑥 ∉ ℬ(�̅�)                                                      (24)  

The ConvCD algorithm (24) is run with 𝑁 = 6, 𝜖1=1,𝜖2 = 20, 𝜖3 = 1 𝐿 = 5 . 
The above problem is solved by using LMI and the controller thus obtained is applied to the 

plant. And the states are observed. The cost function is to be minimised. 
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 But in the above problem the LMI is made to run for a minimum of 250 iterations. 

Which takes a lot of time. 

 Other Control methods like Integral Slide Mode controller, fuzzy control etc. may be 

attempted. 
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