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 Abstract  

 In recent years, porous ceramics with tailored microstructure has received wide attention in 

the research communities for its specialized properties. To have a customized microstructure 

suitable for different applications, several fabrication methods have also been developed 

during the last decades to manipulate porosity, pore size distribution and pore 

interconnectivity in the porous ceramics. In the present study, an attempt has been made to 

develop porous alumina ceramics with wide porosity (10-80%) using three different 

fabrication methods. The three methods are starch consolidation casting (SCC), polymeric 

sponge replica technique (SRT) as well as the combination of the two methods (SCC+SRT). 

A theoretical model has also been developed and validated with the experimental data to 

predict the porosity of the samples prepared by SCC theoretically. Alumina loading, starch 

content, starch types are used as the tools to develop different porosity in the samples made 

by starch consolidation casting. TiO2 has been used as sintering additives to improve high 

strength in the starch consolidated samples without compromising the porosity. The viscosity 

of the slurry in the range 0.05-1.19 Pa.s was found to be optimum to fabricate defect free 

samples by starch consolidation casting. The porosity of the samples could be varied from 

20-70% in this technique. TiO2 as sintering aid was able to reduce the sintering temperature 

of the samples in the tune of 300oC without compromising the strength and porosity of the 

samples fabricated by this technique. It was observed that 10% porous samples could be 

developed through this technique. Particle loading of the slurry was found as an important 

parameter to develop different pore morphology when the samples prepared using sponge 

replica technique.  The porosity of the samples could be varied from 75- 80% of strength 

0.31-2.46 MPa by this technique. An attempt has also been made to develop hierarchical 

porosity in the samples while fabricated by the combination of the above two techniques.  

The microstructural study revealed the formation of hierarchical porosity in the samples 

fabricated by the combination technique.  Thus, porous ceramics with porosity in the range 

these techniques could achieve 10-80%. 
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The research interest in the field of porous ceramics has increased in the recent decade. Improved 

and innovative processing of porous ceramics has led to the development of customized 

microstructural features. Porosity, pore size distribution in a low-density body can be well 

controlled to obtain a proper combination of strength, low thermal conductivity, high specific 

surface area and high permeability [1]. These  porous ceramics are suitable for wide range of 

technical applications. The applications include catalyst supports, filters for molten metals and 

diesel engine exhaust, burners, biomedical device, kiln furniture and high-temperature thermal 

insulation, etc. [2-4]. Several fabrication techniques have been developed in order to meet the 

requirements of the desired properties for different applications. The techniques are sacrificial 

template method [5, 6], paste extrusion [7], freeze casting [8], direct foaming [9, 10], replica 

technique, rapid prototyping etc. [11-12]. Different fabrication techniques have their advantages 

and limitations. 

Starch consolidation casting (SCC) belongs to the family of sacrificial template method. The 

sacrificial template technique consists of a biphasic composite with a continuous matrix of 

ceramic particles and a dispersed sacrificial phase that is homogeneously dispersed throughout 

the matrix and is extracted while sintering to generate pores in the microstructure. Starch is used 

as pore former and body consolidator utilizing its swelling/gelling properties. The gelling 

properties of the starch were enhanced by the presence of the linear polymer chain amylose and 

branched polymer chain amylopectin present in the starch structure [14]. The porosity and pore 

size distribution of the porous body depends on the starch type, starch amount, the viscosity of 

the slurry, particle size distribution of the ceramic powder, etc. Sample with porosity 60-70% 

could be achieved in this technique. In the polymeric Sponge Replica Technique (SRT), the 

polymeric sponge is impregnated with a ceramic slurry. Subsequently, the excess slurry is 

removed to produce a positive morphology of the original template [15]. SRT is suitable to 

produce porosity 80-90% in the sintered sample. The porosity is mainly controlled by the 

rheology of the ceramic slurry and the porosity/pore morphology of the sponge. Porous alumina 

ceramics with 10-80% porosity has been fabricated and characterized following SCC and SRT. 

The present study deals with the fabrication and characterization of porous alumina ceramics 

following SCC, SRT and combination of these two techniques. 
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The structure of the thesis is as follows. The literature review in Chapter 2 consists of four parts. 

The first section summarizes the importance of porous ceramics, its present fabrication 

techniques, and applications. The second section shows the stabilization of the slurry required for 

processing through starch consolidation and the polymeric replica technique. The third part 

introduces the starch consolidation and the importance of each step from the processing to the 

sintering on the properties of the final product. The fourth section gives the detailed idea on the 

polymeric sponge replica technique and its properties. 

Chapter 3 explains the objective of the present work. Chapter 4 describes the experimental 

methods involved in the present study, which includes the optimization of the alumina slurry, 

swelling behavior experimental procedures, characterization procedures related to different 

properties of the final product. Chapter 5 discusses the predicted model for the generation of 

porosity in the starch consolidation casting assuming certain parameters are not affecting the 

system. 

The results and discussion of Chapter 6 have been divided into five parts. The first part 

summarizes the raw material characterization, i.e., the particle size, microstructure and thermal 

properties of the starting materials. The second part discusses the optimization of the alumina 

slurry using Darvan C as a dispersant. The third part explains the effect of alumina loading and 

the starch content on the properties of porous alumina ceramics through starch consolidation 

casting. The Fourth part gives the idea of the impact of solid loading on the rheological and 

mechanical properties of the porous samples prepared by polymeric sponge replica technique. 

Fifth part introduces the new processing technique by combining the starch consolidation casting 

and the polymeric sponge replica technique that produces a hierarchical pore structure. Chapter 7 

summarizes the main findings and the conclusions of the present study. 
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2.1. Introduction to Porous Ceramics 

The production and application of highly porous ceramics have increased in the recent decades 

due to their tailored microstructure like porosity and pore size distribution.  These porous 

ceramics are more suitable for wide range of technical applications. They are catalyst supports; 

filters for molten metals and hot gasses; ion exchangers, burners etc. It also includes kiln 

furniture and high temperature thermal insulation where the high temperature, corrosion resistant 

and wear resistant environments are involved. 

The compositional and microstructural features of cell size, morphology and degree of 

interconnectedness are primary factors that influence potential applications. The closed cell 

materials are needed for thermal insulation while the open cell and the interconnected materials 

are required for filters and catalysts. Pores present in the porous structure are classified into three 

groups depending on their sizes namely microporous (< 2 nm), mesoporous (2-50 nm) and 

macroporous (> 50 nm) [16]. Micro and mesoporous ceramic materials are used as molecular 

sieves [17], in catalysis [18] and controlled release applications [19, 20]. Macroporous ceramics 

applications starts from traditional ceramics like roof tiles to advanced technical ceramics in 

medicine and automobile engines [21]. 

The development of the porous filters satisfied the requirements like the recovery of the methane 

from mines, removal of carbon dioxide and hydrogen sulfide from natural gas, recovery of 

hydrogen in petroleum refinery operation. In the foundry industry, porous filters are used for hot 

metal filtration [22]. Some of the application areas of catalyst supported porous materials are in 

the mass transfer of the catalytic combustion [23], in-situ combustion in underground reservoirs 

for enhanced oil recovery, heat transfer devices, diesel particulate filters [24] and reduction of 

hazardous combustion products. Besides, porous ceramics is also used in sensors, battery 

materials and thermal protection materials and biomedical applications [25]. The classification of 

the porous ceramic based on pore structure and its applications is given in the Table II.I. 
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           Table II.I: Classification of Porous Ceramics Based on Pore Structure and Applications [26]. 

Pore structure Application 

 
Micro and Meso-porous materials 

Desiccant materials 
Sensors and actuators 

Catalyst support 
Drug delivery systems, coatings, carriers 

 
Foam and honeycomb structures 

Exhaust gas filters 
Diesel particle filters  

Filters for molten metal  
Porous electrodes of fuel cells 
Porous burners 

Catalytic substrates  
Biomedical porous scaffolds for tissue engineering  

Impact and acoustic materials 
Kiln furniture 
Lightweight sandwich structures 

Multilayer materials  

Ultra filtration membranes 
Nano filtration membranes 

Gas separation membranes 
Zeolite membranes 

Pervaporation membranes 
Dense membranes (oxygen or proton conductors) 

2.2. Fabrication of Porous Ceramics 

Several fabrication techniques are developed to meet the requirements of the desired properties 

for particular applications like replica technique, sacrificial template method, direct foaming, 

paste extrusion, rapid prototyping. Using the replication technique maximum porosity obtained 

can be in the range of 40-95% and pore size in the range of 200µm to 3mm. High 

interconnectivity in the structure makes them more advantageous for the filter purposes. The 

basic disadvantage of this technique is that they have low mechanical strength. Several attempts 

are made to overcome this by repeated coating and combining the technique with gel casting. 

Several techniques like starch consolidation casting, gel casting, freeze casting comes under 

sacrificial template techniques. The name of the technique differs from the application of the 

type of the fugitives and the difference in the processing steps. The porosity obtained by this 

technique is in the range of 20-90% having a pore size in the range of 1-100µm. Direct foaming 

technique results in the porosity of 40-90% with a pore size in the range of 35mm to 1.2 mm and 
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compressive strength 16MPa. Honeycomb structures with unidirectional channels can be 

obtained using the paste extrusion method. More complex shapes can be obtained by using the 

rapid prototyping technique along with the controlling the pore structure. The main disadvantage 

of the technique is high manufacturing cost. Different fabrication techniques for macroporous 

ceramics showing porosity amount and pore size has been summarized in Table II.II.                                                                                             

Table II.II: Fabrication Techniques of Macroporous Ceramics. 

Fabrication technique Porosity range (%) Pore size range 

Polymeric sponge replica [1,15] 40-90 200µm - 3mm 

Wood replica [1,22] 25-95 10 - 300µm 

Gel casting [9,10] 75-86 15-150µm 

Freeze casting [8] 30-99 20-200µm 

Starch consolidation casting [5,13] 20-70 5-170µm 

Extrusion [22] 40-50 100-500µm 

Protein consolidation   50-70  250-500µm  

Combination of sponge replica and gel casting  60-85 200-400µm 

Combination of gel casting and sacrificial 
template method  

84-90 100µm-1mm 

 

2.3. Stabilization of the Slurry 

The colloidal particles form agglomerates spontaneously in the dispersion medium due to the 

presence of strong interparticle van-der-Waals attractive forces. It is required to reduce these 

attractive forces to avoid the aggregation. The reduction in the attractive forces can be achieved 

by introducing the repulsive forces between the particles. Two mechanisms can achieve this 

repulsive barrier namely electrostatic stabilization and steric stabilization. In electrostatic 

stabilization, the repulsion of the particles takes place by the extended layer of electrostatic 
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charges on the particles called the electrical double layer. When two such particles interact, it is 

the interaction between the double layers absorbed around the particles producing a repulsive 

force. The double layer interaction decreases as the concentration of the oppositely charged ions 

in the medium increases. The steric stabilization can be achieved by the absorption of uncharged 

polymer chains onto the particle surface. The polyelectrolyte can produce both the stabilization 

effects called the electro-steric stabilization. Thus in the present study Darvan C is used as 

dispersant that is a polyelectrolyte [16]. 

The aqueous alumina suspension stability in the presence of dispersant Darvan C (ammonium 

salt of polymethacrylic acid) has been studied [11]. Sediment height and turbidity of the slurry 

was used as a tool to find out optimum dispersant concentration. 

Electrostatic stabilization is based on the repulsive force, originated from the surface charge of 

the particles. Alumina dispersed in aqueous medium shows positive surface charge.  Darvan C in 

aqueous medium dissociates and produces carboxylic (COO-) groups, which absorbed on the 

alumina particles surface. Thus, negative charges developed on the alumina particles. The 

magnitude of the negative surface charge on the powder particle increases with the increase in 

the Darvan C concentration.  Thus, the distance between the particles in the suspension increases 

with the addition of the Darvan C leading to a well dispersed suspension. The study on 

sedimentation height revealed that 1ml/g Darvan C concentration as the optimum value for the 

well-dispersed slurry. 

Paul F.Luckham studied the rheological behavior of the alumina suspensions in the presence of 

dispersant (Darvan C) [27]. It has been observed that the viscosity decreases initially and then 

increases with the increase in the Darvan C concentration. The decrease in the viscosity of the 

suspension in the presence of Darvan C is attributed to the insufficient surface coverage of the 

alumina particles by the dispersant molecules. The addition of the excess amount of Darvan C 

increases the viscosity of the slurry due to the overcrowding effect of the electrolyte and reduces 

the double layer repulsive forces between the particles. Different forces causing the instability of 

the slurry was shown in Fig 2.1. 
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The viscosity of colloidal alumina suspensions as a function of dispersant (ammonium 

polyacrylate, i.e.,.Disperlan LA) concentration was studied [28] for a very narrow range. It has 

been reported that the viscosity of the slurry followed an exponential decay behaviour. The study 

revealed that optimum dispersant would be 0.6 vol% for stable colloidal suspension. 

The effect of dispersant (polyacrylic ammonium) concentration on the apparent viscosity of the 

alumina suspension has been studied [29]. It has been observed that the viscosity decreases and 

then increases gradually with the addition of the dispersant. The minimum viscosity is obtained 

at 0.36gm per 100gms of alumina that is attributed to the saturated amount of dispersant 

absorbed onto the powder particles. The sedimentation test were done at 0.16, 0.24, 0.36 and 

0.60 dispersant amounts that showed coagulated, well dispersed but under saturation, well 

dispersed and saturated, weakly coagulated slurry respectively. Hence, the study suggested that 

the 0.36gm per 100gms of alumina powder is the optimum amount for the well dispersed stable 

alumina slurry. 

The dispersion of the alumina particles using polyvalent electrolyte dispersant (Darvan C) has 

been optimized [30]. Darvan C is an ammonium salt of polymethacrylate available in the form of 

the aqueous solution that contains 25% of the active component. The apparent viscosity 

decreases initially and then increases in which the minimum viscosity is obtained at 1% Darvan 

Figure 2.1: Different forces that cause instability in a stabilized suspension. The arrow direction indicates 

the increasing of the effect [27]. 
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C (related to the alumina powder). The optimum amount of dispersant corresponds to the 

adsorbed amount and the negligible amount of free dispersant in the continuous phase of the 

alumina suspension. Any amount of free dispersant acts as a free electrolyte in the system 

disturbs the electrostatic forces and reduces the double layer repulsive forces giving rise to the 

increase in the viscosity. 

The powder agglomeration in the ceramic slurry can be eliminated with the addition of 

appropriate dispersant which alters the powder surface properties. The repulsive forces due to 

electrostatic repulsion results as the overlapping of electrical double layers become higher and 

thus the particles remain separated in the suspension. Thus, stable slurry could be achieved with 

the addition of an optimum dispersant amount that imparts low viscosity as well as ensures the 

dispersion of the powder particles for a long period. Christos Agrafiotis et al., [31] optimized the 

rheological properties of the alumina slurry at different solid loading as a function of dispersant 

concentration. It has been observed that the low and intermediate solid loadings exhibit constant 

and low viscosities, thus indicating that they are independent of the dispersant concentration 

whereas the high solid loadings are dependent on the dispersant concentration. It has been 

reported that high viscosity was obtained below 0.075wt% dispersant concentration, the constant 

viscosity of 97mPas in the region 0.075-0.125wt% and rise in the viscosity was observed above 

0.2wt% dispersant concentration. 

2.4. Starch Consolidation Casting (SCC) 

At present among the fabrication techniques, starch consolidation has obtained a great interest in 

the processing of porous ceramics.  The starch granules are dense and water insoluble at room 

temperature that helps in easy handling without affecting their granular structure. Minor swelling 

of starch granules occurs due to slight absorption of the moisture in the high humidity conditions 

but retains their size on drying. In common the starch irrespective of the type has 10-17% 

moisture in their structure. The size of the starch varies with the type of the starch and generally, 

their size varies in the range of 2µm to 170µm. The combined advantage of the pore is forming 

and body forming property of the different type of starch are utilized in this technique [5]. The 

application of these biopolymer pore formers is widely spread considering certain factors like 

their non-toxic, eco-friendly, processing nature and controllable porosity [32-33]. These pore 

formers burn out in the range of 300oC to 600oC [34].The presence of the linear amylose and 
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highly branched amylopectin in starch are responsible for the body forming and binding 

mechanism in which the intermolecular bonds were weakened, and irreversible swelling takes 

place by the water absorption. In particular amylase helps in gelling and amylopectin build up 

the polymer chains exposing large amounts of the hydroxyl groups making them hydrophilic in 

nature [35-37]. Due to the swelling mechanism of starch, the water in the ceramic slurry 

gradually decreases making the ceramic particles come closer forming a consolidated solid body. 

2.4.1. Structure and Swelling Behaviour of Starch 

Starch has been used as a processing aid in the manufacture of additives, textiles, paper, food, 

pharmaceuticals and building materials [5]. The properties like thickening, gelling, adhesive and 

film forming abilities improved the use of starch for various purposes. The optimum properties 

required for specific applications are obtained by the chemical, physical and enzyme treatments. 

These are white, dense and insoluble in nature having a different size in the range of 2-170µm. 

The linear polymer amylose and the branched polymer amylopectin were present in the starch in 

which amylopectin helps in the swelling and amylose helps in the gelation of starch in the 

aqueous medium. The glucose units present in the polymer chains of starch expose to the 

hydroxyl groups making them hydrophilic in nature (Fig. 2.2). 

 

 

 

 

Starch granules are insoluble in water at room temperature making their processing easier 

without any effect on their granular structure. However, limited water absorption takes place in 

the presence of humidity leading to the slight swelling that is reversible on drying. In general the 

starch contains 10-17 % moisture under the normal atmospheric conditions. Rapid and 

irreversible swelling of starch takes place at a temperature between 50-80oC due to the breaking 

of intermolecular bonds holding the granules leading to the increase in the size of the granules. 

 Figure 2.2: Structure of starch granule [5] 
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Starch granules are produced by the green plants that vary in shape, i.e., spherical, oval, 

polygonal, elongated, etc. and size ranging between <1µm and >100µm [14]. Native starches are 

not soluble in water due to their semi-crystalline structure that helps in isolation of the starch 

granules by sedimentation, centrifugation, and filtration. Starch consists of two polysaccharides 

namely amylose (15-30%) and amylopectin (70-80%). Amylose is a linear molecule and 

amylopectin are a highly branched structure with short linear chains. These depend upon the 

botanical origin, the degree of maturity and growing conditions of the plant. The starch granules 

when heated in the presence of water or glycerol overcome the molecular forces leading to the 

melting of the crystalline structure called gelatinization. The onset gelation temperature is 

correlated to the proportion of amylopectin. The further heating of the gelatinized starch in 

excess water leads to the formation of paste along with the granular swelling, development of 

viscosity and complete disruption of the starch granules. The presence of higher amounts of 

amylose lowers the swelling of amylopectin reducing the pasting viscosity of the starch. 

Gelatinized starch recrystallizes with the loss of water binding capacity known as the starch 

retrogradation. High amylose content leads to the maximum rate of retrogradation. 

W.Pabst et al. proposed a model for the body formation in starch consolidation casting [38]. The 

swelling kinetics of the starch granules with and without dispersant (0.6 Wt % related to 

alumina) in an 80wt% alumina suspension were studied. It has been observed that for both the 

cases the swelling of starch starts after 5 minutes and after 15 minutes of heating the starch 

granules disintegrated and transformed into a gel. It has been seen that the presence of dispersant 

influenced the starch swelling by the chemically interacting with the amylose and amylopectin 

present in starch. It has been reported that the experimental body formation time takes 33% more 

than the predicted time. The consolidation takes place in two stages in which initial stage is the 

drainage of the free water by the swelling of the starch and later the formation of the gel 

structure. During the second stage of consolidation, the amylose chains, and the amylopectin 

crystallites intrude into the interstitial pore system of the ceramic powder before the 

transformation of starch into a viscoelastic gel. This viscoelastic gel does not involve in the 

swelling of the starch. 

J.L.Minatti et. al. [39] has investigated the pre-gelling and gelling characteristics of starch for 

starch consolidation casting. It has been observed that the gelling of starches were divided into 
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two stages. The first is pre-gelling of the starch where the absorption of water and swelling of the 

granules, forming a whitish paste takes place. The second is the gelling of the starch in which the 

white paste has been converted into a transparent gel. It is seen that the potato starch is suitable 

for the preparation of the dense ceramics using the pre-gelling of the starch since this starch 

contains high swelling and gel resistance. The larger size of the starch granules compared to the 

ceramic powder gives porosity making it difficult to obtain a dense ceramics whereas by the pre-

gelling of the starch provides high mechanical resistance to the green compactness. It has been 

observed that the pre-gelling of starch resulted in 93% dense ceramic samples with a 

compressive strength of 325MPa. 

The pasting and the swelling properties of the wheat starch and the starch in the presence of total 

amylose, free amylose, lipid complex amylose and amylopectin chain length distribution has 

been reported [40]. It has been observed that the increase in the total amylose content influenced 

the pasting properties by decreasing the peak, breakdown and final viscosities of the wheat 

starch. The increase in the peak and final viscosities of the starch paste has been correlated to the 

degree of polymerization of the amylopectin chains which is their ability to form intermolecular 

links with other gel components. 

The relationship between the swelling and pasting properties with the structural features has been 

investigated using the simple and multiple regression analysis [41]. It has been observed that the 

swelling power and the pasting parameters depend upon the amylopectin unit chain (APC) ratio. 

The multiple regression analysis showed that the peak viscosity increased with low APC ratio, 

low amylose content, and large average granule size. The percentage of breakdown viscosity and 

the setback viscosity were affected by the APC ratio. Variation in the amylose content affected 

the total swelling of the starch. It is concluded that the fine amylopectin structure, amylose 

content and granule size effect on the swelling and pasting properties also related to the starch 

concentration in the suspension. 

2.4.2. Burnout Behaviour of Starch 

The thermogravimetric analysis (TG) of the Cassava starch showed two-stage decomposition in 

the temperature range 250-500oC [28]. The initial breakdown in the temperature range 190-

350oC is attributed to the breakdown of the starch while the weight loss during the high 

temperature (360-500oC) was attributed to the residual starch decomposition. 
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Burn out of starch is a significant step in the processing of starch consolidated ceramics. Burning 

of the starch occurs in the temperature range 250-500oC leading to the generation of gaseous 

products [5]. The release of these gaseous products from the sample causes the development of 

stresses during combustion, which in turns produces cracks in the sample.  Controlled burning of 

the starch is required to get a cracked free sample. An attempt has been made to study the rate 

controlled burning behavior of starch. In this process, the rate of decomposition of starch has 

been kept constant by varying the heating rate of the sample in the temperature range 0-1000oC.  

The DTG behavior showed the presence of three peaks at 120oC, 240oC, and 380oC. The study 

suggested that the peak at 120oC is due to the removal of absorbed water in the starch. The peaks 

at 240oC and 380oC are due to the removal of amylose and amylopectin of the starch 

respectively. 

The thermal analysis of starch has also been studied under two different atmospheres namely air 

and nitrogen [42]. DSC pattern consists of one endothermic and two exothermic peaks in the 

temperature range 250-350oC, 350-420oC and 420-550oC respectively when observed under the 

oxygen atmosphere. The existence of the endothermic peak under both the atmosphere is 

associated with weight loss is attributed to the partial decomposition of a hydrocarbon. The 

exothermic change in the air atmosphere is due to the combustion of the gaseous products 

developed during degradation of starch. 

The thermal decomposition of wheat starch was studied to establish a heating schedule to prepare 

a defect free porous ceramics [43]. It has been observed that 30 vol % of the reduction in weight 

takes place at 380oC, and the decrease is continued till 520oC. This indicated that the complete 

degradation of the organic components took place below 600oC. Depending on this thermal 

analysis the slow firing is scheduled at low temperature (600oC) for removal of organic phases 

followed by the sintering schedule. 

K.Prabakaran et., al. [44] reported the mass loss analysis of wheat particles which involves three 

stages of decomposition. The three stages of decomposition took place at temperature 120-

275oC, 275-350oC and 350-550oC were associated with a weight loss of 22%, 50% and18% 

respectively. The initial decomposition is attributed to the absorbed water removal while the 

decomposition in later stages was attributed to the removal of hydrocarbon during the burnout 
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process. Since major decomposition (82%) took place below 350oC, a slow heating rate is 

maintained to obtain a defect-free wheat consolidated sample. 

The thermal analysis of the starch consolidated green sample was studied to identify the optimal 

raising temperature [45, 46]. It is observed that one endothermic peak and two exothermic peaks 

were observed at a temperature of 70oC, 329oC, and 423oC.It has been suggested that slow 

heating rate should be followed to avoid the over vibrant pyrogenation during thermal removal of 

starch. 

2.4.3. Rheology of Slurry 

The rheological behaviour is essential for monitoring and controlling the consistency and 

behaviour of the slurries for casting processes like slip casting, tape casting, consolidation 

casting and spray drying. The slurry may contain particles in the range from granular to the 

colloidal size. The addition of the electrolyte and polymers affect the interparticle forces and the 

state of dispersion. The interparticle spacing depends upon the various factors like solid loading, 

the state of dispersion and particle packing. The rheological behaviour of the slurry helps to 

know the microstructure of the slurry system. The power law equation can describe the 

rheological behaviour of the slurry, 

𝜏 = 𝐾𝛾̇𝑛        (2.1) 

ƞ𝑎 = 𝐾𝛾̇
𝑛−1         (2.2) 

Where ‘τ’ is the shear stress, ‘K’ is the consistency factor, ‘γ ’̇ is the shear rate, ‘ƞa’ is the 

apparent viscosity and ‘n’ is Non-Newtonian constant. The slurries for which n<1 exhibits the 

shear thinning behaviour where the shear stress increases with the increase in the shear rate while 

the viscosity decreases with the increase in the shear rate. The slurries with n>1 exhibit the shear 

thickening behaviour where the apparent viscosity increases and the with particle interference 

increase in the shear rate. This behaviour indicates a concentrated suspension with large 

agglomerates, concentrated and deflocculated slurries [47]. 

O.Lyckfeldt et al. studied the rheology of the alumina slurry in the presence of starch [5]. It has 

been reported that the shear thinning behaviour decreased with the increase in starch amount 

leading to almost Newtonian behaviour. It is seen that the modified starch contained slurry 
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exhibits high viscosity compared to that of the native starch. This viscosity behaviour of the 

modified starch is attributed to a more open structure of the granules exhibiting a high degree of 

water uptake.  Viscosity of the slurry decreased when the alumina is replaced by the starch. This 

is due to the decrease in the total solid loading of the slurry as well as the exposure of the larger 

surface area towards the liquid phase by the submicron alumina particles. Even at a low solid 

loading, the viscosity increases with the increase in the starch content (45-55 vol%). The increase 

in viscosity is due to the water uptake by the starch granules. Thus, the free water in the slurry 

decreases leading to high viscosity. Hence, the viscosity of the slurry is controlled by total solid 

loading, total exposed surface area of the solids, the possible existence of an optimum particle 

packing and the water uptake of the starch. In summary, the work suggested that the viscosity 

should be consistent enough for mold filling without entrapped air bubbles as well as for 

avoiding the segregation before consolidation and significant shrinkage during consolidation and 

drying. 

The rheological behavior of the cordierite slurries with different solid loading, starch content and 

type of potato starch has been studied [32].  All the slurries exhibited shear thinning behavior. 

The viscosity of the slurry decreased with the increased shear rate. This behavior was observed 

in both at high solid loading as well as high starch content in the slurry. At the low shear rate, the 

liquid of the slurry is entrapped between the particle flocs. On the other hand, at high shear rate, 

the entrapped liquid is released, and ordered structure is formed in the flow direction leading to 

the decrease in viscosity with an increase in shear rate. The increase in the viscosity with the 

increase in the starch addition is attributed to the water uptake of the starch granules decreasing 

the free water availability in the slurry. It had been observed that when the coarse starch powder 

replaced the fine starch powder, the viscosity of the slurry decreased. The high surface area of 

fine starch powder results in the higher water absorption of the fine starch granules. The fine 

starch particles are exposed a higher surface area to the liquid phase leading to an increase in the 

viscosity of the slurry. 

Willi Pabst et al. [48] studies the shear stress - shear rate behavior of alumina slurry as a function 

of starch content and type of starch. The slurries were reported to exhibit shear-thinning behavior 

that shows an increase in shear stress with an increase in the shear rate. The thixotropic behavior 

increases with both at high starch content and milling time of the slurry. 
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The shear flow properties of the aqueous mullite starch suspension as a function of starch type 

has been investigated [49]. It has been observed that the viscosity decreased with the addition of 

the native starch to the slurry. This behavior is correlated with the decrease in the total solid 

loading as well as the higher affinity of the mullite particles having high surface area towards the 

liquid phase. The width of the particle distribution increased with the addition of the starch and 

thus better particle packing could also be a factor for the decrease in the viscosity. The viscosity 

of the slurry increased when the native starch was replaced by the modified starch that is 

attributed to the chemical modification and the faster water uptake due to the open starch granule 

structure. 

2.4.4. Green Properties of Starch Consolidated Samples 

The evolution of green densities as a function of the starch content at two solid loading has been 

studied [32]. It has been observed that the relative green densities showed a decreasing trend 

with the increase in the starch content. This behavior described the packing ability of the 

cordierite paste and starch together with the starch amount. The results conflict the Furnas model 

that says that the packing of the mixtures improves when a course particles replace a certain 

amount of the fine particles. This effect of packing of mixtures on the green density was due to 

swelling of starch during gelation. 

The green properties of the starch consolidated alumina samples have been reported by Ki-

Hyeon Kim et., al.[50]. It has been reported that at 60 vol % solid loading the green density 

increased with increase in the starch content up to 2.5vol% and then decreases with the further 

addition of starch. Similar behavior was observed at 56 vol % solid loading. The highest green 

density 55% and 64% of the theoretical density is obtained for the sample with 56 and 60 vol% 

solid loading respectively containing 2.5 vol% starches. The increase in density with solid 

loading is attributed to the closer approach of the particles with an increase in some particles in 

the slurry. The increase in density with starch addition is because starch forms polymer bridges 

by adsorption on the adjacent alumina particles. A similar trend has been observed for the 

flexural strength of the samples. The decrease in the strength with the increase in the starch 

content above 2.5 vol% was attributed to the inhomogeneous slurry mixing or due to the 

flocculation of the particles in the high viscous slurry. 
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The properties of the green alumina samples prepared by starch consolidation technique have 

been studied [43]. It has been reported that the green density of the samples decreases linearly 

with the increase in starch content in the slurry and is attributed to the presence of agglomerates 

in the alumina slurry. The interconnected pores and the amorphous material between the 

spherical particles have been observed in the microstructure of the green samples without starch. 

This is due to the removal of the solvent leaving the pores during the drying process while the 

amorphous material is the presence of polymer binder in the structure. 

2.4.5. Sintered Properties of Starch Consolidated Samples 

The preparation of high porous ceramics using the combination of the gel casting and the pore 

forming agent technique has been reported [43]. It has been observed that the starch addition 

increased the total solid loading in the suspension promoting the particle packing of the system. 

With the increase in the starch content from 0 to 30 vol%, the porosity increased from 67-82% 

while the thermal conductivity and the compressive strength decreased. The starch acting as a 

pore former reduces the densification without affecting the connections of the neighboring 

grains. However, the excess amount of starch leads to the collapse of the porous structure. The 

ultra-high porosity is advantageous for the heat insulation, fuel cells, and catalyst support 

applications. 

The impact of the starch content and the sintering temperature on the mechanical, electrical and 

physical properties of the porous alumina ceramics prepared through starch consolidation casting 

has been investigated [51]. It has been observed that higher porosity could be obtained at low 

starch content indicating an interconnected pore, i.e., large pores connected by the small pore 

throats. The bulk density, apparent porosity and the pore size varied in the range 1.4 -2.05 g/cc,    

46-64% and 1.79-4.28 µm respectively depending on the starch content of the suspension and the 

sintering temperature. Hence, the study concluded that the bulk density, apparent porosity, pore 

size, volume resistivity and mechanical properties of the porous alumina ceramics depend 

primarily on the starch content and the sintering temperature. Due to the presence of the 

combination properties, these porous ceramics are widely used in the thermal, electrical, bio-

ceramic applications as well as the filters and gas burners. 

The microstructural comparison of the porous oxide ceramics has been reported using the 

traditional slip casting and the starch consolidation technique [52]. It has been observed that the 
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maximum porosity of 50% could be obtained irrespective of the technique (TSC and SCC) and 

the oxide system. The porosity of the ceramics could be controlled by the amount of starch in the 

suspension. It has been observed that the shrinkage of the samples prepared with TSC were 

independent of the content and type of starch used and even the concentration of the suspension, 

i.e., solid loading. In the case of SCC, the shrinkage is dependent on the type of starch as well as 

the solid loading. The micrographs showed the presence of ceramic shell inside the pores that are 

formed during drying and burning of starch. The microstructure thus indicates that the properties 

were dependent on the interaction of the starch and the ceramic powder and were independent of 

the processing technique (TSC or SCC). 

E.Gregorova et al. discussed the optimized preparation of the porous alumina ceramics using 

starch consolidation casting [13]. It has been observed that using corn starch as a pore forming 

agent in the concentration range 20 vol% to 50 vol% could result in a total porosity of 22% to 

53%. It has been seen that the total porosity and the pore size increases whereas the density, and 

linear shrinkage decreases with the increase in the alumina loading in the suspension. The pore 

size, on the other hand, decreases with increase in the starch content where the alumina loading 

was constant. The paradoxical finding that the porosity increases with the increases in the 

alumina loading could be explained by introducing the affine limit porosity. 

SCC method has been used to prepare alumina-zirconia composite ceramics with varying 

zirconia (10-40 wt%) and starch (10 - 50 vol %) content. The prepared composites were sintered 

either by partial sintering or complete matrix sintering [53]. It has been found that 70% porosity 

could be obtained using SCC while 50% porosity was obtained with complete matrix sintering. 

The pore throat sizes were mono-modal with a median diameter of 1.4 mm to 2.2 mm after 

complete matrix sintering while these were bimodal with the second mode of 0.1 mm to 0.2 mm 

during partial sintering. Hence, the partial sintering ceramic microstructure comprises of 

hierarchical (porosity at two levels) pore structure. 

Macroporous Alumina ceramics has been prepared from aqueous Al2O3 slurries using wheat 

particles as gelling and pore forming agent [44]. It has been observed that wheat particles 

incorporated in aqueous Al2O3 slurries undergo rapid water absorption on heating leading to the 

formation of a strong gel. The gelled bodies did not undergo any crack and warpage during 

drying. The dried green bodies thus fabricated showed diametrical compressive strength in the 
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range 0.41–0.59 MPa and are amenable to machining operations. Pyrolytic removal of the pore-

former followed by sintering at 1600oC produced Al2O3 ceramics with porosity in the 67–76.7% 

and diametrical compressive strength in the range 2.01–5.9 MPa. Isotropic shrinkage has been 

observed during sintering. Microstructural studies revealed the presence of both large (200–800 

µm) and small (less than 20 µm) pores in the sintered bodies. Small pores were found to be 

uniformly distributed in the struts and walls of the large pores. 

Starch is used as both consolidator/binder of the ceramic suspension and pore former for porous 

ceramic processing. Thermo-gelling behavior of aqueous suspensions of different starches 

namely potato, cassava, and corn has been studied by dynamic rheological testing and optical 

microscopy. This has been done to optimize the thermal consolidation of ceramic green bodies 

prepared by the starch consolidation method [54]. It has been observed that the onset temperature 

of gelatinization, the maximum storage modulus and the temperature for maximum storage 

modulus depends on the biological origin of the starch. Potato and cassava starches showed the 

similar values while corn starch showed the highest value. It has also been observed that with an 

increase in heating rate, the onset temperature of gelatinization, and the temperature for 

maximum storage modulus increases while the maximum storage modulus decreases. This study 

indicates that a low heating rate promotes the development of a stronger gel structure. It has also 

been reported that the presence of a dispersant, in the range used for ceramic processing, did not 

significantly change the viscoelastic properties of all the starches studied.  The study suggested 

that in the context of ceramic forming by starch direct consolidation, a specific heating dwell 

time at the gelatinization temperature of the starch will provide green bodies with better 

properties. 

Porous alumina ceramics was prepared using the wheat flour as the pore forming agent and body 

forming agent [48]. It has been observed that the pores created were not only from the swelling 

of the starch granules but also from the protein assisted foaming that creates foam bubbles 

stabilized by the starch granules during wet milling. The total porosity of 60% was obtained with 

20 vol % of flour or semolina when the suspension was milled for 8 hours. The pore throat sizes 

were in the range of 1-2 µm when the suspension was milled for 2-3 hours while it was in the 

range of 20-39 µm when the suspension was milled for 8 hours. 
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Mechanical properties of the alumina ceramics fabricated using starch consolidation casting has 

been reported [50]. The samples prepared with the addition of 2.0wt% to 3.5wt% of the starch 

showed linear drying shrinkage of 2-3% and green density of 64% of theoretical value. Sintered 

density of 99.4% with a flexural strength of 247 MPa has been obtained when the samples were 

sintered at 1600oC for 2 hours. Uniform packing of the ceramic particles without any 

agglomeration or defects were observed in the micrographs of the samples with 2.5 wt% starch. 

The influence of starch content and sintering temperature on the alumina bodies prepared using 

the starch consolidation technique has been studied [28]. The samples were dried at 60oC for 2 

hours and sintered at 1200oC, 1400oC and 1600oC with a dwell time of two hours. The relative 

density in the range of 0.4-0.75 and open porosity in the range of 13-55% were obtained 

depending upon the starch content in the suspension. The microstructural studies showed that the 

properties of the samples primarily depend upon the starch content and the sintering temperature. 

Zuzana Zivcova et., al. studied the preparation of porous alumina ceramics using different 

forming agents such as rice starch, lycopodium, coffee, flour, semolina and poppy seed. All the 

forming agents were granular (5 µm – 1 mm) and low density (1.1-1.5 g/cc) [34]. The samples 

were prepared using the traditional slip casting (TSC) and starch consolidation techniques 

(SCC). It has been observed that the all the pore formers exhibited the burning behavior between 

250-550oC except the poppy seed that showed that thermal effects up to 600oC. The use of poppy 

seed as a pore former through the traditional slip casting was not successful because the starch 

needed to create pathways for gas release during pyrolysis to avoid the stress and the cracking of 

the samples. The study suggested that all the starch containing pore formers could be used both 

as pore forming and body forming agents in the starch consolidation casting. 

Porous alumina ceramics has been prepared using poppy seed as pore forming agent. The 

advantages are large seed size (1 mm), narrow size distribution, shape (kidney-like), low density 

and easy availability [55]. It has been observed that bulk density of 2.50 g/cc, a total porosity of 

37.6% and linear shrinkage of 14% could be achieved when the samples were sintered at 

1570oC. The study also reported the formation of hierarchical pore structure when combined this 

technique with potato starch. 
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E.Gregorova et al. discussed the porosity and pore size control using the starch consolidation 

technique [56]. It has been found that the porosities in the range 25-50% were feasible to control 

while lower or higher porosities were difficult to achieve. It has been observed that the pore size 

could be controlled by selecting the appropriate type of starch. Among the starch types 

investigated, potato starch is the largest (50µm) and rice starch is the smallest (14µm) while 

wheat starch is the intermediate (20µm) granular size. 

The influence of starch content and solid loading in the slurry on the sintered density of the 

porous samples has been reported [32]. It has been observed that the sintered density decreases 

with the increase in the starch content in the slurry. The final porosity of the samples could be 

correlated to the amount of starch being added to the slurry. Porous structures could be easily 

obtained by changing the starch content and the type of starch as well as the total solid loading of 

the suspension. This study suggested that the dependence of the final porosity on the starch 

content in the slurry enables tailored porous structure according to the application of this 

technique. 

O.Lyckfeldt et al. has discussed the processing of porous ceramics using the starch consolidation 

technique [5]. It has been reported that total porosities in the range of 23-70% could be obtained 

by using the pore formers with spherical shape and size in the range 10-80 µm. It has been found 

that the pore size of the sintered samples in the range of 0.5-9.5 µm. The study suggested that the 

pore size could be controlled by solid loading and the starch content of the slurry. The 

chemically modified starch was found to give better pore size distribution of interconnected 

pores as compared to that of the native starch, leading to more stable properties during water 

processing. The major advantage of the technique was the possibility to prepare complex shapes 

with various mold materials and low-cost processing equipment. 

2.4.6. Effect of Sintering Additives 

The densification of alumina in the presence of MnO2 and TiO2 additives at a temperature of 

1250oC has been studied [57]. It has been observed that the density of the samples in the absence 

of additives decreased from 68 to 95 % of theoretical density with the increase in sintering 

temperature. The densities increased from 73% to 98.7% of theoretical density in the presence of 

3 wt% of MnO2. Three wt% TiO2 doped samples showed the similar effect as that of MnO2 but 

at low sintering temperatures. The study suggested TiO2 as a more efficient additive as compared 
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to that of MnO2 as per densification is a concern. The densification behavior with the addition of 

additives is attributed to the enhanced grain growth along the grain boundaries. Beyond the 

certain percent of the additive, the rate of densification decreased due to the formation of the 

secondary phase. 

The effect of TiO2 on the density, microstructure and mechanical properties of alumina has been 

studied by M. Sathiya Kumar [58]. It has been observed that the green density of the alumina 

samples decreased from 58% to 53% of the theoretical density with the increase in the titania 

addition. At 1400oC, the density of the samples increased from 81 to 98% of theoretical density 

with the addition 0.2 wt% TiO2 while at 1500oC the density increased from 96 to 98% with 

1wt% TiO2. It has been observed from the microstructure that the grain size increased from 0-0.2 

wt% of TiO2 and then decreased to four wt%. This behavior is due to the formation of Al2TiO5, 

which acts as a secondary phase reducing the grain growth by pinning effect. The flexural 

strength increased from 315 to 353 MPa with 0 to 0.1 wt% TiO2 addition. The further increase in 

the TiO2 content decreased the strength to 220 MPa but increased to 347 MPa when four wt% 

TiO2 is added. 

Hyoun-Ee Kim et. alhas studied the densification and mechanical properties of titanium diboride 

(TiB2) with silicon nitride (Si3N4) as a sintering aid [59]. It has been observed that the relative 

density of the pure TiB2 was 90% of the theoretical density while with the addition of 2.5 wt% of 

Si3N4 the density increased to above 99%. It has been also observed that the grain size reduced 

from 7 µm to 3 µm with the addition of 2.5 wt% Si3N4. The further increase in the Si3N4 amount 

decreased the density slightly while the grain size remained unchanged. The flexural strength 

increased from 400 MPa to more than a factor of 2 with the 2.5 wt% Si3N4 addition while it 

decreased to 500 MPa to 5 wt% of Si3N4. This reduction in the strength behavior is attributed the 

formation of a large number of secondary phases at the grain boundary as well as the decrease in 

density of the samples. 

The effect of aluminum nitride (AIN) as a sintering aid on the sintering and mechanical 

properties of titanium diboride has been reported [60]. It has been observed that the density 

increased 89 to 98% with 5 wt% addition of AIN while the densification decreased with more 

than 10 wt% AIN. The strength increased from 360 MPa to 650 MPa with 5 wt% AIN decreased 

to 480 MPa with the further addition of AIN (> 10wt %). The decrease in strength at higher AlN 
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addition is attributed to the density improvement in the body.  Similarly, it has been observed 

that the fracture toughness increased from 4.5 to 6.8 MPa.m 1/2. The decrease in the strength and 

fracture toughness at high AIN amounts was due to the presence of unreacted AIN in the matrix. 

The effect of two (CuO + TiO2) or multicomponent (CuO + TiO2 + MgO + B2O3) additives on 

the density, microstructure and mechanical properties of the alumina ceramics has been 

investigated [61]. It has been observed that theoretical density of 98.5 % was obtained with pure 

alumina sintered at 1550oC (dwell time of 3 hours). By the addition of diphasic additives, TD of 

99.6% was obtained at 1200oC while the addition of multiphasic additives resulted in the 99.2% 

TD showing the complete densification at 1250oC.The addition of additives increased the 

densification due to the formation of low viscous liquid during sintering. It has been reported that 

the apparent porosity of the samples was below 0.5% for both diphasic and multiphasic 

additives. The toughness of the samples is increased with the addition of diphasic and 

multiphasic additives compared to the pure alumina at low sintering temperatures.  

2.5.  Polymeric Sponge Replica Technique (SRT) 

The effect of the sintering temperatures on the strength of the alumina foams prepared by using 

the polymeric sponge replica technique has been studied [62]. It had been reported that the 

porosity of the samples decreased from 89 to 86.75%, and strength increased from 0.27MPa to 

0.627MPa when the sintering temperature increased from 1400oC to 1500oC. The increase in the 

strength was not appreciable with the increase in the temperature of 1500oC to 1550oC, but the 

increase in the grain size has been observed which improved the foam strength. The further 

increase in the sintering temperature up to 1600oC resulted in a drastic increase in the grain size 

leading to the decrease in strength of the alumina foams. Hence, the present work suggested that 

the sintering temperature of 1550oC is required to achieve the high strength alumina foams. 

Replicated silicon carbide porous ceramics has been prepared by controlling the slurry rheology 

[63]. It has been observed that the thixotropic behaviour of the slurry increases with the increase 

in the solid loading. The polymer content between the 0.05 to 0.1% showed anti-thixotropic 

behavior while the polymer content of 0.2% showed thixotropic behaviour indicating that with 

an increase in the polymer content thixotropic behaviour of the slurry increases. It has been 

observed that the viscosity of the slurry is increased with increase in the solid loading and the 

polymer content of the slurry. High viscosity slurry is required to coat the sponge struts 



| Literature Review 25 

 

uniformly and to develop the SiC replica porous ceramics with uniform microstructure. The 

flexural strength and the densification of SiC reticulated porous ceramics has been improved 

with the increase in the solid loading and the polymer content. It has been concluded that the 

control of slurry rheology plays a significant role in the optimization of the microstructure and 

properties of the reticulated porous ceramics. 

The preparation of the hydroxyapatite scaffolds by combining the gel casting and polymer 

sponge techniques has been reported by Miqin Zhang et., al.[64]. It has been found that the 

properties samples fabricated by the combination technique were not obtained either only by gel 

casing or only by polymer sponge technique.  The porous scaffolds prepared by the combination 

technique have an open, uniform and interconnected porous structure. These scaffolds have a 

pore size in the range of 200-400 mm, the compressive strength of 5 MPa and compressive 

modulus of 8 GPa. The macroporous structure of the produced scaffold is the replicate of 

polymer sponge technique by which the pore size and shape were controllable and complex 

structures could be fabricated. Since the scaffolds were formed by the in-situ polymerization, the 

aggregation of the slurry at the bottom due to the gravitational force can be prevented leading to 

a homogenous microstructure. It has been suggested that the combination technique could be 

applied to the bioceramics with enhanced mechanical strength for load bearing tissue 

engineering. 

Xiumin Yao et. al studied the effect of the recoating slurry viscosity on the properties of the 

reticulated porous SiC ceramics [65]. It has been observed that the high viscosity slurry with the 

thixotropic loop is required for the recoating of the polymeric sponge. The increase in viscosity 

due to the increase in solid loading leads to an increase in loading of SiC replicated porous 

ceramics results in a decrease in cell size and an increase in strut thickness. The decrease in the 

cell size and increase in the strut thickness attributes to increase in the solid loading. The 

compressive strength of the samples increased from 0.78MPa to 1.59MPa as the recoating 

viscosity increased from 0.07Pa.s to 1.44Pa.s. It has been seen that the microstructure of the 

samples contains both large pores and the small pores. The small pores were caused by the 

sintering while the large pores were due to the entrapped air bubbles. The roller method used to 

remove the excess slurry removes the part of the air bubbles. The excess slurry removal by the 
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centrifugal technique could not remove the air bubbles during the process leading to increased 

porosity after recoating. 

Hydroxyapatite porous ceramics has been prepared using polymeric sponge method reported 

[15].  The porosity of the samples was found to be 0.2-1.0 mm in the micropores range and 100-

500 mm in the macropores range. The compressive strength of the samples increased from 1.8 

MPa to 10.5 MPa with the decrease in the porosity from 59.8% to 34.3%. The increase in the 

compressive strength has been attributed to the fast sintering schedule adopted in the study 

leading to an increase in the apparent density and crystallinity of the samples. It has also been 

reported that prolonged stirring the slurry resulted in the high compressive strength of the 

samples due to the better homogeneity in the slurry. 

The improvement in the strength of reticulated porous ceramics by vacuum degassing has been 

reported [6]. Air bubbles were found to affect the viscosity of the slurry during impregnation. 

Vacuum degassing stage prior to impregnation has been introduced to remove air bubbles from 

the slurry. It has been observed that this step was effective in removing the defects in the strut 

and increase the flexural strength of the sample from 2.34 to 3.18MPa. 
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A schematic diagram indicating microstructural changes (as understand from the literatures) of 

porous ceramics fabricated by starch consolidation casting (SCC), sponge replica technique 

(SRT) and combination of SSC and SRT is provided for ready reference in Fig. 3.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The extract from the literature that acts as motivators of the present work are as follows: 

1. Porous ceramics having porosity 20-70% with a pore size in the range of 2-200µm is 

possible by controlling the process parameters in SSC technique. 

2. Porous ceramics having porosity 40-90% with a pore size in the range of 200µm-3mm is 

possible by controlling the process parameters in SRT technique. 

3. The strength of porous ceramics decreases exponentially with the increase in porosity (or 

decrease in density) of the sample. 

4. TiO2 has been well studied as a sintering additive for alumina ceramics. 

The factors affecting the porosity of the ceramics fabricated by starch consolidation casting 

(SCC) technique are solid loading of the slurry, rheology of the slurry. Physical properties of the 

starch (including swelling and hydration behaviour, the amount of starch present in the slurry) 

also affect the porous sample. Further, the porosity and strength of the ceramics could also be 

controlled by the extent of densification of final ceramics (sintering temperature). For examples 

SCC 

Combination of SCC & SRT 

SRT 

Figure 3.1: Schematic diagram indicating the microstructural changes during fabrication of porous 

ceramics following techniques adopted in the present study. 
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samples (prepared from the same slurry) sintered at low temperature are expected to have high 

porosity and low strength or vice versa. The decrease in porosity with an increase in sintering 

temperature (And the use of sintering additive) could be compensated by an increase in pore 

former (or lowering the sintering temperature). Porosity in the porous ceramics could be 

developed by different ways. Sintering at high temperature with more amount of pore former 

could produce an equivalent porosity in the samples while sintered at a low temperature with less 

amount or pore former. The same amount of porosity could also be developed while sintering at 

a low temperature in a sample prepared with the addition of sintering additives keeping pore 

former constant. 

On the other hand, solid loading or slurry rheology has been identified as the important 

parameters for sponge replica technique (SRT). Moreover, one could prepare hierarchical (two 

different sized pore combination) porous ceramics by SRT techniques using a starch containing 

slurry. The detailed work dealing with porous structure developed in ceramics fabricated by a 

combination of SCC and SRT is hardly available in the literature. 

In view of the above, objectives of the present study are as follows: 

1. Theoretical prediction of porosity of SCC fabricated samples. 

2. Processing and fabrication of the porous alumina ceramics using SCC. 

3. Study of the effect of alumina loading, starch content and type of starch on the properties 

of the porous ceramics prepared by SSC technique and validation of the theoretical 

model. 

4. Study the effect of sintering additive (TiO2) on the strength and porosity of porous 

ceramic. 

5. Processing and characterization of the porous alumina samples using SRT. 

6. Fabrication of hierarchical porous alumina ceramics by the combination of SRT and 

SCC. 

7. Finally development of porous alumina ceramics with wide porosity range (10-90%). 
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Chapter 4 Experimental Procedure 
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4.1. Optimization of Dispersant for Preparation of Stable Al2O3 Slurry 

Darvan C has been used as dispersant in the present study. Darvan C has been used to prepare  

the aqueous alumina slurry (with 25 vol. % Al2O3 loading).  The concentration of Darvan C has 

been varied in the range 0.1 to 0.8wt% (based on the active matter) of dry alumina powder. The 

stability of the slurry has been evaluated by measuring the viscosity and the sedimentation height 

measurement. The sediment height has been measured after 24 hours of settling. 

4.2. Processing of Porous Alumina Ceramics 

Porous alumina ceramic samples have prepared by three different techniques. These are Starch 

Consolidation Casting (SCC) using corn, arrowroot and fine flour as the pore formers,  Sponge 

Replica Technique (SRT) using polymer sponge as the template and combination of the SCC and 

SRT methods. The fabrication of porous alumina ceramics using the three techniques is given in 

Fig 4.1. 

4.2.1. Starch Consolidation Casting (SCC) 

An aqueous slurry of alumina has been prepared using 0.3wt% Darvan C (based on the active 

matter) at different solid loading (30, 35, 40, 45vol %). Different amount of starch (i.e., corn 

starch, arrowroot and fine flour) in the range 1-50 vol% (calculated on the basis of alumina 

loading) has been added to the alumina slurry. The slurry has been pot milled in polyethylene 

bottles for one hour using alumina grinding media. The rheological behavior of the stable slurries 

has been studied at room temperature. 

The stabilized slurry has been cast in preheated cylindrical metal molds (20mm x 20mm). The 

molds were lubricated with grease for easy demolding. The cast samples were kept at 90oC for 2 

hours for hydration of starch and setting of the gel. After setting, the casts were de-molded and 

dried at room temperature for 24 hours for development of sufficient green strength. The dried 

samples have been heated at 1oC/min up to 850oC (with a dwell time of 1 hour) to burn out the 

pore former. Subsequently, the samples were heated at 3oC/min to the desired sintering 

temperature (1300oC-1600oC) with a soaking time of 2 hours. The sintered samples have been 

characterized by porosity, pore size distribution, strength, and microstructure. 

4.2.2. Sponge Replica Technique (SRT) 

Alumina slurry containing different alumina content in the range 20-35vol% has been prepared 

by adding 0.3wt% Darvan C as a dispersant. Poly Vinyl Alcohol (PVA) in the range, 1-5% has 
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been added to the slurry as the binder to maintain the viscosity of the slurry. Sponge samples (2 x 

2 x 2 cm) were impregnated with the as prepared alumina slurry, and the soaked sponge samples 

are dried at 90oC for 12 hours. The samples have been sintered in the temperature range 1400-

1600oC. The firing schedule has been maintained as that of the SCC at two different 

temperatures. The sintered samples have been characterized by porosity, pore size distribution, 

strength and microstructure. 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.3. Combination of SCC and SRT 

Alumina slurry containing 20 vol. % of Al2O3 has been prepared by adding 0.3 wt. % Darvan C 

as a dispersant and 3 wt. % of PVA as the binder. Different amounts of corn starch (30 and 

40vol. %) calculated on the basis of alumina loading were added to the slurry.  Similar drying 

and firing schedule is maintained as that of the SRT at two different temperatures (1400 and 

1600oC). The sintered samples are characterized by porosity, pore size distribution, strength, and 

microstructure. 

Figure 4.1: Flowchart of sample preparation adopted in the present study 
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4.3. Characterizations  

4.3.1. Study of Swelling Behaviour of Starch 

A small quantity of starch powder was  taken in a 50ml measuring cylinder, and 45ml of 

deionized water was added to it. The setup has been placed in a preheated air oven. This 

experiment has been conducted at 80oC and 90oC.The swelling of the starch has been recorded 

after every 15mins. The degree of swelling of starch corresponds to the percentage volume 

increase of starch observed as a function of time at two different temperatures. The physical 

appearance of the sample before and after swelling has been shown in the Fig. 4.2. 

 

 

 

 

 

 

 

 

 

4.3.2. Rheology Study 

The rheological behavior of the stable slurries has been studied using the Anton Parr Rheometer. 

The measurements were carried out with an increasing shear rate (1-100 s-1) at 25oC. The 

different rheological properties such as viscosity, shear stress and non-Newtonian index of the 

slurry has been studied. 

4.3.3. Porosity Measurement 

The porosity of the prepared alumina samples has been measured by Archimedes principle. Dry 

weights of the samples were taken, and then the samples were kept in a beaker filled with water. 

The system was then placed in a vacuum desiccator for about one hour under vacuum. The 

suspended and soaked weight of the samples was recorded. Porosity and density of the samples 

have been calculated using the formulae given below 

 

Before swelling After swelling 

 Figure 4.2: Physical appearance of the sample before and after swelling 
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𝐴𝑝𝑝𝑎𝑟𝑒𝑛𝑡 𝑃𝑜𝑟𝑜𝑠𝑖𝑡𝑦 =
𝑆𝑜𝑎𝑘𝑒𝑑 𝑊𝑒𝑖𝑔ℎ𝑡−𝐷𝑟𝑦 𝑊𝑒𝑖𝑔ℎ𝑡

𝑆𝑜𝑎𝑘𝑒𝑑  𝑊𝑒𝑖𝑔ℎ𝑡−𝑆𝑢𝑠𝑝𝑒𝑛𝑑𝑒𝑑 𝑊𝑒𝑖𝑔ℎ𝑡
    (4.1) 

 

𝐵𝑢𝑙𝑘 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 =
𝐷𝑟𝑦 𝑊𝑒𝑖𝑔ℎ𝑡  𝑋 𝐷𝑒𝑛𝑠𝑖𝑡𝑦  𝑜𝑓  𝑊𝑎𝑡𝑒𝑟

𝑆𝑜𝑎𝑘𝑒𝑑 𝑊𝑒𝑖𝑔ℎ𝑡−𝑆𝑢𝑠𝑝𝑒𝑛𝑑𝑒𝑑  𝑊𝑒𝑖𝑔ℎ𝑡
     (4.2) 

 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 =
𝐵𝑢𝑙𝑘  𝐷𝑒𝑛𝑠𝑖𝑡𝑦 

𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙  𝐷𝑒𝑛𝑠𝑖𝑡𝑦
 𝑋 100      (4.3) 

 

The theoretical density of Al2O3 has been taken as 3.98 gm/cc in the present study. 

4.3.4. Compressive Strength of the Samples 

The binding behavior of starch on Al2O3 has been studied from the green strength measurement 

of the samples in the compression mode. The compressive strength of the sample (both green and 

sintered) was measured using Universal Testing Machine (Tinius Olsen HK 10S). The samples 

were kept in the two compression platen and broken in compression at a cross head speed of 

0.5mm/min. The load cell was 1 KN. 

4.3.5. Microstructural Study 

High resolution scanning electron microscopy (FESEM) is a typical electron microscope by 

which images are formed by simply scanning it with a beam of electrons. The secondary 

electrons (SE), backscattered electrons (BSE) as well as the characteristic X-rays interact with 

the surface atoms and provide the relevant information about the samples microstructure. The 

microstructure of the porous alumina samples has been studied using scanning electron 

microscope (Nova Nano SEM - 450). The samples were gold coated to avoid charging.  
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Chapter 5 Theoretical Prediction of Porosity 

in SCC Samples 
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Let us assume water based alumina slurry prepared with ‘VAlumina’ Al2O3 loading (two 

component basis).  Slurry then consists of VAlumina volume percent of alumina and VWater volume 

percentage of water. VA is the volume of alumina and VW is the volume of water in the slurry. 

The slurry contains the following 

V𝐴 = 
V𝐴𝑙𝑢𝑚𝑖𝑛𝑎

V𝐴𝑙𝑢𝑚𝑖𝑛𝑎+ V𝑤𝑎𝑡𝑒𝑟
∗ 100       (5.1) 

V𝑊 =  
V𝑤𝑎𝑡𝑒𝑟

V𝐴𝑙𝑢𝑚𝑖𝑛𝑎+ V𝑤𝑎𝑡𝑒𝑟
∗ 100       (5.2) 

Starch content in the slurry (Vs) is calculated based on the percent alumina (two component 

basis) in the slurry. 

V𝑆 = 
V𝑆𝑡𝑎𝑟𝑐ℎ

V𝑆𝑡𝑎𝑟𝑐ℎ+ V𝐴𝑙𝑢𝑚𝑖𝑛𝑎
∗ 100       (5.3) 

The composition of the slurry (three component basis) is as follows 

Alumina = Vʹ𝐴 = 
V𝐴

100+ 
V𝑆V𝐴

100−V𝑆

∗ 100      (5.4) 

Starch = Vʹ𝑆 = 

V𝑆V𝐴
100−V𝑆

100+ 
V𝑆V𝐴

100−V𝑆

∗ 100      (5.5) 

Water = Vʹ𝑊 = 
100−V𝐴

100+ 
V𝑆V𝐴

100−V𝑆

∗ 100      (5.6) 

During consolidation, starch present in the slurry swells. The percent swelling of the starch ‘a’ is 

measured by the volume changes upon swelling of starch. It is worthy to note that the volume 

increase of the starch on swelling is equal to the volume of water required for swelling. 

Increase in the volume of starch on swelling =
𝑎

100
∗ Vʹ𝑆   (5.7) 

Volume of starch on swelling = Vʺ𝑆  = Vʹ𝑆 + (
𝑎

100
∗ Vʹ𝑆)   (5.8) 

Volume of water remaining in the slurry = Vʺ𝑊  = Vʹ𝑊 − (
𝑎

100
∗ Vʹ𝑆)  (5.9) 

The model assumes that the swelled starch does not undergo any shrinkage during drying i.e., it 

retains its swelled structure in the dry body. Free water (Vʺ𝑊) removed during drying is 

associated with i) dry shrinkage of the body (V𝑆𝑑) and ii) interparticle porosity (packing porosity) 

in the dried body (green body). Thus the green (dried) body will consists of i) alumina (Vʹ𝐴), ii) 

volume of swelled starch (Vʺ𝑆) and iii) green (dried) porosity. The later part will be equal 

to Vʺ𝑊 − V𝑆𝑑 . These three components when calculated on percentage basis will result as 

follows: 
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Vʺʹ𝐴 =
Vʹ𝐴

100−V𝑆𝑑
∗ 100        (5.10) 

Vʺʹ𝑆 =
Vʹ𝑆+( 

𝑎∗Vʹ𝑆
100

 )

100−V𝑆𝑑
∗ 100        (5.11) 

Vʺʹ𝑔𝑃 =
Vʹ𝑊−(

𝑎∗Vʹ𝑆

100
)− V𝑆𝑑

100−V𝑆𝑑
∗ 100       (5.12) 

Thus, Vʺʹ𝑔𝑃 , the green porosity (on drying) of the starch consolidated body could be well 

predicted by the above equation (5.12).   

During firing, the starch burns out and produces porosity. It undergoes volume shrinkage (V𝐹𝑑) 

due to densification. Thus a sintered starch consolidated body will have i) alumina (Vʺʹ𝐴) and ii) 

porosity (sintered porosity). The sintered pore volume will be equal to the volume of green 

porosity (Vʺʹ𝑔𝑃 ) plus volume of swelled starch (pore former porosity) (Vʺʹ𝑆) minus the volume 

shrinkage (V𝐹𝑑).   These two components calculated on percentage basis will result as follows:    

𝐴𝑙𝑢𝑚𝑖𝑛𝑎 =
Vʺʹ𝐴

100−V𝐹𝑑
∗ 100       (5.13) 

𝑃𝑜𝑟𝑒𝑠 = Vʺʹ𝑓𝑃 =
Vʺʹ𝑆+Vʺʹ𝑔𝑃− V𝐹𝑑

100−V𝐹𝑑
∗ 100      (5.14) 

Thus the total porosity of the sample could be predicted by equation (5.14). 
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Chapter 6 Results and Discussion 
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6.1. Raw Material Characterization 

6.1.1. Particle Size Distribution of Alumina 

The particle size distribution of the as received calcined alumina powder used in the present 

study has been shown in the Fig.6.1. The particle size of the alumina showed a tri-modal 

distribution with a particle size varying from 0.7 to 800µm. Three distinct size particles ranges 

200-800µm, 20-200µm and 0.7-20µm could be observed from the figure. A detailed analysis of 

the particle size distribution pattern showed 74% particles are of 0.7-20 µm, 10% particles are of 

20-200µm, and particles of 200-800µm size are only 16%. 

 

Figure 6.1: Particle size distribution of alumina powder 

6.1.2. Morphology of Alumina and Starch Powder 

Morphology of alumina, as well as starch powders used in the present study, has been shown in 

Fig. 6.2. Alumina Powders [Fig. 6.2 (a)] showed the presence of large agglomerates in the matrix 

of small particles and were on the same line as observed in particle size distribution. The shape 

of the powder was found to be irregular. Corn powder [Fig. 6.2 (b)] showed the presence of both 

small and large size particles. The particles size measured from the image analysis was found to 

be in the range of 6-18µm. It could be observed that the particles are of irregular in shape. 

Arrowroot particles [Fig. 6.2 (c)] showed that the particle size ranges 11-32µm. The particles are 

also irregular in shape. Fine flour particles [Fig. 6.2 (d)] are spherical in shape and have the size 

distribution in the range of 3-13µm. 
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6.1.3. Burn out Behavior of Different Starch 

In the present study, starch has been used as a consolidator, binder, and pore former. Complete 

removal of the starch during firing is an important step to producing crack-free porous ceramics 

fabricated by starch consolidation. Thus, the study of burning behavior of the starch is an 

important step to prepare porous ceramics by this technique. The thermal decomposition 

behaviors of the different types of starch used were studied by DSC-TG (Fig.6.3). The 

decomposition behavior of corn [Fig.6.3(a)] showed the presence of three endothermic peaks at 

low temperatures (83oC, 268oC and 294oC), two exothermic peaks at 322oC and 465oC in the 

DSC plot. All the peaks observed in the DSC curve are associated with weight loss that could be 

seen from TG curve. The endothermic peak at 83oC is due to the removal of absorbed moisture 

in the corn. The endothermic peaks in the temperature zone of 250-350oC are associated with the 

non-oxidation process and are attributed to the breakdown of starch. The exothermic peaks in the 

(a) 

(c) 

(b) 

(d) 

 Figure 6.2: Morphology of (a) Alumina, (b) Corn, (c) Arrowroot and (d) Fine flour powder 
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temperature zone of 350-500oC are associated with oxidation process and are attributed to the 

combustion of gaseous products generated during degradation [42]. Thus in the present study 

small endothermic peaks at 268oC and 294oC are due to the breakdown of starch present in corn. 

The exothermic peaks at 322oC and 465oC are attributed to the combustion of the hydrocarbons 

present in the corn. 

 

Figure 6.3: DSC/TG pattern of starches used in the present study (a) Corn, (b) Arrowroot and (c) 

Fine flour. 

 

The burn out behaviour of the arrowroot and fine flour are shown in the Fig [6.3 (b) and (c)] 

respectively. From Fig.6.3 (b), it could be observed that similar to corn starch arrowroot have 

three endothermic peaks, two exothermic peaks indicating the burnout between 200oC and 

650oC. Whereas Fig.6.3(c) shows that fine flour burn out behaviour has one endothermic peak 

and three exothermic peaks associated with the weight loss. This is attributed to decomposition 

and combustion as discussed. TG analysis showed negligible weight retention above 650oC in all 

the starches studied. 

6.2. Stabilization of Alumina Slurry 

Any slurry processing technique requires the dispersion of ceramic powder in the aqueous 

medium. The stable slurry is required in order to avoid segregation and hence density 

(a) 

(b) 

(c) 
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inhomogeneity in the cast body [31]. Hence, the optimum amount of dispersant for a particular 

ceramic powder is required to obtain defect-free and high-quality products. Dispersant stabilizes 

ceramic slurry through electrostatic/ electrosteric stabilization mechanism [16]. 

Organic and inorganic dispersants adsorbed on the surface of the powder increase the repulsive 

interaction between the powder particles, either by increasing the particle charge or by building 

up a steric barrier between the particles. Darvan C has been used as deflocculant in the present 

study. Darvan C absorbs on alumina particles develops negative surface charge on the surface of 

the alumina particle resulting strong repulsion between the particles. [11]. 

6.2.1. Effect of Dispersant on the Viscosity of the Slurry 

The effect of dispersant (Darvan C) on the viscosity of alumina slurry is shown in Fig.6.4. 

Darvan C concentration was varied based on active matter content in the polymer solution per 

dry alumina powder. 

 

 

 

 

 

 

 

 

 

 

            Figure 6.4: Effect of dispersant (Darvan C) on the viscosity of alumina slurry 

 It could be observed that the viscosity of the slurry decreases from 0.1 to 0.3 wt. % Darvan C 

and then increases from 0.3 to 0.8 wt. % of the Darvan C. The decrease in the viscosity is 

correlated with the increase in surface charge of the particle due to increased adsorption leading 

to enhanced repulsion between the particles. The rise in viscosity with high deflocculant content 

(typically greater than 0.3%) is due to an excess of the dispersant.  
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6.2.2. Effect of Dispersant on the Sedimentation Height 

Slurry stability was evaluated by measuring the sediment height of powder from the slurry as a 

function of time and dispersant concentration. The sedimentation height as a function of time is 

represented in the Fig.6.5 (a). It could be seen that the sedimentation height increases with the 

time due to higher settling of particles.  

 

 

 

 

 

 

 

 

            Figure 6.5: Sedimentation height of alumina slurry (a) as a function of time slurry prepared with 0%    

electrolyte and (b) as a function of electrolyte content measured after 24 hours. 

 

There is no significant change in the height of the sediment after 24 hours.  Figure 6.5(b) 

represents the change in the sedimentation height of alumina as a function of Darvan C after 24 

hours. The sediment height decreases up to 0.3wt% of Darvan C addition followed by an 

increase in the sediment height in the range 0.3 to 0.8 wt%  Darvan C. The minimum settling 

occurred was observed at 0.3wt% and is correlated with the stability of the slurry.  As the 

dispersion content in the slurry increases the repulsive force between the particle increases. This 

increase in repulsive force is attributed to the decrease in the sedimentation height. The increase 

in the sedimentation height at high Darvan C amount (> 3%) is due to the overcrowding effect 

and the overlapping of the electric double layer.  This resultant increase of the Van der Waal’s 

attractive forces causes an increase of the sedimentation height of the slurry. 

(a) (b) 
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6.3. Starch Consolidation Casting 

6.3.1. Swelling Behavior of Different Starch 

Starch contains amylose (15-30 %) and amylopectin (70-85%) [8], among them amylopectin 

molecules are crystalline in nature and dictate the crystallinity of the starch. Amylopectin in 

contact with water undergoes hydration at a temperature above 70oC, due to the penetration of 

water in the amylopectin structure.  This hydration reaction results in an increase in the volume 

of amylopectin. Hence, starch undergoes swelling when heated with water. This hydration 

reaction depends on the temperature of the water- starch system. The rate of the reaction 

increases with increase in temperature. The amount of swelling depends on the crystallinity of 

the starch and hence the amylopectin present in it. The amount of amylopectin present in 

different starch varies with the type and its biological origin [67]. Thus, the amount of swelling is 

likely to be different in the various type of starches. 

 

 

 

 

 

 

 

 

 

Figure 6.6: Degree of swelling of corn starch as a function of time (a) effect of swelling temperature and (b) 

effect of type of starch. 

 

The swelling behavior of starch as a function of time, temperature, and type (biological origin) 

has been provided in Fig.6.6. While Fig. 6.6(a) shows the swelling behavior of corn starch as a 

function of time and temperature and 6.6(b) shows the swelling behavior as a function of starch 

type.  It could be seen from the Fig.6.6 (a) that corn starch showed a maximum swelling of 87%.  

It could also be observed that the starch undergoes a rapid swelling during initial period whereas 

it slows down as the time increases. The volume expansion of the starch on heating was due to 

the water uptake by amylopectin molecules present in starch [41]. This process also involves the 
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destruction of amylopectin crystalline structure and formation of gel [67].The swelling 

characteristics and the maximum amount of swelling (total swelling) were found to be 

independent of consolidation temperature. The only difference was observed lies with the time 

required for complete swelling. It was found to increase with the decrease in swelling 

temperature. This is because of the swelling kinetics where the rate of swelling is more at high 

temperature than that at low temperatures. 

The amount of swelling and the time for complete swelling was found to vary with the source 

(type) of starch [Fig.6.6 (b)]. The complete hydration for arrowroot, corn starch and fine flour at 

90oC was observed after 120 min, 140 min and 160 min respectively with a corresponding 

swelling of 65%, 87% and 95%. The difference in the swelling behaviour is correlated with the 

amylopectin contents in the starch studied [41]. 

6.3.2. Rheology of the Slurry 

The rheological study plays a vital role to understand the slurry processing. Starch containing 

ceramic slurry exhibits a thixotropic hysteresis loop in shear stress and shear rate behavior [10]. 

The presence of hysteresis loop indicates shear thinning behavior [32]. The rheological 

behaviour of the alumina slurry (loading 35%) with different amounts (1-30 vol. %) of the corn 

starch is shown in Fig. 6.7(a). The slurries exhibited shear thinning behaviour as indicated by the 

presence of distinct hysteresis loop in the shear stress - shear rate curve. It could be observed that 

the hysteresis loop decreases with a decrease in corn content in the slurry.  The increase in the 

hysteresis loop indicates the formation of particle-binder-particle interaction leading to the 

transformation of the slurry to the viscoelastic mass.  

Non-Newtonian index of the slurry has been calculated using the power law model equation 2.2 

[68]. The shear thinning index values have been found to be in the range 0.35-0.79 (Table 

VI.III). The ‘n’ value indicates that all the slurries investigated in this study showed Non-

Newtonian behavior. Figure 6.7(c) indicates the viscosity as a function of solid loading as well as 

the corn addition in the slurry. The increase in viscosity either with an increase in alumina 

loading or increase in starch addition is due to increase in particle agglomeration in the slurry 

[10]. 
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Figure 6.7: Rheological behavior of starch containing Al2O3 slurry a) shear stress shear rate behavior, b) 

viscosity shear rate behavior, c) effect of alumina loading on the viscosity of the slurry and d) 

effect of different types of starch content. 
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          Table VI.III: Consistency factor (k) and Non-Newtonian Index (n) of alumina slurry studied. 

 

 

The viscosity of the slurry as a function of shear rate at different corn starch content is plotted in 

the Fig. 6.7(b). It could be seen that the viscosity decreases with the increase in the shear rate. 

This behavior again indicates shear thinning characteristics of the slurry. Viscosity also increases 

with the increase in the corn content of the slurry. This could be correlated to the powder 

agglomeration in the slurry. At high solid loading slurry, the viscosity was found to be strongly 

dependent on shear rate as compared to that observed in slurry prepared with low solid loading. 

Figure 6.7(d) represents the effect of starch content and type of starch on the viscosity of the 

slurry (loading 40%). The viscosity of the slurry is increasing with the increase in the starch 

addition irrespective of the starch type and could be explained in terms of solid loading in the 

same line as discussed earlier. The viscosity is found to change the type of the starch for a fixed 

amount of starch content. It could be seen that the slurries prepared with fine flour have the 

highest viscosity whereas, slurries prepared with arrowroot showed the lowest viscosity. Slurries 

prepared with corn starch showed an intermediate behavior. It could be seen from Fig 6.2 that 

Alumina Loading 
(Vol. %) 

Corn Starch 
Content 

(Vol. %) 

Consistency Factor 
(K) 

Non-Newtonian 
Index 

(n) 

 
30 

 

20 
30 

40 
50 

0.96 
0.57 

0.64 
0.72 

0.3734 
0.3854 

0.5962 
0.7952 

 
 

35 
 

1 
5 

10 
20 

30 
40 

0.60 
0.71 

1.04 
1.49 

1.50 
1.62 

0.5766 
0.4917 

0.4507 
0.3742 

0.3979 
0.6076 

 
 

40 
 

1 
5 

10 
20 

30 

1.19 
1.28 

1.60 
1.71 

2.19 

0.4371 
0.4242 

0.4015 
0.3683 

0.4515 

 
45 
 

1 
5 
10 

20 

1.42 
1.75 
2.27 

2.63 

0.3800 
0.3537 
0.2812 

0.5230 



| Results and Discussion 48 

 

fine flour showed the smallest particle size while arrowroot showed the largest particle size. 

Corn has the intermediate particle size. The increase in the viscosity is attributed to the decrease 

in the particle size of the starch in the same line as reported earlier [32].  

6.3.3. Gelation Behaviour of Corn Starch 

The effect of temperature on the viscosity of an alumina (25 vol%) slurry containing corn starch 

(30 vol% with respect to Al2O3) has been shown in Fig 6.8. The viscosity was found to decrease 

in the temperature range 40-55oC then increases in the temperature range 55-65oC. This 

experiment was conducted to ascertain the temperature at which the corn starch undergoes 

polymerization and gelling resulting in setting off the cast.  

 

 

 

 

 

  

 

 

 

 

 

 

Fig. 6.8 shows that viscosity is 6.15 mPa.s at 45oC, and it did not change appreciably till 67oC. 

The viscosity increases to 6.6 mPa.s at 69oC and 9.2 mPa.s at 71oC. The sudden increase in 

viscosity between 69 -71oC implies the gelling of the starch takes place between 69-71oC and for 

proper setting and hardening of the cast, the cast needs to be dried at 71oC or higher. 

6.3.4. Compositional Study 

Viscosity plays a major role in the mixing and casting properties of the starch-containing slurry. 

It has been observed that to obtain defect-free consolidated samples, the viscosity of the slurry 

Figure 6.8: Gelling behaviour of corn starch. 
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has to be maintained in the range of 0.05-1.19 Pa.s. The viscosity of alumina-water-corn system 

can be tailored by altering the ratio of these three components. An attempt has been made to find 

the optimum composition range in the three component systems of starch, water, and alumina.  

So as the slurry prepared with the composition would have a viscosity in the above range and has 

been presented in a ternary diagram Fig. 6.9. Figure 6.9 shows that to have the slurry viscosity in 

the range 0.05-1.19 Pa.s,  the alumina and starch content of the slurry should be in the range of 

23-44 vol% and 0.3-25 vol% respectively. 

 

 

 

 

 

 

 

 

 

 

 

In the present work the alumina loading is calculated based on alumina – water (two component 

system basis) and the starch, amount is calculated on the basis of alumina – starch (two 

component system basis). Thus, the ternary composition could be converted to two two-

component basis.  Figure 6.9 showed that the alumina loading of the slurry should be in the 

range of 30-45 vol%, and the starch content of the slurry should be in the range of 1-50 vol% to 

have the desired viscosity of the slurry.  

Any compositions outside this range either formed cracks in the sample due to excessive drying 

shrinkage or it formed pinholes or blow holes due to very poor flowability (Fig 6.10). The 

calculation of batches based on two components and three components system and the measured 

viscosity of the slurry is shown in Table – VI.IV   

Figure 6.9: Ternary diagram indicating slurry compositions suitable for starch consolidation casting  
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6.3.5. Green Properties 

Green properties of the samples namely drying shrinkage, green porosity and strength of the 

starch consolidated samples as a function of alumina loading and starch content of the slurry are 

discussed in the following sections. 

6.3.5.1.Green Defects 

In the green cast body made by SCC method, the segregation of coarse particles during settling 

could not be clearly observed. However, the dried bodies had vertical cracks near the top surface 

Fig. 6.11(a). The presence of these cracks indirectly indicate a density gradient in the cast bodies 

which is explained below:  

 

 

 

 

 

 

 

 

During the setting of the cast, if the partial setting of the coarse particles has taken place, it will 

result in a better and higher particle packing at the bottom. Thus, the bottom part of the cast will 

have a lower shrinkage as compared to the top part. The top part being more porous will try to 

(a) (b) 

Figure 6.11 Green defects observed in SCC technique. a) Vertical cracks near the top surface 

(encircled area); b) circumferential crack (arrow marked). 

Figure 6.10: Appearance of the samples (a) low viscosity range, (b) in the viscosity range and (c) high 

viscosity range. 

(a) (b) (c) 
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shrink more during drying. The shrinkage of the top layer will be constrained by the rigid and 

less porous bottom part. This factor will lead to a tensile stress development at the top and 

cracking (encircled area). In some other sample, a circumferential crack has also been observed 

(Fig 6.11(b)) which has almost separated as a separate layer (arrow marked). This defect is also 

due to differential drying effect due to preferential settling of the coarse particles during drying. 

6.3.5.2.Volume Shrinkage 

Starch consolidation is based on the consolidation of the ceramic slurry through gelation 

followed by water uptake and hydration of the starch used in the slurry. The ‘as cast’ slurry 

consists of alumina, starch, and water. It could be seen from the Table – VI.IV that alumina 

content in the slurry (calculated on three component basis) increases with increase in alumina 

loading (two component basis) whereas, the water content (calculated on three component basis) 

decreases. During consolidation, starch takes up some amount of water and undergoes swelling 

(volume expansion). This increase in the volume of the starch is equal to the volume of the water 

taken up by the starch during consolidation. The rest amount of water (free water) is utilized in 

two ways. A part of it fills up the interstitial void and the other part of water is present as a water 

film around the particles (alumina and swelled starch together). 

The consolidated body undergoes shrinkage on drying, and this shrinkage is equal to the volume 

of the water film formed around the particles. The water present in the interstitial void does not 

have any effect on the shrinkage. The volume expansion during the consolidation of (corn) starch 

produces a volume stress in the matrix of cast body, which helps in rearrangement (packing) of 

the alumina particles.  The volume stress increases with the starch content of the slurry (two 

component basis), and the matrix of the body containing a high amount of starch is likely to have 

more packing density. 

The volume shrinkage of the green starch consolidated alumina samples is shown in Fig 6.12. 

Fig. 6.12 (a) represents the volume shrinkage of the cast as a function of alumina loading while 

starch content in the slurry was 20 vol%. Fig. 6.12 (b) represents the volume shrinkage of the 

cast as a function of starch content in the slurry while alumina loading of the slurry was 35 vol%. 

The volume shrinkage has been determined by measuring the volumetric changes during casting 

and drying of the cast. 
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         Table VI.IV: Composition of alumina slurry (based on two and there component system) along with its 

viscosity. 

 

S. No Two component system Three component system 

(Alumina – starch- water 

system) (vol%) 

Viscosity 

(Pa.s) 
Alumina Loading 

(vol%) 

Starch Content 

(vol%) 

Alumina Water Alumina Starch Alumina Starch Water 

1 30 
 

70 
 

80 20 27.911 6.962 65.126 0.0508 

2 70 30 26.590 11.344 62.064 0.0573 

3 60 40 25.005 16.663 58.331 0.0683 

4 50 50 23.069 23.069 53.861 0.242 

5 35 

 

65 

 

99 1 34.873 0.340 64.785 0.0447 

6 95 5 34.366 1.800 63.832 0.0491 

7 90 10 33.693 3.721 62.585 0.106 

8 80 20 32.186 8.041 59.771 0.139 

9 70 30 30.426 13.042 56.531 0.160 

10 60 40 28.385 18.903 52.710 0.234 

11 50 50 25.925 25.925 48.149 1.19 

12 40 

 

60 

 

99 1 39.847 0.380 59.771 0.127 

13 95 5 39.175 2.040 58.793 0.155 

14 90 10 38.295 4.241 57.462 0.163 

15 80 20 36.367 9.081 54.550 0.192 

16 70 30 34.146 14.622 51.230 1.15 

17 45 
 

55 
 

99 1 44.797 0.440 54.761 0.301 

18 95 5 43.968 2.300 53.730 0.348 

19 90 10 42.848 4.760 52.390 0.825 

20 80 20 40.456 10.104 49.439 1.980 

 

Alumina loading and starch content of the slurry was found to play a vital role on the shrinkage. 

It could be observed from Fig 6.12[(a) and (b)] that the green volume shrinkage decreases with 

the increase in the alumina loading as well as the corn starch content of the slurry. The water 
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content and more preciously the free water content of the slurry decreases with the increase in 

alumina loading of the slurry (Table – VI.IV). 

 

 

 

 

 

 

 

 

 

The decrease in free water content and hence the decrease in water film thickness around the 

particles is attributed to the decrease in volume shrinkage of the consolidated samples. The water 

content and more preciously the free water content of the slurry decreases with the increase in 

the starch content of the slurry (Table – VI.IV). Moreover, the volume stress generated from the 

expansion of starch on swelling increases with the increase in the starch content of the slurry 

leading to better packing in the consolidated ceramics. These two facts results in low shrinkage 

value with an increase in starch (corn) content in the slurry. 

6.3.5.3.Green Porosity  

The green porosity of the starch (corn) consolidated alumina samples are shown in Fig 6.13. Fig. 

6.13 (a) represents the porosity as a function of alumina loading in the slurry while starch content 

in the slurry was 20 vol%.  6.13 (b) represents the same as a function of starch content in the 

slurry while alumina loading of the slurry was 35 vol%. It could be observed from Fig 6.13[(a) 

and (b)] that the green porosity decreases with the increase in alumina loading as well as starch 

(corn) content in the slurry. This is attributed to the decrease in free water content in the slurry 

with an increase in total solid loading (corn starch and alumina counted together) as explained 

earlier. Moreover, with an increase in starch content in the slurry more compactness of Al2O3 

powder due to the compressive force arising from the swelling of corn starch leads to increase in 

packing density. As a result porosity of the sample decreases. 

(a) (b) 

Figure 6.12 Green shrinkage of the samples as a function of (a) solid loading and (b) starch 

content. 
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6.3.5.4.Green Strength 

The green strength of starch consolidated alumina samples as a function of alumina loading and 

corn content in the slurry is presented in the Fig 6.14. 

 

 

 

 

 

 

 

 

 

Fig. 6.14 (a) represents the green strength as a function of alumina loading in the slurry while 

starch content in the slurry was 20 vol%. Fig 6.14 (b) represents the same as a function of starch 

content while alumina loading of the slurry was 35 vol%. It could be observed from Fig 6.14[(a) 

and (b)] that the green strength increases with the increase in the alumina loading as well as with 

the corn starch addition. The increase in the alumina loading or the starch content in the slurry 

(a) (b) 

(a) (b) 

Figure 6.13 Green porosity of the samples as a function of (a) solid loading and (b) starch 

content. 

Figure 6.14 Green strength of the samples as a function of (a) solid loading and (b) starch 

content. 
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was found to decrease the porosity of the consolidated green body. Thus, the increase in the 

strength for both the cases could be attributed to the decrease in porosity of the green body. 

6.3.6. Sintered Properties 

Dried green sample microstructure would consist of alumina, swelled starch and intergranular 

pores (packing porosity). When the dried green samples are fired at high temperature, the 

swelled corn burn out in the temperature zone 600-650oC (Fig. 6.3) leading to an increase in the 

porosity of the sample. Thus, in the sample fired at low temperature (typically 1000oC), the body 

consisted of alumina, the packing porosity and the pore formed by the pore former (pore former 

porosity). The volume of pore former porosity will be equal to the volume of swelled starch 

present in the body.  

The swelled starch volume could be calculated from the volume of starch and the percentage 

swelling of the starch (corn) on hydration. Study of particle morphology of starch suggested a 

distributed particles size. Thus, the pore former porosity should have a similar distribution as that 

of starch. The packing pores and the pores formed by a fraction of starch are of smaller size. 

These small pores will collapse easily as the densification proceeds during sintering as compared 

to the large pores created by the pore former [16].  

6.3.6.1.Volume Shrinkage 

The volume shrinkage of the porous alumina samples as a function of sintering temperature, 

alumina solid loading and corn starch content in the slurry is shown in Fig 6.15. It could also be 

observed from the Fig 6.15(a) that the volume shrinkage decreased with solid Al2O3 loading 

when the samples were sintered at a particular temperature. Similar results were obtained for all 

the temperature studied in the present study. There was an appreciable change in volume 

shrinkage (5-7%) as a function of alumina loading when the samples were sintered at low 

temperature (1300-1400oC). However, it was small (2-3%) when the samples were sintered at 

high temperature (1500-1600oC). The porosity of the dried cast samples (Section 6.3.5.2) was 

found to decrease with alumina loading.  Thus, the sample prepared with high alumina solid 

loading slurry were likely to have small packing porosity as compared to that prepared with low 

solid loading. This packing porosity is likely to disappear at low sintering and is associated with 

shrinkage. Thus, the samples prepared with low alumina loading slurry showed high shrinkage 

when sintered at low temperature. The rapid increase in volume shrinkage observed in the 
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temperature range 1400-1500oC is attributed to the enhanced sintering of the sample at this 

temperature. 

 

 

 

  

 

 

 

 

It can be seen from Fig 6.15(b) that the volume shrinkage of the sample increases with corn 

content in the slurry. Firing shrinkage is associated with the disappearance of pores on 

densification. Small size pores disappear easily during sintering as compared to that having a 

large size. The pore former used in the present study has distributed particle size (Fig 6.2) which 

produces distributed pores on its removal during the firing process. The amount of pores 

generated by the pore former increases with the increase in starch content in the slurry. Thus, the 

pore former porosity increases in the samples prepared with high starch content in the slurry. A 

major portion of the packing porosity and a fraction of pore former porosity are likely to 

disappear during densification. The second part increases with increase in starch content in the 

slurry. Thus, the samples prepared with high starch content showed high shrinkage. It can be 

seen that the volume shrinkage increases with the increase in sintering temperature irrespective 

of the amount of the corn starch added. This is correlated with the densification of alumina with 

temperature. 

6.3.6.2.Apparent Porosity  

The influence of the alumina loading, corn starch content and sintering temperature on the 

apparent porosity of the starch consolidated alumina samples is presented in the Fig. 6.16. The 

porosity decreases with the increase in the Al2O3 loading as well as the sintering temperature 

[Fig 6.16 (a)].The green porosity (or packing porosity) decreases with increase in the alumina 

loading (Fig 6.13). The decrease in green porosity with an increase in alumina loading indicated 

(a) (b) 

Figure 6.15 Sintered shrinkage of the samples as a function of (a) solid loading and (b) 

starch content as well as sintering temperature. 
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improved packing of alumina in the consolidated body. Thus, the smaller size pores (interparticle 

porosity) are expected to be small in a sample prepared with high alumina loaded slurry. These 

samples will show less porosity on sintering also. Thus, the apparent porosity of the samples 

decreases with increase in alumina loading in the slurry. 

 

 

  

  

 

 

 

 

 

It could also be observed from the Fig 6.16(b) that with the increase in the corn starch content 

the apparent porosity increases. The combustion of corn starch in the temperature 600-650oC 

(Fig. 6.3) creates pores (pore former porosity) in the alumina matrix. The packing porosity 

decreases with the increase in the starch content (Fig 6.13). Pore former porosity should have 

distributed size as that of the starch used in the study. A fraction of the pore former porosity and 

the packing pores disappears with the progress in the densification due their small size. However, 

with the increase in the starch content the porosity increases in spite of the fraction of pores 

getting disappeared during densification. It could be seen that apparent porosity decreases with 

the increase in the sintering temperature and is correlated with the densification of the samples at 

high temperature.  

6.3.6.3.Relative Density 

Figure 6.17 presents temperature dependence of the relative density of the porous alumina 

sample prepared by starch consolidation technique as a function of alumina loading and starch 

content in the slurry. It could be observed from Fig 6.17(a) that the relative density increases 

with the increase in the alumina loading. It could be seen from Fig. 6.13 that the green porosity 

of the sample decreases with increase in solid loading of the slurry. Thus, the samples prepared 

(a) (b) 

Figure 6.16 Sintered porosity of the samples as a function of (a) solid loading and (b) 

starch content as well as sintering temperature. 
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with high solid loading slurry would have more green density. Better the green density of the 

sample better the sintered density. Thus, the relative density of the sample increases with 

alumina loading of the slurry  

  

 

 

 

 

 

 

 

. 

 

Figure 6.17(b) represents that relative density of the sample decreases with the increase in the 

corn starch content in the slurry. The starch granules present in the samples burn off leaving the 

pores in the samples. Thus, the density of the sample decreases with increase in starch amount in 

the slurry. Relative density as a function of sintering temperature was found to increase in both 

the cases. This is attributed due to the increase in densification with the increase in the sintering 

temperature.  

6.3.6.4.Cold Crushing Strength 

Cold crushing strength (CCS) of porous alumina ceramics prepared by starch consolidated 

technique has been shown in Fig. 6.17 as a function of sintering temperature, alumina loading 

and corn starch content in the slurry. Figure 6.18(a) shows that the CCS increases with the 

increase in the alumina loading. The increase in CCS value with an increase in alumina loading 

of the slurry could be correlated to the increase in the density as explained earlier. CCS of the 

sample was found to decrease with increase in corn starch content in the slurry (Fig 6.18(b)). 

Corn starch produces pore former porosity in the samples. Thus, pore former porosity in the 

samples increases with increase in corn starch content of the slurry. This increase in pore former 

porosity with an increase in starch content is correlated with the decrease CCS value observed in 

Figure 6.17 : Sintered density of the samples as a function of (a) solid loading and (b) 

starch content as well as sintering temperature 
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the sample. CCS of the sample was found to increase with an increase in sintering temperature in 

both the cases. Porous alumina sample sintered at 1600oC showed highest strength value (81.77 

MPa) which is almost four times that observed for the sample sintered at 1300oC which has a 

compressive strength of 19.27 MPa. It has been discussed earlier that the porosity of the samples 

decreases with increase in sintering temperature and is attributed to densification of the samples 

at high temperature. Thus, the increase in CCS value of the samples with an increase in sintering 

temperature is correlated with the decrease in the porosity of the samples with an increase in 

sintering temperature.    

 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

6.5.6.5. Microstructure 

The microstructure of the porous alumina samples fabricated through starch consolidation 

technique has been shown in the Fig 6.19. Fig 6.19 [(a) and (b)] represents the microstructure of 

the 1600oC sintered sample containing 30 vol % and 45 vol % alumina loading respectively with 

20 vol% corn starch. The presence of large interconnected pores in the matrix containing small 

pores could be observed from both micrographs. The large pores are formed due to burning off 

the starch and are the pore former porosity in the samples. The small pores observed in the 

matrix are interparticle porosity (packing porosity). It could also be observed that the population 

of interparticle porosity decreases with increase in alumina loading and thus supports the earlier 

observations. 

  

(a) (b) 

Figure 6.18 Cold Crushing Strength of the samples as a function of (a) solid loading and 

(b) starch content sintered at different sintering temperatures  
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The SEM micrographs of the samples prepared with a 35% alumina loaded slurry containing 20 

vol% and 40 vol% corn starch has been shown in Fig. 6.20 [(a) and (b)] respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

The samples have been sintered at 1600oC. It could be observed that with the increase in the corn 

starch content the large pores (pore former porosity) in the samples increases, whereas, the small 

sized intergranular porosity (packing porosity) decreases.  

(a) (b) 

(a) (b) 

Figure 6.19 SEM micrograph of the samples prepared with (a) 30 vol%  and (b) 45 vol%  

alumina loaded slurry containing 20 vol%  starch sintered at 1600oC. 

Figure 6.20 SEM micrograph of the samples prepared with 35 vol%  alumina loaded slurry 

containing (a) 20 vol%  and (b) 40 vol%  starch sintered at 1600oC. 
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It could also be observed that with the increase in the pore former, the interconnections between 

the pore former (corn starch) pores increases. The increase in pore former porosity is attributed 

to the increase in starch content in the slurry. The decrease in interparticle porosity is related to 

the combined effect of the decrease in water content of the slurry as well as an increase in 

compressive stress in the slurry due to swelling of the starch 

 

 

 

 

 

 

 

 

 

 

The microstructures of the samples prepared with 35 vol% alumina loaded slurry containing 

1vol% starch sintered at 1300oC, and 1600oC has been shown in Fig. 6.21[(a) and (b)] 

respectively. Two distinct features could be revealled from the micrographs. First one is the 

interparticle porosity was found to be more when the samples were sintered at low temperature 

(1300oC). Second is the grain size of the samples was found to be more in the samples sintered at 

high temperature (1600oC). These features could be correlated with the densification and grain 

growth of the samples associated with the temperature. The extent of densification and grain 

growth is expected to be low when the samples are sintered at low temperature. Thus, the 

samples sintered at 1300oC showed more interparticle porosity and small grain size. 

6.3.7. Validation of Theoretical Model 

The porosity of the porous sample depends on several parameters like percent swelling of starch, 

starch and water content in the slurry. Theoretical calculation cited in Chapter 5 shows that if 

green and firing shrinkage of starch consolidated body is known the porosity of the samples can 

be predicted. 

(a) (b) 

Figure 6.21 SEM micrograph of the samples prepared with 35 vol%  alumina loaded slurry 

containing 1 vol%  starch sintered at (a) 1300oC and (b) 1600oC. 
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The green porosity of the starch consolidated body is due to the removal of water present in the 

intergranular space of the particles. These are mostly open pores. Thus, the apparent porosity of 

the green samples are close to the total porosity.  The porosity of the starch consolidated samples 

as a function of alumina loading and starch content has been shown in Fig. 6.22.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 6.22 [(a) and (b)] represents measured green porosity of the samples as a function of alumina 

loading and starch content in the slurry respectively. The porosity of the sample calculated using 

the equation 5.12. Has also been incorporated into the figure. It could be seen that the theoretical 

green porosity calculated using equation 5.12 matches well with the measured one. Fig 6.22 [(c) 

and (d)] represents measured sintered porosity of the samples sintered at 1300oC as a function of 

alumina loading and starch content in the slurry respectively. The porosity of the sample 

calculated using the equation 5.14 has also been incorporated into the figure. It could be seen that 

(a) (b) 

(c) (d) (d) 

Figure 6.22 Green and sintered porosities of the samples showing the validation of the 

theoretical model. 
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the theoretical porosity calculated using equation 5.14 matches well with the measured one with 

a small deviation. The deviation in the values is due to the assumptions made in the model 

6.3.8. Effect of Type of Starch 

The effect of type of starch on sintered volume shrinkage, apparent porosity, relative density and 

cold crushing strength (CCS) of porous alumina ceramics as a function of sintering temperature 

prepared by SCC technique has been shown in Fig 6.23. All the samples have been prepared with 

35 vol% alumina loaded slurry containing 30 vol% starch. It could be seen from the Fig 6.23(a) 

that the sintered volume shrinkage is almost similar irrespective of the type of starch.  

 

 

 

 

 

 

 

 

 

 

 

 

 

The volume shrinkage increases with increase in sintering temperature and is correlated to the 

densification of the sample with an increase in temperature. The shrinkage is mainly due to the 

disappearance of smaller size pores (interparticle pores and a fraction of pores formed from the 

(c) (d) 

(b) 

Figure 6.23 Influence of sintering temperature on (a) volume shrinkage, (b) apparent porosity, (c) 

relative density and (d) cold crushing strength of the samples prepared with different type 

of starch. 

(b) 

(c) (d) 

(a) 
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small size fraction of the pore former used) present in the body. It could also be observed that 

variation in the volume shrinkage is 5% between 1300-1400oC, 15 % between 1400-1500oC and 

10% between 1500-1600oC irrespective of the type of starch. This rapid change between 1400-

1500oC is due to the progress in the densification of the samples. Figure 6.23(b) presents the 

influence of the type of starch on the apparent porosity of the alumina samples. It could be 

observed that irrespective of the sintering temperature, the porosity of the samples prepared with 

fine flour is higher as compared to that prepared with corn and arrowroot. Samples prepared with 

arrowroot starch have the smallest porosity value while those prepared with corn starch showed 

an intermediate value.  Swelling behavior study indicated that fine flour undergoes the highest 

swelling among the three starches, while arrowroot has the smallest swelling and corn has an 

intermediate swelling. Thus, the samples prepared with fine flour showed the highest porosity. 

The porosity of the samples prepared with all the starches decreases with increase in sintering 

temperature and is related to the densification of the sample. 

The relative density of the samples as a function of the starch type and sintering temperature has 

been shown in the 6.23(c). It showed the exactly the opposite trend as that of porosity and were 

quite obvious. This behavior could be explained in terms of the swelling of the starch and its 

consequences on the packing behavior during the consolidation process.  The cold crushing 

strength of the samples as a function of the starch type and sintering temperature has been shown 

in Fig 6.23(d). The CCS of the samples is 40.11MPa, 37.68MPa, 29.62MPa at 1300oC and 

59.04MPa, 57.78MPa, 55.14MPa at 1600oC for arrowroot, corn starch, and fine flour 

respectively. Samples prepared with arrowroot showed the highest strength while that prepared 

with fine flour showed the lowest strength value when sintered at the same temperature. The 

samples prepared with corn starch showed an intermediate value. The observed CCS value in the 

samples could be correlated with the porosity of the samples 

6.3.8.1.Microstructure  

The microstructure of porous samples fabricated using a different type of starch has been shown 

in the Fig. 6.24. The samples were sintered at 1600oC. Figure 6.24(a) shows the distribution of 

pore former porosity in a sample prepared with 35 vol% of alumina loaded slurry containing 30 

vol % arrowroot starches. It could be observed that the pores are irregular in nature with a pore 
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size ranging from 11-32µm same as the granular size of the arrowroot starch. Hence, the large 

pores were the pore former pores. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.24[(b), (c) and (d)] represent the pores created by the pore formers corn starch, 

arrowroot and fine flour respectively. Corn pores [Fig. 6.24(b)] showed both small and large size 

pores. The pore size distribution is in the range of 6-18µm. It could be observed that the particles 

are spherical in shape. Arrowroot pores [Fig. 6.24(c)] showed irregular shape with distributed 

pore size in the range of 11-32µm. Fine flour pores [Fig. 6.24(d)] are spherical in shape and have 

the size distribution in the range of 3-13µm. 

(a)  (b)  

(d)  (c)  

Figure 6.24 SEM Micrographs porous alumina ceramics prepared with 35 vol %  alumina 

loaded slurry containing 30 vol %  starch (a) arrowroot, (b) corn, (c) arrowroot, and 

(d) fine flour. 
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6.3.9. Effect of Titania Addition 

Titania has been used as a sintering additive to increase the strength of the porous alumina 

samples. The presence of TiO2 progresses the densification of the sample. Lowering the sintering 

temperature without compromising the porosity and the strength of the sample could be possible 

by the addition of TiO2.  

The effect of titania (TiO2) on the properties of the porous alumina samples is represented in the 

Fig 6.25. The samples are prepared with alumina loading of 45 vol% with a corn content of 1 

vol% related to the alumina powder. These are sintered at 1500oC to optimize the TiO2 amount. 

Apparent porosity as a function of TiO2 addition is shown in the Fig 6.25(a). It could be observed 

from the Fig 6.25 that TiO2 addition reduces the porosity of the samples. It could also be 

observed that a small amount of TiO2 addition (up to 3 wt%) is more effective in lowering the 

porosity of the sample. The total porosity of the samples decreased to 15% with the addition of 1 

wt% TiO2, which is twice the porosity that observed in the samples prepared without TiO2 

additive.  Fig 6.25(b) shows the CCS of the samples as a function of TiO2. The CCS followed an 

inverse relation with the porosity. The sintering and the grain growth of alumina were influenced 

by the addition of the TiO2. TiO2 has a substantial solubility in Al2O3 matrix. The solubility limit 

of TiO2 in Al2O3 is limited to 0.35mol% (70-71). Substitution beyond this limit leads to 

precipitation of the second phase of Al2TiO5 (71-73). The TiO2 addition was only 3wt% in the 

present study that is well below the solubility limit. Substitution of Al3+ sites by Ti4+ ions within 

the solubility limit leads to the formation of aluminium vacancies (𝑉𝐴𝑙
). The defect formation 

reaction can be written as follows: 

3𝑇𝑖𝑂2  
2𝐴𝑙2𝑂3
→    3𝑇𝑖𝐴𝑙

 +6𝑂𝑂
 +𝑉𝐴𝑙

  

The densification of Al2O3 ceramics was enhanced by the diffusion of the aluminium vacancies 

(𝑉𝐴𝑙
) [70-73].   

 The effect of sintering aid TiO2 on the porosity and compressive strength of the porous alumina 

samples is shown in the Fig 6.25. It could be observed from the Fig 6.25(c) that the 20% of 

porosity decreases with the addition of TiO2. It could also be observed that the porosity of the 

samples sintered at 1600oC without TiO2 and the porosity of the samples sintered at 1300oC with 

TiO2 were almost similar irrespective of the starch content in the sample 
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Figure 6.25(d) shows that the cold crushing strength increases with the addition of TiO2. It could 

be seen that the similar compressive strength is obtained for the samples sintered at 1600oC 

without TiO2 and the porosity of the samples sintered at 1300oC with TiO2. Hence from this 

study it could be concluded that the lowering of sintering temperature could be possible by the 

addition of TiO2 without compromising the porosity and the strength of the porous alumina 

samples.  

6.3.9.1.Microstructure 

The effect of TiO2 additive on the microstructure of the porous samples prepared by starch 

consolidation technique has been represented in the Fig 6.26. The microstructure of the 0wt% 

(b) 

Figure 6.25 Effect of TiO2 addition on (a) apparent porosity, and (b) cold crushing strength of the 

samples prepared with 45 vol%  alumina loading slurry containing 1 vol%  corn sintered at 

1600oC ; (c) apparent porosity and (d) cold crushing strength of the samples  

(a) (b) 

(c) (d) 
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and 1wt% TiO2 added sample prepared with a sulrry containing 35vol% of alumina loading and 

1vol% of the corn starch are shown in Figure 6.26[(a) and (b)] respectively. 

 

 

 

 

 

 

 

 

 

 

Fig 6.26[(a) and (b)] show that with the addition of the additives enhanced the grain growth 

leading to increasing in shrinkage and strength as well as a decrease in the porosity. This change 

in the properties has been attributed to the enhanced grain growth with the addition of the 

additives. 

The microstructure of the sample prepared with 20 vol% corn starch and sintered at 1600oC and 

1300oC has been shown in Fig. 6.27[(a) and (b)] respectively, where, sample sintered at 1600oC 

does not contain any TiO2, and that sample sintered at 1300oC contains 1wt% TiO2. It is worthy 

to note that the microstructural features namely grain size and its distribution, pore size, and its 

distribution were found to be quite identical in both the micrographs. These features support the 

observed identical physical properties of the samples sintered at 1600oC without TiO2 and 

1300oC with TiO2. Hence, the study suggests that TiO2 addition is effective to reduce the 

sintering temperature of porous alumina ceramics without compromising the porosity and 

strength. All the samples prepared hence fourth in SRT and combination technique contain 1% 

TiO2 as a sintering additive. 

 

 

(a) (b) 

Figure 6.26 SEM micrographs of the samples prepared with 35 vol%  alumina loading 

slurry containing 1 vol%  corn starch  sintered at 1600oC (a) 0%  TiO2, (b) 1%  TiO2 



| Results and Discussion 69 

 

 

 

 

 

 

 

 

 

 

 

6.4. Sponge Replica Technique 

The most frequently used technique, in order to obtain a highly interconnected porous structure 

is the sponge replica technique. The porous structure and its properties like apparent porosity and 

the cold crushing strength of the samples were more dominated by the particle loading, rheology 

of the slurry and the structure of the polymeric sponge template. Particle loading and the 

sintering temperature depicts the strength of the porous sample. 

6.4.1. Rheological Behaviour of Slurry Suitable for SRT Technique 

The slurry for the sponge replica technique should have the capability to coat the struts of the 

template (sponge) uniformly and should not drain out of the template after impregnation. The 

rheological behaviour of the slurry with different solid loading has been represented in the Fig 

6.28(a). It could be observed that all the slurries exhibit shear thinning behaviour and the shear 

thinning hysteresis decreases with the decrease in the solid loading. The viscosity of the slurry 

decreases with a decrease in the solid loading that has been attributed to the breakdown the flocs 

present in the slurry by applying the shear.   

 

 

 

(b) (a) 

Figure 6.27 SEM micrographs of the samples prepared with 35 vol%  alumina loading slurry 

containing 1 vol%  corn starch  (a) 0%  TiO2 sintered at 1600oC (b) 1%  TiO2, sintered at 

1300oC 
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6.4.2. Viscosity and Binder Optimization 

Figure 6.28(b) shows the effect of the binder (PVA) on the viscosity of the slurry as a function of 

solid loading. It has been observed that the viscosity of the slurry increases with the increase in 

the binder content. This could be attributed to the presence of active polymer that decreases the 

relative motion of the ceramic particles in the slurry leading to the increase in the viscosity. It has 

been observed that the viscosity increases with the increase in the solid loading at a particular 

binder content. This could be correlated to the powder agglomeration in the slurry. At high solid 

loading slurry, the viscosity was found to be strongly dependent on shear rate as compared to 

that observed in slurry prepared with low solid loading. 

6.4.3. Sintering Properties 

6.4.3.1.Volume Shrinkage 

The sintered volume shrinkage of the porous alumina samples fabricated using sponge replica 

technique as a function of sintering temperature as well as alumina solid loading in the slurry is 

shown in Fig 6.29. It could also be observed that the volume shrinkage decreased with the 

increase in solid Al2O3 loading of the slurry when the samples were sintered at a particular 

temperature. With the increase in the alumina loading from 20-35 vol %, the volume shrinkage 

decreased from 15-8 % when the samples were sintered at 1400oC while it decreased from 21-

14% when sintered at 1600oC.  

 

Figure 6.28 Rheological behavior of Al2O3 slurry showing (a) shear stress-shear rate 

behavior (b) effect of PVA content on the viscosity of the slurry as a function of 

alumina loading 
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The water content of the slurry calculated on three component basis decreases with increase in 

alumina loading (two component basis). The decrease in the water content causes an increase in 

strut thickness and more number of filled structure formed during fabrication. Thus, a dense 

microstructure is likely to form when the samples are prepared with high alumina solid loading. 

The decrease in the volume shrinkage with the alumina loading has been attributed to the 

decrease in the free water in the slurry and the consequent effects of the same. It could also be 

observed that the volume shrinkage was more when the samples were sintered at high 

temperature. The increase in volume shrinkage with an increase in sintering temperature is 

correlated with the sintering behaviour. The high the sintering temperature the more will be 

densification. Moreover, in the present case the sample is prepared with TiO2 as an additive that 

forms a liquid phase at high temperature and showed enhanced densification.  Volume shrinkage 

always accompanies densification. Thus, the volume shrinkage increases with increase in 

sintering temperature. 

6.4.3.2.Apparent Porosity 

The influence of the alumina loading of the slurry and sintering temperature on the apparent 

porosity of the porous alumina samples prepared by sponge replica technique is presented in the 

Fig 6.30. The porosity decreases with the increase in the Al2O3 loading as well as the sintering 

temperature. The porosity of the samples decreased from 81-72% with the increase in the 

alumina loading from 20-35 vol% when the samples were sintered at 1400oC.   

Figure 6.29 Volume shrinkage of the sponge replica samples as a 

function of alumina loading and sintering temperatures. 
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The water content of the slurry decreases with increase in alumina loading when calculated based 

on three components. The decrease in the water content may lead to an increase strut coating 

thickness and more filling of pore the sponge during the fabrication process. Thus, the samples 

prepared with high alumina solid loading are expected to have a dense structure as compared to 

that prepared with low alumina solid loading samples. The porosity decrease with the increase in 

the alumina loading has been attributed to the increase in the strut thickness and the pore filling 

of the template. The porosity of the sample was found to decrease with the increase in sintering 

temperature. This is quite obvious and is correlated to the enhanced densification of the sample 

at elevated temperature. 

6.4.3.3.Cold Crushing Strength 

Cold crushing strength (CCS) of the samples prepared by sponge replica technique as a function 

of alumina loading and sintering temperature is shown in the Fig 6.31. The CCS increased from 

0.65-2.46 MPa when the samples were prepared with alumina solid loading 20-35 vol %. The 

observed increase in CCS value with an increase in the alumina loading of the alumina slurry is 

correlated to the enhanced packing of the alumina particles with a decrease in the free water in 

the slurry. The increase in alumina loading in the slurry may also increase the strut and pore wall 

thickness of the sample. 

Figure 6.30 Apparent porosity of the sponge replica samples as a function of alumina 

loading and sintering temperatures 
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Figure 6.31 Cold crushing strength of the sponge replica samples as a function of alumina loading and 

sintering temperatures. 

 

Thus, the increase in CCS value with an increase in alumina loading in the slurry is attributed to 

the decrease in porosity as well as an increase in strut and pore wall thickness. It could also be 

observed that the CCS value increased from 0.31-1.79MPa when the samples were sintered at 

1400oC and 1600oC respectively. The density of the samples was found to increase with an 

increase in sintering temperature. Thus, the increase in strength with the sintering temperature 

may be correlated to the decrease in the porosity of the samples associated with enhanced 

densification at high temperature. 

6.4.3.4.Microstructure 

The SEM micrographs showing the effect of alumina loading of the slurry and the sintering 

temperature on the porous alumina samples fabricated with polymeric sponge replica technique 

has been shown in the Fig 6.32. The samples were prepared with a slurry having alumina loading 

in the range 20vol% to 35vol% (two component basis) and were sintered at 1400 and 1600oC.  

The presence of large pores interconnected pores, typical characteristics of sponge replica 

technique could be observed from the micrographs.  These pores forms due to burning out of 

polymeric sponge template and are characteristics of the sponge template used. Sponge replica 

technique produces positive morphology of the template used.  
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The strut thickness and the pore filling was more in the sample prepared with a slurry having 

35vol% alumina loading (Fig 6.32(c)) as compared to that of  Fig. 6.32[(a) and (b)] (Sample 

prepared with a slurry having 25vol% and 30vol% alumina loading respectively). The increase in 

strut thickness and pore filling is attributed to the increased alumina slurry coating thickness of 

the template. SEM micrographs of the samples prepared with 25vol% alumina loading slurry 

sintered at 1400, and 1600oC has also been shown in Fig. 6.31 (e) and (f) respectively. It could 

be observed from micrographs that the grain size of the alumina was small in Fig 6.31(e) as 

compared to that observed in Fig 6.32(f). The population of intergranular porosity was found to 

be more in Fig 6.32(e) as compared to that observed in micrograph Fig 6.32(f). The increase in 

the pore population is correlated to the densification of the samples. The samples sintered at low 

temperature (1400oC) are expected to have more porosity and the samples sintered at high 

temperature are expected to have exaggerated grain size. Thus, the samples sintered at low 

temperature (1400oC) showed more porosity. From Fig 6.32(f) the observed exaggerated grain 

growth is due to the enhanced densification of the samples at elevated temperature (1600oC).    

(a) (b) (c) 

(e)  (f) 

Figure 6.32 SEM micrograph of sponge replica samples prepared with (a) 25vol% , (b) 30vol%   and  (c) 

35vol%  alumina loading slurry sintered at 1600oC; (e) 25vol% , alumina loading slurry sintered at 

1400oC and (f) 25vol% , alumina loading slurry sintered at 1600oC 
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6.5. Combination of SRT and SCC Methods 

Fabrication of the porous samples with hierarchical pore structure can be possible by the 

combining the starch consolidation technique (SCC) and the sponge replica technique (SRT). A 

porosity of 20-70% can be obtained by the SCC technique while the SRT technique can obtain a 

porosity of 70-90%. Pore size varies in the range of 2-170µm in SCC while pore size varies from 

200µm-3mm in SRT. In the SCC method, corn starch granules were used as the gelling – cum – 

binder – cum pore former. The reaction of the corn starch with water provided the necessary 

gelling and binding action. The removal of corn starch during sintering resulted in the formation 

of the porous body. The high strength appears to be due to the presence of starch which partially 

dissolved in the slurry helping in better packing and densification of the green body. The 

microstructures (Fig. 6.24) show that the pores are open, but they are isolated and with very few 

interconnections. As a result, the strength of the porous body was high (27.5 MPa) even at the 

highest starch content (50 vol% w.r.t alumina loading). On the other hand, in SRT method, the 

pores were open and interconnected, and the strength was low (2.46 MPa) in comparison to SCC 

method. 

The basic idea of using the combination technique (SRT + SCC) was to develop a hierarchical 

porous structure. In SRT technique, the maximum porosity obtained was 75%. Thus, only 25% 

was the solid volume. 3Wt% PVA was added to the slurry to increase the green strength. Thus, 

the porosity generated due to PVA was ~11%. However, the small sized pores formed from the 

PVA burn out mostly disappear during sintering. Hence, the majority of the porosity obtained in 

SRT technique was due to the PU template only. In the combination method (SRT + SCC), the 

slurry had a total solid loading of 25%. Since, 30 vol% starch (wrt alumina loading) was added 

to the slurry, this implied that the actual alumina loading is only 17.5 vol%. Thus, the additional 

porosity generated from starch was 7.5% only. A part of the starch will react with water and do 

the binding action. Therefore, it can be assumed in the combination technique, 5% additional 

porosity could be realized through starch addition. However, it was also observed that this 

increase in the porosity did not adversely affect the strength in a significant way. Thus, the 

combination of SRT + SCC method resulted in the development of a hierarchical porous 

structure containing macro and meso pores without a significant decrease in the strength. 
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6.5.1. Volume Shrinkage 

Sintered volume shrinkage at 1400oC of the porous alumina samples prepared by combination 

technique has been shown in the Fig 6.33 as a function of alumina loading of the slurry 

containing 30vol% corn starch.  

 

 

 

 

 

 

 

 

 

 

 

Sintered volume shrinkage values of the samples prepared by sponge replica technique have also 

been plotted in the figure for comparison. It has been observed that the volume shrinkage 

decreases with the increase in the alumina loading. With the increase in alumina loading from 

20-35 vol %, the shrinkage decreased from 13-6% in the presence of starch and 15-8% without 

starch respectively.  

The decrease in the shrinkage with solid loading has been attributed to the increase in the 

packing of the alumina particles as explained earlier. The shrinkage increased from 13-15% with 

the addition of starch. Small size pore former pores are likely to be formed in the samples 

prepared with corn starch due to distributed particle size of the starch.  These small size pores 

disappear easily during sintering as compared to that having a large size. Hence, the more 

shrinkage is observed in the samples with the starch content compared to the samples without 

starch. 

Figure 6.33 Volume shrinkage of the sample prepared by combination technique as a 

function of alumina loading in the slurry containing 30 vol%  starch. 
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6.5.2. Apparent Porosity 

The influence of the alumina loading of a slurry containing 30vol% corn starch on the apparent 

porosity of porous alumina ceramics samples fabricated by combination technique is presented in 

the Fig 6.34.  

 

Figure 6.34 Apparent porosity of the sample prepared by combination technique as a function of 

alumina loading in the slurry containing 30 vol%  starch. 

 

The samples were sintered at 1400oC. Apparent porosity of the samples prepared with sponge 

replica technique has also been inserted in the figure for ready reference. It has been observed 

that the porosity decreases with the increase in the Al2O3 loading. The decrease in porosity with 

an increase in alumina loading is correlated with an increase in packing density and/or increase 

in strut/pore wall thickness with an increase in alumina loading in the slurry. It could also be 

observed that the porosity increases with increase in starch content in the slurry. The apparent 

porosity increases from 79-83.5% at 20vol% alumina loading and from 72-76% at 35vol% solid 

loading with the addition of 30vol% starch. The increase in porosity with starch content is due to 

the formation of pore former porosity from the burn out of the starch. 

6.5.3. Cold Crushing Strength 

Cold crushing strength (CCS) of the sample fabricated using combination technique as a function 

of alumina loading of the slurry containing 30vol% starch is shown in Fig 6.35.  
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Strength values of the samples prepared without starch addition has also be included in the figure 

for comparison. All the samples were sintered at 1400oC. It has been observed that the CCS of 

the samples increases with increase in alumina loading of the slurry. A similar behavior as that 

observed in the samples prepared by sponge replica technique and could be correlated with the 

strut and pore wall thickness increase as well as the density of the sample (as explained earlier). 

It is worthy to note that the strength of the sample was decreased with the incorporation of starch 

in the slurry. The starch addition in the slurry as likely to generate pore on the strut as well as 

pore wall. The microstructural study revealed the existence of small interconnected pores at 

struts and pore walls. Thus, the strength decreases with the addition of starch to the slurry. 

6.5.4. Microstructure 

The microstructure of the porous alumina samples fabricated by the combination of the starch 

consolidation and polymeric sponge replica technique has been shown in the Fig 6.36. The 

microstructure of the samples prepared from 25vol%, 30vol% and 35vol% alumina loaded slurry 

containing 30 vol% corn starch are shown in the Fig 6.36 [(a) - (c) respectively].  Samples were 

sintered at 1400oC. Large interconnected pores, the characteristics of sponge replica could easily 

be observed from all the micrographs. It could also be observed that with an increase in alumina 

loading the strut and the pore wall thickness of the samples increases. 

Figure 6.35 Cold crushing strength of the sample prepared by combination technique as a function 

of alumina loading in the slurry containing 30 vol%  starch. 
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The increase in strut thickness and pore wall thickness with an increase in alumina loading could 

be explained in the same line as discussed earlier. A magnified micrographs indicating the 

presence of small interconnected pores on the strut and pore wall has also been presented in Fig 

6.36[(d) and (e)]. The samples have been prepared with 30vol% and 40vol% corn starch added in 

20vol% alumina slurry. The presence of the small interconnected pores at strut and pore wall 

confirms the formation of hierarchical porosity in the samples fabricated by a combination of 

SCC and SRT techniques. It could also be observed that with the population of the small 

interconnected pores increases with increase in the starch content of the slurry and could be 

correlated with the typical characteristics of the starch consolidation technique. These small 

interconnected pores are correlated to the pore former porosity created from the burn out of the 

starch used. The formation of interconnected pores at strut and pore walls are attributed to the 

low strength value observed in these samples (as discussed in the previous section). 

 

(a)  (b)  (c)  

(d)  (e)  

Figure 6.36 SEM Micrographs of the samples sintered at 1600oC prepared by combination technique as 

a function of alumina loading [(a) 25 vol% ,(b) 30 vol% ,(c) 35 vol% ] and starch content[(d) 20 

vol% ,(e) 30 vol% ]. 
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7.1. Conclusion 

The present research work discussed the fabrication of the porous alumina ceramics through 

starch consolidation casting (SCC), sponge replica technique (SRT) and the combination of SCC 

and SRT techniques. Alumina loading, starch content, starch type of the slurry has been 

monitored as slurry parameters and sintering temperature as process parameter has been varied to 

develop porosity in the samples prepared by SCC technique. It was also observed that 

irrespective of solid loading of the slurry 0.3 wt% Darvan C was sufficient to obtain a stable and 

dispersed slurry. All the slurry exhibited shear thinning behaviour within the solid loading range 

30-45 vol% and starch content in the range 1-50 vol%. The viscosity of the slurry in the range 

0.05-1.19 Pa.s was found to be necessary for fabrication of defect-free samples by this technique. 

Samples casted below this range of viscosity had lamination and high drying shrinkage, while 

those casted with a viscosity above this range had a blow and pin holes. The properties of the 

green starch consolidated ceramics could be explained condidering i) water content or more 

precisely free water content and ii) volume stress developed during consolidation due to swelling 

of the starch. The physical properties of sintered starch consolidated ceramics depend on alumina 

loading as well as starch content in the slurry. Strength and porosity of the samples follows an 

inverse relationship. Sintering at high temperature resulted in more densification of the samples 

leading to a decrease in porosity and increase in strength. Starch content in the slurry is more 

effective in controlling the porosity of the samples as compared to that of alumina loading of the 

slurry. The porosity of the samples could be varied from 20-70% in this technique. When 3 wt% 

TiO2 was added to alumina, it acted as a  sintering aid with a consequent reduction in the 

sintering temperature by 300oC. The enhanced densification was achieved without compromising 

the strength and porosity of the samples fabricated by this technique and could be able to develop 

ceramics with as low as 10% porosity. The porosity of starch consolidated ceramics could be 

well predicted by the theoretical model presented in the present study. 

It was found that a slurry viscosity between 0.055-0.378 Pa.s was effective in achieving an 

uniform coating of slurry on the sponge template. The uniformity of coating could be varied 

either by varying alumina loading or by varying the PVA content in the slurry. The strength of 

SRT samples increased with increase in temperature as well as with alumina solid loading along 

with a concurrent decrease in porosity. 
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The porosity of the samples could be varied from 75- 80% of strength 0.31-2.46 MPa by this 

technique when fabricated with 20 vol% Al2O3 solid loading, one wt% TiO2 containing slurry 

sintered at 1400oC. 

Hierarchical porosity could be obtained in the samples prepared by the combination technique 

(SCC+SRT) as revealed from its microstructure. Thus, samples with porosity in the range 10-

80% could be fabricated by the above techniques. 

7.2. Scope of future work 

1. The pore size, shape, and its distribution in the samples needs to be carried in order to 

comment on the possible applications of these ceramics. 

2. Water or gas permeability measurements for these macroporous ceramics need to be 

studied in order to ascertain their interconnectivity.  

3. Sponge morphology is an important parameter to tailor the microstructure of the sample 

prepared by SRT technique. Thus, further study on the sample prepared with a different 

sponge (differing morphological aspect) is required in this regard.  

4. Hierarchical porosity although could be produced by combination technique, further 

study dealing with the effect of starch type, starch content, starch particle size, etc. on the 

pore morphology is required.  
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