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ABSTRACT 

Use of renewable energy from biomass sources for CI engines can greatly reduce the air 

pollution, and dependency on the import of crude oil in a country. In the recent days, the use 

of ethanol for automotive power applications has gained more importance, as it can be used 

in both SI and CI engines and reduce the greenhouse gas (GHG) emissions. Different 

feedstocks have been explored for production of ethanol in a large quantity. In this research 

study, bioethanol from the Madhuca Indica flowers as an alternative fuel for compression 

ignition (CI) engines has been proposed. As a first step of the research study, bioethanol 

obtained from the Madhuca Indica flowers was characterized for its suitability as an 

alternative fuel for CI engines. For this purpose, the presence of group compounds in 

bioethanol were identified by using the Fourier transform infrared spectroscopy (FTIR) and 

Gas chromatograph-mass spectrometer (GC-MS), and analysed. Also, the physico-chemical 

properties of bioethanol were determined and compared with those of the diesel properties. 

Seven modules of work have been carried out in this research work to establish the results of 

using bioethanol as an alternative fuel in a CI engine. For this purpose, a single cylinder, four 

stroke, air cooled, DI diesel engine was used for this investigation. Bioethanol has a low 

cetane number and thus it cannot be directly used in CI engines. Therefore, initially in the 

first four modules, bioethanol was used with diesel in the engine by adopting four techniques 

viz. i) in the form of emulsion, ii) addition of an ignition improver to an optimum bioethanol-

diesel emulsion, iii) bioethanol-DEE dual fuel mode, and iv) diesel-bioethanol dual fuel mode 

(fumigation). The experimental results of the combustion, performance and emissions of the 

engine run on bioethanol in these techniques were evaluated, and compared with those of 

diesel operation in the same engine.  

 

In the first module of work, bioethanol was emulsified with diesel in a step of 5% to 15% by 

volume with the help of a surfactant Span 80. The stability of the emulsion was checked for 

15 days under normal atmospheric conditions. The bioethanol-diesel emulsion was 

designated as BMDE5, BMDE10 and BMDE15, where the numeric values were the volume 

percentages of bioethanol. Up to 15% bioethanol in the emulsion was used for the 

experimental investigation by considering the miscibility, minimum calorific value and 

cetane number of fuel which would not affect the performance and combustion parameters of 

the engine. The experiments were carried out with the three different bioethanol-diesel 

emulsions in the diesel engine and results were compared with the diesel data. The results 
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indicated that the ignition delay of engine run on the bioethanol-diesel emulsions was found 

to be longer by about 1 to 2 °CA than that of the diesel operation at full load. The maximum 

cylinder pressure of the engine run on the bioethanol-diesel emulsions was higher by about 

2% to 3% than that of diesel at full load. The BMDE15 emulsion gave a better performance 

and emission than that of BMDE5, BMDE10 and diesel. The useful work and brake specific 

energy consumption (BSEC) for BMDE15 was observed to be higher by about 6% and 27% 

respectively, at full load. The nitric oxide (NO), smoke and carbon monoxide (CO) emissions 

were observed to be lower with a maximum reduction of 24%, 21% and 6% respectively, 

compared to those of diesel at full load. But, a marginal increase of hydrocarbon (HC) 

emission was observed, with the BMDE15 operation than that of diesel operation. 

 

In order to reduce the ignition delay of the engine run on the optimum bioethanol-diesel 

emulsion (BMDE15), an ignition improver diethyl ether (DEE) was added to it in a step of 

0.5% by volume and designated as DED1%, DED1.5%, DED2% and DED2.5%. The higher 

percentage of DEE was considered up to 2.5% for its vapour lock problem. The DED1.5% 

was considered to be an optimum blend which lowered the noisy operation and ignition delay 

of the diesel engine. At full load, the ignition delay of engine operated with DED1.5% was 

reduced by about 1°CA. The maximum cylinder pressure and BSEC were observed to 

increase by about 1.2% and 4% respectively, compared to that of diesel, at full load. The NO 

and smoke emissions were lower by about 11.3% and 13.7% respectively, compared to that 

of diesel at full load. 

 

Further, as a third technique, bioethanol was directly used in the diesel engine with the help 

of an ignition improver. DEE with a flow rate of 60 g/h, 120 g/h, 180 g/h and 240 g/h was 

injected at 10cm distance of the intake manifold of the engine. The necessary arrangement 

was made for DEE injection. The upper and lower limits of the DEE flow rate were 

considered by the audible knocking and misfire of the engine. The bioethanol operation with 

the 180 g/h flow rate of DEE exhibited a shorter ignition delay, and higher cylinder pressure 

compared to those of 60 g/h, 120 g/h, 240 g/h flow rate of DEE and diesel at full load. The 

NO and smoke emissions were found to be lower by about 22.2% and 16.6% respectively, 

compared to those of diesel at full load.    

 

In the fourth technique, bioethanol was fumigated at different flow rates viz., 0.24 kg/h, 0.48 

kg/h, 0.96 kg/h and 1.22 kg/h with the help of electronically controlled injector at the intake 
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manifold of the engine, whereas diesel was injected into the cylinder as a pilot fuel. The 

results revealed that, bioethanol fumigation at the flow rate of 0.48 kg/h and the equivalence 

ratio of 0.88 gave an increase in thermal efficiency of about 3% than that of diesel. At full 

load, the ignition delay was found to be longer by about 3 °CA and the maximum cylinder 

pressure was increased by about 2.1% compared to that diesel. The volumetric efficiency and 

brake specific fuel consumption (BSFC) was found to be lower by about 6% and 5.2% 

respectively, than those of diesel at full load. The NO and smoke emissions were observed to 

be lower by about 24.2% and 5.5% respectively, than those of diesel operation at full load. 

 

The BMDE15 emulsion was chosen as the best among all the above mentioned techniques in 

terms of performance and emission point of view, when bioethanol was used with diesel. The 

spray pattern of the BMDE15 emulsion was studied with the help of a MATLAB programme 

in the fifth module of the work. Also the experimental results were validated with the help of 

the MATLAB programme and compared with those of diesel. From the analysis, it was 

proved that the spray profile of BMDE15 was found to be better compared to that of diesel at 

full load. The deviation between the simulated and experimental results of cylinder peak 

pressure, NO and smoke emissions for BMDE15 was found to be 3%, 5% and 4% 

respectively at full load.  

 

Bioethanol has a poor lubricity in comparison with diesel that resulted in a power drop. In the 

sixth module, to improve the lubricity property of BMDE15, bioethanol was added with the 

volume percentage of 5% in each step up to 15%. The BEBDD10 blend improved the 

lubricity of the fuel without much affecting the performance and emissions of the engine. The 

power output of the engine run on BEBDD10 was found to be increased by about 2% 

compared to that of the BMDE15 operation at full load. The NO and smoke emissions were 

observed to be lower by about 4% and 21% compared to that of diesel at full load. 

 

In the last module of the work, a short term endurance test was carried out; when the engine 

was run on both the BMDE15 and BEBDD10 fuel for 100 h. The carbon deposits, engine 

wear and change in the lubricating oil properties were analysed in both the cases. The 

decrease in the carbon deposit on the cylinder head, piston crown and nozzle tip were 

measured by about 40%, 38% and 25% respectively, with the BEBDD10 operation in 

comparison with the diesel operation. The wear in the fuel injection pump components such 

as plunger, pump barrel, pinion, and spring were found to be lower by about 0.4%, 0.32%, 
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1.7% and 1.5% respectively, with the BEBDD10 blend in comparison with BMDE15. With 

the BEBDD10 operation, the amount of metal debris such as Zn, Fe, Cu, Mn, Al, Pb, Ni and 

Cr were observed to be lower by about 13.6%, 24.5%, 25.7%, 14.6%, 11.7%, 17.3%, 15.1% 

and 36% respectively, compared to those of BMDE15. By overall comparison, it is concluded 

that the BEBDD10 operation seems to give better lubricating properties and lower material 

wear than those of diesel operation.  

 

Key words: Bioethanol, Madhuca Indica flowers, Emulsion, DEE blending, DEE fumigation, 

bioethanol fumigation, MATLAB program, durability test 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 General 

 

Energy is the backbone of the economic development of a country. The energy demand 

depends mainly upon the population and consumption. It is projected that the world energy 

consumption is expected to increase by about 40% by the year 2035 over the present. It is 

also predicted that only India and China will have an increased energy demand of 25% by the 

year 2035 due to an increase in their population [1]. Generally, the per capita energy 

consumption is the measure of the per capita income or prosperity of the nation. The per 

capita income in the USA is about 7032 kWh per year, whereas it was about 614 kWh in 

India in the year 2011 [2]. The population of the USA is 7% of that of the world, and it 

consumes approximately 32% of the total energy consumed in the world. But India, a fast 

developing country with 20% of the world‟s population consumes only 1% of the total energy 

consumed in the world. In developing countries, due to a greater development of education, 

health care, and social services, there is more demand for energy. The five major sectors, in 

which energy is consumed predominantly, are; (i) power generation, (ii) transportation, (iii) 

agriculture, (iv) commerce, and (v) households. Figure 1.1 shows the information on the 

sector wise energy consumption in the world during the year 2011-2012 [3]. 

 

Fig. 1.1 Sector wise energy consumption 

External combustion (EC) and internal combustion (IC) engines are mainly used for energy 

conversion in the power, transportation, industries, agriculture and commercial sectors, which 

are mainly run on fossil fuels. Electricity is mainly consumed in different applications in all 

45% 
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9% 
2% 5% Industry, 45%

Agriculture, 17%

Households, 22%

Commercial, 9%

Traction and

railways, 2%
Others, 5%



2 
 

these sectors. However, the electricity is mainly generated from the combustion of fossil fuels 

in thermal power plants, followed by nuclear and hydro-electric power plants. The trend of 

energy consumption in each sector is discussed in the following subsections. 

1.1.1 Power sector 

Spark ignition (SI) and compression ignition (CI) engines are mainly used in small and 

medium capacity power plants, while gas turbines are used in higher capacity power plants. 

The SI and CI engines are primarily operated with conventional petroleum fuels, while gas 

turbines are operated with petroleum fuels, and industrial and municipal wastes of an organic 

nature. Diesel power plants with power ratings of 110, 220, 330, 440, and 735 kilowatts (kW) 

are used widely for small and medium power applications. Stationary diesel engines with a 

power rating of 2,200 kW are used in large power plants. Diesel power plants are used where 

sources such as coal and water are unavailable, which are used in steam power plants. A list 

of the important major diesel power plants in the world is given in Table 1.1.  

Table 1.1 List of important diesel power plants in the world in 2014 [4] 

 

Country No. of plants Maximum design capacity (MWe) 

 

 

Australia 8 414 

Canada 10 2120 

China 1 278 

Denmark 1 646 

Egypt 19 1360 

France 5 2400 

Germany 1 840 

India 8 158 

Iran 11 1890 

Spain 4 892 

Russia 6 1120 

UK 12 1892 

 

In India, according to the Central Electricity Authority, the total installed capacity of diesel 

power plants in the year 2010 was estimated to be about 1,199.75 MW [5]. Some of the 

currently operated diesel plants in India are listed in Table 1.2. 
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Table 1.2 List of diesel plants in India 

 

Name of the diesel power plant State Capacity(MW) 

GMR Vasavi   Tamil Nadu 200 

Kozhikode   Kerala 128 

Yelahanka   Karnataka 127.92 

Brahmapuram   Kerala 106.6 

Suryachakra   Andaman & Nicobar 20 

Bemina   Jammu & Kashmir 5 

Leh    J&K Govt 2.18 

Ambala    Haryana 2.18 

Upper Sindh   Jammu & Kashmir 1.70 

Keylong   Himachal Pradesh 0.13 

Kamah   Jammu & Kashmir 0.06 

Gangtok   Sikkim 4 

Ranipool   Sikkim 1 

Total  598.77 

 

1.1.2 Transportation  

 

1.1.2.1 Land transportation 

 

Transportation plays an important role in mobilizing human beings, materials, animals etc 

from one place to another. There are three modes of transportation, viz. (a) surface (b) water, 

and (c) air transportation. SI engines are primarily operated with gasoline as a fuel, followed 

by small percentages of ethanol, LPG, CNG. All the three modes of transportation utilize 

fossil fuels as main fuels. In the early days, coal was used as a primary fuel in road, rail and 

marine transport. During the industrial revolution in the late 1900s, and after the introduction 

of petroleum fuels, the use of coal was restricted to surface and sea transportation, while air 

transport uses only superior quality petroleum fuel. SI and CI engines are largely used in 

automotive vehicles. Light vehicles, such as two and three wheelers, and some of the 

passenger cars are operated by SI engines. And heavy duty on-road and off-road vehicles are 

operated by CI engines. In India, the largest consumer of oil is the transportation sector 

representing 50% of the total demand, followed by agriculture (18%) and the industry sector 

(11%), and diesel is the largest with 44% share in the year 2012. LPG and gasoline each has a 

share of 10% (IEA India). It is estimated that by the year 2020, the world's vehicle population 

is expected to reach 2 billion approximately, with cars representing at least 50% of the total 

vehicle population. China‟s and India‟s automobile vehicle populations are expected to grow 

at an annual rate of around 7 or 8%, while the slowest growth is expected in the United 

States, with less than 1% a year, and Western Europe, with 1 to 2% [5]. India has about 1.1 
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million natural gas vehicles as of December 2011 [6]. In 2012, a total of 84.1 million cars and 

commercial vehicles were built worldwide, led by China, with about 19.3 million motor 

vehicles manufactured, followed by the USA with 10.3 million, and Japan with 9.9 million 

[7].  

 

1.1.2.2 Sea transportation 

 

The IC engines, particularly diesel engines, are used in marine propulsion engines and marine 

auxiliary generators. Most modern ships use reciprocating diesel engines as their prime 

movers, due to their operating simplicity, robustness and fuel economy compared to most 

other prime movers. Different types of reciprocating diesel engines (2 and 4 stroke engines) 

are used in marine applications for both commercial and recreational purposes. Boats, 

cruises, ferries and ships are mainly used for marine applications. The low to high medium 

diesel engines of different constructions are used for driving. The slow speed (up to 300 

rpm), medium (300-900 rpm) and high speed (above 900 rpm) engines are used in marine 

applications. In ships, dual fuel engines are used, which are run by either marine grade diesel, 

heavy fuel oil, or liquefied natural gas (LNG). Many war ships built since the 1960s have 

used gas turbines for propulsion. Gas turbines are commonly used in combination with other 

types of engines.   

 

1.1.2.3 Air transportation 

In aviation, shaft engines including reciprocating and turbine powered, jet and pulse jet, and 

rocket engines under the reaction type are mainly used. In addition to them, wankel, pre-

cooled jet engines are also used. Aircraft reciprocating (piston) engines are typically designed 

to run on aviation gasoline. Turbine engines and aircraft diesel engines burn various grades 

of jet fuel. Jet fuel is a relatively heavy and less volatile petroleum derivative based 

on kerosene, but certified to strict aviation standards, with additional additives. 

 

Figure 1.2 shows how the power is obtained for these three modes from different sources of 

energy and its various applications. 

 

 

 

 

 

http://en.wikipedia.org/wiki/Gas_turbine
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Fig. 1.2 Use of fuels and energy in the transportation applications 

 

Table 1.3 gives the top 10 automobile manufacturing countries in the year 2012 and their 

corresponding annual production between the years 2010 and 2012. 

 

Table 1.3 Annual motor vehicles production by top 10 countries 

 

World rank Country 2012 2011 2010 

1 China 19.2 18.4 18.2 

2 United States 10.3 8.6 7.7 

3 Japan 9 8.3 9.6 

4 Germany 5.6 6.3 5.9 

5 South Korea 4.5 4.6 4.2 

6 India 4.1 3.9 3.5 

7 Brazil 3.3 3.4 3.3 

8 Mexico 3 2.6 2.3 

9 Canada 2.4 2.1 2 

10 Thailand 2.42 1.4 1.6 

 Total 63.82 59.6 58.3 

 

A report indicated that cars share approximately 74% of the total annual motor vehicle 

production in the world [5]. The remaining 26% is shared by light commercial vehicles and 
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heavy trucks, buses, coaches and minibuses. It is also reported that the transportation share of 

the world liquid fuel‟s consumption would increase from 55% in the year 2010 to 57% in the 

year 2040.  

 

1.1.3 Agricultural sector 

 

Most of the countries in the world are agrarian countries. In the early days, irrigation was 

carried out by animal powered vehicles, water lifts (gravity-fed canal systems), and wind 

pumps. After the invention of the IC engines, irrigation, and transportation were carried out 

with the help of diesel engines. Off-road vehicles such as tractors, and power tillers are used 

largely for cultivation purposes in big lands, low lands, flooded rice fields, and hilly terrains, 

which in turn, increase the diesel consumption. The total number of tractors and power tillers 

sold in the year 2011-2012 was reported to be about 419270 and 39900 numbers respectively. 

At present, India is the largest manufacturer of tractors in the world. The agricultural sector 

also uses small powered vehicles for transporting agricultural wastes, grains, animal waste 

etc., in villages. 

 

1.1.4 Industrial sector 

 

Small and medium power generator sets are used in industries for standby power supply, 

when there is a shutdown or shortage of electrical supply. Many earth moving vehicles such 

as bulldozers, cable cars and hydraulic dozers are used for lifting and conveying goods. Other 

types of off-road vehicles, such as crawler tracks, excavators, ditchers, power revolving and 

stripper shovels, dumpers, and loaders are also widely used in the industrial sector. It is 

reported that the industrial sector accounts for about 57% of the projected growth of final 

energy demand in the year 2030.  

 

1.1.5 Commerce 

IC engines are used in many commercial applications such as entertainment applications, 

construction, and building services. The most widely used commercial diesel equipment are 

mobile cranes, road rollers, boring/trenching machines, etc. They are also used for small and 

medium electrical generator sets in commercial complexes, hospitals, cinema theatres, and 

educational institutions.  
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1.2 Consequences of air pollution 

 

As a result of the combustion of fossil fuels and organic wastes, the other elements of the 

world like air, water and soil are also affected. The atmospheric air has been more affected 

than water and land, since the industrial revolution began in the 17
th

 century. Among all the 

five sectors discussed above, the transportation sector produces larger pollutants than the 

others. The main consequences of air pollution are discussed in the subsequent sections.  

1.2.1 Greenhouse effect 

The atmosphere of the Earth consists of a lot of gases such as water vapor, carbon dioxide 

(CO2), methane, ozone and nitrous oxide (N2O) which allow some solar radiation to reach the 

planet, but also absorb some of the heat radiating from the planet, trapping it and radiating it 

back to the surface. This cycle is called the greenhouse effect, and the gases are called as 

greenhouse gases (GHGs). The concentration of the GHGs increases day by day due to (i) 

combustion of fossil fuels or the decay of biomass, which produces more CO2, (ii) 

anaerobic decay of organic material in landfills, wetlands, and rice fields; which produces 

methane, (iii) fertilizer use, animal waste management, fossil fuel combustion, automotive 

exhaust, and industrial activities which produce N2O, and (iv) the use of chemicals like 

chlorofluorocarbons (CFCs), sulfur hexafluoride (SF6) etc. As a result of this, the Earth‟s 

average surface temperature is gradually rising, which results in global warming. The weather 

patterns on the Earth are greatly affected by global warming and cause climate change.  

 

1.2.2 Loss of flora and fauna 

Air pollution due to inorganic pollutants like sulphur dioxide (SO2), fluoride (F-), chlorine 

(Cl), and ozone (O3), and organic pollutants like peroxyacetyl nitrate (PAN), ethylene (C2H4), 

and particulate matter (PM), affect the plant species, biological food web, wild life, and 

invertebrates. Plants are directly affected by the toxic effects of pollutants or indirectly by 

changing soil pH, followed by solubilisation of toxic salts of metals like aluminium. The 

effects of pollution on plants include mottled foliage, burning at leaf tips or margins, twig 

dieback, stunted growth, premature leaf drop, delayed maturity, early drop of blossoms, and 

reduced yield or quality. Also, the wildlife populations have suffered severe losses or even 

faced extinction due to effects of synthetic chemicals, oil spills, toxic metals, water 

contaminants and acid rain. Studies revealed that the water contaminants like mercury (Hg), 

lead (Pb), polychlorinated biphenyls (PCBs), hexachlorobenzene (HCB) and 

dichlorodiphenyltrichloroethane (DDT) are killing the marine whales.  

http://www.learner.org/courses/envsci/glossary/definition.php?invariant=anaerobic
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1.2.3 Desertification 

Desertification is the arid region of the world formed due to lack of water, vegetation and 

wildlife caused by climate change (global warming) and human activities (deforestation). It is 

reported that, the temperature in the dry lands will rise from 2°C to 5°C every time. The 

concentration of GHGs is expected to double in the next century. This may lead to severe 

drought, low rain fall and loss of agriculture. Desertification is cited as “potentially the most 

threatening ecosystem change impacting the livelihoods of the poor." In developing countries 

90% of people are living in dry lands.  

 

1.2.4 Melting of glaciers and sea level rise 

 

The Earth‟s largest fresh water reservoirs are glaciers, which are the ancient rivers of 

compressed snow that creep through the landscape, shaping the planet‟s surface. These 

glaciers are melting down due to the increase in the average global temperature as a result of 

global warming, and heavy rain due to climate change. It is predicted that, the green land ice 

sheets could be triggered to lose their volume at a temperature increase of 2 to 3°C by the end 

of this century. The consequences of glacier changes increase the unsustainable water 

supplies from the major rivers, geohazards such as glacier-lake expansion, glacier-lake burst 

out and flooding, increase in the water levels in the rivers and also, sediments which could 

choke water supply, and affect agriculture, shortage of drinking water, loss of habitats, sea 

level rise etc.  

 

The two main factors, viz., thermal expansion and melting of glaciers affect the sea level. The 

Inter-Governmental Panel on Climate Change (IPCC) reported that the increase in the sea 

level is a great danger, if the CO2 level in the atmosphere reaches 550 ppm. The current sea 

level rise per year is 3mm worldwide. Studies revealed that, the world sea-level is expected to 

rise from 60cm to 70cm by the year 2100 due to thermal expansion, and 7m and 60m due to 

the melting of Greenland and Antarctica ice sheets respectively, by the year 2200, if the GHG 

emissions keep on rising. The consequences of sea level rise are high storms which hit lands, 

flooding of wet lands, loss of aquifers and agricultural soils, lost habitat for fish, birds, and 

plants, loss of coastal life, and a decrease in the economy of countries.  

 

1.2.5 Acid rain 

 

Acid rain is caused by the emissions of sulphur dioxide (SO2) and oxides of nitrogen (NOx) 

from the power plants and transportation sector, which react with the water vapour in the 
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atmosphere to produce acids. The adverse effect of acid rain includes (i) increased in the acid 

effect of the soil, (ii) killing of microbes due to acidic water and soil, (iii) minimization of the 

production of food crops, damage of buildings, historic monuments, and statues, especially 

those made of rocks, such as limestone and marble, that contain large amounts of calcium 

carbonate. 

 

1.2.6 Human health 

Pollutants like SO2, NOx, and PM, and volatile organic compounds may cause a lot of health 

problems to human beings, such as premature death due to heart or lung disease, aggravation 

of respiratory and cardiovascular illness, decrease in lung function and symptomatic effects, 

including acute bronchitis, aggravated coughing, and chest pain, chronic inflammation etc. 

 

1.3 Alternative fuels 

 

It is not possible to stop air pollution immediately. But, it is possible to control it by the 

following methods; 

(i) Introducing low polluting and cleaner fuels 

(ii) Adopting emission control devices 

(iii) Increasing the consumption of renewable fuels 

The alternative fuels proposed for IC engines from different sources are shown in Fig. 1.3. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.3 Alternative fuels from different sources 
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1.3.1 Liquid biofuels for transportation 

 

Liquid fuels such as biodiesel, and alcohols (methanol or ethanol/bioethanol), are now used 

as transportation fuels in some of the developed countries and they replace a certain quantity 

of petroleum fuels. Biodiesel and alcohols are renewable in nature and generate lesser 

pollutants in comparison with the petroleum based fuels. Other liquid fuels such as hydrogen, 

green diesel, bioethers etc., are being investigated as alternative fuels or additives for diesel 

engines. Examples of liquid fuels are described below; 

 

1.3.1.1 Biodiesel 

 

It is methyl or ethyl ester of a fatty acid produced from vegetable oil of edible or non edible 

types or animal fat or algae, by transesterification process using catalysts. Edible feedstocks 

such as Sunflower oil, Soy etc. or non edible feedstocks such as Jatropha, Karanja, Mahua 

etc. are commonly used for biodiesel production. Biodiesel has better lubricating properties 

and much higher cetane ratings than today's low sulfur diesel fuels [9]. Biodiesel addition 

reduces the fuel system wear. Biodiesel can be used in the pure form (B100), or may be 

blended with petroleum diesel in any concentration in most diesel engines for transportation 

purpose. But, the engine may face problems, such as low temperature operation, less 

durability and drop in power. New diesel fuel injection systems, such as common rail systems 

are equipped with materials that are compatible with biodiesel (B100). Biodiesel offers a 

substantial reduction in particulate matter (25%-50%), and a marginal increase of NOx (1%-

6%) when it is used as an alternative fuel in a CI engine. The major problems associated with 

biodiesel are (i) poor oxidation stability, (ii) higher viscosity and density, (iii) lower calorific 

value, and (iv) cold flow property. Blends of 20% and lower biodiesel can be used in diesel 

engines with no, or only minor modifications. 

 

1.3.1.2 Alcohols 

 

Alcohol fuels, such as methanol and ethanol/bioethanol, have been two promising fuels for SI 

and CI engines in the last few decades. Most developed countries have developed flexible 

fuel vehicles (FFV), which can easily switch over to either alcohol or petrol or diesel. The 

brief of methanol and ethanol are explained below; 

 

 

http://en.wikipedia.org/wiki/Cetane_number
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1.3.1.2.1 Methanol 

 

Methyl alcohol (methanol) is obtained from the steam reforming process of natural gas and 

CO2, using a copper-based catalyst. It is a renewable fuel and can be made from wood, paper 

or waste by a microbial or photochemical conversion process. It is a toxic, colourless, 

tasteless liquid with a very faint odour. For transportation purpose, M85 (blend of 85% 

methanol and 15% unleaded petrol) and M100 are mostly used in some countries to substitute 

petrol and diesel respectively. Methanol is also used in a dual fuel operation of the diesel 

engines. The hydrocarbon emission (HC) can be reduced by 30-40% with M85 and up to 

80% with M100 fuels [9]. But, formaldehyde emissions are increased in large amounts. 

Generally methanol has a high octane number of over 100; so it is a good fuel for SI engines. 

The disadvantages of methanol fuel are material corrosiveness due to its water content, lower 

energy density which is 24% less than that of ethanol, and the leak detection problem.  

 

1.3.1.2.2 Ethanol/bioethanol 

 

Ethyl alcohol (ethanol) is produced by two major techniques such as chemical synthesis and 

fermentation. The chemical synthesis process is the catalytic hydrolysis of ethylene. The 

fermentation process is the breakdown of the complex molecules of sugar, starch, 

carbohydrates, and cellulosic/lignocellulosic into ethanol/bioethanol, fermented by yeast, 

bacteria, enzymes, etc. The ethanol produced from biomass feedstock is known as bioethanol. 

The ethanol produced from food crops such as maize, wheat, sugar beet, and grain is known 

as the first generation bioethanol, and the ethanol derived from non-food crops or waste 

biomass such as waste of urban, agriculture, industries, institutions, and forest sources is 

known as the second generation bioethanol. Ethanol has already been used as a transportation 

fuel in many countries like Brazil and the US in the form of e-diesel (ethanol blending level 

as high as 15% or even 20% in conventional diesel), and gasohol (90% of gasoline and 10% 

ethanol blend). Generally, ethanol/bioethanol are used in gasoline engines in combination of 

E85 (85% ethanol blend) and gasohol. It can also be used in diesel engines by adopting 

different techniques, such as emulsion, addition of ignition improver, fumigation, surface 

ignition, spark ignition and dual fuel operation. Dual fuel operation can provide a maximum 

diesel replacement, i.e. 90% of diesel. The advantages of ethanol/bioethanol are its high 

oxygen content of 35% by weight, lesser gum formation, lower GHGs emissions, and high 

octane rating. It is reported that sugar-fermented and cellulosic ethanol/bioethanol can 

minimize the GHGs emissions by about 18%-29% and 85% over gasoline emissions [9]. The 
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demerits of ethanol/bioethanol are its lower energy density, engine durability issues, aldehyde 

emission, deposits and fouling in the fuel injection system. Ethanol is considered as the most 

attractive alternative fuel for developing countries, as many stationary diesel engines are used 

in the agricultural and commercial sectors, and for small scale power generation in the 

industrial sector.  

 

1.4 Benefits of liquid biofuels over petroleum fuels  

 

The advantages of biofuels are given below; 

(i) Generate lower emissions 

(ii) Renewability 

(iii) Biodegradability 

(iv) Low cost 

(v) Energy security 

(vi) Economic stimulation 

 

1.5 Organisation of thesis 

 

The thesis comprises of seven chapters which are given below; 

Chapter 1 presents the introduction to the importance of energy, different sectors in which 

IC engines are used, consequences of air pollution, need for alternative fuels, liquid biofuels 

for transportation and their benefits. 

 

Chapter 2 reviews the literature pertaining to production, characterisation and utilization of 

ethanol/bioethanol as an alternative fuel in the CI engines. The chapter also discusses the 

literature available, related to the assessment of the lubricating oil properties of 

ethanol/bioethanol used as fuel in a CI engine. 

 

Chapter 3 details the production of bioethanol from the Madhuca Indica flowers by 

fermentation using Saccharomyces cerevisiea. The chapter also presents the characterisation 

of bioethanol using sophisticated instruments such as the Fourier transform infrared 

spectroscopy (FTIR), Gas chromatography and mass spectrometry (GC-MS) etc. The cost 

benefit analysis of bioethanol is also included. The cost of bioethanol production is also 

discussed. 

 

Chapter 4 gives the information on the experimental test set up used in the study, various 

instruments used for measuring different parameters, and the uncertainties of the instruments. 

Also details the methodology adopted to carry out the investigation. This includes the 
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experimental techniques followed to use bioethanol, which has a lower viscosity and a lower 

cetane number than diesel fuel in a CI engine. 

 

Chapter 5 describes the equations and co-relations used for the mathematical modeling of a 

DI diesel engine. 

 

Chapter 6 presents the results and discussion of all the techniques adopted in the research 

work. The three major groups of parameters evaluated are (i) performance (ii) emission and 

(iii) combustion. The validation of the mathematical modeling is done with the best results 

obtained from the experimental results. The chapter also details the durability issues of the 

engine fueled with bioethanol used by a better technique. 

 

Chapter 7 presents the conclusions of the experimental investigation carried out to evaluate 

the bioethanol obtained from the Madhuca Indica flowers as an alternative fuel for CI 

engines. 
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CHAPTER 2 

 

LITERATURE SURVEY 

 

2.1 General 

 

In this chapter, the literatures collected by the researcher on methods of producing ethanol 

from biomass materials are discussed first. Then the literatures available for production of 

bioethanol from the Madhuca Indica flowers that are proposed by different researchers are 

discussed. Finally, the literatures available on utilization of ethanol/bioethanol in CI engines 

are discussed.  

 

2.2 Over view of ethanol/bioethanol production 

 

Ethanol production is a not a new technology. Over many years ethanol has been produced by 

fermentation. As the importance of alternative fuels was realized due to the increase in the 

cost of petroleum fuels and awareness on protecting the environment, research and 

development on the production of ethanol has increased extensively. Ethanol can be produced 

from the direct fermentation of simple sugars, or polysaccharides like starch or cellulose that 

can be converted into sugars. As ethanol can be produced in a larger quantity in comparison 

with the other liquid alternative fuels such as biodiesel, many researchers are trying to 

explore possible sources and methods to produce ethanol/bioethanol. Table 2.1 gives the 

world ethanol production in the year 2013 [10]. Many researchers documented their research 

works pertaining to the production of ethanol/bioethanol in the following categories; (i) 

biomass sources containing sugar, (ii) biomass sources containing starch, (iii) cellulosic and 

lignocellulosic materials [11-34]. 

 

Table 2.1 world ethanol production in the year 2013 [10] 

 

Continent Millions of gallons 

United States 13,300 

Brazil 6,267 

Europe 1,371 

China 696 

India 545 

Canada 523 

Rest of World 727 
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2.2.1 Sugar feedstock 

 

Biomass materials containing high levels of glucose or precursors can be fermented using 

microorganisms to produce ethanol. These microorganisms can typically use the 6-carbon 

sugars, one of the most common being glucose. One example of feedstock used in this 

method is sugar. Since sugar is an essential commodity for human life, these materials are 

usually too expensive to use for ethanol production. Badger reported [35] in his review that, 

fungi, bacteria, and yeast microorganisms can be used for fermentation; a particularly yeast 

Saccharomyces cerevisiae also known as Bakers‟ yeast, since it is commonly used in the 

baking industry) is frequently used to ferment glucose to produce ethanol. He reported that 

100 grams of glucose would produce 51.4 g of ethanol and 48.8 g of CO2. However, in 

practice, the actual yield is less than 100% because the microorganisms use some of the 

glucose for growth. Other biomass feedstocks rich in sugars (materials known as saccharides) 

include sugar beet, sweet sorghum, and various fruits. 

 

Ethanol production is usually performed in three steps: (a) the collection of a solution of 

fermentable sugars, (b) fermentation of sugars into ethanol, and (c) ethanol separation and 

purification, usually by distillation–rectification–dehydration [36]. The step before 

fermentation, to obtain fermentable sugars, is the main difference between the ethanol 

production processes from simple sugar, starch or lignocellulosic materials. Sugar crops need 

only a milling process for the extraction of sugars to ferment (not requiring any step of 

hydrolysis), becoming a relatively simple process of sugar transformation into ethanol. In this 

process, ethanol can be fermented directly from cane juice or beet juice or from molasses, 

generally obtained as a byproduct after the extraction of sugar [13]. Currently ethanol 

fermentation is carried out mainly by batch processes with cell recycling, and a small part is 

produced through multi-stage continuous fermentation with cell recycling [37]. 

 

Cardona et al. [38] reviewed the process design and opportunities for ethanol production. 

They mentioned that sugar cane, either in the form of cane juice or cane molasses, are the 

most important feedstock utilized in tropical and sub-tropical countries for producing ethanol. 

In European countries, beet molasses are the most utilized sucrose-containing feedstock. 

Besides these energy crops, sweet sorghum has become a potential raw material, because the 

juice with a high content sucrose obtained from its stalks, can be extracted. Its grains contain 

a high amount of starch, and its bagasse is an important source of lignocellulosic biomass. 

The conversion of sucrose into ethanol is easier compared to the starchy materials and 
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lignocellulosic biomass, because the preliminary hydrolysis of the feedstock is not required, 

since this disaccharide can be broken down by the yeast cells; in addition, the conditioning of 

the cane juice or molasses favors the hydrolysis of sucrose. They pointed out that the 

availability and transportation cost of the feedstock play a crucial role, when new cost-

effective production facilities are projected. Another source of simple sugars that can be used 

to produce ethanol is whey. Large quantities of whey are produced as a byproduct in the 

manufacturing of cheese. After whey protein has been extracted from whey by ultrafiltration, 

the remaining permeate is concentrated by reverse osmosis to attain higher lactose content for 

efficient fermentation. Lactose in whey permeate is fermented with some special strains of 

the yeast Kluyveromyces marxianus that are efficient in fermenting lactose [18, 39]. 

Alternatively, genetically engineered Saccharomyces cerevisiae strains may be used [21, 40].  

 

2.2.2 Starchy feedstocks 

 

Starch is another potential feedstock for ethanol production. The processes of ethanol 

production using starchy crops are well established and documented. Starch molecules 

consist of long chains of glucose molecules. So, starchy materials can also be fermented after 

breaking the starch molecules into simple glucose molecules. Cereal grains, potato, sweet 

potato, and cassava are some of the commonly available feedstocks available in this category. 

It is reported that maize and wheat are the two cereal grains used for ethanol production in 

the USA. They mentioned in their review that starchy materials required the reaction of 

starch with water (hydrolysis) to breakdown the starch into fermentable sugars 

(saccharification). Typically, hydrolysis is performed by mixing the starch with water to form 

a slurry, which is then stirred and heated to rupture the cell walls. Specific enzymes that will 

break the chemical bonds are added at various times during the heating cycle. 

 

Pimentel et al., [41] have reported that the ethanol production using corn grain required 29% 

more fossil energy than the ethanol fuel produced, while grass required 50% more fossil 

energy. Ethanol production using wood biomass required 57% more fossil energy than the 

ethanol fuel produced.  Demirbas [42] reported that grains like corn, require saccharification 

before fermentation. In this step, starch is gelatinized by cooking, and subjected to enzymatic 

hydrolysis to form glucose monomers, which can be fermented by microorganisms. In order 

to produce ethanol from starch, it is necessary to breakdown the chains of this carbohydrate 

for obtaining glucose syrup, which can be further converted into ethanol by yeast. This type 
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of feedstock is the most utilized for ethanol production in North America and Europe. Corn 

and wheat are mainly used for these purposes.  

 

Yeast cannot be used with starch directly for ethanol production. Therefore, ethanol 

production from grains involves milling and hydrolysis of starch, that has to be wholly 

broken down to glucose, by the combination of two enzymes, α-amylase and amylo 

glucosidase, before it is fermented by yeast to produce ethanol. In tropical countries, other 

starchy crops such as tubers (e.g. cassava) can be used for the commercial production of fuel 

ethanol [16, 38]. Today, most fuel ethanol is produced from corn, by either the dry-grind 

(67%) or wet-mill (33%) process. The recent growth in the industry has been predominantly 

seen with dry-grind plants, because of less capital costs per gallon and incentives for farmer-

owned cooperatives [43-44]. Figure 2.1 shows the block diagram of ethanol production from 

the starch materials. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.1 Block diagram of fuel ethanol production from starchy materials [45] 

 

2.2.3 Ethanol production from cellulosic materials 

 

The production of ethanol from sugar and starchy materials also affects the food chain and 

fuel price. The food chain based feedstock-sugar molasses and starch materials can be 

replaced by alternative-cellulosic and lignocellulosic materials. Hence, ethanol produced 

from biomass materials is known as bioethanol [42]. Examples of cellulosic materials include 

paper, cardboard, wood, and other fibrous plant materials. Cellulosic resources are generally 
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available in different kinds. For example, forests comprise about 80% of the world‟s biomass 

which can be used from ethanol production. Cellulosic materials which are comprised of 

lignin, hemicellulose, and cellulose are called lignocellulosic materials. Lignin provides 

structural support to the plant. Thus, in general, trees have higher lignin content then grasses. 

Lignin which contains no sugars encloses the cellulosic and hemicellulosic molecules, 

making them difficult to reach. Cellulosic molecules consist of long chains of glucose 

molecules as do starch molecules, but have a different structural configuration. Because of 

these structural characteristics and their encapsulation by lignin, the cellulosic materials 

cannot be as easily hydrolyzed as starchy materials. Hemicellulose is comprised of long 

chains of sugar molecules; but it also contains, in addition to glucose (a 6-carbon or hexose 

sugar), pentoses (5-carbon sugars). It is reported by Badger [35] that since 5-carbon sugars 

comprise a high percentage of the available sugars, the ability to recover and ferment them 

into ethanol is important for effective production of ethanol. Special microorganisms have 

been genetically produced, which can ferment 5-carbon sugars into ethanol with a relatively 

high efficiency. Bacteria have drawn special attention from researchers, because of their 

speedy fermentation. In general, bacteria can ferment in minutes as compared to hours for 

yeast.  

 

There are three basic types of ethanol production from cellulosic materials; they are (a) acid 

hydrolysis, (b) enzymatic hydrolysis, and (c) thermochemical conversion. The most common 

method is acid hydrolysis. 

 

2.2.1.1 Acid hydrolysis 

 

Any acid can be used for acidic hydrolysis; however, sulfuric acid is most commonly used 

since it is usually the cheapest. There are two basic types of acid processes: dilute acid and 

concentrated acid, each with variations. Dilute acid processes are conducted under high 

temperature and pressure, and have reaction times in the range of seconds or minutes, which 

facilitates continuous processing. As an example, using a dilute acid process with 1% sulfuric 

acid in a continuous flow reactor for a residence time of 0.22 minutes and at a temperature of 

237°C (458°F) with pure cellulose, provided a yield of over 50% sugar. In this case, 0.9 t (1 

ton) of dry wood would yield about 189 L (50 gallons) of pure ethanol. The combination of 

the acid and high temperature and pressure, require special reactor materials, which can make 

the reactor expensive. The most dilute acid processes are limited to a sugar recovery 

efficiency of around 50%. The reason for this is that, at least two reactions are part of this 
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process. The first reaction converts the cellulosic materials to sugar and the second reaction 

converts the sugars to other chemicals. Once the cellulosic molecules are broken apart, the 

reaction proceeds rapidly to break down the sugars into other products, most notably furfural, 

a chemical used in the plastics industry. Not only does sugar degradation reduce the sugar 

yield, but the furfural and other degradation products can be poisonous to the fermentating 

microorganisms. The biggest advantage of the dilute acid process is its fast rate of reaction, 

which facilitates continuous processing. One of the demerits is its low sugar yield. For a rapid 

continuous processing, in order to allow adequate acid penetration, feedstocks must also be 

reduced in size, so that the maximum particle dimension is in the range of a few millimeters. 

Since 5-carbon sugars degrade more rapidly than 6-carbon sugars, one way to decrease sugar 

degradation is to have a two-stage process. The first stage is conducted under mild process 

conditions to recover the 5-carbon sugars, while the second stage is conducted under harsher 

conditions to recover the 6-carbon sugars. Unfortunately, sugar degradation is still a problem, 

and the yields are limited to around 272 L/t (80 gallons of ethanol/ton) of dry wood. The 

concentrated acid process uses relatively mild temperatures and the only pressures involved 

are usually those created by pumping materials from vessel to vessel. One concentrated acid 

process was first developed by United States Department of Agriculture (USDA), and further 

refined by Purdue University and the Tennessee Valley Authority (TVA). In the TVA 

concentrated acid process, corn stover was mixed with dilute (10%) sulfuric acid, and heated 

up to 100ºC from 2 to 6 hours in the first (or hemicellulose) hydrolysis reactor. The low 

temperature and pressure minimize the degradation of sugars. To recover the sugars, the 

hydrolyzed material in the first reactor was soaked in water and drained several times. The 

solid residue from the first stage was then dewatered and soaked in a 30% to 40% 

concentration of sulfuric acid from 1 to 4 hours as a pre-cellulose hydrolysis step. This 

material was then dewatered and dried, so that the acid concentration in the material was 

increased to about 70%. After reacting in another vessel from 1 to 4 hours at 100ºC, the 

reactor contents were filtered to remove the solids and recover the sugar and acid. The 

sugar/acid solution from the second stage was recycled to the first stage to provide the acid 

for the first stage hydrolysis. The sugars from the second stage hydrolysis were thus 

recovered in the liquid from the first stage hydrolysis. The advantage of the concentrated 

process is the high sugar recovery efficiency, which can be in the order of over 90% of both 

hemicellulose and cellulose sugars. The low temperature and pressure employed also allow 

the use of relatively low cost materials, such as fiberglass tanks and piping. But, it is a 

relatively slow process and cost effective acid recovery systems have been difficult to 
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develop. Without acid recovery, large quantities of lime must be used to neutralize the acid in 

the sugar solution. This neutralization forms large quantities of calcium sulfate, which 

requires disposal and creates additional expense. 

 

2.2.1.2 Enzymatic hydrolysis  

 

Another basic method of hydrolysis is enzymatic hydrolysis. Enzymes are naturally occurring 

plant proteins that cause certain chemical reactions to occur. However, for enzymes to work 

effectively, they must obtain access to the molecules to be hydrolyzed. In order to have an 

effective enzymatic process, some kind of pretreatment process is thus required to break the 

crystalline structure of the lignocellulose and remove the lignin to expose the cellulosic and 

hemicellulosic molecules. Depending on the biomass materials, either physical or chemical 

pretreatment methods may be used. Physical methods may use high temperature and pressure, 

milling, radiation, or freezing, all of which require high energy consumption. The chemical 

method uses a solvent to break apart and dissolve the crystalline structure. After a dilute acid 

pretreatment, the slurry is detoxified to remove materials that would be poisonous to the 

microorganisms used in the process. A small part of this slurry is sent to a separate vessel that 

is used to grow microorganisms that produce the cellulase enzyme for the process. Another 

part of the slurry is sent to another vessel, to maintain and grow a yeast culture for 

fermentation. In a process developed by National Renewable Energy Laboratory (NREL), 

both enzymes and the fermentation microorganisms were added at the same time to the 

slurry, and sugar conversion and fermentation occurred simultaneously in a process called 

simultaneous saccharification and co-fermentation (SSCF). 

 

Due to the tough crystalline structure, the enzymes currently available require several days to 

yield good results. The reactor vessels required for the process have to be either quite large or 

many of them must be used because they have to be used for a longer process time. It is 

reported that both the options are expensive. Currently, the cost of enzymes is also too high 

and research is continuing to bring down the cost of enzymes. However, if less expensive 

enzymes can be developed, enzymatic processes hold many advantages: (a) their efficiency is 

quite high and their byproduct production can be controlled; (b) their mild process conditions 

do not require expensive materials of construction; and (c) their process energy requirements 

are relatively low. The ethanol production process from biomass is shown in Fig. 2.2. 
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Fig. 2.2 Ethanol production process from biomass [44] 

  

2.2.1.3 Thermochemical conversion 
  

Thermochemical conversion is one of the methods that have been recently used to produce 

ethanol/bioethanol. There are two ethanol production processes that currently use 

thermochemical reactions in their processes. The first one is actually a hybrid 

thermochemical and biological system [46]. Biomass materials are first thermo chemically 

gasified and then synthesis gas (a mixture of hydrogen and carbon dioxides) bubbled through 

specially designed fermenters. A microorganism that is capable of converting the synthesis 

gas is introduced into the fermenters under specific process conditions to cause fermentation 

to ethanol. The second production process does not use any microorganisms. In this process, 

biomass materials are first thermo chemically gasified and the synthesis gas passed through a 

reactor containing catalysts, which cause the gas to be converted into ethanol. The yield of 

ethanol obtained in the synthetic gases-to-ethanol process is about 50%. Some processes that 

first produce methanol and then use catalytic shifts to produce ethanol, have obtained ethanol 

yields in the range of 80%. Consequently, the technologies used in the thermochemical 

conversion method, are more complex leading to higher ethanol production costs compared 

to those of cane, beet or corn.  

 

2.2.4 Ethanol production from lignocellulosic materials 

 

The use of polysaccharides present in the lignocellulosic materials (such as switch grass, 

wood chips, corn husks and other agricultural wastes) for ethanol production is of great 

interest today. In this case, the technologies involved in production are more complex, and 

the costs of production are higher in comparison with cane, beet or corn. However, most 

lignocellulosic materials are byproducts of agricultural activities and industrial residues, and 

show a great potential for the production of fuel ethanol on a large scale, and for worldwide 
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consumption as a renewable fuel. It is predicted that lignocellulosic biomass will become the 

main feedstock for ethanol production in the near future. The basic steps in producing ethanol 

from lignocellulosic biomass are: (i) pre-treatment to render cellulose and hemicellulose 

more accessible to the subsequent steps. Pretreatment generally involves a mechanical step to 

reduce the particle size and a chemical pre-treatment (diluted acid, alkaline, solvent 

extraction, steam explosion among others) to make the biomass more digestible; (ii) acid or 

enzymatic hydrolysis to break down polysaccharides to simple sugars; (iii) fermentation of 

the sugars (hexoses and pentoses) to ethanol using microorganisms; and (iv) separating and 

concentrating the ethanol produced by distillation–rectification–dehydration. Figure 2.3 

illustrates the ethanol production from lignocellulosic biomass. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.3 Block diagram of fuel ethanol production from lignocellulosic biomass [38] 

 

It is reported that some pre-treatments (step 1), such as diluted acid hydrolysis, result in the 

solubilization of sugars from hemicellulose, generally separating the biomass into a liquid 

fraction containing pentoses and a solid fraction composed of cellulose and lignin. The sugar 

yield is dependent on the kind of pretreatment and the conditions used. The main 

technologies proposed for the hydrolysis of cellulose (step 2) include concentrated acid 

hydrolysis and enzymatic hydrolysis. Acid hydrolysis is the most advanced technology, while 

enzymatic hydrolysis is considered as the technology which may reduce the cost of producing 

ethanol from biomass. Table 2.2 gives the different lignocellulosic materials and their 

composition [46]. 
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Table 2.2 Different lignocellulosic materials and their composition 

Lignocellulosic materials Cellullose(%) Hemicellulose(%) Lignin(%) 

Hardwoods stems 

Softwood steam 

Nut shells 

Corn cobs 

Grasses 

Paper 

Wheat straw 

Sorted refuse 

Leaves 

Cotton seed hairs 

News paper 

Waste papers from chemical 

pulps 

Primary wastewater solids 

Swine waste 

Solid cattle manure 

Coastal Bermuda grass 

Switch grass  

40 – 55 

45 – 50 

25 – 30 

 45 

25- 40 

85 – 99 

 30 

60 

15 – 20 

80 – 95 

40 – 55 

60 – 70 

8 – 15 

6.0 

106 – 4.7 

25 

45  

24 – 40 

25 – 35 

25 – 30 

35 

35 – 50 

0 

50 

20 

80 – 85 

5 – 20 

25 – 40 

10 – 20 

NA 

28 

1.4 – 3.3 

35.7 

31.4 

18 – 25 

25 – 35 

30 – 40 

15 

10 – 30 

0 – 15 

15 

20 

0 

0 

18 – 30 

5 – 10 

24 – 29 

NA 

2.7 – 5.7 

6.4 

12.0 

 

The recycling of the pentoses formed during the hydrolysis of hemicellulose was studied by 

Galbe et al. [47], resulting in the increase of ethanol yield and the decrease of energy 

consumption. However, these flow sheets had the drawback of the concentration of 

fermentation inhibitors being augmented. For this reason, further research for finding 

resistant microorganisms or the best way of detoxification should be carried out, including 

the utilization of cellulose producing fungi, like Trichodermareesei [48]. The researchers 

have also proposed the reutilization of cellulases through different strategies of recycling, 

using the substrates remaining during the batch hydrolysis of cellulose, although the content 

of lignin in the substrate negatively affected the cellulase activity. Mes-Hartree et al. [49] had 

proposed the recycling of both cellulases and substrate in order to save enzymes and to utilize 

the residual substrate for producing cellulases for the same process. Nguyen et al. [50] 

proposed the use of both microfiltration and ultrafiltration, in order to collect the cellulases 

from the enzymatic hydrolysis reactor during ethanol production from municipal solid waste 

(MSW). The configuration corresponds to the Separate hydrolysis and fermentation (SHF) 

process, and the hydrolysis reactor works in a fed-batch regime. They claimed that this 

technique for cellulase recycling combined with a fed-batch operation allowed significant 

reductions in the cost of cellulose hydrolysis. However, the difficulties related to the 
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recycling of adsorbed cellulases in the case of continuous processes, the increase in the 

expected effectiveness of cellulolytic enzymes, among other factors, have narrowed the 

application of this technique to batch and fed-batch SHF processes. 

 

Bioethanol can be produced from raw materials containing fermentable sugars, such as sugar 

cane and beet that are rich in sucrose. In addition, bioethanol may also be produced from 

some polysaccharides that can be hydrolyzed for obtaining sugars convertible into ethyl 

alcohol. The starch contained in grains is the major polymer used for ethanol production. 

Lignocellulosic biomass (a complex comprised of several polysaccharides) is the most 

promising feedstock considering its great availability and low cost, but the large-scale 

commercial production of fuel ethanol from lignocellulosic materials has still not been 

implemented. Table 2.3 provides the different feedstocks for ethanol production and their 

yields, which are represented by the resources [34]. Table 2.4 gives the various pretreatment 

methods for lignocellulosic biomass for ethanol/bioethanol production [51]. 

 

Table 2.3 Ethanol yield from different sources [34] 

Source Ethanol yield (gal/acre) Ethanol rield(Lha) 

Corn stover 

Wheat 

Cassave 

Sweet sorghum 

Corn 

Sugar beet 

Sugarcane 

Switch grass 

Microal gae  

112 – 150 

277 

354 

326 – 435 

370 – 430 

536 – 714 

662 – 802 

1150 

5000 – 15,000  

1050 – 1400 

2590 

3310 

3050 – 4070 

3460 – 4020 

5010 – 6680 

6190 – 7500 

10,760 

46,760 – 140,290 
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Table 2.4 Various pretreatment methods for lignocellulosic biomass for ethanol/bioethanol 

production  

Methods Examples of pretreated materials 

Physical methods:  

Mechanical comminution Wood and forestry wastes (hardwood, straw), Corn 

stover, cane bagasse,Timothy, alfalfa 

Pyrolysis Wood, waste cotton, corn stover 

Physical–chemical methods:  

Steam explosion Poplar, aspen, eucalyptus, softwood (douglas fir) 

Bagasse, corn stalk, wheat straw, rice,straw, barley, 

straw, sweet sorghum,bagasse, Brassica carinata residue, 

timothy grass, alfalfa, reed canary grass 

Liquid hot water (LHW) Bagasse, corn stover, olive pulp, alfalfa fiber 

Ammonia fiber explosion 

(AFEX) 

Aspen wood chips, Bagasse, wheat straw, barley straw, 

rice hulls, corn stover, Switchgrass, coastal, 

Bermudagrass, alfalfa 

CO2 explosion Bagasse, alfalfa, recycled paper 

Chemical methods:  

Ozonolysis Poplar sawdust, bagasse, wheat straw, cotton straw, green 

hay, peanut 

Dilute-acid hydrolysis Poplar wood, bagasse, corn stover, wheat straw, rye, 

straw, rice hulls, switchgrass, bermudagrass 

Concentrated-acid hydrolysis Poplar sawdust, bagasse 

 

Alkaline hydrolysis Hardwood, bagasse, corn stover, straws with low 

lignin content (10–18%), cane leaves 

Oxidative delignification Bagasse 

Wet oxidation Corn stover, wheat straw 

Organosolv process Mixed softwood (spruce, pine, Douglas fir) 

Biological methods:  

Fungal pretreatment Corn stover, wheat straw 

 

2.3 Bioethanol from the Madhuca Indica flowers 

 

Swain et al. [52] have studied the possible production of bioethanol from fresh and 12-

month-stored Madhuca Indica flowers, using free and immobilized cells of Saccharomyces 

cerevisiae (strain CTCRI) in submerged shake-flask fermentation. The bioethanol yields with 

free and immobilized cells were found to be 193 and 205 g kg
-1

 respectively, for fresh 

flowers and 148 and 152 g kg
-1 

with 12-month-stored flowers. The maximum sugar 

conversion and bioethanol concentration were achieved by about 80-82% and 193-205 g kg
-1

 

flowers respectively. They have also reported that bioethanol production from the Madhuca 

Indica flowers have considerable scope in India, due to their potential and availability.  
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Mohanty et al. [53] have produced bioethanol from the Madhuca Indica flowers by the solid-

state fermentation process using Saccharomyces cerevisiae. They have studied different 

parameters which affect the production process, including the strain of Saccharomyces 

cerevisiae used, biochemical composition of the substrate, fermentation system and the 

condition under which the fermentation took place. They observed that the concentration of 

ethanol increased, with the increase in the fermentation time and yeast biomass. The 

maximum ethanol (195 ± 4 g/kg flowers) concentration (95%) was obtained after 72 h of 

incubation. The moisture level of 70%, pH value of up to 6.0 and temperatures ranging from 

20-30 °C were favourable conditions to increase the ethanol yield/concentration. They have 

also concluded that the collection, storage and marketing of flowers should be more, to 

increase their commercial potential. 

 

Benerji et al. [54] have investigated the physico-chemical and nutritional parameter of 

bioethanol from the Madhuca Indica flowers, using Saccharomyces cerevisiae-3090 through 

submerged fermentation. They have proved that the flowers would be a suitable substrate, 

which consisted of high sugars of about 68% and metal ions such as Mg+, Cu+, phosphorus 

and protein. They concluded that the maximum ethanol productivity could be achieved for 

the substrate concentration of 28%, pH level at 5.0, inoculum level and age at 25 and 48 

hours respectively.  

  

Behera et al. [55] have studied the effect of using immobilized cells (in agar agar and calcium 

alginate) and free cells of Saccharomyces cerevisiae for bioethanol production from the 

Madhuca Indica flowers. They have carried out the statistical analysis using ANOVA for 

production. The bioethanol yield with immobilized cells (in agar agar and calcium alginate) 

and free cells were found to be 151.2, 154.5 and 149.1 g kg
-1

 flowers respectively. It was 

observed that the calcium alginate cells provide better results compared to the agar agar 

(2.2% more) and free cell (3.5% more). The immobilized cells were physiologically active 

compared to the free cells. They have concluded that bioethanol production from the 

Madhuca Indica flowers was highly economical in comparison with either starchy or 

lignocellulosic biomass. 

 

Behera et al. [56] have also investigated the bioethanol production from the Madhuca Indica 

flowers using immobilized cells of Saccharomyces cerevisiae (CTCRI strain) and 

Zymomonas mobilis (MTCC 92) in calcium alginate as beads and in the submerged 

condition. They reported that the sugar utilization capacity by the immobilized cells of 
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Saccharomyces cerevisiae was faster than that of Zymomonas mobilis. The maximum 

bioethanol concentrations with Saccharomyces cerevisiae and Zymomonas mobilis were 

about 154.5 and 134.55 g kg
-1

 flowers respectively, in 96 hours of fermentation. The 

bioethanol yield was higher by about 14.8% with the immobilized cells of Saccharomyces 

cerevisiae in calcium alginate beads. 

 

Behera et al. [57] have given a comparative study of two most widely used microorganisms 

for bioethanol production. The two strains of microorganisms Saccharomyces cerevisiae 

(yeast) and Zymomonas mobilis (bacteria) were used, and it was found that the 

Saccharomyces cerevisiae strain showed 21.2% more bioethanol production in comparison to 

Zymomonas mobilis. The ethanol yield (Yx/s), volumetric product productivity (Qp), sugar 

to ethanol conversion rate (%) and microbial biomass concentration (X) obtained by 

Saccharomyces cerevisiae were found to be 5.2%, 21.1%, 5.3% and 134% higher than those 

of Zymomonas mobilis, respectively, after 96 h of fermentation. The bioethanol yield was 

affected by Zymomonas mobilis, due to its low tolerance to temperature and utilization of 

limited substrate range. 

 

Behera et al. [58] have used the dried spongy fruit of luffa (Luffa cylindrical L.) for 

immobilizing microbial cells for bioethanol production. They have stated that the submerged 

fermentation of the Madhuca Indica flowers using whole cells of Saccharomyces cerevisiae 

immobilized in luffa sponge discs, was physiologically active in three more cycles of 

fermentation without significant reduction (<5%) in ethanol production. The immobilized cell 

in luffa sponge was found to be superior compared to the immobilized cells in calcium 

alginate as beads. It was also an excellent cell carrier for bioethanol fermentation, by 

flocculating cells (Saccharomyces cerevisiae) and non-flocculating cells (Candida brassicae). 

The bioethanol productivity was observed to be 8.9% more with luffa immobilised yeast cell 

over free cells, due to the high value of biomass aggregated to it. 

 

2.4 Use of ethanol/bioethanol in CI engines 

As ethanol/bioethanol is a type of alcohol, this section presents the literature review 

pertaining to the use of ethanol in CI engines. The lower cetane number of ethanol compared 

to that of diesel is the main problem, in using ethanol in CI engines.  
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Six different techniques have been proposed and adopted by many investigators, particularly 

to use ethanol/bioethanol in CI engines; they are given below; 

 diesel-alcohol solutions and emulsions 

 cetane improving additives 

 dual injection 

 fumigation 

 surface-ignition 

 spark-assistance 

 

2.4.1 Diesel-ethanol/bioethanol solutions and emulsions 

 

Ethanol/bioethanol can be mixed with diesel fuel using a suitable surfactant or emulsifier. It 

can also be suspended in diesel fuel (diesel or biodiesel) in the form of minute droplets to 

make an emulsion. In a review [59], it was mentioned that the two fuels, however, do tend to 

separate, and an ethanol-diesel fuel emulsion is fairly unstable. These mixtures and emulsions 

could combust satisfactorily in CI engines. It was also mentioned that it would be possible to 

use up to 20% of ethanol/methanol by volume in the form of emulsion. Beyond 20% there 

would be a chance of severe loss of performance. 

 

Strait et al. [60] studied the problems that were encountered with diesel and ethanol blends. 

They reported that though the diesel and anhydrous bioethanol were miscible at room 

temperature, only trace amounts of water in the diesel and bioethanol blends might cause a 

phase separation, and the fuel of low density may shift to the top of the container. A water 

concentration of only 0.05% might cause phase separation at 0 °C, and hence, the water 

tolerance of bioethanol and diesel blends was inadequate for practical use. 

 

Wrage and Goering [61] studied the technical feasibility and performance parameters of 

diesel and ethanol blends. They considered a blend of 10% bioethanol and 90% diesel, and 

named it as diesohol. The efficiency and smoke emission of the engine with the blends were 

found to be decreased compared to that of diesel. They also stated that the most critical 

problem associated with the bioethanol blends was phase separation. Generally, the water 

tolerance of the blends increases with temperature.  

 

Moses et al. [62] concluded that approximately 2% of a surfactant was required for each 5% 

aqueous ethanol to get the stable ethanol-diesel micro emulsions with a minor stirring. Micro 

emulsion was thermodynamically stable for several months and it was also noticed that the 

dispersion sizes were found to be lesser than a quarter of the wavelength of light. The effect 
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of the cetane number with emulsified ethanol was found to be less compared to that of 

ethanol solution/blends. This was due to the shielding effect of the emulsion structure which 

caused a delay in the evaporation of ethanol as compared to the solutions, where the ethanol 

molecules were free to evaporate immediately. They also observed a reduction in the BSEC 

and an improvement in the brake thermal efficiency. 

 

Baker [63] investigated the use of stabilized and unstabilized emulsions of methanol-in-diesel 

fuel and ethanol-in-diesel fuel, in a two cylinder, two stroke engine. He reported that 9:10 and 

3:2 parts by volume of alcohol to emulsifier were required for methanol and ethanol, 

respectively, to create stable emulsions. The maximum alcohol content was limited in 

emulsion or solution, to avoid the engine knocking due to a reduction in the cetane number. 

The thermal efficiency was improved at low load only compared to that of diesel.    

 

Hardenberg and Schaefer [64] investigated the use of 95% ethanol with 1% castor oil in a 

fleet of trucks and buses in Brazil. They stated that the quality of ethanol had a strong 

influence on its corrosive effects. They also studied the viscosity and lubricity properties of 

the fuel. The evaporation time of the ethanol-diesel blends was found to be less due to the 

lower viscosities and increasing surface area of smaller Sauter mean droplet diameters.  

 

Hardenberg and Ehnert [65] described the effect of ignition quality and cetane number of 

ethanol-diesel blends, when they were used as fuels in a diesel engine. They estimated that 

the cetane number of ethanol was between 5 and 15, and when it was blended with diesel, it 

lowered the cetane number. Generally, a lower cetane number may exhibit a longer ignition 

delay which can allow more accumulation and more time for vaporisation of fuel. The initial 

burning rates were reported to be faster, and sudden peak heat releases were obtained at a 

constant volume, which was a more efficient conversion process of heat into work. They 

reported that this might also lead to the noisy operation of the engine. Sometimes, more 

addition of ethanol might hinder the ignition quality due to a fall in the cetane number below 

30. So, it was suggested to add an ignition improver to increase the cetane number of the 

ethanol–diesel blends, so that they would fall within the acceptable range equivalent to that 

expected of diesel.  

 

Schaefer and Hardenberg [66] discussed a number of biomass derived nitrates as ignition 

improvers for the ethanol-diesel blends. They reported that triethylene glycol dinitrate 
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(TEGDN) was a satisfactory ignition improver for the ethanol-diesel blends, which is 

manufactured from ethanol itself. 

 

Boruff et al. [67] used organic additives to form co-solvents and micro emulsions of aqueous 

ethanol and diesel blends, and also checked the suitability of these fuels in a naturally-

aspirated, water cooled, DI diesel engine. The micro emulsion of 190-proof ethanol with 

diesel was done using a surfactant prepared from unsaturated (soybean) fatty acids, N, N 

dimethyl ethanolamine, 2·amino-2·methyl-l·propanol, and named as hybrid fuels. The 

detergentless micro emulsion was prepared by using 1-butanol, and was found to be superior 

in engine performance compared to ionic micro emulsion which was prepared from soybean 

fatty acids. The engine was able to achieve higher power and brake thermal efficiency 

compared to that of diesel with these hybrid fuels. Also, the exhaust gas temperature, exhaust 

smoke (about 64%) and CO emission were found to be lower with the hybrid fuel operation. 

 

Letcher [68] evaluated the use of some co-solvents and ternary diagrams for the stability of 

the ethanol-diesel blends. The solubility of ethanol in diesel was affected mainly by two 

factors, the water content and temperature of the blend. This was avoided by the addition of a 

co-solvent and an emulsifier. Co-solvents allowed fuels to be „„splash-blended‟‟ which 

simplifies the blending process, but emulsification usually required heating and blending 

steps to generate the final blend. He identified tetrahydrofuran and ethyl acetate as effective 

co-solvents, which were obtained from agricultural waste materials and ethanol respectively. 

He concluded that the ratio of ethyl acetate to ethanol to ensure complete miscibility down to 

0 °C was 1:2. 

 

Battelle [69] studied the flammability limits and storage of the ethanol–diesel blends. He 

considered 10%, 15% and 20% of the ethanol–diesel blends in his test. With the ethanol 

addition, the flash point of the blends decreased. More ethanol in the blends formed a vapour 

at the head of the storage tank, and was flammable in storage tanks at 12-42 °C, compared to 

diesel which was flammable at 64-150 °C. So, flame arrestors were installed in the filler 

necks. About 10-20% ethanol blends showed similar properties to those of diesel.  

 

Gerdes and Suppes [70] have explained that the aromatic content and intermediate distillate 

temperature would have a significant impact on the miscibility limits of the ethanol-diesel 

blends. The miscibility of ethanol in diesel was improved with a reduction of the aromatic 
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content of diesel. It also had an effect on the amount of emulsifier required for stable 

emulsion. 

 

Satge de Caro et al. [71] conducted experiments in DI and IDI engines by using 10-20% 

ethanol-diesel blends. They used two additives to get stability and to improve the ignition 

quality of the blends. They added 2% each of two additives such as 1-octylamino-3-octyloxy-

2-propanol and dinitrated derivative N-(2-nitrato-3-octyloxy propyl), N-octyl nitramine for 

comparison purposes. They concluded that the additives kept the cetane number above 45, 

which ensured suitable ignition. The cetane number was increased by about 2% with 10% 

ethanol-diesel emulsions compared to that of diesel. When 20% of ethanol with an additive 

was used, the cetane number was found to be decreased by about 6.5% compared to that of 

diesel. The ignition delay was reported to be longer and cyclic irregularities were observed, 

when the ethanol content was increased in the emulsion. The performance and emission 

details are shown in Fig. 2.4 and Fig. 2.5 at full load.  
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Fig. 2.4 Percentage variations of performance parameters 

Hansen et al. [72] reviewed research works related to bioethanol-diesel fuel blends in diesel 

engines. They summarised that the ethanol percentages of 10% or less had no noticeable 

differences in the performance compared to diesel. They also mentioned that the addition of 

ethanol to diesel fuel would have a beneficial effect in reducing at least the particulate matter 

(PM) emissions. The NOx emission was reduced, while the CO and THC emissions were 

marginally higher than those of diesel. It was suggested that an advanced emission control 

system could minimise the CO and THC emissions. A small adjustment in the fuel injection 

system would be required for better results. Also, proper storage, handling and dispensing of 

bioethanol and diesel blends would be required. 
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Fig. 2.5 Percentage variations of emission parameters 

 

Lapuerta et al. [73] examined the stability range and effect of temperature, water content in 

the blends. They considered the test conditions of a sample as 5 °C and 2.5% water up to E-

20 blend. The separation ratio was also discussed for better results of stability. They 

concluded that the blends with the bioethanol contents up to 10% v/v could be used in diesel 

engines, in countries where winter temperatures rarely fall to 5 °C. And blends with 7% 

bioethanol, such as those commercially used, could be used in even colder countries. 

 

Rakopoulos et al. [74] investigated the performance and emission parameters of  a six-

cylinder, turbocharged and after-cooled, heavy duty, direct injection (DI), Mercedes-Benz 

engine, fueled with 5% and 10% (by vol.) of bioethanol in the bioethanol-diesel blends. The 

specific fuel consumption was observed to be higher with increasing percentage of bioethanol 

in the blends and the efficiency was marginally improved. The smoke density was 

significantly reduced with the bioethanol-diesel fuel blends, with respect to that of diesel with 

a corresponding increase in the percentage of bioethanol in the blend. A marginal increase in 

the HC emission was observed with the blends, and also the NO and CO emissions were 

marginally reduced in comparison with diesel at full load, with the increase in the percentage 

of the ethanol content. Figure 2.6 shows the percentage variation in the performance, and  

Fig. 2.7 shows the percentage variation in the emission parameters compared to those of 

diesel at full load. 
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Fig. 2.6 Percentage variations of performance parameters 

 

 

 

 

 

 

 

 

 

 

Fig. 2.7 Percentage variations of emissions parameters 
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Li et al. [75] studied the effects of ethanol-diesel blends in a single-cylinder DI diesel engine 

with ethanol of 5%, 10%, 15% and 20% blend on volume basis and found that BTE, BSFC, 

and THC were increased while the CO, NOx and smoke emissions were significantly reduced 

in comparison with neat diesel fuel. 

 

Kumar et al. [76] studied the effect of addition of emulsifier at different percentage on the 

performance, combustion and emission characteristics of a DI diesel engine. They prepared 

the ethanol-diesel micro-emulsions with the addition of ethyl acetate (EA) emulsifier at the 

volume percentage of 7%, 13% and 17% and ethanol value of 13%, 17% and 23%. They 

reported that, the phase separation did not occur with ethanol-diesel micro-emulsions 

containing 13% of ethanol and 7% of EA, for which the BSEC and BTE were improved 

without any power reduction at a lower load. The NO and smoke emissions were found to be 

decreased, while the HC and CO emissions were increased at lower loads. The HC and CO 

emissions were improved at higher loads, but BSEC was increased. 

 

Arapatsakos et al. [77] used ethanol amount of 20% to 30% on a volume basis in the diesel–

ethanol blends, and studied the performance and emission characteristics of a 4-cylinder John 

Deer Tractor engine at full load. The concluded that, the addition of ethanol showed a positive 

effect on the CO and HC emissions, but a negative effect on engine power due to the small 

calorific value of ethanol. 

 

Huang et al. [78] investigated the engine performance and exhaust emissions of a single 

cylinder, four stroke, and water cooled DI diesel engine fueled with 10%, 20%, 25% and 30% 

ethanol-blended diesel fuels with and without additive. The additive n-butanol about 5% was 

used to increase the blend stability and properties.  The BTE found to be decreased as the 

amount of ethanol in the diesel–ethanol blends increased. The smoke emission was observed 

to be lower when the engine was fueled with the blend compared to that of neat diesel at full 

load. The CO emission was noticed to be lower at and above half loads compared to that of 

diesel, but were higher at low loads and low speeds. The HC emission was higher except at 

full loads and high speeds, while NO emissions varied at different speeds, loads and blends. 

 

Ganesh et al. [79] emulsified ethanol at a percentage of 30%, 40% and 50% by volume with 

diesel using sorbitan monooleate as a surfactant and conducted the experiment in a single 

cylinder, four-stroke, water cooled, DI diesel engine to determine the effects of 
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emulsion/blend on the performance, combustion and emissions. They concluded that the 50% 

ethanol–diesel blend was best, compared to those of diesel and other blend ratios. Using the 

optimal blend, the delay period was reduced at a 24° injection angle. The BTE and NO 

emissions were found to be increased, but smoke density and PM were reduced, and the 

maximum heat release, peak pressure, cumulative heat release and cylinder pressure were 

noticed to be increased.  

 

Song et al. [80] carried out the engine experiment in a 6-cylinder, heavy duty, non-catalyst 

turbocharged intercooler DI diesel engine with diesel and ethanol-diesel fuel blends at 1200, 

1800 and 2600 rpm and studied the carbonyl emissions from the engine. They used the 

ethanol amount of 15% with a stability additive of 0.3% and 1.2% in diesel to prepare the 

blends/emulsion. The experimental results revealed that acetaldehyde was the foremost 

carbonyl produced by both fuels, followed by formaldehyde, acrolein, acetone, 

propionaldehyde and crotonaldehyde. The addition of ethanol to diesel fuel resulted in a 

decrease in acrolein emissions, while the other carbonyls increased at low engine speed. The 

brake specific emissions of each carbonyl compound decreased with the increase in engine 

load during the constant speed test. Carbonyl carbon (CBC) emissions from both diesel and 

the diesel–ethanol blends were found to be the highest at a high engine speed, while the total 

CBC emissions from the ethanol–diesel blends were higher than those from diesel under most 

engine operating conditions. 

 

Banugopan et al. [81] investigated the performance and emission characteristics of a single 

cylinder, four stroke, water cooled, DI diesel engine using ethanol-diesel emulsion/ blends. 

They added 1% of isopropanol with 10%, 15%, 20%, 25% and 30% of ethanol-diesel blends, 

as an additive for enhancing homogeneity and preventing a phase separation. The inlet air 

was preheated to 40, 50 and 60 °C. The total fuel consumption (TFC) and specific fuel 

consumption (SFC) increased as ethanol concentration increased, while the BTE was found 

to be decreased without preheating. Simultaneously, they observed that preheating inlet air 

had negative effect on CO and HC emissions. 

 

Lei et al. [82] studied the effects of ethanol-diesel blends on performance and emissions 

characteristics of a turbo-charged diesel engine under different atmospheric pressures (81, 90 

and 100 kPa) conditions and compared the results with that of diesel. The amount of 

ethanol/bioethanol considered for the blend was 10%, 15%, 20% and 30% by volume basis. 
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They found that, the BSFC was significantly improved below 90 kPa, but a sharp increase in 

HC and CO emissions with increasing engine speed, load and the ethanol con-centration were 

observed at 81 kPa. On the other hand, atmospheric pressure and ethanol blending percentage 

did not affect NO emission at 90 and 100 kPa, while smoke was reduced below 90 kPa.  

 

2.4.2 Use of cetane improvers 

 

Low cetane number fuels generally have a tendency to exhibit longer ignition delay due to 

their ignition quality. The ignition quality can be improved by adding small quantities of 

ignition improvers or cetane number improvers. Examples of ignition improvers are organic 

peroxides, nitrates, nitrites and various sulphur compounds. Earlier, alkyl nitrates (isopropyl 

nitrate, primary amyl nitrates, primary hexyl nitrates, octyl nitrate) were commercially used.  

By adding these improvers, the ignition characteristics of poorer quality diesel fuel, 

particularly alcohols, will be improved when they are used in CI engines. The use of ignition 

improvers or cetane improvers offers two advantages when they are used with alcohols: 

firstly, alcohols can be used in CI engines without any major engine modification; and 

secondly, they offer total replacement of diesel fuel in diesel engines. An ignition improver of 

up to 15% by volume would normally be required to enable the ignition of alcohol fuels in CI 

engines. The cost of these additives is high, and hence, they are not largely used. In addition 

to these improvers, some cetane improvers produced from biomass can be used. Examples of 

these are Diethyl ether (DEE) and Dimethyl ether (DME). 

Lyford-Pike et al. [83] operated a 14 litre, six cylinder, diesel engine with an ignition-

improved ethanol. Hydrated ethanol (95% v/v) was used together with additives for ignition 

improvement, lubrication and protection against corrosion. The composition of the fuel was 

developed by Mercedes-Benz with the following additives: 

(a) Alicolita (4.5% v/v)-this is a Tri Ethyl Glycol Di - Nitrate (TEGN) based additive; it 

promotes self - ignition in ethanol and mixes with hydrated ethanol 

(b) Castor oil (1 % v/v) - used to improve the lubricating properties of ethanol 

(c) Max lub 8027 (0.025% v/v) - used for protection against corrosion. 

 

They modified the engine by operating it at different higher compression ratios, with the 

inclusion of a turbocharger, change of injectors, injection timing and duration and calibration 

of the fuel pump. They reported that by doing all this, the engine attained high in-cylinder 

temperatures and pressures necessary to promote self-ignition and to sustain combustion. 
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They changed the compression ratios to evaluate their effect on ignition delay for the ethanol 

operation. They concluded that, an overall decrease of 5 
o
CA in ignition delay was observed 

with an increase in compression ratio from 15.8:1 to 16.5:1. The engine attained a peak cycle 

pressure of 114 bar and achieved the same power output as that of diesel operation in the 

same engine. At rated load, the brake thermal efficiency of the alcohol engine was 38%, 

better than that of the corresponding diesel engine. The opposite was true at part load 

conditions. 

 

Hodgson [84] evaluated the performance and emissions of a Perkins based naturally 

aspirated, 4 cylinder, DI diesel engine, running on ignition improved ethanol and methanol at 

a compression ratio of 16:1, which was the same as that for a diesel fueled engine. They 

changed the fuel pump and injectors to allow for expected larger fuel deliveries with the 

alcohol fuels. Higher brake thermal efficiency was reported when running on ignition 

improved ethanol than with gasoil on the corresponding standard engine. 

 

Cai et al. [85] discussed the use of different percentages of a cetane enhancer (i.e. 0, 0.2, 

0.4%) in 15% v/v ethanol-diesel blends, in a high speed diesel engine. Table 2.5 gives the 

percentage variation in performance and emission parameters with the addition of an ignition 

improver compared to that of diesel at full load.  

 
Table 2.5 Percentage variation in parameters 

 

Performance 

parameters 

E15-D with 0.2% CN improver E15-D with 0.4% CN 

improver 

BSFC +6.9% +4.2% 

BTE +17.8% +21.4% 

Emission parameter 

Smoke -44.8% -45% 

NO -3.5% -15.1% 

HC +20.7% -42.1% 

CO -11.7% -12.2% 

   

They concluded that the brake specific fuel consumption (BSFC) increased, the diesel 

equivalent BSFC decreased, and the thermal efficiency improved remarkably. The NOx and 

smoke emissions decreased simultaneously. The ignition delay was found to be prolonged, 

and the total combustion duration shortened for the ethanol-diesel blends compared to that of 

diesel.   
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Ren et al. [86] studied the combustion and emission characteristics of a DI diesel engine, 

fueled with the diesel-ethanol blends (E5, E10, E15 and E20) and an ignition improver. They 

have added 0.2 vol% CN improver (isoamyl nitrite) with 5, 10, 15 and 20 vol% ethanol 

fraction in diesel. The ignition delay and premixed combustion duration of fuel blends with 

E10 and additives were found to be similar to those of diesel. They reported that the 

maximum rate of heat release increased with the increase in the ethanol mass fraction in the 

blends compared to that of diesel. The diesel equivalent BSFC was found to be lower, with an 

increase in the ethanol fraction at full load. Also, there was a simultaneous reduction of NOx 

and smoke compared to that of diesel. The percentage variations in the performance and 

emission parameters are given in Table 2.6. 

 
Table 2.6 Percentage variations in parameters 

 

Performance 

parameters 

E5A E10A E15A E20A 

BSFC +2.4% +2.6% +2.9% +3.2% 

BTE -3.8% +2.4% +3.4% +4.1% 

Emission parameter 

Smoke -7.8% -22% 38% 56% 

NO -7.4% -6.1% -8.6% -11.3% 

 

Pidol et al. [87] discussed the use of ethanol-diesel blends in a low temperature combustion 

(LTC) engine. They have used fatty acid methyl ester (FAME) to increase the stability of the 

blends, and also to improve the cetane number. The flash point obtained was found to be 

decreased below -17 °C.  

 

Can et al. [88] added an unsaturated fatty acid-based solvent as an additive and isooctyl 

nitrate as an ignition improver to the ethanol (10–30 vol%) -diesel blend in a single cylinder 

engine. The physicochemical properties and stability of the blend was observed to be 

improved. Also, they concluded engine emissions varied with changes in engine operating 

conditions, ethanol content, additives and ignition improver.  

 

Ashok [89] added DME, DEE and H2O2 as additives with the diesel-ethanol emulsified fuel, 

and studied the performance, combustion and emissions of a diesel engine using these 

emulsified fuel. He showed that the higher cetane number of DME and DEE has led to a 

better performance, combustion and emission of a diesel engine. The oxygen enriched DME 

and DEE provided a lesser fuel consumption than H2O2 added ethanol diesel emulsion fuel. 
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The presence of oxygen in the fuel reduces self-ignition temperature and increases cetane 

number. As a result, the emulsified fuels with DME and DEE start burning early but release a 

lesser amount of heat with the improvement of premixed combustion phase. He stated that 

more the oxygen-enriched additive in fuel, higher is the value for cetane number of 

emulsified fuels and lower is the NO emission. Also, he concluded that the addition of DME 

and DEE with 50:50 ethanol-diesel emulsion have shown to improve BTE. 

 

Ashok [90] extended the investigated to study effect of using emulsified ethanol-diesel fuel 

with 5% water and 6% H2O2 with the presence of hydrophilic surfactant TWEEN80. He 

concluded that the emulsified fuel without water showed a better performance than same with 

water. The presence of water reduces the quantity of free oxygen in the emulsion and hence 

the cetane number of the same. 

 

2.4.3 Dual injection 

 

The dual injection technique uses two separate injection systems, one for diesel fuel and the 

other for alcohol fuel. Combustion is started by injecting a small quantity (pilot) of diesel fuel 

before a larger quantity of alcohol is injected through the main nozzle. The pilot injection acts 

as an ignition source for the alcohol fuel. It is reported that up to 95% (vol) replacement of 

diesel fuel would be possible with the dual injection method [59]. The cost involved in this 

method for engine modification would be certainly high, because it would be necessary to 

include complex fuel control and metering systems. In addition to engine modification 

additives for lubrication would be required to ensure a satisfactory life. 

 

Padala et al. [91] performed the experiment in a single-cylinder, common-rail, DI diesel 

engine based on dual fuel technology. They introduced the ethanol into the intake manifold 

using a port-fuel injector while diesel was injected directly into the cylinder and investigated 

the effect of ethanol energy fraction and the diesel injection timing on the engine efficiency 

and the tailpipe emissions. From the ethanol energy variation tests at fixed diesel injection 

timing, it was found that increased ethanol energy fraction increased the engine efficiency 

until the operation was limited by misfiring associated with an over-retarded combustion 

phasing. By energy fraction, up to 60% of diesel was replaced by ethanol, which achieved 

10% efficiency gain compared with the diesel-only operation. The HC, CO and NO 

emissions were found to be increased with an increasing ethanol fraction.  
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Britto and Martins [92] conducted an experiment with a single cylinder, DI, diesel engine in a 

dual fuel mode where ethanol was injected with electronically controlled injector. They used 

two different combustion chamber for quiescent, and high swirl flow development, three 

different compression ratios of 14:1, 16:1 and 17:1, two injectors with a flow rate of 35 g/s 

and 45 g/s, and four diesel injection pressures namely 800, 1000, 1200 and 1400 bar. They 

concluded that, CR of 16:1 allowed the highest substitution rates, but it had some 

disadvantages in relation to 17:1 of CR, since the latter led to a greater efficiency. The 

indicated efficiency using ethanol was found to be higher with the lower injector flow rate 

(35 g/s) than using higher flow injectors (45 g/s). The maximum substitution of ethanol at 

loads greater than 5 bar IMEP was observed to be 51% with the higher flow injector at 800 

bar injection pressure. 

 

Britto and Martins [93] studied the emission results of diesel-ethanol, dual-fuel system of the 

engine. The NO emission was reduced up to 60% ethanol substitution with a higher injector 

flow, compression ratio of 17:1, and high swirl flow structure. The HC and CO emissions 

were found to be increased in the dual fuel mode. 

 

2.4.4 Fumigation 

 

Many researchers have proposed and used this technique to investigate CI engines run with 

methanol, ethanol and butanol. They introduced alcohols into the engine with the intake air. 

This method requires less engine modification than for dual fuel injection. A maximum of 

50% (vol) replacement of diesel fuel would be possible, with the level of replacement limited 

by the onset of detonation of the air-fuel mixture. An accurate control of the fuel flow would 

be necessary in order to prevent misfire at light loads and knocking at high loads. The 

volumetric efficiency of the engine would reduce, and result in a power drop. 

 

Ajav et al. [94] conducted the performance and emission test in a single cylinder, diesel 

engine using vaporised ethanol at the intake manifold with the help of a carburettor. They 

made a comparison between unheated and preheated vaporisation of ethanol at 50 °C. The 

BSFC with unheated and preheated vaporisation of ethanol was found to be lower by about 

23% and 14% compared to that of diesel at full load. Up to 75% load, there was a decrease in 

the brake thermal efficiency, and after that there was a marginal increase with vaporised 

ethanol compared to diesel. At full load, the brake thermal efficiency was higher by about 8% 

and 6% with unheated and preheated vaporisation of ethanol compared to that of diesel. The 
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CO emission was higher by about 12.6% and 60.2% compared to that of diesel at full load. 

The NO emission was 0.4% higher with unheated vaporisation, while it was 0.7% lower with 

preheated vaporisation compared to that of diesel at full load. Surawski et al. [95] have 

performed the emission tests on a pre-Euro I, four-cylinder, Ford 2701C engine with the 

ethanol fumigation at two different speeds (2000 and 1700 rpm). The particle size was found 

to be half, with a higher substitution of ethanol fumigation compared to that of ethanol diesel 

blends, at full load. Heisey [96] also reported that by fumigating ethanol and methanol in 

amounts of up to 55% of the total fuel energy, the ignition delay and CO was found to be 

higher, and NO and thermal efficiency were found to drop at heavy loads. 

 

Surawski et al. [97] have assessed the impact of the gaseous and particle emission 

concentrations in a 4-cylinder Ford 2701C engine by ethanol fumigation. The fumigation 

technique delivered the vaporised ethanol (10 to 40% by energy) into the intake manifold of 

the engine, using an injector, a pump and pressure regulator, a heat exchanger for vaporising 

ethanol and a separate fuel tank and lines. The NO and PM emissions were observed to be 

lower than those of diesel at full load. But, the BSCO and BSHC emissions increased 

considerably compared to those of diesel at full load. They have used a diesel oxidation 

catalyst to reduce the BSHC and BSCO emissions.  

 

Chauhan et al. [98] conducted experiments in a small capacity diesel engine with a constant 

injection of ethanol at the intake manifold along with the air, to study the emission 

parameters. Ethanol was introduced in the intake manifold of the engine using a carburettor 

and its quantity was controlled by a butterfly valve according to the variation of loads. The 

conclusions made from the results were that, there was an improved performance and reduced 

NO and smoke emissions with the 15% of ethanol fumigation. The CO emission decreased 

with respect to an ethanol substitution at 20 and 45% load, but the HC emission was found to 

be increased during the entire engine operation.  

 

Bodisco et al. [99] have conducted an experimental investigation on a modern turbo-charged 

inline 6-cylinder Cummins diesel engine (ISBe220 31) with a common rail injection system 

at 2000 rpm on neat automotive diesel and with the ethanol fumigation substitutions of 10%, 

20%, 30%, and 40% at full load (760Nm), and at three quarters (570Nm) and half (380Nm) 

of full load. The combustion analysis indicated that on 40% substitution of ethanol, the 

ignition delay began to decrease, which may be due to the early ignition of the fumigated 
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ethanol. They have concluded that, there was an increase in the inter-cycle variability with 

the high substitutions of ethanol.  

 

Lopez et al. [100] investigated the combustion characteristics, performance, emissions, 

particle number concentration and size distribution of an automotive diesel engine using 

hydrous ethanol and n-butanol fumigation at intake manifold. They observed that, both the 

alcohols exhibited higher premixed combustion peaks, faster combustion process, and higher 

coefficient of variation of indicated mean effective pressure (imep) and reduced maximum in-

cylinder temperature, in comparison with the ultra low sulfur diesel (ULSD) irrespective of 

loads. Neither n-butanol nor hydrous ethanol presented better brake thermal efficiency (bte) 

and brake specific fuel consumption (bsfc) than ULSD. Both alcohols increased carbon 

monoxide (CO) and total hydrocarbons (THC) and reduced nitrogen oxides (NOx) and 

particulate matter (PM), in comparison with ULSD fuel. The n-butanol showed the best 

trade-off (PM vs NOx + THC) among all fuels. In comparison with ULSD, hydrous ethanol 

fumigation decreased the total number concentration of particles, while maintaining or 

increasing the geometric mean diameter, depending on the engine load. In comparison with 

ULSD, n-butanol maintained or reduced the total number concentration of particles and 

exhibited the opposite trend for the geometric mean diameter. The particle number 

concentration (PNC) and size distribution were not affected by engine load for n-butanol. 

 

Sahin et al. [101] evaluated the combustion, smoke index (K) and oxides of nitrogen emission 

and performance parameters of a turbocharged IDI automotive diesel engine using ethanol 

fumigation at three diesel fuel delivery rates (FDRs), different engine speeds and various 

ethanol fumigation ratios (EFR). Ethanol was introduced into intake air by a carburetor, 

which main nozzle section is adjustable, given approximately 2%, 4%, 6%, 8%, 10% and 

12% (by vol.) ethanol ratios. The experimental results showed that smoke index K reduced 

for up to 4–8% EFRs but then it began to increase. The ethanol fumigation tests results 

showed that the NOx emission values were lower than that of neat diesel fuel (NDF). The 

NOx emission decreased approximately 8.5%, 9.79% and 11.02% for 1/1, 3/4 and 1/2 FDRs 

respectively, at the selected engine speeds. For ethanol ratios higher than 8–10%, the engine 

performance parameters improved for 1/1 and 3/4 FDR, but they deteriorated for 1/2 FDR at 

selected engine speeds. In heat release rate diagram, two distinct peaks were observed for 

high ethanol additions. The first peak occurs before top dead center (TDC) and the second 

peak takes place after TDC. 
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2.4.5 Surface ignition 

 

Alcohol fuels have a very low resistance to ignition on hot surfaces. Therefore, many 

researchers have used this technique [102]. The hot surface was used to ignite alcohol fuels in 

diesel engines. The technique offers possibilities for a complete substitution of diesel fuel 

with alcohol fuels. Many researchers have used a glow plug as a heating source for surface 

ignition. It was reported that the location of the fuel injector is an important factor, because 

the glow plug should not be affected by the direct impingement of the fuel spray on it. 

 

Nagalingam et al. [103] developed a single-cylinder diesel engine with a rated power of 3.7 

kW (5hp) to use alcohol fuels with an ignition assistance by a hot surface. They included a 

plug that incorporated a heated surface in the engine. With this arrangement they were able to 

run the engine at a compression ratio of 8.8:1 or 14.7:1. The original engine compression 

ratio was 16.5:1. They conducted the performance tests at engine speeds of 1000, 1500 and 

2000 rpm. The injection timing was kept constant at 31 °CA bTDC (static setting). At the 

compression ratio of 8.8:1 and engine speed of 1500 rpm, the brake thermal efficiency curves 

for ethanol and methanol were found to be similar. The brake thermal efficiency curves for 

methanol, ethanol and petrol at a compression ratio of 14.7: 1 and engine speed of 1000 rpm 

were compared. The engine efficiency when running on petrol was found to be marginally 

better than that of methanol or ethanol. The engine was also run as a conventional CI engine 

on diesel at a compression ratio of 14.7: 1 (i.e.) without the use of the hot surface ignition. 

The brake thermal efficiency of the engine running in this mode was comparable to that of 

methanol at both 1000 and 1500 rpm. The maximum brake thermal efficiency recorded was 

23%. They reported that it was possible to run the engine without the ignition assistance at 

high load and speed conditions, and especially, after a period of running with the ignition 

assistance. They also reported that there was a marginal increase in the ignition delay when 

operating without the ignition assistance with the heating plug. 

 

Kapus et al. [104] conducted experiments in a glow plug assisted methanol engine. They 

reported that the emission levels from the methanol fueled engine complied with the Austrian 

legislative requirements, and also had high fuel economy. They also indicated that the nozzle 

configuration (symmetrical/asymmetrical) affected the engine performance in terms of the 

brake specific fuel consumption and emissions. The four hole asymmetrical nozzle showed a 

marginally better performance than the corresponding four hole symmetrical nozzle. 
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2.4.6 Spark ignition 

 

The use of a spark plug to ignite the alcohol-air mixture would result in a minimal ignition 

delay and achieve smooth combustion [59]. A complete replacement of diesel fuel would be 

possible with a spark ignition. Johns et al. [105] reported that advancing the injection timing 

for alcohol fuel would be necessary. By doing this, the alcohol fuel will have sufficient time 

to vaporise and mix with air, to form an ignitable air-fuel mixture before it would be ignited 

by the spark plug. Newnham [106] used a conventional single spark automotive ignition 

system in his research work. He reported that this technique was a little complex, because it 

required a complete spark-ignition system in addition to the fuel injection system of diesel. 

He converted a standard single cylinder, naturally aspirated, DI diesel engine to run on 

alcohol fuels with a spark-assistance. He studied the effect of injection and ignition timings 

on the overall performance of the engine. He also evaluated the heat release rates of the fuel-

air mixture over a range of injection and ignition timings. He reported that it was difficult to 

achieve smooth running of the engine on alcohol, at the original full power and speed 

specification. This was the case even when the original fuel pump was changed to one which 

was capable of delivering a larger volume. 

 

2.5 Bioethanol-biodiesel-diesel blends 

 

Biodiesel can be used with bioethanol-diesel blends to get the solubility and stability of the 

blends. It also improves the lubricity properties of the blends. When it is used in a diesel 

engine, it also reduces the diesel fuel consumption. Many research works have been 

documented, relating to the use of biodiesel in bioethanol-diesel blends in diesel engines. 

Shi et al [107] used the blend ratio of 5:20:75 (ethanol: methyl soyate: diesel fuel) by volume 

in a heavy duty diesel engine. They observed that the NO and PM emissions were reduced 

significantly, whereas the CO emission was not conclusive; it depends upon the engine 

operating conditions. The THC from the blended fuel was lower than that of diesel fuel, 

under most of the controlled experimental conditions. 

Kwanchareon et al [108] prepared diesohol blends (80% diesel, 15% biodiesel and 5% 

ethanol) and made an attempt to use them in a commercial single cylinder, vertical, four 

stroke, air cooled, DI diesel engine. They studied the emission characteristics of the engine. 

They have observed that the CO and HC emissions were reduced significantly at higher 

loads, whereas the NOx emission was increased, in comparison with diesel.  
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Chen et al [109] added vegetable methyl ester to the ethanol-diesel blends to study the 

solubility of the blends. They used the blends to study the emission characteristics of the 

Cummins 4B, four cylinder, diesel engine. They found that both the PM and smoke emissions 

were reduced. The CO emission was increased at lower loads and middle loads, whereas it 

was decreased at higher loads and full loads. 

Chotwichien et al [110] used palm oil alkyl esters as additives in the ethanol-diesel and 

butanol-diesel blends. The addition of alcohol to diesel decreased the fuel properties such as 

fuel density, kinematic viscosity and cetane number, and these can be compensated by adding 

biodiesel to the bioethanol-diesel blend. They concluded that butanol has a higher solubility 

in diesel than ethanol, and it improved the fuel properties of the blends. They also concluded 

that the blend of 85% diesel, 10% palm oil ethyl ester, and 5% butanol provided a stable 

mixture and acceptable fuel properties for use as an alternative fuel in diesel engines. 

 

Rahimi et al [111] studied the emission behaviour of a commercial RD270 Ruggerini, two 

cylinders, in-line, air cooled, naturally aspirated, DI diesel engine fueled with the ethanol-

sunflower methyl ester-diesel blends (diesterol). They used bioethanol produced from potato 

waste. They observed that the fuel properties, such as flash point and viscosity of the blends, 

were reduced by increasing the amount of ethanol in the blends. The NO, CO and smoke 

emissions were reduced by increasing the biofuel composition of diesterol throughout the 

engine operating range. 

 

Subramanian et al [112] used the diesel-ethanol-pungamia methyl ester blends in a multi 

cylinder, naturally aspirated, DI diesel engine. They compared the combustion, performance 

and emission parameters of the engine with diesel. They concluded that the brake thermal 

efficiency of the engine was marginally higher than that of diesel at full load. The smoke and 

NOx emissions were lower, but the HC emission was higher compared to that of diesel at full 

load. 

 

Yilmaz [113] studied the performance and emission characteristics of the two-cylinder, 

liquid-cooled, DI, Kubota GL-7000 diesel engine fueled with biodiesel-methanol-diesel 

(BMD) and biodiesel-ethanol-diesel (BED) and results were compared with diesel fuel. He 

concluded that the biodiesel-alcohol-diesel blends resulted in a higher BSFC and CO and HC 

emission, whereas NO emission was found to be lower compared to those of diesel. The 
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methanol blends were more effective than ethanol blends for reducing CO and HC emissions, 

while NO reduction was achieved by ethanol blends. 

 

Sukjit et al [114] have added rapeseed methyl ester (RME) to the alcohol-diesel blends to 

study the effect of carbon chain length and degree of unsaturation, on the combustion and 

emission behaviour of a diesel engine. They used both ethanol and methanol fuel for the 

alcohol-diesel blends. Also, they gave emphasis to the stability and lubricity properties of the 

alcohol-diesel blends. They concluded that the addition of 15% of all methyl esters was 

enough, to avoid the phase separation of the alcohol-diesel blends, and keep the wear scar 

diameter of the blends below the limitation required by the lubricity standard. The CO and 

soot emissions of the alcohol blends were found to be lower compared to those of biodiesel 

blends with the same oxygen content. 

 

Di etal. [115] studied the emissions of a DI diesel engine fueled by ultra-low sulphur diesel 

with ethanol and biodiesel (2%, 4%, 6% and 8% in volume) used as oxygenated additives. 

The BTE improved slightly as the amount of ethanol and biodiesel in the fuel blends 

increased, while the HC and CO emissions found to be decreased, but NOx emission 

increased compared to those of neat diesel. 

 

Tse et al. [116] investigated the influence on the combustion characteristics and particulate 

emissions of a 4 cylinder, naturally-aspirated, DI diesel engine fueled with DBE (diesel-

biodiesel-ethanol) blended fuels at a steady state speed of 1800 rev/min under five engine 

loads. The diesel-biodiesel was blended with 0%, 5%, 10% and 20% of ethanol. They 

concluded that, the DBE blends effectively reduced brake specific particulate mass (BSPM), 

brake specific number concentrations (BSPN). With the increase of ethanol in the blended 

fuels, the ignition delay became longer for the DBE blend. The in-cylinder pressure and peak 

heat release became higher and retarded due to a more fuel burned in the premixed burning 

phase. 

 

Oliveira et al. [117] tested the effects of fuel blends containing 5, 10 and 15 wt.% of 

anhydrous ethanol in diesel oil with 7% of biodiesel (B7) on the performance, emission and 

combustion characteristics of a diesel power generator were investigated at the different 

applied load varied from 5 to 37.5 kW. The results showed that the in-cylinder peak pressure, 

and the heat release rate were decreased at low loads and increased at high loads with the use 
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of ethanol in the blend. Also, it was observed that the increasing ethanol concentration in the 

blend caused the increased ignition delay, decreased the combustion duration and reduced the 

exhaust gas temperature. The CO, HC and NO emissions showed different behavior, 

depending on the load and ethanol concentration. 

 

2.6 Conclusion 

 

From the review of literature carried out, it is understood that there was no work on the 

utilisation of bioethanol obtained from the Madhuca Indica flowers as an alternative fuel for 

CI engines. The Madhuca Indica seed is always chosen as potential feedstocks for biodiesel 

production.  The trees are largely available in coastal areas. It can grow any arid and non-arid 

regions. These flowers are used for local ethanol production. Most of the R&D, Ministry of 

New and Renewable Energy and Ministry of Rural Development are promoting such 

bioethanol production from biomass which will substitute even minor percentage of diesel. 

Generally, the Madhuca Indica flower is composed of a large amount of sugar than that of 

other feedstocks. Presently, research is mainly focused on exploration of large amount of 

biofuel from the biomass to mitigate the demand of energy security as well as reduction of 

engine tail pipe emissions which is the measure cause of climate change. The bioethanol 

derived from the biomass provide the significant reductions in GHG and smoke emissions 

compared to those of gasoline and diesel fuels. Though a lot of work has been carried out on 

utilization of bioethanol, the researcher tried to explored bioethanol from new biomass 

feedstocks and decided to first characterize bioethanol for its suitability to be used as an 

alternative fuel for a CI engine, by using various instruments, and then to adopt different 

techniques for its possible utilisation.   

 

2.7 Objectives of the study 

 

The objectives of the research work are as follows; 

 To derive bioethanol from Madhuca Indica flower, a forest residue available in 

significance quantity in India. 

 To characterize the bioethanol for its suitability for alternative fuel for an engine. 

 To ensure the substitution of bioethanol to diesel by maximum percentage by 

evaluating combustion, performance and emission of a single cylinder, four stroke, air 

cooled, DI diesel engine adopting few fuel modification and engine modification.  

 To validate the experimental results. 
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 To improve the lubricity properties by adding small quantity of biodiesel. 

 Durability study for long term benefit. 

 

The present work is in the early stage of research in utilizing bioethanol obtained from the 

Madhuca Indica flower as an alternative fuel for CI engines. The results of the research work 

are established for the first time. 
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CHAPTER 3 

 

FUEL CHARACTERISATION 

 

3.1 General 

 

Whenever an alternative fuel is proposed, it is necessary to thoroughly study the availability 

of the raw material or feedstock for production. Once, the feedstock is chosen for 

production, the feedstock is subjected to one or more processes for producing the fuel. This 

may need mechanical processes such as classification, drying, grinding, and mixing, 

whichever is appropriately required before subjecting the feedstock to chemical processes 

that require converting the feedstock to fuel. The chemical processes may be of any kind, 

such as heating, distillation, esterification etc., according to the nature of the feedstock used 

for fuel production. Once the fuel is produced, it has to be characterized for its suitability as 

a fuel, according to the type of engine in which it will be used as an alternative fuel. This 

chapter discusses the method of bioethanol produced, and its characterization using the 

FTIR, GC-MS analysis. In addition to this, the chapter presents the physico-chemical 

properties of bioethanol used in this study. 

 

3.2 Bioethanol from the Madhuca Indica flowers  

3.2.1 Availability of feedstock  

 

In the present investigation, bioethanol was produced from a flower from an Indian tropical 

tree-Maduca Indica. The tree is also known as Madhuca longifolia, Mahuwa or Mahua or 

Illuppai, and is found largely in the central and north Indian plains and forests in the Indian 

subcontinent. The botanical names of the tree are Bassia longifolia L., B. latifolia Roxb., 

Madhuca indica J. F. Gmel., M. latifolia (Roxb.) J.F.Macbr., Illipe latifolia (Roxb.) 

F.Muell., Illipe malabrorum (Engl.). In a technical report [118], it is mentioned that, it is a 

fast-growing tree that grows to approximately 20 meters in height, possesses evergreen or 

semi-evergreen foliage, and belongs to the family Sapotaceae. It is generally grown in an 

arid environment, being a prominent tree in tropical mixed deciduous forests in India in the 

states of Chhattisgarh, Jharkhand, Uttar Pradesh, Bihar, Maharashtra, Madhya Pradesh, 

Kerala, Gujarat and Orissa, in the Indian subcontinent. The Madhuca Indica tree and the 

flower are shown in Fig. 3.1 and Fig. 3.2 respectively. 
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Fig. 3.1 Madhuca Indica tree  Fig. 3.2 Madhuca Indica raw and dry 

flowers  

It is considered as a holy and popular tree in the tribal belt of central India, where it is 

culturally most identified with Indian life in the plains. Its flowers are sweet, delicious and 

are consumed, besides its tasty fruits. But, the tree is popular due to the liquor produced 

from the flowers, which is used to make vinegar. The seeds yield fat known as Mahua butter 

is used in cooking, adulteration of Ghee, manufacturing chocolates and even soaps, besides 

the treatment of rheumatism and constipation. The seeds are also considered as one of the 

potential non edible feedstocks for biodiesel production in India. Mahua cake is insecticidal 

and is used for fishing. The Mahua flowers are edible and are a food item for tribals. The 

flowers are used to make syrup for medicinal purposes. The tribal people from the above 

mentioned states drink the country liquor (Mahua drink) obtained from the flower as a part 

of their cultural heritage. It is an essential drink for tribal men and women during 

celebrations. The main ingredients used for making it are granular molasses (chhowa gud) 

and dried Mahua flowers. The flowers are also used to manufacture jam. The flowering 

season extends from February to April in a year. It is rich in sugar (73%) and next to cane 

molasses. The yield of alcohol is 405 litres from one tonne of dried flowers. The kernel of 

the Mahua fruit contains about 50% oil. The oil yield by a small expeller is 34-37%. The 

annual production of Madhuca Indica flowers in India in the year 2006 was estimated to be 

approximately 48, 000 Metric tonnes [52-53]. 

3.2.2 Fermentation using Saccharomyces cerevisiae 

 

Bioethanol was produced from the Madhuca Indica flowers by the fermentation process, 

using Saccharomyces cerevisiae. Figure 3.3 shows the production process of bioethanol 

from the Madhuca Indica flowers. The fresh flowers of Madhuca Indica were collected from 

a village in India, cleaned properly to remove the adhering soil particles, and dried in the 
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sunlight. The yeast (Saccharomyces cerevisiae) was cultured on Yeast extract nutrient broth 

(YENB) having 5% glucose and 1% of yeast extract for 48 h. The Madhuca Indica flowers 

were pretreated for the extraction of sugars. The flowers of Madhuca Indica and distilled 

water in a 2:1 ratio were autoclaved, at a pressure of 68.2 kPa for 15 min. 

 

 

 

 

 

 

 

 

Fig. 3.3 Production process of bioethanol from the Madhuca Indica flowers 

For the fermentation, a starter culture was added at the rate of 10% (v/v) to the Madhuca 

Indica extract taken in a 1000 ml Erlenmeyer flask, and fermentation was carried out in a 

batch on the laboratory bench at a temperature of 30 °C ± 2 °C for 96 h. After the 

fermentation process, first distillation was done to get the crude extract, and further, the 

fractional distillation was done for the removal of water. The steps involved for checking the 

purity of bioethanol by an alcoholmeter are shown in Fig. 3.4. 

 % of Alcohol = [1.05\(initial specific gravity–final specific gravity)\100]/final specific 

gravity. 

 

Fig. 3.4 Steps involved in checking the purity of bioethanol 

 

The purity of bioethanol was checked by an alcoholmeter. Also, the conversion efficiency 

from sugar to bioethanol in the fermentation can be given as the overall ethanol yield (%). 
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Overall bioethanol yield= (concentration of bioethanol produced/ initial concentration of 

sugar added)*(1/0.51)*100= (5.067 g/10 g)*(1/0.51)*100=99.35% 

 

where 0.51 indicates the theoretical ethanol yield (0.51 g-ethanol/g-sugar). The bioethanol 

yield is the ratio of the amount of bioethanol produced divided by the amount of sugar 

consumed during fermentation. 

 

3.3 Characterisation of bioethanol 

 

3.3.1 Identification of group compounds by FTIR 

 

The FTIR offers a quantitative and qualitative analysis for organic and inorganic samples. It 

identifies the chemical bonds in a molecule by producing an infrared absorption spectrum 

[119]. The spectra produce a profile of the sample, a distinctive molecular fingerprint that 

can be used to screen and scan samples for many different components. The FTIR is an 

effective analytical instrument for detecting functional groups and characterizing covalent 

bonding formation. The FTIR test was carried out with a Perkin Elmer RX1 instrument 

which has a scan range of 450-4000 cm
-1 

with a resolution of 1.0 cm
-1

. The photograph of 

the Perkin Elmer RX 1 is shown in Fig. 3.5. The results of the FTIR analysis are in the form 

of a graph, plotted between the wave length and the percentage transmittance, which will 

give the information about the position of various bond vibrations distinguished by several 

modes such as stretching, distortion, bending etc. 

 

Fig. 3.5 Photograph of Perkin Elmer RX 1 

Figure 3.6 shows the FTIR spectra present in bioethanol and diesel.  
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 Fig. 3.6 FTIR spectra of bioethanol and diesel 

From the FTIR analysis of bioethanol it was found that, the O-H stretching vibrations at 

3401.8 cm
-1

 indicate the presence of alcohols and phenols. The C≡N stretching vibrations at 

2122.1 cm
-1

 show the presence of nitriles. The presence of alkenes/aromatics was detected 

by the C=C stretching vibrations at 1644.1 cm
-1

. The O-H bending vibrations at 1369.3 cm
-1 

show the presence of alcohols and phenols. The presence of amines is detected by the C-N 

stretching vibrations at 1230.2 cm
-1 

and also it represents the presence of acids, esters, ether 

and alcohols by C-O stretching. The species present in bioethanol and diesel are presented in 

Table 3.1 and Table 3.2 respectively. 

 

Table 3.1 Various bonds present in bioethanol  

 

Bond Wave number(cm
-1

) Wave length(µm) 

O-H Stretch 3401.88 2.7 – 3.3 

C≡C, C≡N Stretch 2122.08 4.2-4.8 

C=C, Stretch 1644.12 5.9-6.3 

O-H, Bending 1369.25 6.9-8.3 

C-O,C-N Stretch 1230.16 7.7-11.1 

Phosphate 1089.86 9.0-10.0 

C-H 720.06 11.1-16.7 
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Table 3.2 Various functional bonds, peak and wavelength of diesel 

 

Bond Wave number(cm
-1) 

Wave length(µm) 

C-H,Stretch 2921.33 3.0-3.7 

C-H, Stretch 2812.72 3.0-3.7 

C=C, C=N, Stretch 1605.47 5.9-6.3 

O-H, Bending 1461.19 6.9-8.3 

Nitrate 1376.55 7.2-7.4 

C- Cl 722.05 13-14 

C-Br 468.67 15-20 

 

3.3.2 GC-MS analysis 

 

The GC-MS is known as gas chromatography and mass spectrometry, and it identifies and 

quantifies the volatile and semi volatile organic compounds in complex mixtures. It also 

determines the molecular weights and elemental compositions of unknown organic 

compounds in complex mixtures [120]. The photograph of the Perkin Elmer GC-MS 

instrument is shown in Fig.3.7. 

 

 

Fig. 3.7 Perkin Elmer GC-MS instrument 

The GC-MS analysis of bioethanol extracts were done in the GC clarus 500 Perkin Elmer and 

the Gas chromatograph is interfaced to a Mass Spectrometer (GC-MS) equipped with an 

Elite-1 fused silica capillary column. An electron ionization system with ionizing energy of 

70 eV was used for its detection. The carrier gas, Helium with a purity of 99.99% was sent at 

a constant flow rate of 1 ml/min and an injection volume of 2 µl was employed (Split ratio of 

10:1); the injector temperature was 250°C; and ion-source temperature 280°C. The oven 

temperature was programmed from 110°C (isothermal for 2 min) with an increase of 

10°C/min, to 200°C, then 5°C/min to 280°C, ending with a 9 min isothermal at 280°C. A 

mass spectrum was taken at 70 eV, a scan interval of 0.5 seconds and fragments from 45 to 
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450 Da. The total GC running time was 36 minutes. The relative percentage of each 

component was calculated by comparing its average peak area to the total areas, which were 

managed by the software present with the system. The main components present in the 

bioethanol from the GC-MS analysis are shown in Table 3.3. 

 

Table 3.3 GC-MS results of bioethanol 

 

Area % Retention 

time(RT) 

Compound name 

28.74 8.402 Nonanoic acid, 9-bromo-, ethyl ester, 10-Bromodecanoic 

acid, ethyl ester, Octanoic acid, ethyl ester 

8.37 11.060 Nonane, 1,1-diethoxy- Ethyl 3,3-diethoxypropionate, 

Decane, 1,1-diethoxy- 

23.69 11.249 Ethyl tridecanoate , Decanoic acid, ethyl ester  

11.63 13.718 Ethyl 13-methyl-tetradecanoate ,Heptadecanoic acid, 

ethyl ester 

19.90 17.261 Hexadecanoic acid, methyl ester Hexadecanoic acid, 

methyl ester, Hexadecanoic acid, methyl ester 

7.67 17.915 Hexadecanoic acid, ethyl ester Hexadecanoic acid, ethyl 

ester 1H-Indole, 5-methyl-2-phenyl- 

 

3.3.3 Ultimate analysis and fuel properties 

 

It is necessary to determine the elemental composition of a hydrocarbon substance which is 

proposed as an alternative fuel [121]. The ultimate analysis of a fuel helps to predict the 

reasons for pollutant formation in an engine. Table 3.4 gives the elemental analysis of 

bioethanol obtained from the Madhuca Indica flowers, in comparison with diesel. 

 

 Table 3.4 Elemental analysis of bioethanol and diesel 

Component Diesel Bioethanol  

from the Madhuca Indica 

flowers 

Chemical 

formula 

C10H22 C1.723H4.348O 

Molecular 

weight 

144 41.024 

C wt% 86 54 

H wt% 13.60 14.489 

N wt% 0.18 0.23 

S wt% 0.40 0.717 

O wt % 0 38.564 

Molar ratio 6.32 3.72 
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It is also very important to know the fuel properties, such as density, heating value, flash and 

fire points, pour point, boiling point, sulphur content, carbon residue etc., when an 

alternative fuel is to be investigated for its use in an engine. These physical properties 

certainly affect the performance, emission and combustion parameters of the engine [122]. 

The important physical properties of bioethanol obtained from the Madhuca Indica flowers 

were determined in a standard fuel testing laboratory in India, compared with those of diesel 

fuel properties and listed in Table 3.5. The uncertainty of the instruments used for the 

measurements of fuel properties are given in Annexure I. 

Table 3.5 Fuel properties of bioethanol obtained from the Madhuca Indica flowers and other 

feedstocks 

 

 

Note B1- Bioethanol from sugar molasses, B2-Bioethanol from sugarcane, B3- Bioethanol from the madhuca 

indica flowers 

 

 

 

 

 

 

Properties ASTM    

Standard 

Diesel B1 

[123] 

 

 

B2 

[74] 

B3 

Specific gravity @ 40 °C D 4052 0.863 0.790 0.78 0.80 

 
Lower heating value 

[MJ/kg] 

 

D 4809  43.8 26.4 26.8 29.38 

Flash point [°C] D 2500 49 22 13 24 

Cold filter plugging point 

[°C] 

D 6371 -19 Nil Nil <-30 

Pour point [°C] D 97 -15 -116 -117 -103 

Boiling point [°C]  D 7169-11 180–360 78 78 80 

Sulphur content [wt%] D 093 0.049 0 0 0 

Bulk modulus of elasticity 

[bar] 

D 6793 16000 Nil 13200 13800 

Kinematic viscosity at 40 

°C [cSt] 

D 445 2.58 1.36   1.35 1.73 

 

Moisture content [wt %, wet 

basis] 

Nil 0.025 Nil Nil 10 

Ash [wt%, dry basis] Nil 0.13 Nil Nil Nil 

Carbon residue[%] D 2500-05 0.1 Nil Nil Nil 
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3.4 Discussion of fuel properties 

 

The discussion of different fuel properties are given as, 

Density: The density is calculated from the specific gravity of the fuel. The engine 

performance characteristics and engine oil are affected by the density of fuel. It also affects 

the fuel atomisation efficiency and combustion characteristics. Other properties like cetane 

number, and heating value are also associated with density of fuel. The injection system used 

for diesel fuel, measures the fuel by volume thus the variation of the fuel density will affect 

the output power of the engine due to an altered mass of injected fuel. Generally, higher 

density causes a greater fuel flow resistance which results in a higher viscosity which may 

lead to inferior fuel injection. The density of ethanol is inferior to diesel fuel density. 

 

Heating value: It is a property to determine its suitability as an alternative to diesel fuel. 

Calorific value is very important and lower heating value or the net calorific value of a fuel 

influences the power output of an engine directly. The calorific value of bioethanol is less 

than diesel fuel. The variation of the heating value of the bioethanol derived from the 

Madhuca Indica flowers is about ±3% of values of other feedstocks.  

 

Flash point: It is a property of a fuel and referred for storage. It is the point at which fuels 

are flammable. The diesel fuel have a higher flash point than that of ethanol which means 

diesel is safer than ethanol to transport and storage.  

 

Cold filter plugging point (CFPP): It is the temperature at which the test filter starts to plug 

due to fuel components that have started to gel or crystallize. CFPP mainly used to indicate 

the low temperature operation ability of any fuel and reflects their cold weather performance. 

CFPP required for the fuel which is a climate-dependant. 

 

Pour point: It is the lowest temperature at which a liquid can flow. As the temperature of a 

fuel approaches to its pour point it becomes cloudy due to the formation of crystals and 

finally the crystals solidify. This causes major operability problems. Generally, ethanol has 

an extremely low pour point compared to that of conventional diesel. 

 

Kinematic viscosity: It affects the fuel drop size, the jet penetration, quality of atomization, 

spray characteristics and the combustion quality. Very high or low viscosity of fuel affects 
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the engine. For example, if the viscosity is very low, then it will not provide enough 

lubrication which will increase wear and leakage. A higher viscous fuel will form a larger 

droplet during injection, which affects combustion quality thus lead to a higher exhaust 

emission. The viscosity of ethanol is lower than diesel fuel. 

 

Sulfur levels: It is added to the diesel fuel to improve the anti-wear performance to match 

that of conventional winter grade diesel fuels with sulfur levels mainly in the range of 0.1-

0.2% m/m. If sulfur value is more than that of desirable amount, it produces more sulfur 

dioxide emission in the engine exhaust which is the cause of acid rain. 

 

3.5 Production cost of one litre of bioethanol 

 

The cost of one litre of bioethanol production in laboratory level process is given below; 

For one litre bioethanol, the amount of dry flowers required is 5 kg (approximately). 

After the fermentation process, the bioethanol extraction requires three units of energy 

consumption. Again, in the fractional distillation process five unit of energy is consumed. 

Then the cost of one litre bioethanol production in rupees (Indian currency) is= (cost of 5 kg 

flower) + (cost of 8 unit) + tax=25+18.4+4=Rs 47.4   (or $ 0.77) 

The comparison of the production cost of bioethanol from the Madhuca Indica flowers and 

other feedstocks is given in Table 3.6.  

 

Table 3.6 Comparison of production cost of bioethanol 

 

Feedstocks Average price (Rs./L) 

Sugar cane 25.04 

Wheat 45.9 

Corn 54.25 

Sugar beets 45.9 

Lignocellulosic materials 62.60 

Madhuca indica flower 50 
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CHAPTER 4 

 

EXPERIMENTATION AND METHODOLOGY OF PRESENT WORK 

 

4.1 General 

In order to have a perfect measurement in an experimental investigation, to study the 

combustion, performance, and emission parameters of a CI engine run on any alternative fuel, 

it is essential to chalk out the plan of work and select the engine to be used for investigation, 

and the necessary instrumentation. Also, it is important to know the principles of operation 

and use, and the procedure to be followed in conducting the experiments for each and every 

module of the investigation. Whatever the brand and type of engine, the acquired one must be 

first converted according to the requirement of the present investigation. In this chapter, the 

preliminary work carried out before the start of the investigation, the experimental set up, the 

experimental procedure and the method of calculating the parameters are described. 

4.2 Elementary work for investigation 

The following elementary steps were carried out before starting the investigation: 

1.  The required test fuel-bioethanol of about 50 litres was produced for the study.  The 

fuel sample was characterized by its physico-chemical properties for its suitability as an 

alternative fuel. The fuel was also characterized for its group compounds by FTIR and 

GC-MS as described in Chapter 3. 

2.  The fuel consumption would be higher if a multi cylinder engine is used for the 

investigation. Also, as this is an early stage in the investigation to establish the 

bioethanol obtained from the Madhuca Indica flowers as an alternative fuel for CI 

engines, a single cylinder, four stroke, air cooled, DI diesel engine with a developing 

power of 4.4 kW at a rated speed of 1500 rpm was selected for the investigation.   

3.  An experimental setup was developed to conduct experiments with fuel or engine 

modifications to evaluate the combustion, performance and emission parameters at 

different loads of the engine. The necessary fuel and air measuring instruments were 

selected and incorporated in the experimental setup, and they are discussed in the 

subsequent sections. 
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4. A piezo-electric pressure transducer was flush mounted on the cylinder head to obtain 

the pressure data of the engine. A top dead center (TDC) marker was mounted on the 

flywheel for obtaining every crank angle of the piston. The descriptions of the pressure 

sensor and TDC marker are given in the subsequent section 4.3.3. 

4.3 Experimental setup 

Figure 4.1 shows the overall schematic diagram of the experimental set up used for all the 

experiments conducted in the investigation.  
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 5. Burette 

 6. Fuel injector 

 7. Valve 
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Fig. 4.1 Schematic diagram of the experimental setup 
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A photographic view of the experimental setup is shown in Fig. 4.2. 

 

 

 

 

 

 

 

 

Fig. 4.2 Photographic view of the experimental setup 

4.3.1 Test engine 

The test engine used in this investigation was a Kirolaskar TAF-1, single cylinder, four-

stroke, air cooled, constant speed, DI diesel engine (1). The technical specifications of the 

engine are given in Appendix A1. The general experimental setup provided in the study is 

discussed below;  

An air box (2) is fixed with the intake manifold of the engine to maintain a constant suction 

pressure, to facilitate a constant air flow through the orifice meter. An orifice meter is 

attached with the anti-pulsating drum, to measure the volume of air drawn into the cylinder 

with the help of a U-tube manometer (3). It gives the reading of the difference in the water 

level in two columns, which is used to calculate the water head in terms of the pressure 

difference. Fuel tanks (4A) and (4B) are used to store diesel and an alternative fuel 

(bioethanol-diesel emulsion/blends/bioethanol) respectively. A burette (5) is fitted with two 

optical sensors one each at the high and low levels of both the ends. Fuel is drawn from a six 

litre capacity fuel tank to the burette under gravity. When fuel passes through the optical 

sensor, it sends a signal to the computer for automatic start/stop of time required for the fixed 

amount of fuel supply, i.e. 20 cc, to measure the fuel consumption and again the burette is 

refilled automatically for the next measurement. A fuel injector (6) injects fuel when it 

receives fuel from fuel pump. A two way valve (7) is fitted after fuel tank (4A). A crank 

angle encoder is fitted to the output shaft to measure the crank angle (8). The engine is 
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coupled with an alternator (9) which is connected to a load cell (10) bank for loading 

purpose. As the armature of the alternator is rotated by the engine, the field current/field 

strength will be induced, which tends to pull the field coils and the casing along with it. This 

rotation can be opposed in the same way as with the hydraulic dynamometer. This induced 

field strength is usually dissipated as heat through the banks of the electrical resistances. The 

load and speed can be increased or decreased on the alternator and thereby on the engine, by 

switching on or off the load resistances in the load cell bank, and by varying the field 

strength. A non-contact type PNP sensor gives the pulse output for each revolution of the 

crank shaft for the measurement of the engine speed in revolution per minute (RPM). A 

control panel (11) is used to regulate the resistance that offers load to the engine. A pressure 

transducer (12) is flush mounted into the combustion chamber to receive pressure pulses. All 

the data received from the engine are collected by a data acquisition system (13), processed 

and displayed in a personal computer (14). An AVL 437C smoke meter (15) measures the 

smoke density of the exhaust gas. The unburnt hydrocarbon (HC), carbon monoxide (CO), 

and nitric oxide (NO) emissions are measured with the help of an AVL 444 Digas analyser 

(16). The acquired pressure data for every crank angle are given as inputs to software to 

calculate the remaining parameters like ignition delay, heat release rate, and combustion 

duration. A K-type (Cr Al) thermocouple with a sensor is used for the measurement of the 

exhaust gas temperature with a temperature range of 0-900
o
C. 

 

4.3.2 Exhaust gas measurements 

4.3.2.1 CO and CO2 measurements 

The CO and CO2 species in the exhaust of the engine are measured with the help of the gas 

analyser that works on the non-dispersive infrared (NDIR) principle [124]. Figure 4.3 gives 

the pictorial information of the gas analyser which uses the NDIR principle. The instrument 

has two remote sampling heads controlled by a main control unit, and is capable of sampling 

CO and CO2 simultaneously in two locations. Each constituent gas in a sample will absorb 

some infra-red rays at a particular frequency. By shining an infra-red beam through a sample 

cell (containing CO or CO2), and measuring the amount of infra-red absorbed by the sample 

at the necessary wavelength, the NDIR detector is able to measure the volumetric 

concentration of the CO or CO2 in the sample. 
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Fig. 4.3 NDIR principle for measuring the CO/CO2 species in the exhaust [124] 

 

A chopper wheel mounted in front of the detector continually corrects the offset and gain of 

the analyser, and allows a single sampling head to measure the concentrations of two 

different gases.  

 

4.3.2.2 FID for HC measurement 

 

The flame ionisation detector (FID) is the industry standard method of measuring HC 

concentration [125].  

 

 

 

 

 

 

 

 

Fig. 4.4 FID principles for HC measurement [125] 

 IR Emitter Sapphire window 

Pressure controlled chamber 

To vacuum  

pump 

Calibration adaptor bypass flow 

         Temperature  

    controlled body 

Gas in 

Chopper disk 

  Chamber lid 

IR-detector 

           2-stage internal cooler 

       Heat sink 

External cooler 

Oven 

Exhaust 

Flame chamber 

Air 

Flue gas 

Standard slow response FID 

To vacuum 

Sample flow regulator 
Pump 

Filter 

   Sample in 

Sample capillary 

   Nozzle 

High voltage 

ion collector 



64 
 

Figure 4.4 illustrates the working principle of the FID technique that is used to measure the 

HC component in the engine exhaust. The sample gas is introduced into a hydrogen flame 

inside the FID. Any hydrocarbons in the sample will produce ions when they are burnt. The 

ions are detected using a metal collector which is biased with a high DC voltage. The current 

across this collector is thus proportional to the rate of ionisation, which in turn, depends upon 

the concentration of HC in the sample gas. The ionisation process is very rapid, and hence, 

the slow time response of the conventional FIDs is mainly due to sample handling. A typical 

slow analyser might have a response time of 1-2 seconds. 

 

4.3.2.3 Electrochemical principle for NO measurement 

 

The electrochemical principle for the NO measurement is used to find out the controlled and 

uncontrolled emissions from the combustion sources, such as boilers, heaters, engines and 

turbines. Generally, it measures the emissions of NO, nitrogen dioxide (NO2), and the sum of 

their concentrations (NOx). The electrochemical principle is based upon the use of the 

electrochemical sensors, in which the reacting gases are used to generate electrical signals 

proportional to the gas concentrations. It consists of the sensing electrode (or working 

electrode) and a counter electrode separated by a thin layer of electrolyte. The working 

principle is shown in Fig.4.5.  

 

 

 

 

 

 

 

 

Fig. 4.5 Electrochemical principle for NO measurement 

The exhaust gas first passes through a small capillary type opening, diffuses through a 

hydrophobic barrier, and then it reaches the electrode surface. These approaches can prevent 

the leaking of the electrolyte from the sensor. Then, the gas that diffuses through the barrier 

can react at the surface of the sensing electrode involving either an oxidation or reduction 

mechanism. According to the desired gas of interest, the reactions are catalyzed by the 
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electrode materials. With a resistor connected across the electrodes, a current proportional to 

the gas concentration flows between the anode and the cathode. The current is measured to 

determine the gas concentration. Because the current is generated in the process, the 

electrochemical sensor is often described as an amperometric gas sensor or a micro fuel cell 

[126]. 

 

The reactions at the sensing electrode (anode) for some gases are as follows: 

NO + 2H2O        HNO3 + 3H
+ 

+ 3e
- 

                                                 (4.1) 

Some sensors are used for the reduction reaction of the target gas, such as the reduction of 

nitrogen dioxide, chlorine, and ozone at the cathode, produce water as a by-product. 

NO2 + 2H
+
 + 2e-            NO + H2O                                           (4.2) 

All the above mentioned principles are incorporated in a gas analyser provided by AVL Ltd. 

Therefore, the researcher used AVL Digas 444 analyser in this investigation. At the exhaust 

of the engine, the probe of the gas analyser is inserted and kept for a few minutes for the 

measurement of unburnt HC in ppm, CO in vol%, and NO in ppm. The NO emission is 

measured by a photochemical sensor. A photographic view of the exhaust gas analyzer is 

shown in Fig. 4.6. The detailed specifications of the AVL DiGas 444 analyzer are presented 

in Appendix A2. The recommended periodic calibration of the gas analyzer was carriedout, 

in order to ensure the accuracy of measurement. The gas analyzer‟s electronics, optics and its 

response to environmental factors were checked through calibration. The general calibration 

procedure involves the injection of calibration gases of known concentration, and validating 

the response. The compositions of CO, CO2 and HC gases are; 3.5% volume of CO, 14% 

volume of CO2, 2000 ppm volume of propane and the remainder nitrogen, whereas the 

calibration gas for the NO component is 2200 to 3000 ppm volume of the NO and the 

remainder N2. 
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Fig. 4.6 Photographic view of the exhaust gas analyzer 

 

The instrument outputs are then adjusted to the known inputs to correct the variations in the 

electronic response due to temperature effects, drift, or other interferences. Thus, the accuracy 

of the analyser is assured, and an accurate response to the sampled gas is achieved after 

calibration. 

 

4.3.2.4 Diesel smoke measurement 

 

In the early days, smoke from the diesel engine exhaust was measured with the help of filter 

papers. Later on, due to the advancement in instrumentation, smoke from a diesel engine 

exhaust was measured with the help of the Hatridge smoke meter principle. The principle of 

the working of the diesel smoke meter is described below; 

 

It is based on the light extinction type testing method in which the intensity of a light beam is 

reduced by smoke, which is the measure of the smoke intensity. A standard length of tube is 

considered, through which the exhaust gas sample of the engine is passed. One end of the 

tube is connected to the light source, which can be transmitted through this tube, and the 

other end is used for the measurement of the transmitted light with a suitable device. The 

fraction of the light transmitted through the smoke (T) and the length of the light path (Ll) are 

related by the Beer-Lambert law [127] which is given by, 

                                                                                                                                    (4.3) 

where Kac=nA ψ 

Kac=Optical absorption co-efficient of the obscuring matter per unit length 

n= Number of soot particles per unit volume 

A=Average projected area of each particle 

ψ= Specific absorption per particle 
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The working principle of smoke emission measurement is shown in Fig. 4.7. 

 

 

 

 

 

 

Fig. 4.7 Principle of diesel smoke measurement 

The same principle is adopted in an AVL437C, which is used to measure the smoke in 

percentage opacity. The results obtained from the measurements are fully compatible with 

Hatridge Smoke Units (HSU), which are given in percentage of opacity. This measuring 

instrument consists of a sampling probe that sucks a specific quantity of the exhaust sample 

through a white filter paper fitted in the smoke meter. The reflectivity of the filter paper is 

measured by the smoke meter. Before testing or measuring the every sample, it is ensured 

that the exhaust from the previous measurement is completely driven off from the tube and 

pump. A photographic view of the diesel smoke meter is shown in Fig.4.8. The detailed 

specifications of the diesel smoke meter are presented in Appendix A3. 

 

 

Fig. 4.8 Photograph of the diesel smoke meter 

Calibration of the smoke meter was done periodically. It was done by warming the heating 

elements up to 70
o
C. The pre-heating was carried out to prevent the temperature falling 

below dew point, and thus, to avoid measurement error or condensation of smoke. Fresh air 

was allowed to enter the measurement chamber which was drawn through the fitter paper, 

Exhaust gas flow 
Fan Fan 

Cleaning air 
Cleaning air 

Photodiode 

receiver 

Light source 

LED 575 nm 

Heater 

Path length, L 



68 
 

underwent measurement and set the zero point for calibration. The halogen bulb current 

irradiated the column of the fresh air volume, and the signals from the detector were 

measured by the microprocessor and set as the reference value for 0% opacity. The linearity 

was checked by gently pushing the linearity check knob down, up to its dead position. The 

calibration plate was thus measured in front of the detector, and the measured opacity value 

was indicated and printed on the protocol print out. The probe of the exhaust gas analyzer 

was inserted at the end of the exhaust pipe during the measurement of emissions. Once the 

engine reached stable operation, the probe was inserted into the exhaust pipe and the 

measurements were taken.   

 

4.3.3 Combustion parameters 

 

It is necessary to study the combustion parameters, such as ignition delay, heat release rate, 

combustion duration, rate of pressure rise etc., for the efficiency of the engine and suitability 

of the fuel used. In order to evaluate such parameters, it is essential to collect the pressure 

values corresponding to each crank angle diagram. The cylinder pressure measurement at a 

particular crank angle is achieved with the help of a Kistler made quartz piezoelectric 

pressure transducer (Model Type 5395A), mounted on the cylinder head in the standard 

position. The piezoelectric pressure sensor is in line with the charge amplifier, which 

converts the electric charge generated in a piezoelectric pressure sensor to voltages that can 

be input into conventional measurement and data recording equipment. The charge amplifier 

can operate with a power supply of 7-32 V DC and range of 0-100 bar, and works with a time 

constant of 5s. Fins are attached to the pressure transducer body to provide the cooling 

medium. A photographic view of the Kistler pressure transducer is shown in Fig.4.9. The 

specifications of the pressure transducer and the charge amplifier are given in Appendix A4.  

 

 

Fig. 4.9 Photographic view of Kistler pressure transducer 
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Figure 4.10 shows the photographic view of the pressure transducer mounted on the cylinder 

head.  

 

Fig. 4.10 Pressure transducer mounted on the engine head 

A crank angle encoder 365C is fitted to the end of the engine shaft to measure the angular 

position of the crankshaft. It is a high precision optical pickup instrument with a pulse count 

of 360 ppr (pulse per revolution) used for torsional analysis for IC engines. All the data 

measured by sensors are processed, analysed and displayed with the help of a data acquisition 

system (DAS). The single cable input to the DAS from different output cables of sensors is 

achieved by the control panel board. The DAS has a data card for filtration and linearization 

of data, and also converters which convert analog input to digital output. The data like 

cylinder pressure, ignition delay, heat release rate, mass fraction burnt, and estimated end of 

combustion are analysed, with the help of software developed in house, and displayed on the 

personal computer, supporting the digital to analog (DA).  

A continuous circulation of air is maintained to cool the transducer using fins to maintain the 

required temperature. The cylinder pressure data are acquired for 20 consecutive cycles and 

then averaged in order to eliminate the effect of cycle-to-cycle variations. The personal 

computer (PC), through an analog to digital converter (ADC) reads the output of the charge 

amplifier. There is a small drift in the voltage measured (-2 mV/s) due to charge leakage in 

the pressure transducer. Since the signal from a piezoelectric transducer indicated only 

relative pressures, it is necessary to have a means of determining the absolute pressure at 

some point in the cycle. Hence, the differential pressure has to be compared to a reference. 

This is done by assuming that the cylinder pressure at the bottom dead center (BDC) is equal 

to the mean intake manifold pressure. The TDC on the flywheel of the engine is connected to 
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the output shaft, to record the crank angle. Figure 4.11 shows the photographic view of TDC 

position sensor located on the fly wheel of the test engine and the corresponding sensor.  

 

Fig. 4.11 TDC position sensor 

For installation, a hole is made at the TDC and used to indicate the position of the TDC by 

providing a voltage pulse exactly when the TDC position is reached. This sensor consists of a 

matched pair of infrared diode and phototransistor, so that the infrared rays emitted from the 

diode would fall on the phototransistor when it is not interrupted. A continuous disc with a 

small cut at the TDC position with respect to the sensor point is made, to get the signal when 

the piston reaches the TDC exactly. At this point, the output voltage from the photo-transistor 

rises to 5 volts, and at all other points it is approximately zero. Voltage signals from the 

optical sensor are fed to the ADC and then to the DAS along with the pressure signals for 

recording. The engine cylinder pressure and the TDC signal are acquired using a digital DAS 

and stored in a computer. A 12 bit ADC is used to convert analog signals to digital signals. 

The analog to digital card has both an external and internal trigger facility. The pressure and 

crank angle data are collected in an excel spreadsheet installed in the DAS. 

 

The instantaneous experimental data are acquired over several cycles. For averaging, the 

pressure data of approximately 50 thermodynamic cycles are chosen. The first in the voltage 

signal due to the TDC indicator is taken as a TDC position. The clock frequency of the data 

acquisition card is 100 kHz; approximately 370-380 pressure-voltage readings are acquired 

by the PC for each rotation of the crank shaft. By interpolation, the pressure-voltage readings 

are arranged at a spacing of 1 
o
CA. The interpolation is more accurate if done through spline 

fitting. Since the engine is the four stroke type, 720 such interpolated data points correspond 

to one complete thermodynamic cycle (intake, compression, combustion and exhaust) of the 

Fly wheel 

PNP Sensor 
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engine. The interpolated data are corrected for the transducer drift by subtracting from them, 

a linearly increasing voltage (≈2 mV/s). Subsequently, these data are multiplied by the 

constant “B” to obtain it in relative pressure values at each instant. These pressure data are 

required to be referenced using a particular known pressure; hence, the pressure at the inlet 

BDC is taken as equal to the inlet manifold pressure. This is because at this instant, the inlet 

valve is completely open and the cylinder pressure is considered in equilibrium with the inlet 

manifold pressure, which was atmospheric pressure in the naturally aspirated engine case. 

After the pressure and crank angle were obtained at every load, other combustion parameters 

such as ignition delay, heat release rate and combustion duration are calculated, using the 

necessary formulae or empirical relations. The methods of calculation are described in the 

subsequent paragraphs. The value of the calibration constant for the pressure transducer is 

found to be 9.9 bar/V and the linear curve fit equation between pressure and voltage yields: 

 

Pressure (bar) = 9.9831 (charge amplifier voltage in volts) – 0.0263         (4.4) 

Ignition delay is the time lag between the start of injection and the start of combustion. From 

the heat release curve, the ignition delay is measured. 

Along with the pressure signal, the TDC position signal is also acquired by the ADC installed 

in the DAS. These voltage signals are stored in two columns in a file at uniform time 

intervals. Since a piezo-electric pressure transducer provides only relative pressures, it is 

necessary to know the absolute pressure at some point in the cycle, so that the pressure at all 

other points could be determined. For this, the cylinder pressure at suction BDC is assumed 

to be equal to mean manifold pressure [128]. 

The rate at which combustion occurs, i.e., the rate of heat release, affects the efficiency, 

power output and emissions of an engine. The heat release rate curve provides an idea about 

the combustion process that takes place in the engine. A set of empirical relations and 

equations is used to compute the heat release rate, based on the first law of thermodynamics. 

This is done with the help of an excel spreadsheet. The heat release rate analysis is given in 

Appendix A5. The combustion duration in a particular power output is calculated as the crank 

angle duration, at which 90% of the heat release rate curve is covered. The crank angle at 

which there is a sudden rise in the heat release rate is taken as the start of combustion. The 

end of combustion is determined from the cumulative heat release curve. It is taken as the 

point where 90% of the heat release had occurred.  



72 
 

4.4 Different methods of using bioethanol in diesel engine 

 

4.4.1 Investigation on the bioethanol-diesel emulsions 

 

As bioethanol has poor miscibility with diesel and a lower cetane number, emulsification 

with a higher cetane is the appropriate method to use it as an alternative fuel in a CI engine 

[86]. For the experimental investigation, bioethanol was emulsified in three different 

proportions from 5% to 15% at regular steps of 5% on a volume basis with diesel accordingly 

with the help of a suitable surfactant. The important physical properties of the surfactant used 

in this study are listed in Table 4.1.   

 
Table 4.1 Properties of the Surfactant Span-80 

 

Properties Value 

Chemical name Sorbitan Monooleate 

Molecular Formula C24H44O6 

Molecular Weight 428.6 

Density (kg/m
3
) 0.995 ~ 1.0 5 

Saponification value (mgKOH/g)  140 ~ 160 

HLB no. 4.3 

Hydroxyl value (mgKOH/g) 190 ~ 220 

Acid no. (mgKOH/g) 8 

Iodine value  (mg iodine/g) 60 ~ 75 

 

The emulsion was denoted as BMDE, followed by the numerical value, which represents the 

percentage of bioethanol in the emulsion. For example, the numerical value in the emulsion 

BMDE5 indicates 5% of bioethanol. Similarly, other blends were denoted as BMDE10 and 

BMDE15. The emulsion was stirred well with the help of a mechanical agitator, to get a 

homogeneous stable mixture.  

 

 

Fig. 4.12 Photographic view of the mechanical agitator 

Stirrer Power supply 
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Figure 4.12 shows the photographic view of the mechanical agitator used for stirring in this 

investigation. Samples of different bioethanol diesel emulsions were kept in the open 

atmosphere, and observed for their miscibility, deposits or surface reactions after several 

weeks of monitoring. The samples of the bioethanol-diesel emulsions are shown in Fig. 4.13.  

 

 

 

Fig. 4.13 Photographic view of the bioethanol-diesel emulsion samples 

 

The comparison of the density, viscosity and gross calorific value of the blends with diesel 

are given in Table 4.2. 

Table 4.2 Properties of test fuels 

 

Properties ASTM    

Standard 

 

BMDE5 BMDE10 BMDE15 

Specific gravity @ 40 °C D 4052 0.823 0.811 0.809 

Lower heating value [MJ/kg] 

 

D 4809  38.21 37.02 35.34 

Kinematic viscosity 

at 40 °C[cSt] 

D 445 2.31 2.01 1.95 

Flash point [°C] D 2500 30 29 26 

Cold filter plugging point 

[°C] 

D 6371 -15 -20 -23 

Pour point [°C] D 97 -9 -12 -36 

Sulphur content [wt%] D 093 0.012 0.007 0.002 

Boiling point [°C] D 7169-11 165-342 142-326 114-298 

Surface tension  at 40°C 

[N/m] 

D 3825 0.016 0.019 0.02 
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4.4.2 Experimental test procedure 

 

All the tests were conducted by starting the engine with diesel only. After the engine was 

warmed up, it was switched to the bioethanol operation. At the end of the test, the fuel was 

switched back to diesel, and the engine was kept running for a while, before shut-down, to 

remove the traces of bioethanol diesel emulsion from the fuel line and the injection system. 

All the tests were conducted at a constant speed of 1500 rpm. All readings were taken only 

after the engine reached stable operation. The gas analyzers were switched on before starting 

the experiments, to stabilize them before starting the measurements. The injector opening 

pressure of 200 bar and injection timing of 23
o
bTDC set by the manufacturer were kept 

constant at the rated value, during this phase of the study. The engine output was varied from 

no load to full load in steps of 25%, 50%, 75% and 100% in the normal operation of the 

engine. At each load the fuel flow rate, air flow rate, exhaust gas temperature, emissions of 

CO, HC and NO, and smoke readings were recorded. The pressure crank angle history of 50 

cycles was also recorded, by using the data acquisition system and stored in the personal 

computer. The data was processed to get the average pressure crank angle variation and used 

for further calculations.  

 

4.4.3 Investigations with the bioethanol diethyl-ether blends 

 

As bioethanol obtained from the Madhuca Indica flowers has a lower cetane number, it might 

produce a longer ignition delay, when it was operated with diesel in the form of emulsions. 

Therefore, in the second phase of study, it was proposed to investigate the engine run with the 

bioethanol-diesel-emulsion with the addition of small quantities of the ignition improver. The 

different ignition improvers used at present to improve the ignition quality of a lower cetane 

fuel are, dimethyl ether, diglyme, and diethyl ether. As diethyl ether (DEE) has a high cetane 

number and is cheaper compared to other ignition improvers, it was decided to use DEE in 

this study. The physical properties of DEE are listed in Table 4.3. DEE in small quantities, 

viz. 1%, 1.5%, 2% and 2.5%, was blended with the BMDE15 emulsion. The blends were 

stirred thoroughly and checked for their stability. The maximum percentage of DEE was 

ensured by the operational behavior of the engine. When the percentage of DEE was 

increased beyond 3%, the engine suffered the vapour lock problem, and hence, it was stopped 

with the maximum percentage of 3%.   
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Table 4.3 Properties of DEE 

 

Properties DEE 

Density at 40 °C (kg/m
3
)   713 

Lower heating value (MJ/kg) 33.89 

cetane number  >125 

Kinematic viscosity 

at 40 °C (cSt) 

0.224 

Auto-ignition temperature (
o
C) 160 

Boiling point (
o
C) 34.4 

Latent heat of vaporisation (kJ/kg) 465 

 

Each blend was denoted as DE followed by the percentage of DEE in the blend. For example, 

DED1% indicates BMDE15 emulsion and 1% DEE in the blend. Similarly other blends were 

designated.  Table 4.4 gives the tested fuels and their corresponding viscosity and calorific 

value.  

 
Table 4.4 Properties of test fuels 

 

Fuel % of bioethanol 

(% vol) 

% of 

DEE 

Density, 

kg/m
3
 

Viscosity, 

cSt@40
o
C 

Lower calorific 

value, MJ/kg 

Diesel 0 0 860 2.4 44.8 

Blend 1 15 0 809 1.95 35.34 

Blend 2 15 1 802 1.52 36.23 

Blend 3 15 1.5 799 1.32 37.02 

Blend 4 15 2 794 1.29 37.48 

Blend 5 15 2.5 780 1.12 37.67 

 

The experimental set up and test procedure described in subsection 4.3.1 and 4.4.2 

respectively, for testing bioethanol-diesel emulsions was adopted in this study also. There 

was no engine modification adopted. The injection timing and nozzle opening pressure were 

not changed.  

 

4.4.4 Investigations with the bioethanol-DEE on dual fuel mode 

 

DEE was blended with a maximum of 2.5% with bioethanol because beyond 3% the engine 

gave the vapor lock problem. Hence, it was decided to run the engine in the dual fuel mode. 
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In the dual fuel mode, bioethanol was injected into the cylinder, while the DEE was admitted 

into the engine along with the air. For this, DEE was introduced in small quantities, near the 

intake port. A hole was made in the suction pipe near the intake manifold (100 mm away 

from the intake manifold). A small syringe was inserted into the hole. The other end of the 

syringe was connected to a storage bottle in which DEE was stored for use. The quantity of 

DEE admitted through the syringe was controlled by a regulator, which was located in 

between the storage bottle and the syringe. The experimental setup used in this study is 

shown in Fig. 4.14.  

 

 

1. Engine 7A. Fuel injection valve 14.Control panel board 

2. Flywheel 8. Injector 15.Data acquisition system 

3. Crankshaft 9. AC generator 16.Computer 

4. Air box 10.Load bank 17.AVL Digas 444 analyser 

5. Manometer 11.Pressure transducer 18.AVL 437 C smoke meter 

6. Fuel tank for Diesel  

7. Burette 12.Exhaust gas temperature 

sensor 

 

6A. DEE fuel tank 13.Speed sensor  

  

Fig. 4.14 Experimental setup for bioethanol dual fuel mode 

 

The engine was allowed to run with the maximum quantity of DEE based on the combustion 

behavior of the engine. Until there was no problem noticed with abrupt pressure, the engine 

was run with DEE, by varying its quantity.  
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4.4.5 Investigations with the use of bioethanol on fumigation 

 

In this study, the maximum quantity of bioethanol utilisation was investigated by running the 

engine with bioethanol fumigation. Generally, the dual fuel mode offers a reduction in smoke 

emission [129]. Therefore, it was also decided to find out how much reduction in smoke 

would be possible with bioethanol. Hence, the fumigation technique was chosen in this study. 

In the fumigation technique, the liquid fuel with a low cetane fuel is vaporised with the help 

of a vaporiser or heater, and the vapour is introduced in the intake of the engine. Small 

quantities of a high cetane fuel are injected as a pilot fuel to create a hotter environment in the 

engine which will help to ignite the low cetane fuel. The fumigation was done with the help 

of a fuel tank, an electronically controlled injector, a fuel pump, and a vaporizer. The 

arrangement used in this study for the fumigation of bioethanol is shown in Fig. 4.15.  

 

 

 

 

 

 

 

 

 

 

1. Engine 9. AC generator 16.AVL Digas 444 analyser 

2. Flywheel 10.Load bank 17.Pressure transducer 

3. Crankshaft 11.Fuel tank for Bioethanol 18.Exhaust gas sensor 

4. Air box 12.Fuel pump 19.Speed sensor 

5. Manometer 13.Electronically controlled 

      injector 

20.Control panel board 

6. Fuel tank for Diesel 21.Data acquisition system 

7. Burette 14.Vaporiser 22.Computer 

8. Injector  15.AVL 437 C smoke meter  

 

Fig. 4.15 Arrangement used in this study for the fumigation of bioethanol 

The block diagram representing the arrangement for the fumigation technique is shown in 

Fig. 4.16. The flow chart of the fuel injection system is given in Fig. 4.17. A 12 V, 5 nozzles, 

solenoid based electronic fuel injector of 300 kPa injection pressure was connected to the 

intake manifold of the diesel engine. Bioethanol stored in a tank was pumped using a 12 V 
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fuel supply pump and supplied to the fuel injector. One of the output pins of a 

microcontroller (Atmega-328) was connected to the injector through a motor driver (L293D). 

 

 

 

 

 

 

 

 

Fig. 4.16 Block diagram representing the arrangement for the fumigation technique 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.17 Flow chart of the fuel injection system 
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The microcontroller worked at 5 V and the injector works at 12 V with high current; L293D 

was used to provide the proper current and voltage to the injector. The microcontroller was 

programmed to generate a pulse width modulation (PWM), to control the quantity of 

bioethanol to be injected. The PWM was basically a duty cycle, which delivered bioethanol 

in different quantities. Bioethanol was injected continuously at regular intervals. Four 

different flow rates, viz., 0.24, 0.48, 096 and 1.22 kg/h were used in this investigation. An 

algorithm for the function of the electronically controlled injector is given in Annexure A1. 

The multi-point fuel injector was attached to an electric heater whose temperature was 

maintained at 70
o
C.  

 

As bioethanol was supplied at four different flow rates, the total energy supplied to the engine 

was not fixed, and also the global equivalence ratio would change for different flow rates. 

The method of calculating the global equivalence ratio (Φ) is discussed in the forthcoming 

subsection 4.5.1.6. 

 

Similarly in the diesel operation, the engine always operated in a lean combustion mode, as 

diesel was injected into the cylinder; the special distribution of the fuel–air ratio in the 

combustion chamber varied widely from rich to lean [122]. In bioethanol fumigation, when 

bioethanol was injected at 0.24, 0.48, 0.96 and 1.22 kg/h flow rates, the bioethanol energy 

ratio changed, and air was also displaced by the fumigated bioethanol, as it was inducted 

along with the air; so the global equivalence ratio varied according to the actual fuel–air ratio, 

though the stoichiometric fuel–air ratio was constant. Therefore, the bioethanol energy share 

(r) was calculated. The method of calculating the bioethanol energy share is discussed in the 

forthcoming subsection 4.5.1.7.  

 

Initially, the engine was operated with diesel to obtain the reference data at different loads, 

ranging from 0% to 100% for 1 h to complete one set of measurement. Further, the 

experiments were conducted with bioethanol fumigation at different loads. The engine 

parameters in terms of performance, emission and combustion were drawn in variation with 

the global equivalence ratio. 

 

Figure 4.18 illustrates the experimental techniques that are used to establish bioethanol with 

diesel/DEE for CI engines. 
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Fig. 4.18 Experimental techniques used for bioethanol application in the diesel engine 

 

4.4.6 Mathematical modeling for validation  

 

To validate the experimental results of the best technique, a mathematical analysis was done 

using a MATLAB program.   

 

4.4.7 Investigation with the bioethanol-biodiesel-diesel blends 

 

It was observed that with the bioethanol-diesel emulsion, the engine could experience lower 

lubricity and this would increase the frictional power of the engine. So for long term use, it is 

not feasible. In order to improve the properties of the bioethanol-diesel emulsion, different 

percentage of biodiesel were added. The blending of fuel was prepared with the help of 

ternary diagram which is shown in Fig. 4.19. The biodiesel was added to BMDE15 in the 

volume percentages of 5, 10 and 15%, and designated as BEBDD5, BEBDD10 and 

BEBDD15. The comparison of properties of the blends with BMDE15 and diesel is given in 

Table 4.5.  
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Table 4.5 Properties of test fuels 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.19 Ternary diagram for the checking of stability 

 

4.4.8 Comparative study of the endurance test  

 

Bioethanol has a low viscosity compared to diesel fuel, and hence, it acts as a poor   lubricant 

which will affect the long durability of the engine. Therefore, it was decided to determine the 

changes in the lubricating oil properties when the engine was run with the best possible 

technique by which bioethanol could be used. Since the bioethanol diesel emulsion gave 

better results in terms of performance and emissions in comparison with other techniques, it 

was decided to use bioethanol diesel emulsion for studying the change in the lubricating oil 

properties, before and after the run.  

 

Properties diesel BMDE15 BEBDD5 BEBDD10 BEBDD15 

 Density  at 40 °C [kg/m
3
] 860 809 843.3 851.25 852.2 

Lower heating value 

[MJ/kg] 

 

43.8 35.34 42.25 41.9 41.7 

Kinematic viscosity 

at 40 °C [cSt] 

2.58 1.95 2.91 2.76 2.63 

Cetane number 51 36 45 46.09 46.61 
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4.5 Analyses and procedure 

 

During the investigation the humidity of the atmospheric air was measured with the help of 

the hygrometer, and it was 41%. 

 

4.5.1 Performance parameters 

 

4.5.1.1 Fuel consumption measurement 

 

When fuel passes through the optical sensors that are fixed in the fuel, the burette senses the 

upper and lower levels of the fuel in the burette and sends signals to the computer for 

automatic start/stop of time required for the fixed amount of fuel supply, i.e. 20 cc, to 

measure the fuel consumption, and the burette is refilled automatically for the next 

measurement. 

 

4.5.1.2 Air consumption measurement 

 

The U-tube manometer fitted in the air plenum shows the reading of the water head in terms 

of pressure difference, which is used to calculate the air consumption of the engine.  

 

4.5.1.3 Speed and EGT measurements 

 

A non-contact type PNP sensor gives the pulse output for each revolution of the crank shaft 

for the measurement of the engine speed in RPM. The pulse frequency is converted into the 

voltage output, which displays the speed in the computer. 

 

A K-type (Cr Al) thermocouple with sensor, is used for the measurement of the EGT, with a 

temperature range of 0-900 ⁰C. 

 

4.5.1.4 BSEC calculation 

 

Three performance parameters, viz, BSFC and EGT were determined for diesel operation. 

The BSFC is not a reliable parameter if fuels of different viscosity and density are used. The 

BSEC is a product of the BSFC, and the calorific value of the fuel at a particular load. 

Therefore, the BSEC rather than the BSFC is discussed in the chapter results and discussion.  

The calculations used for determining the BSEC from the BSFC are given in Appendix A6. 

 

4.5.1.5 Thermal energy balance calculation 

 

The thermal energy balance can be calculated using the following equation- 
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The heat supplied by the fuel is given as; 

Q= CV * Mf                                                               (kJ/h)                                (4.5) 

where, CV=Calorific value                                          (kJ/kg) 

             Mf=Mass of fuel consumption                        (kg/h) 

Heat converted to useful work (or) brake work is given as; 

            Useful work (q1) = Brake power * 3600           (kJ/h)                    (4.6) 

Percentage of useful work= (useful work/Q)*100 

Heat loss through the exhaust (q2) is given as; 

             q2 = (Ma+ Mf) * Cpg * (Tg-Ta)                           (kJ/h)                               (4.7) 

where, Ma= Mass of air consumption                            (kg/h) 

             Cpg= Specific heat of gas at different exhaust temperatures (kJ/kg °C) 

             Tg= Exhaust gas temperature                            (°C) 

             Ta= Atmospheric temperature                           (30 °C) 

Heat carried away by the lubricating oil (q3) is calculated as; 

            q3= Moil * Coil * (Tf-Ti)                                      (kJ/h)                                   (4.8) 

where, Moil= Mass flow rate of lubricating oil                (kg/h) 

                   = (Volume of oil * density of oil)/3600 

              Coil= Specific heat of oil at mean average temperature (kJ/kg °C) 

              (Tf-Ti)= Temperature rise in oil                       (°C) 

Unaccounted heat loss is given as;  

               q4=Q- (q1+ q2+ q3)                             (kJ/h)                                                        (4.9) 

 

4.5.1.6 Global equivalence ratio 

 

The global equivalence ratio (Φ) is given by the following equation, 

 

      (
 

 
)
    

      (
 

 
)
    

                    (4.10) 

where Md, Mbt and Ma are the mass flow rates of diesel, bioethanol and air in kg/h. (A/F)s,d 

and (A/F)s,bt are the stoichiometric fuel–air ratios for diesel and bioethanol. If Φ < 1, the fuel–

air mixture is called lean, if Φ > 1, the mixture is rich, and if Φ = 1, the mixture is 

stoichiometric. 

 

4.5.1.7 Bioethanol energy share 

 

The bioethanol energy share (r) was calculated by the following equation; 
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                     (4.11) 

 

where Hubt and Hud were lower heating values of bioethanol and  diesel respectively. When r 

= 0%, the engine was run with conventional diesel only. The boiling point of bioethanol is 

low; therefore when it was supplied with a high pressure injection into the vaporiser, it mixed 

properly with the air to form a homogeneous mixture, as in a premixed combustion engine. 

 

4.5.2 Emission measurements 

 

The emission parameters such as HC, CO and NO, were directly obtained with the help of the 

exhaust gas analyzer. The units of these emissions were measured in ppm, %vol and ppm 

respectively. These values were converted into g/kWh. The conversion formulae are given in 

Appendix A6. Smoke values are directly obtained with the help of the smoke meter.  

 

4.5.3 Combustion parameter measurements 

 

4.5.3.1 Ignition delay 

 

The ignition delay is calculated by using following equation, 

Ignition delay in degree crank angle=degree crank angle at 5% heat is liberated-degree crank 

angle at which fuel is injected                                                            (4.12) 

4.5.3.2 Heat release rate analysis 

 

The heat release analysis can provide information about the effects of the engine design 

changes, fuel injection system, fuel type, and engine operating conditions, on the combustion 

process and engine performance. The heat release rate was calculated by making an analysis 

of the first law of thermodynamics. Sorenson et al. presented the following equation for heat 

release: 




 







(1/γ-1) + P








(γ/γ-1)                (4.13)

                                 
 

 

where,  




= rate of heat release (J/°CA) 

 = gas volume (m
3
) 

P=cylinder pressure (bar) 
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 = crank angle (°) 

γ = ratio of specific heats, Cp and Cv 

 

In this equation, the heat release rate corresponding to crank angle was calculated with the 

help of cylinder pressure data at crank angle. The cylinder gas pressure was measured using a 

Kistler piezo-electric transducer (model 5395A) in conjunction with a Kistler charge 

amplifier. The cylinder gas pressure data was recorded as the average of 20 cycles of data, 

with a resolution of 0.5°CA using a data acquisition system. From the average values of the 

cylinder pressure data, the heat release rate was calculated and recorded in an excel file with 

an in-house data acquisition system software. The instantaneous cylinder volume can be 

obtained from the engine geometry and crank angle values and is constant at every cycle. The 

value of γ given in the equation was considered for air. 

 

4.5.3.3 Smoothing of P-θ curve 

 

The heat release rate is calculated by considering 20 cycles. A particular cycle, a total of 1200 

data points for both cylinder pressure and volume are recorded at each load. The smoothing 

of the instantaneous pressure data was done by using the following equation: 

   
[             ]

 
                                                  (4.14)

                                 
      
 

The change of pressure for unit crank angle was determined by using the equation, 

 

  

  
 

[                             ]

[      ]
                                               (4.15)

                                 
 

 

4.5.3.4 Rate of pressure rise 

 

The rate of pressure rise provides information of the design of the engine to operate 

smoothly. The rate of pressure rise is the derivative of pressure (dP/dθ) with respect to the 

crank angle.  

 

4.5.3.5 Combustion duration 

 

Combustion duration is measured from the 5% heat release rate to 90% heat release rate.  
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4.5.3.6 Mass fraction burned (MFB) 

 

The energy conversion during a combustion cycle can be described by the Mass Fraction 

Burned (MFB) at a specific crank angle degree (CAD). In an IC engine, the MFB depends on 

the engine geometry, engine speed, A/F, ignition angle, residual mass etc. The MFB in each 

individual engine cycle is a normalized quantity with a scale of 0 to 1, describing the process 

of chemical energy release as a function of the crank angle. The MFB includes the 

determination of the start and end of combustion. One well-established method was 

developed by Rassweiler and Withrow [130] for estimating the mass fraction burned profile 

from the cylinder pressure and volume data. In this method, the mass fraction burned is given 

by; 

 

 

                                                                          (4.16) 

 

where,  

0-denotes the start of combustion,  

N – end of combustion (N is the total number of crank intervals) 

ΔPc – pressure rise due to combustion 

i- integer crank angle location 

 

4.6 Uncertainty analysis 

 

Any measurement, irrespective of the type of instrument used, possesses a certain amount of 

uncertainty or error. Some of these errors are of a random nature and need a device to specify 

consistently the uncertainty in an analytical form. Hence, a brief attempt was made to 

estimate the uncertainty of various measurements by theoretical methods. An uncertainty 

analysis was performed using the method described by Holman [127]. The range, accuracy 

and percentage of the uncertainty of each instrument are given in Appendix A7. The 

procedure used for the uncertainty analysis is given in Appendix A8. 
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CHAPTER 5 

 

 

MATHEMATICAL MODELLING 

 

 
5.1 General 

In recent years, the validation of the experimental results by mathematical modelling or 

simulation through an advance software is essential, so that the randomness of the results is 

minimised. In this chapter, a mathematical modelling was developed to validate the 

experimental results obtained from a single cylinder, four stroke, air cooled, DI diesel engine, 

that was run on the BMDE15 emulsion. A MATLAB program was developed for a two zone 

model for the validation. One zone consisted of pure air called the non-burning zone, and the 

other consisted of fuel and combustion products, called the burning zone. In order to obtain 

the cylinder pressure and temperature by mathematical modelling, the first law of 

thermodynamics and the equation of state were used for both the zones. The combustion 

parameters, such as ignition delay and heat release rate and the chemical equilibrium 

composition were calculated theoretically, using the two zone model. As the NO and soot 

emissions are important in a CI engine, they were calculated using a semi-empirical model. A 

comparison of the theoretical and experimental results of the BMDE15 emulsion is presented 

in this chapter. A spray profile of diesel and the BMDE15 emulsion is also obtained using a 

MATLAB program and presented. 

5.2 Spray formation model 

In a CI engine, the fuel air mixture is obtained inside the combustion chamber of the engine. 

The injected fuel absorbs the heat from the surrounding air and vaporises. Further, the fuel 

vapor mixes with the available air in the cylinder. The fuel injector plays an important role in 

the injection process, because it atomises the liquid fuel into finer droplets in the form of a 

spray. Depending on the spray, the fuel air mixture is obtained in the cylinder. The better the 

fuel spray, the better the mixture formation. The combustion, performance and emission of 

the engine are analysed with the help of a spray pattern of the fuel. In this section, the two-

dimensional, multi-zone model of fuel sprays is developed, where the issuing jet is divided 

into discrete volumes, called zones. The descriptions of the model are discussed in the 

following subsections. 
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5.2.1 Fuel injection process 

During the compression of fluid in the fuel injection process, a pressure wave is propagated 

down the connecting pipe at a sonic speed, to open the needle of the injector. The speed of 

sound is given by; 

   √
   

  
                     (5.1) 

Then, the time for the pressure wave to travel down the connecting pipe length (  ) i.e. 

injection delay was expressed by, 

         (
  

  
)                      (5.2) 

The pressure wave in the injector nozzle holes has a magnitude of, 

             (
     

       
⁄ )                             (5.3) 

where       and         are the cross sectional areas of the pump barrel and of the total of 

the nozzle holes. 

 

5.2.2 Fuel jet break up point and initial angle 

 

To obtain the location of the spray tip as a function of time, based on the relevant 

experimental data and turbulent jet theory, a correlation developed by Arai et al. [131] is 

incorporated in the modelling. Other correlations [132-134] are also used to obtain the fuel 

break up point, swirling motion of the air and spray penetration containing the swirl ratio. 

The mean jet velocity from each nozzle hole is given by, 

 ̅      √
   ̅̅̅̅    

  
⁄                    (5.4) 

       value was taken as 0.39. 

The mean fuel injection rate per jet (kg/°CA) is given as, 

 ́̅     (
   

 

 
⁄ )

  ̅   
  

⁄                   (5.5) 
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For the given global air to fuel ratio, the total fuel mass to be injected in the cycle       is 

fixed, if the total air mass trapped in the cylinder       is known. Then, the value of the total 

duration of the fuel injection is given in degrees of the crank angle, 

      (      ⁄ )  ́̅    ⁄                                                                                                             (5.6) 

The spray development will continue until the penetration of each spray reaches a value of 

(D/2+πD/z), or until it entrains the maximum quantity of air equal to      /z. 

The break up time     was obtained by equating the two spray penetration correlations before 

and after    , corresponding to the break up length       

      √
   ̅̅̅̅    

  
⁄          for                                    (5.7) 

      (
  ̅̅̅̅    

  
⁄ )

    

√             for                      (5.8) 

Then     is given by, 

            
  

√     ̅̅̅̅    
⁄

                    (5.9) 

where    is the density of air inside the cylinder just before the beginning of the combustion 

of fuel. 

The break up length is given as, 

     ̅                         (5.10) 

The break up length with the swirl ratio can be written as, 

        (         
   

    ̅   
⁄ )

  

               (5.11) 
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The corresponding break up time is given by, 

     
    

 ̅   
⁄  (

    
   

⁄ )                     (5.12) 

The initial spray angle (rad) is [135], 

         (
 

 ́
  √

  

  

√ 

 
)                 (5.13) 

where  ́ is constant and given by the empirical relations, 

 ́        (
  

  
⁄ )                 (5.14) 

5.2.3 Fuel spray development 

The following steps are used for the spray development of each zone, 

(a) For axial zones, the zones are taken as      
     

  ⁄ , and for radial zones, they are 

divided into       
    

 ⁄  to     . The instantaneous fuel injection velocity and injection 

rate in each spray, using instantaneous values of           are given as, 

          √
   ̅̅̅̅       

  
⁄                              (5.15) 

 

And  ́        (
   

 

 
⁄ )

        
  

⁄                  (5.16) 

 

Then the cumulative fuel injected in each spray is, 

          ∫  ́        
 

 
               (5.17) 

 

(b) The fuel is distributed equally in to the radial zones      at each crank angle in steps of 

“i”, which is given by the following equation, 

 

         
 ́        

    
⁄                              (5.18) 

(c) The Sauter mean diameter (    ) [136] is calculated for each step. 
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(d) The mid zone is selected as      
    

   ⁄                          (5.19) 

(e) The mid-zone penetration in the radial distance from the cylinder axis is calculated as, 

        √                                                                                                      (5.20) 

 

(f) The mid-zone velocity in each crank angle step     is calculated as, 

             (           )
    

√  
 

                                (5.21) 

(g) The center line angle for each zone is given as, 

         
 

 
 

   

    
  

 

     
               (5.22) 

(h) The velocity distribution for a lower axis penetration located at the jet periphery for each 

zone is calculated as, 

                  [    
      ]                 (5.23) 

where        

(i) The swirl coefficient before the wall impingement is calculated by the following equation, 

            
    √                     

         
               (5.24) 

while           is 1 after the wall impingement. The coordinates of x and y are calculated 

from the previous step. 

(j) Also the drop of the Sauter mean diameter from the center line of the spray with 

increasing distance is considered as, 

         (  
 

 
)         

 

 
                                  (5.25) 

where   is in the range of 5-10. 

(k) The number of droplets in each zone is also calculated with the following mathematical 

relation, 

                  [(
 

 ⁄ )]           ]                           (5.26) 

(l) The zone velocity with swirl is calculated, 

         
       

         
⁄                             (5.27) 
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(m) The mass of air in each zone is calculated as, 

               
                           

                   
                (5.28) 

(n) The fuel air equivalence ratio of the zone is, 

        
               

 
 

    
 

                  (5.29) 

(o) The effect of swirl for each zone on the angle is considered as, 

(i) For       , 

                         
                             (5.30) 

(ii) For       , 

            
 

 
            

 

 
                           (5.31) 

(iii) For       , 

                                            (5.32) 

(p) The location of the co-ordinates for each zone is calculated with the following equation, 

(i) Before the wall impingement, 

                                   
  

  
                           (5.33) 

                                   
  

  
                           (5.34) 

(ii) After the wall impingement, 

                                             (5.35) 

                                                 (5.36) 

 

5.2.4 Fuel droplet evaporation 

The fuel evaporation in each zone is considered with the calculation of the Sauter mean 

diameter, which is given by the following relations, 

               
         

     (
  

  
⁄ )

    
(
  

  
)
     

                           (5.37) 
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     (
  

  
⁄ )

    
(
  

  
)
    

                           (5.38) 

Also, the equivalence ratio for each zone is calculated using the evaporation model, 

           
                  

 
 

    
 

                 (5.39) 

5.2.5 Calculation of Whitehouse-Way fuel preparation rate constant 

After the fuel is injected into the cylinder chamber, it will undergo physical and chemical 

processes for burning inside the chamber. In the physical process, the fuel gets atomised, 

heated, evaporated and mixed with sufficient air to form the charge mixture. Then, the 

chemical kinetic reactions occur, to burn the mixture in the chemical process. The 

Whitehouse and Way model [137] was used for the comparison of the results obtained from 

the fuel evaporation model. 

So, the penetration rate proposed by the Whitehouse-Way model was given as, 

    

  
        

       
    

            (5.40) 

where  

      ∫
      

  
  

 

 
           (5.41) 

           ∫
      

  
  

 

 
           (5.42) 

5.3 General description of the model for combustion 

In this investigation, a single cylinder, four stroke, air cooled, direct injection (DI) diesel 

engine is used. The combustion chamber is a bowl in piston type and the fuel injector has a 

three hole nozzle. The model used in this study is a two zone thermodynamic model. It is 

assumed that the cylinder contents a non burning zone of air, and another burning zone in 

which the fuel is continuously injected during injection and burnt with the available air from 

the air zone. The model considers only those processes which occur during the possession of 

compression and expansion stroke. It is assumed that the inlet and exhaust valve are fully 

closed during the stroke. The compression process in practically all engines is a polytropic 

one, which begins from the moment the inlet valve, closes and ends when the injection 
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process starts. The fuels considered for the analysis and their chemical formulae and 

important properties are given in Table 5.1. 

Table 5.1 Properties of diesel and BMDE15 

Description diesel BMDE15 

Chemical formula C16H34 C5.471H6.039O 

Molecular weight 170 48 

Density at 40 °C 2.4 1.73 

Carbon  86 65.65 

Hydrogen 13.60 10.21 

Nitrogen 0.18 0.14 

Sulfur 0.22 0.01 

Oxygen by difference 0 24  

 

The main calculation is based on the integration of the first law of thermodynamics and the 

ideal gas equation. The following assumptions are made for the analysis; 

(a) The cylinder contains the non-burning zone and burning zone.  

(b) The pressure and temperature in each zone are uniform and vary with the crank angle. 

The content of each zone follows the perfect gas laws.  

5.3.1 Energy equations  

 

During the compression stroke, only one zone (of pure air) exists. Then, the first law of 

thermodynamics for a closed system is applied, together with the perfect gas state equation 

[128]. The change in internal energy is expressed [138] as follows: 

     

  
 

   

  
 

   

  
 

  

  
           (5.43) 

By replacing the work transfer term dW/dθ with PdV/dθ or by the ideal gas law PV = mRT, 

the above equation (5.43) can be rearranged as,  

 
  

  
 

   

  
   

  

  
   

  

  
                (5.44) 

where, V is the instantaneous cylinder volume with respect to the crank angle, which is given 

by, 
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           ⁄   [                        ⁄ ]            (5.45) 

In the above equations, the term dQ is given as the fourth order polynomial expression of the 

absolute temperature T, including the enthalpy of formation at absolute zero.  

The internal energy calculation as a function of temperature is :  

  

     
           ⁄        ⁄        ⁄        ⁄        ⁄                        (5.46) 

                                      (5.47) 

For the surrounding air zone, which only loses the mass (air) to the burning zone, the first law 

of thermodynamics for the unburned zone is written as, 

                                (5.48) 

The burning zone not only receives the mass from the air zone, but also there is an enthalpy 

flow from the fuel, which is ready to be burned in the time step. So, the first law of 

thermodynamics for the burning zone becomes 

                                        (5.49) 

The first law of thermodynamics for the combustion in time step dt is  

     f(E)=E(T2) – E(T1) – dQ + dW + dmf Qvs =0               (5.50)                                      

  

If f(E) is greater than the accuracy, the required new value of T2 is calculated using the 

Newton-Raphson numerical method. The unburned zone temperature is calculated using the 

equation, 

           (
 

    
)

   
 ⁄

                 (5.51)                                      

   

5.3.2 Heat transfer model 

The heat transfer between the cylinder trapped mass and the surrounding walls is calculated, 

using the formula of Annand [139]. The Annand formula to calculate the heat loss from the 

cylinder, is 

    ⁄   
  

 
     (     )    (  

    
 )              (5.52)                                    

         

In this equation „Tw‟ is the cylinder wall temperature which is assumed as 450 K, and a, b, c 

are constants. The constant values are taken as, a=0.2626, b=0.6, c=5.67*10
-8 

W/m
2
/K. 
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5.3.3 Ignition delay 

The time delay between the start of injection and the start of combustion is defined as the 

ignition delay period. The determination of the start of combustion (SOC) by selecting the 

proper method is a key issue in ignition delay studies. In the combustion model, the ignition 

delay is also taken into account. The ignition delay period is calculated by integrating 

Wolfer‟s relation, using the trapezoidal rule [133]. 

∫
  

      
 

 

     

∫
  

             
 

     
 
  

    

    

    

    
               (5.53)                                     

The values of various constants corresponding to a DI diesel engine are K =2272; q = -1.19; 

E/R = 4650. 

where K=thermal conductivity 

q=heat losses 

E/R=activation energy/universal gas constant 

A MATLAB programme was written to determine the values of ignition delay with respect to 

load. The MATLAB programme is given in Annexure III. 

5.3.4 Wiebe’s combustion model 

 

The Wiebe function is used to predict the mass fraction burnt and the burn rate in IC engines, 

operating with different combustion systems and fuels. Wiebe linked the chain chemical 

reactions with the fuel reaction rate in IC engines and his approach is based on the premise 

that a simple one-step rate equation would not be adequate to describe the complex reacting 

systems, such as those occurring in an IC engine. The Wiebe functions [140] for the non-

dimensional burn fraction x as a function of the degrees of crank angle can be written as 

       [      (
    

  
)
   

]                    (5.54) 

The heat release rate calculated with the help of the Wiebe function is, 

   

  
           (

   

  
) (

    

  
)
 

   [      (
    

  
)
   

]            (5.55) 

where x is the mass fraction burned,    is the start of combustion and    is the combustion 

duration. The parameter m represents the rate of combustion. Qav is the heat released per 

cycle. The value of m for both the fuels is taken as 3.0 
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When calculating the heat release, prior knowledge of the actual overall equivalence ratio is 

necessary. The term equivalence ratio is defined as the ratio of the actual air-fuel ratio to the 

stoichiometric air-fuel ratio. This helps in fixing the mass of fuel to be admitted. 

5.3.5 Chemistry of combustion 

In a combustion process, the fuel and the oxidizer react to produce products of different 

compositions. The theory of combustion is a complex one, and has been the topic of intensive 

research for many years. Let us represent the chemical formula of a fuel as CαHβOγNδ. In 

the present case, it was considered that 10 species were present in the combustion product, 

and the combustion equation is given by: 

ϵφCαHβOγNδ +0.21O2 +0.79N2     ν1CO2 +ν2H2O +ν3 N2 +ν4O2 +ν5CO + ν6H2 +ν7H +ν8O 

+ ν9OH +ν10NO                                                    (5.56)  

From the atomic balance of each species C- H- O- N the following 4 equations, are obtained.     

C     ϵφα = (y1+y5) N1                (5.57)                      

H     ϵφβ = (2y1+2y6+y7+y9) N1                             (5.58)                        

O     ϵφγ+0.42 = (2y1+y2+2y4+y5+y8+y9+y10) N1                 (5.59)                         

N    ϵφδ +1.58 = (2y3+y10) N1                          (5.60)                          

The chemical reactions considered in equilibrium, are as follows: 

0.5H2                         H                (5.61)             

             

0.5O2                         O                (5.62)             

          

0.5H2+0.5O2                   OH                 (5.63)             

                    

0.5O2+0.5N2                   NO                (5.64)             

                 

H2+0.5O2                        H2O                (5.65)             

   

CO+0.5O2                       CO2                                      (5.66)             

                                   

The use of the equilibrium constant is identical to maximizing the entropy of the gas. This 

method is similar, when considering a restricted species list such as the present case [141]. 
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Once the composition is known, the thermodynamic properties of interest like enthalpy, 

entropy, specific volume and internal energy, can be computed. 

5.3.6 Nitric oxide (NO) formation model 

The current approach to model the NOx emissions from diesel engines is, to use the extended 

Zeldovich thermal NO mechanism, by neglecting other sources of NOx formation. The 

extended Zeldovich mechanism consists of the following reactions,  

O + N2                          NO +N               (5.67)             

                     

N + O2 •                       NO +O               (5.68)             

                  

N + OH                         NO + H               (5.69)             

                     

This mechanism can be written as an explicit expression for the rate of change of the 

concentration of NO [142]: 

The change of NO concentration is expressed as follows: 

(d (NO))/dt = 2 (1-α
2
) R1/(1+ αR1/(R2+R3))                          (5.70)             

      

where Ri is the one-way equilibrium rate for the reaction i, defined as, 

R1 = k1f (N)e(NO)e,  R2 = k2f (N)e(O2)e,                  (5.71)             

                  

R3 = k3f (N)e(OH)e,    α = (NO)/(NO)e               (5.72)                             

 

5.3.7 The net soot formation model 

 

The exhaust of the CI engine contains solid carbon soot particles that are generated in the fuel 

rich regions inside the cylinder during combustion. Soot particles are clusters of solid carbon 

spheres, with the HC and traces of other components absorbed on the surface. They are 

generated in the combustion chamber in the fuel rich zones, where there is not enough 

oxygen to convert all the carbon to CO2. Subsequently, as the turbulence motion continues to 

mix the components, most of these carbon particles find sufficient oxygen to react and form 

CO2. Thus, soot particles are formed and consumed simultaneously in the combustion 

chamber. 
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The net soot formation rate was calculated by using the semi-empirical model proposed by 

Hiroyasu et al. [143]. According to this model, the soot formation rate (index sf) and soot 

oxidation rate (index sc) were given by, 

    

  
    (           )

   
        (         ⁄ )                             (5.73)                                        

    

  
            ⁄                   ⁄                                           (5.74)                                                       

where, the pressures are expressed in bar and dmf  is the unburned fuel mass in kg to be 

burned in time step dt. Therefore, the net soot formation rate is expressed as 

      
    

  
 

    

  
 

    

  
                                                                                          (5.75)                                                  

A computer program using MATLAB was generated, with all the above mentioned equations 

and considering all the values of the constants, in order to predict the combustion attributes, 

like the in- cylinder pressure, crank angle, heat release rate, heat losses and the NO 

emissions. The MATLAB program used for this analysis is given in Annexure IV. 
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CHAPTER 6 

 

 

RESULTS AND DISCUSSION 
 

 

6.1 General 

 

The present study establishes the experimental results obtained from operating a CI engine 

with bioethanol obtained from the Madhuca Indica flowers, which is an early stage of 

research in its kind. As mentioned in Chapter 5-Metholdology of the present work, bioethanol 

was used in the test engine adopting the following techniques: (i) emulsifying it with diesel in 

different percentages (ii) adding small quantities of an ignition improver (DEE) with an 

optimum percentage of bioethanol diesel emulsion (iii) inducting DEE in suction at different 

percentages while bioethanol was injected in small quantities, and (iv) fumigating bioethanol 

in suction while diesel was injected as a pilot fuel. The results of the combustion, 

performance and emission characteristics of the engine run on each technique were collected, 

analysed and compared with those of diesel operation of the same engine. The best technique 

was chosen based on the analysis of the results. The results of the best technique were also 

validated with the theoretical analysis using a MATLAB program. Furthermore, the engine 

was run for about 100 hours as per IS: 10000 (Part IX)-1980 „Methods of tests for internal 

combustion (IC) engines Part IX Endurance tests‟ for constant speed engines, to study the 

durability issues associated with the best technique chosen in this investigation and the results 

were analysed. In addition to these, the results pertaining to the combustion, performance and 

emissions of the engine run on the bioethanol-diesel-biodiesel emulsions were also analysed. 

All the analysis of the results of this investigation is presented in the subsequent sections. 

 

6.2 Results obtained from the engine fueled with bioethanol-diesel emulsions 

 

In this section, the results obtained from the engine fueled with different bioethanol diesel 

emulsions are analysed, compared and presented.  

 

6.2.1 Combustion parameters 

 

Combustion parameters such as pressure, ignition delay, heat release rate, combustion 

duration and rate of pressure rise were collected for every brake mean effective pressure 

(BMEP) of the engine. The values of BMEP 0, 1.4, 2.8, 4.5 and 5.6 bar are obtained at 0, 

25%, 50%, 75% and 100% load respectively. Using the collected data, different graphs were 
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plotted by taking the measured parameters in variation with the crank angle or BMEP for the 

analysis. The analysis of the measured combustion parameters are discussed in this 

subsection. 

6.2.1.1 Pressure (P)-crank angle (θ) diagram 

Figure 6.1 depicts the variation of cylinder pressure with crank angle for diesel and the three 

different emulsions, 
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Fig. 6.1 Variation of cylinder pressure with crank angle 

 

It can be observed from the figure that, the commencement of ignition is the earliest for 

diesel, followed by BMDE5, BMDE10 and BMDE15. This is because of the higher cetane 

number of diesel. With the increase in the percentage of bioethanol the cetane number of the 

emulsion decreases, and hence, the commencement of ignition is delayed at full load or full 

load. The cylinder peak pressures for the BMDE5, BMDE10 and BMDE15 emulsions are 

found to be about  77.0 bar, 76.8 bar and 77.4 bar respectively, which are attained 

approximately at 370.4 
o
CA, 370.2 

o
CA and 371.3 

o
CA respectively at full load, whereas for 

diesel, it is 73.5 bar at 369.6 
o
CA at full load. For the BMDE15 emulsion, the combustion 

pressure occurs approximately about 2
o
CA after the diesel ignition. Generally, the peak 

pressure of the CI engine is attributed to the ignition delay, and the mixture preparation in the 

delay period [127]. As a result of the lower cetane number of the emulsion, the peak pressures 

in the bioethanol operation are found to be higher than that of diesel operation, at full load. 

The results are similar to the results reported by Rakopoulus DC et al. [144]. 
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6.2.1.2 Ignition delay 

 

The variation of ignition delay for diesel and the bioethanol-diesel emulsions for different 

BMEP is illustrated in Fig. 6.2. The ignition delay decreases with an increase in the engine 

load or BMEP. When the engine load increases, the heat prevailing inside the combustion 

chamber increases, and hence, decreases the ignition delay. 

 

 
Fig. 6.2 Ignition delay for diesel and the bioethanol-diesel emulsions for different BMEP 

 

It is apparent from the figure that the ignition delay increases with the increase in the 

bioethanol content throughout the load spectrum or increasing load, as a result of the decrease 

in the cetane number. Also, the ignition delays of all the emulsions tested in this study are 

found to be longer than that of diesel in the entire engine operation. The maximum difference 

in the ignition delay between diesel and the bioethanol-diesel emulsions at full load is about 2 

°CA.  At full load, the BMDE15 emulsion shows the longest ignition delay compared to that 

of diesel.  

 

6.2.1.3 Heat release rate (HRR) 

 

Figure 6.3 illustrates the variation of the heat release rate with crank angle for diesel and the 

bioethanol-diesel emulsions at full load. The maximum heat release rate in the premixed 

combustion stage depends upon the quantity of fuel accumulated in the delay period, the 

burning rates and duration of the delay period. As a result of the longer ignition delay and 

lower viscosity of the bioethanol diesel emulsions, the maximum HRR is found to be the 
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highest with the BMDE15 emulsion followed by the BMDE5, BMDE10 emulsions and 

diesel. 

 

 
 

Fig. 6.3 Variation of the heat release rate for diesel and bioethanol-diesel emulsions  

at full load 

 

Another reason may be due to better mixing, and more complete combustion of the fuel-air 

mixture. In the case of the BMDE10, the latent heat of vaporisation of the emulsion may 

dominate the other fuel properties, and hence, a lower heat release rate is noticed. The 

approximate values of the maximum heat release rate for diesel, BMDE5, BMDE10 and 

BMDE15 are 51.8, 52.9, 53.3 and 54.0 J/°CA respectively at full load. 

 

6.2.1.4 Maximum cylinder pressure 

 

Figure 6.4 portrays the cylinder pressure for different percentages of bioethanol in the 

emulsions for different BMEP. The cylinder peak pressure of a compression ignition (CI) 

engine is mainly due to the amount of fuel accumulated in the delay period, and the 

combustion rate in the initial stages of premixed combustion [128]. It is evident from the 

figure that the maximum cylinder pressures for the bioethanol-diesel emulsions are found to 

be higher than that of diesel operation, as a result of higher heat release rates. The maximum 

cylinder pressure for diesel ranges approximately from 53.4 bar to 73.5 bar, from no load to 

full load respectively. For the BMDE5 emulsion, the values of the maximum cylinder 

pressure ranging from no load to full load are approximately 54.3 to 77.0 bar respectively. In 
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the case of the BMDE10 and BMDE15 emulsions, the maximum pressures are found to be in 

the range of 52.5 to 76.8 bar and 54.3 to 77.4 bar at no load to full load respectively. 

 

Fig. 6.4 Variation of the maximum pressure for diesel and the bioethanol-diesel emulsions  

for different BMEP 

 

The percentage increase of the maximum cylinder pressure for the BMDE5, BMDE10 and 

BMDE15 emulsions are about 3.3, 2.7 and 3.8 % respectively, compared to that of diesel at 

full load. 

 

6.2.1.5 Maximum rate of pressure rise 

 

One of the important factors affecting the life of the CI engine is the mechanical load that is 

imposed on the engine components [128]. The greater the engine load or BMEP imposed, the 

lesser the expectancy of the life of the engine. The mechanical load or BMEP is mainly 

influenced by the rate of pressure rise. As per the standards, the value for the maximum rate 

of pressure rise prescribed for a single cylinder, four stroke, DI diesel engine is 8 bar/°CA. If 

the maximum rate of pressure rise exceeds this value, then the life of the engine will certainly 

decrease. The variation of the maximum rate of pressure rise with the engine BMEP for the 

fuels tested in this study is portrayed in Fig. 6.5. From the figure, it is noticed that the 

maximum rate of pressure rise is the highest at full load, in this study. With a higher 

proportion of bioethanol addition, the ignition delay is increased and more fuel gets 

accumulated, and reacts for more time with oxygen. So, there is a rapid pressure rise, which 
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may impact on the piston suddenly. At minimum BMEP conditions, the lower proportion of 

bioethanol in the emulsion may have better miscibility and good mixture formation quality. 

 

Fig. 6.5 Variation of the maximum rate of pressure rise of bioethanol diesel emulsions and 

diesel with BMEP 

 

Hence, the maximum rate of pressure rise is more compared to diesel at minimum load 

conditions. 

 

6.2.1.6 Combustion duration 

 

Figure 6.6 shows the combustion duration with respect to the percentage of bioethanol in the 

emulsions at different BMEP. The combustion duration decreases with an increase in the 

bioethanol. The addition of bioethanol with diesel decreases the heating value of the 

emulsion. On the other hand, the oxygenated fuel can promote the combustion rate, especially 

the diffusive combustion rate. It can be observed from the figure, that at maximum load, all 

the bioethanol-diesel emulsions exhibit shorter combustion durations compared to that of 

diesel. The reason may be the faster combustion rate as a result of longer ignition delay and 

oxygen enhanced combustion. 
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Fig. 6.6 Variation of combustion duration for diesel and the bioethanol-diesel  

emulsions with BMEP 

 

Similar results are reported by Rakopolous DC et al. [145] in their study of the HSDI engine. 

 

6.2.2 Engine performance analysis 

 

The brake specific energy consumption, exhaust gas temperature and thermal energy balance 

are important parameters, which describe the performance of the diesel engine, when it is run 

with an alternative fuel blend or emulsion. Therefore, the results of the above mentioned 

factors obtained for the bioethanol diesel emulsions are analysed in comparison with those of 

diesel operation of the same engine and discussed in the following subsections. 

 

6.2.2.1 Brake specific energy consumption (BSEC) 

 

Figure 6.7 illustrates the variation of the BSEC of diesel and the bioethanol-diesel emulsions 

for different BMEP. If two different fuels of different densities and calorific values are 

blended, then the BSEC is considered instead of the BSFC, and the unit is expressed in 

MJ/kWh. It can be observed from the graph that the BSEC decreases with an increase in the 

engine load as a result of the increase in the cylinder temperature. The BSEC for the BMDE5, 

BMDE10 and BMDE15 emulsions is found to be higher by about 17.3, 17.5 and 30.1 % 

respectively, than that of diesel at full load. Bioethanol has a lower heating value than diesel. 
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Fig. 6.7 Variation of BSEC for diesel and the bioethanol-diesel emulsions with BMEP 

 

When small percentages of it are emulsified with diesel, the heating value of the resultant 

emulsion is also lower than that of diesel. Hence, the BSEC of the engine fueled with the 

bioethanol diesel emulsions is higher than that of diesel operation at any given output. 

 

6.2.2.2 Exhaust gas temperature (EGT) 

 

One indication of good energy conversion of the engine is defined by the measurement of its 

EGT [122]. The variation of the EGT with respect to different percentages of bioethanol in 

bioethanol-diesel emulsions for different loads, is shown in Fig 6.8. 

 

Fig. 6.8 Variation of EGT for diesel and the bioethanol-diesel emulsions with BMEP 
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The EGT increases with the increase in load for all the tested fuels. The EGT for diesel, 

BMDE5, BMDE10 and BMDE15 is found to be about 315.3, 321.6, 325.6 and 328.2 °C 

respectively, at full load. BMDE5 has a lower EGT compared to that of BMDE10 and 

BMDE15 throughout the entire engine operation. This may be due to the effective 

combustion which takes place in the early stages of the exhaust stroke, and hence, there is a 

saving with respect to the exhaust gas energy loss. The BMDE15 possesses a higher EGT 

compared to that of diesel, BMDE5 and BMDE10 at full load. The reason may be due to 

more energy consumption and shorter combustion duration of the BMDE15 emulsion. 

 

6.2.2.3. Thermal energy balance 

 

Thermal energy balance is defined as the heat input given by fuel in respect of useful work, 

heat loss through the exhaust, heat carried away by the lubricating oil and unaccounted losses 

(radiation, vapour in the exhaust, heat transfer through fins etc.) [145]. The method of 

calculating the thermal energy balance has already been discussed in Chapter 4.  

 

 

Fig. 6.9 Variation of thermal energy balance for diesel and the bioethanol-diesel emulsions  

at full loads 

 

The variation of the thermal energy balance for diesel and the bioethanol-diesel emulsions at 

full load is shown in Fig. 6.9. It is evident that the useful work increases for all the tested 

fuels, but other losses are decreased. The useful work for the BMDE5, BMDE10 and 

BMDE15 emulsions is found to be higher by about 3, 4 and 6% compared to that of diesel at 

full load. This may be due to an efficient combustion of emulsion, and the cooling effect of 

bioethanol. A similar result has been reported by Ajav et al. At full load, the heat loss through 
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the exhaust is found to be higher for all the emulsions compared to that of diesel. Though an 

efficient work is achieved by the emulsions, some amount of heat is lost, which may be due to 

the burning of fuels at the end of the expansion stroke. Other losses are minimised with a 

higher percentage of bioethanol operation. 

 

6.2.3 Emission analysis 

 

In this subsection, the emission parameters  for a given power output, viz., hydrocarbon (HC), 

carbon monoxide (CO), nitric oxide (NO), and smoke of the engine fueled with the different 

bioethanol diesel emulsions are analysed, compared with those of diesel operation, and 

presented. 

 

6.2.3.1 Brake specific hydrocarbon (BSHC) emission 

 

The HC emission of the diesel engine is primarily influenced by fuel quality, and the oxygen 

available for complete combustion. It is also influenced by the ignition delay and rate of 

reaction and engine design [128]. The HC emission is relatively lower for CI engines 

compared to SI engines. Figure 6.10 shows the variation of the BSHC emissions with respect 

to different percentages of bioethanol in bioethanol-diesel emulsions for different loads. 

 

 

Fig. 6.10 Variation of BSHC for diesel and the bioethanol-diesel emulsions at 

different loads 
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BMDE15 are found to be higher by about 4.3%, 8.3% and 22.2 %, compared to that of diesel 

at full load. The increase in the volume of bioethanol increases the heat of evaporation and 

formation of a quench layer. This may slow down the vaporization and mixing of fuel with 

air, and hence, the BSHC emissions for a given power output increased with an increase in 

the percentage of bioethanol in the emulsions. The BSHC values of diesel, BMDE5, 

BMDE10 and BMDE15 at full load are recorded as 0.042, 0.045, 0.046 and 0.047 g/kWh 

respectively at full load. 

 

6.2.3.2 Brake specific carbon monoxide (BSCO) emission 

 

The variation of BSCO emissions with respect to different percentages of bioethanol in 

bioethanol-diesel emulsions for different loads is shown in Fig. 6.11. The BSCO emission is a 

product of incomplete combustion, due to insufficient amount of oxygen available in the air-

fuel mixture, or insufficient time in the cycle for completion of combustion at every load. 

 

 
Fig. 6.11 Variation of BSCO for diesel and the bioethanol-diesel emulsions at 

different BMEP 

 

At full load, the BSCO emission is marginally lower for BMDE5 and BMDE10 compared to 

that of diesel. This may be due to the proper mixture formation achieved at a lower 

percentage of bioethanol in the emulsion. But at a lower load, the BSCO emission is found to 

be more for BMDE10 and BMDE15 compared to both BMDE5 and diesel. At lower loads, 

less fuel is injected and there is less time for mixture formation; hence, the combustion 

temperature is low, which may lead to more BSCO emission.  
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6.2.3.3 Brake specific nitric oxide (BSNO) emission 

 

The two principal factors that affect the formation of NO emission in a CI engine are the 

cylinder gas temperature and oxygen availability for combustion [122]. The variation in the 

BSNO emission given in g/kWh with respect to different percentages of bioethanol for 

different loads is depicted in Fig. 6.12. The BSNO emission for the bioethanol-diesel 

emulsions is found to be lower than that of diesel throughout the engine operation [145]. This 

is due to the higher latent heat of vaporisation of bioethanol, that results in a lower cylinder 

temperature. Similar results have been reported by researchers who have investigated with the 

ethanol/bioethanol emulsions obtained from sugarcane and sugar molasses [123, 146-147]. 

The reductions of BSNO in percentage for the BMDE5, BMDE10 and BMDE15 emulsions 

with respect to diesel at full load are 8%, 14% and 24% respectively. The BSNO emission for 

BMDE15 decreases with the increase in the percentage of bioethanol in the emulsion at full 

load, as a result of the high latent heat of vaporisation. 

 

 
Fig. 6.12 Variation of BSNO for the diesel and the bioethanol-diesel emulsions  

at different BMEP 

 

However, the BMDE5 and BMDE10 emulsions exhibit lower BSNO emissions compared to 

those of diesel, and the BMDE15 emulsion at part loads.  

 

6.2.3.4 Smoke emission 

 

Figure 6.13 shows the variation of the smoke emission for different percentages of bioethanol 

in the bioethanol-diesel emulsions for different loads.  
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Fig. 6.13 Variation of smoke emission for diesel and the bioethanol-diesel emulsions  

at different BMEP 

 

The bioethanol has less number of carbon atoms in it, and hence, the ratio of carbon to 

hydrogen is two. As a result, lower smoke emissions are recorded for the bioethanol-diesel 

emulsions. Bioethanol is an oxygenated fuel, which may increase more complete combustion. 

This may be another possible reason for the reduced smoke levels of the bioethanol-diesel 

operation in comparison with the diesel operation, at full load [148]. The smoke emission of 

the BMDE5, BMDE10 and BMDE15 emulsions are found to be lesser by about 2.31, 4.8 and 

20.8% respectively, compared to that of diesel at full load. 

 

6.2.4 Summary 

 

After conducting an experimental study on a diesel engine run with the three different 

bioethanol-diesel emulsions, varying the bioethanol fraction from  5 to 15% at a regular 

interval of 5% on a volume basis,  the following are summarised;   

 

The ignition delay of the bioethanol-diesel emulsions increased by about 1-3
o
CA in 

comparison with diesel, which is due to a decrease in the cetane number of the emulsions. 

The maximum cylinder pressures of the emulsions are higher by about 1-4% respectively, 

compared to that of diesel at full load. The NO emissions for the bioethanol-diesel emulsions 

are found to be lower, with a maximum reduction of about 24% in comparison with diesel at 

full load, which is due to the higher latent heat of vaporization of bioethanol. In comparison 

with diesel, the smoke emissions of bioethanol diesel operation exhibited lower smoke 
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emissions with a maximum reduction of 21% with BMDE15, at full load, as a result of the 

lower carbon-to-hydrogen ratio and more complete combustion. However, the HC emission 

with the bioethanol diesel emulsions is found to be higher as a result of the quench layer, in 

comparison with the diesel operation, though the CO emissions are found to be lower. The 

BMDE15 is found to be better than BMDE5 and BMDE10, based on the performance and 

emission parameters. There is a noisy and rough operation noticed with BMDE15, due to its 

cetane number. If there is any possibility of increasing the cetane number of the emulsion, it 

may improve the engine operation, by reducing the delay period. 
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6.3 Investigation of bioethanol-diesel-DEE blends 

 

When the engine was run with different bioethanol and diesel emulsions, the engine produced 

low NO and smoke emission. The performance of the engine was also comparable with that 

of diesel operation. But, it was able to run with a maximum of 15% bioethanol in the 

emulsion, and 15% bioethanol in the emulsion gave shrugging due to its lower cetane 

number.  

 

Cai et al. [85, 149] explained that the cetane number will gradually decrease when ethanol is 

added in higher percentage to a diesel engine. For the smooth operation of the engine, the 

cetane number should not be less than 30. Due to this, an ignition improver (DEE) was added 

in small quantities to the BMDE15 emulsion (diesel+bioethanol 15% emulsion) to reduce the 

ignition delay and engine knocking. The different types of fuel used in this study were 

DED1%, DED1.5%, DED2% and DED2.5% where DED refers to bioethanol-diesel emulsion 

of 15%, and the numeric values were percentages of DEE added to the emulsion. This 

chapter discusses the results obtained from the experimentation done in a DI diesel engine 

fueled with the optimum bioethanol-diesel emulsion blended with different percentages of 

DEE, up to a maximum of 2.5%.  

 

6.3.1 Combustion parameters 

 

The results of the combustion parameters of the engine fueled with the optimum bioethanol 

diesel emulsion blended with different percentages of DEE are analysed, compared with the 

diesel data and presented in the following subsections.  

 

6.3.1.1 P-θ diagram 

 

The variation of cylinder pressure with crank angle for the BMDE15 emulsion, with and 

without an ignition improver, and diesel is illustrated in Fig. 6.14. The start of the combustion 

of diesel air mixture is noticed as the earliest, and the peak cylinder pressure is the lowest 

among the fuels tested in this study. This is attributed to the higher cetane number of diesel. 

The start of combustion of BMDE15 is the farthest, due to the reduced cetane number, and 

the higher latent heat of vaporisation, which requires more time for the mixture formation. 

Adding DEE in small quantities up to 2.5% with BMDE15 advances the start of combustion, 

and lowers the cylinder peak pressure. The peak cylinder pressure occurs by about 9.6°CA 

away from the TDC, for diesel at full load. But, in the case of BMDE15, it occurs at 11.3°CA 
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away from the TDC. The peak cylinder pressure curve is slightly shifted towards the TDC, 

than that of BMDE15 with the ignition improver, but still away from the diesel curve.  

  

 

 

 

 

 

 

 

 

 

 

Fig. 6.14 Variation of cylinder pressure with crank angle 

The cylinder peak pressures for BMDE15, DED1%, DED1.5%, DED2%  and DED2.5% are 

77.4 bar, 75.3 bar, 73.8 bar, 72.8 bar and 70.6 respectively, and are attained approximately at 

371.3 
o
CA, 370.8  

o
CA, 370.7  

o
CA,369.9 

o
CA and 369.2 

o
CA respectively at full load, 

whereas for diesel, it is 73.5 bar at 369.6
o
CA. 

 

6.3.1.2 Ignition delay 

 

The variation of the ignition delay for diesel, BMDE15, DED1%, DED1.5%, DED2% and 

DED2.5% at different BMEP is shown in Fig. 6.15. The ignition delay of all the tested fuels 

in this study decreases with an increase in the load, as a result of increased cylinder gas 

temperature. It is apparent from the figure that, the ignition delay is found to be reduced with 

the higher addition of DEE. The black zone which represents the band width of 10-12 °CA 

for the delay period indicates that at high loads, the ignition delay is significantly lower, and 

the deviation of the ignition delay between lower and higher loads is about 6 °CA. The 10-12 

°CA band width for the ignition delay is more in the case of DED2% and DED2.5% from no 

load to full load. The higher band width of ignition delay about 16-18 °CA is achieved in the 

case of BMDE15 at no load, compared to that of diesel and BMDE15 with the ignition 

improver. 
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Fig. 6.15 Variation of ignition delay with BMEP 

 

The higher latent heat of vaporisation of bioethanol increases the physical delay period of 

ignition delay. The ignition delay for BMDE15, DED1%, DED1.5%, DED2% and DED2.5% 

varies from 1 to 2 °CA at full load, compared to that of diesel. 

 

6.3.1.3 Heat release rate (HRR) 

 

Figure 6.16 illustrates the variation of the heat release rate with the crank angle for diesel, 

15% bioethanol diesel emulsion, with and without the ignition improver at full load. The heat 

release rate was calculated using the method described in Chapter 5. The premixed 

combustion duration is the time interval from the start of combustion to the time of the first 

peak on the heat release curve. It is seen from the figure, that the HRR is the highest for 

BMDE15 followed by DED1%, DED1.5%, diesel, DED2% and DED2.5%. The higher HRR 

exhibited by BMDE15 is mainly due to more accumulation of the fuel air mixture in the 

delay period, as a result of the longer ignition delay. It may also be due to the better mixing 

and complete combustion of the fuel air mixture. The addition of DEE with the emulsion up 

to 1.5% reduces the heat release rate a little, because of the influence of the ignition 

improver. 
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Fig. 6.16 Variation of heat release rate with crank angle at full load 

 

However, the ignition improver dominated more, over combustion, and hence, results in 

lower heat release rates than that of diesel at full load.  

 

6.3.1.4 Maximum cylinder pressure 

 

Figure 6.17 portrays the variation of the maximum cylinder pressure with BMEP, for diesel, 

BMDE15, DED1%, DED1.5%, DED2% and DED2.5%.  

 
 

Fig. 6.17 Variation of maximum cylinder pressure with BMEP 
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The peak cylinder pressure for the BMDE15 emulsion is found to be higher than that of 

diesel operation, which is due to a longer ignition delay at full load. Due to the accumulation 

of more fuel and better combustion, the cylinder pressure increases. The cylinder peak 

pressure for diesel varies from 53.4 bar to 73.5 bar, from no load to full load respectively. For 

the BMDE15 the values of the maximum cylinder pressure from no load to full load are 54.3 

to 77.4 bar respectively. In the case of DED1%, DED1.5%, DED2% and DED2.5%, the peak 

pressures are found to be in the range of 63.0 to 75.3 bar, 62.8 to 73.8 bar, 60.9 to 72.8 bar 

and 62.1 to 70.6, from no load to full load respectively. It is also noticed that the maximum 

cylinder pressure, 72-76 band width is achieved up to DED1.5% blend, but after that, it 

shows a declining trend. This may be due to the shorter ignition delay, which allows a lesser 

accumulation of fuel, and also to the lower calorific value of bioethanol and DEE; hence, a 

lower peak pressure is noticed.  

 

6.3.1.5 Maximum rate of pressure rise 

 

It can be observed from Fig. 6.18, that the peak of rate of pressure rise for the DED2% and 

DED2.5% is found to be less than that of diesel. But, the peak of DED1.5% is found to be 

closer to that of diesel at full load.  

 

 

Fig. 6.18 Variation of maximum rate of pressure rise with BMEP 

 

The maximum rate of pressure rise of 4-5 bar/°CA band width is observed for the BMDE15 

compared to that of diesel and BMDE15 with ignition improvers, due to the longer ignition 

0

1.4

2.8

4.5

5.6

1

2

3

4

5

BMEP  

(bar) 

M
ax

im
u
m

 r
at

e 
o
f 

p
re

ss
u
re

 

 r
is

e 
(b

ar
/°

C
A

) 

diesel, BMDE15 and  

BMDE15-DEE blends 

1-2 2-3 3-4 4-5



119 
 

delay. The addition of DEE to the emulsions reduces the delay period, and hence, results in a 

smoother operation than that of BMDE15. The figure also shows that, the engine experiences 

a lower rate of pressure rise for all the fuels throughout the load spectrum, except at no load 

with BMDE15. 

 

6.3.1.6 Combustion duration 

 

Figure 6.19 depicts the variation of combustion duration for the BMDE15 emulsion, with and 

without an ignition improver, and diesel at different load. The combustion duration has a 

shorter band width of 20-30 °CA at low loads. The band width of 60-70 °CA at high loads is 

the result of more fuel being injected, irrespective of the fuels tested in this study. The 

combustion duration for BMDE15 is found to be lesser than that of diesel at full load. As 

bioethanol is an oxygenated fuel, the lower viscosity of the BMDE15 emulsion reduces the 

diffusion combustion phase, and hence, results in a shorter combustion duration. This is also 

reflected in the heat release rate curve. 

 

 
 

Fig. 6.19 Variation of combustion duration with BMEP 

The combustion duration increases with the increase in the percentage of DEE addition. It is 

observed that at full load, the combustion duration is more for DED1.5% and DED2% in the 

band width of 60-70 °CA. This is due to increased diffusion combustion, as a result of the 

cooling effect of the DEE. 
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6.3.2 Engine performance analysis 

 

The engine performance parameters, such as brake specific fuel consumption, and exhaust 

gas temperature of the engine operated with different BMDE15-DEE blends, are analysed 

and compared with the diesel data of the engine and presented in the subsequent subsections. 

6.3.2.1 BSEC 

 

Figure 6.20 depicts the variation of the BSEC of diesel, BMDE15, DED1%, DED1.5%, 

DED2% and DED2.5% with BMEP. It is apparent from the graph, that at full load, the BSEC 

for the DEE blends increases with the increase in the percentage of DEE.  

 

 
 

Fig. 6.20 Variation of BSEC with BMEP 

 

At full load, the BSEC for diesel, BMDE15, DED1%, DED1.5%, DED2% and DED2.5% is 

found to be 9.7, 12.7, 12.9, 13.2, 13.7 and 14.3 MJ/kWh, respectively. The band width of 8-

13 MJ/kWh is noticed for diesel and BMDE15 at full load. But, for BMDE15 with the 

ignition improver, the band width of 13-18 MJ/kWh is found to be increased at full load. At 

no load, a higher band of 23-26 MJ/kWh is noticed for the BMDE15, DED2%, DED2.5%. 

This is due to the low heating value of DEE. 

 

6.3.2.2 EGT 

 

Figure 6.21 depicts the variation of the EGT for diesel, BMDE15, DED1%, DED1.5%, 

DED2% and DED2.5% with BMEP. The EGT increases with the load for all the tested fuels 

in this study, which is due to the increase in the fuel consumption to meet the power 
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requirement at every load. At full load, the EGT for diesel, BMDE15, DED1%, DED1.5%, 

DED2% and DED2.5% is found to be 315.3 °C, 328.7 °C, 361.8 °C, 406.6 °C, 383.2 °C and 

386.1 °C respectively. The EGT is the lowest for diesel as a result of the higher conversion of 

heat into work.  

 
 

Fig. 6.21 Variation of the EGT with BMEP 

 

It is seen that, with the increase in the percentage of DEE in the BMDE15-DEE blend, the 

EGT is increased throughout the load spectrum. A higher band width of 360-420 °C is 

observed for the DED1%, DED1.5%, DED2% and DED2.5% at full load. When the DEE 

percentage in the blend is increased, the diffusion combustion phase increases, due to the 

cooling effect of DEE. More fuel gets accumulate, as a result of which more heat is liberated 

and found as waste. 

 

6.3.2.3 Thermal energy balance 

 

Figure 6.22 shows the variation of thermal energy balance for diesel, BMDE15 and 

BMDE15-DEE blend at full load. It is evident from the figure that the BMDE15-DEE blend 

operation provides lower useful work compared to that of diesel and BMDE15. This due to a 

lower heat supplied by the BMDE15-DEE blends when these are used an alternative fuel for 

diesel engine. The unaccounted heat loss is observed to be high with the BMDE15-DEE 

blend operation compared to those of diesel and BMDE15. 
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Fig. 6.22 Variation of thermal energy balance for diesel, BMDE15 and BMDE15-DEE 

blends at full load 

 

As both bioethanol and DEE have a low lubricity property, the frictional losses are more. 

Hence heat losses are noticed to be high with the BMDE15-DEE blend operation. 

 

6.3.3 Emission analysis 

 

This subsection discusses the exhaust emissions from the engine fueled with the BMDE15 

emulsion, with DEE in different percentages, in comparison with diesel. 

 

6.3.3.1 BSHC emission 

 

The unburned hydrocarbon emission in a diesel engine is due to over-mixing, under-mixing, 

and nozzle dribbling [122]. The variation of the BSHC of diesel, BMDE15, DED1%, 

DED1.5%, DED2% and DED2.5% with BMEP is shown in Fig. 6.23. It is depicted that, at 

low load, the BSHC emission for the DED2% and DED2.5% is found to be increased by 

about 4% and 6%, compared to that of diesel, showing a higher band width. The reason may 

be the suppression of the flame due to the cooling effect of the DEE. At full load, the BSHC 

emission for BMDE15, DED1% and DED1.5% is found to be lesser by about 14%, 21% and 

23% respectively, in comparison with diesel. 
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Fig. 6.23 Variation of BSHC emission with BMEP 

 

But, for DED2% and DED2.5%, the BSHC emission is found to be higher by about 22% and 

27% compared to that of diesel, at full load. The reason may be the over-mixing; i.e., some 

fuel particles mix with the burned gases, so that the BSHC emissions are higher.     

 

6.3.3.2 BSCO emission 

Figure 6.24 depicts the variation of the BSCO emission with BMEP. The BSCO emission is 

the result of incomplete combustion. At low load, the BSCO emission is seen to be higher for 

DED2% and DED2.5%, compared to those of DED1.5%, DED1% and BMDE15. This may 

be due to the higher induction of DEE, which increases the cooling effect of the engine. At 

full load, the BSCO emission for diesel, BMDE15, DED1%, DED1.5%, DED2% and 

DED2.5% is found to be 0.98, 0.48, 0.39, 0.29, 0.71 and 1.21 g/kWh. The maximum BSCO 

emission band width is noticed with DED2% and DED2.5% compared to all other fuels 

tested in the study. A better emission band is found with DED1% and DED1.5%. 
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Fig. 6.24 Variation of BSCO emission with BMEP 

This is attributed to the more complete combustion of DED1% and DED1.5%. But, with 

DED2% and DED2.5%, the emission is found to be more due to combustion deterioration. 

6.3.3.3 BSNO emission 

Figure 6.25 shows the variation of the BSNO emission for diesel, BMDE15, DED1%, 

DED1.5%, DED2% and DED2.5% with BMEP. At low load, the BSNO emission for diesel, 

BMDE15 and DED1% is found to be higher, compared to those of the other blends, due to 

the complete combustion, resulting in higher cylinder gas temperature, which is reflected in 

the heat release curve. It is also indicated that a 3.2-3.8 g/kWh band width is noticeable for 

diesel, BMDE15 and DED1% at low load. But, for DED1.5%, DED2% and DED2.5%, the 

BSNO emission is less with a band width of 2-2.6 g/kWh, due to the reduction in the cylinder 

temperature, by the higher addition of DEE. At full load, the BSNO emission for DED1%, 

DED1.5%, DED2% and DED2.5% is found to be reduced by about 4%, 6.7%, 11.3% and 

17% respectively, compared to that of diesel. With the DEE operation, the ignition delay is 

shortened, and hence, the accumulation of fuel is reduced. As a consequence of this, the peak 

of the heat release rate is reduced, resulting in lower BSNO emission.   
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Fig. 6.25 Variation of BSNO emission with BMEP 

Another reason may be the high latent heat vaporisation of DEE, which lowers the in cylinder 

temperature. The BSNO emission for the DED1% is found to be higher by about 3%, 

compared to that of BMDE15. More heat is released in the case of DED1% due to the 

availability of more oxygen, and therefore, the emission is more compared to that of 

BMDE15.   

6.3.3.4 Smoke emission 

Figure 6.26 depicts the variation of smoke with BMEP. Bioethanol has a low soot tendency, 

because of its less carbon-to-hydrogen ratio, and also, because it has no aromatic content. At 

no load and full load, the smoke emission for the BMDE15 emulsion without the ignition 

improver is found to be lesser, compared to that of diesel, and the BMDE15 emulsion with 

the ignition improver, due to better combustion, as bioethanol is an oxygenated fuel. DEE has 

a higher cetane number, and is added in small quantities to BMDE15. From the figure, it is 

observed that the smoke emission for DED2% and DED2.5% is found to be more compared 

to that of BMDE15, but less than that of diesel operation, at low load. At full load, the smoke 

emission for BMDE15, DED1%, DED1.5%, DED2% and DED2.5% is found to be lesser by 

about 21%, 10.3%, 13.8%, 7.6% and 3.2% respectively, compared to that of diesel. The 

reduction of smoke with the DEE operation is due to the proper mixing of fuel and air, and 

the oxygen available in the diffusion combustion phase. 
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Fig. 6.26 Variation of smoke emission with BMEP 

The DEE fuel is oxygenated, and it has a low carbon-to-hydrogen ratio. It has a positive 

effect on the elimination of soot formation [150]. 

 

6.3.4 Summary 

  

The summary of the results analysis of the engine operated with different bioethanol diesel 

DEE emulsions is given below;  

The ignition delay and maximum cylinder pressure are closer to those of diesel for 

DED1.5%, at full load. The maximum cylinder pressure for diesel is 73.5 bar, and for 

DED1.5%, 73.8 bar. DED1.5% shows better performance and lower emissions compared to 

DED1%, DED2% and DED2.5% at full load. The BSEC and EGT are found to be increased 

by about 35% and 67 °C for DED1.5% compared to that of diesel at full load. The BSCO, 

BSHC, BSNO, and the smoke emission for DED1.5% are found to be reduced by about, 

18%, 23%, 11.3% and 13.76% respectively, compared to that of diesel at full load. It is 

possible to reduce the NO and smoke emission from the engine when it is run with 15% 

bioethanol in the bioethanol-diesel emulsion, by adding small quantities of DEE. There is a 

scope for replacing a maximum of 15% diesel by bioethanol in fuel modification. Further 

investigation is necessary to use neat ethanol with suitable engine modifications. 
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6.4 Bioethanol operation with DEE fumigation 

 

Bioethanol has a cetane number of less than 20. It is reported that it can be used directly in 

the diesel engine, with the fumigation of a high cetane fuel [151]. In this chapter, DEE which 

has a cetane value of greater than 125, is fumigated at four different flow rates of 60 g/h, 120 

g/h, 180 g/h and 240 g/h, while neat bioethanol is injected directly into the combustion 

chamber with the help of an injector. The results are compared with the diesel data and 

presented in this chapter. 

 

6.4.1 Combustion parameters 

 

The combustion data such as ignition delay, heat release rate, combustion duration, rate of 

pressure rise were collected with respect to the crank angle or load. The results are analysed 

and discussed in this chapter by plotting a graph of the combustion parameters of neat 

bioethanol with DEE fumigation and diesel.  

 

6.4.1.1 P-θ diagram 

 

Figure 6.27 depicts the variation of cylinder pressure with crank angle of diesel and neat 

bioethanol operation with the help of an ignition enhancer.  
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Fig. 6.27 Variation of cylinder pressure with crank angle 

DEE fumigation enhances the combustion process of a neat bioethanol fueled diesel engine. 

As the DEE evaporates easily, it mixes with air properly and creates a rapid flame front 
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propagation, which may ignite the bioethanol easily. With a lower proportion of DEE, the 

cylinder pressure is more, but with higher induction of DEE, it is found to be lower due to its 

cooling effect. The peak cylinder pressure of 180 g/h is found to be more, followed by 120 

g/h, 60 g/h, 240 g/h and diesel, which is achieved at the crank angles of 0.2-0.8 °CA 

variations. 

 

6.4.1.2 Ignition delay 

The variation of ignition delay with respect to load for diesel and bioethanol, with DEE 

fumigation at four different flow rates of 60 g/h, 120 g/h, 180 g/h and 240 g/h, is shown in 

Fig. 6.28.  

 
 

Fig. 6.28 Variation of ignition delay with BMEP for diesel and bioethanol operation with 

DEE fumigation 

 

It is inferred from the figure that the bioethanol operation with 60 g/h and 120 g/h of the DEE 

fumigation at the intake manifold, exhibited a longer ignition delay compared to that of diesel 

at every load. The values of ignition delays vary from 0.5-1 °CA, from the diesel data. The 

DEE fumigation at the intake manifold generally lowers the intake charge temperature due to 

its cooling effect and hence, a longer ignition delay is achieved. But, the ignition delay is 

found to be shorter by about 1-2 °CA with bioethanol and DEE fumigation at 180 g/h and 

240 g/h flow rates, in comparison with diesel at every load. When high cetane fuel is 

introduced at a higher percentage, the cetane number of bioethanol also increases and the fuel 

may ignite better. The delay period is also shortened due to the mixture homogeneity. The 
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DEE mixes properly with the air when it is inducted at the intake manifold, and the time 

required for the physical and chemical delay is reduced. The ignition delay for all the tested 

fuels in this study shows a declining trend from no load to full load, due to a higher cylinder 

gas temperature. 

 

6.4.1.3 Heat release rate (HRR) 

 

Figure 6.29 illustrates the variation of the heat release rate with respect to the crank angle for 

diesel and bioethanol operation at full load.  
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Fig. 6.29 Variation of heat release rate with crank angle for diesel and bioethanol operation 

with DEE fumigation 

 

The bioethanol operation with the DEE fumigation at the flow rates of 60 g/h, 120 g/h, 180 

g/h and 240 g/h shows a higher heat release rates compared to that of diesel at full load. It 

varies by about 2-3 J/°CA from diesel data at 9-14 °CA aTDC. The maximum heat release 

rate for diesel is 51.8 J/°CA which occurs at 10.7 °CA aTDC at full load. With 60 g/h and 

120 g/h, the ignition delay is longer compared to that of diesel; hence, more accumulation of 

fuel in the delay period is achieved. The boiling temperature of DEE is 34.4 °C. So, it can 

vaporise and mix with air easily. DEE burns faster compared to bioethanol, and it helps the 

bioethanol to ignite as it has a higher auto ignition temperature. Both DEE and bioethanol are 

oxygenated fuels; the fuel in the local region can get oxygen to burn easily. With the higher 

induction of DEE, the heat release rate is also found to be higher with a little shift of the 

crank angle towards the TDC compared to that of diesel. Due to the lower auto ignition 

temperature and higher cetane number of DEE compared to those of bioethanol, more heat 
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release is achieved in the premixed phase by the DEE, which will burn the bioethanol, and 

this results in higher maximum heat release rates and peak cylinder pressure. There is an 

abrupt combustion with an audible knock with at higher induction of DEE, beyond 240 g/h. 

Hence, the engine was not operated with the flow rate of DEE higher than 240 g/h. 

 

6.4.1.4 Maximum cylinder pressure 

 

Figure 6.30 portrays the variation of the maximum cylinder pressure of diesel and neat 

bioethanol with DEE fumigation, at the flow rates of 60 g/h, 120 g/h, 180 g/h and 240 g/h 

with respect to the crank angle at different loads. Generally, the performance and knocking 

characteristics of the engine with a specific fuel can be better clarified with the help of 

cylinder pressure and crank angle history. The occurrence of the maximum cylinder pressure 

with diesel and neat bioethanol operation is observed to vary from 10-12 °CA aTDC, at full 

load. From the figure, it is noticed that all the flow rates of DEE with neat bioethanol have 

higher cylinder pressure compared to that of diesel at full load.  

 
 

 
Fig. 6.30 Variation of the maximum cylinder pressure with BMEP for diesel and bioethanol 

operation with DEE fumigation 

 

The values of the maximum cylinder pressure for bioethanol and DEE fumigation varies from 

1-3 bar compared to that of diesel at full load. The reason may be the high cetane number and 

oxygen content of DEE, which ignites bioethanol easily. With the higher induction of DEE, 

the premixed combustion is accelerated with the higher burning velocity of DEE in neat 
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bioethanol operation. The lower viscosity and higher volatility of bioethanol results in more 

accumulation of bioethanol in the delay period, which may also be the reason for the higher 

cylinder pressures. 

6.4.1.5 Maximum rate of pressure rise 

 

Figure 6.31 depicts the variation of the maximum rate of pressure rise for diesel and 

bioethanol, and DEE operation with respect to load. 

 

 
 

Fig. 6.31 Variation of the maximum rate of pressure rise with BMEP for diesel and 

bioethanol operation with DEE fumigation 

It can be observed from Fig. 6.30, that the maximum rate of pressure rise for the flow rates of 

60 g/h and 240 g/h is found to be higher compared to that of diesel at full load. For all the 

flow rates of DEE in the bioethanol operation, the maximum rate of pressure rise ranges from 

0.5-2 bar/°CA in comparison to diesel, at full load. At 240 g/h flow rate of DEE, the delay 

period gets shortened, and rapid combustion is achieved with audible knock.  

 

6.4.1.6 Combustion duration 

 

Figure 6.32 depicts the variation of the combustion duration of diesel and bioethanol 

operation with the DEE fumigation with respect to load. The combustion duration for all the 

tested fuels in this study, shows an increasing trend with respect to load. When the load is 

increased, the fuel consumption is also increased to overcome the friction and generate the 

required power. And the fuel undergoes the oxidation process with the help of the entrapped 
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residual gases in the previous cycle in the early stage of combustion. The combustion is very 

rapid, which minimises the premixed combustion phase; all the fuel may not burn in this 

phase, and hence, takes part in the post oxidation process. So, the combustion period gets 

prolonged. The combustion duration data are observed to be shorter by about 2-4 °CA and 

longer by about 1-3 °CA according to the lower and higher values of DEE compared to that 

of diesel respectively. 

 
 

Fig. 6.32 Variation of combustion duration with BMEP for diesel and bioethanol operation 

with DEE fumigation 

As discussed earlier, DEE fumigation at the flow rates of 60 g/h and 120 g/h allows more 

fumigation of bioethanol due to the longer delay period. All the injected fuel gets a sufficient 

time for ignition, and the combustion is also faster, due to the faster burning velocity of the 

DEE. So, the combustion duration is reduced with these two flow rates. But, the higher flow 

rates of DEE reduce the premixed combustion phase, and some fuel gets combusted with the 

help of the local oxygen in the diffusion combustion phase.  

 

6.4.2 Engine performance analysis 

 

In this section, the energy share of DEE is provided for the performance analysis purpose. 

The thermal energy balance is also given to represent the other performance parameters, such 

as fuel consumption, exhaust gas temperature etc. The data of neat bioethanol operation with 

DEE fumigation is compared with that of diesel, by plotting the graph against the load.  
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6.4.2.1 Energy share 

 

The energy share of DEE in the bioethanol operation is shown in Table 6.1. The energy share 

is found to be increased with the higher flow rates of DEE. The reason is that a large amount 

of air is displaced by the DEE due to more flow rates of DEE. From no load to full load, the 

DEE energy share shows a decreasing trend, due to the higher gas temperature of the 

cylinder. 

Table 6.1 Energy share of DEE in bioethanol operation 

 

Flow rates No load 25% load 50% load 75% load Full load 

BE+DEE 60 g/h 13.9 12.2 8.3 6.7 5.6 

BE+DEE 120 g/h 26.7 20.9 16.5 13.8 10.7 

BE+DEE 180 g/h 34.4 26.7 18.7 14.8 11.3 

BE+DEE 240 g/h 45 39.2 29.4 23.7 19.5 

  

When the energy share of DEE increases, the performance of the engine is also found to be 

increased, due to the combustion of fuel achieved closer to TDC. As it is an oxygenated fuel, 

the fuel gets combusted easily, due to good mixture formation. 

6.4.2.2 Brake specific fuel consumption (BSFC) 

The variation of BSFC for diesel and bioethanol with DEE fumigation at four different flow 

rates with respect to load is shown in Fig. 6. 33.  

 
 

Fig. 6.33 Variation of BSFC with BMEP for diesel and bioethanol operation with DEE 

fumigation 
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It is observed from the figure, that the BSFC is found to be low for the bioethanol operation 

with DEE fumigation in comparison with diesel at full load. This is due to high oxygen 

content of the fuel. The energy share of DEE is found to be increased with load and it 

enhances the combustion, due to which BSFC reduces. 

 

6.4.2.3 EGT 

 

The variation of EGT for diesel and bioethanol operation with DEE fumigation at four 

different flow rates is shown in Fig. 6.34.  

 
 

Fig. 6.34 Variation of EGT with BMEP for diesel and bioethanol operation with DEE 

fumigation 

 

It is apparent from the figure that, the EGT is found to be more with a higher flow rate of 

DEE at full load. At higher flow rates of DEE, the combustion is closer to TDC, hence some 

amount of heat is available as a waste at the exhaust. Also the combustion is faster due to 

oxygen availability in the delay period. At a lower flow rate of DEE, the heat is converted to 

useful work.  

 

6.4.2.4 Volumetric efficiency 

Figure 6.35 depicts the variation of the volumetric efficiency of diesel and bioethanol 

operation with the DEE fumigation with respect to load. The volumetric efficiency of a CI 

engine pertains to the breathing ability of a four stroke engine [122]. Generally, a gaseous 
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fuel displaces air and, therefore, the breathing capacity of the engine is reduced. Usually, the 

volumetric efficiency of diesel is between 85 and 90%. With the induction of DEE at the 

intake manifold of the engine, the molar mass of the fuel-air mixture reduces, lowering the 

density of the intake mixture. This may be due to the supply of more DEE at higher load, 

which reduces the air consumption. The equation used to calculate the volumetric efficiency 

of the engine is given in Chapter 5. 

 
 

Fig. 6.35 Variation of volumetric efficiency with BMEP for diesel and bioethanol operation 

with DEE fumigation 

 

The bioethanol operation with DEE fumigation at four different flow rates at the intake 

manifold reduces the air consumption and volumetric efficiency of the engine is found to be 

reduced. The volumetric efficiency of the engine fueled with diesel and the bioethanol 

operation at 60 g/h, 120 g/h, 180 g/h and 240 g/h is found to be 85.7%, 84.9%, 83.6%, 81.8% 

and 80.9% respectively, at full load. 

 

6.4.2.5 Thermal energy balance 

 

At full load, the useful work for bioethanol with DEE fumigation is found to be higher 

compared to that of diesel. This may be due to better combustion and lesser heat loss 

compared to that of diesel. The unaccounted losses are minimised, and hence, more useful 

work is obtained. It is also observed that the heat carried by the lubricating oil is increased 

with the bioethanol and DEE operation compared to that of diesel. Generally, bioethanol and 

DEE have less lubricity properties in comparison with diesel. The temperature of the 
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lubricating oil is increased in overcoming the friction. Figure 6.36 shows the variation of the 

thermal energy balance for diesel and bioethanol operation with DEE fumigation.   

0

10

20

30

40

50

60

diesel BE+DEE
60 g/h

BE+DEE
120 g/h

BE+DEE
180 g/h

BE+DEE
240 g/h

V
al

ue
s 

in
 %

Fuel used

Useful work

heat to exhaust

Heat carried by lub oil

Unaccounted loss

 

Fig. 6.36 Variation of thermal energy balance for diesel and bioethanol with DEE fumigation 

at full load 

 

6.4.3 Emission analysis 

This subsection discusses the emission available in the engine exhaust when neat bioethanol 

is supplied in the engine and DEE is used as an ignition improver. The emissions data are 

compared with those of diesel, and presented in the subsections. 

 

6.4.3.1 BSHC emission 

 

The variation of BSHC emission for bioethanol operation with DEE fumigation at flow rates 

of 60 g/h, 120 g/h, 180 g/h and 240 g/h from diesel is given in Fig. 6.37. There is a reduction 

of BSHC emission for the bioethanol operation with the DEE fumigation at the flow rate of 

60 g/h at every load, and at full load it is found to be lower by about 9.6% compared to that 

of diesel. At this flow rate, the fuel gets combusted by the faster burning velocity of the DEE 

and mixture homogeneity without flame quenching. The percentage increase with the DEE 

fumigation at the flow rates of 120 g/h, 180 g/h and 240 g/h is found to be about 3.2%, 5.6% 

and 11.3% respectively, compared to that of diesel at full load. With these flow rates, though 

the heat release is more, the BSHC emission is also found to be more compared to that of 

diesel. Due to the increased admittance of DEE, some fuel would not have burnt because of 

the quenching effect. The burning velocity may be rapid, which will not combust the fuels 

close to the cylinder wall, which is also a fuel rich zone surrounded by the cooled DEE.  
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Fig. 6.37 Variation of BSHC emission for sole bioethanol operation with DEE and diesel at 

different BMEP 

 

6.4.3.2 BSCO emission 

Figure 6.38 shows the variation of BSCO emission for the bioethanol operation with the DEE 

fumigation at flow rates of 60 g/h, 120 g/h, 180 g/h and 240 g/h, from the diesel data.  

 

 

Fig. 6.38 Variation of BSCO emission for sole bioethanol operation with DEE and diesel at 

different BMEP 

 

The BSCO emission for the bioethanol operation with 60 g/h and 120 g/h flow rates of DEE 

is found to be lower by about 8.8% and 2.6% respectively, compared to that of diesel at full 

load. This is due to the more complete combustion achieved by the homogeneous mixture. 
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The figure portrays that the BSCO emission percentage for bioethanol is increased with the 

flow rates of 180 g/h and 240 g/h by about 17.5% and 25.4% respectively at full load. With a 

higher induction of DEE, the mixture of air and DEE may be rich and some of the mixture is 

nearer to the wall and the crevice volume, where the flame cannot propagate properly. When 

this mixture gets in contact with the hot combustion gases during the latter part of the power 

stroke, and also in the exhaust manifold, oxidation reactions occur, but do not have time to 

undergo combustion.  

 

6.4.3.3 BSNO emission 

The variation of BSNO emission for the bioethanol operation with the DEE fumigation at the 

flow rates of 60 g/h, 120 g/h, 180 g/h and 240 g/h, from diesel with respect to load is given in 

Fig. 6.39.  

 

Fig. 6.39 Variation of BSNO emission for sole bioethanol operation with DEE and diesel at 

different BMEP 

 

It can be observed from the graph, that the percentage of the BSNO emission with the 

bioethanol operation, is found to be lower compared to that of diesel with respect to load. At 

full load, the BSNO emission is found to be lower by about 2.6%, 11.5%, 26.2% and 35.6% 

with DEE fumigation of 60 g/h, 120 g/h, 180 g/h and 240 g/h respectively, compared to that 

of diesel. The BSNO emission is due to the premixed combustion phase. High cetane fuels 

have the advantage of reducing the BSNO emission. Also, the latent heat of vaporisation of 

bioethanol is higher compared to that of diesel. It requires more energy to ignite; so, the heat 

liberated due to the DEE is utilized to ignite the bioethanol and hence a lower BSNO 
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emission is achieved. The nitrogen available in the air gets less time to react with oxygen in 

the shorter ignition delay with higher flow rates of DEE.   

 

6.4.3.4 Smoke emission 

 

Smoke is predominantly affected by the type and quantity of fuel used its carbon content, 

C/H ratio, and aromatic content. Figure 6.40 depicts the variation of smoke emission for 

bioethanol and diesel operation with respect to load.  

 

 

Fig. 6.40 Variation of smoke emission for sole bioethanol operation with DEE and diesel at 

different BMEP 

 

At full load, the percentage reduction in smoke opacity for bioethanol with the DEE 

fumigation at flow rates of 60 g/h, 120 g/h, 180 g/h and 240 g/h is found to be about 1%, 

7.1%, 16.6% and 21.6% respectively, compared to that of diesel. The molecular weight of 

bioethanol and DEE is 42 and 74.2. But for diesel, the molecular weight is 170. Generally, a 

fuel with a high molecular weight is a complex compound; it is difficult to break, and 

requires more oxygen in the combustion period. This results in more smoke emission. Both 

the bioethanol and DEE have low molecular weights and are oxygenated fuels. With the 

higher induction of DEE, the diffusion combustion phase is prolonged and more oxygen 

reacts with hydrogen. As a result, less smoke is observed at the exhaust in the bioethanol 

operation in comparison with diesel operation at any load. 
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6.4.4 Summary 

 

The summary of the results obtained in the investigation are as follows, 

 

The ignition delay for lower flow rates of DEE is found to be shorter, but it is longer with the 

higher flow rates. The useful work is increased with an increase in the flow rates of DEE. The 

BSCO and BSHC emissions are found to be higher with the flow rates of DEE. But, there is a 

simultaneous reduction in the BSNO and smoke emissions with neat bioethanol and the DEE 

operation. The flow rate of 180 g/h, of DEE provides better combustion, useful work, less 

heat loss, and lower emissions, compared to that of diesel and other flow rates of DEE.  
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6.5 Diesel-bioethanol dual fuel mode 

 

Bioethanol fumigation is one of the techniques of bioethanol application in diesel engine 

[59]. Generally, in the fumigation operation, a low cetane fuel is vaporised and admitted into 

the engine with the help of a necessary arrangement. It is reported that up to 50% of the 

energy at full load can be provided through ethanol fumigation, which lies between the 

energy substitutions achievable by blends (∼25%) and dual injection (∼90%) [152]. This 

chapter discusses the results of the combustion, performance and emission of a single 

cylinder DI diesel engine, run on bioethanol fumigation with diesel as a pilot fuel. As 

mentioned in Chapter 4 „Experimentation and methodology‟, bioethanol was injected at the 

intake manifold with the help of a programmed electronic injector and vaporised with the 

help of a heater connected with an automatic temperature controller. The experiments were 

conducted with four different flow rates of bioethanol such as 0.24, 0.48, 0.96 and 1.22 kg/h, 

and the results compared with those of diesel. 

 

6.5.1 Combustion parameters 

 

The combustion data in bioethanol fumigation, in the diesel engine are analysed and 

compared with the diesel data and presented in the subsequent subsections.  

 

6.5.1.1 P-θ diagram 

The pressure crank angle history for diesel and the bioethanol fumigation at 0.24, 0.48, 0.96 

and 1.22 kg/h, at full load of the engine, are depicted in Fig. 6.41. The pressure crank angle 

history gives a gross indication of the performance and knocking condition of the engine. It is 

depicted from the figure that, the peak cylinder pressure of 1.22 kg/h bioethanol fumigation is 

found to be the highest followed by diesel, 0.48 kg/h, 0.96 kg/h and 0.24 kg/h, at full load in 

this study. The occurrence of the maximum cylinder pressure for diesel is approximately at 

12.4 °CA aTDC, which is the earliest among the tested fuels in this study. For bioethanol 

fumigation, the occurrences of the maximum cylinder pressure at 0.24, 0.48, 0.96 and 1.22 

kg/h are found to be approximately at 10.2, 11.6, 11.3, 10.4 °CA aTDC, respectively at full 

load. Bioethanol is an oxygenated fuel, which has an oxygen content of 35%. As more 

oxygenated fuel is accumulated during the delay period, the diesel will get more oxygen to 

burn. This may result in a rapid pressure rise and peak cylinder pressure. 
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Fig. 6.41 Pressure crank angle diagram at full load 

 

Also, the reason for the rapid pressure rise may be due to unpredictable flame front 

development, because of potential homogeneous charge compression ignition combustion 

and non-uniform combustion from the presence of hot-spots created by isolated bioethanol-

only combustion [99]. 

 

6.5.1.2 Ignition delay 

 

The ignition delay (τid) in a dual fuel operation is a function of the mixture temperature, 

pressure, equivalence ratio, kinetics of the fuel oxidation at lower temperatures, mixture 

homogeneity and fuel properties [128]. The variation in the ignition delay with the global 

equivalence ratio is given in Fig. 6.42. The definition of the global equivalence ratio and 

method of calculation have already been discussed in Chapter 5 “Methodology of the present 

work”. The ignition delay in terms of the crank angle for bioethanol fumigation at 1.22 kg/h 

flow rate, is followed by 0.96, 0.48, 0.24 kg/h, and diesel with the least ignition delay. For 

diesel, the global equivalence ratio (Φ) value ranges from 0.31 to 0.7. The ignition delay for 

diesel at Φ=0.31 is 17.01 °CA and for Φ=0.7, it is 12.69 °CA. For bioethanol fumigation at 

0.24, 0.48, 0.96 and 1.22 kg/h flow rates, the values of ignition delay are found to be about 

approximately 14.6, 13.9, 14.9 and 15.8 °CA at higher values of Φ=0.85, Φ=0.88, Φ=0.90 

and Φ=0.74. 
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Fig. 6.42 Variation in the ignition delay with the global equivalence ratio 

 

The longer ignition delay is due to the low cetane number and the large latent heat of 

vaporisation of bioethanol.  

 

6.5.1.3 Heat release rate (HRR) 

Figure 6.43 shows the variation in the heat release rate with the crank angle at full load for 

diesel and bioethanol fumigation at different flow rates.  
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Fig. 6.43 Variation in the heat release rate with crank angle at full load 
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The maximum heat release rate for diesel, at 0.24, 0.48, 0.96 and 1.22 kg/h flow rate of 

bioethanol is found to be about 51.8, 60.2, 57.0, 50.1 and 66.1 J/°CA, respectively, which is 

achieved at about 10.7, 7.1, 7.0, 6.7 and 7.5 °CA aTDC at full load. For bioethanol 

fumigation at 1.22 kg/h, the heat release rate is found to be higher than that of other flow 

rates, due to the availability of more oxygen and shorter combustion duration which provide 

enhanced combustion.  

 

6.5.1.4 Maximum rate of pressure rise 

 

Figure 6.44 presents the variation in the maximum rate of pressure rise with global 

equivalence ratio for diesel and fumigated bioethanol at 0.24, 0.48, 0.96 and 1.22 kg/h, 

respectively at full load. The maximum rate of pressure rise for diesel and bioethanol 

fumigation at 0.24, 0.48, 0.96 and 1.22 kg/h is found to be about 3.7, 4.1, 4.0, 4.2 and 4.5 

bar/°CA respectively, which is achieved approximately at 2.3, 4.2, 3.5, 2.0 and 3.9 °CA 

aTDC respectively, at full load. 
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Fig. 6.44 Variation in the maximum rate of pressure rise with the global equivalence ratio 

 

From the figure, it is also inferred that the bioethanol fumigation at a flow rate of 1.22 kg/h 

gives the highest maximum rate of pressure rise compared to diesel and other flow rates of 

bioethanol, which in turn, provide the noisy operation during the engine‟s run. It may be due 

to the longer ignition delay and shorter combustion duration.  
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6.5.1.5 Combustion duration 

 

Figure 6.45 depicts the variation in the combustion duration with the global equivalence ratio 

for diesel, and the fumigation of four different bioethanol flow rates viz. 0.24, 0.48, 0.96 and 

1.22 kg/h, respectively. The combustion duration increases with the increase in the 

equivalence ratio for all the tested fuels. It is because of more time of mixing of fuel and air 

with the increase in load. At higher values of the equivalence ratio of all the fuels, the 

combustion duration shows a decreasing trend. As bioethanol is atomised with an injector of 

high pressure and vaporised with a heater at a temperature of 70 °C, it mixes with the air 

properly and provides a homogeneous mixture for burning.  
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Fig. 6.45 Variation in the combustion duration with the global equivalence ratio 

At higher values of Φ=0.7, Φ=0.85, Φ=0.88, Φ=0.90 and Φ=0.74 for diesel, and four flow 

rates of fumigated bioethanol, the combustion duration is found to be about 38.4, 30.9, 37.8, 

38.3 and 34.0 °CA respectively.  

 

6.5.2 Engine performance analysis 

 

The engine performance parameters, such as volumetric efficiency, brake specific fuel 

consumption, and brake thermal efficiency, are analysed and presented for the diesel 

bioethanol dual fuel operation, in comparison with the diesel operation of the same engine. 
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6.5.2.1 BSFC  

 

Figure 6.46 shows the variation in the BSFC with the global equivalence ratio of diesel and 

bioethanol fumigation at different flow rates. The BSFC is found to be lower with the global 

equivalence ratio for bioethanol fumigation. As bioethanol is an oxygenated fuel, it reduces 

the diesel quantity. At Φ=0.85 and 0.24 kg/h, the BSFC is found to be higher by about 1.2% 

compared to that of diesel. This is due to the low calorific value of fuel, and less amount of 

oxygen supplied. 
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Fig. 6.46 Variation in the BSFC with the global equivalence ratio 

 

At Φ=0.88, Φ=0.90 and Φ=0.74, the bioethanol fumigation of 0.48, 0.96 and 1.22 kg/h has a 

BSFC, which is lower by about 2.2, 4.5 and 20% respectively, than that of diesel. It is 

obvious that the bioethanol fumigation replaced a certain amount of diesel. 

 

6.5.2.2 EGT 

 

Figure 6.47 portrays the variation in the EGT of diesel and bioethanol fumigation at different 

flow rates with the global equivalence ratio. At Φ=0.7, Φ=0.85, Φ=0.88, Φ=0.90 and Φ=0.74 

for diesel, and four flow rates of fumigated bioethanol, the EGT is found to be about 315.3 

°C, 331 °C, 337.2 °C, 342.5 °C and 344.2 °C respectively, at full load. The EGT for the 

bioethanol fumigation operation is observed to be high in comparison with diesel. This may 

be due to the higher oxygen content present in bioethanol that provides the enhancement of 

combustion with increase in the flow rates of bioethanol. Due to longer ignition delay, more 
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accumulation of fuel is achieved with increasing global equivalence ratio, which enhances the 

premixed combustion phase. 
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Fig. 6.47 Variation in the EGT with the global equivalence ratio 

 

Hence, more heat is available in the exhaust. Also, it may be due to the better atomisation of 

the diesel droplets, because of the preheated air achieved by the vaporiser. 

 

6.5.2.3 Volumetric efficiency 

 

The variation in the volumetric efficiency of diesel and bioethanol fumigation at different 

flow rates with the global equivalence ratio is shown in Fig. 6.48.  
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Fig. 6.48 Variation in the volumetric efficiency with the global equivalence ratio 
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With bioethanol fumigation at different flow rates, the volumetric efficiency is found to be 

lower with the global equivalence ratio, compared to that of diesel. As bioethanol is 

fumigated, it displaces some amount of air. At Φ=0.7, Φ=0.85, Φ=0.88, Φ=0.90 and Φ=0.74 

for diesel, and four flow rates of fumigated bioethanol, the volumetric efficiency is found to 

be about 85%, 84.87%, 80.6%, 79.8% and 77.9% respectively.  

 

6.5.2.4 Thermal energy balance 

 

Figure 6.49 shows the variation of the thermal energy balance for diesel and bioethanol 

fumigation operations at four different flow rates. At full load, the useful work of fumigated 

bioethanol at 0.24, 0.48, 0.96 and 1.22 kg/h flow rates is found to be about 32%, 34.2%, 

36.5% and 37.8%, whereas for diesel, it is by about 30.47%.   
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Fig. 6.49 Variation of thermal energy balance for diesel and bioethanol  

fumigation at full load 

 

The proper atomization and vaporization of fuel is achieved due to the electronically 

controlled injector and heater, which can provide the homogeneous charge mixture to burn. 

Hence more useful work is obtained with bioethanol fumigation at four different flow rates, 

at full load. The heat carried by lubricating oil is also found to be increased with bioethanol 

fumigation, due to lower lubricity property of bioethanol. But unaccounted heat losses are 

observed to be low for bioethanol fumigation in comparison with diesel at full load.   
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6.5.3 Emission analysis 

 

This subsection analysis and presents the results of the exhaust gas emissions recorded with 

the diesel-bioethanol operation in comparison with the diesel operation.  

 

6.5.3.1 BSHC emission 

 

Figure 6.50 portrays the variation in the BSHC emission for diesel and bioethanol fumigation 

at different flow rates with the global equivalence ratio.  
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Fig. 6.50 Variation in the BSHC with the global equivalence ratio 

 

At a lower limit of the global equivalence ratio, the BSHC emission for diesel, 0.24, 0.48, 

0.96 and 1.22 kg/hr is found to be approximately 0.04, 0.03, 0.07, 0.08 and 0.09 g/kWh 

respectively. As the flow rate of bioethanol in fumigation is increased at low load, more air 

and bioethanol will be inducted due to the ram effect, which also increased the ignition delay 

leading to an over-mixing of the fuel-air mixture for combustion. With over-mixing, some 

fuel particles will be mixed with the already burned gas and will, therefore, not combust 

totally. But, at part loads, the BSHC emission for all the flow rates is found to be lower, due 

to a proper air mixture. At Φ=0.88, Φ=0.90 and Φ=0.74, the BSHC emission for 0.48, 0.96 

and 1.22 kg/h is found to be higher, by about 1.8, 2.4 and 3.5% respectively, compared to that 

of diesel. This may be due to the under-mixing of the fuel air mixture, and the formation of a 

quench layer developed by the fumigated bioethanol [152]. 

 

 



150 
 

6.5.3.2 BSCO emission 

Figure 6.51 shows the variation in the brake specific carbon monoxide (BSCO) emission of 

diesel and fumigated bioethanol at different flow rates, with respect to the global equivalence 

ratio. On the lean mixture side, the BSCO emission for 0.24 and 0.48 kg/h is found to be 

lower by about 6.2 and 6.1% respectively compared to that of diesel, but for 0.96 and 1.22 

kg/h, it is found to be higher by about 12.8 and 9% respectively, compared to that of diesel. 

At lower flow rates and low load, a better air utilization is achieved due to the presence of a 

homogeneous bioethanol charge [152], and hence, the BSCO emission is found to be less. 

But, at higher flow rates, more bioethanol is admitted and less fuel is supplied. A proper fuel-

air mixture for combustion will not be achieved, due to the lean mixture at low loads. From 

the graph, it is also observed that with an increase in the load, the equivalence ratio also 

increases and the BSCO emission is found to be lower, because of more turbulence in the 

cylinder (effective mixing), and relatively high combustion temperatures in comparison with 

the low loads [152].  
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Fig. 6.51 Variation in the BSCO with the global equivalence ratio 

 

At higher values of the equivalence ratio, the BSCO emission for the bioethanol flow rates is 

more, compared to that of diesel. With bioethanol operation, the global equivalence ratio is 

found to be closer to the stoichiometric region, where the BSCO emission is found to be high. 

When Φ>0.8, the BSCO emission will increase, due to the decrease of the dissociation of 

CO2 into CO [122]. 
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6.5.3.3 BSNO emission 

Figure 6.52 depicts the variation in the BSNO of diesel and bioethanol fumigation at different 

flow rates with the global equivalence ratio.  
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Fig. 6.52 Variation in the BSNO with the global equivalence ratio 

 

The BSNO emission can be formed through a number of mechanisms, during both the 

premixed and diffusion burning. It also depends upon the in cylinder temperature and oxygen 

present. The BSNO emission for 0.24, 0.48, 0.96 and 1.22 kg/h at Φ=0.85, Φ=0.88, Φ=0.90 

and Φ=0.74 is found to be approximately 2.5, 2.03, 2.3 and 2.1 g/kWh. With the bioethanol 

fumigation, the BSNO emission is found to be lower than that of diesel at all equivalence 

ratios, due to the high latent heat of vaporisation of bioethanol. Also, it may be due to the 

reduction of air induction, which has higher N2, which signifies that the Zeldovich 

mechanism is less likely to proceed for NO production. In the premixed combustion phase, 

the rate of heat release starts slowly, and hence, the BSNO emission is found to be lower 

compared to that of diesel. 

 

6.5.3.4 Smoke emission 

 

The variation in the smoke opacity for diesel and bioethanol fumigation at different flow rates 

with the global equivalence ratio is shown in Fig. 6.53. In the bioethanol operation, there is 

an increase in the hydrogen content in the mixture, which reduces the engine smoke [59]. At 

Φ=0.85, Φ=0.88, Φ=0.90 and Φ=0.74, the smoke opacity for 0.24, 0.48, 0.96 and 1.22 kg/h 
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flow rates, is found to be lower by about 4.2, 5.5, 12.5 and 25% respectively, compared to 

that of diesel operation. Smoke is produced more in the fuel rich region within the cylinder 

during combustion. But, bioethanol fumigation has a global equivalence ratio of less than 

unity. A higher molecular weight fuel produces higher smoke, but bioethanol has a low 

molecular weight compared to that of diesel, and hence, lower smoke emission is noticed. 

The smoke emission also depends upon the period after the burning phase, which starts from 

the point of the maximum cycle temperature, and continues over part of the expansion stroke, 

i.e., 70-80 °CA from TDC. 
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Fig. 6.53 Variation in the smoke emission with the global equivalence ratio 

 

In this phase, the unburnt and partially burnt fuel is left in the combustion chamber, due to 

the unavailability of oxygen. As bioethanol is an oxygenated fuel, the velocity of diffusion 

and turbulent mixing of unburned and partially burnt fuel with oxygen will increase, and less 

smoke will be generated. Similar results have been reported by many investigators when they 

investigated bioethanol fumigation and use of an oxidation catalyst, in a small capacity diesel 

engine [94, 98, 153]. 
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6.5.4 Summary 

 

The bioethanol fumigation at four different flow rates, viz., 0.24, 0.48, 0.96 and 1.22 kg/h is 

run successfully in a diesel engine. The results obtained are summarised as follows, 

 

The ignition delay of bioethanol fumigation at all the flow rates in this study exhibited an 

overall longer ignition delay of 2-4
o
CA at full load. The fumigation operation with bioethanol 

gave lower BSNO and smoke emissions compared to that of diesel operation at full load. 

However, the BSCO and BSHC emissions were found to be higher with bioethanol 

fumigation at full load.  

 

6.5.5 Comparison of the results obtained from four different techniques 

 

The results obtained in terms of combustion, performance and emission from the engine run 

on bioethanol using four different techniques are compared with diesel data for choosing a 

better technique. The optimum emulsion/blend/flow rate from the better technique is chosen 

for validation. Table 6.2 gives the comparison of all the results of four different techniques, 

which is provided in the next page. 

 

From the results of the four techniques adopted for the utilisation of bioethanol in the diesel 

engine, it is understood that bioethanol can be used in the form of emulsion up to 15%, with 

or without an ignition improver, without any engine modification. The maximum utilisation 

of bioethanol is possible with diesel bioethanol dual fuel operation. It is also understood that 

BMDE10 (bioethanol diesel) can be chosen, based on the technical feasibility, cost involved 

in engine hardware, and simple operation.  

 

Ethanol has a low viscosity which affects the lubricity [59, 64]. Therefore, further analysis is 

required, to assess the durability issues when the engine is run with bioethanol diesel 

emulsion. 
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Table 6.2 Comparison of all the results of four different techniques 

Title diesel Emulsion DEE blending DEE fumigation Bioethanol fumigation 

  BMDE5 BMDE10 BMDE15 DED 

1% 

DED 

1.5% 

DED 

2% 

DED 

2.5% 

60 

g/h 

120 

g/h 

180 

g/h 

240 

g/h 

0.24 

kg/h 

0.48 

kg/h 

0.96 

kg/h 

1.22 

kg/h 

Combustion parameters 

ID 11.8 

 

12.3 

 

12.9 

 

13.02 

 

11 11 10.4 10.7 13.32 13.6 12.1 11.4 14.5 13.

9 

14.7 15.7 

HRR 51.84 52.92 53.29 53.96 52.5 51.9 49.6 47.8 53.17 53.1 54.15 53.9 60.2 56.

9 

56.2 54.9 

Max. pressure 73.5 

 

77.07 

 

77.09 

 

77.4 

 

75.33 73.79 72.83 70.63 76.14 

 

76.3 

 

77.2 

 

76.4 

 

72.7 75. 69.4 78.06 

Maxm ROPR 3.046 3.11 3.42 3.63 3.10 2.81 2.72 3.07 3.101 2.8 2.7 3.8 4.08 3.9 4.2 4.5 

CD 41 

 

37.8 

 

38.12 

 

37.34 

 

52.3 65.5 63.3 57.17 36.6 34.4 39.6 41.2 35.2 37.

8 

38.3 36.3 

Performance parameters 

BSEC/BSFC 9.7/0.2

6 

 

11.4 

 

11.4 

 

12.67 

 

12.9 13.2 13.7 14.23 0.263 0.25 0.24 0.23 0.27 0.25 0.23 0.21 

EGT 315.3 

 

321.6 

 

325.6 

 

328.2 

 

361.8 406.6 383.2 386.1 294 310.

1 

338.2

4 

341.

2 

335 317.

1 

346.5 289.4 

BTE 30.47 27 27.5 28 23.38 21.1 19.59 23.5 30.13 30.3

2 

32.53 33.6

7 

31.2 31.3 30.8 32.5 

Volumetric 

efficiency 

85.7 - - - - - - - 84.9 83.6 81.8 80.9 84.8 80.6 79.8 77.9 

Emission parameters 

BSHC 0.042 

 

0.045 0.0466 0.0478 0.026 0.02 0.047 0.06 0.038 0.04

1 

0.04 0.04

7 

0.03 0.07 

 

0.086 

 

0.092 

BSCO 0.97 0.96 0.95 0.982 0.39 0.29 0.702 1.208 0.8 0.95 1.15 1.22 0.93 

 

1.02 

 

1.24 

 

1.12 

 

BSNO 2.67 2.59 2.52 2.46 2.59 2.36 2.31 2.3 2.61 2.37 1.98 1.72 2.53 

 

2.03 

 

2.34 

 

2.07 

 

Smoke 24 23.78 23.001 19 22.42 21.56 23.1 24.2 23.8 22.3 20 18.8 23 

 

22.6 

 

21 

 

18 
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6.6 Validation of experimental results of BMDE15 through mathematical modelling 

6.6.1 Spray profile of diesel and BMDE15 

 

In a CI engine, once the fuel is injected into the compressed air stream in the cylinder, the 

fuel jet disintegrates into a core of fuel surrounded by the spray envelope of air and fuel 

particles. The spray envelope is created both by the atomisation and vaporisation of the fuel. 

The turbulence of air in the combustion chamber passing across the jet tears the fuel particles 

from the core. A mixture of air and fuel is found at some location in the spray envelope and 

the oxidation starts [122]. Thus, the study of formation of spray is important for any diesel 

fuel, when it is used in a diesel engine. In this study, the fuel spray patterns for diesel and the 

BMDE15 emulsion are obtained using the MATLAB program which is given in Annexure 

III. Figures 6.54 and 6.55 show the spray profile of diesel and BMDE15 respectively at full 

load.  

 

  

               Fig. 6.54 Diesel spray            Fig. 6.55 Emulsion spray 

 

This is due to the better mixture formation. With the BMDE15 emulsion, the flame 

propagation is uniform from the point of impingement compared to that of diesel. The density 

of bioethanol is lower and when it is emulsified with diesel, it lowers the density of the 

emulsion. Hence, a better atomisation and vaporisation will be achieved with the BMDE15 

emulsion. Also, due to the availability of oxygen in the fuel, more complete combustion will 

be obtained compared to that of diesel. 

6.6.2 Results and discussion  

6.6.2.1 Cylinder pressure 

Figure 6.56 depicts the experimental and simulated results of the diesel engines fueled with 

diesel and BMDE15, at full load. The simulated results of both the test fuels gave higher 
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values compared to the experimental results. The lower cylinder pressure for the 

experimental results may be due to the instruments‟ error, and physical condition during the 

experiments and the uncertainty of the data. It is apparent from the figure that the ignition of 

diesel is the earliest for the simulated results followed by its experimental results, the 

BMDE15 simulated results, and finally, the BMDE15 experimental results. The peak cylinder 

pressure of a CI is predominantly influenced by the ignition delay, the amount of fuel burnt in 

the initial stage of fuel combustion and the mixture formation in the delay period. The peak 

cylinder pressure for the BMDE15 is found to be the highest, followed by the BMDE15 

experimental results, diesel simulated and experimental results. The difference in the peak 

cylinder pressure of BMDE15 between the simulated and experimental results is about 3%. 

The peak pressure is shifted away from the top dead centre by about 5 to 7 °CA. In the case 

of diesel, the peak cylinder pressure for the simulated and experimental results is about 75 to 

70.6 bar which is attained close to the TDC. The peak cylinder pressures of BMDE15 

operation, both in the simulated and experimental results, are higher than those of diesel 

operation, due to longer ignition delay and better fuel mixture formation, that results in more 

complete combustion.  
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Fig. 6.56 Cylinder pressure with crank angle for diesel and BMDE15 

From the spray pattern of BMDE15, it is also observed that after the impingement of fuel, the 

spray development is faster due to the proper atomisation, vaporisation and mixture 
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formation, due to its low density compared to that of diesel. The deviation between the 

simulated and the experimental results for diesel and BMDE15 is about 2 to 4 °CA 

respectively. 

 

6.6.2.2 Ignition delay 

 

Figure 6.57 illustrates the variation of ignition delay at different loads for diesel and 

BMDE15 operations. It is evident from the figure, that the simulated and the experimental 

results for the ignition delay in the diesel and BMDE15 operations follow a similar trend. The 

ignition delay increases with the increase in the load as a result of the increase in the cylinder 

gas temperature. The deviation between the simulated and experimental results for the diesel 

operation is about 1-6 °CA from no load to full load respectively, whereas for the BMDE15 

operation, it is 3-5 °CA from no load to full load. The ignition delay is found to be longer for 

the simulated and experimental results in the BMDE15 operation than those of diesel 

operation.  

 
 

Fig. 6.57 Variation of ignition delay with load 

The calculated values for ignition delay in the BMDE15 operation are higher than those of 

diesel values, which is due to the influence of the temperature, pressure and the time of 

injection. The longer ignition delay of the BMDE15 operation than that of diesel operation 

throughout the load spectrum, is due to the lower cetane number of BMDE15.   
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6.6.2.3 NO emission 

 

In a CI engine, the NOx emission is one of the major pollutants and is predominantly 

influenced by the amount of oxygen available, and the in-cylinder temperature. The NOx 

emission is composed of NO, NO2, N2O, N2O5, NO3. Nitric oxide is the major constituent and 

NO2 is a minor constituent, while the others are negligible. At elevated temperatures (i.e.) 

above 1500°C, N2 can react with O2 faster and may result in more NOx emission. As CI 

engines have a higher compression ratio and are lean burn engines, the peak temperature is 

well above 1500°C; hence, there is a higher NOx formation. The comparison between the 

simulated and experimental results for NO emission from diesel and BMDE15 operations is 

shown in Fig. 6.58. The brake specific NO emissions are obtained from the simulation and 

experiments for both diesel and BMDE15, show a declining trend as the load increases.  

 

Fig. 6.58 Variation of BSNO emission with load 

This is because of the increase in the load which is a denominator for the calculation of NO. 

The NO emission values obtained from the simulation and experiments are found to be lower 

than those of diesel operation, because of the higher latent heat of the vaporisation of 

BMDE15. An overall marginal deviation of 2 to 1% is noticed between the simulation and 

experimental results of the NO emission values in diesel operation from no load to full load, 

while the deviation is 2 to 1% from no load to full load in the BMDE15 operation.  
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6.6.2.4 Smoke 

 

The variation of the simulated and experimental results of smoke emission for diesel and 

BMDE15 is shown in Fig. 6.59. The simulated results of diesel for smoke emission are found 

to be high compared to the experimental results of diesel and the simulated and experimental 

results of BMDE15. The smoke emission is a result of the oxygen unavailability in the 

diffusion combustion phase, use of high molecular weight fuel and the aromatic content of 

fuel. Diesel has a high carbon to hydrogen ratio, high molecular weight, less oxygen and high 

aromatic content. Hence, higher smoke emission is observed with the diesel operation 

compared to that of BMDE15 operation. The deviation between the simulated and 

experimental values of diesel and BMDE15 is about 3% and 4% respectively, at full load.   

 

Fig. 6.59 Variation of smoke with load 

6.6.3 Summary 

 

A comprehensive two zone model was developed to validate the experimental results 

obtained from a single cylinder, four stroke, air cooled, DI diesel engine run on two different 

fuels, viz., diesel and BMDE15. It is concluded that the experimental results are in good 

agreement with the simulated results. The following is the summary of the results; 

 

(i) The experimental and simulated results show that the peak cylinder pressure of the 

BMDE15 is found to be marginally higher than that of diesel. The deviation between the 

simulated and the experimental results in the diesel operation at full load is about 5%. In the 

case of the BMDE15 operation, the deviation is about 3% at full load.  
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(ii) The ignition delay of BMDE15 is found to be longer than that of diesel throughout the 

entire engine operation. The values of ignition delay obtained in the experimentation for both 

the fuels are close to the values obtained by simulation.  

(iii) The NO emission of the engine run on BMDE15 is found to be lower than that of diesel 

which is due to the high latent heat of vaporisation. This is validated with the NO emission 

model. The deviation between the simulated and experimental results in the diesel and 

BMDE15 operations are about 7.1% and 5% respectively, at full load. 

(iv) The smoke opacity is found to be lower for the BMDE15 operation compared to that of 

diesel. The smoke opacity of BMDE15 in the simulation condition is higher by about 4% 

than that of the experiment.  
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6.7 Running on engine with bioethanol-biodiesel-diesel blends  

 

6.7.1 Combustion parameters 

 

6.7.1.1 P-θ diagram 

 

The variation of cylinder pressure with crank angle for diesel and the bioethanol-biodiesel-

diesel blends is shown in Fig 6.60.  
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Fig. 6.60 Variation of cylinder pressure with crank angle 

 

It can be observed from the figure, that, at full load, the commencement of ignition for diesel 

is the earliest, followed by the three bioethanol-biodiesel-diesel blends and the BMDE15, in 

this investigation. The earliest commencement of ignition of diesel is due to its higher cetane 

number than those of bioethanol-diesel emulsion (BMDE15), and the bioethanol-biodiesel-

diesel blends. The start of ignition for diesel occurs approximately at 9.8
 o

CA bTDC, and the 

maximum cylinder pressure is attained at about 6 
o
CA aTDC at full load. For the BMDE15 

emulsion, the start of ignition is attained at about 8.3 
o
CA bTDC, while the maximum 

pressure occurs at about 12.4 
o
CA aTDC at full load. The bioethanol-biodiesel-diesel blends 

ignite later than diesel and, but earlier than the BMDE15 emulsion. The delayed ignition of 

both the fuel types is influenced by their lower cetane number. Another reason may be their 

higher latent heat of vaporisation, which makes the fuel to evaporate slower as they require 

more amount of heat to evaporate. As the start of ignition is delayed, the attainment of 

maximum pressure is shifted by about 2-3 
o
CA farther away from the TDC. As the 
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percentage of biodiesel increases in the bioethanol-biodiesel-diesel blend, the start of ignition 

is advanced.  

 

6.7.1.2 Ignition delay 

 

The variation of ignition delay for diesel, BMDE15 and bioethanol-biodiesel-diesel blends is 

depicted in Fig. 6.61.   
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Fig. 6.61 Variation of ignition delay with BMEP 

 

The ignition delay decreases with an increase in the load as expected, for all the fuels tested 

in this study. The ignition delay of the BMDE15 emulsion is longer than that of diesel, and 

bioethanol-biodiesel-diesel blends throughout the load spectrum. The longer ignition delay of 

the emulsion is due to its lower cetane number. In the case of the bioethanol-biodiesel-blends, 

when biodiesel is added to bioethanol, and the diesel quantity is reduced, the ignition delay 

decreases gradually. This is because of the marginal increase in the cetane number of the 

blends. However, the ignition delays of the bioethanol-biodiesel-diesel blends are marginally 

longer than that of diesel in the entire engine operation. This is because of the lower cetane 

number of the blends. This is evidenced from Table 5.5. A maximum reduction in the delay 

of 4 to 2 °CA is noticed from no load to full load, between the BMDE15 operation and 

bioethanol-biodiesel-diesel operation. Similar results are reported by Sukjit et al. when they 

conducted experiments with methyl esters on the combustion and emissions of ethanol and 

butanol, to determine the combustion and emission parameters of the diesel engine [154].  
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6.7.1.3 Heat release rate (HRR) 

 

The heat release rate (HRR) pattern for diesel, BMDE15 and the bioethanol-biodiesel-diesel 

blends at full load is shown Fig. 6.62.  

 

 

Fig. 6.62 Variation of Heat release rate with crank angle 

 

At full load, the peak heat release rate is found to be the highest for the BMDE15 emulsion, 

which occurs approximately at 10.8 
o
CA aTDC, in this study. This is attributed to the 

accumulation of more fuel in the delay period due to longer ignition delay. The maximum 

heat release rates for the bioethanol-biodiesel-diesel blends (BEBDD5, BEBDD10 and 

BEBDD15) are lower than that of BMDE15 emulsion, but higher than that of diesel at full 

load. The lowest heat release rate of diesel is due to its lower cetane number than those of the 

bioethanol-biodiesel-diesel blends. The occurrences of the peak heat release rates for 

BEBDD5, BEBDD10 and BEBDD15 are approximately at 9.8, 8.9 and 7.8 
o
CA respectively, 

aTDC at full load. The peak heat release for all the fuels tested in this study occurs 

approximately at 1-2 
o
CA aTDC. 

 

6.7.1.4 Maximum cylinder pressure 

 

Figure 6.63 depicts the variation of the maximum cylinder pressure with BMEP for diesel, 

BMDE15 and the bioethanol-biodiesel-diesel blends. It is apparent from the figure that the 

maximum cylinder pressure is found to be the highest for the BMDE15 emulsion followed by 

BEBDD5, BEBDD10, BEBDD15 and diesel, at full load. This is also evidenced from the 

heat release rate curve in Fig. 6.51. Due to the accumulation of more fuel in the delay period, 

-10

0

10

20

30

40

50

60

-40 -20 0 20 40 60 80

H
ea

t 
re

le
as

e 
ra

te
 (

J/
°C

A
) 

Crank angle (degrees) 

diesel

BDE15

BEBDD5

BEBDD10

BEBDD15



164 
 

the maximum cylinder pressure was higher for the BMDE15 emulsion (BMDE15). For the 

bioethanol-biodiesel-diesel blends also, the ignition delay is longer than that of diesel at full 

load. Due to this, their maximum cylinder pressures are found to be higher than that of diesel 

throughout the load spectrum, but marginally lower than that of BMDE15. 
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Fig. 6.63 Variation of the maximum cylinder pressure with BMEP 

 

The oxygen present in biodiesel may promote more complete combustion in the case of the 

bioethanol-biodiesel-diesel blends (BEBDD5, BEBDD10, and BEBDD15). At full load, the 

maximum cylinder pressure is found to be higher by about 1-2 bar for the bioethanol-

biodiesel-diesel blends than that of diesel, while they are  lower in the range of 1-2.2 bar than 

that of BMDE15 at full load.  

 

6.7.1.5 Combustion duration 

 

Figure 6.64 portrays the variation of combustion duration with BMEP for diesel, BMDE15 

emulsion, and the three bioethanol-biodiesel-diesel blends (BEBDD5, BEBDD10, and 

BEBDD15). The combustion duration increases with the increase in the engine load for the 

fuels tested in this study. This is because of more fuel injected with the increase in the load. 

The combustion duration is found to be the lowest for the BEBDD5 followed by BEBDD10, 

BEBDD15, BMDE15 and diesel at full load. By adding biodiesel to the bioethanol-diesel 

mixture, the cetane number marginally increases. Also, due to the oxygen present in both the 

fuels, there is a better mixture formation which provides more complete combustion in the 

diffusion combustion phase. 
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Fig. 6.64 Variation of combustion duration with BMEP 

 

Hence, the combustion duration of the bioethanol-biodiesel-diesel blends is shorter than those 

of BMDE15 and diesel. The longer combustion duration for the BMDE15 emulsion is due to 

the poor mixture formation than those of the bioethanol-biodiesel-diesel blends.  

 

6.7.1.6 Maximum rate of pressure rise 

 

The variation of the maximum rate of pressure rise for diesel, BMDE15 and the bioethanol-

biodiesel-diesel operation is depicted in Fig. 6.65.  
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Fig. 6.65 Variation of maximum rate of pressure rise with BMEP 

The maximum rate of pressure rise is the highest for the BMDE15 emulsion followed by the 

BEBDD5, BEBDD10, BEBDD15 blends and diesel at full load. There is abrupt pressure 
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variation due to the large accumulation of the oxygenated fuel in the longer delay period. The 

maximum rate of pressure rise for the bioethanol-biodiesel-diesel blends varies from 0.02-

0.05 and 0.01-0.08 bar/°CA compared to those of diesel and BMDE15 respectively, at full 

load.  

 

6.7.2 Performance analysis 

 

6.7.2.1 BSEC 

Figure 6.66 shows the variation of BSEC for diesel, BMDE15 emulsion and bioethanol-

biodiesel operation with BMEP.  
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Fig. 6.66 Variation of BSEC with BMEP 

The BSEC is found to be low with increase in the load, due to the residual gases present 

inside the chamber. The BSEC is found to be higher for the BMDE15 emulsion compared to 

those of diesel and the bioethanol-biodiesel-diesel blends. The BMDE15 emulsion has less 

heating values; hence, more fuel is consumed in the delay period to meet the required power 

output of the engine. But, with the bioethanol-biodiesel-diesel operation, the BSEC is found 

to be lower in comparison with BMDE15, due to increase in the fuel property. The BSEC for 

the bioethanol-biodiesel-diesel blends is found to be in the range of 3 to 6 MJ/kWh compared 

to that of BMDE15 at low load and 1 to 2 MJ/kWh compared to that of BMDE15 at full load. 

 

6.7.2.2 EGT 

 

Figure 6.67 portrays the trend of EGT with BMEP for diesel, BMDE15 and the bioethanol-

biodiesel-diesel operation. The EGT is found to be lower for the bioethanol-biodiesel-diesel 
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blends than that of BMDE15, but marginally higher than that of diesel. This may be due to 

the increased ignition delay of the blends. The oxygen bound combustion yields more 

complete combustion for the bioethanol-biodiesel-diesel blends than for the BMDE15 

emulsion. The values of EGT for diesel, BMDE15, BEBDD5, BEBDD10 and BEBDD15 are 

found to be 315.31 °C, 328.74 °C, 326.85 °C, 321.64 °C and 327.2 °C respectively, at full 

load. 

120

170

220

270

320

370

0 1.4 2.8 4.5 5.6

E
G

T
 (
⁰C

) 

BMEP (bar) 

diesel

BMDE15

BEBDD5

BEBDD10

BEBDD15

 
 

         Fig. 6.67 Variation of EGT with BMEP 

The BMDE15 emulsion exhibits the highest EGT among all the fuels tested in this study. The 

prolonged combustion as a result of longer ignition delay may be the reason for this. The 

reduction of EGT is found to be in the range of 1 to 7 °C for bioethanol-biodiesel-diesel 

blends, compared to that of the BMDE15 operation, at full load. The EGT for BEBDD15 is 

found to high compared to those of BEBDD5 and BEBDD10. High EGT can results from 

high fuel density, as dense fuels have shorter ignition delay leading to a higher cylinder 

pressure and cylinder temperature in the power stroke, which is also evident from the P-θ 

diagram.  

 

6.7.2.3 Thermal energy balance 

 

The variation of the thermal energy balance for diesel, BMDE15 and the bioethanol-

biodiesel-diesel operation is depicted in Fig. 6.68. From the figure, it is noticed that the heat 

carried out by the lubricating oil for bioethanol-biodiesel-diesel operation is found to be 

decreased compared to that of BMDE15. This is due to lubricity property of fuel. The heat 
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carried out by the lubricating oil for diesel, BMDE15, BEBDD5, BEBDD10 and BEBDD15 

is found to be 15.9%, 19.3%, 17.7%, 16.1%, and 16.7% respectively, at full load. 

 

 

Fig. 6.68 Variation of thermal energy balance for diesel, BMDE15 and the bioethanol-

biodiesel-diesel operation at full load 

 

The useful work is found to be increased for both BMDE15 and bioethanol-biodiesel-diesel 

operation compared to that of diesel at full load.  

 

6.7.3 Emission analysis 

 

6.7.3.1 BSHC emission 

 

The variation of BSHC emission for diesel, BMDE15 and the bioethanol-biodiesel-diesel 

blends is depicted in Fig. 6.69. The BSHC emission is observed to be lower for the 

bioethanol-biodiesel-diesel blends due to the more complete combustion, as a result of the 

oxygen availability and lower viscosity of the fuels. The higher BSHC emission for BMDE15 

is due to flame quenching due to high latent heat of vaporisation than those of diesel and 

bioethanol-biodiesel-diesel blends. The values of BSHC emission for diesel, BMDE15, 

BEBDD5, BEBDD10 and BEBDD15 are 0.04, 0.045, 0.034, 0.033 and 0.038 g/kWh 

respectively at full load. The BSHC emissions for BEBDD5, BEBDD10 and BEBDD15 are 

lower by about 4%, 5.2% and 4.8% than those of diesel at full load. They are also lower by 

about 3.2%, 4.3% and 4.1% respectively, than that of BMDE15 at full load. 
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Fig. 6.69 Variation of BSHC emission with BMEP 

With the bioethanol-biodiesel-diesel blends, more complete combustion is achieved due to 

the oxygen availability and proper mixture formation. 

 

6.7.3.2 BSCO emission 

 

The variation of BSCO emission with BMEP for diesel, BMDE15 and the bioethanol-

biodiesel-diesel blends is shown in Fig. 6.70. The BSCO emission exhibits a declining trend 

for all the fuels tested in this study, as expected.  
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Fig. 6.70 Variation of BSCO emission with BMEP 
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The CO emission is due to the unavailability of oxygen and poor mixture formation. As 

bioethanol and biodiesel contain more oxygen content, there is more complete combustion of 

fuel. For a given input, increasing the biodiesel percentage in the bioethanol-biodiesel-diesel 

mixture reduces the BSCO emission at full load. The BSCO emission for BMDE15, 

BEBDD5, BEBDD10, and BEBDD15 are lower by about 2%, 3.1%, 4.2% and 6.3% than that 

of diesel, at full load. 

 

6.7.3.3 BSNO emission 

 

The BSNO emission variation recorded in the diesel, BMDE15 and the bioethanol-biodiesel-

diesel operations with BMEP is plotted in Fig. 6.71.  
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Fig. 6.71 Variation of BSNO emission with BMEP 

 

For a given power output, the NO emission decreases with an increase in the load for all the 

fuels tested in this study. The NO emission is the highest for diesel, among all the fuels tested 

in this study in the entire load spectrum. The diesel curve is followed by the BMDE15 

emulsion in the entire engine operation. The latent heat of vaporisation of BMDE15 is higher 

than that of diesel. In spite of more fuel being accumulated in the delay period with the 

BMDE15, the time taken for fuel evaporation may be higher for the BMDE15 than that of 

diesel; hence, a lower NO emission is noticed. In the case of the bioethanol-biodiesel-diesel 

blends, the BSNO emission is found to decrease with an increase in the percentage of 

biodiesel content in the blend, throughout the engine operation.  In this case also, the latent 

heat of vaporisation and cetane number of the blends play a dominant role in the premixed 
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combustion phase, than the oxygen available with the blends. As a result, the BSNO emission 

in the bioethanol-biodiesel-diesel operation is found to be lower, in comparison with the 

diesel and BMDE15 operations, throughout the load spectrum. The NO emission in the 

bioethanol-biodiesel-diesel operation is lower in the range of 11 to 2% from no load and 4 to 

2% to full load, than that in diesel operation. Similar results are reported by Sukjit et al., 

when they conducted experiments with the ethanol-rapeseed methyl ester-diesel blends in a 

single engine [154]. This is also evidenced by the heat release curves, as shown in Fig.6.62. 

6.7.3.4 Smoke emission 

The variation of smoke emission for diesel, BMDE15 and the bioethanol-biodiesel-diesel 

blends is depicted in Fig. 6.72.  
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Fig. 6.72 Variation of smoke emission with BMEP 

 

The smoke emission for the bioethanol-biodiesel-diesel blends and BMDE15 is found to be 

lower than that of diesel, throughout the load spectrum. As both the fuels have no aromatic 

content and low molecular weights, they result in lesser smoke emissions. The smoke values 

for diesel, BMDE15, BEBDD5, BEBDD10 and BEBDD15 at full load are 24, 23.8, 22.3, 

21.02 and 21.6% opacity respectively. Slow combustion is the reason for the higher smoke in 

diesel operation. The reduction in the smoke emission for the bioethanol-biodiesel-diesel 

operation is about 2-4% at full load, than that of diesel operation. It is lower by about 1-3% 

than that of BMDE15. The highest and lowest smoke values for diesel are about 24% and 

9%, respectively, at full load. The highest and lowest smoke values for BEBDD15 are about 

20.6% and 6.2%, respectively, at full load. 
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6.7.4 Summary 

 

The summary of the results obtained in the investigation are as follows, 

 

The ignition delay and maximum cylinder pressure are closer to those of diesel for 

BEBDD10 blend, at full load. The BSEC and EGT are found to be lower by about 4% and 7 

°C respectively, for BEBDD10 compared to that of BMDE15 at full load. The BSNO and 

smoke emission for is found to be decreased by about 4% and 21.1% respectively, at full 

load. 
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6.8 Durability issues of a diesel engine run on BMDE15 and BEBDD10 

6.8.1 General 

It is essential to conduct an endurance test in an engine, if a new alternative fuel is proposed 

and investigated. The main aim of the endurance test is to evaluate the wear characteristics of 

the components and change in the lubrication oil properties of the engine. This chapter 

presents the analysis of the results obtained for the wear characteristics and lubrication oil 

properties, from a single cylinder, four stroke, DI, diesel engine with two different fuels viz, 

(i) BMDE15 emulsion, and (ii) BEBDD10. A visual inspection was made for the analysis of 

the wear. The lubricating oil samples collected from the engine were analysed by Atomic 

Absorption Spectroscopy (AAS) for determining the different metal debris present in the 

lubricating oil due to the engine wear.  

6.8.2 Analysis of carbon deposits on different engine components 

6.8.2.1 Cylinder head and piston crown 

As described in Chapter 5, the engine was run for 100 h to study the wear characteristics of 

the engine components, such as the cylinder head, piston crown and injector tip. The engine 

was subjected to run on the BMDE15 emulsion for 100 h, and the engine components were 

dismantled and studied. The engine components were visually inspected, and the dimensions 

of the components were measured before and after the endurance test. The engine was run 

with the BEBDD10 emulsion and the wear study was carried out in the same manner. Figures 

6.73 a, b, and c show the photographic views of the cylinder head before and after the 

endurance test, carried out with the BMDE15 emulsion and BEBDD10 blend respectively. It 

is apparent from the three figures that more carbon deposits were observed with the BMDE15 

emulsion than in the BEBDD10 operation. This may be due to the presence of diesel in the 

emulsion, whose carbon hydrogen ratio is higher and the presence of water in the emulsion. 

About 5 and 3.5 mg of carbon deposits were noticed in the cylinder head and combustion 

chamber. In the case of the BEBDD10 blend, small traces of carbon deposit are found, which 

is due to low soot formation and more complete combustion. Biodiesel is composed of 

several fatty acids and as it is an oxygen containing compound, it offers lubricity to the fuel. 

Hence, little traces are observed when the engine is operated with the BEBDD10 blend. 
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Description Fresh engine components BMDE15 BEBDD10 

 Before After After 

Cylinder head (a) 

 
  

Piston crown (b) 

   
Injector tip (c) 

 
 

  

Fig. 6.73 a, b and c Photographic view of the cylinder head, piston crown, and injector tip 
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The piston crown is also found with traces of carbon deposits, when the engine was run with 

the BMDE15 emulsion and the BEBDD10. 

6.8.2.2 Fuel injector and its parts 

The fuel injector components were dismantled after running the engine with the BMDE15 

emulsion and after running with the BEBDD10 blend. Important parts like the needle and 

nozzle tip were visually inspected and analysed. The photographic views of the fuel injector 

parts before and after the endurance test are shown in Fig. 6.73 a, b, and c. The carbon 

deposits were found in the injector nozzle and in between the holes. A spray test was carried 

out in the nozzle with the nozzle testing equipment under room conditions. It was observed 

that the fuel spray of the BMDE15 emulsion and the BEBDD10 blend were observed to be 

distorted. This may be due to the blockage of the holes by small carbon deposits in the 

injector holes. The carbon content (wt%) was measured with the help of the weight balance, 

which is presented in Table 6.3. 

Table 6.3 Carbon deposits (wt%) on different parts of the engine with both the fuels 

 BMDE15 BEBDD10 blend 

Carbon deposits on cylinder head (mg) 5  3  

Carbon deposits on injector tip (mg) 3.5  2.1 

Carbon deposit on piston crowns (mg) 4.3 3.2 

 

6.8.2.3 Components of the fuel injection pump 

 

Figures 6.74 (a), (b), (c) and (d) show the photographic views of the dismantled fuel injection 

pump components, which are considered for the wear analysis. It is observed that traces of 

wear were found in the plunger after the endurance test of engine, run with the BMDE15 

emulsion. This may be due to the lower lubricity offered by the emulsion. In the case of the 

engine run with the BEBDD10 blend also, there are small traces of wear found in the fuel 

injection pump. The lower wear trace in comparison with that of BEBDD10 operation may 

be due to the improvement in the lubricity, that is offered by the addition of biodiesel. The 

wear in the fuel injection pump is considered as an important factor, because it may affect the 

ceiling between the plunger and the barrel, which may cause a pressure loss in the system and 

subsequently affect the injection.  
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Plunger (a) Pump barrel (b) 

  
Pinion (c) Spring (d) 

 

Fig. 6.74 Photographic view of the dismantled fuel injection pump components 

6.8.2.4 Wear measurements 

 

The vital parts of injection pump and the injector were measured, before and after the engine 

fueled with the BMDE15 emulsion and subsequently with the BEBDD10 blend. An 

electronic balance was used to weigh the parts. The differences between the states, before and 

after the engine was run with the BMDE15 emulsion and BEBDD10, are tabulated in     

Table 6.4. 

 
Table 6.4 Wear (wt%) amount on different components of the fuel injection pump 

 

Sl. 

no 

Component                       BMDE15           BEBDD10 

Before 

(g) 

After 

(g) 

Percentage  

change in weight 

After 

(g) 

Percentage  

change in weight 

1 Plunger 252 249 -1.2% 250 -0.8% 

2 Pump barrel 304 302 -0.65% 303 -0.33% 

3 Pinion 180 176 -2.2% 179 -0.55% 

4 Spring 210 206 -2% 209 -0.47% 

 

The plunger is used to develop the pressure and inject the fuel into the nozzle. It reciprocates 

inside the barrel. Due to the low lubricity of the BMDE15, the top edge of the plunger is 

eroded more than that of the BEBDD10.  

 

6.8.2.5 Lubrication oil analysis 

Lubricating oil is composed of organic compounds with the additives of complex organo-

metallic compounds. So, there is a lesser chance of the formation of inorganic carbon during 

the engine‟s running condition. It is essential, therefore, to analyse the total carbon present in 

the lubricating oil, to quantify the addition of soot for both the tested fuels after the durability 
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test. Figure 6.75 shows the percent change in the carbon content as a function of the 

lubricating oil usage for the BMDE15 emulsion and BEBDD10 blend. It is observed from 

Fig. 6.75 that the level of soot is found to be increased in the form of carbon levels for the 

BMDE15 operation compared to that of the BEBDD10 blend. This may reduce the efficiency 

of the lubricating oil, which in turn, increases the wear of different parts of the engine. The 

reduction in the soot of the BEBDD10 blend is due to more complete combustion. 
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Fig. 6.75 Percent change in carbon content as a function of lubricating oil usage 

 

Due to the wear between the engine components, the various metal debris of the engine 

components mixes with the lubricating oil and increases the contamination. The quantitative 

evaluation of the wear particles‟ presence in the oil gives the magnitude of the deterioration 

of engine components and the qualitative analysis determines its origin [155]. In this study, 

various metal elements present in the lubricating oil were determined using the AAS for both 

the BMDE15 emulsion and the BEBDD10 blend. The variations in the concentration wear 

metal debris including Fe, Cu, Zn, Mn, Ni, Cr in the used lubricating oil, are plotted and 

given in Figs. 6.76 a, b, and c. 

Iron: This is resulted from the wear of the cylinder piston, liners, gears, rings, cam shaft, oil 

pump, crank shaft, bearing, etc. As the BMDE15 emulsion offers lower lubricity, the piston 

rings rub against the liner surface due to insufficient lubrication, or breakdown of the 

lubricating film during running conditions; hence, more iron was found in the lubricating oil 

of the BMDE15 operation, compared to that of the BEBDD10 operation.  
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Zinc: Generally, zinc is added to the lubricating oil as an anti-oxidant, corrosion inhibitor, 

anti-wear additive, detergent and extreme pressure additive. The concentration of the zinc 

gets reduced during 25 to 50 h operation of both the tested fuels. This may be due to the 

thermal stressing of oil, which may lead to the evaporation of zinc. The BMDE15 emulsion 

experiences more thermal stress due to higher frictional power and hence, more zinc is 

evaporated in this period. But, after a long term operation, the concentration of zinc is found 

to increase due to the wear of various moving parts of the engine and it is added to the 

lubricating oil. Figure 6.76a shows the presence of Zn, Fe and Cu in the lubricating oil with 

time 

 
 

Fig. 6.76a Presence of Zn, Fe and Cu in the lubricating oil with time 

Copper: The copper concentration in the lubricating oil increases with an increase in the 

operation of the engine for both the BMDE15 and BEBDD10 blends. The copper 

concentration originates from the wear of the bushings, injector shields, valve guides, 

connecting rods, piston rings, bearings and bearing cages.  

 Nickel: Nickel is added as an organo-metalllic additive to the lubricating oil, in a very small 

quantity. The nickel concentration in the oil is both due to engine wear and the oil itself. The 

wear of the bearings, valves, and gear planting may give rise to nickel in the oil. 
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Fig. 6.76b Presence of Mn, Al and Pb in the lubricating oil with time 

 
 

Fig. 6.76c Presence of Ni and Cr in the lubricating oil with time 

Manganese: The concentration of manganese originates from the wear of the cylinder liner, 

valves, shafts etc. For 100 h operation of the engine, the manganese concentration is found to 

be increased for both the tested fuels. 

Chromium: It results from the wear of the cylinder liner, compression rings, gears, crank 

shaft, bearing etc. The increase in the concentration of chromium is due to the high wear of 

the engine components during long term operation. 
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Aluminium: The concentration of aluminium in the oil is high for the BMDE15 emulsion 

compared to the BEBDD10 blend in a long term operation. This may be due to more wear of 

the piston, bearings, push rods, oil pump, gears etc. 

Lead: It is added to the lubricating oil as an additive. It also results from the wear of the 

bearings. 

 

6.8.3 Summary 

 

After successful running of the engine with two different fuels, (i.e.), BMDE15 and 

BEBDD10 blends for 100 h, a visual inspection was carried out for the wear analysis. The 

results of the visual inspection of carbon deposits on different engine components imply, that 

there are traces of carbon deposits noticed in the cylinder head, combustion chamber and 

nozzle tip in the engine fueled with the BMDE15 emulsion; whereas little traces are noticed 

in the BEBDD10 operation. A marginal wear was also observed in the fuel injection pump. 

The lubricating properties were found to have deteriorated with both the fuels. The 

concentration of metals due to the wear of the engine was observed to be high with the 

BMDE15 emulsion compared to that of the BEBDD10 blend. 
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CHAPTER 7 

 

CONCLUSION AND SCOPE FOR FURTHER RESEARCH 

 

7.1 Conclusion 

 

From the analysis of the combustion, performance and emission parameters of a single 

cylinder, four stroke, air cooled , DI diesel engine having a power output of 4.4 kW at a 

constant speed of 1500 rpm, run on bioethanol with diesel and adopting different techniques, 

the following conclusions are drawn; 

 

7.1.1 Engine operated on the three different bioethanol-diesel emulsions 

 The BMDE15 is found to be better than BMDE5 and BMDE10 based on the 

performance and emission parameters.   

 

 The ignition delay of the bioethanol-diesel emulsions increased overall by about        

1-3 
o
CA in comparison with diesel, which is due to a decrease in the cetane number of 

the emulsions. 

 

 The NO emissions for the bioethanol-diesel emulsions are found to be lower with a 

maximum reduction of about 24% in comparison with diesel at full load.  

 

 In comparison with diesel, the bioethanol-diesel operation exhibited lower smoke 

emissions with a maximum reduction of 21% with BMDE15, at full load, as a result of 

the lower carbon to hydrogen ratio, and more complete combustion.  

 

 However, the HC emission with the bioethanol-diesel emulsions is found to be higher, 

as a result of the quench layer in comparison with diesel operation, though the CO 

emissions are found to be lower.  

 

7.1.2 Addition of ignition improver with the bioethanol-diesel emulsion 

 The DED1.5% emulsion shows a better performance and lower emissions compared to 

those of DED1%, DED2% and DED2.5% at full load.  

 

 The BSCO, BSHC, BSNO and smoke emissions for DED1.5% are found to be 

reduced by about, 18%, 23%, 11.3% and 13.76% respectively, compared to that of 

diesel at full load. 

 

7.1.3 Diethyl ether fumigation in the bioethanol engine 

 Bioethanol can be used as an alternative fuel, by fumigated DEE at the intake 

manifold of the diesel engine. The bioethanol operation with 180 g/h flow rate of DEE 
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provides a shorter ignition delay, and higher cylinder pressure compared to 60 g/h, 120 

g/h flow rates of DEE and diesel at full load.  

 

 The BSNO and smoke emissions are found to lower by about 22.2% and 16.6% 

compared to those of diesel at full load. 

 

7.1.4 Bioethanol in the dual fuel mode 

 The bioethanol fumigation at the flow rate of 0.48 kg/h provides a better performance 

and lower emissions than the other flow rates. For Φ=0.88, this flow rate gave an 

increase in thermal efficiency of about 3% compared to diesel. 

 

 The BSNO and smoke emissions for the 0.48 kg/h flow rate are found to be lower by 

about 24.2% and 5.5% respectively, than those of diesel operation at full load. 

 

 The BSHC and BSCO emissions for the 0.48 kg/h flow rate are found to be higher by 

about 1.8% and 4.4% with ethanol fumigation, than those of diesel operation. 

 

7.1.5 Mathematical analysis of the experimental results 

 The spray pattern of BMDE15 is found to be better compared to that of diesel. The 

better atomization and vaporization of fuel is achieved with BMDE15 due to its lower 

density. 

 

 The experimental results of the combustion, performance and emission parameters of 

BMDE15 are validated with the simulation data.   

 

7.1.6 Engine operated with different bioethanol-biodiesel-diesel blends 

The improvements in lubricity of the engine operated with the different bioethanol-biodiesel-

diesel blends are also summarized and given below; 

 The friction power with the BEBDD10 blend is found to be lower by about 8.5% 

compared to that of BMDE15 at full load.  

 

 The BSNO and smoke emission for BEBDD10 are found to decrease by about 12% 

and 21.02% respectively, compared to those of diesel at full load.   

 

7.1.7 Comparative study of the endurance test 

For long term use of the BMDE15 emulsion and BEBDD10 blend, an endurance test is 

conducted for 100 h in the diesel engine and the results are given as follows: 

 The carbon deposits on the cylinder head, piston crown and injector tip are observed to 

be more, in the case of the BMDE15 emulsion compared to that of the BEBDD10 

blend. 

 

 Also, the concentration of the metal debris in the lubricating oil is found to increase 

with the BMDE15 emulsion than with the BEBDD10 blend.  
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7.2 Scope for further research 

The following points are suggested for future work, for the investigations of the use of 

bioethanol in diesel engines: 

 An improvement in the lubricity properties of neat bioethanol with DEE operation 

needs to be carried out for long term use. 

 

 A detailed study of the cyclic variability of the engines run on neat bioethanol and 

DEE can be done. 

 

 Bioethanol can be run in the HCCI mode and low temperature combustion (LTC) 

mode. 
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Appendix A1  

Technical specifications of the engine 

Type Kirloskar TAF1 Vertical diesel engine 

No. of cylinder 1 

Type of injection Direct 

Rated power at 1500 rpm, kW  4.41 

Bore, mm 87.5 

Stroke, mm 110 

Compression ratio 17.5 

Method of cooling Air cooled with radial fan 

Displacement volume, litres 0.662 

Fuel injection timing bTDC, °CA 23 

Number of injector nozzle holes 3 

Nozzle-hole diameter, mm 0.25 

Inlet valve opening bTDC, °CA 4.5 

Inlet valve closing aBDC, °CA 35.5 

Exhaust valve opening bBDC, °CA 35.5 

Exhaust valve closing aTDC, °CA 4.5 

Weight, kg 163  

Type of fuel injection Pump-line-nozzle injection system 

Connecting rod length, mm 220 

 

Appendix A2 

Specifications of the exhaust gas analyser 

Exhaust gas analyser model AVL 444DiGas  

Dimension (W × D × H), mm
3
 270 × 320 × 85  

Weight, kg 4.5 (net weight without accessories) 

Interfaces RS 232 C, pick up, oil temperature probe 

Power consumption and voltage supply, W 

and V DC 

25, 11-22  

Response time, s t95≤ 15  

Operating temperature, °C 5-45  

Relative humidity, % ≤95, non-condensing 

Connector CAL. Gas, l/h 60-140, max. overpressure 450 hPa 

Connector Gas in, l/h 180, max. overpressure 450 hPa 

Storage temperature, °C 0-50  
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Appendix A3 

Specifications of the smoke meter 

Instrument model and company AVL 437C smoke meter  

Dimension (W × D × H), mm
3
 600 × 260× 370  

Weight, kg 24  

Measuring range, % opacity 0-100  

Accuracy and repeatability, % of full scale ±1  

Resolution, % 0.1 

Application  For free-acceleration test only 

Linearity check, % or m
-1

 48.4-53.1 or 1.54-1.76 of measurement range 

Smoke inlet Through a control valve 

Smoke temperature at entrance, °C 250 (maximum) 

Measuring chamber length and heating, mm 430±5 and thermostatically controlled 

Light source (Halogen lamp), V and W 12 and 5  

Sensor Selenium photocell (diameter 45 mm) 

Power supply, V AC or V DC, Hz, A 190-240 or 11.5-36, 50-60, 2.5  

Ambient temperature, °C 0-50  

Ambient humidity, % at 50 °C 90% (non-condensing) 

 

 

 

Appendix A4 

Technical specification of the pressure transducer and charge amplifier 

Make and model Kistler and 5395A Piezotron® Quartz 

pressure sensor 

Pressure range, bar 0-100  

Type Piezoelectric 

Material Quartz 

Sensitivity, mV/bar 25 

Cooling Air cooled 

Supply voltage, V DC 7-32 

Supply current, mA 6 

Output impedance, Ω 100 

Operating temperature range, °C -50-350 
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Appendix A5 

Heat release rate calculation 

The analysis of heat release rate describes the conversion of fuel chemical energy into heat 

energy with respect to time or rate of fuel burning in a diesel engine combustion process. The 

heat release rate determination procedure is based on the processing of the cylinder pressure 

(indicator) diagram. The heat release rate can be analysed with the help of the first law of 

thermodynamics for an open system which is at quasi static (homogeneous mixture, uniform 

pressure and temperature) state. The first law for an open system is given as, 

   

  
 

  

  
  

  

  
            (A5.1) 

Where,  
   

  
 = Apparent net heat release rate which is the difference between gross heat 

release rate and heat transfer rate to the walls 

   
  

  
= Change in internal energy of the system 

  
  

  
 =Rate at which work is done on the piston                    

The change in internal energy is, dU=mCvdT 

Then, the contents of the cylinder can be modelled as an ideal gas and can be written as, 

   

  
    

  

  
  

  

  
         (A5.2) 

From the ideal gas law,              (A5.3) 

Where, p=Cylinder pressure,  = Volume, m=Mass of the mixture, R=Gas constant, 

T=Temperature 
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+          (A5.4) 

By substituting the value of equation A5.4 in A5.2, the heat release rate is, 
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        (A5.6) 

In terms of crank angle, the apparent heat release rate can be written as,  
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        (A5.7) 

Where,   =Specific heat at constant volume 

 =Ratio of specific heat of mixture, for diesel engine  =1.3-1.35 

 =Crank angle 

 

Appendix A6 

 

BSEC=(BSFC×Calorific value)/1000 

 

HC emissions in g/kWh, 

HC (g/kWh)= [(Mf+Ma)/(29*1000)*HC (in ppm)*13/BP] 

CO emissions in g/kWh, 

CO (g/kWh)= [((Mf+Ma)/29)*10*CO (in %vol)*28/BP] 

NO emissions in g/kWh, 

NO (g/kWh)= [(Mf+Ma)/(29*1000)*NO (in ppm)*32.4/BP] 

 

 

Appendix A7 

The range, accuracy and percentage uncertainty of the instruments 

Instrument Range Accuracy Percentage 

uncertainties 

Load indicator, W 250–6000  ±10 0.2 

Temperature indicator, °C 0-900  ±1 0.15 

Speed sensor, rpm 0-10000  ±10  1 

Burette, cc 1-30  ±0.2  1.5 

Exhaust gas analyser 

NO, ppm 

HC, ppm 

CO, %Vol 

 

0-5000  

0-20000  

0-10 

 

±50  

±10  

±0.03 

 

1 

0.5 

1 

Smoke meter, % 0-100 ±1 1 

Pressure transducer, bar 0-110  ±1  0.15 

Crank angle encoder, °CA  ±1 0.2 



 

188 
 

Appendix A8 

Procedure for uncertainty analysis 

The uncertainty or margin of error of a measurement is stated by giving a range of values 

likely to enclose the true value. It is a measure of the goodness of the result. The estimated 

standard uncertainty (U or U(Y)) of the mean is calculated by using the following formula []: 

 U  or 
n

s
YU )(      (A7.1) 

where n is the number of measurements in the set. The standard deviation (s) for a series of n 

measurements can be expressed mathematically as: 
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        (A7.2) 

where xi is the result of the i
th

 measurement and  x  is the arithmetic mean of the n results. 

Evaluations of some unknown uncertainties from known physical quantities were obtained 

using the following general equation (Coleman and Steele 1989).  

  

 
 [∑ (
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   ]

  ⁄

        (A7.3) 

 

In the equation cited, Y is the physical parameter that is dependent on the parameters   . The 

symbol UY denotes the uncertainty in Y. By using the above equation the uncertainty of the 

experiment was obtained as ±2.57%.  
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Annexure I 

Uncertainty of the instruments used for the measurement of fuel properties 

Properties Instrument used Uncertainty of the instrument 

Specific gravity Hydrometer  ±0.05% 

Lower heating value Bomb calorimeter  ±3% 

Flash point closed-cup 

flash and pour point analyser  

±1% 

Pour point -do- ±1% 

Cold filter plugging point KLA-4 automatic cold filter 

plugging point system 

±1.5% 

Kinematic viscosity Automated viscometers  ±0.02% 

Carbon residue Conradson apparatus ±0.05% 
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Annexure II 

An Algorithm for the Function of the Electronically Controlled Injector 

Program for Bioethanol Fumigation 

/* 

  Program to control the amount of fuel injected into the air inlet. 

  

 It uses a switch statement to interact with the computer through serial communication and 

control the timing of injector relay.   

The switch 

 statement allows one to choose from among a set of discrete values 

 of a variable.  It's similar to a series of if statements. 

  

  The circuit: 

 * Input of a motor driver is attached to digital pin 3 of the microcontroller. 

  

 Fuel motor pump is connected directly to the 12volt power supply. 

 */ 

Int dutycycle =0; 

Int dutycycle1 = 10; 

Int dutycycle2 = 20; 

Int dutycycle3 = 30; 

Int dutycycle4 = 40; 

Int dutycycle5 = 50; 

Int dutycycle6 = 60; 

Int dutycycle7 = 70; 

Int dutycycle8 = 80; 

Int dutycycle9 = 90; 

Int dutycycle10 = 100; 

 

void setup() { 

  // initialize serial communication: 

  Serial.begin(9600);  

   // initialize the injector pin: 

              pinMode(3, OUTPUT); 



 

191 
 

      }  

} 

void loop() { 

  // read the sensor: 

  if (Serial.available() > 0) { 

    int inByte = Serial.read(); 

    // do something different depending on the character received.   

    // The switch statement expects single number values for each 

case; 

    // the controller to get the ASCII value for the 

character.  For  

    // example 'a' = 97, 'b' = 98, and so forth: 

    switch (inByte) { 

    case 'a':     

     dutycycle = dutycycle1; 

Serial.Println(“ Duty cycle 10% initiated”); 

      break; 

   case 'b':     

      Serial.Println(“ Duty cycle 20% initiated”); 

dutycycle = dutycycle2; 

      break; 

    case 'c':     

      Serial.Println(“ Duty cycle 30% initiated”); 

dutycycle = dutycycle3; 

      break; 

    case 'd':     

      Serial.Println(“ Duty cycle 40% initiated”); 

dutycycle = dutycycle4; 

      break; 

    case 'e':     

      Serial.Println(“ Duty cycle 50% initiated”); 

dutycycle = dutycycle5; 

      break; 

case 'f':     

      Serial.Println(“ Duty cycle 60% initiated”); 

dutycycle = dutycycle6; 

      break; 

case 'g':     

      Serial.Println(“ Duty cycle 70% initiated”); 

dutycycle = dutycycle7; 

      break; 



 

192 
 

case 'h':     

      Serial.Println(“ Duty cycle 80% initiated”); 

dutycycle = dutycycle8; 

      break; 

case 'i':     

      Serial.Println(“ Duty cycle 90% initiated”); 

dutycycle = dutycycle9; 

      break; 

case 'j':     

      Serial.Println(“ Duty cycle 100% initiated”); 

dutycycle = dutycycle10; 

      break; 

case 'k':     

      Serial.Println(“ Duty cycle 0% initiated”); 

dutycycle = 0; 

      break; 

    default:    

    }  

digitalWrite(3,HIGH); 

// Switch on the injector. 

delay(dutycycle); 

// give a suitable delay to keep the injector valve open for a 

specified time period. 

digitalWrite(3,LOW); 

//turn off the injector valve. 

delay(100 - dutycycle); 

//adjust the time period of the wave 

    Serial.Print(“ Current Duty cycle:  ”); 

Serial.Println(dutycycle); 

// give the feedback to the computer about the current 

dutycycle. 

    

  } 

} 



 

193 
 

Annexure III 

Program for Spray Characteristics 

k=1.19*10^9; %bulk modulus 
densityL= 809; %density 
L=.7;  %Length 
N=1500;  %input done 
Ns =1500; %input 
n=10; %input 
Fpump = .00025; %input check 
Fnozzle = 0.05*10^-6; %input 
Cd = .39;  %input 
Dn = 0.25*10^-3; %input 
Mftot =1.18*10^-5;%input 
psi = 1.0; %modify while executing 
z=3; 
densityA=1.1; 
vL=1.95*10^-2; 
sig=0.02; 
vA=20.76*10^-6; 
t=1; 
Ln=.364*(10^-3); 
xs=zeros(20,20); 
ys=zeros(20,20); 

  
     Cpump = [ .0047, .0047, .0047, .0047, .0047, .0047, .0047, .0047, 

.0047, 0.0047,0.0047,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; 
    Pinj = zeros(100,1); 
    Uinj = zeros(100,1); 
    Mfinj = zeros(100,1); 
    Mfz=zeros(100,1); 
    Reinj = zeros(100,1); 
    Weinj=zeros(100,1); 
    Dsm1=zeros(100,1); 
    Dsm2=zeros(100,1); 
    Dsmm=zeros(100,1); 
    Rmid=zeros(100,1); 
    Umid=zeros(100,1); 
    thetaZ=zeros(20,14,7); 
    Uz=zeros(20,14,7); 
    Cswz=zeros(20,14,7); 
    Dsm=zeros(20,14,7); 
    Ndrop=zeros(20,14,7); 
    Uzs=zeros(20,14,7); 
    Maz=zeros(20,14,7); 
    phi=zeros(20,14,7); 
    thetaZS=zeros(20,14,7); 
    x=zeros(20,14,7); 
    y=zeros(20,14,7); 
    Rz=zeros(20,14,7); 
    RZimp=zeros(20,14,7); 
    thetaZSimp=zeros(20,14,7); 
    thetaZROT=zeros (20,14,7); 
    AFst= 14.2;  
    c=0; 
    p=0; 
   cop=zeros(20,20);  
        Pinja = 0; 
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        As = sqrt( k/densityL);   %velocity of sound 
        psiID= (L/As)*N*6;        %injection delay 
     %all will be in a giant for loop which runs the crank angle 

         
       for i=2:11  
            Pinj(i) = As*densityL*Cpump(i)*(Fpump/Fnozzle);%injection 

pressure 
            Pinja = Pinja + (Pinj(i)/n);%avg injection pressure 

             
       end 
       Pinja= 200*10^5; 

              
        Uinja = Cd*sqrt((2*Pinja)/densityL);    %mean jet velocity from 

each nozzle hole 
        Mfinja = (pi*Dn*Dn/4)*densityL*Uinja/(6*N); %fuel injection rate 

per jet 
        psiI = (Mftot/z)/Mfinja; %z is number of nozzle holes 

         
        Tbr = 28.61*densityL*Dn/sqrt(Pinja*densityA); 
        Sbr= Uinja*Tbr; 

         
        Rs = Ns/N;  %introducing swirl is equal to 1 id no swirl 
        Sbrs = Sbr/(1 + (pi*Rs*N*Sbr/(30*Uinja))); 
        Tbrs =  Sbrs*Tbr/Sbr; 

         
        Ac = 3 + 0.28*(Ln/Dn); 

         
        %theta = 4*atan((4*pi*sqrt(densityA/densityL)*sqrt(3))/(Ac*6)); 
        theta=.25; 
        j=1; 

         
      for k=2:11 

         
        imax = psiI/double(psi); 

         

                
                Uinj(k)= .39*sqrt(2*Pinj(k)/densityL); 
                Mfinj(k) = (pi*Dn*Dn/4)*densityL*Uinj(k)/(6*N); 

                             

                                
                jmax =imax/2; 

                 
                %there is a statemnt for cummulative fuel injected 
                %all arrays after this have to be initialized and allocated 
                %memory 

                 
                Mfz(k)= (Mfinj(k))/((jmax)); 
                Reinj(k) = Uinj(k)*Dn/vL; 
                Weinj(k) = Uinj(k)*Uinj(k)*Dn*densityL/sig; %define sigma 
                Dsm1(k) = 0.38*power(Reinj(k),0.25)*power(Weinj(k),-

.32)*power(vL/vA,0.37)*power(densityL/densityA,-.47)*Dn;%choose the maximum 

of the 2 values 
                Dsm2(k) = 0.38*power(Reinj(k),0.12)*power(Weinj(k),-

.75)*power(vL/vA,0.54)*power(densityL/densityA,.18)*Dn;  

                                
                jmid= (jmax/2) + 1; 
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                if(Dsm1(k)<Dsm2(k)) 
                    Dsmm(k)= Dsm2(k); 
                else 
                    Dsmm(k) = Dsm1(k); 
                end 

                                                        
                    beta=.50; 

                                       
               for i = 2:k 
                     Umid(i) = 

2*2.95*beta*power(Pinj(k)/densityL,0.25)*sqrt(Dn)/(power(i*1.11*(10^-4),1-

beta)); 
                   for j= 1:5 

                     
                        alpha=4.5*4.5; 
                        thetaZ(k,i,j) = -(theta/2) + ((j-1)*theta/5) + 

((theta)/(2*5)); 
                        Uz(k,i,j) = Umid(i)*(2.7^(-

alpha*thetaZ(k,i,j)*thetaZ(k,i,j)));%check 
                        Cswz(k,i,j)= 1; 

                                
                        w=5; %assign w between 5-10 
                        Dsm(k,i,j)= (1-1/w)*Dsmm(k)*(j-1)/(jmid-1); 

                         
                        Ndrop(k,i,j) = 

Mfz(k)/((pi/6)*power(Dsm(k,i,j),3)*densityL); 

                          
                        Uzs(k,i,j)=Uz(k,i,j)/(Cswz(k,i,j)); 
                        Maz(k,i,j)= Mfz(k)*(Uinj(k) - 

Uzs(k,i,j)*cos(thetaZ(k,i,j)))/(Uzs(k,i,j)*cos(thetaZ(k,i,j))); 

                                                
                        %air equivalence ratio in each zone 
                        phi(k,i,j) = (Mfz(k)/Maz(k,i,j))/(1/(AFst)); 
                        if(j<jmid) 
                            thetaZS(k,i,j) = 

(thetaZ(k,i,j))*power((Cswz(k,i,j)),2); 
                        else if (j>jmid) 
                            thetaZS(k,i,j)= thetaZ(k,i,j) + 

thetaZS(k,i,int64(jmid)); 
                            else 
                             thetaZS(k,i,int64(jmid))= 

0.5*thetaZ(k,i,int64(jmid)) + .5*thetaZS(k,i,int64(jmid-1)); 

                         

                         
                            end 
                        end 
                         Rmid(k)=sqrt(power(x(k,i,3),2)+ 

power(y(k,i,3),2)); 

                         
                        %all the following statement needs to be corrected 

                         
                        if(Rz(k,i-1,j)<=45) 
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                                 x(k,i,j) = x(k,i-1,j) + 

(Uzs(k,i,j))*cos(thetaZS(k,i,j))/(6*N)*10^3; 
                                 y(k,i,j) = y(k,i-1,j) + 

(Uzs(k,i,j)*sin(thetaZS(k,i,j)))/(6*N)*10^3; 
                                 Rz(k,i,j) = sqrt(power(x(k,i,j),2)+ 

power(y(k,i,j),2)); 

                                  
                                 RZimp = Rz(k,i-1,j); 
                                 thetaZSimp= thetaZS(k,i,j); 

                                 
                        else 

                            

                                

                             
                                 if (j<jmid) 
                                 thetaZROT(k,i,j) = thetaZROT(k-1,i,j) + 

(Uzs(k,i,j)/(RZimp*6*N)); 
                                 else 
                                 thetaZROT(k,i,j) = thetaZROT(k-1,i,j) - 

(Uzs(k,i,j)/(RZimp*6*N)); 

                              
                                 end 

                                  
                                 thetaZS(k,i,j) = thetaZSimp + 

thetaZROT(k,i,j); 
                                 x(k,i,j)=RZimp*cos(thetaZS(k,i,j)); 
                                 y(k,i,j) = RZimp*sin(thetaZS(k,i,j)); 

                                 
                        end 
                        xs(i-1,j)= x(11,i,j); 
                        ys(i-1,j)=y(11,i,j);                         
                        cop(i-1,j)=Uzs(11,i,j); 

                                                 
                   end 

                     
               end 

         
      end            
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Annexure IV 

Program for Combustion and Emission model 

%Fuel Injection alock 

  
z=3; %numaer of nozzles 
Mftot =1.18*2.8e-3/170;%input for total fuel input in the engine for 3 

nozzles. 
Matot = 14.2*Mftot/3; %mass of air 
Mftot1= Mftot/z; %input for fuel injection per nozzle 
Minjp =[0.1485136,  2.279569,  3.036051,3.42156,  3.741282, 3.908897, 

12.11944,  25.21904,  38.43114,  51.38495,  62.85519,  72.4708, 80.32899,  

86.64405, 91.58, 95.39, 98.39,  100 ];  
N = 1500; %RPM 
%value needs to be edited. Fuel injected in 53 0CA 

     
Dn= 0.25*10^-3; 
densityL=809;    
Uinja=zeros(20); 
Pinj= zeros(20); 
Utot=0; 
for i=2:18 
    Uinja(i) = ((Minjp(i)-Minjp(i-

1))*Mftot1*6*N/100)/((pi*Dn*Dn/4)*densityL); 
    Utot=Utot + Uinja(i); 
    Pinj(i)=power(Uinja(i)/.39,2)*densityL/2; 
end 

  
Uavg = Utot/18; 
CA= zeros(400); 
t=zeros(400); 
p=zeros(400); 
v=zeros(400); 

  
  %defining initial temperature pressure and volume 
rc=17.5; %compression ratio 
R= 3.5; 
Vc= 3.7*(10^-5); 
CA(1)=-180; 
t(1)=350; 
p(1)=1.655e5; 
v(1)=Vc*(1 + .5*(rc-1)*(R+1 - cos(3.14*CA(1)/180) - sqrt(R*R- 

sin(3.14*CA(1)/180)*sin(3.14*CA(1)/180)))); 
densityA = 1.618;  
E = zeros(400);  
E(1) = Matot*1000*(.3 * ienergy(t(1), .446, .3098, -.123, .227, -.1552, -

.489) + .78*ienergy(t(1), .289, .1515, -.57235, .99807, -.6522, -.90586 ) + 

.21*ienergy(t(1), .362, .736, -.196, .362, -.289, -.120)); 

  

  
%fuel breai up time 
Tbr = 28.61*densityL*Dn/sqrt(200*10^5*densityA); 

  
%fuel spray angle 
Ac=4.9; 
theta = 2*atan((4*pi*sqrt(densityA/densityL)*sqrt(3))/(Ac*6)); 
gamma=1.35; 
W=zeros(400); 



 

198 
 

E1=zeros(400); 
hr=zeros(400); %heat release 
for i=2: 157 
    %Compression starts after suction 
    CA(i)=CA(i-1)+1; 
    v(i)=Vc*(1+.5*(rc-1)*(R+1 - cos(3.14*CA(i)/180) - sqrt(R*R- 

sin(3.14*CA(i)/180)*sin(3.14*CA(i )/180)))); 
    c=power(v(i-1)/v(i),.35); 

    

     
    t(i)= t(i-1)*c; 
    p(i)=p(i-1)*(v(i-1)/v(i))*(t(i)/t(i-1)); 

     
   for j=1:10 %newton raphson method needs correction correct values not 

shown. 
    E(i) = Matot*1000*(.3 * ienergy(t(i), .446, .3098, -.123, .227, -.1552, 

-.489) + .78*ienergy(t(i), .289, .1515, -.57235, .99807, -.6522, -.90586 ) 

+ .21*ienergy(t(i), .362, .736, -.196, .362, -.289, -.120)); 

     
    W(i)= 0.5*(p(i)+p(i-1))*(v(i)-v(i-1)); 
    Q=heatL(t(i)); 
    f= E(i)-E(i-1) + W(i) -Q; 
    Q1=heatL1(t(i)); 
    E1(i) = Matot*1000*(.3 * ienergy1(t(i), .446, .3098, -.123, .227, -

.1552) + .78*ienergy1(t(i), .289, .1515, -.57235, .99807, -.6522 ) + 

.21*ienergy1(t(i), .362, .736, -.196, .362, -.289)); 
    E1(i-1) = Matot*1000*(.3 * ienergy1(t(i-1), .446, .3098, -.123, .227, -

.1552) + .78*ienergy1(t(i-1), .289, .1515, -.57235, .99807, -.6522 ) + 

.21*ienergy1(t(i-1), .362, .736, -.196, .362, -.289));  
    f1= E1(i)-E1(i-1) + W(i) - Q1; 
    t(i)=t(i) - f/f1; 
   end 
    hr(i)=Q; 
end 

  

   
%Sauter Mean Diameter 
vL=1.95*10^-2; 
sig=0.02; 
vA=20.76*10^-6; 
Reinj = zeros(20); 
Weinj=zeros(20); 
Dsm1=zeros(20); 
Dsm2=zeros(20); 
Dsmm=zeros(20); 
imax = 52; 
jmax= 26; 
jmid= 5; 
Rmid =  zeros(20,20); 
x= zeros(20,20,20); 
y= zeros(20,20,20); 
Umid = zeros(20,20); 
thetaZ = zeros(20,20,20); 
Uz = zeros(20,20,20); 
Dsm = zeros(20,20,20); 
Ndrop= zeros(20,20,20); 
phi= zeros(20,20,20); 
Maz= zeros(20,20,20); 
thetaZS= zeros(20,20,20); 
Rz=zeros(22,18,20); 
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Rzimp = zeros(20,20,20); 
thetaZSimp=zeros(20,20,20); 
thetaZROT = zeros(20,20,20); 
xs=zeros(20,20); 
ys=zeros(20,20);     
cop=zeros(20,20); 
sh=zeros(20); 
rd=zeros(20); 
vA=20.76*10^-6; 
Mfz=zeros(20,20); 
for k=2:18 %23 deg BTDC 
for i=2:k 

      
    %fuel development 
     Reinj(k) = Uinja(k)*Dn/vL; 
     Weinj(k) = Uinja(k)*Uinja(k)*Dn*densityL/sig;  
     Dsm1(k) = 0.38*power(Reinj(k),0.25)*power(Weinj(i),-

.32)*power(vL/vA,0.37)*power(densityL/densityA,-.47)*Dn;%choose the maximum 

of the 2 values 
     Dsm2(k) = 0.38*power(Reinj(k),0.12)*power(Weinj(i),-

.75)*power(vL/vA,0.54)*power(densityL/densityA,.18)*Dn;  

                 
                    if(Dsm1(k)<Dsm2(k)) 
                        Dsmm(k)= Dsm2(k); 
                    else 
                        Dsmm(k) = Dsm1(k); 
                    end 

                          

                        
       Rmid(k,i)=sqrt(power(x(k,i,5),2)+ power(y(k,i,5),2)); 
       beta = .57; 
       Umid(k,i) = 

2.95*beta*power(Pinj(k)/densityA,0.25)*sqrt(Dn)/(power(i*1.11*(10^-4),1-

beta));%mid zone velocity 
        Mfz(k) = (Minjp(i)-Minjp(i-1))*Mftot1/9; 
                    for j=2:9 

                         
                        alpha=4.5*4.5; 
                        thetaZ(k,i,j) = -(theta/2) + ((j-1)*theta/9) + 

((theta)/(2*9)); 

                         
                        Uz(k,i,j) = Umid(k,i)*(2.7^(-

alpha*thetaZ(k,i,j)*thetaZ(k,i,j))); 

                         
                        w=7.5; %assign w between 5-10 
                        Dsm(k,i,j)= (1-1/w)*Dsmm(k)*(j-1)/(jmid-1); 

                         
                        Ndrop(k,i,j) = 

Minjp(k)*Mftot1/((pi/6)*power(Dsm(k,i,j),3)*densityL); 

                         
                        Maz(k,i,j)= Minjp(k)*Mftot1*(Uinja(k) - 

Uz(k,i,j)*cos(thetaZ(k,i,j)))/(Uz(k,i,j)*cos(thetaZ(k,i,j))); 

                         

                         
                        %air equivalence ratio in each zone 
                        phi(k,i,j) = 

(Minjp(k)*Mftot1/Maz(k,i,j))/(1/(14.2)); 
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                        if(j<jmid) 
                            thetaZS(k,i,j) = (thetaZ(k,i,j)); 
                        else if (j>jmid) 
                            thetaZS(k,i,j)= thetaZ(k,i,j) + 

thetaZS(k,i,jmid); 
                        else 
                            thetaZS(k,i,jmid)= 0.5*thetaZ(k,i,jmid) + 

.5*thetaZS(k,i,jmid-1); 

                        
                            end 
                        end 

                         

                                                 
                        if(Rz(k-1,i,j)<40)     

                                      
                                 x(k,i,j) = x(k-1,i,j) + 

(Uz(k,i,j))*cos(thetaZS(k,i,j))/(6*N)*10^3; 
                                 y(k,i,j) = y(k-1,i,j) + 

(Uz(k,i,j)*sin(thetaZS(k,i,j)))/(6*N)*10^3; 

                                  
                                 Rz(k,i,j) = sqrt(power(x(k,i,j),2)+ 

power(y(k,i,j),2)); 
                                 if (Rz(k,i,j)>40) 

                              
                                     x(k,i,j)=x(k-1,i,j); 
                                     y(k,i,j) = y(k-1,i,j); 
                                 end 

                                      
                                 RZimp = 46; 
                                 thetaZSimp= thetaZS(k,i,j); 

                                  
                        end       
                        if(Rz(k-1,i,j)>=40) 
                                 if (j<jmid) 
                                 thetaZROT(k,i,j) = thetaZROT(k,i,j) + 

(Uz(k,i,j)*1000/(46*6*N)); 
                                 end 
                                 if(j>=jmid) 
                                 thetaZROT(k,i,j) = thetaZROT(k,i,j) - 

(Uz(k,i,j)*1000/(46*6*N)); 

                              
                                 end 

                                  
                                 thetaZS(k,i,j) = thetaZSimp + 

thetaZROT(k,i,j); 

                                 
                                 x(k,i,j)=RZimp*cos(thetaZS(k,i,j)); 
                                 if(j<jmid) 
                                 y(k,i,j) = -RZimp*sin(thetaZS(k,i,j)); 
                                 end 
                                 if(j>=jmid) 
                                 y(k,i,j) = -RZimp*sin(thetaZS(k,i,j)); 
                                 end 

                                      
                        end 
                        xs(i-1,j)= x(18,i,j); 
                        ys(i-1,j)=y(18,i,j);                         
                        cop(19-i,j)=Uz(18,i,j); 
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                       %evaporation model 
                       Ua(k,i,j) = (2*3.14*N/60)*Rz(k,i,j); 
                       urel(k,i,j)=sqrt(Uz(k,i,j)^2 + Ua(k,i,j)^2); 
                       Madrop= Maz(k,i,j)/Ndrop(k,i,j); 
                       Re=Dsm(k,i,j)*Urel*vA; 

                        
                       Dfa = 8.1*(10^-

6)*power(t(157+k)/399),1.5)/(p(157+k)/101325); 
                       Sc=vA,/Dfa;%database required 
                       Sh=2 + .6*(Re^.5)*(Sc^.333); 
                       Y= densityFV/densityA; 
                       Ys = Mftot1/(Mftot1 + Matot*(p(157+k)/pv)-1); 
                       B=(Ys-Y)/(1-Ys); 
                       rd(k,i,j)= rd(k-1,i,j)-

((densityA/densityL)*(Dfa/Dsm)*Sh*log(1+B)*2.303; 

                        

                       

                        
                       Mev(i,j)=Mfz(i)*2*rd(18,i,j)/Dsm(18,i,j); 
                       phiE(i,j) = (Mev(i,j)/Maz(18,i,j))/(i/14.2); 

                         

                        
                       %ignition delay 
                       I(k,i,j) = I(k-1,i,j)+ 1/(Kpr*power(p(k+157),-

.757)*exp(618840/(CN+25)*8.314*T(k+257))); 
                       %enter CN and Kpr 
                    end             

                      

                    
end 

  

  
end 

  
T2u = T2; 
T2k= T2; 
V2u= v(157); 
V2k=v(157); 
bn1 = 6.1*10^-3);%CO 
bn2 =5.7*(10^-1);%CO2 
bn3 = 9.7*(10^-5);%H 
bn4 = 1.5*(10^-4); %H2 
bn5 = 1.0*(10^-1);%H2O 
bn6 = 1*(10^-5);%N 
bn7=5*(10^-6);%NO 
bn8= 1.5*(10^-2);%NO 
bn9 =6.9*(10^-1);%N2 
bn10=8.6*(10^-1);%O 
bn11 = 2.2*(10^-2);%OH 
bn12 = 2.3*(10^-2);%O2 
Tbulk1=0; 
Tbulk2=0; 
T1u=t(157); 
T1k=t(157); 
for i=157:360 

     



 

202 
 

     
    v(i)=Vc*(1+.5*(rc-1)*(R+1 - cos(3.14*CA(i)/180) - sqrt(R*R- 

sin(3.14*CA(i)/180)*sin(3.14*CA(i )/180)))); 
    p(i)=p(i-1)*power(v(i-1)/v(i),1.35); 

     

     
    Tbulk1= ((bn1 + bn2 +bn3 + bn4 +bn5 + bn6+bn7 + bn8 +bn9 + bn10 +bn11 + 

bn12)*T1u +   (bn1k + bn2k +bn3k + bn4k +bn5k + bn6k+bn7k + bn8k +bn9k + 

bn10k +bn11k + bn12k)*T1k)/((bn1 + bn2 +bn3 + bn4 +bn5 + bn6+bn7 + bn8 +bn9 

+ bn10 +bn11 + bn12) + ((bn1k + bn2k +bn3k + bn4k +bn5k + bn6k+bn7k + bn8k 

+bn9k + bn10k +bn11k + bn12k)); 
    Tbulk2=((an1 + an2 +an3 + an4 +an5 + an6+an7 + an8 +an9 + an10 +an11 + 

an12)*T2u +   (an1k + an2k +an3k + an4k +an5k + an6k+an7k + an8k +an9k + 

an10k +an11k + an12k)*T2k)/((an1 + an2 +an3 + an4 +an5 + an6+an7 + an8 +an9 

+ an10 +an11 + an12) + ((an1k + an2k +an3k + an4k +an5k + an6k+an7k + an8k 

+an9k + an10k +an11k + an12k)); 

     
    qu= heatLI((Tbulk1+Tbulk2)/2))*((bn1 + bn2 +bn3 + bn4 +bn5 + bn6 + bn7 

+ bn8 +bn9 + bn10 +bn11 + bn12)*T1u + (an1 + an2 +an3 + an4 +an5 + an6+an7 

+ an8 +an9 + an10 +an11 + an12)*T2u/((bn1 + bn2 +bn3 + bn4 +bn5 + bn6+bn7 + 

bn8 +bn9 + bn10 +bn11 + bn12)T1u + ((bn1k + bn2k +bn3k + bn4k +bn5k + 

bn6k+bn7k + bn8k +bn9k + bn10k +bn11k + bn12k)*T1k + (an1 + an2 +an3 + an4 

+an5 + an6+an7 + an8 +an9 + an10 +an11 + an12)T12u + ((an1k + an2k +an3k + 

an4k +an5k + an6k+an7k + an8k +an9k + an10k +an11k + an12k)*T2k); 
    qk=heatLI((Tbulk1+Tbulk2)/2))*((bn1 + bn2 +bn3 + bn4 +bn5 + bn6 + bn7 + 

bn8 +bn9 + bn10 +bn11 + bn12)*T1k + (an1 + an2 +an3 + an4 +an5 + an6+an7 + 

an8 +an9 + an10 +an11 + an12)*T2k/((bn1 + bn2 +bn3 + bn4 +bn5 + bn6+bn7 + 

bn8 +bn9 + bn10 +bn11 + bn12)T1u + ((bn1k + bn2k +bn3k + bn4k +bn5k + 

bn6k+bn7k + bn8k +bn9k + bn10k +bn11k + bn12k)*T1k + (an1 + an2 +an3 + an4 

+an5 + an6+an7 + an8 +an9 + an10 +an11 + an12)T12u + ((an1k + an2k +an3k + 

an4k +an5k + an6k+an7k + an8k +an9k + an10k +an11k + an12k)*T2k); 
    w1u=bn1 + bn2 +bn3 + bn4 +bn5 + bn6+bn7 + bn8 +bn9 + bn10 +bn11 + bn12; 
    for k=1:18 
        for j=1:9 
            if (I(i-156,k,j)<1)%zone not burning 

                 
                E(i) = Matot*1000*(.3 * ienergy(T1u), .446, .3098, -.123, 

.227, -.1552, -.489) + .78*ienergy(T1u), .289, .1515, -.57235, .99807, -

.6522, -.90586 ) + .21*ienergy(T1u), .362, .736, -.196, .362, -.289, -

.120)); 

     
                W(i-1)= 0.5*(p(i-1)+p(i-2))*(v(i-1)-v(i-2)); 
                Q=heatL(T1u); 
                f= E(i)-E(i-1) + W(i) -Q; 
                V1u = Mftot*w1u*8.314*T1u/p(i-1); 
                w2u= (Matot - (Maz(i-156,k,j)/Ma)/Mftot; %Ma molecular 

weight of air 
                wloss=w1u-w2u; 
                an1=bn1; 
                an2=bn2; 
                an3=bn3; 
                an4=bn4; 
                an7=bn7; 
                an8=bn8; 
                an9=bn9; 
                an10=bn10; 
                an11=bn11; 
                an12=bn12; 
                an5=bn5-.21*wloss; 
                an6=bn6 - .79*wloss; 
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                c=power(v(i-1)/v(i),.35); 

    

     
                 T2u= T1u*c; 
                 V2u= Mftot*W2u*8.314*T2u/p(i); 
                 W(i)= 0.5*(p(i)+p(i-1))*(v(i)-v(i-1)); 
                 %newton Raphson to be applied 

                  

                  

     
            else %zone burning 

                       
               wg= ((Maz(i-155)-Maz(i-156)/Ma)/Mftot; 
               bn1km = bn1k; 
               bn2km = bn2k; 
               bn3km = bn3k; 
               bn4km = bn4k; 
               bn8km = bn8k; 
               bn9km = bn9k; 
               bn10km = bn10k; 
               bn11km = bn11k; 
               bn12km = bn12k; 

                
               bn5km = bn5k + 0.21*wg; 
               bn6km = bn6k + .79*wg; 
               bn7km = bn7k + ((Mev(i-156,k,j)/Mf)/Mftot; 

                
               w1km= bn1km + bn2km +bn3km +bn4km +bn5km +bn6km +bn7km 

+bn8km +bn9km +bn10km +bn11km +bn12km ; 
               po = p(i-1)*(b5km)/w1km; 
               %enthalpy of 12 elements 
               %enthalpy of air entered of wg 
               T1km = (w1km*T1k + wg*T1u)/(w1km + wg); 
               v1km = (w1km*v1k + wg*v1u)/(w1km + wg); 

                
               if (Mev(i-156,k,j) - Mfb(i-156,k,j) < Maz(i-156,k,j) - 

14.2*Mfb(i-156,k,j)) 
               dmfb = Kbu*(p(i-1)^.757)*((Mev(i-156,k,j) - Mfb(i-

156,k,j))*power(2.7,-5000/t(i-1)); 
               else 
                    dmfb = Kbu*(p(i-1)^.757)*((Maz(i-156,k,j) - 14.2*Mfb(i-

156,k,j))*power(2.7,-5000/t(i-1)); 
               end 
               Mfb(i-156,k,j) = Mfb(i-156,k,j)-dmfb; 

                
               T2k = T1km*power(p(i)/p(i-1), (gamma-1/gamma))-

dfmb*Qc/(Mftot*w1km*Cv); ;  
               V2k = Mftot*w1km*8.314*T2k/p(i); 
               W1 = 0.5*(p(i-1) - p(i))*(V2k - V1k); 

                
               %NO sub model 
               k1f = 3.1*(10^10)*exp(-160/T2k); 
               k2f =6.4*(10^6)*exp(-3125/T2k); 
               k3f=4.2*(10^10); 
               R1= k1f*bn6k*bn7k; 
               R2= k2f*bn6k*bn12k; 
               R3= k3f*bn6k*bn11k; 
               alpha = bn7k/bn7; 
               bn7k = 2*(i-alpha^2)*(R1/(1+ alpha/(R2+R3))); 
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               %soot submodel 
               msf = power(Mev-Mfb, 0.8)*(p^0.5)*power(2.71,-

Esf/8.314*t(i)); 
               msc= msn(i-1)*(Po(i)/p(i))*power(p,1.8)*power(2.71,-

Esc/8.314*t(i)); 
               msn(i)= msf - msc; 

                

                
            end 

                 
        end 
    end 
end 
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