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                                                           Abstract 

Polycyclic aromatic hydrocarbons form an active source of air pollution that affects our health 

and environment. In this study, we deciphered the role of benzo[a]pyrene (B[a]P) on cellular 

mechanism associated cell death. The particulate matter collected from an industrial area of 

Rourkela city found to have B[a]P and other unidentified environmental pollutants that had 

mutagenic and proapoptotic activity. The apoptotic potential of B[a]P was supported by ligand-

protein and protein-protein interaction in silico which was validated on human keratinocyte 

(HaCaT) cell line. Our prediction showed that B[a]P was activated by cytochrome P450 

(CYP1B1) to induce multiple cellular effects related to activation of the aryl hydrocarbon 

receptor (AhR) due to formation of toxic metabolites and this in turn activated caspases. Further, 

we showed that B[a]P induced mitochondrial mediated autophagy dependent cell death through 

the canonical pathway in HaCaT cells. The autophagic cell death induced by B[a]P was found to 

be mediated through AMPK/mTOR pathway. We showed that B[a]P abrogated ATP generation 

and activated reactive oxygen production to induce toxic mitophagy in HaCaT cells. In addition, 

we identified Bacopa monneiri (BM) plant extract as an inducer of protective autophagy, which 

may directly contribute to the antioxidant promoting potential of BM on B[a]P induced cell death 

through Beclin-1 dependent autophagy activation. The present study provided deep insight into 

the mechanism of B[a]P-mediated cellular toxicity and elucidated the further scope for the 

development of phytotherapeutics against environmental air pollutants. 

Keywords: Benzo[a]pyrene, cytochrome p450, aryl hydrocarbon receptor, apoptosis, autophagy, 

Bacopa monneiri 
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1.1. Introduction 

Polycyclic aromatic hydrocarbons (PAHs) are organic compounds made of two or more fused 

benzene rings in a linear or cluster arrangement (Annweiler et al., 2000; Peng et al., 2008).  

PAHs are extremely stable organic pollutants that occur ubiquitously in the environment as 

complex mixtures and are of serious concern due to their toxic, mutagenic and/or carcinogenic 

effects (IARC, 1983, 1984). They generally exist as colorless, white or pale yellow-green solid 

particulate matter with varied structures and toxicity (Atlanta, GA, 1990). In general, it is 

accepted that a greater number of benzene rings in the PAH molecule lead to increased 

hydrophobicity and toxicity of the specific PAH molecule (Bamforth and Singleton, 2005).  

Most of them are formed by a process of thermal decomposition (pyrolysis) and 

subsequent recombination (pyrosynthesis) of organic molecules. PAHs include 

benzo[a]pyrene, anthracene, 1,2-Benzpyrene, dioxin, fluoranthene, benz[a]anthracene, 

dibenzofuran, and amongst them benzo[a]pyrene (B[a]P) is the most potent as assessed by the 

Environmental Protection Agency (EPA). The compound benzo[a]pyrene, is formed by the 

fusion of tetracyclic pyrene to the alpha position of monocyclic benzene ring, and is the 

product of incomplete combustion at temperatures between 300 
o
C and 600 

o
C. B[a]P is often 

used as a marker for total exposure to carcinogenic PAHs, as the contribution of B[a]P to the 

total carcinogenic potential is high (51–64%) (Ohura T, et al., 2004). 

1.2. Source of PAHs production 

The main industrial sources of PAHs include aluminum production (Armstrong et al., 1994), 

iron steel foundries and coke production units (Boffetta et al., 1997). PAHs are predominantly 

emitted from the exhaust fumes of vehicles and are ubiquitously associated with diesel fuel, 

oils, gasoline, coal and lubricant oil. PAH exposure through dermal contact, inhalation, and 

ingestion in both occupational and non-occupational settings occurs on a consistent basis for 

most people. Some exposures may involve more than one route simultaneously, affecting the 

total absorbed dose (such as dermal and inhalation exposures from the contaminated air). All 

non-workplace sources of exposure are diet, smoking and burning coal and wood. B[a]P is one 

of the 105 reagents that were classified by the International Agency for Research on Cancer 

(IARC) to be carcinogenic to humans (group 2A, IARC 1983). The ability of B[a]P to induce  
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tumors upon local administration is well documented (Wang et al., 2015; Sánchez-Martín et al.,    

 2015). 

1.3. PAH mediated health effects 

     Cytochrome P450 (CYP450)-mediated oxidative metabolism often serves a beneficial role in 

the clearance of foreign compounds. However, the reaction catalyzed by CYP450 inadvertently 

activates pro-carcinogens to carcinogens (Rodriguez-Antona and Ingelman-Sundberg, 2006). In 

this regard, a noteworthy case is the carcinogenic effect of the diol-epoxide pathway. B[a]P is 

first activated by CYP450 monooxygenase to B[a]P-7,8-oxide, which serves as a substrate for 

hydration by the epoxide hydrolase to trans-B[a]P-7,8-dihydrodiol (B[a]P- 7,8-diol). This is 

then transformed into the ultimate carcinogen r-7,t-8-dihydrodiol-t-9,10-oxy-7,8,9,10-

tetrahydrobenzo[a]pyrene (anti-BPDE) and the less carcinogenic isomer r-7,t-8-dihydrodiol-c-

9,10-oxy-7,8,9,10-tetrahydrobenzo[a]pyrene (syn- BPDE), which has been used as a signature 

metabolite for this pathway (Fig.1.1.) (Jiang et al., 2005). BPDE can enter the nucleus to form 

deoxyguanoside−DNA adducts or adducts with proteins (Poirier et al., 2000; Gao et al., 2011). 

Much of the current information pertaining to health effects following B[a]P exposure come 

from adult occupational exposure studies and experimental animal studies, although there are 

reports on human developmental studies as well (Poirier et al., 1992; Swenberg et al., 2008). 

 

Fig.1.1. Benzo[a]pyrene activation pathway 

1.3.1. PAH exposure to skin 

 Dermal exposure to PAHs can occur in two ways: first being the direct contact with 

contaminated surfaces or equipment, and second from the airborne particulate matter. The 

deposition of vapors and the splashing of oils are common occurrences at workplaces. Mc Clean 

et al. showed that higher molecular weight PAHs are prone to dermal exposure whereas the 

lighter ones are more likely to be inhaled (Mc Clean et al., 2004; Fusinoni et al., 2010). The 
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reason for this could be that lower molecular weight compounds are more volatile and are, 

therefore, more likely to become airborne. Larger molecules, such as B[a]P are more likely to 

settle on the skin easily. 

           Our skin is a multifaceted and multifunctional organ that provides protection and acts as 

the first barrier against environmental intimidations. Xenobiotic exposure to B[a]P aggravates 

the chances of skin cancer caused by a series of genetic alterations that mainly affects cell 

growth, survival, and differentiation processes. Mutations leading to activated (proto) 

oncogenes or inactivated tumor suppressor genes play a key role in the commencement of 

cancer. Since the last decade, the incidence of skin cancer has been dramatically increased as a 

major public health burden. 

1.3.2. PAH and skin cancer 

Malignancies in the skin can be divided into cutaneous malignant melanoma, basal cell 

carcinoma, and squamous cell carcinoma (Kim et al., 2010; Peña-Vilabelda et al., 2014). 

Cutaneous malignant melanoma is the most severe skin cancer type because of its aggressive 

nature and its tendency to metastasize; for most cancers, the causative agent is unknown. The 

key event in the discovery of PAHs that cause tumors in humans was an observation by the 

British surgeon Sir Percival Pott in 1775. He proposed that scrotal cancer in chimney 

sweepworkers originated from occupational exposure to soot. In 1875 Von Volkman reported 

that elevated incidences of skin cancer in workers in the coal tar industry. Workers employed in 

the destructive distillation of coal were among the first occupational groups included in studies 

which reported an increase in scrotal and other skin cancers linked to exposure to tar or pitch. 

The occupational exposure of workers to PAHs has been associated with an increased risk of 

developing cancer of the lung, stomach, bladder, skin (including non-melanoma skin cancer) 

and blood. Many PAHs are considered to be complete carcinogens, i.e. the compounds are 

tumor initiators and promoters.  

B[a]P forms intermediary metabolites (epoxide-benzo[a]pyrene and dihydrodiol-

epoxide-benzo[a]pyrene) that can covalently bind to nucleophilic sites in DNA to form B[a]P-

DNA-adducts (Perera et al., 2015). These intermediate metabolites are thought to be the 

carcinogenic form of B[a]P that interfere with DNA replication, transcription and protein 

synthesis. B[a]P-DNA-adducts are intimately associated with their mutagenic and carcinogenic 

potency on chronic occupational dermal exposure. It was found that approximately 24% of 
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applied B[a]P penetrated the skin to enter the systemic circulation. Moreover, it reported that 

workers handling PAH-containing materials had a significant risk of developing skin cancer. 

PAHs can be activated by light irradiation without requiring metabolizing enzymes. The 

assessment of dermal exposure, on the other hand, is much more difficult as there is no general 

agreement on the wide range of available procedures or their underlying assumptions. PAHs can 

easily penetrate the lipoprotein layers of the skin, because of the complexity of its structure. 

Humans living near industrial areas experience high level of exposure to air pollutants; 

evoking oxidative stress as they interact with DNA, lipids, proteins leading to DNA mutation, 

lipid peroxidation and protein damage respectively. The common cellular mechanism that most 

industrial pollutants exert their adverse effects is their potential to act directly as pro-oxidants of 

lipids and proteins or as free radicals generators, promoting oxidative stress and the induction of 

inflammatory responses. This oxidative state has been implicated in a wide variety of 

degenerative diseases such as heart attack, chronic inflammatory diseases (rheumatoid arthritis), 

cardiovascular diseases, chest tightness, cough, loss of memory, tension, occupational fatigue 

and stress, central nervous system disorders, age related disorders and finally cancer (Dalle-

Donne et al., 2006; Uttara et al., 2009). At high levels of oxidative stress, disruption of the 

mitochondrial permeability transition pore and the electron transfer chain cause apoptotic, 

autophagic and necrotic cell death.  

1.3.3. Environmental pollution and cell death 

Toxic air pollutants are suspected to induce mutagenic transformations leading to cancer. 

Autophagy and apoptosis are two extensive stress responsive pathways that are initiated due to 

exposure to PAHs. Cellular stress can promote autophagy and apoptosis in multiple ways, 

including induction of autophagy/apoptosis sequentially, simultaneously, or in a mutually 

exclusive manner (Panda et al., 2015). In the cellular setting PAH exposure mediated 

carcinogenic tendencies are modulated in light of autophagy and apoptosis crosstalk is an 

emerging field of study which we have highlighted in this thesis. 

While, apoptosis is a type I form of programmed cell death executed by caspases that 

culminate in the rapid removal of organelles and other cellular structures. Although apoptosis is 

the major mechanism of cell death in these disease processes, autophagy plays dual roles by 

mediating cytoprotection and cell death. Autophagy on the other hand is a self-catabolic 

pathway that degrades cellular macromolecules and organelles. It is regulated by autophagy-
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related genes (Atg) that control the formation of autophagosomes, (cytoplasmic vesicles with a 

double membrane surrounding a cargo) and degraded through the lysosomal machinery 

(Mizushima et al., 2008; Ding et al., 2010; Arias et al., 2011). In addition to this 

“housekeeping” function, autophagy also plays an essential “adaptive” survival role by 

maintaining nutrient and energy levels during periods of metabolic starvation or stress (Bhutia 

et al., 2011; Bhutia et al., 2013). 

         

Fig.1.2. Apoptosis and Autophagy pathways  
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Fig.1.3. Connection between autophagy and apoptosis (Mukhopadhyay et al., 2014) 
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Fig.1.4. Connection between autophagy and extrinsic and intrinsic apoptosis pathways (Mukhopadhyay et al., 

2014). 

Cellular stress triggers a fascinating decision-making process in cells; they can either 

attempt to survive until the stress is resolved through the activation of cytoprotective pathways, 

such as autophagy, or can commit suicide by apoptosis in order to prevent further damage to 

surrounding healthy cells (Wang et al., 2015; Yang et al., 2015; Fiorito et al., 2011; Deng et 

al.,2013; Gannon et al., 2013). Although autophagy and apoptosis constitute distinct cellular 

processes with often opposing outcomes, their signaling pathways are extensively 

interconnected through various mechanisms of crosstalk (Fig.1.2.,1.3.) (Rubinstein et al., 2012; 

Mukhopadhyay S, Panda et al., 2014; Fernández et al., 2015). The physiological relevance of 

the autophagy–apoptosis crosstalk is not well understood, but it is presumed to facilitate a 

controlled and well-balanced cellular response to a given stress signal. Whether autophagy 

enhances or inhibits cell death in response to cellular stress is controversial. Furthermore, 

crosstalk occurs between the mediators of autophagy and apoptosis proved the interrelation 

between autophagy and apoptosis. In this thesis, we explore the various mechanisms by which 

autophagy and apoptosis regulate each other and define general paradigms of crosstalk on the 

basis of mechanistic features upon B[a]P treatment. The multiple layers of connectivity between 

autophagy and apoptosis that govern the delicate balance associated with cellular homeostasis 

along with various pathologies, such as cancer are highlighted in this work. 
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2.1. Introduction 

Human who live in urban areas near to industrial zones are exposed to high levels of particulate 

matters, including a variety of polycyclic aromatic hydrocarbons (PAHs). PAHs are aromatic 

hydrocarbons that have two or more single or fused aromatic rings with a pair of carbon atoms 

shared between rings (Baron et al., 2012; Stewart et al., 2010). They include benzo[a]pyrene 

(B[a]P), anthracene, 1,2-benzpyrene, dioxin, fluoranthene, benz[a]anthracene, and 

dibenzofuran; among them, benzo[a]pyrene (B[a]P) and dioxin are the most potent according to 

the Environmental Protection Agency. PAHs can impair human health by causing damage to the 

immune system, reduced fertility, developmental abnormalities, and respiratory damage; 

additionally, they promote the development of various types of cancer (Peluso et al., 2008; 

Tanyanon et al., 2012). 

At the cellular level, PAHs are oxidized by many cytochrome P450 (CYP450) enzymes 

to several intermediates which binds to nuclear DNA. This binding results in mutation, 

replication errors, and apoptosis-mediated cell death. Furthermore, PAHs cause DNA damage 

and somatic mutations in normal cells, culminating in malignancy. They induce cellular toxicity 

by regulating the generation of reactive oxygen species (ROS), which mediate apoptosis. 

Moreover, most PAHs induce phosphorylation and the aggregation of the tumor suppressor 

protein p53, leading to the formation of DNA adducts followed by apoptosis (Kampa and 

Castanas, 2007). Interestingly, cellular toxicity-mediated cell death and immune suppression by 

industrial pollutants provide fertile ground for the proliferation of mutated cells, resulting in 

cancer growth and progression (Spinelli et al., 2006). This review is focused on the current state 

of research on PAHs from unwanted byproducts of incineration, uncontrolled burning, and 

automobile exhausts and their molecular mode of action for the initiation and development of 

cancer. Furthermore, it provides molecular insight into possible new therapeutic approaches to 

inhibit PAH-mediated cell death and carcinogenesis.  

2.2. Cytochrome P450 induction is mediated by aryl hydrocarbon receptor 

Polymorphism in CYP genes can affect the capacity to convert precarcinogens into carcinogens, 

which is an important factor contributing to individual susceptibility to cancer development 

(Rodriguez-Antona and Ingelman-Sundberg, 2006). CYP450s are monooxygenase enzymes that 

include a heme group responsible for the binding of molecular oxygen to iron. Human CYP450s 

are primarily membrane-associated proteins located either in the inner membrane of the 
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mitochondria or the endoplasmic reticulum of cells (Williams et al., 2000). Presently, more than 

57 active human CYP450 genes and 58 pseudogenes have been identified (Nelson et al., 2004). 

There are innumerable CYP450 types. For example, CYP1A1 is expressed extra-hepatically, and 

CYP1A2 and CYP1B1 are mainly expressed in the liver, skin, and brain, indicating a very 

different basal regulation, despite shared induction via the aryl hydrocarbon receptor (AHR) 

(Moffat et al., 2011). CYP1A1 and CYP1B1 are the most important human P450 enzymes 

involved in the metabolic activation of PAHs and PAH dihydrodiols to carcinogenic 

intermediates, whereas CYP1A2 activates aromatic amines. For example, B[a]P, released from 

various industrial activities, is first oxidized by CYP1A1 or CYP1B1 to phenols, such as 3-

hydroxy-B[a]P and 9-hydroxy-B[a]P, and epoxides (e.g., B[a]P-7,8-epoxide) (Jiang et al., 2005; 

Das et al., 2014). The most well-studied PAH, B[a]P, is transformed in vivo to BP-7,8-epoxide 

by CYP1A1 through the CYP/EH pathway. Furthermore, BP-7,8-epoxide is later oxidized to 

form BP-7,8-dihydrodiol, by EH followed by the final step of CYP1A1-catalyzed hydroxylation 

to form the carcinogen BP-7,8-dihydrodiol-9,10-epoxide (BPDE). Among the abundant 

metabolites identified, BPDE most effectively forms DNA adducts and serves as a putative 

carcinogen (Gao et al., 2011). Similarly, dioxins, especially 2,3,7,8-tetrachlorodibenzo-para-

dioxin (2,3,7,8-TCDD), are activated by CYP1B1 and CYP1A1 (Jeyabalan et al., 2011). There 

are approximately 75 types of PCDDs (polychlorinated dibenzo-p-dioxins); among them, 

2,3,7,8-tetraCDD is the most significant due to its high toxicity and its persistence. Thus, 

2,3,7,8-tetraCDD and 2,3,7-triCDD are converted into 8-OH-2,3,7-triCDD by cytochrome P450 

(Shinkyo et al., 2003). The major metabolite of 2,3,7,8-tetraCDD observed in dog and rat 

species is 8-OH-2,3,7-triCDD, and the glucuronide conjugate of 8-OH-2,3,7-triCDD was 

experiential in the case of rat hepatocytes treated with 2,3,7,8-tetraCDD (TCDD) (Kasai et al., 

2004). 

B[a]P and TCDD bind to cytosolic AHR, which exists in a latent state as a multiprotein 

complex containing a heat shock protein 90 (HSP-90) dimer and the co-chaperone protein X-

associated protein 2 (XAP2) (Beischlag et al., 2008). Upon binding with ligand, AHR 

undergoes a conformational change that exposes its N-terminal nuclear localization sequence, 

facilitating the nuclear translocation of the AHR–xenobiotic (ligand) complex. The translocated 

HSP90-bound AHR subsequently dissociates from the HSP90 complex by binding to a 

structurally allied nuclear protein, AHR nuclear translocator, which forms a heterodimer with 
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AHR. This heterodimer is capable of binding to a xenobiotic-responsive element with the 

sequence 5ʹ- T/G/TCGTGA/CG/TA/T-3ʹ, which can induce the transcription of several CYP 

enzymes that are significant in the metabolism and bioactivation of PAHs (Murray et al., 2014) 

(Fig.2.1.). In addition, AHR has a role in cell proliferation, differentiation, cell–cell adhesion, 

cytokine expression, and mucin production, facilitating tumor progression (Tsay et al., 2013). In 

A549 cells, AHR activation increases the expression of several E2F1 target genes that are 

involved in cell cycle control, such as proliferating cell nuclear antigen (Watabe et al., 2010). 

TCDD increases vascular endothelial growth factor expression through AHR in bronchial 

epithelial cells, which might contribute to angiogenesis (Tsai et al., 2015). 

2.3. Mechanisms by which polycyclic aromatic hydrocarbons affect cellular processes 

A common cellular mechanism by which most of the PAHs exert adverse effects is their 

propensity to act directly as pro-oxidants of lipids and proteins or as free radical generators, 

promoting oxidative stress and the induction of inflammatory responses (Kampa and Castanas, 

2007). Free radicals (reactive oxygen and nitrogen species) are injurious to cellular lipids, 

proteins, and nuclear or mitochondrial DNA, inhibiting their normal function, as well as 

interfering with the signaling pathways within cells. 

2.3.1. Free radicals, oxidative stress, and genotoxicity with PAHs 

Free radicals and ROS inflictors are mostly derived from metabolite derivatives in the human 

body or from external sources, such as exposure to PAHs. During PAH exposure, oxidative 

stress arises when there is an imbalance between ROS formation and individual antioxidant 

activity, potentially leading to the damage of lipids, proteins, and macromolecules, such as 

DNA and RNA (Rao and Kumar, 2015). For moderate levels of oxidative stress, nuclear factor 

(erythroid-derived 2)-like 2 (Nrf2), a protective response pathway member, is activated, 

resulting in mitogen activated protein kinases (MAPK) and nuclear factor kappa light chain 

enhancer of the activated B cell (NF-κB) (a redox-sensitive transcription factor)-induced pro-

inflammatory responses (Kang et al., 2012; Sandberg et al., 2014). Nrf2 regulates the expression 

of innumerable cytoprotective genes that function to detoxify reactive species produced during 

metabolic reactions owing to ambient air pollutants, highlighting the important role of Nrf2 in 

the defense against air pollutant-induced toxicity (Rubio et al., 2010). Sustained activation of 

NF-κB pathway is involved in some forms of cancer, such as leukemia, lymphoma, colon 
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cancer, and ovarian cancer (Hoesel and Schmid, 2013). These diseases manifest at a certain age 

determined by genetic and environmental factors. Initiation and proliferation of cancer typically 

involves chromosomal defects and oncogene activation. For high levels of oxidative stress, the 

perturbation of the mitochondrial permeability transition pore and the electron transfer chain 

cause apoptosis, autophagy, and necrotic cell death. ROS cause strand breaks, alterations in 

guanine and thymine bases, and sister chromatid exchanges, and may inactivate tumor 

suppressor genes within tumor cells or increase the expression of proto-oncogenes (Khaitan and 

Dwarakanath, 2009) (Fig.2.2.). 

2.3.2. PAHs forms adducts with DNA, lipids, and protein 

PAHs interact with cellular macromolecules, such as DNA, lipids, or protein, in the target 

tissue, which causes damage (Fig.2.2.). Unrepaired DNA adducts can cause mutations in 

somatic cells that initiate carcinogenesis. In chemical carcinogenesis, the formation of 

carcinogen–DNA adducts is a critical step and is considered an important biomarker during 

cancer initiation. For example, after activation by CYP450, B[a]P converts into activated 

derivatives containing epoxide groups, which tend to react with atoms that are electron-rich, 

such as the amino nitrogen found in the DNA base guanine. The reaction of the epoxide group 

with guanine causes the B[a]P to bond covalently to DNA, thereby forming a DNA-carcinogen 

complex called a DNA adduct (Tarantini et al., 2009; Einem Lindeman et al., 2011). TCDD-

induced CYP1B1, which enhances estrogen metabolism and the formation of DNA adducts, 

seems to play an important role during human breast malignancy (Cavalieri and Rogan, 2006). 

DNA adduct formation depends on polymorphism in metabolic genes, such as CYP1A1, MspI, 

and GSTM1 null genotypes (Rojas et al., 2000). Associations between PAH exposure and the 

number of PAH-DNA adducts have been found, between coke oven exposure and PAH-DNA 

adducts in blood cells (Jedrychowski et al., 2013). 

    Lipids are good source of energy and are the main constituent of cellular membrane and tissue. 

However, several observations suggest that lipids are involved in carcinogenesis. About 50% of 

all cancer patients show cachexia, a syndrome in which lipids are easily peroxidized to lipid 

peroxides by free radicals (Fearon et al., 2012). For example, BPDE–lipid adduct formation was 

detected in vitro and in vivo after exposure to BPDE-I or B[a]P. The generation of the BPDE–

lipid complex in vitro indicated that triglycerides (TG), including tripalmitin, triolein, and 

tristearin, are likely target lipids for BPDE-I. TGs play a crucial role in transporting fatty acids to 
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varied tissues during the biosynthesis of many lipids. They show positive reactions with BPDE. 

In contrast, cholesterol, phospholipids, and non-esterified fatty acids do not react with BPDE-I, 

an ultimate carcinogenic form of B[a]P that binds covalently to TGs. Formation of the BPDE-I-

TG adduct occurs due to the covalent binding of position 10 of BPDE-I to the TG ester bonds 

 

Fig.2.1. Schematic diagram of basic model of the molecular events associated with polycyclic aromatic 

hydrocarbons (PAHs) at cellular level. On binding a xenobiotic compound, the aryl hydrocarbon receptor (AHR) 

complex translocates to the nucleus and Aryl hydrocarbon receptor nuclear translocator (ARNT) mediates HSP90 

displacement leading to the formation of AHR-ARNT heterodimer. This heterodimer is capable of binding to a 

xenobiotic responsive element (XRE) with the sequence 5’-T/G/TCGTGA/CG/TA/T-3’. The AHR-ARNT 

heterodimers can recruit co-activators leading to transcription of a wide diversity of genes, with the RNA 

polymerase II. The AHR target gene Cyp 450 is dependent on AHR activity for expression and is highly induced 

by AHR activation through multiple XRE. The Cyp450 specifically Cyp1, Cyp2 and Cyp3 metabolizes a number 

of pro-carcinogens, such B[a]P and TCDD leads to mutation, rate of proliferation changes, apoptosis, autophagy, 
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mitochondrial dysfunction, activation and suppression of immune cells leading to cell toxicity and carcinogenesis. 

Interestingly, it has not yet been established whether the native or active PAHs bind with AHR and regulates 

cellular processes is not known.  

between the glycerol portion and free fatty acids of TG. The BPDE-I-TG adduct is important 

evidence that lipids (especially in esterified form) can be directly damaged by reactive 

carcinogens (Godschalk et al., 2003). Lipids are abundant in human tissues and becomes 

susceptible to carcinogen exposure. If carcinogen-derived lipid damage occurs, it could be 

useful as an alternative to DNA or protein adducts (Phillips, 2002). 

 

 

Fig.2.2. Role of activated PAHs on genotoxic and non-genotoxic effects.  After activation by cytochrome P450, 

PAHs cause DNA damage and somatic mutations in normal cells. It can act directly as pro-oxidants of lipids and 

proteins or as free radical generators by promoting oxidative stress, lipid peroxidation and inducing inflammatory 

responses. Moreover, cellular toxicity mediated cell death and immune suppression by PAHs provide a fertile 

ground for proliferation of mutated cells that resulted in cancer growth and progression. 
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A study showed that protein adducts, including hemoglobin (Hb) adducts is formed via 

aromatic amines (e.g., 4-aminobiphenyl) in children (Richter et al., 2001). Hb adducts can be 

used as biomarkers of internal exposure and of environmental and occupational exposure 

(Begemann et al., 2001). The formation of carboxylic esters generated due to BPDE alkylation 

of one or more carboxylate groups in Hb has also been demonstrated. These studies have shown 

that ester adducts are the most abundant type formed by BPDE and are stable in native Hb. 

However, when the tertiary protein structure is disrupted, they release benzo[a]pyrene tetrols 

(BPTs), which are considered as typical marker of exposure to B[a]P. Benzo[a]pyrene diol 

epoxide adducts with Hb are measured to detect human exposure to environmental B[a]P 

released from traffic exhaust (Ogawa et al., 2006). 

2.4. Mechanism of PAH-mediated carcinogenesis  

2.4.1. PAHs and multistage characterization of carcinogenesis  

Carcinogenesis due to chemical treatment is a complex, multistage process typically elapses 

between early events, including the initial carcinogen exposure, the onset of DNA damage, 

occurrence of mutations, and the subsequent appearance of a tumor (Chepelev et al., 2015). 

Initially, electrophilic metabolites interact with DNA, which may change the nucleotide 

sequence due to the misincorporation of a nucleotide opposite to the damaged base. Mutations 

occur when electrophilic chemicals or metabolites bind to DNA. The alteration in DNA 

structure causes the DNA sequence to be misread during cell replication, ultimately (Fig.2.3.). 

Several lines of evidence support the role of PAH-DNA adducts in the transformation of 

normal cells to cancerous cells, including in vitro studies and those using animal models. The 

preeminent example is the role of PAH-DNA adducts in the development of human cancer. The 

distribution of BPDE and other PAH diol epoxide adducts has been mapped at the nucleotide 

level of p53 gene in PAH induced bronchial cells (Uccello et al., 2000). The strong sequence-

specific formation of BPDE-DNA adducts in p53 of bronchial epithelial cells  in vitro occurs at 

the same positions as well-known mutational hotspots in p53 found in DNA obtained from 

human lung cancer tissue. A high dosage of oral B[a]P (125 mg/kg/day) causes mutations in the 

mouse Cyp1a1 gene, which results in immunosuppression and death within approximately 28 

days (Johnson et al., 2008). Interestingly, in B[a]P-treated cells, the distribution of BPDE-N2-



17 

 

      Durgesh Nandini Das, Department of Life Science, National Institute of Technology, Rourkela: PhD Thesis 

dG adducts in the p53 tumor suppressor gene is highly correlated with p53 mutational hotspots 

found in lung tumors from cancer patients. These studies provide compelling evidence that 

environmentally induced BPDE-N2-dG adducts inactivate p53 via mutagenesis, thereby 

contributing to lung cancer in humans. Tumor localisation varies upon exposure route of the 

chemical carcinogen. Inhalation of B[a]P often induces lung cancer, and oral administration 

leads to tumors in various organs and tissues, including the gastrointestinal tract, liver, lungs, 

and mammary glands (Benford et al., 2010). Moreover, the effects of B[a]P on cancer 

metastasis and progression have been studied and the NF-κB pathway is found to be a potential 

target. Specifically, the NF-kB pathway may be related to adverse outcomes associated with the 

cumulative effects of B[a]P on human hepatocellular carcinoma metastasis (Ba et al., 2015). 

Wang et al. showed that B[a]P induces phosphorylation of ERK1/2 via phosphorylation and 

activation of Chk1, resulting in S phase accumulation of human H1355 lung cancer cells (Wang 

et al., 2015). Guo et al. validated that B[a]P increases breast cancer cell migration and invasion 

via upregulation of the ROS-induced ERK signaling pathway, and also promotes the activation 

of matrix metalloproteinase-9 (Guo et al., 2015). 

Similarly, dioxins interact with AHR, which has a basic helix-loop-helix domain, and 

act as transcription factors after nuclear translocation, allowing the interaction of dioxins with 

DNA. The receptor-ligand complex binds to specific sites on DNA, altering the DNA structure 

and the transcription of a number of genes. TCDD is regarded as one of the most potent 

carcinogens ever tested in animal bioassays, and bioaccumulates in broad animal taxa (Yang 

and Rhim, 1995). In rodents, dioxin was reported to act more than a hepatocarcinogen by 

causing thyroid cell adenomas, squamous cell carcinomas of nasopharynx, as well as several 

types of fibrosarcomas. Malignant transformation has also been observed in immortalized 

human keratinocyte cell lines after a week of exposure to TCDD and in six subsequent 

subcultures (Ray and Swanson, 2004). Pavanello et al. recently showed that the shortening of  

telomeric length in peripheral blood occurs in workers unprotected from PAH exposure was  

predicted to lung cancer risk (Pavanello et al., 2010). 

2.4.2. DNA damage and genetic mutations associated with PAHs  

Generally, DNA damage forms the first step in the carcinogenic process. Chemical carcinogens 

can cause the formation of carcinogen-DNA adducts or induce other modifications to DNA, such 

http://www.sciencedirect.com/science/article/pii/S0027510715000202
http://www.sciencedirect.com/science/article/pii/S0378427415000831
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as oxidative damage and alterations to the DNA ultrastructure (e.g., DNA strand breakage, 

DNA-strand crosslinking, chromosomal rearrangements, and deletions). Although cells possess 

mechanisms to repair many types of DNA damage, they are never fool-proof and are not always 

completely effective. Transcription of the mutated templates ultimately leads to the synthesis of 

altered proteins (Fig.2.2. and 2.3.).  

  The industrial activity in the city of Leon, Mexico is related to shoe manufacturing. The 

working environment in the region is contaminated by rampant usage of organic solvents. The 

incidence of nuclear aberrations is significantly higher in exposed individuals than in unexposed 

individuals (or, than in a control group). Assays of micronuclei and other nuclear anomalies are 

a valid, practical, and easy way to measure genetic instability induced by genotoxic agents. 

Micronuclei are extra-nuclear bodies composed of chromosomes or chromosomal fragments 

that failed to be incorporated into daughter nuclei at mitosis (Zalacain et al., 2005). 

Micronuclear formations are resulted due to chromosomal damages related to carcinogenesis 

(Crasta et al., 2012). 

It is generally agreed that several mutations are necessary to convert a normal cell into a 

cancer cell that is capable of uncontrolled growth. The formation of stable PAH-DNA adducts 

can lead to the induction of mutations that activate proto-oncogenes (Rybicki et al., 2006). 

Activation of the H-ras proto-oncogene may be involved in tumor initiation in mouse skin by 

various carcinogenic PAHs (Godschalk et al., 2003). Nucleotide transversion within codons 12 

(G-T) or 61 (A-T) of cellular H-ras have frequently been identified in response to exposure to 

carcinogenic PAHs, such as B[a]P. Similarly, tumor suppressor genes are inactivated during 

carcinogenesis. Mutations in p53 gene was found in animal tumors and in a wide variety of 

human cancers. Approximately 50% of patients in those areas had a relatively rare G to T 

transversion at codon 249 (Hsu et al., 1991). 

There is a growing interest in the relationships among carcinogenic exposures, the risk 

of cancer at specific sites, and mutation spectra in cancer-related genes (i.e., oncogenes and 

tumor suppressor genes). Strong and selective formation of adducts by 7,8,9,10-

tetrahydobenzo[a]pyrene at guanines in CPG sequences (i.e., -C-phosphate-G-) has been found 

at codons 157, 248 and 273 of the p53 gene, which are mutational hotspots in lung cancer 

(Schuller et al., 2011). Therefore, methylated CpG dinucleotides are a target for chemical 

carcinogens in cancer genes. Moreover, epidemiological studies have shown that paternal 
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exposure to organic solvents containing PAHs escalates the risk of childhood brain tumors in 

the offspring (Cordier et al., 2004). 

2.5. PAHs act as modulators of cell death (apoptosis and autophagy) 

Cell death by apoptosis occurs via the coordinated action of many different gene products. 

Particulate pollutants are considered to be potent oxidants, and induction of the intrinsic apoptosis 

pathway may be associated with oxidative stress generated from organic compounds (i.e., PAHs 

and nitro-PAHs/ketones/quinones) as well as inorganic compounds adsorbed on the surfaces of 

particles (Andersson et al., 2009).  For example, B[a]P induces apoptosis-like cell death mediated 

viathe mitochondrial pathway in a p53-dependent manner in hepatic cells and macrophages (Van 

Grevenynghe et al., 2004). 

 

 

 

 

 

 

 

 

 

 

 

Fig.2.3. Chemical carcinogenesis is a multistep process.  PAHs after activation with cytochrome P450, in normal 

cell DNA adduct formation take place, which plays a role in carcinogenesis; main stages of carcinogenesis: (a) 

Initiation stage- is based on DNA mutation which inflict DNA damage in a variety of ways, altering or removing 

individual bases and triggering breaks in one or both DNA strands, (b) Promotion stage-initiated cell is stimulated 

to proliferate, (c) Tumor progression stage, further mutations and epigenetic changes in gene expression generate 
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variant cells exhibiting enhanced growth rates on other aggressive properties that give assured cells a selective 

advantage to proliferate their companions and become the predominant cell population in the tumor formation. 

Moreover, a low concentration of B[a]P induces apoptosis in the rat hepatic epithelial F258 cell 

line through multiple pathways. In addition to the activation of the p53 apoptotic pathway, the 

production of H202 during B[a]P metabolism is responsible for early NHE1 activation, which 

results in intracellular alkalinization. Both the p53 and NHE1 pathways induce mitochondrial 

dysfunction, which is responsible for the late phase of ROS production and secondary 

intracellular acidification (Huc et al., 2007). Interestingly, B[a]P-7,8-dihydrodiol is linked to the 

activation of AHR and the induction of CYP1A1, leading to the formation of BPDE-2, which 

induces apoptosis in the human HepG2 cell line (Roh et al., 2012). Moreover, B[a]P induces 

apoptosis in keratinocytes through oxidative and nitrosative stress, which is accompanied by 

complex changes in eNOS phosphorylation  and changes in the Akt and MAPK pathways 

(Bölck et al., 2014). Aluminum and B[a]P exert synergistic effects on neural cells to induce 

apoptosis, and this effect is characteristic of neurodegenerative diseases (Jinzhu et al., 2015). 

Similarly, TCDD-induced apoptosis is accompanied by p53 accumulation and an imbalance of 

Bax/Bcl2. The induction of apoptosis by TCDD through the modulation of Bcl2 and Bax, 

release of cytochrome c, and subsequent caspase 3 activation and increased apoptosis after 

TCDD exposure has been demonstrated in several cell types, such as T-cells (Kobayashi et al., 

2009), dendritic cells (Singh et al., 2009), and pituitary cells (Huang et al., 2005). 

It is generally accepted that the inhibition of apoptosis plays a role in the carcinogenic 

process. Loss of apoptosis can affect tumor initiation, progression, and metastasis, and 

mutations in many cancer-related genes can disrupt the apoptotic pathway. TCDD was 

reported to show antagonistic effects in various well reported instances of DNA damage-

induced apoptosis in a human mammary epithelial cell line (Park and Matsumura, 2006) and 

in rat hepatocytes (Chopra et al., 2009). TCDD is reported to inhibit apoptosis initiated by 

EGF withdrawal in a normal human mammary epithelial cell line (Davis et al., 2000). 

Generally, activation mediated by EGFR and IGF-receptor, and their cognate signaling 

pathways act as a potential mechanism of mammary tumor promotion and progression. 

TCDD inhibits DNA fragmentation and suppresses intensification in phosphorylation of p53. 

Interestingly, TCDD  trigger genotoxic damage by p53 pathway in rat liver, both in vitro and 
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in vivo (Paajarvi et al., 2005). In human MCF-10A mammary epithelial cells, TCDD protects 

cells from apoptosis induced by a variety of stimuli (Park and Matsumura, 2006). TCDD 

inhibits apoptosis induced by genotoxic treatment, both in vitro and in vivo in innumerable 

models of human, rat, and mouse origin (Chopra et al., 2009). In addition, TCDD at a low 

concentration induces cell death by autophagy in Madin-Darby bovine kidney cells (Fiorito et 

al., 2011). At higher concentrations, it induces protective autophagy along with apoptosis 

through ROS generation in SH-SY5Y cells. Additionally, the inhibition of autophagy with 3-

methyladenine significantly improves TCDD-mediated apoptosis (Zhao et al., 2015). 

2.6. Activation and suppression of immune cells with PAHs  

There exists a high prevalence of allergy-based diseases in individuals residing in industrial 

belts. Allergic diseases epitomize a major health problem and are linked to affluence and a 

modern lifestyle. Workers from different industries show alterations in the immune response, 

including the innate and adaptive systems. For example, people who work in stainless steel 

welding show alterations in phagocytic activity as well as cellular and humoral immunity. B[a]P 

can stimulate IL-8 gene expression in A549 lung epithelial cells with the induction of NF-κB 

activation. Overexpression of IκBα inhibits 1-NP, which induces the transcription of IL-8. This 

indicates that PAH-induced IL-8 regulation may be mediated by NF-κB (Gentner and Weber, 

2011). Moreover, TCDD can act directly on peritoneal macrophages, resulting in increases in 

tumor necrosis factor (TNF) production (Nohara et al., 2000). Accordingly, air particle exposure 

leads to an influx of neutrophils to tissues, which can be directed by numerous chemotactic 

mediators and which can increase the release of cytokines such as IL-8, TNF, and IL-1β (Saberi 

Hosnijeh et al., 2012).  

In contrast, a study has shown that PAHs inhibit the differentiation of human monocytes 

into macrophages, as demonstrated by endocytosis, phagocytosis, LPS-triggered production of 

TNFα, and stimulation of allogeneic lymphocyte proliferation (Song et al., 2004). Similarly, 

exposure to TCDD, which induces AHR activation, leads to the suppression of both humoral 

and cellular immune responses and results in increased susceptibility to various types of 

infections (Stevens et al., 2009). TCDD also suppresses T cell-dependent B cell antibody 

production, persuades thymocyte loss, thymocyte proliferation arrest, and premature emigration 

of T-cell progenitors, and inhibits the CD8+ T cell response to influenza infections, indicating a 

role of AHR activation in the suppression of T cell-mediated immunity. It also increases the 
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toxicity of lipopolysaccharides on mice by enhancing the production of TNF-α and IL-1 by 

macrophages (Sulentic and Kaminski, 2011). Additionally, it decreases survival and enhances 

IFN-γ production in mice infected with influenza by an AHR-independent mechanism in bone 

marrow-derived cells (Neff-LaFord et al., 2007). In mice, dimethylbenzanthracene, B[a]P and 

methylcholanthrene suppress  antibody production against both T-dependent and T-independent 

antigens. Indirect evidence has shown that children and adults with B cell-pertinent primary 

immunodeficiency syndromes exhibit reduced circulating immunoglobulins, and are prone to 

recurrent infections and allergic diseases. This leads to an eminent risk for non-Hodgkin 

lymphoma, and the increased occurrence of non-Hodgkin lymphoma has been reported in 

TCDD-exposed individuals.  It is assumed that exposure to low and moderate levels of 

industrial pollutants generate a strong immune response, which results in allergic diseases.  

However, high doses of PAHs in an industrial area are associated with immune suppression by 

altering B- and T-cell maturation or function, and this regulates cancer progression. Moreover, 

TCDD can induce regulatory T cell production, suggesting that the existence of endogenous 

AHR ligands enhances regulatory T cell production in the tumor microenvironment (Funatake 

et al., 2008). 

2.7. Modulation of cytochrome P450: Novel options for cancer therapeutics 

Cytochrome P450 enzymes, especially isozymes of the P450 families 1, 2, and 3, are responsible 

for the metabolism of a wide assortment of PAHs with reactive intermediates, leading to many 

cellular and molecular alterations that mediate carcinogenesis. Prospective strategies targeting 

P450 inhibition could improve potential cancer preventative and therapeutic agents and the 

development of new selective inhibitors of these enzymes is a great challenge. Clinical studies 

and in vitro experiments have demonstrated that the combined administration of anticancer drugs 

and CYP enzyme inhibitors affect the efficacy of cancer therapy drugs. Anticancer bioactive 

compounds, including flavonoids, polyphenols, and several derivatives from fruits, contain a 

large number of CYP enzyme inhibitors that might have protective effects against PAH-mediated 

carcinogenesis. For example, resveratrol, an anticancer compound found in several fruits, 

including raspberries, blueberries, cranberries, peanuts, and some species of pine trees, inhibits 

CYP1A1 in humans and has a protective function against tumor formation and carcinogenesis 

(Chun et al., 2005). Interestingly, 2,4,3',5'-tetramethoxystilbene (2,4,3',5'-TMS), a methoxy 



23 

 

      Durgesh Nandini Das, Department of Life Science, National Institute of Technology, Rourkela: PhD Thesis 

derivative of resveratrol, significantly suppresses 7-ethoxyresorufin-O-deethylase (EROD) 

activity and CYP1A1 and CYP1B1 induction by TCDD, and induced apoptosis in human tumor 

cells, including HepG2, MCF-7, and HL-60 cells (Han et al., 2011). Similarly, capsaicin, a 

constituent of peppers that inhibits 3-methylcholanthrene (3-MC) induces CYP1A1 through the 

activation of C/EBPb and blocks the AHR signaling pathway (Poon et al., 2013). The 

consumption of fruits and vegetables is chemopreventive, and naringenin, a citrus flavonoid, 

suppresses CYP1B1 expression at the transcriptional level induced by 7,12-

dimethylbenz(a)anthracene (DMBA) by antagonizing xenobiotic-responsive element binding in 

MCF-7 cells (Hidaka et al., 2004). Pineapple juice contains bromelain, which degrades CYP2C9 

and acts as a potent inhibitor in liver microsomes (Fenneteau et al., 2010). In another study, 

furanocoumarins from grape fruits and from the juice of other fruits, such as banpeiyu, 

pomegranate, star fruit, and black berries, were also found to inhibit CYP3A (Fujita et al., 2003; 

Hidaka et al., 2006). The anticancer agent β-lapachone, a quinone isolated from lapacho 

trees,was shown to inhibit all CYP isozymes tested, including CYP1A2, CYP2A6, CYP2C8, 

CYP2C9, CYP2C19, CYP2D6, and CYP3A4 (Kim et al., 2006). 

Fruits and vegetables consumption along with clinically administered drugs may cause 

interactions between bioactive agents in fruits and vegetables and drugs by pharmacokinetic 

regulation, which results in an upsurge in toxicity or a decrease in therapeutic effect (Rodríguez-

Fragoso et al., 2011). Future research regarding the chemoprevention associated with flavonoids 

and other dietary phenolics should be highlighted as therapeutic agents. 

2.8. Scope of present investigation 

PAHs are considered new members of the growing group of harmful air pollutants, creating 

havoc in our ecological balance and promoting carcinogenesis. B[a]P is the most potent 

according to the Environmental Protection Agency. The B[a]P has been the source of increasing 

concern in the human health due to wide-spread dispersion in the environment and the adverse 

health effects including carcinogenesis associated with PAHs exposure. The B[a]P induces 

cellular toxicity through regulation of the generation of reactive oxygen species (ROS) mediated 

apoptosis. Moreover, B[a]P induces phosphorylation and aggregation of tumor suppressor 

protein p53 leading to the formation of DNA adduct followed to apoptosis. In addition, B[a]P is 
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oxidised by many cytochrome P450 enzymes to several intermediates which have the ability to 

bind to the nuclear DNA covalently and this binding result in the mutation, replication error and 

apoptosis mediated cell death. This thesis is mainly focused on elucidating the mechanism of 

B[a]P-mediated cellular toxicity and elucidating the further scope for the development of 

potential inhibitors against environmental air pollutants. In addition, this thesis is embodied 

with another discovery, Bacopa monneiri (BM) plant extract as an inducer of protective 

autophagy, which may directly contribute to the antioxidant promoting potential of BM on 

B[a]P induced cell death through Beclin-1 dependent autophagy activation. 

Objective of the research 

The following objectives are investigated to study the mechanisms of benzo[a]pyrene mediated 

apoptotic and autophagic cell death and its prevention.  

1. In vitro mutagenic and genotoxic effects of native airborne particulate matter and its clinical 

significance. 

2. Prediction and validation of apoptosis through cytochrome P450 activation by benzo[a]pyrene. 

3. Benzo[a]pyrene mediated mitochondrial stress induces autophagy-dependent cell death. 

4. Cytoprotective activity of Bacopa monneiri against benzo[a]pyrene induced apoptosis through    

modulation of autophagy. 
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Abstract 

Epidemiologic studies have shown that airborne particulate matter (PM) exposure has both 

acute and chronic effects on human health. Here, we examined the potential adverse health 

effects of PM using data collected in the urbanized Rourkela City, Odisha, India. The PM was 

found to contain benzo[a]pyrene and other unidentified molecules, which had significant 

mutagenicity potential as demonstrated with the Ames test. We studied the effect of PM on 

immortalized human keratinocyte (HaCaT) cells and PM-induced DNA damage and pro-

apoptotic signaling. Our study showed that the generation of reactive oxygen and nitrogen 

species after PM exposure could induce cellular oxidative stress and apoptosis. An increase in 

7-ethoxyresorufin-O-deethylase (EROD) activities was observed in a dose-dependent manner in 

the presence of PM. Moreover, genetic and pharmacological inhibition of cytochrome P450 1B1 

(CYP1B1) resulted in suppression of PM-induced apoptosis in HaCaT cells, confirming the 

crucial role of CYP1B1 in PM-induced apoptosis. Blood analysis by immunophenotyping and 

the comet assay did not show significant differences between samples obtained from people 

from industrial and non-industrial zones, in terms of alternations in immune cells and DNA 

damage activity, indicating that PM did not affect the people living in Rourkela City. In 

summary, this study provides an indication of potential environmental issues in Rourkela City 

and the preventive management required in the future to improve human health.  

Keywords: Particulate matter; Cytochrome P450; Apoptosis; DNA damage; Reactive oxygen 

and nitrogen species 
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3.1. Introduction  

Particulate matter (PM) is the component of air pollution believed to be responsible for many 

adverse health effects; the health impact depend on the pollutant type and concentration, length 

of exposure, other coexisting pollutants, and individual susceptibility. Most studies involving 

PM have often represented particles with mass concentration smaller than 10 μm (PM10) or 2.5 

μm (PM2.5). Moreover, the metal content and the presence of polycyclic aromatic hydrocarbons 

(PAHs) and other organic components, such as endotoxins, mainly contribute to PM toxicity 

(Valavanidis et al., 2008; Barakat-Haddad et al., 2012). 
 

PM, from industries and other different exhausts, is associated with adverse health effects, 

and numerous epidemiological studies have revealed increased morbidity and mortality due to 

PM (Pope et al., 2006; Beyea et al., 2013; Strak et al., 2013). These health effects include 

damage to the immune system, reduced fertility, developmental, respiratory, and other health 

problems. Moreover, it is thought to aggravate chronic respiratory and cardiovascular diseases, 

alter host defenses, damage lung tissue, and presumably contributes to cancer in addition to 

resulting in premature death (Brook et al., 2004; Atkinson et al., 2014). The PM fraction of air 

pollution contains a number of constituents that may increase the generation of reactive oxygen 

species (ROS) by a variety of reactions, such as transition metal catalysis, metabolism, redox 

cycling of quinones, and inflammation. PM causes oxidative damage to DNA, including 

guanine oxidation, which is mutagenic. In addition, PAHs and volatile organic compounds (e.g., 

benzene) may be metabolically activated to reactive species that form bulky adducts on the 

DNA. The particulate pollutants are considered potent oxidants, and the induction of the 

intrinsic and extrinsic pathways of apoptosis may be associated with oxidative stress generated 

by the organic compound (i.e., PAHs, nitro-PAHs/ketones/quinones) as well as inorganic 

compounds adsorbed on the surface of particles (Xia et al., 2004; Anderson et al., 2012; Jin et al., 

2014). Moreover, PAHs, like benzo[a]pyrene (B[a]P) and dioxin, which are activated by 

cytochrome P450 (CYP450), play a role in the induction of DNA damage, reactive oxygen and 

nitrogen species, apoptosis, immune alternations, and cancer.  

Here, we investigated the potential adverse health effects of PM collected in urbanized 

Rourkela, an industrial city in the state of Odisha, India. Rourkela is surrounded by a giant steel 

plant, several medium-scale industries like cement, refractories, sponge iron, explosive, and 
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chemical plants, and many smaller-scale industries. A survey of the regional transport office 

revealed that more than 1,50,000 small and heavy vehicles are registered in the industrial 

complex (Naik, 2005). In this study, PM from Rourkela was characterized by fluorescence 

spectroscopy and nuclear magnetic resonance (NMR), and the mutagenicity potential was 

deciphered by Ames test. The cytotoxic and apoptotic inducing activity of PM was 

demonstrated in immortalized human keratinocyte (HaCaT) cells. Moreover, our study showed 

that the generation of ROS and reactive nitrogen species (RNS) after PM exposure can induce 

cellular oxidative stress and apoptosis. The data showed that the biological activity of PM, 

including apoptosis, was regulated by CYP450. In addition, we showed that PM present in an 

industrial zone in Rourkela had no effect on the blood cells of people living in Rourkela. 

3.2. Materials and methods 

3.2.1. Chemicals and reagents  

Benzo[a]pyrene (B[a]P), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), dimethyl sulfoxide 

DMSO), 3-[4,5-dimethylthiazol-2-yl]-2.5-diphenyltetrazolium bromide (MTT), and 

clotrimazole (CTZ) were procured from Sigma (USA). The ”cluster of differentiation” CD 

markers and annexin V were from BD Bioscience, and the Caspase-Glo assay kit was purchased 

from Promega (USA). The CYP1B1 small interfering RNA (siRNA) and control siRNA were 

obtained from Santa Cruz Biotechnology (USA). Glass microfiber filter paper was purchased 

from Quartz Microfiber (USA), and Salmonella typhimurium (29629) was obtained from ATCC 

(USA).  

3.2.2. Study areas 

Rourkela, an industrial city, was selected as a study area in the present research work, with 

sampling from the area of the Indira Gandhi Park and the academic complex of (National 

Institute of Technology) NIT Rourkela. It is one of the most important industrial cities in the 

Sundargarh district of the State of Odisha in India and has a population of more than 4,00,000. 

Blood samples were collected on a volunteer basis from people in the non-industrial zone and 

from people exposed to PM in the industrial zone in Rourkela. The institutional ethics 

committee at NIT Rourkela approved the protocol for blood collection. 
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3.2.3. Sampling and analysis of particulate matter from Rourkela  

Air was drawn through a size-selective inlet and through a 20.3 × 25.4-cm filter. The filter 

collected particles with an aerodynamic diameter less than the cut-off of the inlet. Air was 

drawn through a filter and into a covered housing by a high flow rate blower at 1.1 to 1.5 

cum/min, which allowed suspended particulate matter with diameter < 10 μm (Stokes 

equivalent diameter) to collect on the filter surface. During this period, the diurnal air sampling 

time was nominally 8 h Particles with diameters of 0.1 to 10 μm were collected on glass 

microfiber filters.  

3.2.4. Fluorescence spectroscopy 

The fluorescence spectrum was measured using a spectrofluorometer (Horiba, USA) with a 

pulsed xenon lamp for excitation, an optical light conductor, and a measuring probe. 

Fluorescence spectra were obtained with scanning λmax from 380 to 650 nm to detect the 

presence of B[a]P in PM by comparing the spectra with a standard curve constructed using 

different concentrations of B[a]P (Patra, 2003). 

3.2.5. NMR analysis 

The PM in air pollutants was separated using preparative thin layer chromatography (TLC) with 

an n-hexane: ethyl acetate (95:5 v/v) solvent mixture. A light yellow colored compound, which 

is visible in the UV spectrum, was separated out and dissolved in chloroform-d (
2
H2CC12), and 

the 1H NMR spectrum was determined. High-resolution IH NMR spectra were recorded on a 

400 MHz Bruker spectrometer in 
2
H2CC12. Samples (1 mg/ml in 

2
H2CC12) were degassed and 

sealed under an atmosphere of argon. Chemical shifts are reported in ppm downfield from 

tetramethylsilane (Me, Si). The central resonance of 
2
H2CC12 was used as an internal reference 

(Zhang et al., 2011).
 

3.2.6. Ames test 

The mutagenicity of PM was tested by the well-accepted Ames test using His
- 

Salmonella 

typhimurium. We performed the plate incorporation assay with PM collected from Rourkela. 

The number of His revertants was counted and the mutagenic ratio (MR) was calculated as the 

ratio between the mean number of revertants on plates treated with a sample and the mean 

number of negative control plates. A sample was considered mutagenic when the MR and a 

clear dose–response relationship were observed. The number of revertants was evaluated and 

quantified. 



30 

 

      Durgesh Nandini Das, Department of Life Science, National Institute of Technology, Rourkela: PhD Thesis 

3.2.7. Cell culture 

The HaCaT cells and mouse macrophage cells (RAW 264.7) were obtained from the National 

Centre for Cell Science, Pune, India, and cultured in Dulbecco’s Modified Eagle’s Medium with 

high glucose (DMEM/high glucose), supplemented with 10% heat-inactivated fetal bovine 

serum (FBS) containing 1% penicillin-streptomycin. The cells were maintained at 37°C in a 

humidified atmosphere with 5% CO2. All media, supplements, and antibiotics were purchased 

from Invitrogen Bangalore, India. 

3.2.8. Cell viability by the MTT assay 

HaCaT cells were harvested from maintenance cultures in the logarithmic phase and were 

counted with a hemocytometer using Trypan blue solution. HaCaT (1×10
5 

cells/well) were 

cultured in a 96-well plate at 37 °C and exposed to various concentrations of PM for 72 h. Next, 

MTT solution (5 mg/ml) was added and incubated for 4 h; the resultant formazan crystals were 

dissolved in DMSO and the absorbance was measured in a microplate reader (Perkin Elmer) at 

595 nm. All experiments were performed in triplicate, and the relative cell viability is expressed 

as percentage relative to the untreated control cells (Das et al., 2014). 

3.2.9. Annexin V staining 

HaCaT cells were trypsinized after 48 h PM treatment and washed with phosphate-buffered 

saline (PBS). The cell pellets were incubated with annexin V and propidium iodide in binding 

buffer and analyzed by flow cytometry (Becton Dickinson Immunocytometry Systems, USA). 

(Das et al., 2014).
 

3.2.10. Caspase assays 

HaCaT cells were seeded in 6-well plates and treated with PM for 48 h. After the treatment, 

caspase activity was measured using the Caspase-Glo assay, according to the manufacturer’s 

instructions (Promega Corp., Madison, WI, USA). 

3.2.11. CYP1B1 knockdown using siRNA 

HaCaT cells were cultured in 60 mm plates and transfected with Lipofectamine 2000® reagent 

(Invitrogen) in the presence of siRNAs specific for human CYP1B1 or control siRNA. HaCaT 

cells 48 h after transfection were used for RNA extraction and apoptosis studies.  

3.2.12. 7-Ethoxyresorufin-O-deethylase (EROD) assay 

The ability of PM particles to induce CYP450 enzyme activity was evaluated in intact cells by 

measuring EROD activity. In 96-well plates, HaCaT cells were exposed to various 
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concentrations of PM for 24 h. Subsequently, HaCaT cells were washed with PBS buffer and 

incubated with EROD for 30 min. The fluorescence intensity, which was a result of conversion 

of ethoxyresorufin to resorufin by CYP450 enzymes, was measured using a microplate reader 

(Perkin Elmer) with excitation and emission wavelengths of 530 nm and 590 nm, respectively 

(Fernández et al., 2013).  

3.2.13. ROS generation 

To detect ROS, HaCaT cells were exposed to different concentrations of PM for 24 h. HaCaT 

cells were incubated with 2.5 μg/ml dihydrorhodamine 123 (DHR 123) in PBS for 30 min in the 

CO2 incubator. DHR 123 is rapidly taken up by cells and converted to rhodamine 123 (Rh 123) 

in the presence of ROS. Cells incubated with DHR 123 were washed 3 times in PBS for 5 min, 

fixed for 30 min in 4% paraformaldehyde in phosphate buffer, washed again, and observed 

under an Olympus IX-71 fluorescence microscope, America INC. For flow cytometry analysis, 

HaCaT cells were harvested and suspended in PBS, and ROS generation was detected by 

measuring the fluorescence intensity at 530 nm FACScan flow cytometer (BD Biosciences, 

USA) (Loxham et al., 2015). 

3.2.14. Nitric oxide (NO) determination 

NO was quantified in the cell supernatant of RAW 264.7 cells 24 h after treatment with the PM. 

It was measured by adding 100 µl of Griess reagent [0.1% (w/v) napthylethylene diamine HCl 

and 1% (w/v) sulfanilamide in 5% (v/v) phosphoric acid (vol. 1:1)] to 100 µl cell supernatant. 

After incubation for 20 min in the dark, the optical density was measured at 550 nm using a 

microplate reader (PerkinElmer).  

3.2.15. Single cell gel electrophoresis 

The comet assay was performed measure DNA damage. Briefly, HaCaT cell suspensions were 

pipetted onto the agarose-covered surface of a pre-coated slide. Then, the slides were 

submerged in a covered dish containing lysis solution overnight in the dark at 4 °C. After 

overnight lysis, slides were removed and submerged in rinse solution for about 20 min, and this 

wash was repeated three times to ensure removal of salts and detergent. Next, electrophoresis 

was performed by submerging the slide in fresh A2 electrophoresis solution for 25 min at a 

voltage of 0.6 V/cm. After electrophoresis, the slides were removed, rinsed, and neutralized in 

400 ml of distilled water. Then, propidium iodide staining was performed and the slides were 

analyzed under a fluorescence microscope (Olympus IX-71). The cell images were analyzed 
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using CASP software (downloaded from www.casplab.com). All experiments were performed in 

triplicate (Panda et al., 2014). 

3.2.16. Immunophenotyping by flow cytometry 

Single cell suspensions of blood samples were collected voluntarily from people living in 

Rourkela under aseptic conditions. About 100 µl of blood was added to lysis buffer, and the 

mixture was incubated for 15 min at room temperature. The suspension was centrifuged to 

obtain the cell pellet. The cell pellet was washed with PBS and CD markers containing 

antibodies against CD3-FITC, CD4-APC, CD8-PE, CD19-APC, CD45-PerCP, CD14-PE, and 

CD16-PE, and CD56-APC cells were measured using flow cytometry. The data were analyzed 

using Cell Quest Pro software on a FACS Calibur Becton-Dickinson flow cytometer 

(Birgisdottir. et al., 2013). 

3.2.17. Statistical analysis
 

All data are given as the mean ± SD. Experimental results were analyzed by Student’s t-test. P 

values less than 0.05 were considered statistically significant when comparing treated and 

control samples. Box plots and histograms were used to see the distribution of variables. The t-

test was performed to enumerate the difference between risk scores in the two populations from 

either the industrial or non-industrial zones. 

3.3 Results 

3.3.1. Characterization and mutagenic potential of PM from Rourkela  

PM is composed of both fine and coarse particles. Coarse particles in PM are 2.5 to 10 μm in 

diameter. Fine particles formed from gases and organic pollutants in the atmosphere are less 

than 2.5 μm in diameter. The monitored air samples from Indira Gandhi Park and the academic 

complex of NIT of Rourkela contained 6.08 and 0.5 mg/m
3
 PM, respectively, after 8 h of air 

sampling (Fig.3.1.A). Samples were extracted from the sampled filter strip by immersing them 

in acetonitrile and further extracted sampled were dried in the rotary vacuum evaporator. The 

extracted samples were then stored at -80 °C until future use. The samples from an academic 

complex area of NIT Rourkela were prepared using the same method as the experimental 

sample and were used as a control in all experiments. Similarly, blanks (unexposed filters) were 

prepared using the same method except for sampling and were used as a negative control in the 

experiments. 
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Fig.3.1. The PM was collected from different sites of Rourkela city, Odisha with air sampler and glass microfiber 

filter paper and the mutagenicity of  PM was tested by well accepted Ames test using His- Salmonella 

typhimurium. The number of His revertants colonies was counted, and the mutagenic ratio (MR) was calculated as 
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the ratio between the mean number of revertants on plates treated with a sample and the mean number of negative 

control plates (A and B). 

The Ames Salmonella/mutagenicity assay is a short-term bacterial reverse mutation assay 

explicitly designed to detect a wide range of chemical substances that can produce genetic 

damage that can lead to gene mutations. Of the Salmonella tester strains grown on a minimal 

medium agar plate containing a trace of histidine, only the bacteria that revert to histidine 

independence (hisC) are able to form colonies. Here, we studied the mutagenic activity of PM 

collected from different areas of Rourkela. Our study showed that the control sample (non-

industrial zone) had insignificant colony formation that was comparable to that for the negative 

control (blank). However, in the case of PM from the industrial zone of Rourkela, mutagenicity 

significantly increased (12.4-fold over the control) and was higher than that noted for B[a]P 

(positive control), indicating that PM contains different components with mutagenic properties 

and promotes colony formation (Fig.3.1.B). The presence of B[a]P in PM was confirmed by 

fluorescence spectroscopy and NMR, which was trustworthy with results for previously 

identified industrial zones (Fig.3.2.A and B). 
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Fig.3.2. The presence of PAHs, including B[a]P and dioxin, in PM from the industrial zone was demonstrated by 

fluorescence spectroscopy and 
1
H NMR. The data showed that B[a]P was present in industrial PM, but dioxin was 

not detected (A, B). 
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Fig.3.3. HaCaT cells were seeded into each of the 96 well plates and were treated with various concentrations of 

PM for 72 h and determined by MTT assay (A). The HaCaT cell was treated with PM for 48 h and apoptosis assay 

was performed by annexin V staining through flow cytometry (B) and analyzed for caspase 3 expression using 

caspase- Glo assay (C). Data reported as the mean ± S.D. of three independent experiments and compared against 

PBS control.*P Values < 0.05 and **P < 0.01 values were considered significant. 

3.3.2. PM-induced apoptosis in HaCaT cells 

To investigate whether PM does have any cytotoxic effects on normal cells, HaCaT cells were 

exposed to different concentrations of PM (0.05, 0.1, 0.2, 0.5, and 1 µg/ml) for 72 h, and cell 

viability was measured by the MTT assay (Fig.3.3.A). Treatment with PM resulted in a decrease 

in the viability in a dose-dependent manner. We next studied whether the cell death induced by 
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PM was due to apoptosis and by examining annexin V staining by flow cytometry (Fig.3.3.B). 

The data showed that PM induced apoptosis in HaCaT cells and that the apoptosis percentage 

increased in a dose-dependent manner. Apoptosis is characterized by a well-organized sequence 

of cellular caspases in tandem to trigger the apoptotic pathway. In HaCaT cells, PM induced 

activation of caspase 3, the essential effector during apoptosis, as measured by the caspase 3/7 

Glo assay (Fig.3.3.C), confirming the apoptosis inducing activity of PM collected from the 

industrial sector of Rourkela.  

3.3.3. Generation of ROS and NO by PM 

ROS and NO are usually potential factors related to mitochondrion-dependent cell injury and 

inflammation. To detect ROS production, DHR123 was used; DHR123 is rapidly taken up by 

cells and converted to Rh 123 in the presence of ROS. PM Treatment increased the fluorescence 

intensity (level of ROS) in HaCaT cells in a dose-dependent manner, compared to control, as 

demonstrated by flow cytometry and fluorescence microscopy (Fig. 3.4.A,B). In addition, we 

quantified NO production using mouse macrophages, which produces nitrite and nitrate in 

response to xenobiotic compounds. The data showed that PM induced the production of NO in a 

dose-dependent manner in the Raw 264.7 cell line, confirming the potential adverse effect of 

PM on human health (Fig. 3.4.C).  

3.3.4. PM-induced DNA damage analyzed by the comet assay 

HaCaT cells were treated with different concentrations of PM, and DNA damage was detected 

by the comet assay. Cell images were analyzed using Casp software (downloaded from 

www.casplab.com). Progressive DNA damage, reflecting the important genotoxic effect of PM, 

was demonstrated in a dose-dependent manner. The data showed that the percent of DNA in the 

tail (tail DNA %) and comet tail length were significantly higher than those for the control (Fig. 

3.5. A-C). 
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Fig.3.4. Generation of ROS and NO by PM. HaCaT cells were treated with different concentration of PM for  

24 h and analyzed for ROS generation by DHR123 through flow cytometry (A) and fluorescence microscopy (B) 

(Olympus IX71, 400X).RAW 264.7 cells were treated with different concentration of PM for 24 h and nitric oxide 

production was quantified by using the Griess reagent(C).  
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Fig.3.5. PM-induced DNA damage analyzed by the comet assay. HaCaT cells were treated with various doses of 

PM for 6 h and DNA damage was quantified by the comet assay. After propidium iodide staining, photographs 

were taken with a fluorescence microscope (Olympus IX71, 400X). Tail length and tail DNA content was 

measured using CASP software (*P < 0.05, compared with control).  

3.3.5. Activation of CYP1B1 by PM and inhibition of PM-induced apoptosis by siCYP1B1 

and CTZ 

CYP450 activation by air pollutants plays a major role in PM-mediated biological phenomena. 

Here, the EROD assay, which measures combined activity of CYP450, was carried out in PM-  

treated HaCaT cells. An increase in EROD activity was observed in a dose-dependent manner in 

the presence of PM (Fig.3.6.A). PAHs present in industrial pollutants are metabolized by the 

CYP450 family, specifically CYP450 1A1 (CYP1A1) and CYP450 1B1 (CYP1B1), to reactivate 
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metabolites and induce toxicity. To investigate the potential involvement of CYP1B1 in PM-

mediated apoptosis, the CYP1B1 gene was knocked down, and PM sensitivity was examined 

MTT assay and by measuring caspase-3/7 activity 48 h after treatment. The data showed that 

targeted CYP1B1 siRNA suppressed the expression of corresponding mRNA as compared to 

control siRNA, demonstrated by RT-PCR (Das et al., 2014). The CYP1B1 deficient cells 

exhibited enhanced cell viability after PM treatment as compared to those cells treated with 

control siRNA. Moreover, we performed the caspase-Glo assay in transfected HaCaT cells in the 

presence of PM, and the data clearly showed a very significant decrease in caspase 3/7 activity in 

cells with CYP1B1 knock down, as compared to cells treated with the control siRNA, indicating 

the specific role of CYP1B1 in PM-mediated apoptosis (Fig.3.6.B, C) (Das et al., 2014). 

To further investigate and validate the potential involvement of CYP1B1 in PM- mediated 

apoptosis, CTZ, a known pharmacological CYP1B1 inhibitor, was used in our study. HaCaT 

cells were treated with PM in the presence or absence of CTZ, and apoptosis activity was 

quantified. The MTT assay showed that PM-induced cell death was significantly inhibited in the 

presence of CTZ as compared to in the absence of CTZ. Next, we performed the caspase-Glo 

assay in the presence of CTZ, and the data showed that caspase3 activity was very significantly 

decreased upon treatment with PM in presence of CTZ as compared to in the absences of CTZ 

(Fig.3.6.D,E).  

3.3.6. Blood analysis for people living in Rourkela, by immunophenotyping and the comet 

assay 

To establish the correlation between the in vitro activities of air effluent with clinical expression, 

we examined the blood from people living in the industrial and non-industrial sectors of 

Rourkela. The blood was collected from volunteer donors and analyzed by immunophenotyping 

and the comet assay to survey any change in immune cells and DNA damage in blood cells, 

respectively. The analysis was performed with blood samples from 55 people (35 men and 20 

women), including 32 from industrial areas and 23 from around Rourkela City; the average (± 

SD) age of the study population was 35 ± 6.2 years. We did not observe any significant change 

in the lymphocytes (p = 0.671), B cells (p = 0.104), cytotoxic T cells (p = 0.512), helper T cells(p 

= 0.396), NK cells (p = 0.675), and monocytes (p = 0.170) in the blood samples from these two 

groups (Fig.3.7.A-F). 
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Fig.3.6. Role of cytochrome P450 in PM mediated apoptosis. HaCaT cells were treated with PM for 24 h and 

Ethoxyresorufin-O-deethylase (EROD) activity of PM was measured at 560 nm in microplate reader (A). HaCaT 

cells transfected with the indicated siRNA against CYP1B1 or were pre-treated with CTZ (5 μM) for 2 h followed 

by treatment of different concentration of PM and quantified for MTT assay after 72 h (B and D) and after 48 h 

apoptosis was quantified by caspase 3/7 Glo assay (C and E). Data reported as the mean ± S.D. of three 

independent experiments and compared against PBS control. *P Values < 0.05 and **P < 0.01 values were 

considered significant. 



42 

 

      Durgesh Nandini Das, Department of Life Science, National Institute of Technology, Rourkela: PhD Thesis 

 

Fig.3.7. Analysis of immune cells from people of Rourkela city by box plot. Box plot comprising the CD 

marker expression of lymphocytes (A), B cells (B), cytotoxic T cells (C), helper T cells (D), NK cells (E) and 

monocytes (F) as determined by flow cytometry in people of industrial zone (n=32) and non-industrial zone (n=23) 

of Rourkela city. 
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Fig.3.8. DNA damage analysis in blood of people of Rourkela city. Blood samples collected voluntarily from 

Rourkela city people under aseptic conditions and 100 μl of blood were added in lysis buffer incubated for 15 min. 

The suspension was centrifuged to obtain cell pellet and analyzed for DNA damage by comet assay. Tail length and 

tail DNA content was measured using CASP software (*P < 0.05, compared with control). 

3.4. Discussion 

Abundant studies have reported that PM-related air pollution is a problem in many cities and 

towns, and it appears to be the component of air pollution most consistently associated with 
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adverse health effects. PAHs are significantly associated with enhanced mortality from 

respiratory and cardiovascular diseases, exacerbation of allergies, asthma, chronic bronchitis, 

and respiratory tract infection in many industrial cities (Li et al., 2003; Yu et al., 2014; Jung et 

al., 2014). Moreover, the World Health Organization (WHO) estimates that inhalation of PM is 

responsible for 500,000 excess deaths each year worldwide. The role of cellular participants and 

the mechanisms involved in the response to PM exposure have been identified. In our study, an 

air quality monitoring program was designed to collect the gaseous and particulate air pollutants 

from two sites (in front of Indira Gandhi Park and the academic complex of NIT Rourkela) of 

the industrial city Rourkela. The presence of B[a]P in PM was confirmed by fluorescence 

spectroscopy and NMR, which was consistent with results for previously identified industrial 

zones. Furthermore, we studied the mutagenic activity of PM with the Ames test, which 

determines if substances are capable of inducing mutations and has become an important 

procedure in safety assessment. 

PM has been reported to induce many biological phenomena, including apoptosis, DNA 

damage, and oxidative stress. For instance, mitochondrial signaling and oxidative stress have 

been reported to mediate PM-induced apoptosis in the human CF bronchial epithelium (Kamdar 

et al., 2008; Marangolo et al., 2001). Accordingly, our study showed that the generation of ROS 

after PM exposure could induce cellular oxidative stress and apoptosis. Another study reported 

the induction of IL-8 and ROS in human respiratory epithelial cells exposed to PM; in 

agreement with this study, our data indicate that PM induced NO and ROS production, which 

might be related to the inflammatory response and carcinogenesis (Becker et al., 2005;Garcon et 

al., 2006). Recently, amorphous nanosilica was found to induce endocytosis-dependent ROS 

generation and DNA damage in human keratinocytes (Nabeshi et al., 2011). In this regard, one 

of the most important changes induced by PM was DNA damage, as reported by the comet tail 

formation and the level of DNA damage has been correlated with mutagenicity and tumor 

formation in experimental models (Upadhyay et al., 2003; Sáchez-Pérez et al., 2009). The DNA 

damage induced by PM10 and its constituents involves the formation of DNA double-strand 

breaks (Soberanes et al., 2006). 

Air pollutants, especially PAHs after activation of CYP450, can act directly as pro-

oxidants of lipids and proteins or as free radical generators by promoting oxidative stress and 

lipid peroxidation and inducing inflammatory responses (Fu et al., 2012; Giannapas et al., 
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2012). Our findings support that B[a]P and other unidentified PAHs present in the PM activated 

by CYP1B1 and induced apoptosis. Accordingly, inhibition of CYP1B1 by siRNA or 

pharmacologically with the inhibitor CTZ reduced PM-mediated cytotoxicity and apoptosis. 

Conversely, our clinical data showed that the PM did not affect the blood cells of people 

living in Rourkela, as demonstrated by the results for comet tail formation and 

immunophenotyping analysis. These are potentially contradictory clinical data, which might be 

due to low exposure to PM and its bioavailability to cells during the entire human life-span; the 

effect is likely to appear after 30-40 years of exposure according to the chemical carcinogen 

hypothesis (Kleinsmith 2006).The effects also depend on age, the health condition, and genetic 

factors of the individual. For example, a polymorphism in the CYP genes could affect an 

individual’s capacity for transforming PAHs into reactivate metabolites, which is one of the 

important factors contributing to individual susceptibility toward the development of health 

problems and airborne disease (Preissner et al., 2013). In summary, this study focused on 

awareness of the source of the environmental problems in Rourkela and provided an indication 

on potential environmental issue for future preventive management to improve human health. 
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Abstract 

Polycyclic aromatic hydrocarbons (PAHs) processed by cytochrome P450 (CYP450) during 

metabolism is well reported to induce carcinogenesis. The present study has developed a new 

approach to examine apoptotic activity of a known PAH called benzo[a]pyrene (B[a]P), using 

protein–ligand and protein–protein interaction through in silico approach, followed by in vitro 

validation. In silico study showed that the conformational changes and energies involved in the 

binding of B[a]P to CYP1B1 was crucial with its target proteins. The data showed that activated 

B[a]P had high affinity to bind with aryl hydrocarbon receptor (AHR) with binding energy of -

601.97 kcal/mol. Interestingly, B[a]P–CYP1B1 complex showed strong binding affinity for 

caspase -8, -9, -3 with binding energy of -625.5, -479.3 and -514.2 kcal/mol respectively. 

Moreover, the docking of specific caspase inhibitors in the complex showed weak interaction 

with low binding energy value as compared to B[a]P–CYP1B1 caspase complexes. To validate 

our in silico work, we showed B[a]P treated HaCaT cells triggered apoptosis with increase in 

caspase 8, caspase 9 and caspase 3/7 level. Further, in vitro work confirmed that B[a]P induced 

apoptosis was significantly suppressed in Ac-DEVD-CMK pre-treated cells. In addition, 

knockdown of CYP1B1 suppressed B[a]P induced apoptosis in HaCaT cells confirming a 

pivotal role of CYP1B1 in B[a]P induced apoptosis. Interestingly, through in-silico modeling, 

we screened clotrimazole as a potent CYP1B1 inhibitor which completely inhibited B[a]P 

mediated activation. This hypothesis was validated by MTT assay, caspase activation 

measurement and showed remarkable inhibition of B[a]P induced cell death; thereby, 

highlighting a potent therapeutic role for industrial pollution associated diseases. 

Keywords: Benzo[a]pyrene, Cytochrome P450, Apoptosis, Ligand–protein, Protein–protein,    

 Aryl hydrocarbon receptor 
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4.1. Introduction 

Modern environment entail considerable exposure of humans against a wide array of potentially 

toxic compounds including polycyclic aromatic hydrocarbons (PAHs) which are generated by 

incomplete combustion and pyro-synthesis of various organic materials. Benzo[a]pyrene 

(B[a]P) is regarded as a carcinogenic compound among the group of PAHs (Conney et al., 

1994; Shimada, 2006; Gao et al., 2011) and is listed as a Group 1 carcinogen by the IARC 

(International Agency for Research on Cancer). To become carcinogenic, PAHs must be 

metabolized by the cytochrome P450 (CYP450) family of monooxygenase especially CYP1A1 

(cytochrome P450 1A1) and CYP1B1 (cytochrome P450 1B1) to reactivate diol-epoxide 

metabolites (Miller and Ramos, 2001; Arlt et al., 2008). Moreover, PAHs activate aryl 

hydrocarbon receptor (AHR) which plays an imperative role in mediating transcriptional 

regulation of target genes including CYP1A1 and CYP1B1 as well as several phase II enzymes. 

On binding with B[a]P, AHR becomes activated, translocate to nucleus and regulates 

transcription (Stolpmann et al.,2012). Cytochrome P450 enzyme (CYP1B1) are mainly 

expressed in liver,  skin indicating different basal regulation but they share induction via the 

AHR (Moffat et al., 2011). B[a]P is oxidized by CYP450 during metabolism to produce toxic 

intermediate species such as B[a]P diolepoxide, leading to apoptosis induction and genotoxicity 

(Moorthy et al., 2003; Uno et al., 2004). Cells undergoing apoptosis ultimately exhibits nuclear 

condensation followed by internucleosomal DNA cleavage and activation of the caspase 

cascades. Caspases, the cysteine activated proteases are exemplified by caspase 8 and caspase 9 

which are activated in extrinsic and intrinsic apoptosis respectively serve to activate caspase 3, 

the chief effector caspase (Salas and Burchiel, 1998; Lei et al.1998; Chen et al., 2003; Holme et 

al., 2007; Xiao et al.,2007). With the increase in accessibility of molecular biological structures, 

docking approaches have become imperative tools in order to determine structure based rational 

molecule discovery and design. For a protein-receptor with known three dimensional structures, 

the ligand–protein docking challenge basically consists in predicting the bound conformation of 

a ligand molecule withinthe protein active site. For example, Adinarayana et al. showed that 

extracted DHFR protein (PDB id:2BL9) from protein data bank (PDB) used to assess the 

strength of affinity of different molecules towards ligand binding site and the extent of 

correlation between experimental values and computational docking score (Adinarayana and 

Devi, 2011). Likewise, Shalini et al. showed that Ocimum sanctum found as a potential herbal 
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drug for swine flu by docking the phytochemicals with the receptor PB1F2 by using HEX tool 

(Shalini and Kalivani, 2011) Docking is also used to predict protein–protein complexes, which 

are supportive in determining the quaternary structures of intrinsically multimeric proteins as 

well as to gain an insight of the protein interaction networks. Protein–protein interactions play a 

vital role in most essential cellular processes including signal transduction, cell regulation and 

immune response. Recently, Wang et al. predicted the three dimensional structure of human 

tyrosinase and simulated the protein–protein interactions between tyrosinase and its three 

binding partners (Wang et al., 2002). To understand the molecular mechanism of biochemical 

processes at the atomic level, a detailed structural model of the interacting complex is required. 

Computational tools are being adopted in conjunction with the wet lab techniques that generate 

high level of data as output (Hetenyi and van der Spoel, 2002; Huey et al., 2007; Xu et al., 

2013). 

         Here, we studied the apoptotic prospective of B[a]P through protein–ligand and protein–

protein interaction in silico and validated the study on human keratinocyte cell line (HaCaT). 

Our prediction showed that B[a]P was activated by CYP450 (CYP1B1), to induce multiple 

cellular effects related to activation of the AHR due to formation of toxic metabolites and this in 

turn activated caspases. Moreover, data showed that clotrimazole (CTZ) and siRNA against 

CYP1B1 could inhibit the B[a]P activation and suppressed the apoptosis as demonstrated in 

both in silico modeling and in vitro studies in HaCaT cells. 

4.2. Materials and methods 

4.2.1. Chemical and reagents 

Benzo[a]pyrene, dimethyl sulfoxide(DMSO), 3-[4,5-dimethylthiazol-2-yl]-2.5-dipenyl- tetra-

zolium bromide (MTT), clotrimazole (CTZ) from Sigma, USA; caspase-3 Inhibitor III (Ac-

DEVD-CMK) from Merck were purchased. The Annexin V and 7AAD kit from BD 

Bioscience and caspase-Glo assay kit for quantification of caspases were purchased from 

Promega, USA, CYP1B1 siRNA and control siRNA from SantaCruz Biotechnology, USA. 

4.2.2. Cell culture 

The immortalized human keratinocyte cell line (HaCaT) was obtained from National Centre for 

Cell Science, Pune, India and cultured in Dulbecco’s modified Eagle’s medium with high 

glucose (DMEM/high glucose), supplemented with 10% heat-inactivated fetal bovine serum 

(FBS) containing and 1% penicillin–streptomycin. The cells were maintained at 37
o
C in a 
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humidified atmosphere at 5% CO2. All media, supplements and antibiotics were purchased 

from Invitrogen. 

4.2.3. Cell viability by MTT assay 

HaCaT cells were harvested from maintenance cultures in logarithmic phase and were counted 

by hemocytometer using trypan blue solution. HaCaT (1 x 10
4
 cells/well) were cultured in a 96- 

well plate at 37
o
C, and exposed to varying concentrations of B[a]P for 72 h. After 72 h MTT 

solution (5mg/ml) were added, post 4 h incubation, the resultant formazan crystals were 

dissolved in dimethyl sulfoxide and the absorbance was measured by a microplate reader 

(Perkin Elmer) at 595 nm. All experiments were performed in triplicate, and the relative cell 

viability was expressed as percentage relative to the untreated control cells (Bhutia et al., 2010). 

4.2.4. Annexin V and propidium iodide staining 

It was performed using a FACScan (Becton Dickinson Immunocytometry Systems). After 48 h 

B[a]P treatment HaCaT cells were washed with phosphate buffer saline and then centrifuged at 

1200 rpm for 5 min at room temperature. Cell pellets were incubated with Annexin V and 

propidium iodide in binding buffer and analysed by flow cytometer. 

4.2.5. Caspase assays 

HaCaT cells were seeded in 6 well plates and were treated with B[a]P for 48 h. After treatment, 

caspase activity was measured using caspase-Glo assay following the manufacturer’s protocol 

(Promega Corp., Madison, WI) (Bhutia et al., 2010). 

4.2.6. CYP1B1 knockdown using small interfering RNA 

HaCaT Cells were cultured in 60 mm plates and transfected at 80% confluence with 

Lipofectamine 2000 ® reagent (Invitrogen), in the presence of 100 nM of siRNAs specific for 

human CYP1B1 or control siRNA. HaCaT cells were used 48 h after transfection for RNA 

extraction and apoptosis studies (Stolpmann et al., 2012; Bhutia et al., 2010).  

4.2.7. RNA extraction and semiquantitative RT-PCR 

Total RNA from HaCaT cells were harvested by using RNeasy kit from Qiagen following 

manufacturer’s instruction. The cDNA was synthesized using 2 µg of total RNA with reverse 

transcriptase enzyme following manufacturers’ instruction. RT-PCR was used to study the 

expression of mRNA for CYP1B1 and GAPDH (internal control). The respective primers 

(Sigma) and conditions were as follows: for CYP1B1, sense 5’CAA CCG CAA CTT CAG 

CAA CT-3’ and antisense 5’-CAG GAC ATA GGG CAG GTT G-3’ (annealing at 62 
o
C, 35 
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cycles); for GAPDH, sense 5’-CAC AAT GCC GAA GTG GTC GT-3’ and antisense 5’-TCA 

CCA TCT TCC AGG AGC GA-3’ (annealing at 62 
o
C, 35 cycles) (Yang et al., 2010). 

Amplified products were separated by electrophoresis on 1.5% agarose gel and visualized using 

gel document system (BioRad) after ethidium bromide staining. 

4.2.8. In silico study 

Chemical structure of benzo[a]pyrene was obtained from chEBI data bank (Chemical Entities of 

Biological Interest). The structures of cytochrome P450 and various extrinsic, intrinsic 

apoptotic pathway proteins were retrieved from PDB for docking analysis. Chimera 1.6.2 and 

Swiss PDB Viewer were used in intermediate steps of in silico studies and visualize the 

molecules. SWISS-MODEL server (http://swissmodel.expasy.org) was used for automated 

comparative modelling of three dimensional (3D) protein structures of AHR. The stereo 

chemical property was checked by Ramachandran plot using PROCHECK (Soriano-Ursúa et 

al., 2009; Khobragade et al., 2011). AutoDock 4.2 was used for protein–ligand docking 

analysis. HEX 6.3, docking software was used for studying protein–protein interactions. All 

caspases 8, 9, 3 inhibitors and clotrimazole structures were retrieved from Pub- Chem database. 

Interacting binding residues at the active site was visualized using Ligplus software. Besides 

Hex 6.3, visualization of protein–protein interaction was also done by Discovery studio 

Visualizer 2.5. 

4.2.9. Statistical analysis 

All data were given as the mean ± S.D. Experimental results were analyzed by Student’s t-test. 

P < 0.05 was considered as the level of significance for values obtained for treated compound to 

control. 

4.3. Results 

4.3.1. Benzo[a]pyrene activated by cytochrome P450: in silico approach  

The ability to predict the conformations and energies involved in the binding of small molecules 

to proteins is quite crucial in ligand interactions. Docking helps in the identification of the low 

energy binding modes of a small molecules or ligands within the active site of known  

macromolecules or receptors. The docking study predictions provide a quantitative measure that 

supports the experimentally determined value. During metabolism the precarcinogenic moiety 

like B[a]P gets activated by members of the CYP450 enzyme family and becomes carcinogenic 

as reported (Bhutia et al., 2010; Conney et al., 1994). The CYP1B1 structure was retrieved from 
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protein data bank (PDB id: 3PM0). The PDB structure of CYP1B1 was complexed with a-

naphthoflavone (ANF) (Miller and Ramos, 2001). In order to remove ANF bound to CYP1B1, 

Chimera 1.6.2 was used. After this energy minimization was done with the help of SPDBV 

4.0.1 to achieve a stable structure. Subsequently, we evaluated docking of B[a]P with CYP1B1 

in AutoDock and observed binding energy is -8.52 kcal/mol (Fig. 4.1.A–C; Table 1) (Wang et 

al., 2011; Morris et al., 2008). Furthermore, we visualized B[a]P binding sites at CYP1B1 

cavity and found B[a]P was bound in a narrow slot – with active site like cavity above the 

surface of the heme moiety. We observed G329, F268, N265, F231, L264, D333, Q332 and 

N228 at active site of CYP1B1 which was consistent with reports from previous work (Miller 

and Ramos, 2001) showing hydrophobic and Vander- Waals interaction (Fig.4.1.D and E). 

From this analysis, we confirmed B[a]P bound with CYP1B1 at its active site and was 

converted to carcinogen. 

         Homology modeling for AHR was performed by automated homology modeling 

SWISSMODEL using their respective template downloaded from NCBI. The steepest descent 

energy minimization using the SPDBV 4.0.1 force field was done to regularize the protein 

structure geometry. The stereo chemical property was checked by Ramachandran plot using 

PROCHECK (Wang et al., 2011; Morris et al., 2008). Hex 6.3 used for docking CYP1B1–B[a]P 

complex showed high binding affinity towards AHR protein with binding energy -601.97 

kcal/mol. B[a]P– CYP1B1 complex with AHR evidently showed interaction conformation with 

residue S91, R117, S119, S122, R124, V243, Q248, D417, V419, L134, S151, H155, Q156, 

F136 present at binding site (Fig.4.1.F and G). This interaction supported that biotransformation 

of B[a]P is regulated via AHR (Stolpmann et al.,2012) and B[a]P activates AHR with signal 

transduction events enhancing the toxicity of the B[a]P.  

Table 4.1:  Binding energy value for ligand–protein interaction. 

 

Sl no             Ligand–protein interaction (AutoDock 4.2) Binding energy 

value 

(ΔG kcal/mol) 

1 B[a]P–cytochrome P450(CYP1B1) -8.52 

2 Caspase 8-AC-IEPD-CHO -20 

3 Caspase 9-pan caspase inhibitor -8.48 

4 Caspase 3-AC-DEVD-CMK -13.4 

 



53 

 

      Durgesh Nandini Das, Department of Life Science, National Institute of Technology, Rourkela: PhD Thesis 

 

 Fig.4.1. Benzo[a]pyrene activated by cytochrome P450 in silico approach: (A) B[a]P structure retrieved from 

chEBI and cytochrome P450 (CYP1B1) structure retrieved from PDB. Docking of B[a]P (Red) with CYP1B1 

(Green) using AutoDock software was done and the complex was visualised through chimera 1.6.2. (B) Showing 

enlarge version of docking orientation of B[a]P binding at CYP1B1. (C) Binding energy graph of AutoDock 4.2 of 

B[a]P and CYP1B1. (D) Showing binding amino acids residues present at active site using Ligplot. (E) Using 

Pymol to visualize binding pattern and residue. (F) Docking of B[a]P (Red)-CYP1B1 (Green) complex with AHR 

(Blue) using HEX 6.3 and Discovery studio Visualizer 2.5 was used to visualize the interaction. (G) Binding 

interaction B[a]P (Red)-CYP1B1 (Green) complex with AHR (Blue) enlarged to visualize showing interaction 
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conformation with residue present at binding site S91, R117, S119, S122, R124, V243, Q248, D417, V419, L134, 

S151, H155, Q156, F136. 

4.3.2. Benzo[a]pyrene induced apoptosis in human skin keratinocytes  

Skin serves as the first line of immune defence against xenobiotic exposure. We investigated 

whether B[a]P does have any cytotoxic effect on human skin keratinocytes HaCaT cells. HaCaT 

cells were exposed to various concentration of B[a]P (0.5 µM, 1 µM, 2.5 µM, 5 µM and 10 µM) 

for 72 h and the cell viability was measured by MTT assay. Treatment with B[a]P significantly 

resulted in decrease of the viability in a dose dependent manner (Fig.4.2.A). Based on this result 

of cytotoxic concentrations, we next studied whether the cell death induced by B[a]P was due to 

apoptosis. The mode of cell death induced by B[a]P was examined with Annexin V staining by 

flow cytometry and showed apoptosis was induced by B[a]P in HaCaT cells (Fig.4.2.B). 

Apoptosis is initially characterized by morphological features, such as chromatin condensation, 

nuclear fragmentation, and membrane blebbing (Padhye et al., 2009; Nathwani et al., 2010; 

Greene et al., 2013). One of the biochemical hallmarks of apoptosis is the cleavage of chromatin 

into nucleosomal fragments, a DNA fragmentation assay was performed to detect genome 

digestion. HaCaT cells showed DNA fragmentation in dose dependent manner (Fig.4.2.C). This 

results indicated that the B[a]P induced apoptosis in HaCaT cells. 

 

Table 4.2: Binding energy value for protein–protein interaction. 

 

Sl no                       Protein–protein interaction (Hex 6.3) Binding energy 

value 

(ΔG kcal/mol) 

1 Benzo[a]pyrene–cytochrome P450-AHR -601.97 

2 Benzo[a]pyrene–cytochrome P450-caspase 8 -623.5 

3 Benzo[a]pyrene–cytochrome P450-caspase 9 -479 

4 Benzo[a]pyrene–cytochrome P450-caspase 3 -514.2 

5 Benzo[a]pyrene–cytochromeP450-caspase8-AC-IEPD-CMK -195.5 

6 Benzo[a]pyrene–cytochromeP450-caspase 9-Pan caspase 

inhibitor 

-184.6 

7 Benzo[a]pyrene–cytochromeP450-caspase 

3-AC-DEVD-CMK 

-192.4 
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Fig.4.2.Benzo[a]pyrene induced apoptosis: (A) HaCaT cells were seeded into each of the 96 well plates and were 

treated with various concentrations of B[a]P for 72 h and determined by MTT assay. (B) Quantification of the 

apoptotic cell population with Annexin V staining by flow cytometric analysis after B[a]P treatment of cells for 48 

h. Data reported as the mean ± S.D. of three independent experiments and compared against PBS control. *P 

Values < 0.05 and **P < 0.01 values were considered significant. (C) The genomic DNA was isolated and 

separated on 1.5% agarose gel electrophoresis. DNA fragmentation was measured by ethidium bromide staining. 

This was representative of three experiments. 
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4.3.3. Benzo[a]pyrene induced activation of intrinsic and extrinsic caspase activation 

Protein–protein interaction is deliberated with different apoptosis pathway proteins like caspase 

8, 9 and 3. After evaluating the complex structure of CYP1B1–B[a]P complex, we again docked 

various apoptosis proteins like caspase 8, 9 and 3. The structures of the human caspase 8 (PDB: 

2C2Z), 9 (PDB: 1NW9) and 3 (PDB: 2XZT) were retrieved from protein data bank. Caspase 8, 

9 and 3 structures were also attached with different inhibitor ligands. Chimera 1.6.2 facilitated 

removal of ligand and extracted pure structure of caspase 8, 9 and 3. Hex 6.3 was used for 

protein–protein interaction. Hex 6.3 is a widely used technique based on Fast Fourier transform 

(FFT) based method to perform the global searches. FFT-based method of searching allows the 

evaluation of many docked conformations on a grid using a correlation type scoring function 

(Thornberry et al., 1997). CYP1B1–B[a]P complex showed high binding affinity towards 

apoptosis protein (Fig.4.3.A). The docking results were ordered by energy value and lowest 

energy value docking showed stable binding complex. Here the energy ranges of stability were 

determined by set of Emin value (minimum binding energy). The lowest minimum energy 

depicts highest affinity between the proteins. Fascinatingly, B[a]P–CYP1B1 complex showed 

strong binding affinity for caspases with binding energy -625.5, -479.3 and -514.2 kcal/mol for 

caspase 8, caspase 9 and caspase 3 respectively (Fig.4.3.A–C). B[a]P–CYP1B1 complex with 

caspase 3 evidently showed interaction conformation with residues present at binding site H140, 

R130, N319, L264, F247, L317, K275, L277, C220, R278. The binding residue we predicted 

for B[a]P–CYP1B1 and caspase 8 are P370, I369, N267, G368, Q366, S127, D223, Y448, I297, 

E445. The residues present at binding sites of B[a]P– CYP1B1 complex with caspase 9 are 

S119, F120, K358, A11, S122, G182, N184, V364, S361, Y363. To determine the effect of 

B[a]P on both intrinsic and extrinsic activation of caspases in HaCaT cells, caspase Glo assay 

was performed after 48 h of B[a]P treatment. The data showed that caspase 8, 9 and 3 were 

increased with increasing the concentration of B[a]P. These data clearly showed that B[a]P 

showed apoptotic cell death by the involvement of caspase 8, caspase 9 and caspase 3/7 in 

HaCaT cells (Fig.4.3.D). 

4.3.4. Caspase inhibitors suppressed the B[a]P mediated apoptotic death 

Next, we aimed to demonstrate the role of caspase inhibitors in B[a]P induced apoptosis. 

Accordingly an enzyme inhibitor is a molecule that binds to enzyme and decreases their 
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activity. The binding of an inhibitor can stop a substrate from entering the enzyme active site 

and hinder the enzyme from catalyzing its reaction. Inhibitor for caspase 8, 9 and 3 retrieved  

 
Fig.4.3. Benzo[a]pyrene induced activation of intrinsic and extrinsic caspase activation: (A) Docking of B[a]P 

 (Red)–CYP1B1 (Green) complex with caspase3 (Purple) using HEX 6.3 and Discover studio Visualizer 2.5 was 

used to visualize the interaction with residues present at binding site H140, R130, N319, L264, F247, L317, K275, 

L277, C220, R278.(B) Binding interaction of B[a]P (Red)–CYP1B1 (Green) complex with caspase8 (Pink) 

enlarged to clearly showing interaction conformation with residues present at binding site P370, I369, N267, G368, 

Q366, S127,D223, Y448, I297, E445. (C) B[a]P (Red)–CYP1B1 (Green) complex with caspase 9 (Cyan blue) with 

enlarge conformation view and residues present at binding sites are S119, F120, K358, A11, S122, G182, N184, 
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V364, S361, Y363. (D) HaCaT cells were treated with B[a]P for 48 h followed by analysis of caspase 3, caspase 8 

and caspase 9 expression using caspase-Glo assay and this was representative of 3 independent experiments. 

from Pubchem as they contain calculated properties and description, which helped in searching 

and filtering of chemical structure. The ligands were downloaded as xml files from Pubchem. 

These xml files were converted into the 3D structure using open Babel software. In addition, 

selective inhibitor, Ac-DEVD-CMK (CID-9959259)-caspase3, Ac- IEPD-CHO (CID-

16760476)-caspase8 and pan caspase (CID- 644195)-caspase 9 were docked using AutoDock 

4.2 (Fig.4.4.A–E). Binding energy of caspase 3 and Ac-DEVD-CMK was -13.4 kcal/ mol). The 

caspase inhibitor complex were again interacted with B[a]P and CYP1B1 complex. According 

to our docking result they showed less and weak affinity interaction (Fig. 4.4.F, H). Energy 

value was shown to be much less than B[a]P–CYP1B1-caspases complex. This in-silico study 

showed that caspase inhibitors could decrease B[a]P induced apoptosis. 

The in silico study was validated in vitro, using caspase 3 inhibitor Ac-DEVD-CMK. HaCaT 

cells treated with B[a]P in presence of Ac-DEVD-CMK showed increased in caspase 3/7 

activity compared with the DMSO treated group. The caspase 3/7 activity were significantly 

decreased in presence of Ac-DEVD-CMK (50µM) in B[a]P induced apoptosis. Addition of 

caspase 3 inhibitor resulted in a lesser but statistically reduced rate of apoptosis and this in vitro 

caspase inhibition was comparable with in-silico data (Fig. 4.4.G). 

4.3.5. CYP1B1 deficiency decreased B[a]P induced apoptosis 

To investigate potential involvement of CYP1B1 in B[a]P mediated apoptosis, the CYP1B1 

gene was knocked down and B[a]P sensitivity was examined by MTT and caspase-3/7 assays 

48 h after treatment. The data showed that targeted CYP1B1 siRNA suppressed the expression 

of corresponding mRNA as compared to sicontrol demonstrated by RT-PCR (Fig.4.5.A). The 

CYP1B1 deficient cells exhibited enhanced cell viability toward B[a]P as compared to sicontrol 

(Fig. 4.5.B). Moreover, we performed caspase-Glo assay in transfected HaCaT cells in presence 

of B[a]P and data clearly showed that caspase 3/7 activity was very significantly decreased in 

CYP1B1 knocked down with respect to sicontrol group (Fig. 4.5.C) indicating specific role of 

CYP1B1 in B[a]P mediated apoptosis. 
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Fig.4.4. Inhibition of B[a]P induced apoptosis by caspase inhibitor: (A) Ac-DEVD-CMK (Sky blue) caspase 3 

inhibitor bound in a contracted active site of caspase 3 (Yellow). (B) The image was magnified to show binding 
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conformation. (C) Binding energy graph of AutoDock 4.2 of Ac-DEVD-CMK and caspase 3. (D) Showing binding 

of amino acids residues were H121, S205, G122, Y204, G165 and E123 using Ligplot. (E) Using Pymol to 

visualize binding residue. (H) B[a]P (Red)–CYP1B1 (Green) complex with caspase3 (Purple)-AC-DEVD-CMK 

(Yellow) inhibitor complex showing weak interaction. (I) HaCaT cells were pre-treated with 50 lM of AC-DEVD-

CMK for 2 h and then treated with 5 lM B[a]P for 48 h and caspase 3 activity was determined by caspase 3 Glo 

assay. (H) Benzo[a]pyrene–cytochromeP450-caspase8-AC-IEPD-CMK and Benzo[a]pyrene–cytochromeP450-

caspase 9-Pan caspase inhibitor. 

 
Fig.4.5. Clotrimazole potent inhibitor of cytochrome P450 playing crucial role in inhibit activity of B[a]P: 

(A) computational model showing clotrimazole (CTZ) (Purple) bound in a narrow active site of CYP1B1 (Green) 

using AutoDock 4.2. (B) The image was enlarged to clearly show binding conformation using chimera 1.6.2. (C) 

Binding energy graph of AutoDock 4.2 of CTZ and CYP1B1. (D) Showing binding amino acids residues present at 
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active site using Ligplot. (E) Using Pymol to visualize binding patter and residue. (F) HaCaT cells were pre-treated 

with CTZ (5 lM) for 2 h followed to B[a]P (5 lM or other) treatment and quantified for MTT assay after 72 h and 

caspase 3 expression after 48 h by caspase 3/7 Glo assay. Data reported as the mean ± S.D. of three independent 

experiments and compared against PBS control. P Values < 0.05 and P < 0.01 values were considered significant.  

 Fig.4.6. Clotrimazole potent inhibitor of cytochrome P450 playing crucial role in inhibit activity of B[a]P: 

(A) computational model showing clotrimazole (CTZ) (Purple) bound in a narrow active site of CYP1B1 (Green) 

using AutoDock 4.2. (B) The image was enlarged to clearly show binding conformation using chimera 1.6.2. (C) 

Binding energy graph of AutoDock 4.2 of CTZ and CYP1B1. (D) Showing binding amino acids residues present at 

active site using Ligplot. (E) Using Pymol to visualize binding patter and residue. (F) HaCaT cells were pre-treated 
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with CTZ (5 lM) for 2 h followed to B[a]P (5 lM or other) treatment and quantified for MTT assay after 72 h and 

caspase 3 expression after 48 h by caspase 3/7 Glo assay. Data reported as the mean ± S.D. of three independent 

experiments and compared against PBS control.* P Values < 0.05 and**P < 0.01 values were considered 

significant.  

4.3.6. Clotrimazole potent inhibitor of cytochrome P450 playing crucial role in inhibit 

activity of benzo[a]pyrene 

To elucidate possible mechanism of B[a]P activation by CYP1B1 which induced different 

apoptosis pathways, we screened different types of available pharmacological CYP1B1 

inhibitors. CTZ was identified as a potent inhibitor of B[a]P activated CYP1B1 to restrain 

apoptosis. CTZ is one of a family of imidazole-derived antimycotic agent which inhibits 

CYP1B1 mediated reaction. We observed CTZ bound at active site of CYP1B1 hydrophobic 

and Van der Waals interactions (Fig.4.6.A and B) with binding energy -6.03 kcal/mol using 

AutoDock 4.2 (Fig.4.6.C). The residues like S464, T398, F394, I462, T334, V395, F463, R468 

and C470 were present at active site of CYP1B1 (Fig.4.6.D and E). The docking between CTZ–

CYP1B1 complex and B[a]P showed no interactions between the complex and the ligand. 

To investigate and validate the role of CTZ as CYP1B1 enzyme inhibitor, HaCaT cells were 

treated with B[a]P in presence of CTZ and apoptosis activity was quantified. The MTT assay 

showed that B[a]P induced cell death was very significantly inhibited in presence of CTZ as 

compared to only B[a]P (Fig.4.6.F). Next, we performed caspase-Glo assay in presence of CTZ 

and data showed that caspase 3 activity was very significantly decreased with treatment of 

B[a]P in presence of CTZ as compared to B[a]P alone. Our data clearly showed that CTZ could 

suppress the activity of B[a]P by inhibiting CYP1B1 (Fig.4.6.G). As CYP450 play important 

role in both biosynthesis and oxidative degradation of many physiological and foreign 

compounds, inhibition of CYP1B1 by CTZ could have important role in carcinogenesis. 

4.4. Discussion 

Abundant studies have been reported about carcinogenic and mutagenic effects of B[a]P and 

have been well documented in human, animals and other mammalian cell systems (Wass et al., 

2011). B[a]P itself is an inert, hydrophobic molecule. As already discussed B[a]P becomes 

carcinogenic when metabolised by the CYP450 family of monooxygenases. It has been 

hypothesized that polymorphism in the CYP genes could affect the individual capacity in 

converting precarcinogens into carcinogens which is one of the important contributing factor to 
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individual susceptibility towards cancerous development (Tokiwa et al.,1993). CYP1A1 and 

CYP1B1 have been shown to be the most important human P450 enzymes in the metabolic 

activation of PAHs to carcinogenic intermediates (Roberts-Thomson et al., 1999; Luch et al., 

1999). Here, we developed docking as an approach to study activation of PAHs and its 

signalling mechanisms through ligand–protein and protein–protein interactions which could 

provide an opportunity for understanding and formulating the active compound could be used as 

a tool for monitoring environment pollutants. Interestingly, we observed that B[a]P bound with 

CYP1B1 at its active site whereas water and glucose molecule showed no interaction with 

CYP1B1. This indicated that interaction between B[a]P and CYP1B1 was specific and binding 

at active site was required for activation. Previous study showed that vitamin D upon binding 

with CYP450 gets activated (John et al., 2010; Prosser and Jones, 2004). Another previous 

report showed that molecular docking and conformational sampling studies of the Ca2
+
 loaded 

caspase-3/calbindin-D28K interaction were performed in order to isolate potentially crucial 

intermolecular contacts. Residues in the active site loops of caspase 3 and EF-hands 1 and 2 of 

calbindin- D28K were shown to be critical to the interaction (Schuster, 2011). In addition, it 

showed that three series designed novel heterocyclic azoles derivatives containing pyrazine (5a–

5k, 8a–8k and 11a–11k) were synthesized and their biological activities were evaluated as 

potential telomerase inhibitors (Bobay et al., 2012). Recently, Stolpmann et al. showed that 

B[a]P was a strong activator of the aryl hydrocarbon receptor (AHR) and the biotransformation 

of B[a]P was regulated via AHR. Our data deciphered that CYP1B1–B[a]P show high affinity 

of binding towards AHR which could associate in AHR activation and transcription regulation 

to convey toxic effects on cells. Next, the in-silico work showed B[a]P induced apoptosis. 

B[a]P– CYP1B1 complex then showed binding affinity towards caspase 8, 9 and 3. On contrary 

B[a]P alone did not show any types of interaction with different types of caspases. This 

indicated that the active metabolites from B[a]P–CYP1B1 complex as the end products of B[a]P 

metabolism may directly activate the signalling pathway including apoptosis signalling cascade. 

Moreover, several previous study showed that the inert and inactive B[a]P initially oxidized by 

CYP1A1 or CYP1B1 to phenols, such as 3-hydroxy-B[a]P and 9-hydroxy- B[a]P, and epoxides 

B[a]P-7,8-epoxide, which serves as a substrate for a second CYP-dependent oxidation, 

generating toxic BPDE-2. B[a]P-r-7,t-8-dihydrodiol-t-9,10-epoxide (BPDE-2) (Zhang al., 2012; 

Nordling et al., 2002; Shimada and Fujii-Kuriyama, 2004; Jiang et a., 2005). Our finding also 
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support that inhibition of CYP1B1 by siRNA approach and CTZ suppressed the B[a]P induced 

caspase activation followed to apoptosis. Caspases the key executioner of apoptosis is critical to 

the cellular commitment to apoptotic cell during B[a]P mediated death. The in silico study 

demonstrated that B[a]P–CYP450 showed high binding affinity towards caspase 8, 9 and 3 as 

indicated from lowest energy value. Our data showed that caspase 3 inhibitor Ac-DEVD-CMK 

bound in active site of caspases and presence of caspase inhibitors with B[a]P–CYP1B1 showed 

enhanced energy value suggesting lower binding affinity. So it was clearly demonstrated that 

B[a]P was an inactive state but during catabolism it was catalyzed by CYP450 family enzymes 

(CYP1B1) and induced apoptosis. This result of apoptosis was further confirmed performing 

Annexin V binding and DNA fragmentation assay evidently provided idea B[a]P induced 

apoptosis in HaCaT cell by dose dependent manner. The mechanism of apoptosis inhibition can 

occur by either direct caspase 3/7 inhibitor (Ac-DEVDCMK) or inhibitor of the conversion of 

procaspase-3 to the active form (Huang et al., 2012; Cid et al., 2003; Barnoy et al., 2005). As 

B[a]P activated by CYP1B1 and induced apoptosis, sequentially we validated the hypothesis 

with inhibition of CYP1B1 complex by CTZ. Analysis of active binding sites showed that 

B[a]P and CTZ were bound at different sites on CYP1B1 and it clearly elaborated that binding 

of CTZ irreversible changed the configuration of CYP1B1. This leads to change in the active 

site of B[a]P and data showed that binding of B[a]P with CYP1B1 was completely abrogated in 

presence of CTZ. Similarly, study also showed a remarkable suppression of B[a]P induced cell 

death in presence of CTZ. Moreover, the CTZ was deciphered to be effective in reducing 

cytotoxicity induced by other PAH released from industrial pollutants. Interestingly, the 

specificity of the inhibitory effect of low concentration CTZ has been evaluated for different rat 

liver P450 (Walters et al., 2009; Turan et al., 2001) demonstrating blocking the activation of 

PAH by CTZ could have therapeutic benefits from several diseases including allergy and 

cancer. 
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Abstract 

Benzo[a]pyrene (B[a]P), known polycyclic aromatic hydrocarbon has been found to induce 

cytotoxicity through apoptosis. In the present study, we documented that B[a]P induced 

autophagy-dependent cell death through the canonical pathway in HaCaT cells. B[a]P was 

found to induce autophagy in HaCaT cells as determine by acridine orange staining, GFP-LC3 

puncta cells and LC3-II accumulation. We examined that B[a]P activated by CYP1B1 and aryl 

hydrocarbon receptor (AHR) was associated with induction of autophagic cell death. Inhibition 

of autophagic death with siBeclin-1 as well as inhibiting apoptosis by overexpression of Bax
-/-

 

could not alter the cell death suggesting that B[a]P independently induced autophagic and 

apoptotic death in HaCaT cells. The colocalization study showed mitochondria interacted with 

the lysosome and induced mitophagy in B[a]P treated cells. B[a]P declined the ATP/AMP ratio, 

resulting in diminished cellular metabolism and activation of AMP kinase, which induced 

AMPK/mammalian target of rapamycin-dependent autophagy. Interestingly, pretreatment of 

methyl pyruvate (MP) restored ATP production and reduced GFP-LC3 puncta formation in 

B[a]P treated HaCaT cells. Further, we showed that B[a]P was found to deplete oxygen 

consumption and ATP generation in mitochondria and activated reactive oxygen species (ROS) 

production to induce mitochondrial toxic autophagy in HaCaT cells. Addtionally, B[a]P 

mediated ROS generation was supressed by pretreatment of MP in HaCaT cells, confirming a 

role for energy alternation in B[a]P mediated autophagic cell death. In conclusion, the present 

study revealed distinctive aspect as to  how B[a]P contribute to cellular toxicity and identified 

as an inducer of mitophagy dependent cell death.  

Keywards: Benzo[a]pyrene, autophagic cell death, mitochondrial stress, ATP depletion, 

mitophagy 

 

 



67 

 

      Durgesh Nandini Das, Department of Life Science, National Institute of Technology, Rourkela: PhD Thesis 

5.1. Introduction 

Benzo[a]pyrene (B[a]P) belongs to a class of polycyclic aromatic hydrocarbons (PAHs) that 

serve as micropollutants in the environment. It is produced during the incomplete combustion of 

organic materials like wood and tobacco smoke, vehicle exhaust, residential heating, electric 

power, industrial source (Cirla et al., 2007). B[a]P contributes to approximately 50 % of the 

total carcinogenic potential of the PAH group. The occupational exposure, for instance, is 

associated with lung, bladder, oral cavity, esophagus, hematolymphatic, skin, lip, pharynx and 

larynx cancers (IARC 2012) ( Li et al., 2007; Hakami et al., 2008; Chen et al., 2013; Labib et 

al., 2012). B[a]P causes cytotoxic, teratogenic, genotoxic, mutagenic, and carcinogenic effects 

in various tissues and cell types in organisms (Nebert, 1989; Ellard et al., 1991). Cytochrome 

P450 catalyses the hydroxylation at a vacant position of an aromatic ring is deliberated to be the 

hallmark for the instigation of carcinogenesis, through the formation of highly reactive 

alteration products that can induce oncogenic mutations in experimental animals and humans 

(Wei  et al.,  1996; Luneva  et al., 2000; Arlt et al., 2008; Androutsopoulos et al., 2009). The 

transcriptional activation of the CYP1A1 gene is facilitated by the binding of environmental 

pollutants and inhalation chemicals, particularly substrates of the CYP1A1 enzyme, to the 

cytosolic receptor AHR and is also intermediated by its translocation to the nucleus and 

subsequent formation of a dimer, which interacts with the corresponding xenobiotic response 

elements (XRE) to stimulate transcription located in the promoter region of AHR target genes 

such as CYP1A1 and CYP1B1 (Hankinson et al., 1995;Beischlag et al., 2008;Tsay et al., 2013; 

Murray et al., 2014). B[a]P and its metabolites cause DNA damage and can affect numerous 

cellular processes leading to carcinogenesis. In addition, other effects have also been described 

including epigenetic modification, cell cycle changes, inappropriate cell death and survival, 

disturbed metabolism and gene expression.  

Although environmental toxicant and xenobiotic- induced cell death has been 

extensively investigated, little attention has been paid to the role of cellular protective 

mechanisms in environmental toxicant and xenobiotic-induced cell death and tissue injury. In 

addition to cell death, autophagy may also be a cell survival mechanism where old and damaged 

cell material and organelles are degraded by lysosomal hydrolases. Autophagy is an 

evolutionarily conserved catabolic process where a cell self digests its cytoplasmic contents (the 
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expression derives from Greek; “auto” – self and “phagia” – eating), and it is a crucial adaptive 

response that recycles energy and nutrients during starvation or stress (Mizushima et al., 2008; 

Yin et al., 2008; Ding et al., 2010; Arias et al., 2011; Bhutia et al., 2011; Bhutia et al., 2013; 

Panda et al., 2015).The role of autophagy in normal cellular homeostasis, the intricate 

relationship between cellular stress and the stimulation of autophagy, and the identification of 

specific xenobiotics capable of modulating autophagy, point to the importance of the autophagic 

process in toxicology. Autophagy is a conserved catabolic process whereby cellular components 

are degraded by engulfment into autophagosomes. Autophagosomes fuse with lysosomes, 

which contain hydrolytic enzymes that break down cellular components.  Mitophagy insinuate 

the degradation of mitochondria through autophagy (Haouzi et al 2002; Kim et al., 2007; 

Garrido-Maraver et al., 2015). In this study, within a research project aimed to investigate the 

importance of autophagy in homeostasis, the close relationship between cell stress and 

autophagy, and the documentation of environmental stressors and xenobiotics that are capable 

of modulating autophagy, all underscore the prominence of this cellular process to the field of 

toxicology.  

5.2. Materials and methods 

5.2.1. Chemical and reagents 

Benzo[a]pyrene, dimethyl sulfoxide (DMSO), 3-[4-5-dimethylthiazol-2-yl]-2,5-diphenyl 

tetrazolium bromide (MTT), Methyl pyruvate, acridine orange from Sigma, USA. Fetal bovine 

serum (sterile-filtered, South American origin), minimal essential medium (MEM), Dulbecco’s 

minimal essential medium (DMEM), antibiotic-antimycotic (100X) solution, Lysotracker red, 

MitoTracker Green and Lipofectamine 2000
®
 were purchased from Invitrogen, USA. The 

caspase-Glo assay kit for quantification of caspases were purchased from Promega, USA, 

siRNA for Beclin-1, AHR, CYP1B1 and control siRNA from SantaCruz Biotechnology, USA.  

 5.2.2. Cell culture 

The immortalized human keratinocyte cell line (HaCaT) was obtained from National Centre for 

Cell Science, Pune, India and cultured in Dulbecco’s modified Eagle’s medium with high 

glucose (DMEM/high glucose), supplemented with 10% heat-inactivated fetal bovine serum 

(FBS) containing and 1% penicillin–streptomycin. The cells were maintained at 37 
o
C in a 

humidified atmosphere at 5% CO2. All media, supplements and antibiotics were purchased 

from Invitrogen (Das et al., 2014). 
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5.2.3. Cell viability by MTT assay 

HaCaT cells were harvested from maintenance cultures in logarithmic phase and were counted 

by hemocytometer using trypan blue solution. HaCaT (1 x 10
4 

cells/well) were cultured in a 96- 

well plate at 37 OC, and exposed to varying concentrations of B[a]P for 72 h. After 72 h MTT 

solution (5mg/ml) were added, post 4 h incubation, the resultant formazan crystals were 

dissolved in dimethyl sulfoxide and the absorbance was measured by a microplate reader 

(Perkin Elmer) at 595 nm. All experiments were performed in triplicate, and the relative cell 

viability was expressed as percentage relative to the untreated control cells (Das et al., 2014). 

5.2.4. Caspase assays 

HaCaT cells were seeded in 6 well plates and were treated with B[a]P for 48 h. After treatment, 

caspase activity was measured using caspase-Glo assay following the manufacturer’s protocol 

(Promega Corp., Madison, WI) (Bhutia et al., 2010; Das et al., 2014). 

5.2.5. Measurement of autophagy 

HaCaT cells were cultured with B[a]P for 48 h, washed with PBS and then detection of late 

autophagic vesicles was done by staining with 0.5 μg/ml of acridine orange for 15 minutes. The 

media was discarded and the cells were washed with PBS for three times and observed using an 

inverted fluorescent microscope (Panda et al., 2014).  

      HaCaT cells were transfected with pEGFP-LC3 (Addgene plasmid 11546, Jackson et al., 

2005) and 48h after transfection, HaCaT cells were incubated in presence of BM for 48 h and 

the level of autophagy was quantified by counting the mean number cells with puncta 

fluorescence to autophagosome formation (Panda et al., 2014; Mukhopadhyay et al., 2014b). 

5.2.6. Measurement of Mitochondrial ROS 

Mitochondrial ROS was measured by MitoSox (Invitrogen) in a fluorescence microscope. After 

specific treatment, HaCaT cells were incubated with MitoSox in incomplete media for 30 min 

in the CO2 incubator. Cells were then washed 3 times in PBS and live cell imaging was 

performed in florescence microscope.  

5.2.7. Measurement of cellular ATP level  

Determination of cellular ATP level from cellular lysates was done following the protocol of the 

ENLITEN
® 

ATP Assay System Bioluminescence kit from Promega (Madison, WI, USA).  
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5.2.8. Western blotting analysis  

HaCaT cells were treated with B[a]P before proteins were extracted. Cell extracts were prepared 

in cell lysis buffer, and equal amount of proteins were resolved by SDS-PAGE and then 

transferred onto PVDF membrane. Protein level in each band was evaluated using antibody 

against LC3, ATG5, Beclin-1, total AMPK, phospho-AMPK, phospho-mTOR, phospho-S6K, 

CYP1B1 and AHR protein levels were performed as described previously (Mukhopadhyay et 

al., 2014b). 

5.2.9. Plasmids, Small interfering RNA and transfection 

 1x10
6
 HaCaT cells were cultured in 60 mm petriplate and transfected with an 80 % confluency 

using Oligofectamine reagent (Invitrogen) following manufacturers protocol. HaCaT cells were 

transfected with specific siRNA by using Lipofectamine 2000, following the manufacturer’s 

instructions. CYP1B1 siRNA(sc-44546) sc-44546A: Sense: CAGCUCGAUUCUUGGACAATT, 

Antisense: UUGUCCAAGAAUCGAGCUGTT; sc-44546B: Sense: GGAAACUUGCCAAUAAGAATT, 

Antisense: UUCUUAUUGGCAAGUUUCCTT; sc-44546C: Sense: CAAGAUUGGUCUCCCAUAUTT, 

Antisense:AUAUGGGAGACCAAUCUUGTT, AHRsiRNA (sc-29654) sequence Sense: 

UACUUCCACCUCAGUUGGCTT, Antisense: GCCAACUGAGGUGGAAGUATT (all sequences are 

provided in 5′ → 3′ orientation) and control siRNA (sc-37007) were from SantaCruz Biotechnology, 

Dallas, TX.After 48 h of transfection cells were treated with B[a]P and autophagy and apoptosis 

was studied (Bao et al., 2015).  

5.2.10. Visualization of mitophagy 

After specific treatment, HaCaT cells were incubated with lysotracker red and mitotracker green 

at 37 °C for 30 minutes and followed to three times washing with incomplete media. The cells 

were observed at 200× magnifications under a confocal microscope (Mukhopadhyay et al., 

2015). 

5.2.11. Measurement of mitochondrial respiration rate and glycolysis study  

In order to analyse the mitochondrial oxygen consumption rate (OCR), 1 × 10
5
 HaCaT cells 

were seeded in a special respirometric plate. Following which B[a]P was treated for 2h and then 

OCR analysis was carried out in XF-24 Extracellular Flux Analyzer (Seahorse Bioscience, MA, 

USA) by following the protocol of (Santiago et al BBA 2014, PMID: 25038307). We 

determined aerobic glycolysis by determining enzymatic lactate as well as extracellular 
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acidification rate (ECAR), which is a substitute for lactate efflux rate in extracellular medium. 

After analysing the basal ECAR, maximal reserve capacity analysis was done by oligomycin  

(1 μM) treatment.  ECAR was represented in milli-pH (mpH) units expressing the alternation in 

pH per min. 

5.2.12. Statistical Analysis: 

 Data are represented as the mean ± SE and analyzed for statistical significance using one-way 

ANOVA followed by Newman-Keul’s test as a post hoc test. A P value of <0.05 was 

considered significant. 

5.3. Results: 

5.3.1. Autophagic cell death with benzo[a]pyrene in HaCaT cells  

Skin act as the first line of immune defence against xenobiotic exposure. We investigated 

whether B[a]P does have any cytotoxic effect through induction of autophagy on human skin 

keratinocytes HaCaT cells. Initially, we stained the B[a]P treated HaCaT cells with a frequently 

used acidotropic dye, acridine orange and found out that there was a dose dependent increase of 

late autophagic vacuoles (Fig.5.1. A and B). The unique standard to analyze autophagy is to 

monitor conversion of microtubule associated light chain 3 (LC3) form I to LC3 II form which 

is manifested through the autophagic puncta formation. We transfected HaCaT cells with 

pEGFP-LC3 and found a dose dependent accrual of autophagic puncta 1, 2.5, and 5 µg/ml 

B[a]P treated doses respectively (Panda et al., 2014). We also compared our results against a 

positive control using pEGFP-LC3 transfected cells in serum free media for 24 h, which showed 

an increase in autophagic puncta (Fig.5.1.C and D). Moreover, rise of B[a]P dosage resulted in 

alterations of cell morphology including cellular rounding patterns in pEGFP-LC3 transfected 

HaCaT cells was seen along with autophagy, specifying that there was a visibly evident death 

involved with autophagy. Hence, B[a]P may be regarded to trigger autophagic cell death. With 

this background, we demonstrate that B[a]P is capable of  inducing  both autophagic and 

apoptotic cell death.  To rule out nonspecific aggregations of ectopically expressed GFP-LC3, 

we scrutinized changes in the expression of endogenous LC3 (Kabeya et al., 2000; Wu et al., 

2006; Bhutia et al., 2010). HaCaT cells with B[a]P led to a rapid accumulation of the LC3-II 

form (corresponding to  the characteristic lipidation of this protein during autophagosomes 
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formation) in a dose dependent manner compared with control and B[a]P-treated cells

 
Fig.5.1. Benzo[a]pyrene induced autophagic cell death in HaCaT cells.(A) HaCaT cells were treated with  

different concentration of B[a]P (1, 2.5, 5 µM) for 24 h following that acridine orange staining was done for 

analyzing autophagic vesicles. (B) Red fluorescence intensity indicating the autophagic progression was quantified 

taking control as 100 arbitrary units. (C) HaCaT cells were transfected with GFP-LC3  for 48h followed by 

treatment with  different doses of B[a]P as in (A), then  GFP-LC3 puncta were enumerated to quantify 

autophagosome formation (D), at least 100 number of GFP-LC3 transfected cells were counted. (E) Accumulation 

of LC3-II was observed by Western blot after treating HaCaT cells with various doses of B[a]P for 24 h. Data are 

reported as mean ± SD of five different observations and compared against PBS control by using Student’s t-test. P 

values <0.05 were considered significant (*significant compared to DMSO treated control). 
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(Fig.5.1.E). Autophagy can be mediated by the canonical pathway, in which Beclin-1 initiates 

the generation of the autophagosome by forming a multiprotein complex with class III 

phosphatidylinositol-3-kinase or hVps34. Simultaneously, autophagy can occur by the 

noncanonical pathway independent of Beclin-1 and hVps34 (Bhutia et al., 2010; Greene et al., 

2012; Decuypere et al., 2013). In our study we analyzed the expression of Beclin-1 and ATG5 

expression and found to increase in dose dependent manner (Fig.5.2.A). To determine pathway 

mediates B[a]P–induced autophagy, we used an siRNA approach to selectively knockdown 

essential autophagy (atg) genes, such as Beclin-1, and quantified GFP-LC3 punctate formation. 

The targeted siRNAs resulted in a substantial down-regulation of their corresponding encoded 

proteins (Fig.5.2.B). Among these genes, inhibition of Beclin-1 decrease the percentage of 

GFP-LC3–positive cells or LC3-II levels (Fig5.2.C). 

 

 

Fig.5.2. Benzo[a]pyrene induced autophagic cell death through the canonical pathway. (A) The expression of 
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Beclin-1 and ATG5 was determined by performing Western blot. (B) The siRNA transfected to selectively 

knockdown si Beclin (C) Percentage of GFP-LC3 puncta formation was quantified in siBeclin-1 knockdown cells 

treated with B[a]P (5 µM) for 24h. *represents a statistically significant change in comparison to pcDNA (*P < 

0.05). 

5.3.2. Activated benzo[a]pyrene induced autophagic cell death  

To investigate the potential involvement of CYP1B1 and AHR in autophagic cell death, HaCaT 

cells were transfected with siRNA against CYP1B1 and AHR for 48 h and autophagy was 

quantified pEGFP-LC3 puncta formation. The CYP1B1- and AHR-knockdown cells showed a 

decrease in autophagic puncta in B[a]P-treated cells as compared to sicontrol (Fig.5.3.A and B).  

(Stolpmann et al., 2012). 

 

Fig.5.3. Benzo[a]pyrene activated by CYP1B1 and AHR induced autophagic cell death. The siRNA 

transfected to selectively knockdown CYP1B1 and AHR (A) in HaCaT cells and showed a decrease in autophagic 

puncta in B[a]P-treated (24 h, 5 µM) cells as compared to siControl (B) . 

5.3.3. Relation between benzo[a]pyrene mediated apoptosis and autophagic cell death  

Simultaneous approach apoptosis and autophagic cell death may occur simultaneously and 

inhibition of autophagic activity in cells may switch responses to death signals from autophagic 
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cell death to apoptotic cell death and vice versa (Chatterjee et al., 2015). We performed the 

MTT assay in Beclin-1 knockdown (Fig.5.2.B) and Bax-/- HaCaT cells (Fig.5.4.A) and data 

showed that the cell viability was decreased in dose dependent manner with having difference 

among the different groups indicating the B[a]P induced autophagic cell death was independent 

of apoptosis (Fig.5.4.B). To scrutinize the role of B[a]P mediated autophagic death in apoptosis 

deficient cells, autophagic death was investigated in Bax
-/-

 HaCaT cells. The Bax
-/- 

HaCaT cells 

were characterized showing that knockdown of these proapoptotic proteins Bax blocks 

apoptosis induction by B[a]P (Fig.5.4.C). However, B[a]P treated Bax
-/-

 HaCaT cells did not 

exhibit higher autophagic phenotypes compared with pcDNA as evidenced by GFP-LC3 puncta 

vacuole formation (Fig.5.4.D). Further we performed caspase-Glo assay in siBeclin-1 

transfected HaCaT cells in presence of B[a]P and data clearly showed that caspase 3/7 activity 

did not show any change in  Beclin knocked down with respect to sicontrol group, confirming 

the hypothesis (Fig.5.4.E). 
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Fig.5.4. Benzo[a]pyrene mediated apoptosis and autophagic cell death occurred simultaneously. (A) The  

shRNA transfected to selectively knockdown sh Bax (B) MTT assay was performed in HaCaT cells transfected 

with mentioned targets.  (C) Apoptotic progression in Bax
k/d 

HaCaT cells were quantified after B[a]P treatment (24 

h, 5 µM) by  Caspase-3/7 expression analysis by Caspase-Glo 3/7 assay. (D) Autophagic progression was analysed 

by GFP-LC3 puncta enumeration in Bax
k/d 

HaCaT cells in comparison to pcDNA after B[a]P treatment. (E) Again, 

caspase 3/7 expression was analysed in B[a]P treated siBeclin-1 treated HaCaT cells. * represents a statistically 

significant change in comparison to sicontrol  (*P < 0.05). 

 

 

Fig.5.5. Benzo[a]pyrene induced mitophagic cell death. HaCaT cells treated with B[a]P for 12 h and 

colocalization analysis with Mito Tracker Green (200 nM) and LysoTracker Red (100 nM) was done by confocal 

microscopy. Merged image represents intense yellow color in comparision to control confirming occurrence of 

mitophagy after B[a]P treated HaCaT cells. The inset shows higher magnification of boxed area. Scale bar 

represents (50 µm). 
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5.3.4. Benzo[a]pyrene induced mitophagy 

However, mitochondria can swiftly change into death-promoting organelles. In response to 

environmental stress, mitochondria become producers of excessive reactive oxygen species and 

release pro-death proteins, resulting in disrupted ATP synthesis and activation of cell death 

pathways (Kubli et al., 2012). Interestingly, cells have developed a defense mechanism against 

aberrant mitochondria that can cause harm to the cell. This mechanism involves selective 

sequestration and ensuing degradation of the dysfunctional mitochondrion before it causes 

activation of cell death. Induction of mitochondrial autophagy, or mitophagy, results in selective 

clearance of damaged mitochondria in cells. After 24 h treated with B[a]P, HaCaT cells were 

stained with mitotracker green  and lysotracker red and  our, data revealed both mitochondria  

and lysosomes were co-localized (Fig.5.5.) suggesting reactive mitochondria were degraded 

with autophagolysosome and inducing autophagic cell death by initiating mitochondrial injury. 

With overwhelming mitochondrial damage, apoptosis becomes dominant, and inactivation of 

critical proteins of the autophagy pathway allows for cell death. 

5.3.5. Benzo[a]pyrene induced cellular energy deficiency leading to AMPK/mTor 

Pathway- dependent Autophagy 

We investigated whether a decrease in ATP/AMP ratio might induce autophagy by affecting 

cellular bioenergetics (Bhutia et al., 2010). To test this possibility, we monitored changes in 

cellular ATP levels in response to B[a]P. HaCaT cells infected with B[a]P displayed a dose-

dependent decrease in the levels of ATP, suggesting that cellular energy depletion might be 

responsible for B[a]P induced autophagy (Fig.5.6.A). AMPK is activated as intracellular 

AMP/ATP ratios rise. B[a]P caused a significant increase of AMPK phosphorylation at Thr-

172. Phospho-AMPKThr-172 phosphorylates and activates TSC2, further inhibiting the 

activation of downstream targets, such as mTOR and S6. Phosphorylation of mTOR and S6 

proteins was substantially decreased in B[a]P treated cells (Fig.5.6.B). We next determined 

whether the depletion of ATP production in HaCaT cells could be reversed by pretreating cells 

with a cell-permeable form of pyruvate, methylpyruvate (MP), which can be oxidized in the 

tricarboxylic acid cycle to produce NADH, which fuels the electron transport system and ATP 

production (Verrax et al.,2011). MP restored ATP production in B[a]P treated  cells to levels 

that paralleled those observed in untreated cells (Fig.5.6.C). Moreover, GFP-LC3 puncta 
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formation was reduced after addition of MP in HaCaT cells (Fig.5.6.D). Collectively, our data 

demonstrate that B[a]P induced disruption of cellular bioenergetics contributes to autophagy 

formation.                 

 

Fig.5.6. Benzo[a]pyrene activated AMPK/mTOR-axis found to lead autophagy dependent cell death in 

response to cellular energy deficiency in HaCaT cells. (A) HaCaT cells were treated with B[a]P with different 

doses (1, 2.5 and 5 µM) of B[a]P for 2h followed by measurement of ATP levels as mentioned in material section. 

(B) Western blot analysis of key AMPK/mTOR-axis activating proteins were analyzed after B[a]P (5 µM) 

treatment in HaCaT cells at mentioned time points. (C) Methylpyruvate (MP) (1 mM, 2 h) showed recovery in ATP 

level in comparison to B[a]P treated group. (D) Similarly percentage of GFP-LC3 puncta formation was quantified 

in (MP) treated group along with B[a]P treated group. *represents a statistically significant change in comparison 

to control (*P < 0.05). 



79 

 

      Durgesh Nandini Das, Department of Life Science, National Institute of Technology, Rourkela: PhD Thesis 

 

Fig.5.7. Activation of mitochondrial oxidative stress associated with B[a]P mediated autophagy.(A) 

Bioenergetics analysis was performed by measuring oxygen consumption rate (OCR) in HaCaT cells after B[a]P 

treatment (1, 2.5 and 5 µM, for 2h) . (B) Glycolytic flux in the presence of mentioned doses of B[a]P was analysed 

along with basal ECAR and maximal glycolytic capacity (C). (D) The relative level of ATP was determined in 
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HaCaT cells after 2h of B[a]P treatment under basal and oligomycin treated situation. (E) Measurement of B[a]P 

induced ROS in the presence of MP was analysed and quantified ( F). *Represents a statistically significant change 

in comparison to control (*P < 0.05). 

5.3.6. Mitochondrial oxidative stress was associated with B[a]P mediated autophagy   

Our findings showed bioenergetics analysis of mitochondrial oxygen consumption rate 

(Fig5.7.A), where we found that B[a]P treatment resulted in a dose dependent  decrease in OCR 

in a statistically significant  manner.  Furthermore, this fall in ATP was not compensated by any 

increase in the glycolytic activity (Fig.5.7.B). Oligomycin treatment resulted in modest change 

in glycolysis which was insufficient to maintain the ATP titre (Fig.5.7.C and D). This finding  

suggests that, B[a]P provides a strong energy imbalance due to mitochondrial damage, that 

supports the importance of mitochondria in normal keratinocytes as previously reported (Tamiji 

et al., 2005, Česen et al., 2013).  Autophagy is activated in response to cellular oxidative stress 

from reactive oxygen species (ROS) and we studied that B[a]P induced ROS generation might 

activate autophagy. Our data showed that B[a]P induced ROS in HaCaT cells as quantified 

using MitoSox in a fluorescence microscope (Fig.5.7.E and F) and we interrogated whether the 

MP supplementation was able to downregulate mitochondrial ROS generation (Fig.5.7.E and 

F). It was clearly demonstrated that external supplementation of MP also reduced the ROS level 

in B[a]P treated cells, signifying that B[a]P is a definite inducer of mitochondrial damage 

inflicting to loss of ATP production, which compels the undamaged mitochondria to overwork 

an subsequently escalate ROS level.  

5.4. Discussion 

Autophagy, in mammalian cells, is a expansively unknown process and only recently 

mammalian homologues of yeast genes have been discovered and used as molecular markers 

for autophagy (Wang et al., 2003). The role of autophagy covers beyond the general 

homeostatic  removal, degradation and recycling of damaged proteins and organelles to various 

specific physiological and pathological processes such as development, immunity, energy 

homeostasis, cell death or tumourigenesis (Dhalla et al., 2000; Sayre et al., 2001;Jenner, 2003; 

Dalle-Donne et al., 2006; Uttara et al., 2009). 

Benzo[a]pyrene (B[a]P) are the utmost  persuasive  according to the Environmental 

Protection Agency. PAHs can damage human health by causing affects to the immune system, 
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reduced fertility, developmental abnormalities, and respiratory damage; additionally, they 

promote the development of various types of cancer. Besides, previous study showed that the 

inert and inactive B[a]P initially oxidized by CYP1A1 or CYP1B1 to phenols, such as 3-

hydroxy-B[a]P and 9-hydroxy- B[a]P, and epoxides B[a]P-7,8-epoxide, which act as a substrate 

for a second CYP-dependent oxidation, generating toxic BPDE-2. B[a]P-r-7,t-8-dihydrodiol-t-

9,10-epoxide (BPDE-2) (Jiang et al., 2005; Das et al., 2014).  

Our finding also support that inhibition of CYP1B1 and AHR by siRNA approach 

suppressed the B[a]P induced Autophagic cell death. We confirmed by GFP-LC3 and acridine 

orange staining.  

The B[a]P induces stress condition by producing ROS. These ROS produce toxic effects 

by initiating lipid peroxidation directly or by acting as second messengers for the primary free 

radicals that initiate lipid peroxidation. Thus, the enhanced mitochondrial lung Lipid 

peroxidation (LPO) in B[a]P-treated animals may be due to the generation of ROS exacerbated 

by decreased efficiency of host antioxidant defense mechanisms. ROS generation is implicit 

associated with the malfunction of the mitochondrial respiratory chain and disengagement as 

well as variation in mitochondrial trans-membrane potential and membrane permeability (Bhat 

et al., 2015). B[a]P toxicity increased the levels of damage to mitochondria membrane. This 

study further supports the activity of ATPases perceived in B[a]P induced animals. 

Mitochondria, particularly when dysfunctional, produce excessive reactive oxygen species and 

must be removed by quality control pathways. Fascinatingly, the specificity of the B[a]P 

induces stress  pathway for selective autophagy of damaged mitochondria, also known as 

mitophagy. However, the effect of B[a]P on mitochondria function, and their possible roles in 

inducing cell death have not been well studied. Our outcomes revealed that the cells with 

mitochondria dysfunction and ATP depletion underwent necrosis at early time point and 

apoptosis and autophagy cell death. Evidence is provided that decreased ATP levels in cells 

play a central role in B[a]P induced autophagy cell death (Ronnett et al., 2009). AMPK is 

sensitive to the cytosolic AMP to ATP ratio and metabolic stress stimulates autophagy by 

suppression of mTOR signaling. AMPK plays a major role in energy homeostasis by 

coordinating a number of adaptive responses under ATP-depleting metabolic stresses.  

Our previous study has shown a new approach to perceive apoptotic activity of a known 

PAH called benzo[a]pyrene (B[a]P), using protein–ligand and protein–protein interaction 
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through  in silico approach, followed  by in vitro validation. This study focused on deciphering 

the underlying molecular mechanisms of toxic effects caused by B[a]P in a human keratinocyte 

cell lines. In the present work, we demonstrated that B[a]P could lead to undesirable 

toxicological effects in human keratinocyte cells, including severe morphological changes and 

reduction in cell viability, combined with robust activation of Autophagic cell death. It has been 

demonstrated that TCDD and cationic PAMAM dendrimers, could promote acute lung injury by 

inducing autophagy and autophagic cell death, indicating that autophagy and toxicity elicited by 

TCDD and PAMAM dendrimers were probably dependent on surface groups. Recently, an 

emerging form of literature suggests that dysregulation of autophagy induced by nanomaterials 

may lead to accumulation of abnormal proteins or damaged organelles, thereby resulting in 

neurodegenerative diseases. Autophagy and apoptosis have been shown to be coincident or 

antagonistic, depending on experimental context, and share cross-talk between signal 

transduction elements (Holczer et al., 2015). Autophagy may modulate the outcome of other 

regulated forms of cell death such as necroptosis. The changes are signals transmitted through 

molecular interactions, ultimately leading to two cellular fates, apoptosis and autophagy. Due to 

genetic variations, the signals may not be efficiently transmitted to modulate apoptotic and 

autophagic responses. 

Our investigation confirms that the decrease in ATP causes a type of metabolic stress, 

resulting in activation of AMPK followed by alterations in downstream molecules and induction 

of autophagy. Beclin1 (Atg6) is a well-known strategic regulator of autophagy. Although 

Beclin1 is enzymatically inert, it governs the autophagic process by regulating PtdIns3KC3-

dependent generation of phosphatidylinositol3-phosphate (PtdIns (3)P) and the subsequent 

recruitment  of additional Atg proteins that orchestrate autophagosome formation. Additionally, 

as manifest from co-localized study of mitochondria (MitoTracker) and lysosome (Lyso 

Tracker) we showed that treatment with different concentration of B[a]P induced damaged 

mitochondria and illustration antagonistic effect. Our finding also support that inhibition of 

Beclin by siRNA approach repressed the B[a]P induced Autophagic cell death. Apoptosis and 

autophagic cell death may occur simultaneously and inhibition of autophagic activity in cells 

may switch responses to death signals from autophagic cell death to apoptotic cell death and 

vice versa. From our study by we examine the role of B[a]P mediated autophagic death in 

apoptosis deficient and resistant cells, autophagic death was investigated in Bax
-/-

 HaCaT cells. 
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Although autophagy and apoptosis constitute distinct cellular processes with often opposing 

outcomes, their signaling pathways are extensively interconnected through various mechanisms 

of crosstalk. Here our study summarize the importance of autophagy and its role in cellular 

response to stress, including examples in which consideration of autophagy has contributed to a 

more complete understanding of toxicant-perturbed systems. The intent of our study focus on 

advance appreciation of this imperative cellular stress response among toxicologists, a research 

community focused on stressed biological systems. We found that B[a]P treatment  inflicted 

mitophagy mediated impairment of energy balance disrupting the synchronization of  cellular 

homeostasis. Mitochondria are critically envisaged as an important centre of energy production 

governing the progression of autophagy and apoptosis (Eguchi et al., 1997).  MP 

supplementation increased the titre of ATP elucidating why MP based strategies to exert anti-

oxidative stress and are readily involved in clinical trial (Hurtado et al., 2003, Tagashira et al., 

2014). 
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Abstract 

In this study, we demonstrated the cytoprotective role of Bacopa monnieri (BM) against 

benzo[a]pyrene induced apoptosis through autophagy induction. Pretreatment with BM rescued 

the reduction in cell viability in B[a]P treated human keratinocytes (HaCaT) cells indicating the 

cytoprotective potential of BM against B[a]P. Moreover, BM was found to inhibit B[a]P 

mediated ROS-induced apoptosis activation in HaCaT cells. Furthermore, BM was found to 

preserve mitochondrial membrane potential (MMP), and inhibited release of cytochrome c in 

B[a]P treated HaCaT cells. BM induced protective autophagy; we knocked down beclin-1and 

data showed that BM was unable to protect from B[a]P induced mitochondrial ROS mediated 

apoptosis in Beclin-1 deficient HaCaT cells. Moreover, we established that B[a]P induced 

damaged mitochondria were found to colocalize and degraded within autolysosomes in order to 

protect HaCaT cells from mitochondrial injury. In conclusion, B[a]P induced apoptosis was 

rescued by BM treatment and provided cytoprotection through Beclin-1 dependent autophagy 

activation. 

Key words: Bacopa monneiri, benzo[a]pyrene, autophagy, mitochondrial apoptosis, oxidative 

stress, Beclin-1 
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6.1. Introduction 

Since from the ancient times, Indians and others have been utilizing a diversity of plants and 

their products as therapeutics against various diseases (Howes et al., 2003; Anand et al., 2011). 

The World Health Organization (WHO) predicted that for basic health requirements, about 80% 

of the developing countries population depends on conventional medicines mainly obtained 

from plants. One of these plants, Bacopa monnieri (Brahmi/ BM) is one of the potent ancient 

medicinal plants used as a traditional ayurvedic medicine (Anand et al., 2011). Besides its role 

in memory enhancement, BM acts as a natural antioxidant and modulates oxidative stress 

induced by different toxic, environmental pollutant, and chemical carcinogens. For example, 

BM was found to prevent mitochondrial oxidative stress and dysfunctions induced by 3-

nitropropionic acid through modulation of superoxide dismutase, glutathione peroxidase, 

glutathione reductase, thioredoxin reductase in mice (Shinomol et al., 2012). Similarly, BM has 

been shown to prevent the effect of toxic pollutant including nitrobenzene and 

decabromodiphenyl ether from liver damage in rat and postnatal oxidative stress in the neonate 

and young female mice respectively (Menon et al., 2010; Verma et al., 2014). The BM extract 

had also reduced the β- amyloid activity in a transgenic mouse model which examined to induce 

oxidative stress leading to Alzheimer’s disease (Dhanasekaran et al., 2007). The protective 

actions of BM against the neurotoxic effect of Methyl Mercury (MeHg) have been reported in 

rats (Sumathi et al., 2012). The protective effect of BM against environmental factors including 

paraquat/diquat-mediated acute toxicity and rotenone induced cytotoxicity was studied (Singh et 

al., 2013) suggesting its use as a therapeutic adjuvant for different human disorders involving 

oxidative stress 

    Mitochondrial generated ROS had been implicated as an important contributor of 

PAHs associated diseases. The ROS induces mitochondrial dysfunction and is followed by 

apoptosis and cytotoxicity (Bansal and Kim.,2015). In this connection, autophagy, a highly 

conserved evolutionary catabolic process degrades cellular contents including cytoplasmic 

material, protein aggregates and damaged mitochondria through the formation of double layered 

autophagosome and provides as the cytoprotective mechanism (Panda et al., 2015; 

Mukhopadhyay et al., 2014). Autophagy maintains cellular homeostasis by providing a nutrient 

pool to cope with different types of stress. In an experiment on mice whose Atg5 was 

genetically removed (Atg5-/-) to stop the action of autophagy were found to be sensitive to 
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cardiac dysfunction leading to starvation (Kuma et al., 2004). It also showed that inhibition of 

autophagy by knockdown of Beclin-1 or 3-methyladenine in starved HeLa cell induced 

activation of caspase-3 and initiation of apoptosis (Boya et al., 2005). 

The present study examined the role of BM in the protection of B[a]P induced apoptosis 

through induction of autophagy. Our data showed that BM treatment rescued the cell viability 

reduction by B[a]P. Further, we investigated the mechanism of cytoprotection by BM against 

B[a]P and it clearly indicated that BM was found to inhibit the apoptosis induced by B[a]P. 

Further, the mitochondrial ROS generated by B[a]P was scavenged by BM. We also deciphered 

the role of BM in the clearance of reactive mitochondria through mitophagy. 

6.2. Material methods 

6.2.1. Chemical and reagents 

Benzo[a]pyrene B[a]P, dimethyl sulfoxide (DMSO), 3-[4,5-dimethylthiazol-2-yl]-2.5 

diphenyltetrazolium bromide (MTT), Propidium iodide from Sigma, USA. The Annexin V from 

BD Bioscience and Caspase-Glo assay kit for quantification of caspases were purchased from 

Promega, USA. Beclin-1 siRNA and control siRNA from SantaCruz Biotechnology, USA were 

procured. Bacopa monneiri plant was collected from the wild, Rourkela, Odisha, India and was 

taxonomically identified and authenticated by to taxonomist, PG department of Botany, Utkal 

University, Vani Vihar, Bhubaneswar, India and the specimen is preserved in the herbarium 

(specimen voucher No. UUBD-BM-007). The shade-dried and powdered leaves of Bacopa 

monneiri (10 mg/ml) were weighed and the aqueous extract of BM was prepared under the 

sterile condition after soaking in PBS for 24 h and and used in this study. 

6.2.2. Cell culture 

The immortalized human keratinocyte cell line (HaCaT) was obtained from National Centre for 

Cell Science, Pune, India and cultured in Dulbecco’s modified Eagle’s medium with high 

glucose (DMEM/high glucose), supplemented with 10% heat-inactivated fetal bovine serum 

(FBS) containing and 1% penicillin-streptomycin. The cells were maintained at 37 °C in a 

humidified atmosphere at 5% CO2. All media, supplements and antibiotics were purchased from 

Invitrogen. 

6.2.3. Cell viability by MTT assay 

HaCaT cells were harvested from maintenance cultures in logarithmic phase and were counted 

by hemocytometer using trypan blue solution. HaCaT (1×10
4
 cells/well) were cultured in a 96-
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well plate at 37°C, and exposed to various concentrations of B[a]P for 72 h. After 72 h MTT 

solution (5mg/ml) were added, post 4 h incubation, the resultant formazan crystals were 

dissolved in dimethyl sulfoxide and the absorbance was measured by a microplate reader 

(Perkin Elmer) at 595 nm. All experiments were performed in triplicate, and the relative cell 

viability was expressed as a percentage relative to the untreated control cells (Das et al., 2014). 

6.2.4. Beclin-1 knockdown using small interfering RNA 

HaCaT Cells were cultured in 60 mm plates and transfected at 80% confluence with 

Lipofectamine 2000 ® reagent (Invitrogen), in the presence of 100 nM of siRNAs specific for 

human Beclin-1 and control siRNA. HaCaT cells were used after 48 h transfection for RNA 

extraction and apoptosis studies (Das et al., 2013). 

6.2.5. Annexin V/ Propidium iodine staining 

After treatment, HaCaT cells were washed with phosphate buffer saline and then centrifuged at 

1200 rpm for 5 min at room temperature. Cell pellets were incubated with annexin V/PI in 

binding buffer and analyzed by flow cytometer. 

6.2.6. Caspase assays 

After treatment, caspase activity was measured using Caspase-Glo assay following  the  

manufacturer’s protocol (Promega Corp., Madison, WI). 

6.2.7. Western blotting analysis 

After treatment, HaCaT cell extracts in cell lysis buffer were prepared, and equal amount of 

proteins were resolved by SDS/PAGE, transferred to PVDF membrane, and protein level was 

evaluated using antibody against LC3, Beclin-1, ATG5, cytochrome c (Cell Signaling, Boston, 

MA, USA) as described previously (Mukhopadhyay et al., 2014b). 

6.2.8. Measurement of Mitochondrial ROS 

Mitochondrial ROS was measured by MitoSox (Invitrogen) in a fluorescence microscope. After 

specific treatment, HaCaT cell were incubated with MitoSox in incomplete media for 30 min in 

the CO2 incubator. Cells were then washed 3 times in PBS and live cell imaging was performed 

in florescence microscope. 

6.2.9. Mitochondrial membrane potential measurement 

After specific treatment, HaCaT cells were incubated with Rhodamine 123 (Rh123) (5 μg/ml 

final concentration) for 60 min in dark at 37°C, harvested and suspended in PBS. The 

mitochondrial membrane potential (MMP) was measured by flow cytometry. 
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6.2.10. Measurement of autophagy 

HaCaT cells were cultured with or without BM for 48 h, washed with PBS and then detection of 

late autophagic vesicles was done by staining with 0.5 μg/ml of acridine orange for 15 minutes. 

The media was discarded, and the cells were washed with PBS for three times and observed 

using an inverted fluorescent microscope (Panda et al., 2014). 

          HaCaT cells were transfected with pEGFP-LC3 (Addgene plasmid 11546, Jackson et 

al.,2005) and 48h after transfection, HaCaT cells were incubated in presence of BM for 48 h and 

the level of autophagy was quantified by counting the mean number cells with puncta 

fluorescence to autophagosome formation (Mukhopadhyay et al., 2014b). 

6.2.11. Visualization of mitochondria and lysosome 

After specific treatment, HaCaT cells were incubated with lysoTracker red and MitoTracker 

green at 37 °C for 30 minutes and followed by three times washing with incomplete media.The 

cells were observed at 200× magnifications under a confocal microscope (Olympus FV- 

1000; 630X) (Mukhopadhyay et al., 2015). 

6.2.12. Statistical analysis 

All data were given as the mean ± SD. Experimental results were analyzed by Student’s test. 

P < 0.05 was considered as the level of significance for values obtained for treated compound to 

control. 

6.3. Results 

6.3.1. BM found to protect against B[a]P induced cytotoxicity 

It is well known that B[a]P induces multiple biological dysfunctional effects including apoptosis 

and toxicity. To investigate the potential protective role of BM in B[a]P induced cytotoxicity, 

we treated BM for 2 h prior to B[a]P and assessed the cell viability of B[a]P after 48 h treatment 

in HaCaT cells. The data showed the B[a]P decreased the cell viability in dose dependent 

manner in HaCaT cell after 48 h treatment. Interestingly, it demonstrated that BM rescued the 

decrease of cell viability by B[a]P in HaCaT cell (Fig.6.1.A) indicating the potential 

involvement of BM in cytoprotection. Further, morphological analysis by phase contrast 

microscopy confirmed that cell death by B[a]P was supressed in BM treatment in HaCaT cells 

(Fig.6.1.B). Moreover, protective role of BM in B[a]P induced apoptosis was examined and 

data showed that apoptotic activity of B[a]P as the percentage of annexin V positive cell was 
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very significantly decreased in B[a]P along with BM as compared to alone B[a]P (Fig.6.1.C). 

Similarly, caspase Glo assay showed that caspase activity was decreased in the presence of BM 

in B[a]P treated cells as compared only B[a]P treated group (Fig.6.1.D). This study clearly 

suggested that B[a]P induced apoptosis was rescued by BM treatment in HaCaT cell and 

provided cytoprotection. 

 

Fig.6.1. Bacopa monneiri (BM) found to protect benzo[a]pyrene (B[a]P) induced cytotoxicity in HaCaT cells. 

HaCaT cells were treated with BM (1 mg/ml) for 2 h prior to B[a[P and followed by treatment with different 

concentration of B[a]P (1.0, 2.5 and 5.0 μM) for 48 h and cell viability was quantified for MTT assay (A). After 

treatment with BM and B[a]P, HaCaT were observed in phase contrast microscope (B) and analysed for apoptosis 

by performing annexin V/PI dual staining through by flow cytometry (C) and capsase activity using caspase-Glo 

3/7 assay (D). The values are the means ± SD of three independent experiments. *P < 0.05 compared with 

statistically significant change to corresponding control and #P < 0.05 compared with corresponding B[a]P treated 

group. 
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6.3.2. BM diminished B[a]P-induced mitochondrial dysfunction 

To decipher the mechanism of BM mediated cytoprotection, we quantified the generation of 

mitochondrial ROS by MitoSOX through fluorescence microscopy. The data indicated that 

ROS generation was increased with the treatment of B[a]P as compared to control. Moreover, 

B[a]P induced ROS was very significantly inhibited by BM treatment in HaCaT cells 

(Fig.6.2.A). This study concluded that BM mediated cytoprotection was induced by suppression 

of B[a]P mediated ROS generation in HaCaT cells. Further, alteration of mitochondrial 

membrane potential (MMP) was quantified by Rhodamine 123 through flow cytometry. The 

cell in control and BM group showed accumulation of green fluorescence intensity while cell 

exposed to B[a]P significantly diminished green intensity indicating that B[a]P induced loss of 

MMP in HaCaT cells. Interestingly, the cell treated with B[a]P in the presence of BM restored 

the decreased green intensity (Fig.6.2.B) suggesting BM sustained mitochondrial function 

following in B[a]P treatment. In addition, we analysed the release of cytochrome c in presence 

of BM in B[a]P treated group by Western blot and data showed that B[a]P group showed 

dramatically increased expression of cytochrome c as control and BM group (Fig.6.2.C). But 

BM decreased the expression of cytochrome c in B[a]P treated cells confirming the role of BM 

in protection mitochondria from B[a]P toxicity. 

 

Fig.6.2. BM diminished B[a]P-induced mitochondrial dysfunction. HaCaT cells were treated B[a]P (5.0 μM) along  
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with BM (1.0 mg/ml) for 48 h and reactive oxygen species (ROS) generation was measured by MitoSox in an 

inverted fluorescence microscope (Olympus IX71, 200X) (A), mitochondrial membrane potential (MMP) with 

Rhodamine 123 by flow cytometry (B) and expression of cytochrome c by Western blot (C). 

6.3.3. Autophagy induction by BM in HaCaT cells 

To investigate the potential role of BM in prosurvival autophagy induction, HaCaT cells were 

treated with different doses of BM for 48 h and acridine orange staining was performed to 

observe acidic contents in the cytoplasm. Acridine orange is a weak base, which traverses freely 

across biological membranes in an uncharged state characterized by green fluorescence, and its 

protonated form accumulates as aggregates in acidic compartments specially lysosome 

characterized by red fluorescence. The red intensity increased in a dose-dependent way in term 

of greater number of acidic organelles induced in the presence of BM (Fig.6.3.A). Further, we 

studied the autophagic activity of BM by GFP-LC3 distribution in HaCaT cells. The 

intracellular localization of LC3 in autophagic vacuoles was analysed by transient transfection 

of HaCaT cells with GFP-LC3 followed by BM treatment. In the control group, GFP-LC3 was 

found predominantly as a diffuse green fluorescence in the cytoplasm; however, in the BM-

treated cells, characteristic puncta fluorescent patterns were observed, indicating the recruitment 

of GFP-LC3 during autophagosome formation (Fig.6.3.B). The number of cells with puncta 

GFP-LC3 staining increased significantly in a dose-dependent manner after 48 h of BM 

treatment (Fig.6.3.C). To confirm autophagy induction by BM, we monitored changes in 

expression of endogenous LC3 by Western blot and our data showed that BM induced lipidation 

of LC3-I and resulted in the accumulation of LC3-II in the treated groups. Further, we analysed 

the expression of autophagic protein Beclin-1 and ATG5 and Western blot data showed that the 

expression of these proteins were increased in dose dependent way (Fig.6.3.D). It was noted that 

the BM extract did not induce any cytotoxicity as demonstrated by cell viability in HaCaT cells 

(Fig.6.1.A). 

6.3.4. BM-induced protective autophagy prevented mitochondrial apoptosis 

To figure out the involvement of BM mediated autophagy in the suppression of B[a]P induced 

apoptosis, Beclin-1 was knockdown in HaCaT cells. The data showed that Beclin-1 expression 

was decreased in the siBeclin-1 group as compared to sicontrol, demonstrated by Western blot 

(Fig.6.4.A). The BM induced autophagy was quantified in Beclin-1 knockdown HaCaT cells 

and showed that number of GFP-LC3 puncta formation was decreased in Beclin-1 deficient 
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group as compared to sicontrol BM treated group (Fig.6.4.B). Next, the apoptotic potential of 

B[a]P was quantified in the presence of BM in the siBeclin-1 group by MTT assay and caspase 

Glo assay. The data showed that cell viability supressed by B[a]P could not rescue in Beclin-1 

deficient HaCaT even in the presence of BM (Fig.6.4.C). In addition, B[a]P activated caspase 

activity in siBeclin-1 group did not show any difference with sicontrol in presence of BM 

(Fig.6.4.D) indicating BM-induced autophagy involved in cytoprotection for B[a]P mediated 

apoptosis.  

 

Fig.6.3. Autophagy induction by BM in HaCaT cells.HaCaT cells were treated with different doses of BM (0.1, 

0.5, and 1.0 mg/ml) for 48 h, and acridine orange staining was performed for late autophagic vesicles, which were 

visualized with an inverted fluorescence microscope (Olympus IX71, 200X) (A). HaCaT cells were transfected 

with pEGFP-LC3 and treated with different doses of BM for 48 h, and the transfected cells were visualized using 

an inverted fluorescence microscopy (Olympus IX71, 400X). The number of autophagosome puncta were 
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quantified and compared with the controls (B, C) (*P < 0.05, compared with control). HaCaT cells were treated 

with BM for 48 h and expression of LC3-II, Beclin-1 and ATG5 were analysed by Western blot (D). 

Further, the ROS generation by MitoSox was quantified and found that B[a]P induced ROS in 

siBeclin-1 was comparable to sicontrol even in the presence of BM (Fig.6.5.). This study 

indicated that BM did not prevent B[a]P activated apoptosis in Beclin-1 deficient HaCaT cells. 

Finally, HaCaT cells were stained with lysoTracker red and MitoTracker green after 48 h 

treatment with B[a]P in presence of BM, and data showed that both mitochondria and lysosome 

were colocalized with Pearson’s coefficient (Rr-0.918) as well as total overlap coefficient (R-

0.957) (Fig.6.6.) suggesting reactive mitochondria were degraded within autophagolysosome 

and protected HaCaT cells from mitochondrial injury. Mitophagy is a key mechanism for 

upholding mitochondrial homeostasis by removing damaged mitochondria, and mitophagy 

protects against B[a]P-induced injury. Targeting removal of damaged mitochondria by 

mitophagy or inducing formation of mitochondrial spheroids may be promising therapeutic 

options for treatment of B[a]P induced toxicity. Mitochondria maintain their homeostasis by 

various mechanisms. Mitochondria have their own proteolytic system, which degrades 

misfolded proteins. Mitochondria also utilize the proteasome to degrade damaged outer 

mitochondrial membrane proteins.  In addition, damaged mitochondria can be segregated from 

healthy mitochondria by mitochondrial fission, and healthy mitochondria can combine their 

components by mitochondrial fusion. Moreover, mitochondria can degrade oxidized proteins 

via mitochondria-derived vesicles, which bud off damaged mitochondria and are degraded in 

the lysosome along with their contents. Furthermore, mitophagy degrades damaged 

mitochondria in the lysosome, which is an significant mechanism for protection against B[a]P-

induced injury and steatosis. Formation of mitochondrial spheroids may serve as an alternate 

pathway for removal of damaged mitochondria and may also protect against B[a]P-induced skin 

injury. Removing damaged mitochondria by mitophagy is a protective mechanism against 

B[a]P-induced skin injury and steatosis because it serves to maintain a healthy population of 

mitochondria, which prevents cell death by reducing oxidative stress and preserving respiratory 

chain function and mitochondrial bioenergetics for efficient energy production. Therefore, 

targeting removal of damaged mitochondria may be an effective therapeutic option for 

preventing progression of toxicity induced by B[a]P. 
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Fig.6.4. Suppression of autophagy block the cytoprotection of BM. HaCaT cells were transfected with the 

indicated siRNAs, and gene expression was quantified by Western blot (A). The Beclin-1 knockdown HaCaT cells 

were treated with BM and B[a]P for 48 h and GFPLC3 puncta was quantified. The number of autophagosome 

puncta were quantified and compared with the controls (B) (*P < 0.05, compared with control). After treatment 

with BM and B[a]P, the cell viability was measured by MTT assay (C) and apoptosis was quantified by caspase 3/7 

Glo assay (D). 
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Fig.6.5. Role of BM in mitochondrial ROS generation by B[a]P in beclin-1 deficient HaCaT cells. The beclin-

1 knockdown HaCaT cells were treated with BM and B[a]P and generation of ROS was measured by MitoSox in a 

fluorescence microscope (Olympus IX71, 200X). 

 

Fig.6.6. HaCaT cells were treated with BM and B[a]P for 48 h and incubated with LysoTracker Red and 

MitoTracker Green to visualize of lysosome and mitochondria in under a confocalmicroscope (Olympus FV-1000; 

630X). 

6.4. Discussion 

Polycyclic aromatic hydrocarbons, the particulate air pollutants are capable of inducing 

oxidative stress and cellular injuries leading to cell death and associates with potential toxicity 

in human (Bansal and Kim, 2015; Miller and Ramos, 2001; Das et al., 2013). The long term 

exposure of these particulate matters causes inflammation and leads to a significant risk of 

cancer development. Prevention of B[a]P induced cellular toxicity through regulation of 

mitochondrial oxidative stress might protect cell death and have therapeutic benefit to human 
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health. In this study BM was found to protect HaCaT cell from B[a]P induced apoptosis 

partially through autophagy modulation. 

Our study showed that B[a]P induced apoptosis was diminished by BM treatment in HaCaT 

cells which was supported by previous study. It showed that BM found to protect rotenone 

induced cytotoxicity in dopaminergic cells and pretreatment of N27 cell with BM provided 

cytoprotective response by modulation of oxidative stress and apoptosis (Shinomol et al., 2012). 

Similarly, the beneficial outcomes of BM against apoptosis mediated toxicity due to 

paraquat/diquat have been studied (Singh et al., 2013). Here, we showed that the protective 

effect of BM against B[a]P was mediated through antioxidant activity of BM in HaCaT cells. 

Moreover, it showed that BM treatment decreases the ROS generation as well as preventing 

mitochondrial depolarization in B[a]P treated HaCaT cells. The antioxidant  attribute of BM 

was reported in different experimental models and the previous study showed that BM showed 

protective effects against different toxic chemicals including heavy metal, rotenone, Methyl 

Mercury (Shinomol et al., 2012; Menon et al., 2010; Verma et al., 2014;Dhanasekaran et al., 

2007; Sumathi et al., 2012; Shinomol et al., 2012). 

Autophagy implicates degradation of cytoplasmic materials, protein aggregates, recycled 

organelles and is associated to sustain cellular homeostasis under different stress conditions. 

The autophagy is regulated by autophagy related gene and is initiated through formation of 

phagophore by Beclin-1 and its associated complex. Another autophagic protein LC3-I is 

lipidated to form LC3-II on autophagosomal membranes upon autophagy induction (Panda et 

al., 2015; Mukhopadhyay et al., 2014; Mukhopadhyay et al.,2015). The cell death through 

autophagy is known as autophagic death, another form of cell death may occur to mitigate 

excess stress. Autophagy is context dependent and may be protective or toxic (Panda et al; 

2015).  Autphagy sometimes protects the cells from apoptosis and regard as protective whereas 

autophagy on other hand switches to autophagic cell death and is independent of apoptosis. Our 

study showed that BM induced cytoprotective autophagy in HaCaTs cells and the autophagy 

was increased in dose dependent manner as shown by acridine orange staining, GFP-LC3 

puncta cells and LC3-II accumulation (Panda et al., 2014; Mukhopadhyay et al., 2014a) 

suggesting a natural product with autophagy potential could have great benefit against toxic 

mediated apoptosis. For example, resveratrol induced protective autophagy has clinical 

importance and it showed that resveratrol along with calorie restriction have shown to induce 
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autophagy in heart of rat and protected from cardiac apoptosis against doxorubicin-mediated 

toxicity. To further explore the importance of BM mediated autophagy in B[a]P-induced 

apoptosis in HaCaT cells, Beclin-1 was knockdown in HaCaT cells by RNA-interference to 

inhibit autophagy. The suppression of autophagy by Beclin-1 knockdown dramatically 

enhanced B[a]P mediated cytotoxicity, suggested that B[a]P-induced cytotoxicity could be 

altered by autophagy.  

The mitochondrial ROS damages the mitochondria leading to impairment of cellular 

homeostasis and apoptosis. The elimination of reactive mitochondria through mitophagy, a 

specific type of autophagy involves to protect cells from apoptotic effector generated by 

dysfunctional mitochondria (Kuma et al., 2014; Moreau et al., 2010; Wang et al., 2015). Our 

study showed that BM-induced autophagy degraded ROS producing mitochondria and protect 

the HaCaT cells from B[a]P induced apoptosis. Interestingly, our data showed that BM could 

not protect the Beclin-1 deficient HaCaT cells from B[a]P induced apoptosis and ROS 

generation, confirming protective role of BM in B[a]P induced toxicity. Moreover, as 

demonstrated from colocalized study of mitochondria and lysosome we showed that 

pretreatment of BM induced degradation of damaged mitochondria and maintain health 

mitochondria in B[a]P treated cells. Our finding was supported by previous study. For example, 

autophagy inducer rapamycin found to protect rotenone induced apoptosis in human neuronal 

SH-SY5Y cells (Pan et al., 2009). In another study, autophagy by rapamycin attenuated 

triptolide-induced apoptosis in cardiomyocytes and heart tissue by facilitating removal of 

dysfunctional mitochondria (Zhou et al., 2015). Similarly, sestrin2, a stress-response protein 

demonstrated to promote autophagy through AMPK dependent pathway and augmented α-

synuclein accumulation and supressed caspase 3 activation of rotenone in dopaminergic cells 

(Hou et al., 2015). Interestingly, knockdown of sestrin2 or AMPK inhibition diminished 

autophagy activity and associated with α-synuclein accumulation and apoptosis. In conclusion, 

the present study revealed distinctive aspects of BM plant extract and identified it as an inducer 

of protective autophagy, which may directly contribute to the antioxidant promoting potential of 

BM under different environmental contaminant. 
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7.1. Summary 

Benzo[a]pyrene, polycyclic aromatic hydrocarbons is capable of inducing oxidative stress and 

cellular injuries leading to cell death and associated with potential toxicity in human. The long 

term exposure of these particulate matters causes inflammation and leads to a significant risk of 

cancer development. B[a]P is oxidised by many cytochrome P450 enzymes to several 

intermediates which have the ability to bind to the nuclear DNA covalently and this binding 

result in mutation, replication error and apoptosis mediated cell death. Environmental B[a]P 

inflict cellular disorders responsible for tissue damage, altering molecular, metabolic, or 

signaling pathways. With this background information about B[a]P the goals of the present 

investigation were set up, a) to investigate mutagenic and apoptotic potential of B[a]P identified 

from industrial city, India, b) mode of apoptitic activity of B[a]P through in silico and in vitro 

approaches, c) mitochondria mediated autophagic death, d) protective role of phytotherapeutics 

in B[a]P mediated toxicity.   

The general approaches were undertaken to address the goals 

I. In our investigation, an air quality monitoring program was designed to collect the 

gaseous and particulate air pollutants from two sites (in front of Indira Gandhi Park and 

the academic complex of NIT Rourkela) of the industrial city Rourkela.The presence of 

B[a]P in PM was confirmed by fluorescence spectroscopy and NMR.  

II. Additionally, we examined the mutagenic activity of PM with the Ames test, which 

determines if substances are capable of inducing mutations and has become an important 

procedure for safety assessment. 

III. The current study revealed that the generation of ROS after PM exposure could induce 

cellular oxidative stress and apoptosis. 

IV. Our findings validate that B[a]P and other unidentified PAHs present in the PM are 

activated by CYP1B1 and induced apoptosis. Accordingly, inhibition of CYP1B1 by 

siRNA or pharmacologically with the inhibitor CTZ reduced PM-mediated cytotoxicity 

and apoptosis. 
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V. Conversely, our clinical data indicated that PM does not affect the blood cells of people 

living in Rourkela, as demonstrated by the results of comet tail formation and 

immunophenotyping analysis.  

VI. The present study has adopted a novel approach to examine the apoptotic activity of 

B[a]P, using protein–ligand and protein–protein interaction through in silico approach, 

followed by in vitro validation.  In silico study elucidates that the conformational 

changes and energies involved in the binding of B[a]P to CYP1B1 was crucial with its 

target proteins. Furthermore, the data confirmed that activated B[a]P had high affinity to 

bind with aryl hydrocarbon receptor (AHR). 

VII. Interestingly, B[a]P–CYP1B1 complex showed a high binding affinity for caspase-8, -9, 

-3. To validate our in silico work, we confirmed that B[a]P treated HaCaT cells triggered 

apoptotic cell death with an increase in caspase 8, caspase 9 and caspase 3/7 level. 

VIII. Intriguingly, through in silico modeling, we screened clotrimazole as a potent CYP1B1 

inhibitor that completely inhibited the cytotoxic effect of B[a]P.  This hypothesis was 

verified by MTT assay, caspase activation measurement, indicating remarkable 

inhibition of B[a]P mediated apoptotic death; thereby, highlighting a potent therapeutic 

approach to industrial pollution associated diseases. 

IX. Moreover, we showed that B[a]P stimulated mitochondrial mediated autophagy 

dependent cell death through the canonical AMPK/mTOR pathway in HaCaT cells. 

X. We showed that B[a]P abrogated ATP generation and activated reactive oxygen 

production to induce toxic mitophagy in HaCaT cells.  

XI. In addition, we identified Bacopa monneiri (BM) plant extract as an inducer of 

protective autophagy, which may directly contribute to the antioxidant promoting 

potential of BM on B[a]P induced cell death through Beclin-1 dependent autophagy 

activation. 

To summarise this study, we  focused on awareness of the source of the environmental problems 

in Rourkela and provided an indication on potential environmental issue and elucidated the 

further scope for the development of phytotherapeutics against environmental air pollutants. This 

thesis to elucidates the mechanistic aspects of major particulate matter mediated cell death 

response like apoptosis, autophagic cell death and the natural defense system against its toxicity 

to propose a pilot study to investigate the potential of Bacopa monneiri to overwhelm its adverse 
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effects. This finding highlights the potential of phytotherapeutics in the form of BM extract for 

preventive strategy of exposure-related diseases.  

7.2. Conclusion 

Major research highlights on analysing health detoriation due to air pollutants, but little amount of 

research is undertaken to examine potential methods of preventing these effects. Benzo[a]pyrene 

and additional unidentified molecules collected from Rourkela City show a significant mutagenic 

potential. A new approach has been developed to examine the apoptotic activity B[a]P, using  

  

Fig.7.1. Proposed model of molecular mechanism of B[a]P mediated cell death and its prevention by 

phyotochemicals BM.  
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protein–ligand and protein–protein interaction through in silico approach, followed by in vitro 

validation of the same.The prediction revealed that B[a]P was activated by cytochrome P450 

(CYP1B1) to induce manifold cellular effects related to activation of the aryl hydrocarbon 

receptor (AHR) due to formation of toxic metabolites and this in turn activated caspases. For the 

first time we report that B[a]P induced mitophagy dependent cell death through the canonical 

pathway mediated through AMPK/mTOR axis. B[a]P abrogated ATP generation and activated 

reactive oxygen production to induce toxic mitophagy in HaCaT cells. This in turn promotes 

mitochondria turnover and precludes accumulation of dysfunctional mitochondria that can lead to 

cellular degeneration. Because of the danger of having damaged mitochondria in the cell, the 

timely elimination of damaged and aged mitochondria is essential for maintaining the integrity of 

the cell. In addition, we recognized Bacopa monneiri (BM) plant extract as an inducer of 

protective autophagy, which may directly contribute to the antioxidant promoting potential of BM 

on B[a]P induced autophagic cell death through Beclin-1 dependent autophagy. The broad field of 

phytoremediation promises some innovative treatments that are likely to become imperative in 

preventing allergy prone diseases and cancer.As with any toxic challenge, the obvious solution is 

to remove, or at least decrease to an acceptable level, the source of trouble. 

7.3 Scope of further investigation 

Research on mechanisms underlying the adverse health effects of air pollution has suggested 

potential pharmaceutical or chemopreventive interventions, such as antioxidant agents. In this 

commentary, we explore the various mechanisms by which autophagy and apoptosis regulate 

each other and define general paradigms of crosstalk on the basis of mechanistic features.The 

future study proposes to identify how mitophagy may be linked to the stress response and the 

related Ras–protein-kinase-A signaling pathway. Furthermore, the study elucidated that 

mitochondrial dysfunction is a common feature in air pollution adverse effects diseases like 

neurodegeneration diseases, asthma  arthritis, lung and heart and aging. PTEN-induced kinase 1 

(PINK1) and Parkin mediated mitophagy study will be used as a model for understanding the 

further molecular basis of B[a]P mediated mitophagy. Despite extensive investigation, several 

steps in the mitophagy pathway remain a mystery. 
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