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Abstract 

 

Electrical Discharge Machining (EDM) finds extensive application in manufacturing of 

dies, molds and critical parts used in the automobile and other industries. The present study 

investigates the effects of different electrodes, deep cryogenic treatment of tools subjected 

to different soaking duration and a hybrid approach of powder mixed EDM of cryogenically 

treated electrodes on machinability of Inconel 718 super alloy. Inconel 718 has been used 

as the work material owing to its extensive application in aerospace industries. A Box–

Behnken design of response surface methodology (RSM) has been adopted to estimate the 

effect of machining parameters on the performance measures. The machining efficiency of 

the process is evaluated in terms of material removal rate (MRR), electrode wear ratio 

(EWR), surface roughness, radial overcut and white layer thickness which are function of 

process variables viz. open circuit voltage, discharge current, pulse-on-time, duty factor and 

flushing pressure. In this work, a novel multi-objective particle swarm optimization algorithm 

(MOPSO) has been proposed to get the Pareto-optimal solution. Mutation operator, 

predominantly used in genetic algorithm, has been introduced in the MOPSO algorithm to 

avoid premature convergence and to improve the solution quality. To avoid subjectiveness 

and impreciseness in the decision making, the Pareto-optimal solutions obtained through 

MOPSO have been ranked by the composite scores obtained through maximum deviation 

theory (MDT). Finally, a thermal model based on finite element method has been proposed 

to predict the MRR and tool wear rate (TWR) when work piece is machined with variety of 

electrode materials. A coupled thermo-structural model has been also proposed to estimate 

the residual stresses. The numerical models were validated through experimentations. 

Parametric study is carried out on the proposed model to understand the influence of 

important process parameters on the performance measures. The study offers useful insight 

into controlling the machining parameters to improve the machining efficiency of the EDMed 

components. 

 

Keywords: Electrical discharge machining (EDM); Deep cryogenic treatment (DCT); 

Powder-mixed EDM (PMEDM); Finite element analysis (FEA);Multi-objective 

particle swarm optimization (MOPSO);Maximum deviation theory (MDT) 
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1.1 Introduction 

In 1770, English physicist, Joseph Priestley observed the erosive effect of electrical 

discharges which is used in today’s Electrical Discharge Machining (EDM) process. 

Therefore, he may be considered as the pioneer of EDM process. But the process was not 

popular for a long period due to poor command over controlled machining. In 1943, two 

Russian scientists, B.R Lazarenko and N.I Lazarenko were working on prevention of erosion 

of tungsten electrical contacts due to sparking. Though they did not exactly succeed in the 

task but found that erosion can be more precisely controlled if the electrodes were 

immersed in a dielectric fluid. This led them to invent an EDM machine used for working on 

difficult-to- machine electrically conductive materials irrespective of its strength and shape. 

EDM is capable of machining geometrically complex components made of hard materials 

such as heat treated tool steels, composites, super alloys, ceramics, hastelloys, carbides, 

heat resistant steels etc. Now-a-days, EDM is being extensively used in die and mold 

making, aerospace and nuclear industries. The process is also used in fields such as 

medical and surgical instrument, manufacturing and automotive industries (Mohanty et al. 

2013; Pradhan and Biswas 2010;Joshi and Pande 2009). In mid 1980s, EDM techniques 

became common after incorporation of computer numerical control (CNC) into the EDM 

machine. With due course of time and continuous process development, advanced EDM 

machines have become so proficient that they can work round the clock under supervision 

of an adaptive control system (Kumar et al. 2009). Later on, the growing benefits of EDM 

were closely looked by the manufacturing industries in the hunt for massive economic 

benefits and generating keen research interests. 

In EDM, there is no mechanical contact between the tool and work material. However, 

small volume of material is repeatedly eroded from the work piece through a series of spark 

discharges. The ability of the process to machine difficult-to-machine materials and generate 

intricate part shapes within tighter tolerances makes the process distinctive among the non-

conventional machining process. Toughened and high strength-to-weight ratio electrically 

conductive alloys and super alloys can be easily machined in EDM (Lee and Li 2001; Ho 

and Newman 2003).Now-a-days, EDM has become an established technology and 

frequently used in manufacturing industries to produce complex part shapes. However, its 

low machining efficiency, poor surface quality and dimensional accuracy of the machined 

surface are the major concerns for the tool engineers. Hence, the research and innovations 

woks are still in progress to improve the machining efficiency.  
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1.2 Principle of EDM Process 

Electric discharge machining (EDM) works on the principle of conversion of electrical 

energy into thermal energy through a series of repetitive spark discharges occurring 

between the electrodes immersed in a dielectric fluid separated by a constricted spark gap. 

Owing to localized melting and evaporation, material is removed from the work surface and 

the molten material is flushed away from the spark gap by continuous flow of dielectric fluid. 

When the electrode moves towards the work material, the electric field within the spark gap 

increases and causes the breakdown of the dielectric fluid. The voltage falls and the current 

rises sharply shortly after the breakdown of the dielectric fluid. The dielectric fluid is ionized 

and a plasma channel is created between the electrodes. The plasma channel expands due 

to constant exchange of ions and electrons. This phenomenon leads to constant heating on 

the work material causing a local temperature rise in the order of 8,0000C to 12,0000C 

(Boothroyd and Winston1989). As a result, melting and evaporation takes place from both 

the electrodes and small molten metal pool is formed. The molten metal pool is removed by 

continuous flushing of dielectric fluid and a tiny crater cavity is produced on the work 

surface. The series of spark discharges successively removes material in form of debris and 

the molten material between the electrodes is removed through continuous dielectric 

flushing during machining. In this manner, numerous spark discharges takes place on the 

work surface and consequently, the replica of the tool material is transferred on to the work 

surface.   

 

1.3 Classifications of Electric Discharge Machining 

Depending up the requirement and application of the industries, EDM can be classified 

into different types such as (a) Die Sinking EDM (b) Wire EDM (c) Micro-EDM and (d) 

Electric Discharge Grinding (EDG) 

(a) Die Sinking EDM:  

In die sinking EDM, electrode and work material are submerged in an insulating 

dielectric fluid. The schematic diagram of a die sinker is shown in Figure 1.1.Pulse 

power is provided from a separate power supply unit in which both tool and work piece 

form a pair of conductive electrodes. Initially, resistance-capacitance type (R-C) circuit 

was used in these types of EDM machines but later on they are replaced by metal oxide 

semiconductor field effect transistor (MOS-FET) technology (Padhan 2010). A servo 

motor controller tool holder is used to maintain an inter-electrode gap between the tool 

and work piece during machining. The machining tank is provided with a pump, filter and 
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dielectric storage tank for suitable flushing action of the dielectric fluid from inter-

electrode gap. The electrode material has the complementary shape of the finished 

product and accurately drops into work surface to produce complicate part shapes. The 

process finds extensive application in aerospace, automobile, die and mold making 

industries and many other industrial applications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Die-sinking EDM 

(b) Wire-EDM:  

A thin continuous wire of diameter 0.02 to 0.40 mm is used as the electrode material 

which continuously wound round a number of pulleys. The wire is usually made of brass 

or copper. The work piece is cut by virtue of spark discharges occurring between the 

wire and the work piece. The wire continuously moves through the surface to be 

machined and new wire is being fed from the pulleys. The process is precise and 

accurate having machining accuracy up to ±0.0025mm. It is frequently used to produce 

intricate aerospace and automobile parts.  

(c) Micro-EDM: 

In Micro-EDM operation, micro-electrodes (usually of diameters range from 5 to 10 µm) 

are used to produce micro-holes on the work piece. In this operation, different 

techniques and devices can be used to help handling and manipulating small electrodes 

and parts. The process is quite capable of producing intricate three-dimensional shapes 

and manufacturing of tooling inserts for micro-injection molding (Rajurkar and Yu 2000). 

The process finds extensive application in the manufacturing of micro parts for 
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accelerometer, micro mold and dies, keyhole surgery, housings for micro-engines and 

also tooling inserts for fabrication of micro-filters, housings and packaging solutions for 

micro-optical and micro fluidics devices.  

(d) Electric Discharge Grinding:  

The stationary electrode used for machining in EDM is replaced with rotating electrode in 

EDG. The material removal in EDG process is quite similar as EDM. The process uses, 

an electrically conductive wheel as a tool electrode instead of stationary tool electrode 

employed in EDM. The process is quite suitable for machining electrically conductive 

hard materials and fabrication of micro electrodes.  

 

1.4 Important Process parameters of the process 

Some of the important process parameters significantly influencing performance 

measures in EDM are outlined as follows: 

Discharge current: Discharge current is the most dominant process parameter as it directly 

governs the spark energy. The maximum amount of amperage that can be used is governed 

by the surface area of the cut for a work piece-tool combination. Higher value of   discharge 

current results in higher material removal but in turn produces numerous adverse effects on 

the machined surface and increases the machining cost by rapid tool wear. It is measure in 

terms of Ampere. 

Open circuit voltage: The Voltage which is applied between the electrodes is called as open 

circuit voltage. Prior to the flow of current, the open circuit voltage de-ionizes the dielectric 

medium which depends upon the electrode gap and the strength of the dielectric fluid. The 

open circuit voltage falls and stabilizes the inter-electrode gap when the current flow starts. 

It is an important parameter which significantly affects the spark energy and performance 

measures. It is measured in terms of Volt. 

Pulse-on-time: The interval for which the total discharge energy is to be applied on the work 

surface is called as pulse-on-time. It is an important process parameter in EDM process as it 

decides the spark duration. It is measured in terms of micro seconds. 

Pulse-off-time: Pulse-off-time is also called as pause time during which the spark energy 

supply is paused and after this duration next spark will occur. During pulse-off-time, flushing 

of debris takes place. The sum of pulse-on-time and pulse-off-time in a cycle is called pulse 

period or total spark time. It is also measured in terms of micro second. 

Duty cycle or duty factor: The important process parameter which controls the number of 

sparks per unit time is duty factor. It is defined as the ratio of pulse-on-time to total spark 
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time. Higher values of duty factor imply increase in number of sparks per unit time. It is 

expressed in terms of percentage. Mathematically defined as, 

Duty Factor =
Ton

Ton +Toff
                                                                                                         (1.1) 

where Ton and Toff are the pulse-on-time and pulse-off-time respectively. 

Polarity: The potential of the work material with respect to tool is called as polarity. Polarity 

may be of two types i.e. straight or positive polarity and reverse polarity or negative polarity. 

In positive polarity, the work material is positive whereas in reverse polarity work material is 

negative.  

Inter electrode gap: The inter electrode gap is an important factor for spark stability and 

good dielectric flushing. The tool servo controller mechanism is used for maintaining working 

gap between the electrodes. Mostly electro mechanical (DC or stepper motors) and electro 

hydraulic systems are employed to respond to average gap voltage.  

Dielectric fluid and flushing Pressure: The function of dielectric fluid is to flush away the 

debris from the machined surface and to cool the electrodes after spark discharges during 

machining. If the crater is deeper, flushing becomes difficult. Improper flushing may cause 

arcing problems and may deposit unwanted debris on the machined surface which can 

destroy the surface integrity of the work material. Therefore, proper flushing on the 

machined surface is vital.  Most commonly used dielectric fluids are transformer oil, paraffin 

oil, kerosene and hydrocarbon compounds. It is measure in terms of bar or kgf /cm2.. 

 

1.5 Important performance measures of the process 

This section describes some of the important performance measures of the process. The 

most extensively considered regular performance measures are (i) Material removal rate 

(MRR), (ii) Electrode wear ratio (EWR), (iii)Surface roughness, (iv) Radial over cut and (v) 

White layer thickness  

(i) Material removal rate (MRR): The average weight of material removed from work piece 

per unit time during machining is called as material removal rate. It is the most important 

performance measure as it directly determines the machining efficiency of the process. The 

material removal is directly related to spark energy. Higher the spark energy, higher the 

material removed from the machined surface but it turn has numerous adverse effect on the 

machined surface like decreasing the surface quality, dimensional accuracy and formation 

of recast layer on the machined surface. Hence, a stable machining process and optimal 

parametric setting is required to achieve higher MRR along with acceptable value of tool 
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wear and machined surface quality. It generally measured in terms of mm3/min. 

Mathematically it can be expressed as 

Tρ

ΔW1000
MRR

W

w






                                                                                                           (1.2) 

where ΔWw is the work material weight loss during machining, ρw is the density of work 

material, T is the machining time and MRR is the material removal rate. 

(ii)Electrode wear ratio (EWR):For  precise and cost  effective  machining, it  is  essential  to  

identify  and  estimate the changes  those are taking place within tool material. The tool 

material life plays an important role in increasing productivity and subsequently, is an 

important economic aspect of the process. High wear rate of electrode material leads to 

interruption during machining which in turn increases machining time and declines 

productivity of the process by increasing the machining cost. Therefore, a good tool material 

should have high electrical conductivity to exhibit low tool wear rate. The average weight of 

the material eroded from tool per unit time during machining is called as tool wear rate 

(TWR). The process is quite similar to material removal rate as the tool and work material 

are considered as a set of electrodes in EDM. It is also measured in terms of mm3/min. 

Electrode wear ratio is defined as ratio of weight of material removed from tool material 

per unit time to weight of material removed from work piece per unit time. It is generally 

expressed in terms of percentage. 

Tρ

ΔW1000
TWR

t

t






                                                                                                            (1.3) 

MRR

TWR100
EWR




                                                                                                            (1.4) 

where ΔWt is the tool weight loss during machining and ρt is the density of tool material. 

(iii)Surface roughness: In EDM, the fatigue strength of the machined component is highly 

influenced by the machined surface quality. The surface quality of the machined surface is 

highly dependent on the energy per spark and dimension of craters. Higher the spark 

energy, larger is the formation of craters. As a result, the machined surface quality produced 

becomes poor. Generally, the surface quality of the machined surface is measured with a 

precision surface roughness tester. It is measured in terms of micrometer. 

(iv) Radial overcut: Overcut or radial overcut is common in EDMed components. It refers to 

the deviation between the maximum diameter of crater cavity and diameter of the tool. For 
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precise and accurate machining, minimization of radial over cut is vital. It is measured in 

terms of mm. 

(v)White layer thickness: There is an increase demand of fine surface finish and better 

surface integrity in manufacturing industries. The machined surface of EDM is comprised of 

three different layers viz. white layer or recast layer, heat affected zone (HAZ) and 

unaffected parent metal (Lee et al. 1988; Lee et al. 1990). The recast layer is formed due to 

improper flushing of molten metal pool by the dielectric and solidified on the machined 

surface after cooling. The layer is so heavily infiltrated with carbon that it is totally different 

from parent metal. The layer is composed of mainly retained austenite and martensite with 

some dissolved carbide. Formation of recast layer severely damages the surface integrity of 

the machined surface quality, increasing number of cracks and voids on the machined 

surface. Therefore, it is vital to find the optimum parametric setting which will minimize 

formation of recast layers on the machined surface to achieve better surface quality. It is 

measured in terms of micron. 

 

1.6 Need for research 

Alloys and super alloys find extensive applications in aerospace, automobile, chemical 

plant, power generation, oil and gas extraction, surgical instruments and other major 

industries due to their favorable characteristics such as high strength-to-weight ratio and 

corrosion resistance. Machining of such alloys by conventional machining processes using 

traditional tool materials becomes difficult due to their poor thermal diffusivity resulting in 

high temperature at tool tip and tendency to weld to the cutting tool. However, machining of 

such super alloys, composites and ceramics can be easily carried out by non-conventional 

machining process like electrical discharge machining (EDM). Meanwhile, EDM has been 

the backbone of manufacturing hub since more than six decades possessing the capability 

to machine hard and difficult-to-machine materials to required shape, size and dimensional 

accuracy.  

The material removal, surface quality and dimensional accuracy of the machined surface 

on the work material are exactly related to the amount of spark energy used to erode 

material during machining. Increase in spark energy significantly improves the material 

removal but simultaneously creates numerous adverse effect such as increasing cracks, 

pores, heat affected zones (HAZ) and inducing residual stresses on the machined surface. 

Owing to the complex nature of the process involving the physics of series of spark 

discharges, it is difficult to observe the process experimentally and find suitable parametric 
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setting to improve machining efficiency. Thus, the low machining efficiency, poor surface 

finish and dimensional accuracy of the machined surface may limit its further applications. 

Therefore, innovations and research woks are still in progress to enhance the performance 

measures of the process. Extensive review of literature suggests that following literature gap 

must be addressed to provide quick solution for the tool engineers. 

Past research work reports on working with work pieces made of tool steel, metal-matrix 

composites, conductive ceramics and titanium alloys. However, attempt has not been made 

to machine a relatively low conductive material like Inconel 718 which has a diversified 

application in aerospace engineering. Inconel 718, an aerospace material, has abundant 

usage in manufacturing of components for liquid fuled rockets, rings and casings, sheet 

metal parts for aircraft, land-based gas turbine engines, cryogenic tank fasteners and 

instrumentation parts. In spite of significant research done in the field of EDM, influence of 

use of variety of electrode tools on the machining efficiency of the process has not been 

adequately addressed. Deep cryogenic treatment of electrodes in EDM can enhance 

electrical, thermal and mechanical property of the electrodes due to micro-structural 

changes which results in improved machining characteristics (Kumar et al. 2012; Jafferson 

and Hariharan 2013; Kapoor et al. 2012; Gill and Singh 2010). Amongst the important 

parameters (cooling rate, soaking temperature, soaking duration and heating rate) involved 

in cryogenic treatment of materials, soaking duration happens to be most significant (Jaswin 

and Lal 2010; Collins and Dormer 1997). Therefore, studies on effect of soaking duration on 

the machining characteristics of EDM can immensely help the tool engineers to manufacture 

intricate parts with greater ease and accuracy within tight tolerances.It has been established 

that presence of electrically conductive suspended ceramic/metallic powder particles in the 

dielectric fluid causes to reduce the insulating strength of the dielectric fluid and increase the 

gap between the electrodes. As a result, the process becomes more stable; thereby 

improving material removal rate and surface finish (Padhee et al.2012; Wong et al.1998; 

Ming and He 1995; Chow et al. 2000). However, no attempt has been made to combine the 

benefit of both powder mixed EDM and deep cryogenic treatment of electrodes. Moreover, 

emphasis must be laid on finding best parametric combination in the machining process of 

EDM, cryo-treated EDM and combined powder mixed EDM and cryo-treated electrodes 

using different tool electrodes and relatively low conductive work piece like Inconel 718. 

Since the process is complex one and various process parameters and their interaction 

influence performance measures in a stochastic manner, predictive models need to be 

developed using statistical approach. Once the models are developed and statistically 



9 
 

validated, they can be used as objective functions in recently proposed nature inspired 

optimization algorithms to explore the optimization landscape in an effective manner to 

suggest best parametric combination. The objective must not be limited to optimization of a 

single performance measure; rather it should be extended to simultaneously optimize 

several performance measures. Further, numerical models need to be developed to analyse 

the EDM process and compared with experimental results.There exists a vast scope for 

application of nature inspired algorithms viz.  Genetic algorithm (GA), particle swarm 

optimization (PSO), Cuckoo search etc. for optimization of the important performance 

measures of the process. 

 

1.7 Research objective 

The major performance measure of the EDM process are material removal rate (MRR), 

electrode wear rate (EWR), surface quality and dimensional accuracy of the machined 

surface. For cost effective machining, it is essential to identify and estimate the changes 

those are taking place within electrode materials. The electrode material life plays an 

important role in increasing productivity and subsequently, is an important economic aspect 

of the process. High wear rate of electrode material leads to interruption during machining 

which in turn increases machining time and declines productivity of the process by 

increasing the machining cost. Therefore, it is utmost important to have higher material 

removal and minimal tool wear to enhance productivity of the process and also better 

surface quality during machining. To understand the effect of important parameters on the 

performance measures, modeling of the process is vital. 

The objectives of this dissertation rest on study of the effect of control parameters during 

machining of Inconel 718 super alloy in EDM process. The study will help the tool engineers 

to reduce the experimental cost and errors associated with the process and optimize the 

process by setting the requisite parameters. To this end, the following objectives are set for 

this research work.  

1. To assess the influence of different tool materials on performance of the EDM process. 

2. To study the effect of soaking duration in deep cryogenic treatment of electrodes in the 

EDM process. 

3. To analyze the performance of the process through the hybrid approach of conductive 

ceramic powder mixed in dielectric and cryogenically treated electrodes. 

4. To propose a thermo-structural model for improving prediction accuracy of performance 

measures. 
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5. To optimize the process parameters for best performance output using nature inspired 

algorithms. 

 

To meet the above objectives, the thesis is organized into seven chapters including 

1.8 Organization of Thesis 

Chapter 1: Background and motivation 

This chapter introduces the concept of EDM including working principles and basic 

applications. This chapter provides the justification, motivation and need for present 

research work.  

Chapter 2: Critical literature review 

The  purpose  of  this  chapter  is  to  review  related  literature  so  as  to  provide 

background information on the issues to be considered in the thesis and emphasize the 

relevance of the present study. The chapter provides a summary of the base knowledge 

already available about EDM process. Finally, the chapter is concluded by summarizing a 

strong conclusion from the existing literatures and identifying the possible literature gap so 

as to relevance of the present study can be emphasized. 

Chapter 3: Assessment of influence of different tool materials on performance of the 

EDM process 

This chapter proposes an experimental investigation on machinability of Inconel 718 

super alloy in EDM process in which the performance characteristics are measured in terms 

of material removal rate (MRR), electrode wear ratio (EWR), surface roughness, radial 

overcut and white layer thickness under the influence of process variables viz. open circuit 

voltage, discharge current, pulse-on-time, duty factor, flushing pressure and electrode 

material. The experiments are planned as per Box–Behnken design of response surface 

methodology (RSM) approach to obtain maximum information with limited number of 

experimental runs. Optimal parametric combination is found out using a proposed multi- 

objective particle swarm optimization (MOPSO) algorithm. However, MOPSO results in a 

large number of non-dominated solutions. Therefore, maximum deviation theory (MDT) 

proposed by Wang (1998) has been adopted for ranking the solution to ease the decision 

making process of choosing the best solution 

Chapter 4: Study on the effect of soaking duration in deep cryogenic treatment of the 

tool 

This chapter investigates the effect of deep cryo-treated (-1960 C) brass electrodes 

subjected to different soaking durations on the machinability of Inconel 718 work material. 
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The machining performance of the process are evaluated in terms of  material removal rate, 

electrode wear ratio, surface roughness, radial overcut and white layer thickness which are 

function of process variables viz. open circuit voltage, discharge current, pulse-on-time, duty 

factor, flushing pressure and  cryogenic treatment soaking duration of electrodes. The 

experimental architecture is planned as per Box-Behnken design of response surface 

methodology. An evolutionary multi-objective particle swarm optimization algorithm has 

been proposed for simultaneous optimization of performance characteristics. Application of 

MOPSO results in a large number of non-dominated solutions. The best solution has been 

identified from a large number of non-dominated solutions using maximum deviation theory. 

Chapter 5: Performance analysis of the EDM process through the powder mixed 

dielectric and cryogenically treated electrodes 

This chapter compares the machining efficiency of different cryo-treated (-1960 C) work-

tool pair Inconel 718 super alloy and brass electrode in the presence of suspended fine 

graphite powder particles with an objective to enhance  the machining efficiency and fulfill 

the requisite of minimum surface damage. The machining efficiency of the process has been 

evaluated in terms of material removal rate (MRR), electrode wear ratio (EWR), surface 

roughness, radial overcut and white layer thickness which are function of process 

parameters viz. open circuit voltage, discharge current, pulse-on-time, duty factor, 

concentration of fine graphite powder and cryogenically treated work-tool pair.Multi-objective 

particle swarm optimization technique is used with the goal of finding approximations of the 

optimal Pareto front and compared with non-dominated sorting genetic algorithm II (NSGA-

II) in terms of four performance metrics. To avoid subjective-ness and impreciseness in the 

decision making, the Pareto-optimal solutions obtained through MOPSO have been ranked 

by the composite scores obtained through maximum deviation theory. 

Chapter 6: Performance assessment of EDM process through thermo-structural 

model   

This chapter proposes a thermal model based on finite element method to predict the 

MRR and TWR for three types of tool materials such as brass, copper and graphite using 

Inconel 718 as work piece material. A coupled thermo-structural model has been also 

proposed to estimate the residual stresses. The numerical models are experimentally 

validated. The data are collected from the models using a response surface methodology. 

Parametric analysis is carried out on the proposed model to investigate the effect of 

important process parameters on the performance measures. Finally, a non-dominated 
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sorting genetic algorithm (NSGA) has been proposed for obtaining optimal process 

parameters. 

Chapter 7: Executive summery and conclusions 

This chapter presents the summary of the results, recommendations and scope for 

future work in the direction of EDM process. It also discusses the specific contributions 

made in this research work and the limitations there in. This chapter concludes the work 

covered  in  the  thesis  with  implications  of the findings  and  general  discussions  on  the 

area of research. 

 



CHAPTER 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

LITERATURE REVIEW 



2.1 Introduction 
 

Currently manufacturing industries face the difficulties in reduction of process time and 

enhancement of performance through optimization of controllable process parameter using 

distinctive optimization strategy. This can be addressed through exhaustive experimentation 

or development of model obtained from experimental analysis. Although various studies 

have been reported till date for performance enhancement of EDM process, suitable 

selection of machining parameters for achieving improved machining efficiency is still a 

challenging job. In this direction, the current chapter provides details of the various research 

activities reported until now explaining the outcome of important process parameters on 

performance measurers on EDM. Literature review initiates with papers published after 1995 

with maximum attention was paid to articles published between 2005 and 2015. Table 2.1 

provides the name of the source and number of citations from each source. The majority of 

the citations are found in peer-reviewed journals. 
 

Table 2.1 Summery of the publications referred 
 

Source Citation 
Advanced Engineering Informatics 1 
Applied Mathematical Modelling 1 
Applied Soft Computing 1 
Computer and Mathematics with Applications 1 
Engineering Applications of Artificial Intelligence 1 
European Journal of Operational Research 1 
Evolutionary Multi-criterion Optimization 1 
Genetic and Evolutionary Computation 1 
IEEE Congress on Evolutionary Computation 1 
IEEE Transactions on Evolutionary Computation 1 
IEEE Transactions on Magnetics 1 
IEEE Transactions on Power system 1 
Information Sciences 1 
Indian Journal of Engineering and Materials Sciences 1 
International Journal of Advanced Manufacturing Technology 14 
International Journal of Advanced Engineering Sciences and Technologies 1 
International Journal of Advanced Technology and Engineering Research 1 
International Journal of Mathematical, Physical and Engineering Sciences 1 
International Journal of Mechanical and Aerospace Engineering 1 
International Journal of Machine Tools and Manufacture 8 
International Journal of Machining and Machinability of Materials 5 
International Journal of Manufacturing Technology and Management 1 
International Journal of Mechatronics and Manufacturing Systems 2 
International Journal of Production Research 1 
International Journal of Refractory Metals and Hard Materials 1 
Journal of Intelligent Manufacturing 2 
Journal of Manufacturing Processes 2 
Journal of Materials Processing Technology 27 
Journal of Mechanical Science and Technology 2 
Journal of Safety Engineering 1 
Japan Society of Mechanical Engineers International Journal Series C 1 
Journal of Zhejiang University Science 1 
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Materials and Design 1 
Mathematical and Computer Modeling 1 
Materials and Manufacturing Processes 11 
Measurement 1 
Proceedings of IEEE International Conference on Neural Network 1 
Proceedings of the 2003 IEEE Swarm Intelligence Symposium 1 
Proceedings  of  the  2005  Conference  on  Genetic  and  Evolutionary 2 
Computation  

Proceedings  of  the  International  Multi-Conference  of  Engineers  and 1 
Computer Scientists  

Proceedings of the Institution of Mechanical Engineers, Part B:Journal of 3 
Engineering Manufacture  

Proceedings of the Institution of Mechanical Engineers, Part C: Journal of 1 
Mechanical Engineering Science  

Proceedings  of  the  60
th

   World  Academy  of  Science,  Engineering  and 1 
Technology  

Robotics and Computer Integrated Manufacturing 1 
Sadhana 1 
Surface and Coatings Technology 1 
Engineering and Technology 1 
Total 113 

 
 

The literature review provides ample confidence to identify an appropriate gap or 

methodological weaknesses in the existing study area to solve the research problem. The 

research papers on EDM are principally classified into following five groups such as (1) 

Theoretical Model, (2) Numerical Model, (3) Statistical Model, (4) Soft Computing Model and 
 
(5) Technological Modification of EDM process. 
 

 
(1) Theoretical model 
 

Singh and Ghosh (1999) have proposed a theoretical thermo-electric model which 

provides estimation of the electrostatic force and the stress distribution inside the metal 

during a discharge. They have concluded that the major cause of material removal for short 

pulses is the electrostatic force and melting becomes the primary phenomenon for long 

pulses. The researchers have also concluded that the crater depth is proportional to square 

root of discharge current for short pulses. Marafona and Wykes (2000) have studied the 

effect of carbon which has migrated from the dielectric to tungsten-copper electrodes which 

leads to the development of a two-stage EDM machining process. Significant improvement 

on material removal rate at given tool wear ratio is observed when different EDM settings 

are used. Chen and Mahdivian (2000) have proposed a model to estimate the material 

removal rate and surface quality of the machined surface. Theoretical models have been 

proposed to compute the material removal rate and maximum peak-to-valley distance of the 

work material. Experimental investigation is carried out to investigate the variation of 
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performance measures with parameters such as discharge current, pulse duration time and 

interval time. Good agreement between theoretical and experimental result is observed. 

Yadav et al. (2000) have proposed a finite element based model to predict thermal stress 

fields in high speed steel (HSS) work material. The effect of various process parameters 

such as discharge current and duty factor on temperature distribution and thermal stress 

distribution have been extensively studied. It is observed that substantial compressive and 

tensile stresses develop in a thin layer around the spark location after one spark. It is also 

noticed that the thermal stresses go beyond the yield strength of the work piece in an 

extremely thin zone near the spark location. Marafona and Chousal (2006) have proposed a 

model based on Joule heating effect in the dielectric using the finite element analysis (FEA) 

to predict the material removal and tool wear along with the temperature distribution of the 

electrodes while machining iron with copper electrode. Hargrove and Ding (2007) have 

proposed a theoretical model to predict temperature distribution on the machined surface 

using finite element method in order to reduce the harmful result of the temperature on the 

surface which can satisfy a certain machining rate for wire electrical discharge machining 

(W-EDM) process. The predicted results of the model are in good agreement when 

compared with experimental results. Mahardika et al. (2008) have proposed a new approach 

to determine machining by EDM process for different work materials using the product of the 

thermal conductivity (λ), melting point (θ) and electrical resistivity (ρ) of the work piece. In 

the earlier theory, product of thermal conductivity (λ) and melting point (θ) were used. On 

comparison between the two approaches, it is observed that, the recent theory provides 

better result than the previous one.Salonitis et al. (2009) have proposed a thermal model 

based on finite element analysis to estimate the material removal rate and the average 

surface roughness. The model suggests that increase in open circuit voltage, discharge 

current and pulse duration increases the material removal but in turn produces poor surface 

quality. The model is validated through experimentation predicting results closer to the 

experimental analysis. Panda (2008) has proposed a theoretical model to estimate thermal 

stress on the machined surface to fill the drawbacks of the earlier published models. It is 

observed that the induced thermal stress surpasses the ultimate tensile stress of the 

material past crater. 

 

(2) Numerical Model 
 

In addition to some theoretical model, several numerical models have been proposed to 

gather information on process behavior to reduce the cost of experimentation and machining 
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time. In this direction, Das et al. (2003) have suggested an EDM simulation model using 

finite element method (FEM) for calculation of deformation, microstructure and residual 

stresses. Joshi and Pande (2009) have suggested a numeral model for EDM for prediction 

of performance characteristics such as material removal rate and tool wear rate using finite 

element method. The proposed model is also validated through experimentation by the 

same researchers (Joshi and Pande 2010). Izquierdo et al. (2009) have proposed a model 

which estimates the temperature fields within the work piece considering the effect of 

multiple discharges. The model can effectively predict material removal efficiency, diameter 

of the discharge channel and energy transferred in to the work piece. The proposed model 

is validated through experimentation indicating that material removal rate and surface 

roughness can be predicted with errors less than 6%. Schulze et al. (2004) have compared 

the cavity morphology obtained through a single discharge and a sequence of multiple 

discharges. Kansal et al. (2008) have proposed an axisymmetric two-dimensional model for 

powder mixed electric discharge machining (PMEDM) using finite element approach. The 

model uses the few essential features viz. material properties, shape and size of heat 

source, rate of distribution heat from electrodes, dielectric liquid, pulse duration and pulse-

off- time to get the material removal mechanism. It is observed that the results predicted by 

the model are closer to experimental results. Vishwakarma et al. (2012) have proposed a 

numerical model based on finite element approach for predicting material removal rate 

(MRR) using an axisymmetric model for Al-SiC composite work piece. The model is 

validated through experimentation predicting results closer to experimental investigation. 

Salah et al. (2006) have suggested a numerical model which predicts the temperature 

distribution, material removal and total roughness in a work piece. It is observed that the 

numerical results provide better correlation with experimental investigations when 

temperature dependence of conductivity is considered. Chen and Allen (2007) have 

suggested a thermo-numerical model which simulates a single spark discharge for the 

micro-EDM process. The numerical model is authenticated by comparing with experimental 

work by means of scanning electron microscopy (SEM) and optical evaluation technique. A 

residual stress distribution on the molybdenum work piece with a tungsten tool is also 

presented by the same authors. Wei et al. (2011) have suggested for a FEM based model to 

predict material removal for Electro-Chemical Discharge Machining (ECDM) process taking 

in to account the occurrence of single spark. The results obtained through the model are 

validated by comparing with experimental data. 
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(3) Statistical Model 
 

A large number of articles analyses the EDM process using statistical design of experiment 

(DOE) approach viz. Taguchi, responses surface methodology (RSM), grey relational analysis, 

principal component analysis. In this direction, Lee and Li (2001) have experimentally studied 

the influence of process variables such as electrode material, polarity, discharge current, open 

circuit voltage, pulse duration, pulse interval and flushing pressure on material removal rate, 

relative wear ratio and surface roughness of tungsten carbide. Lin et al. (2001) have adopted 

Taguchi Method to study material removal rate, surface roughness and improvement ratio of 

surface roughness through a combined process of electrical discharge machining (EDM) with 

ball burnish machining (BBM).The approach is quiet effective in reducing surface roughness and 

micro cracks on the machined surface. Huang and Liao (2003) have employed Taguchi 

experimental design along with grey relational analysis to find the optimal parametric setting for 

wire-EDM process. Puertas and Alvarez (2004) have used design of experiments to analyze the 

effect of discharge current, pulse-on-time and duty factor on material removal rate, electrode 

wear ratio and surface quality of the machined surface when cobalt-bonded tungsten carbide 

(WC-Co) is machined with copper electrode. Lin and Lin (2005) have used orthogonal array 

combined with grey-fuzzy logic for optimization of machining parameters viz. pulse on time, duty 

factor and discharge current for multiple responses such as electrode wear ratio, material 

removal rate and surface roughness. Keskin et al. (2006) have adopted DOE approach to plan 

the experiment and study the effect of power, spark time and pause time on surface roughness 

while machining a steel work piece with a copper tool. From analysis of variance (ANOVA), it is 

observed that discharge duration has significant effect on surface roughness. Chattopadhyay et 

al. (2009) have conducted experiments on a rotary EDM based on Taguchi’s orthogonal array 

using EN8 steel and copper as work piece-tool pair and proposed empirical relations between 

responses and process variables viz. peak current, pulse-on-time and rotational speed of tool 

electrode. Habib (2009) has analyzed the effect of machining parameters viz. discharge current, 

pulse-on-time, open circuit voltage and the percentage volume fraction of silicon carbide present 

in work piece on material removal, surface quality, electrode wear ratio (EWR) and gap size 

through response surface methodology approach on the machinability of Al SiC work piece using 

copper electrode. Lin et al. (2009) have used Taguchi L18 orthogonal array to study the effect of 

polarity, discharge current, pulse-on-time high-voltage auxiliary current, no-load voltage and 

servo reference voltage on materials removal rate and surface quality in magnetic supported 

EDM. 
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Tomadi et al. (2009) have used full factorial design of experiment to study the influence of 

the parameters viz. current, voltage, pulse-on-time and pulse-off-time on MRR, EWR and 

surface roughness when tungsten carbide is eroded with a copper tungsten electrode. From 

analysis of variance, it is observed that pulse-on-time is the most influential parameter 

exhibiting significant effect on responses. Pradhan and Biswas (2009) have used response 

surface methodology (RSM) design to perform experiment and analyze the effect of 

parameters such as discharge current, pulse duration, pulse-off-time and voltage on 

performance measures when AISI D2 steel is machined with copper electrode. The study 

revealed that pulse-on-time and discharge current have significant effect on machined 

surface quality. Prabhu and Vinayagam (2010) have experimentally observed that improved 

surface quality and least micro-cracks on machined surface can be achieved if the tool is 

coated with a carbon nono-tube layer while machining AISI D2 steel work piece. Kuppan et 

al. (2011) have studied the effect of discharge current, pulse-on-time, duty factor and speed 

of electrode on performance measures viz. MRR and surface roughness using central 

composite design. It is observed that discharge current and pulse-on-time significantly 

influence the performance measures. Pellicer et al. (2011) have studied the effect of current, 

voltage, pulse-on-time and pulse-off-time on material removal rate, surface roughness and 

dimensional accuracy of the EDMed parts on AISI H13 steel using copper electrode. The 

study provides optimum parametric setting to improve the accuracy of the EDMed parts 

through statistical approach. Rao et al. (2011) have suggested an optimal parametric 

condition for surface roughness of Wire-EDM using Taguchi method. Beri et al. (2011) have 

found that improved machining characteristics can be achieved with the use of powder 

metallurgy mixed copper-tungsten (CuW) electrode in comparison with conventional copper 

tool material using Taguchi’s L18 orthogonal array. Senthilkumar and Reddy (2012) have 

found that copper composite with 40% boron carbide reinforcement developed through 

powder metallurgy route exhibits better metal removal rate (MRR) and tool removal rate 

(TRR) compared to conventional copper tool material. Meena et al. (2012) have analyzed 

the effect of various flushing conditions on the accuracy of deep holes drilled by micro-

electrical discharge machining. Prabhu and Vinayagam (2013) have proposed a grey 

relational analysis and fuzzy logic approach for simultaneous optimization of several 

performance characteristics of the process when dielectric fluid is mixed with carbon nano 

tube (CNT). Dewangan and Biswas (2013) have adopted Taguchi’s experimental design 

combined grey relational analysis for optimization of multiple responses such as material 

removal rate and tool wear rate of electrical discharge machining process using AISI P20 
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tool steel as the work piece material and copper as electrode. Pradhan (2013a) has used 

response surface methodology in combination with grey relational analysis to optimize white 

layer thickness, surface roughness and surface crack density which are function of process 

variables viz. pulse current, pulse-on-time, duty factor and open circuit voltage. The same 

researcher has used a face-centered central composite design and grey relational analysis 

in combination with principal component analysis (PCA) to evaluate the effect of discharge 

current, pulse-on-time, duty cycle and open circuit voltage on material removal rate, tool 

wear rate and radial overcut (Pradhan 2013b). The study revealed that duty factor is the 

most important parameter followed by discharge current, open circuit voltage and pulse-on-

time. In addition to these studies, several experimental investigations have been reported to 

analyze the machining efficiency of the process by machining metal matrix composites as 

the work materials (Dhar et al. 2007; Puhan et al. 2013; Murugesan et al. 2012; Singh et al. 

2004; Mohan et al. 2002). 

 

(4) Soft Computing Model 
 

Recently, artificial intelligence (AI) and soft computational techniques are widely applied 

for process modeling and optimization of EDM process in order to overcome some of the 

drawbacks of conventional modeling methods. Lin et al. (2000) have used Taguchi 

experimental design along with fuzzy logic for optimization of material removal rate and 

electrode wear ratio which are function of process parameters viz. duty factor, voltage, 

current, pulse-on-time, dielectric liquid and polarity of work piece. Her and Weng (2002) 

have adopted Taguchi experimental design and genetic algorithm to find the optimal 

paramedic setting while machining semiconductor work piece, Barium Titanate (BaTiO3). 

Wang et al. (2003) have used genetic algorithm with artificial neural network for optimization 

of machining parameters such as pulse-on-time, pulse-off-time, discharge current and open 

circuit voltage for responses material removal rate and surface roughness when nickel 

based alloy is machined with graphite electrode. Su et al. (2004) have used genetic 

algorithm based neural network model to find the optimal parametric setting for EDM 

process for rough and finishing machining condition when steel work piece is eroded with 

copper electrode. Kuriakose and Shunmugam (2005) have adopted for non-dominated 

sorting genetic algorithm (NSGA II) to optimize machining parameters in WEDM for multiple 

objectives such as surface quality and cutting speed. Tzeng and chen (2007) have used 

Taguchi method in combination with fuzzy logic to find the optimal parametric condition to 

enhance the process output. Mahapatra and Patnaik (2007) have used Taguchi 
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experimental design along with genetic algorithm to find optimal parametric setting for wire 

EDM process. Mandal et al. (2007) have used artificial neural networks based on back 

propagation algorithm to predict material removal rate and tool wear rate while machining 

C40 steel with copper electrode. Further, NSGA-II is used to find the Pareto-optimal solution 

set. Bharti et al. (2012) have adopted a similar approach while machining Inconel 718 with 

copper electrode. Ramakrishnan and Karunamoorthy (2008) have used back-propagation 

artificial neural network (BPANN) model to find the optimal parametric setting for material 

removal rate and surface roughness for wire-electrical discharge machining process when 

Inconel 718 work material is machined with brass wire electrode. Pradhan and Biswas 

(2010) have proposed neuro-fuzzy and neural network models for prediction of material 

removal rate, tool wear rate and radial overcut when AISI D2 steel is machining with copper 

electrode. Pradhan et al. (2009) have analyzed two distinct neural network model viz. back-

propagation neural networks (BPN) and radial basis function neural network (RBFN) to 

predict surface quality of the machined surface of AISI D2 steel work piece. The study 

revealed that RBFN is faster than the BPNs but BPN provides more exact result than RBFN. 

Yang et al. (2009) have used simulated annealing with neural network to maximize the 

material removal rate and improving the surface quality. The effectiveness of the model is 

verified through numerous initial trail values. Material removal rate and surface roughness is 

optimized using neural network and NSGA II. The effect of pulse-on-time, discharge current, 

pulse-off-time on MRR and surface roughness is extensively studied. MahdaviNejad (2011) 

has used a similar approach after machining silicon carbide (SiC) work piece with a copper 

electrode. Mukherjee and Chakraborty (2012) have used biogeography-based (BB) 

algorithm with the goal of achieving ideal machining parameters to enhance the machining 

efficiency of process. Pradhan and Das (2011) have proposed an Elman network for the 

prediction of material removal rate in electrical discharge machining process. The proposed 

model is validated with a new set of experimental results which is not used in the training 

step and the model predicts mean percentage error less than 6 percent. Markopoulos et al. 

(2008) have used artificial neural network (ANN) based models for prediction of material 

removal rate and surface roughness. Panda and Bhoi (2005) have used back propagation 

neural network (BPNN) with Levenberg-Marquardt (LM) algorithm for the prediction of 

material removal rate. Similar methodologies have been adopted for modeling of EDM 

process for different work-tool material combination (Sen and Shah 2007; Gao et al. 2008; 

Rao et al. 2008). Joshi and Pande (2011) have proposed optimization of parameters by 

integrating artificial neural network with non-dominated sorting genetic algorithm (NSGA-II). 
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Somashekhar et al. (2010) have optimized process parameters for maximizing material removal 

rate in a micro-electrical discharge machining process using genetic algorithm embedded with 

artificial neural network. Panda and Yadava (2012) have proposed a model based on finite 

element method to predict material removal rate and average surface roughness for die-sinking 

electrical chemical spark machining for a single spark analysis. The model uses back 

propagation neural network (BPNN) to find optimal parametric machining condition. Prajapati et 

al. (2013) have studied the effect of wire feed, wire tension, pulse-on time, pulse-off-time and 

voltage on responses viz. MRR, surface roughness and Kerf. ANN is utilized for prediction 

responses of WEDM of AISI A2 steel. Golshan et al. (2012) have analyzed the effect of process 

parameters on material removal rate and surface roughness while machining metal matrix 

composite (Al/SiC) composite. The optimal process conditions are reported using non-dominated 

sorting genetic algorithm (NSGA-II). 

 

(5) Technological Modification of basic EDM process 
 

Several research approaches have been undertaken to improve the machining efficiency 

of process by machining in the presence of suspended powder particles. The presence of 

electrically conductive powders increases the spark gap between the electrodes and 

decreases the insulating strength of the dielectric fluid during machining (Padhee et al. 

2012; Wong et al. 1998; Ming and He 1995; Chow et al. 2000). Therefore, the process 

becomes more stable and results in improved material removal and surface quality on the 

machined surface. In this direction, Kung et al. (2009) have investigated the effect of 

discharge current, pulse-on-time, grain size, and concentration of aluminum powder particle 

on the machinability evaluation of MRR and EWR using face-centered central composite 

design. The study proposes mathematical models for investigating the influence of 

parameters on performance measures. Pecas and Henriques (2008) have analyzed the 

effect of silicon powder concentration and the flushing flow rate on performance measures 

such as white layer thickness, surface roughness and crater dimension. The study shows 

significant improvement on crater diameter, surface quality and the white-layer thickness 

with the use of silicon powder particles suspended in the dielectric fluid. Many experimental 

studies have been reported on powder-mix EDM to find the optimal parametric setting using 

AISI D2 steel as work piece and copper as electrode material (Kansal et al. 2005; Kansal et 

al. 2006; Kansal et al. 2007). Patel et al. (2009) have studied the effect of discharge current, 

pulse-on-time and duty cycle on performance measures viz. surface quality and material 

removal rate on of ceramic composite Al2O3-SiCw-TiC work piece for rough and finishing 
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machining condition. The study reveals that high value of discharge energy can cause 

increase in material removal but produces poor surface integrity whereas small discharge 

energy produces gentle material removal and superior surface quality. Kumar et al. (2010) 

have studied the effect of concentration of silicon abrasive powder in dielectric fluid, peak 

current, pulse-on-time and duty factor on MRR and surface roughness. The research 

establishes an optimal parametric setting for multiple responses like MRR and surface 

roughness verified with confirmative test. Çogun et al. (2006) have used steel work piece 

and copper electrode with graphite and boric acid powders mixed with kerosene dielectric at 

different powder concentrations on various performance measures such as surface 

roughness, material removal rate, electrode wear rate, relative wear and microstructure of 

the work material. The experimental investigation reveals that powder concentration, type of 

powder mixed into the dielectric and the pulse time have significant influence on 

performance measures. Batish et al. (2012) have analyzed the effect of process parameters 

and mechanism of material deposition in powder-mix electrical discharge machine (PMEDM) 

on surface properties of EN31, H11 and high carbon high chromium (HCHCr) die steel. The 

study indicates that discharge current, powder concentration and interaction between work 

piece and electrode significantly influence the micro hardness of the machined surface for 

the three materials. Kansal et al. (2005) have investigated the effect of pulse-on-time, duty 

cycle, peak current and concentration of the silicon powder added into the dielectric fluid to 

maximize MRR and minimize surface roughness using response surface methodology 

approach. The optimal process conditions obtained through the approach are verified by 

conducting confirmative test. Padhee et al. (2012) have used non-dominated sorted genetic 

algorithm (NSGA-II) to optimize MRR and surface roughness for machining parameters such 

as concentration of silicon powder in the dielectric fluid, pulse-on-time, duty cycle and peak 

current. Chow et al. (2008) have studied the influence of addition of SiC powder with water 

as dielectric fluid water on material removal rate and electrode wear ratio when Ti-6Al-4V 

titanium alloy is machined with copper electrode. Yih-fong and Chen (2005) have studied 

the effect of addition of different powders viz. silicon carbide (SiC), chromium (Cr), aluminum 

(Al) and copper (Cu) powders on surface quality and recast layer when SKD-11 work material 

is machined with copper electrode. It is observed that smaller particle size produces fine 

surface quality but increases the recast layer on the machined surface. Klocke et al. (2004) 

have investigated the effect of silicon and aluminum powder added to the dielectric on 

recast layer when Inconel 718 work piece is eroded with tungsten tool. They conclude that 

the properties of the powder particles is an important factor for formation of recast layer, its 
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composition and quality of the machined surface. Zhao et al. (2002) have found significant 

improvement on machining efficiency and surface quality while machining steel work piece 

with copper electrode in the presence of fine aluminum powder. Bai and Koo (2006) have 

investigated the effect dielectric fluids viz. kerosene and distilled water on surface integrity of 

the machined surface using an Al-Mo composite electrode while machining Haynes 230 

super alloy. 
 

Many studies report that controlled cryogenic cooling of tool and work materials can 

enhance the machining efficiency of the process. In this direction, Jafferson and Hariharan 

(2013) have analyzed the machining performance of micro-EDM by cryogenically treated 

and untreated copper, brass and tungsten micro-electrodes. From the study, it is observed 

that significant reduction in tool wear rate can be achieved if the tools are cryogenically 

treated. Kapoor et al. (2012) have investigated the effect of deep cryogenic treated brass 

wire electrode using Taguchi experimental design. From the analysis of variance (ANOVA), 

it is observed that wire type, pulse width, time between two pulses and wire tension are 

important parameters for improving material removal rate. Gill and Singh (2010) have 

investigated the effect of deep cryogenic treatment of copper electrode on machinability of 

Ti 6246 alloy in electric discharge drilling. The study confirms that improved material 

removal rate (MRR), wear ratio (WR), tool wear rate (TWR) and precise drilled holes can be 

achieved with cryogenic treatment. Srivastava and Pandey (2011) have observed significant 

improvement on electrode wear ratio (EWR), surface roughness and retention of tool shape 

while machining M2 grade high speed steel work material with cryogenically cooled copper 

electrode. Abdulkareem et al. (2009) have used central composite design to study the effect 

of current intensity, pulse-on-time, pulse-off-time and gap voltage on electrode wear and 

surface roughness. The study reveals that twenty seven percent reduction in wear ratio can 

be obtained by the use of cryogenic cooled electrode. Srivastava, and Pandey (2012) have 

found that ultrasonic aided cryogenically cooled electrode can be suitably used in electrical 

discharge machining owing to improved wear resistance and retention of tool shape and 

surface integrity. 
 

Recently, few experimental investigations have been reported in which researchers have 

attempted to combine both the modifications to achieve improved machining efficiency. 

Kumar et al. (2012a) have investigated the machinability of Inconel 718 work material with 

powder mixed in dielectric fluid using cryogenically treated copper electrode in electrical 

discharge machining. Kumar et al. (2014) have investigated the effect of pulse-on-time, 

discharge current, pulse-off-time and different cryo-treated work and tool materials 

onsurface roughness in the presence of suspended powder particles. Finally, artificial neural  
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network (ANN) has been used to predict and optimize the surface roughness. 

 
2.2 Discussions  
 

Literature  on  EDM  is  classified  according  to  different  models  depending  up  on  
 
techniques and solution methodology used by the authors. Figure 2.1 shows a pie chart with 

distribution of literature in terms of percentage. It shows that twenty six percent (26%) of the 

studied literature employs some technological modification to basic EDM process whereas 

twenty five percent (25%) uses soft computational and artificial intelligence (AI) techniques 

for modeling the process. Thirty percent (30%) of the studied literature uses statistical 

approaches to improve the EDM performance. As for as numerical and theoretical models 

are concerned, the chart shows that inadequate studies have been reported till date limiting 

the number to ten (10%) and nine (9%) percent respectively. Most of the research 

approaches have been undertaken for technological modification of the EDM process to 

improve the machining efficiency through machining in the presence of suspended powder 

particles or through cryogenic treatment of electrodes. However, reports to analyze the 

machining efficiency using the hybrid approach of both types of modifications are scare in 

the literature. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1 Literature appraisal in terms of percentage 
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2.3 Conclusions 
 

After an exhaustive study made on the current literature, it is inferred that EDM is a rich 

and promising field of research with broad usage in production and manufacturing 

engineering. The study shows a change of interest in twenty first century by researchers 

from an experimental investigation to development of numerical and theoretical models in 

combination of statistical techniques with application of new heuristic, optimization 

algorithms for both single and multiple objectives responses. For multi objective problems, 

mostly researchers have used NSGA as an optimization strategy but applied to commonly 

used work piece-tool combination. It is also observed that, adequate research effort has not 

been paid to machining with a variety of electrodes, process modification both in cryo-

treatment of electrodes and powder mixed with dielectric, numerical models and analyzing 

the machining efficiency with varied soaking duration during cryogenic treatment. 

Considering above limitations, a potential research opportunity is identified and an attempt 

has been made further to propose a robust frame work to enhance the machining efficiency 

of the process. In the recent decade, a large number of meta-heuristic algorithms have been 

proposed inspired by nature analogy. However, most of these algorithms do not always 

perform according to expectations even if having some special features. The success of 

these meta-heuristics algorithms depends on the exploration and exploitation ability of the 

algorithm. These abilities can be enhanced by using local search or global search methods 

or an incorporation of both global and local search approaches. The present research work 

uses an efficient multi-objective particle swarm optimization (MOPSO) algorithm which has 

gained much attention and been successfully applied to a wide range of applications. 
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3.1 Introduction 

Generally metallic materials like copper and brass are used as electrode materials. 

However, non-metal like graphite can be used as a potential electrode material due to its 

high melting point and conductivity. The temperature resistance property makes graphite a 

preferable electrode material in compared to other electrodes. Literature reveals that 

performance of EDM process has not been dealt sufficiently with different tool materials viz. 

brass, copper and graphite using Inconel 718 as work piece material (Kuppan et al. 2011; 

Kumar et al. 2009; Kumar et al. 2012b; Lee and Li 2001). Furthermore, the studies on EDM 

are limited to analyse influence of various process parameters on performance measures 

using statistically designed experiments (Prabhu and Vinayagam 2013; Dewangan and 

Biswas 2013). In the past, numerous studies have been proposed to find out optimal 

process state for single objective either based on design of experiment (DOE) approach or 

empirical modeling followed by application of non-traditional optimization techniques like 

genetic algorithm (GA), differential evolution (DE) artificial bee colony (ABC) simulated 

annealing (SA) etc (Lin et al. 2000; Mahapatra and Patnaik 2007; Mandal et al. 2007; 

Kuriakose and Shunmugam 2005). Although optimization of multiple objectives is useful 

from practical point of view, limited attempt has been made in this direction using multiple 

attribute decision making(MADM) approaches for converting multiple performance measures 

into an equivalent performance measure in the framework of DOE approach (Prabhu and 

Vinayagam 2013; Dewangan and Biswas 2013). Joshi and Pande (2009) have proposed a 

non-dominated sorting genetic algorithm (NSGA) for optimizing multiple objectives in an 

electrical discharge machining process. However, particle swarm optimization is found to 

solve multi-objective optimization problems with less computation efforts requiring only few 

parameters to be tuned (Singh and Mahapatra 2012; Yoshida et al. 2001; Brandstatter and 

Baumgartner 2002). Usually, multi-objective optimization techniques generate large number 

of Pareto optimal solutions. Due to large number of non-dominated solutions, deciding the 

best one amongst the Pareto set is difficult due to subjective in judgment. 

To address these issues, the present chapter proposes an experimental investigation on 

machinability of Inconel718 alloy in EDM process in which the performance characteristics 

are measured in terms of material removal rate (MRR), electrode wear ratio (EWR), surface 

roughness, radial overcut and white layer thickness under the influence of process variables 

viz. open circuit voltage, discharge current, pulse duration, duty factor, flushing pressure and 

electrode material. The experiments are planned as per Box-Behnken design of response 
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surface methodology (RSM) approach to obtain maximum information with limited number of 

experimental runs. Optimal parametric combination is found out using a proposed multi 

objective particle swarm optimization (MOPSO) algorithm for simultaneous optimization of 

more than one performance measures. Since particle swarm optimization (PSO) has an 

inherent drawback of getting trapped at local optimum due to large reduction in velocity 

values as iteration proceeds (Singh and Mahapatra 2012), a commonly used operator in 

genetic algorithm known as mutation operator has been introduced in this work for dealing 

with such a drawback and improving the solution quality. However, MOPSO results in a 

large number of non-dominated solutions. Therefore, maximum deviation theory proposed 

by Wang (1998) has been adopted for ranking the solution to ease the decision making 

process in choosing the best solution. 

 

3.2 Particle swarm optimization 

Particle swarm optimization algorithm, originally introduced by Kennedy and Eberhart 

(1995), is a population based evolutionary computation technique motivated by the behavior 

of organisms such as bird flocking and fish schooling. Due to its simple concept, easy 

implementation and rapid convergence, PSO has gained much attention and been 

successfully applied to a wide range of applications such as job scheduling, power and 

voltage control, mass spring system, supply chain network, vehicle routing, components 

placement inspection problems andnonlinear programming (Singh and Mahapatra 2012; 

Yoshida et al. 2001; Brandstatter and Baumgartner 2002; Bachlaus et al. 2008; Belmecheri 

2013; Kim and Son 2012; Wu et al. 2009; Dong et al. 2005).In PSO, the initial population is 

generated randomly and parameters are initialized. After evaluation of the fitness function, 

the PSO algorithm repeats the following steps iteratively: 

 Personal best (best value of each individual so far) is updated if a better value is 

discovered. 

 Then, the velocities of all the particles are updated based on the experiences of 

personal best and the global best (best in the swarm) in order to update the position 

of each particle with the velocities currently updated. 

After finding the personal best and global best values, velocities and positions of each 

particle are updated using equations 3.1 and 3.2 respectively. 

vij
t = wt−1vij

t−1 + c1r1 pij
t−1 − xij

t−1 + c2r2 gij
t−1 − xij

t−1                                                        (3.1) 

xij
t = xij

t−1 + vij
t                                                                                                                (3.2) 
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where vij
t represents velocity of particle iat iteration t with respect to jthdimension (j 

=1,2,……n). pij
t represents the position value of the ith personal best with respect to the 

jthdimension.gij
t represents the global best (gbest) i.e the best of personal best (pbest) among all 

the particles. xij
t is the position value of the ith particle with respect to jthdimension. c1andc2are 

positive acceleration parameters which provide the correct balance between exploration and 

exploitation and are called the cognitive parameter and the social parameter respectively. 

r1andr2 are the random numbers provide a stochastic characteristic for the particles 

velocities in order to simulate the real behavior of the birds in a flock. The inertia weight 

parameter w is a control parameter which is used to control the impact of the previous 

velocities on the current velocity of each particle. Hence, the parameter w regulates the 

trade-off between global and local exploration ability of the swarm. The recommended value 

of the inertia weight w is to set it to a large value for the initial stages in order to enhance the 

global search of the search space and gradually decrease it to get more refined solutions 

facilitating the local search in the last stages. In general, the inertia weight is set according 

to the following equation 3.3 (Modares et al. 2011). 

w = wmax −
wmax −wmin

iter max
× iter                             (3.3) 

where wmin  and wmax  are initial and final weights and itermax  is the maximum number of 

iterations and iteris the current iteration number. 

3.2.1 Proposed MOPSO algorithm 

Real world problems involve simultaneous optimization of numerous contradistinctive 

and conflicting nature objectives. Multi-objective optimization (MOO) arises in many 

applications where two or more objective functions need to be optimized simultaneously. 

PSO has been extended for solving the MOO problems, which is generally known as the 

multi-objective particle swarm optimization (MOPSO) (Mostaghim and Teich 2003; Wang 

and Singh 2007; Coello et al. 2004). When all objectives are considered, these solutions are 

optimum in the sense that none of the other solutions in the search area are exceptionally 

good to another solution. These solutions are called as Pareto-optimal solutions. The image 

of the efficient set in the objective space is named as non-dominated set as each solution 

dominates the other solution. To identify the non-dominance, each solution is compared with 

every single solution and checked for satisfying the rules given below for the solution under 

consideration. Consider a minimization problem having two objectives: 

]m[1.Obj]l[1.Obj    and  ]m[2.Obj]l[2.Obj  ,                                                                 (3.4) 
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or ]m[1.Obj]l[1.Obj    and  ]m[2.Obj]l[2.Obj                                                                          (3.5) 

where l and m correspond to solution number in the population. Obj.1 and Obj.2 are two 

objective function values. 

The multi-objective optimization aims at two objectives: 

(a) Converging to the Pareto-optimal solution set; 

(b) Maintaining diversity and distribution in solutions. 

While solving single-objective optimization problems, the gbest that each particle uses to 

update its position is completely determined once a neighborhood topology is established. 

However, in the case of multi-objective optimizations problems, each particle might have a 

set of gbest from which just one can be selected in order to update its position. Such set of 

gbest is usually stored in a different place from the swarm known as external archive „At ‟.This 

is a repository in which the non-dominated solutions found so far are stored. The MOPSO 

maintains an external archive „At ‟of non-dominated solutions of the population which is 

updated after every iteration. The global archive „At ‟is empty in the beginning and can store 

a user-specified maximum number of non-dominated solutions. In case the number of non-

dominated solutions exceeds the maximum size of the archive, some individuals are 

cropped. There are several methods of controlling the external archive such as Maximin 

fitness based size control (Li. 2004), epsilon-dominance based size control (Mostaghim and 

Teich 2003) and crowding distance based size control (Raquel and Naval 2005). Archive 

size control is critical because the number of non-dominated solutions can grow very fast 

(Alvarez-Benitez et al. 2005; Fieldsendand Singh 2002). 

Crowding distance technique has been extensively applied in evolutionary multi-

objective algorithms to promote diversity. The use of crowding distance measure in MOPSO 

for gbest selection was first made in Raquel and Naval (2005). The approach is quite capable 

in converging towards the Pareto front and generating a well-distributed set of non-

dominated solutions. In this study, crowding distance approach has only been applied to 

make gbest selection. Crowding distance factor is defined to show how much a non-

dominated solution is crowded with other solutions. The crowding distance (CD) factor of a 

solution provides an estimate of the density of solutions surrounding that solution (Deb et al. 

2002; Ebrahimipour et al. 2012). Figure 3.1 shows the calculation of the crowding distance 

of point k which is an estimate of the size of the largest cuboid enclosing k without including 

any other point. CD factor of boundary solutions which have the lowest and highest 
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objective function values (fmax and fmin respectively) are given an infinite crowding distance 

values. For other solutions, CD factor for the solution k is calculated by following relation. 

CDk =
(fk+1−fk−1)

(fmax −fmin ⁡)
                                                              (3.6) 

Finally, the overall crowding factor is computed by adding the entire individual crowding 

distance values in each objective function. 

 

 

 

 

 

 

 

 

 

Figure3.1 The crowding distance 
 

The non-dominated solutions in „At ‟are sorted in descending crowding distance values and 

top 10% of them are randomly used as gbest guides 

Particle swarm optimization typically converges relatively rapidly at the beginning of the 

search and then slows down or stagnates due to loss of diversity in the population (Pant et 

al. 2007; Singh and Mahapatra, 2012). To overcome this drawback, mutation, a widely used 

operator in genetic algorithm, is used to introduce diversity in the search procedure. When 

the change of the whole archive tends to decrease, the mutation process will begin (Tripathi 

et al. 2007). If the number of iteration is less than the product of maximum number of 

iteration and probability of mutation then only the mutation is performed on the position of 

the particle. Given a particle, a randomly chosen variable, say mp , is mutated to assume a 

value m′
p  as given by following equation. 

m′
p =  

mp + ∆ t, UB − mp            if flip = 0  

mp − ∆ t, mp − LB            if flip = 1  
                                                            (3.7) 

when flip denotes the random event of returning 0 or 1. UB and LB denote the upper and 

lower bound of the variable mprespectively. The function ∆(t, x) returns a value in the range 

[0,x] such that the probability of ∆ t, x  being close to 0 increases as t increases. 
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∆ t, x = x ×  1 − r
 1−

iter

iter max
 

b

                                                  (3.8) 

where r is the random number generated in the range [0, 1], itermax  is the maximum number 

of iterations and iter is the number of iteration. The parameter b determines the degree of 

dependence of mutation on the iteration number. 

To summarize, the main difference between a basic PSO (single-objective) and MOPSO 

is the distribution of gbest. In single-objective problems, there is only one gbest exists. In 

MOPSO algorithm, gbest must be redefined in order to obtain a set of non-dominated 

solutions (Pareto front). Therefore, multiple numbers of non-dominated solutions are located 

on or near the Pareto front. Each non-dominated solution can be a gbest. The important 

feature of MOPSO is that the individuals also maintain a personal archive which is known as 

pbest archive with a maximum size. The pbestarchive contains the most recent non-dominated 

positions a particle has encountered in the past. In every iteration t, each particle i is 

allocated with two guides pbest and gbest from its pbest archive and swarms global archive „At ‟. 

After the guide selection, velocities and positions of particles are updated according to the 

equation3.9 and equation3.10 where vij
t represents velocity and xij

t  is the position value of the 

ith particle with respect to jthdimension. Maximum number of generations is set as 

termination criterion. The complete algorithm for MOPSO is shown as follows: 

MOPSO Algorithm 

1. For i= 1 to M (M is the population size) 

a. Initialize position of the particles randomly 

b. Initialize vij
t = 0 (v is the velocity of each particle) 

c. Evaluate each particle‟s fitness 

d. Compare each particle‟s fitness with the particle‟s pbest. Compare the fitness with 

the population‟s overall previous best 

e. Find out the personal best (pbest) and global best (gbest). 

2. End For 

3.  Initialize the iteration counter t= 0 

4.  Store the non-dominated vectors found into archive „At ‟ 

(„At ‟is the external archive that stores non-dominated solutions found) 

5. Repeat 

a. Compute the crowding distance values of each non-dominated solution in the       

archive „At ‟ 
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b. Sort the non-dominated solutions in „At ‟in descending crowding distance values 

c. For i= 1 to M 

i. Randomly select the global best guide from a specified top 10% of the 

sorted archive „At ‟and store its position to gbest. 

ii. Compute the new velocity: 

vij
t = wt−1vij

t−1 + c1r1 pij
t−1 − xij

t−1 + c2r2 (At)ij
t−1 − xij

t−1                      (3.9) 

((At)ij
t−1is the global best guide for each nondominated solution) 

iii. Calculate the new position of    xij
t = xij

t−1 + vij
t                                      (3.10) 

iv. If (t< (MAXT * PMUT), then perform mutation on  xij
t  

(MAXTis the maximum number of iterations and PMUT is the probability of mutation) 

v. Evaluate xij
t  

d. End For 

e. Insert all new non-dominated solution into archive „At ‟ if they are not dominated by 

any of the stored solutions. All dominated solutions in the archive are removed by 

the new solution from the archive. If the archive is reached its maximum, the 

solution to be substituted is determined by the following steps: 

i. Compute the crowding distance values of each non-dominated solution in 

the archive „At ‟ 

ii. Sort the non-dominated solutions in archive „At ‟in descending crowding 

distance values 

iii. Randomly select a particle from a specified bottom 10% of the sorted 

archive „At ‟ and replace it with the new solution 

f. Update the personal best solution of each particle. If the current pbest dominates the 

position in the memory, the particle position is updated. 

g. Increment iteration counter t 

6.  Until maximum number of iterations is reached. 

 

3.3 Solution ranking 

Since MOPSO results in a large number of non-dominated solutions, choosing a best 

solution depends on decision maker‟s judgement and intuition. Usually, multi-attribute 

decision making (MADM) approaches are adopted to obtain scores for the solutions and the 

solution exhibiting maximum score is selected as the best one. However, the weights 
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assigned in multi-attribute decision making process for converting multiple objectives into a 

single equivalent objective score are reasonably subjective in nature and affect the decision 

of ranking the alternative solutions considerably. In order to avoid uncertainty of subjective 

assignment of weights by the experts and extract the accurate information from the available 

data, maximum deviation theory (MDT) suggested by Wang (1998) is adopted in this work. 

The basic idea of MDT rests on smaller weight should be assigned to the attribute having 

similar values in comparison to the attribute having larger deviations. 

The non-dominated solutions obtained in MOPSO solutions are used as the decision 

matrix. Every element of the decision matrix denotes the value of jth attribute for ith 

alternative where i=1, 2 ...n, and j=1, 2...m. Normalization of each attribute is carried out to 

transform different scales and units among various attributes into a common measurable 

scale. The normalization of the attribute depends on its type such as “higher the better” and 

“lower the better”. The following equations are used for normalization of attributes. 

xij
∗ =

max i x ij  −x ij

max i xij  −min i x ij  
, for lower the better attributes                                                         (3.11) 

xij
∗ =

x ij−min  xij  

max i xij  −min i x ij  
, for higher the better attributes                                                        (3.12) 

The difference of performance values for each alternative is computed. For the attribute 

{Aj j=1, 2…m}, the deviation value of the alternative {Si| i = 1, 2 ….n} from all the other 

alternatives can be computed by the following equation 

Dij wj =  d r ij , r lj wj
N
i=1                                                                                                  

(3.13) 

wherewj is the weight of the attributes to be calculated and Dij(wj) is the deviation value of 

the alternatives.
 

The total deviation values of all alternatives with respect to other alternatives for the 

attribute {Aj| j =1, 2… m} can be computed by the following relation. 

Dj wj =  Dij wj =   d r ij , r lj 
N
l=1

N
i=1

N
i=1 wj                                                                   

(3.14) 

whereDj(wj) is the total deviation value of all the alternatives. 

The deviation of all the attributes along all the alternatives can be calculated by the relation 

D wj =  Dj wj =    d r ij , r lj 
N
l=1

N
i=1

M
j=1

M
j=1 wj                                                             

(3.15) 

where D(wj) is deviation of all the attributes along all the alternatives. 

A linear programming model is constructed for finding out the weight vector w to maximize 

all deviation values for all the attributes and is given by 
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D wj =    d r ij , r lj 

N
l=1

N
i=1

M
j=1 wj

s. t  wj
2 = 1, wj ≥ 0, j = 1,2,…… , MM

j=1

 

                                                                            (3.16) 

A Lagrange function is constructed for solving the above model 

L wj , α =    d r ij , r lj 
N
l=1

N
i=1

M
j=1 wj + α  wj

2 − 1M
j=1  

                                                     (3.17)
 

whereis the Lagrange multiplier. The partial derivative of L (wj,) with respect to wj and    

are 

 

∂L

dw j
=   d r ij , r lj 

N
l=1

N
i=1 + 2 ∝ wj = 0

∂L

d∝
=  wj

2 − 1 = 0                                   M
j=1

                                                                           

(3.18)

 

Further, wj and    values are calculated from equation 3.17 and 3.18 

 
 
 

 
 2 ∝= −     d r ij , r lj 

N
l=1

N
i=1  

2M
j=1

wj =
  d r ij ,r lj  

N
l=1

N
i=1

     d r ij ,r lj  
N
l=1

N
i=1  

2M
j=1

                                                                                  (3.19) 

The normalized attribute weights can be further determined by the following relation 

wj =
  d r ij ,r lj  

N
l=1

N
i=1

   d r ij ,r lj  
N
l=1

N
i=1

M
j=1

                                                                                                     (3.20) 

The non-dominated solutions obtained through MOPSO algorithm are ranked by 

estimating the composite score of each solution by addition of the weighted performance of 

all attributes. Considering the ranking of the solutions, the tool engineer may choose 

suitable parametric setting from the top ranking solutions to justify the objectives set by the 

industry. 

 

3.4 Materials 

Inconel alloy 718, a nickel-chromium super alloy characterized by high-strength, high 

corrosion-resistant, good tensile and high creep rupture strength has been used as the work 

material in this study.A superalloy is an alloy which possesses several important features 

such as good mechanical strength, resistance to thermal creep deformation, good surface 

stability and resistance to corrosion.The super alloy is an aerospace material and has 

abundant usage in manufacturing of components for liquid fuled rockets, rings and casings, 

sheet metal parts for aircraft, land-based gas turbine engines, cryogenic tank fasteners and 

instrumentation parts. However, the material is extremely difficult to machine because of its 

low thermal conductivity, high hardness, high toughness, presence of highly abrasive 
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carbide particles and strong tendency to weld to the tool to form build up edge (Kuppan et 

al. 2008). 

The work material was supplied by Manohar Metals Private Limited, Mumbai. The 

chemical composition of the material is been given in Table 3.1. Table 3.2 shows the 

thermal property of the work material. The X-ray diffraction plot of the Inconel 718 sample 

used in the present study is shown in Figure 3.2. It clearly shows that there are no peaks 

other than γ-phase (austenite) phase which corresponds to face-centred cubic Ni-based γ-

phase of Inconel 718 alloy. The sharp peak of the diffraction patterns reveals the crystalline 

nature of the alloy. No other peaks are observed from the XRD pattern confirming highly 

pure nature of the alloy. 
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Table 3.1 Chemical composition of Inconel 718 sample used in the study 
 

Chemical C% Si% Mn% S% P% Cr% Fe% Mo% Co% Nb% Cu% V% Al% Ti% W% Ni% 

Amount 0.039 0.027 0.032 0.005 0.008 17.21 20.143 3.121 0.086 4.989 0.009 0.015 0.568 0.816 0.214 52.739 

 

 
 
 

Table 3.2 Thermal property of the Inconel 718 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Properties Density Melting 
Temperature 

Thermal 
Conductivity 

Thermal 
expansion 

Possions 
ratio 

Young‟s Modulus 

Value 8190kg/m
3
 1609

0
 K 15 W/m.K 13.0 µm/m°C 0.27-0.3 205 G Pa 
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Figure 3.2 X-ray diffraction plot of the Inconel 718 work material 

 

In EDM process the tool has to deal with a series of spark discharges. Hence, the tool 

must be of a good conductive material with high melting temperature, ability to withstand 

high temperature and dissipate the heat. Therefore, commercially available brass, copper, 

and graphite are used as the electrode material. The machining face of the three electrodes 

is cylindrical shape of diameter 13.5mm. 

Experiments have been carried out in a die sinking CNC EDM machine (ECOWIN MIC-

432C) with servo-head (constant gap) as shown in Figure 3.3. The specification of the 

machine is given in Table 3.3.Positive polarity for electrode and side flushing is used to 

conduct the experiments. The EDM process is performed on Inconel 718 plate having 

thickness 8mm and 10×11.5 cm2 cross sectional area. A stopwatch is used to record each 

experimental run for 30 min. For weighing purpose, the work piece and the electrodes have 

been detached from the machine after each observation, cleaned and dried out. A precision 

electronic balance (accuracy 0.01g) is used for measuring the weights of the work piece and 

tool materials before and after machining. Surface roughness tester (Surftest SJ 210, 

Mitutoyo) is used for measuring the surface quality. A tool maker‟s microscope (Carl Zeiss) 

is used for measuring the crater diameter on the machined surface on the work material. 
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Table 3.3 Specification of the CNC Die sinker EDM machineECOWIN MIC-432C 

Mechanism of process 
Controlled erosion (melting and evaporation) through a 
series of electric spark 

Spark gap 0.010- 0.500 mm 

Spark frequency 200 – 500 kHz 

Working  Current  1-60A 

Working  voltage across the gap 30- 250 V 

Maximum Flushing Pressure 0.5 Pa 

Metal removal rate (max.) 680 mm
3
/min 

Specific power consumption 2-10 W/mm
3
/min 

Dielectric fluid Liquid paraffin. 

Dielectric tank Capacity  

Travel limit   X-axis                                   400mm 
                     Y-axis                                  400mm 
                     Z-axis                                  400mm 

 

 

3.5 Experimental strategy 

The experiments have been conducted as per Box-Behnken design of response surface 

methodology (RSM) because it performs non-sequential experiments having fewer design 

points(Montgomery, 2008). It works in safe operating zone for the process as such a design 

does not have axial points. On the other hand, central composite designs have axial point 

outside the cube which may not be in the region of interest or may be impossible to run as 

they are beyond safe operating zone. Fifty four experimental runs need to be performed in 

Box-Behnken design with six factors each at three levels and six centre points. It helps to 

estimate a suitable functional relationship between input parameters and output. Generally, 

a second-order model shown in equation 3.21 is employed in response surface 

methodology. 

 

                                                                 (3.21) 

where y is the output variable, Xi‟s are input parameters, Xi
2 and XiXj are the square and 

interaction terms of parameters respectively. β0, βi, βii and βij are the unknown regression 

coefficients and ε is the error. Experiments have been conducted to investigate the effect of 

open circuit voltage, discharge current, pulse-on-time, duty factor, flushing pressure and tool 

material on performance measures viz. material removal rate (MRR), electrode wear ratio 

(EWR),surface roughness, radial overcut and white layer thickness. Duty factor can be 

defined as  =Ton/ (Ton+Toff) in percentage where Toff is the pulse-off-time. The parametric 

levels are coded using the equation 3.22. 
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(3.22) 

where Z is coded value (-1, 0, 1), Xmax and Xmin are maximum and minimum value of actual 

parameters and X is the actual value of corresponding parameter. Table 3.4 shows the 

levels of the process parameters. 

 

Table 3.4 Process parameters and their levels 

Process Parameters Symbols 
Levels 

-1 0 1 

Open circuit voltage  in  V A 70 80 90 

Discharge current  in A B 3 5 7 

Pulse-on-time  in µs C 100 200 300 

Duty factor in % D 80 85 90 

Flushing pressure  in Bar E 0.2 0.3 0.4 

Tool F Brass Copper Graphite 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 CNC die sinking EDM machine (ECOWIN PS 50ZNC) on experimental set up 
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Figure 3.4 Wok material Inconel 718 after machining with three electrodes 

3.5.1 Calculation of performance measures 

(a) MRR  

The work material after machining with three electrodes is shown in Figure 3.4.The 

weight of work piece before and after machining is recorded to calculate material removal 

rate (MRR) using following equations. 

Tρ

ΔWw1000
MRR

W





                                                                                                       (3.23) 

where ΔWw is the work material weight loss during machining and ρwis the density of work 

material and T is the machining time. 

(b) EWR 

The weight of the tool material before and after machining is recorded to calculate the 

electrode wear ratio (EWR) in percentage the following equation 

Tρ

ΔWt1000
TWR

t





                                                                                                         (3.24) 

MRR

TWR100
EWR




                                                                                                         (3.25) 
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where TWR is the tool wear rate in mm3/min, ΔWt, istool weight loss during machining, ρtis 

the density of tool material (ρbrass=8565 kg/m3, ρcopper=8960 kg/m3 and ρgraphite=2130 kg/m3 

and T is the machining time. 

(c) Surface roughness 

 The surface roughness for machined surface of the work material is measured by a 

portable surface tester (Surftest SJ 210, Mitutoyo). Roughness measurements, in the 

transverse direction, on the work material are repeated five times and average of five 

readings of surface roughness values are noted down. 

(d) Radial overcut 

 Radial overcut defined as the deviation between electrode diameter and the maximum 

diameter of the machined cavity. For precise and accurate machining minimization of over 

cut is essential. It is measured using the following relation 

Radial overcut =
dw−dt

2
                                                                                                      (3.26) 

where dw is the maximum diameter of the crater cavity and dt is the diameter of the tool. 

(e) White layer thickness 

 The successive spark discharges, causes formation of molten metal pool and debris and 

later solidifies on the machined surface due to improper flushing. This leads to formation of 

recast layer or white layer on the machined surface and is easily distinguishable from parent 

metal. The layer consists of number of voids, micro cracks, globules, impurities and several 

microstructural defects which are responsible to weaken mechanical properties of the 

machined surface. A good machined surface should have minimum white layer thickness. 

 To measure the white layer thickness, the cross section of each the machined surface is 

was cut off  is and polished on silicon carbide paper with grade  sizes of 80, 120, 220, 320, 

400, 800,1000,1200 respectively. Thereafter, the sample was polished a velvet cloth with 

diamond paste up to accuracy 1μm.The machined surface is etched with etchant Kalling‟s 

reagent to expose the white layer structure and the boundary line on the cross section. A 

scanning electron microscope (SEM) (Model, Joel JSM-6480LV, Japan) with a magnification 

of ×250 is employed to analyse the thickness of white layer. The thickness of white layer is 

calculated by measuring the area of deposited white layer by dividing the horizontal length 

of the micro graph. Table 3.5 shows the Box-Behnken design and performance measures 

for each experimental run. 
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Table 3.5 Box-behnken experimental design along with obtained performance measures 

Run 
order 

A B C D E F 
MRR 

mm
3
/min 

EWR 
% 

Surface 
Roughness 

µm 

Radial 
overcut 

mm 

White 
layer 

thickness 
µm 

1 -1 -1 0 -1 0 0 18.23 23.04 16.52 0.15 31.71 

2 1 -1 0 -1 0 0 12.03 18.54 16.61 0.14 31.81 

3 -1 1 0 -1 0 0 41.20 14.08 22.50 0.25 36.11 

4 1 1 0 -1 0 0 32.50 18.12 22.80 0.25 36.01 

5 -1 -1 0 1 0 0 26.90 15.95 16.57 0.16 33.70 

6 1 -1 0 1 0 0 22.10 19.55 16.78 0.16 33.80 

7 -1 1 0 1 0 0 36.10 16.23 22.59 0.28 36.30 

8 1 1 0 1 0 0 31.20 18.94 22.72 0.26 36.20 

9 0 -1 -1 0 -1 0 26.90 17.10 13.35 0.14 32.11 

10 0 1 -1 0 -1 0 40.20 15.17 20.80 0.26 35.51 

11 0 -1 1 0 -1 0 16.10 24.84 17.70 0.20 33.41 

12 0 1 1 0 -1 0 30.50 16.43 23.50 0.30 36.41 

13 0 -1 -1 0 1 0 24.10 19.29 14.00 0.15 32.21 

14 0 1 -1 0 1 0 38.90 15.45 20.70 0.25 35.61 

15 0 -1 1 0 1 0 16.50 24.85 15.60 0.21 33.61 

16 0 1 1 0 1 0 29.80 17.08 21.30 0.31 36.31 

17 0 0 -1 -1 0 -1 12.80 62.42 10.35 0.07 15.81 

18 0 0 1 -1 0 -1 5.10 117.25 12.42 0.11 17.04 

19 0 0 -1 1 0 -1 17.90 44.75 11.23 0.08 17.51 

20 0 0 1 1 0 -1 12.50 56.16 13.31 0.11 18.92 

21 0 0 -1 -1 0 1 33.80 9.76 21.60 0.39 46.14 

22 0 0 1 -1 0 1 28.01 9.28 26.30 0.47 47.14 

23 0 0 -1 1 0 1 44.50 7.53 22.60 0.40 46.43 

24 0 0 1 1 0 1 36.10 7.34 27.20 0.48 47.42 

25 -1 0 0 -1 -1 0 22.50 22.04 21.20 0.21 33.81 

26 1 0 0 -1 -1 0 15.50 31.68 22.30 0.20 33.91 

27 -1 0 0 1 -1 0 36.70 13.43 21.50 0.22 34.40 

28 1 0 0 1 -1 0 23.50 21.15 22.35 0.21 34.42 

29 -1 0 0 -1 1 0 26.30 18.94 21.30 0.22 33.96 

30 1 0 0 -1 1 0 15.90 30.75 22.56 0.22 34.01 

31 -1 0 0 1 1 0 31.90 15.64 22.00 0.23 34.41 

32 1 0 0 1 1 0 24.70 20.24 22.59 0.23 34.80 

33 0 -1 0 0 -1 -1 6.81 101.62 6.80 0.03 15.81 

34 0 1 0 0 -1 -1 20.10 43.88 13.21 0.10 21.04 

35 0 -1 0 0 1 -1 7.01 99.14 7.80 0.04 16.16 

36 0 1 0 0 1 -1 20.20 44.06 13.95 0.11 21.24 

37 0 -1 0 0 -1 1 20.05 11.42 19.80 0.35 45.14 
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3.6 Results and discussions 
 

Table 3.5 shows the Box-Behnken design and performance measures for each 

experimental run.The experimental data collected as per Box-behnken design are analysed 

to establish the influence of various process parameters on the responses using analysis of 

variance (ANOVA) at significance level of 0.05.Table 3.6 shows the ANOVA table for MRR 

with percentage of contribution of each parameter and their interactions. The parameters 

such as tool material, discharge current, pulse-on-time, open circuit voltage and duty factor 

their square terms and interaction terms - discharge current×duty factor and discharge 

current×tool are found to be significant. The table also shows that tool material is the most 

influential parameter for MRR with highest percentage of contribution of 49.74% followed by 

discharge current, pulse-on-time, open circuit voltage and duty factor with percentage 

contribution of 24.76%, 5.48%, 5.40% and 4.16% respectively.Flushing pressure is found to 

an insignificant process parameter for MRR.  The coefficient of determination (R2) and 

adjusted (R2) values are found to be 97.7% and 96.16% respectively. It is to be noted that 

the lack of fit is not significant for MRR. 

 

 

 

 

38 0 1 0 0 -1 1 48.80 8.03 28.20 0.50 49.24 

39 0 -1 0 0 1 1 26.12 9.00 20.10 0.36 45.24 

40 0 1 0 0 1 1 48.90 8.08 28.50 0.52 48.94 

41 -1 0 -1 0 0 -1 18.20 43.68 10.20 0.06 16.84 

42 1 0 -1 0 0 -1 11.95 66.28 10.40 0.06 17.14 

43 -1 0 1 0 0 -1 11.85 58.99 13.00 0.10 18.24 

44 1 0 1 0 0 -1 5.92 118.41 13.30 0.10 18.34 

45 -1 0 -1 0 0 1 43.10 9.03 21.80 0.40 47.04 

46 1 0 -1 0 0 1 35.10 11.28 23.40 0.38 47.09 

47 -1 0 1 0 0 1 35.90 7.52 26.50 0.51 48.04 

48 1 0 1 0 0 1 27.10 10.15 27.80 0.48 48.14 

49 0 0 0 0 0 0 18.50 25.95 22.50 0.25 35.11 

50 0 0 0 0 0 0 21.50 21.86 24.00 0.20 34.91 

51 0 0 0 0 0 0 16.70 30.54 21.00 0.26 35.41 

52 0 0 0 0 0 0 20.40 22.55 22.20 0.20 34.86 

53 0 0 0 0 0 0 18.30 27.87 23.45 0.25 35.46 

54 0 0 0 0 0 0 19.60 23.21 21.80 0.21 35.06 
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Table 3.6 ANOVA for MRR 

Source 
Sum of 
Squares 

Degrees 
of 

freedom 

Mean 
Square 

F-Value Prob> F 
 

 
% 

Contribution 

Model 6289.4 22 285.882 61.38953 < 0.0001 significant  

A-Open circuit voltage 347.929 1 347.929 74.71341 < 0.0001 
 5.41 

B-Discharge current 1593.33 1 1593.33 342.1463 < 0.0001 
 

24.77 
C-Pulse-on-time 353.204 1 353.204 75.84597 < 0.0001 

 
5.49 

D-Duty factor 268.202 1 268.202 57.59302 < 0.0001 
 

4.17 
E-Flushing pressure 0.29704 1 0.29704 0.063785 0.8023 

 
0.00 

F-Tool 3200.27 1 3200.27 687.2182 < 0.0001 
 

49.74 

A×B 0.845 1 0.845 0.181453 0.6731 
 

0.01 

A×E 0.845 1 0.845 0.181453 0.6731 
 

0.01 

A×F 2.66805 1 2.66805 0.57293 0.4548 
 

0.04 

B×D 79.0025 1 79.0025 16.96477 0.0003 
 

1.23 

B×E 2.00931 1 2.00931 0.431473 0.5161 
 

0.03 

B×F 78.4378 1 78.4378 16.84352 0.0003 
 

1.22 

C×E 1.805 1 1.805 0.387601 0.5381 
 

0.03 

C×F 0.95551 1 0.95551 0.205183 0.6537 
 

0.01 

D×E 7.605 1 7.605 1.633077 0.2108 
 

0.12 

D×F 4.94551 1 4.94551 1.061986 0.3107 
 

0.08 

E×F 4.30711 1 4.30711 0.924898 0.3436 
 

0.07 

A
2
 39.1887 1 39.1887 8.415273 0.0068 

 0.61 

B
2
 205.154 1 205.154 44.05428 < 0.0001 

 3.19 

C
2
 86.2692 1 86.2692 18.52521 0.0002 

 1.34 

D
2
 47.6667 1 47.6667 10.23583 0.0032 

 0.74 

E
2
 24.028 1 24.028 5.159698 0.0302 

 0.37 
Residual 144.362 31 4.65685 

   
2.24 

Lack of Fit 129.929 26 4.99727 1.731157 0.2834 
Not 

significant 
 

Pure Error 14.4333 5 2.88667 
   

 

Cor Total 6433.77 53 
    

 

 

Table 3.7 shows the ANOVA table for EWRwith percentage of contribution of each 

parameter and their interactions. It shows that tool material, discharge current, pulse-on-

time, open circuit voltage, duty factor and square terms of tool material and interaction terms 

-discharge current×tool, pulse-on-time×tool, open circuit voltage×tool, and duty factor×tool 

are significant parameters.The Table also shows that tool material is found to be the most 

influential parameter for EWR with highest percentage of contribution of 61.84% followed by 

discharge current,  pulse-on-time, open circuit voltage and duty factor with percentage 

contribution of 2.44%, 2.37%, 1.76% and 1.56% respectively.Flushing pressure is found to 
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be an insignificant parameter for EWR. The coefficient of determination (R2) and adjusted 

(R2) values are found to be 93.55% and 90.51% respectively. It is to be noted that the lack 

of fit is not significant for EWR. 

Table 3.7 ANOVA for EWR 

Source 
Sum of 
Squares 

Degrees 
of 

freedom 

Mean 
Square 

F-
Value 

Prob> F Source 
% 

Contribution 

Model 35218.0 17 2133.05 30.73 < 0.0001 significant  

A-Open circuit voltage 667.01 1 667.01 9.61 0.0037 
 

1.77 

B-Discharge Current 922.32 1 922.32 13.29 0.0008 
 

2.45 

C-Pulse-on-time 894.99 1 894.99 12.89 0.001 
 

2.37 

D-Duty Factor 590 1 590 8.5 0.0061 
 

1.56 

E-Flushing Pressure 0.76 1 0.76 0.011 0.9172 
 

0.00 

F-Tool 23326.53 1 23326.53 336.08 < 0.0001 
 

61.85 

A×C 172.98 1 172.98 2.49 0.1232 
 

0.46 

A×F 743.75 1 743.75 10.72 0.0024 
 

1.97 

B×C 13.56 1 13.56 0.2 0.6611 
 

0.04 

B×F 1471.84 1 1471.84 21.21 < 0.0001 
 

3.90 

C×D 232.5 1 232.5 3.35 0.0755 
 

0.62 

C×F 1172.96 1 1172.96 16.9 0.0002 
 

3.11 

D×F 695.48 1 695.48 10.02 0.0031 
 

1.84 

B
2
 121.47 1 121.47 1.75 0.1942 

 

0.32 

C
2
 59.22 1 59.22 0.85 0.3618 

 

0.16 

D
2
 68.3 1 68.3 0.98 0.3278 

 

0.18 

F
2
 4064.33 1 4064.33 58.56 < 0.0001 

 

10.78 

Residual 2498.69 36 69.41 
   

6.62 

Lack of Fit 2371.37 31 76.5 3 0.1108 
not 

significant 
 

Pure Error 127.32 5 25.46 
   

 
Cor Total 37716.69 53 

    
 

 

Table 3.8 shows the ANOVA for surface roughnesswith percentage of contribution of 

each parameter and their interactions.It shows that tool material, discharge current, pulse-

on-time,open-circuit voltage, square terms of discharge current, pulse-on-time,tool material 

and interaction terms-discharge current×tool, pulse-on-time×tool,pulse-on-time×flushing 

pressure are important parameters.The Table also shows that  tool material is found to be 

the most influential parameter for surface roughness with highest percentage of contribution 

of 67.13% followed by discharge current, pulse-on-time and open circuit voltage with 

percentage contribution of 16.88%, 3.78% and 0.16% respectively.Duty factor and flushing 

pressure are found to be insignificant process parameters for surface roughness. The 

coefficient of determination (R2) and adjusted (R2) values are found to be 93.37% and 
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89.67% respectively. It is to be noted that the lack of fit is not significant for surface 

roughness 

Table 3.8 ANOVA for surface roughness 

 
Sum of 

Degree 
of Mean F p-value 

 

% 
Contribution 

Source Squares freedom Square Value Prob> F 
 

 

Model 1530.104 17 91.17 206.85 < 0.0001 significant  

A-Open circuit voltage 2.62 1 2.62 5.95 0.0198 
 

0.17 

B-Discharge Current 260.96 1 260.96 592.1 < 0.0001 
 

16.88 

C-Pulse-on-time 58.59 1 58.59 132.94 < 0.0001 
 

3.79 

D-Duty Factor 1.03 1 1.03 2.34 0.1345 
 

0.07 

E-Flushing Pressure 4.00×10
-3

 1 4.00×10
-3

 9.09×10
-3

 0.9246 
 

0.00 

F-Tool 1037.93 1 1037.93 2354.97 < 0.0001 
 

67.14 

A×F 0.72 1 0.72 1.63 0.2094 
 

0.05 

B×C 0.88 1 0.88 1.99 0.1667 
 

0.06 

B×F 2.25 1 2.25 5.1 0.0301 
 

0.15 

C×E 2.94 1 2.94 6.67 0.014 
 

0.19 

C×F 4.57 1 4.57 10.37 0.0027 
 

0.30 

E×F 0.16 1 0.16 0.37 0.5476 
 

0.01 

B
2
 63.66 1 63.66 144.44 < 0.0001 

 

4.12 

C
2
 23.41 1 23.41 53.11 < 0.0001 

 

1.51 

D
2
 1.04 1 1.04 2.37 0.1325 

 

0.07 

E
2
 0.16 1 0.16 0.36 0.5502 

 

0.01 

F
2
 69.18 1 69.18 156.97 < 0.0001 

 

4.47 

Residual 15.87 36 0.44 
   

1.03 

Lack of Fit 9.88 31 0.32 0.27 0.991 
not 

significant 
 

Pure Error 5.98 5 1.20     
Cor Total 1545.974 53      

 

Table 3.9 shows the ANOVA for radial overcut with percentage of contribution of each 

parameter and their interactions. It shows that tool material, discharge current, pulse-on-

time, duty factor and square terms of tool material, discharge current, pulse-on-timeand 

interaction terms discharge current×tool, pulse-on-time×tool, are most influencing 

parameters.The Table also shows that that tool material is found to be the most influential 

parameter for radial overcut with highest percentage of contribution of 85.56%, followed by 

discharge current, pulse-on-time and duty factor with percentage contribution of 8%, 2.56% 

and 0.07% respectively.Open circuit voltage and flushing pressure are found to exhibit 

insignificant effect for radial overcut.The coefficient of determination (R2) and adjusted (R2) 

values are found to be 99.2% and 98.8% respectively. It is to be noted that the lack of fit is 

not significant for radial overcut. 
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Table 3.9 ANOVA for radial overcut 

 
Sum of 

Degree 
of Mean F p-value 

 

% 
Contribution 

Source Squares freedom Square Value Prob> F 
 

 

Model 0.89 16 0.056 376.67 < 0.0001 significant  

A-Open circuit voltage 5.13×10
-4

 1 5.13×10
-4

 3.46 0.0707 
 

0.06 

B-Discharge Current 0.072 1 0.072 485.42 < 0.0001 
 

8.00 

C-Pulse-on-time 0.023 1 0.023 158.14 < 0.0001 
 

2.56 

D-Duty Factor 6.62×10
-4

 1 6.62×10
-4

 4.46 0.0414 
 

0.07 

E-Flushing Pressure 5.51×10
-4

 1 5.51×10
-4

 3.72 0.0615 
 

0.06 

F-Tool 0.77 1 0.77 5162.1 < 0.0001 
 

85.56 

A×F 2.0 ×10
-4

 1 2.00×10
-4

 1.35 0.2528 
 

0.02 

B×C 2.81×10
-5

 1 2.81×10
-5

 0.19 0.6656 
 

0.00 

B×F 3.61×10
-3

 1 3.61×10
-3

 24.37 < 0.0001 
 

0.40 

C×E 7.81×10
-5

 1 7.81×10
-5

 0.53 0.4724 
 

0.01 

C×F 2.89×10
-3

 1 2.89×10
-3

 19.49 < 0.0001 
 

0.32 

A
2
 4.97×10

-4
 1 4.97×10

-4
 3.35 0.0751 

 
0.06 

B
2
 9.22×10

-4
 1 9.22×10

-4
 6.22 0.0172 

 
0.10 

C
2
 6.99×10

-4
 1 6.99×10

-4
 4.72 0.0363 

 
0.08 

D
2
 2.63×10

-4
 1 2.63×10

-4
 1.78 0.1909 

 
0.03 

F
2
 0.011 1 0.011 75 < 0.0001 

 
1.22 

Residual 5.48×10
-3

 37 1.48×10
-4

 
   

0.61 

Lack of Fit 1.81×10
-3

 32 5.67×10
-5

 0.077 1 
not 

significant 
 

Pure Error 3.67×10
-3

 5 7.34×10
-4

 
   

 

Cor Total 0.9 53 
    

 

 

Table 3.10 shows the ANOVA for white layer thicknesswith percentage of contribution of 

each parameter and their interactions. It shows that tool material,discharge current, pulse-

on-time, duty factor, square terms of pulse-on-time, duty factor,flushing pressure, tool 

material and interaction terms-discharge current×duty factor, discharge current×tool, duty 

factor×tool are the most influential parameters.The Table also shows that tool material is 

found to be the most influential parameter for white layer thickness with highest percentage 

of contribution of 96.94% followed by discharge current, pulse-on-time and duty factor with 

percentage contribution of 1.53%, 0.14% and 0.09% respectively.Open circuit voltage and 

flushing pressure are found to be insignificant parameters for white layer thickness. The 

coefficient of determination (R2) and adjusted (R2) values are found to be 99.9% and 99.8% 

respectively. It is to be noted that the lack of fit is not significant for white layer thickness. 
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Table 3.10 ANOVA for white layer thickness 

 
Sum of 

Degree 
of 

Mean F p-value 
 

% 
Contribution 

Source Squares freedom Square Value Prob> F 
 

 

Model 5316.58 17 312.74 2279.02 < 0.0001 significant  

A-Open curcuit Voltage 0.051 1 0.051 0.37 0.5446 
 

0.00 

B-Discharge Current 81.44 1 81.44 593.46 < 0.0001 
 

1.53 

C-Pulse-on-time 7.65 1 7.65 55.75 < 0.0001 
 

0.14 

D-Duty Factor 4.88 1 4.88 35.55 < 0.0001 
 

0.09 

E-Flushing Pressure 0.069 1 0.069 0.51 0.4818 
 

0.00 

F-Tool 5159.15 1 5159.15 37596.06 < 0.0001 
 

96.95 

B×C 0.15 1 0.15 1.1 0.3008 
 

0.00 

B×D 1.62 1 1.62 11.81 0.0015 
 

0.03 

B×F 0.79 1 0.79 5.74 0.0219 
 

0.01 

C×F 0.086 1 0.086 0.62 0.4349 
 

0.00 

D×F 1.11 1 1.11 8.09 0.0073 
 

0.02 

E×F 0.07 1 0.07 0.51 0.4787 
 

0.00 

A
2
 0.028 1 0.028 0.21 0.6522 

 

0.00 

C
2
 2.22 1 2.22 16.21 0.0003 

 

0.04 

D
2
 3.85 1 3.85 28.07 < 0.0001 

 

0.07 

E
2
 0.77 1 0.77 5.62 0.0233 

 

0.01 

F
2
 42.28 1 42.28 308.07 < 0.0001 

 

0.79 

Residual 4.94 36 0.14 
   

0.09 

Lack of Fit 4.63 31 0.15 2.38 0.1692 
not 

significant 
 

Pure Error 0.31 5 0.063 
   

 

Cor Total 5321.52 53 
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 Process model  for the responses obtained through regression analysis are given below: 

MRR       =  +19.01 - 3.81 × A + 8.15 × B - 3.84 × C + 3.34 × D + 0.11 × E + 11.55 × F-0.58 

× A × F -3.14 × B × D - 0.35 × B × E + 3.13 × B × F + 0.47 × C × E-0.98 × D × 

E + 0.79 × D × F + 0.73 × E × F + 1.93 × A
2
+ 4.42 × B

2
+2.78 × C

2
+ 2.13 × D

2 
+ 

1.51 × E
2    (Coded form)                                                                             (3.27) 

EWR       =  +31.93 + 5.27 × A - 6.20 × B + 6.11 × C - 4.96 × D - 0.18 × E - 31.18  ×  F + 

4.65  ×   A ×  C - 9.64 ×  A × F - 1.30 ×  B ×  C + 13.56 ×  B ×  F - 5.39 ×  C × D 

- 8.56 ×  C ×  F + 9.32 ×  D ×  F - 3.29 ×  A2  - 5.95 ×  B2 - 4.93 × C2  - 4.64 ×  D2  

- 2.27 ×  E2  + 16.95  × F2   (Coded form)                                                     (3.28) 

Surface 

roughnes = +22.49+0.33× A+3.30× B+1.56× C+0.21×D-0.013×E+6.58×F+0.30×A×F-

0.33× B× C+0.53× B×F-0.61 ×C × E+0.53×C×F-0.14×E×F-0.10×A2-2.48×B2-

1.51×C2-0.28×D2-0.14×E2-2.58×F2(Codedform)                                       (3.29) 

Radial overcut  = + 0.23 - 4.625 ×10-3 × A + 0.055 × B + 0.031 × C + 5.25 × 10-3× D + 4.792 

× 10-3 × E + 0.18 × F – 5 × 10-3 × A × F - 1.875 × 10-3 × B × C + 0.021 × B × F 

+ 3.125 × 10-3 × C × E + 0.013 × C × F - 6.881 × 10-3 × A2 - 9.071 × 10-3 × B2 + 

8.161 × 10-3 × C2 - 5.006 × 10-3 × D2 + 0.033 × F2 

(Coded form)                                                                                             (3.30) 

White layer 

thickness= +35.13+0.046×A +1.84 × B+0.56×C+0.45 ×D+0.054× E+14.66×F-0.14× 

B×C-0.45×B ×D-0.31×B×F-0.073× C×F-0.37×D×F-0.094×E×F-0.052× A2-0.46× 

C2-0.61 ×D2-0.26×E2-2.01× F2 

(Coaded form)                                                                                              (3.31) 

As discharge current is found to be a significant either as a parameter or in interaction 

with other parameters for all the responses, it is decided to observe the effect discharge 

current microscopically. Figure 3.5 and 3.6 shows the Scanning Electron Microscope (SEM) 

micrographs at parametric condition (A=80V B=3A C=100µs D=85% E=0.4bar F=copper 

electrode)experiment number 13 and (A=80V B=7A C=100µs D=85% E=0.4bar F=copper 

electrode)experiment number 14 respectively. From the SEM micrographs, it can be noted 

that size of the cracks and pores on the machined surface increases as discharge current 

increases from 3A to 7 A. 
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Figure 3.5 SEM Micrograph showing micro cracks and pores on the machined surface 

atA=80V B=3A C=100µs D=85% E=0.4bar F=copper electrode 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 SEM Micrograph showing micro cracks and pores on the machined surface at 

A=80V B=7A C=100µs D=85% E=0.4bar F=copper electrode 
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Figure 3.7 (a-b-c) shows the SEM micrographs for the white layer thickness analysis 

taken with the parametric conditions at A=80V B=5A C=100µs D=80% E=0.3bar F=Brass 

tool, A=80V B=5A C=200µs D=85% E=0.3bar F=copper tool and A=80V B=5A C=300µs 

D=90% E=0.3bar F=Graphite tool respectively. The spark energy in EDM is primarily 

governed by discharge current, pulse-on-time and duty factor. Increase pulse-on-time and 

duty factor significantly improves the spark energy in between electrodes. From the 

micrographs, it can be clearly observed, that the white layer thickness increases with 

increase in spark energy and variation of tool material. It is can be clearly observed, that 

white layer formed on the machined surface with brass electrode is comparatively less as 

compared to copper and graphite electrode. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7(a) SEM Micrograph showing white layer on the cross section of machined surface 

at A=80V B=5A C=100µs D=80% E=0.3bar F=Brass tool 
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Figure 3.7(b) SEM Micrograph showing white layer on the cross section of machined surface 

at A=80V B=5A C=200µs D=85% E=0.3bar F=copper tool 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7(c) SEM Micrograph showing white layer on the cross sectionof machined surface 

at A=80V B=5A C=300µs D=90% E=0.3bar F=Graphite tool 
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  A: Open circuit voltage    B: Discharge Current  

Figure 3.8 shows the surface plot for variation of MRR with open circuit voltage and 

discharge current. The figure indicates that material removal rate increases with the 

increase of discharge current for all values of open circuit voltages. Increase in discharge 

current directly affects the discharge energy which in turn causes an increase in the crater 

dimension resulting in increased metal removal rate. The surface plot also shows that the 

MRR initially decreases with the increase of open circuit voltage for any value of discharge 

current but shows a slight increasing trend after reaching a minimum value. Low values of 

open circuit voltage can lead to increase in MRR whereas higher values of open circuit 

voltage can cause relatively lower material removal rates. This phenomenon is similar to 

experimental studies reported by Lee and Li (2001). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8 Surface plot of MRR with Discharge current and open circuit voltage 

Figure 3.9 shows variation of MRR with discharge current and tool material. The Figure 

reveals that MRR increases monotonically with increase in discharge current with use of 

graphite and copper electrodes but increases slowly with the use of brass electrode.  

Material removal is higher while machining with graphite electrode followed by copper and 

brass respectively. As graphite and copper electrodes have higher thermal conductivities 

than brass electrode, the spark energy between the graphite and copper electrode is higher 

in comparison with brass, which in turn causes higher MRR in comparison with brass 

electrode. 
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Figure 3.9 Surface plot of MRR with discharge current and tool material 

Figure 3.10 shows the variation of MRR with tool material and pulse-on-time. It shows 

that MRR varies inversely with increase in pulse-on-time. Increase of pulse-on-time causes 

the heat flux to be conducted into the work piece in form of plasma channel for an extended 

time interval resulting in increase in the MRR (Panda 2008; Natsu et al. 2006). However, 

continuous application of the same heat flux for a longer duration decreases the pressure 

inside the plasma channel. As the volume of molten material remains unaffected, further 

increase in pulse-on-time results in decrease of MRR.A similar finding has been also 

observed in the experimental investigation of previous researchers (Pradhan and Biswas 

2010). 
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Figure 3.10 Surface plot of MRR with pulse-on-time and tool material 

Figure 3.11 shows the variation of MRR with duty factor and tool material. It shows that 

for all three tool materials MRR shows a steady increase with increase in duty factor. 

However, the increase is more pronounced with graphite and copper tool. Increase in duty 

factor increases the number of sparks per unit time. As a result, the spark energy across the 

gap increases leading to increase in molten metal volume from the machined surface. This 

phenomenon influences increase in MRR. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11 Surface plot of MRR with duty factor and tool material 
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Electrode wear ratio (EWR) is an important machining characteristic in EDM process as 

it directly affects the machining cost of the process. Figure 3.12 shows the surface plot of 

EWR with discharge current and tool material. The figure indicates that minimum electrode 

wear ratio can be obtained when machined with graphite electrode. Highest electrode wear 

ratio is observed when machined with brass electrode. Copper electrode exhibits wear ratio 

those between graphite and brass. The figure also indicates that EWR increases with 

increase in discharge current for all the electrodes. But increase of EWR in case of graphite 

electrode is relatively small. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12 Surface plot of EWR with discharge current and tool material 
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Figure 3.13 shows the plot of pulse-on-time and open circuit voltage. It shows that EWR 

increases with increase in open circuit voltage. This obvious as, increase in open circuit 

voltage increases the spark energy, which in turn increases the molten metal volume from 

both the electrodes resulting in increase in EWR. The Figure also show that EWR increases 

with increase in pulse-on-time but shows a decreasing trend further when pulse-on time is 

set beyond 200µs. This may be due to decrease in spark energy density in the spark gap 

between electrodes as the diameter of the plasma channel expands with increase in pulse-

on-time. Another reason for lower wear ratio at higher pulse-on-time is due to the 

attachment of carbon particles on to the electrode tip causing increase in the wearing 

resistance of tool and reducing EWR. A similar trend has been reported by previous 

researchers (Srivastava and Pandey 2012). Similarly, from the surface plot of EWR with 

pulse-on-time and duty factor it is observed that EWR increases slowly with increase in duty 

factor due to increase in spark energy. 

 

 

 

 

Figure 3.13 Surface plot of EWR with pulse-on-time and open circuit voltage 
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Figure 3.14 shows the variation of surface roughness with discharge current and tool 

material. It shows that surface quality deteriorates with increases in discharge current when 

graphite and copper electrodes are used. As discharge current increases, the spark energy 

also increases. Hence, more heat is produced resulting in larger size material to be removed 

from the work surface degrading the surface quality of the machined surface. Graphite 

electrode exhibits the poorest performance with regard to the surface finish. Brass electrode 

at smaller values of discharge current produces finest surface quality. Copper electrode 

produces Inconel 718 alloy work material with surface roughness value between those of 

copper and graphite. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14 Surface plot of surface roughness with tool material and discharge current 

 

Figure 3.15 shows the variation of surface roughness with tool material and pulse-on-

time. It shows that surface roughness increases with increase in pulse-on-time. Increasing 

the pulse-on-time improves the spark energy which in turn causes larger size particle 

removed from the machined surface and in turn the machined surface quality is poor. Thus, 

it can be concluded that good surface quality can only be achieved at smaller value of 

discharge current with brass as the electrode material. Similarly, from the surface plot of 

surface roughness with tool material and open circuit voltage, it is observed that surface 

roughness increases slowly with increase in open circuit voltage. 
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Figure 3.15 Surface plot of surface roughness with tool material and pulse-on-time 

 

Figure 3.16 shows the variation of radial overcut with discharge current and tool 

material. It shows that radial overcut increases with increase in discharge current with the 

use of graphite and copper electrodes. The reason for this observation is that higher values 

discharge current causes increase in spark energy resulting in more heat to be produced 

and wider and larger craters are formed. Thus, it increases the overcut on the machined 

surface. Graphite electrode exhibits the poorest performance in regard to the overcut. Brass 

electrode at smaller values of discharge current minimizes overcut. Copper electrode 

produces Inconel 718 alloy work material with overcut values between those of copper and 

graphite. Thus, brass electrode and lower machining rate can be adopted for the smaller 

overcut on machining surface at the expense of tool erosion. 
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Figure 3.16 Surface plot of radial overcut with tool material and discharge current 

Figure 3.17 shows the variation of radial over cut with pulse-on-time and tool material. Its 

shows that overcut increases gradually with increase of pulse-on-time. An increase in pulse-

on-time increases the overcut on the machined surface due to prolonged occurrence of 

sparks causing an increase in energy per spark. However, it is observed that the effect of 

discharge current on over cut is higher as compared to pulse-on-time. Factors such as duty 

factor and open circuit voltage have little effect for variation of radial over cut, yet it is 

observed that over cut decreases very slowly with increase in open circuit voltage. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.17 Surface plot of radial overcut with tool material and pulse-on-time 
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Figure 3.18 shows the variation of white layer thickness with discharge current and tool 

material. Its shows that white layer thickness increases briskly the use of graphite and 

copper electrodes, but in the increases is comparatively slower with the use of brass 

electrode. Increase in discharge current significantly improves the spark energy, which in 

turn increases the molten metal volume on the machined surface. As a result, owing to 

improper flushing larger volume of molten material is deposited on the machined surface 

and in turn the thickness of white layer is increased. Since, MRR produced in graphite and 

copper electrodes are higher than brass electrode the deposition of molten metal on the 

machined surface is also higher and in turn the white layer thickness is also higher. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.18 Surface plot of white layer thickness with discharge current and tool material 

Figure 3.19 shows the variation of White layer thickness with pulse-on-timeand tool 

material. It shows that white layer thickness increases gradually with increase in pulse-on-

time initially, but remains constant after reaching the pulse duration of 200 µs up to 

300µs.Incrseing pulse on time means applying the same heat flux for an extended time 

interval. Continuous application of same heat flux decreases the pressure inside the plasma 

channel. Since, the molten metal volume remains constant, further increases in pulse-on 

time does not increase the deposition on the machined surfaceand the white layer thickness 

remains constant. The effect of duty factor on white layer thickness is not significant as 

compared to discharge current and pulse-on-time but still it is observed that white layer 

thinness increases very slowly with increase in duty factor due to increase in   number  of 
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sparks per unit time. Open circuit voltage and flushing pressure have little to offer for 

variation of white layer thickness. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.19 Surface plot of white layer thickness with pulse-on-time and tool material 

In this study, five responses such as (MRR, EWR, surface roughness, radial overcut and 

white layer thickness) are considered. However, all the five responses may not be 

applicable simultaneously for industrial applications. The choice of responses purely 

depends on the requirement of process engineer and industries. Therefore, two responses 

are considered to be optimized treating other three responses are treated as constraints at a 

time. The constrained value is selected from the experimental observations. The empirical 

relation between the process parameters and process responses established from the RSM 

analysis is used as objective function for solving the multi-objective particle swarm 

optimization (MOPSO) problem. In the present work, the objectives are maximization of 

MRR and minimization of EWR, surface roughness, radial overcut and white layer thickness 

which are functions of process parameters viz. open circuit voltage, discharge current, 

pulse-on-time , duty factor, flushing pressure and tool material. Tool material is a qualitative 

process parameter whereas open circuit voltage, discharge current, pulse-on-time, duty 

factor, flushing pressure are quantitative process parameters. The quantitative parameters 

are real numbers that lies in the range [-1, 1]. For the qualitative parameters, the nearest 
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integer part of the real numbers has been considered. The ranges of the qualitative 

parameters (tool material) are considered in the manner if the values lie in the range [-1 to -

0.3], it is treated as -1 or brass tool, [-0.29 to+0.3] as 0 or copper tool and [+0.31 to+1] as 1 

or graphite tool. 

Ten optimization problems are formed considering two responses as objectives and 

three as constraints. The empirical relation between input parameters and responses 

obtained in equations 27-30 are used as functional relations. MOPSO algorithm discussed 

in section 3.2 is coded MATLAB 13 for solving minimization problems. 

Problem 1: 

Maximize MRR 

Minimize EWR 

Subject to 

Surface roughness    6.8 

Radial overcut   0.03 

White layer thickness  15.81 

where 6.8 , 0.03  and 15.81 are the minimum values of surface roughness, radial over cut  

and  white layer thickness obtained from the experimental table 3.5 respectively. 

Problem 2: 

Maximize MRR 

Minimize surface roughness 

Subject to 

EWR     7.34 

Radial overcut   0.03 

White layer thinness 15.81 

where 7.34 , 0.03 and 15.81 are the minimum values of EWR and radial overcut and white 

layer thickness  obtained from the experimental table 3.5 respectively. 

Problem 3: 

Maximize MRR 

Minimize radial overcut 

Subject to 

EWR     7.34 

Surface roughness   6.8 

White layer thinness 15.81 
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where 7.34, 6.8  and 15.81 are the minimum values of EWR, surface roughness and white 

layer thickness  obtained from the experimental table 3.5 respectively. 

Problem 4 

Maximize MRR 

Minimize white layer thickness 

Subject to 

EWR     7.34 

Surface roughness   6.8 

Radial overcut   0.03 

Where 7.34, 6.8 and 0.03 are the minimum values of minimum values of EWR, surface 

roughness and radial over cut obtained from the experimental table 3.5 respectively 

Problem 5: 

Minimize EWR 

Minimize Surface roughness 

Subject to 

MRR  48.9 

Radial overcut   0.03 

White layer thinness 15.81 

where 48.9,0.03 and 15.81 are themaximum value of MRR and  minimum values radial 

overcut  and white layer thickness obtained from the experimental table 3.5 respectively. 

Problem 6: 

Minimize EWR 

Minimize Radial overcut 

Subject to 

MRR   48.9 

Surface roughness  6.8 

White layer thinness 15.81 

where 48.9, 6.8 and 15.81  are the  maximum value of MRR and minimum values of surface 

roughness and white layer thickness  obtained from the experimental Table 3.5 respectively. 

Problem 7: 

Minimize EWR 

Minimize white layer thickness 

Subject to 
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MRR   48.9 

Surface roughness  6.8 

Radial overcut   0.03 

where, 48.9, 6.8 and 0.03  are the  maximum value of MRR and minimum values of surface 

roughness and radial over cut  obtained from the experimental Table 3.5 respectively. 

Problem 8: 

Minimize Surface roughness 

Minimize Radial overcut 

Subject to 

MRR   48.9 

EWR  7.34 

White layer thinness 15.81 

where 48.9, 7.34 and 15.81  are the  maximum value of MRR and minimum values of EWR 

and white layer thickness  obtained from the experimental Table 3.5 respectively. 

Problem 9: 

Minimize Surface roughness 

Minimize white layer thickness 

Subject to 

MRR   48.9 

EWR  7.34 

Radial overcut   0.03 

where 48.9, 7.34 and 0.03  are the  maximum value of MRR and minimum values of EWR 

and radial over cut  obtained from the experimental Table 3.5 respectively. 

Problem 10: 

Minimize radial over cut 

Minimize white layer thickness 

MRR   48.9 

EWR  7.34 

Surface roughness  6.8 

where 48.9, 7.34 and 6.8  are the  maximum value of MRR and minimum values of EWR 

and surface roughness  obtained from the experimental Table 3.5 respectively 
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It is to be noted equivalent minimization function is used in the MATLAB program wherever 

an objective is maximized. 

The optimization model was run on in a Pentium IV desktop. Simulation study is carried 

out to demonstrate the potentiality of MOPSO algorithm. The initial population chosen for 

the algorithms is 80. The parameters employed for MOPSO are as follows: the size of 

archive is 100, the inertia weight is 0.4 and both the cognitive and social parameters (c1 and 

c2) are taken as 2. This led to the development of ten sets Pareto-fronts viz. MRR and EWR, 

MRR and surface roughness, MRR and radial overcut, MRR and white layer thickness, 

EWR and surface roughness, EWR and radial overcut, EWR and white layer thickness, 

surface roughness and radial overcut, surface roughness and white layer thickness, radial 

over cut and white layer thickness generating optimal solution for the responses. Figure 3.20 

shows the Pareto-front for MRR and EWR. A Sample set of the optimal solution for MRR 

and EWR has been given in Table 3.11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.20 Pareto front objectives for MRR and EWR 
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Table 3.11Pareto optimal solution for MRR and EWR with corresponding variable setting 

Run 
order 

A B C D E 
F (tool) 

MRR 
(mm

3
/min) 

EWR % 
(Volt) (Amp) (µs) (%) (bar) 

1 70.07 7.00 100.00 90.00 0.40 Graphite 62.80 26.30 

2 70.19 7.00 100.00 90.00 0.40 Graphite 62.71 26.27 

3 70.29 7.00 100.00 90.00 0.40 Graphite 62.63 26.24 

4 70.50 7.00 100.00 90.00 0.40 Graphite 62.46 26.19 

5 70.61 7.00 100.00 90.00 0.40 Graphite 62.37 26.16 

6 70.29 7.00 105.36 90.00 0.40 Graphite 62.16 26.03 

7 70.61 7.00 103.83 90.00 0.40 Graphite 62.03 26.01 

8 71.15 7.00 100.00 90.00 0.40 Graphite 61.94 25.99 

9 71.15 7.00 100.49 90.00 0.40 Graphite 61.90 25.98 

10 71.36 7.00 100.00 90.00 0.40 Graphite 61.78 25.93 

11 71.54 7.00 100.00 90.00 0.40 Graphite 61.64 25.87 

12 71.59 7.00 100.00 90.00 0.40 Graphite 61.61 25.85 

13 70.19 7.00 113.07 90.00 0.40 Graphite 61.59 25.68 

14 70.29 7.00 112.79 90.00 0.40 Graphite 61.53 25.68 

15 70.07 7.00 117.00 90.00 0.40 Graphite 61.37 25.50 

16 71.36 7.00 112.44 90.00 0.40 Graphite 60.71 25.44 

17 71.36 7.00 113.66 90.00 0.40 Graphite 60.61 25.38 

18 72.95 7.00 100.00 90.00 0.40 Graphite 60.60 25.31 

19 72.95 7.00 104.55 90.00 0.40 Graphite 60.20 25.19 

20 71.65 7.00 116.35 90.00 0.40 Graphite 60.17 25.18 

21 73.96 7.00 100.00 90.00 0.40 Graphite 59.90 24.84 

22 71.00 7.00 126.24 90.00 0.40 Graphite 59.90 24.79 

23 74.26 7.00 100.00 90.00 0.40 Graphite 59.70 24.68 

24 74.37 7.00 100.00 90.00 0.40 Graphite 59.63 24.62 

25 74.53 7.00 100.00 90.00 0.40 Graphite 59.53 24.54 

26 74.53 7.00 103.05 90.00 0.40 Graphite 59.26 24.48 

27 71.36 7.00 132.01 90.00 0.40 Graphite 59.21 24.37 

28 75.48 7.00 100.00 90.00 0.40 Graphite 58.92 23.99 

29 76.00 7.00 100.00 90.00 0.40 Graphite 58.61 23.67 

30 76.01 7.00 100.00 90.00 0.40 Graphite 58.60 23.66 

31 76.29 7.00 100.00 90.00 0.40 Graphite 58.44 23.48 

32 76.51 7.00 100.00 90.00 0.40 Graphite 58.32 23.34 

33 76.90 7.00 100.00 90.00 0.40 Graphite 58.09 23.07 

34 77.01 7.00 100.00 90.00 0.40 Graphite 58.03 22.99 

35 77.02 7.00 100.00 90.00 0.40 Graphite 58.03 22.98 

36 77.68 7.00 100.00 90.00 0.40 Graphite 57.67 22.51 

37 77.68 7.00 100.00 90.00 0.40 Graphite 57.67 22.50 

38 70.19 7.00 175.55 90.00 0.40 Graphite 57.55 20.56 
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39 70.50 7.00 192.82 90.00 0.40 Graphite 56.56 18.51 

40 82.31 7.00 100.00 90.00 0.40 Graphite 55.64 18.33 

41 83.25 7.00 100.00 90.00 0.40 Graphite 55.33 17.30 

42 83.61 7.00 100.00 90.00 0.40 Graphite 55.22 16.90 

43 83.83 7.00 100.00 90.00 0.40 Graphite 55.15 16.65 

44 85.33 7.00 100.00 90.00 0.40 Graphite 54.76 14.85 

45 85.42 7.00 100.00 90.00 0.40 Graphite 54.74 14.73 

46 85.86 7.00 100.00 90.00 0.40 Graphite 54.64 14.17 

47 86.05 7.00 100.00 90.00 0.40 Graphite 54.60 13.92 

48 86.10 7.00 100.00 90.00 0.40 Graphite 54.59 13.86 

49 86.76 7.00 100.00 90.00 0.40 Graphite 54.46 12.98 

50 87.56 7.00 100.00 90.00 0.40 Graphite 54.33 11.89 

51 87.56 7.00 100.00 90.00 0.40 Graphite 54.33 11.88 

52 87.96 7.00 100.00 90.00 0.40 Graphite 54.28 11.32 

53 88.35 7.00 100.00 90.00 0.40 Graphite 54.23 10.76 

54 88.77 7.00 100.00 90.00 0.40 Graphite 54.18 10.15 

55 89.27 7.00 100.00 90.00 0.40 Graphite 54.14 9.39 

56 89.54 7.00 100.00 90.00 0.40 Graphite 54.12 8.99 

57 70.07 7.00 199.06 90.00 0.40 Graphite 56.69 17.61 

58 70.07 7.00 199.96 90.00 0.40 Graphite 56.66 17.48 

59 70.07 7.00 200.00 90.00 0.40 Graphite 56.65 17.48 

 

However, application of MOPSO results in large number of non-dominated solutions for 

optimization of combination of responses viz. MRR and EWR, MRR and surface roughness, 

MRR and radial overcut, MRR and white layer thickness, EWR and surface roughness, 

EWR and radial overcut, EWR and white layer thickness, surface roughness and radial 

overcut, surface roughness and white layer thickness, radial over cut and white layer 

thickness. The Pareto-optimal solutions obtained through MOPSO have been ranked by the 

composite scores obtained through maximum deviation theory (MDT) to choose the best 

solution. The decision matrix is normalized using equation 3.11 and 3.12 appropriately. The 

objective weights are determined for the normalized values of objectives by applying 

maximum deviation method using equations 3.13-3.20. The weighted objective values are 

estimated by multiplying the normalized objective values and the objective weights. The best 

solution is selected depending upon the composite scores obtained by addition of the all the 

weighted objective function values for each alternative. The objectives with highest 

composite score are chosen as the best solution.Table 3.12 shows the best ranked solution 

forallthecombinationofmultipleresponses. 
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Table 3.12 Best ranked solution for multiple objectives 

Multiple objectives A B C D E F Objective Normalised Weighted Compsite 
 (V) (A) (µs) (%) (Bar) Tool   objectives Normalised Score 

MRR and EWR 89.54 7 100 90 0.4 Graphite 54.11 8.98 0.8306 0.693 0.3246 0.4221 0.7467 

MRR and 71.54 7 100 80 0.2 Brass 32.32 10.01 0.3835 1 0.1572 0.5898 0.7471 

Surface roughness              

MRR and 72.95 6.97 100 90 0.2 Brass 32.09 0.09 0.4363 0.7709 0.2118 0.3966 0.6084 

Radial overcut              

MRR and White layer 70.03 7 100 90 0.2 Graphite 64.76 42.20 1 0 0.6565 0.6565 0.6565 

thickness              

EWR and 71.74 3 100 80 0.29 Brass 2.10 6.76 1 0.5922 0.3519 0.3838 0.7357 

Surface roughness              

EWR and 75.7 3 300 80 0.25 Copper 3.07 0.18 0.9816 0.9741 0.594 0.3846 0.9786 

Radial overcut              

EWR and white 70 3 100 90 0.2 Brass 43.81 4.23 0.1029 1 0.0503 0.5112 0.5615 

Layer thickness              

Surface roughness 73.97 3 100 80 0.25 Brass 4.32 0.012 0.3817 0.8103 0.1787 0.4309 0.6096 

and Radial overcut              

Surface roughness 74.26 3 300 80 0.4 Brass 4.78 7.01 1 0 0.3352 0.4212 0.7564 

and white layer              

thickness              

Radial over cut and 79.13 3 177.5 80 0.26 Brass 0.018 3.720 0.8131 0.58 0.2636 0.4436 0.7072 

white layer thickness             
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3.7 Conclusions 

This chapter proposes a hybrid, integrated approach of response surface methodology 

(RSM) coupled with multi objective particle swarm optimization (MOPSO) for the 

optimisation of the machining parameters of EDM process on machinability of Inconel 718 

alloy. In the second phase, maximum deviation theory (MDT) of objective weights 

determination is used to estimate the weights for the attributes. The composite score for all 

the non-dominated solutions is obtained through summing the weighted objective values. 

The best solution is selected from all the non-dominated solution considering the highest 

composite score to avoid subjectiveness and impreciseness in the decision making for the 

tool engineers. This research work offers an effective guideline to select optimum parameter 

settings for achieving the desired MRR, EWR, surface roughness, radial overcut and white 

layer thickness during EDM die sinking of Inconel 718 alloy to the experimenter and 

practitioners. Some important findings from the experimental investigation are discussed in 

the paragraphs below. 

It is observed that tool material, discharge current and pulse-on-time are found to be the 

important process parameters for all the performance measures while machining Inconel 

718. From analysis of variance of MRR, it is observed that tool material is the most 

influential parameter with highest percentage of contribution of 49.74% followed by 

discharge current, pulse-on-time, open circuit voltage and duty factor with percentage 

contribution of 24.76%, 5.48%, 5.40% and 4.16% respectively. Similarly, from analysis of 

variance of EWR, it is observed that tool material is found to be the most influential 

parameter with highest percentage of contribution of 61.84% followed by discharge current, 

pulse-on-time, open circuit voltage and duty factor with percentage contribution of 2.44%, 

2.37%, 1.76% and 1.56% respectively. Similarly, from analysis of variance of surface 

roughness, it is observed that tool material is found to be the most influential parameter with 

highest percentage of contribution of 67.13% followed by discharge current, pulse-on-time 

and open circuit voltage with percentage contribution of 16.88%, 3.78% and 0.16% 

respectively. From analysis of variance of radial overcut, it is observed that tool material is 

found to be the most influential parameter with highest percentage of contribution of 

85.56%, followed by discharge current, pulse-on-time and duty factor with percentage 

contribution of 8%, 2.56% and 0.07% respectively. From, analysis of variance of white layer 

thickness, it is observed that tool material is found to be the most influential parameter with 

highest percentage of contribution of 96.94% followed by discharge current, pulse-on-time 
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and duty factor with percentage contribution of 1.53%, 0.14% and 0.09% respectively. 

Material removal is comparatively high while machining with graphite tool followed by copper 

and brass. Due to high value of spark energy between electrodes, graphite and copper 

electrodes exhibit high MRR in comparison to brass electrode. EWR is comparatively less 

with the use of graphite electrode followed by copper electrode because low TWR and high 

MRR is observed. Brass electrode exhibits the poorest performance with regard to EWR due 

to high TWR. Brass tool at small values of discharge current produces fine surface quality 

followed by copper and graphite tools due to small spark energy between electrodes 

causing erosion of smaller size particle from machined surface. It is observed that MRR can 

be increased up to 449.21% whereas EWR can be reduced up to 92.08% while machining 

with graphite electrode when of experiment numbers 18 (brass tool) and 22 (graphite tool) 

shown in Table 3.5 were compared. It is also observed that surface roughness, radial 

overcut and white layer thickness can reduced up to 52.77%, 77.65% and 63.85% 

respectively while machining with brass electrode. Graphite electrode exhibits the poor 

performance in regard to the radial overcut followed by copper due to high MRR. Brass 

electrode at small values of discharge current produces precise and accurate EDMed 

components owing to small MRR suited for finishing operation. Owing to higher MRR, 

graphite electrode produces thicker white layer thickness on the machined surface. Brass 

electrode at small values of spark energy produces small value of white layer on the 

machined surface. Copper electrode produces white layer value those between graphite and 

brass. Hence, it can be concluded that graphite tool is more favorable than the copper and 

brass electrodes for machining of Inconel 718 work material if high material removal and low 

tool wear is desired, particularly in roughing operation. 
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4.1 Introduction  

 The major performance measure of the EDM process are evaluated in terms of material 

removal rate (MRR), tool wear rate (TWR), surface quality and dimensional accuracy of the 

machined surface (Ho and Newman 2003;Mahapatra and Patnaik 2007;Kumar et al.2009). 

For  precise and cost  effective  machining it  is  essential  to  identify  and  estimate the 

changes  those are taking place within  electrode material. The electrode material life plays 

an important role in increasing productivity and, subsequently, is an important economic 

aspect of the process. However, high wear rate of electrode material leads to interruption 

during machining which in turn increases machining time and declines productivity of the 

process by increasing the machining cost. Although copper and graphite electrodes have 

been able to solve this issue to some extend yet their application severely limited to 

dimensional accuracy and surface finish of the machined surface (Lee and Li 2001; Kuppan 

et al. 2011; Kumar et al. 2009; Kumar et al. 2012;Mohanty et al.2014).In previous chapter it 

observed that brass electrode produces precise and accurate EDMed components while 

machining Inconel 718 super alloy. But the major concern while machining with brass 

electrode is the high erosion of tool and lower material removal due to poor thermal and 

mechanical properties. Hence, in this chapter an attempt has been made to improve the 

wearing resistance of brass electrode to enhance the machining efficiency of the process by 

improving the thermal and mechanical properties of the materialthrough deep cryogenic 

treatment of electrodes subjected to different soaking duration. 

 It is reported that brass exhibits low material removal rate and high wear ratio as EDM 

electrode due to poor thermal conductivity and low melting point temperature. Therefore, 

brass electrode is used in finishing machining condition as compared to copper and graphite 

electrodes (Mohanty et al. 2014; Lee and Li 2001; Kuppan et al. 2011). However, it is 

reported that brass can be cryogenically treated to improve wear resistance and material 

removal rate.Unlike coatings, cryogenic processing is an economical and everlasting 

treatment affecting the entire section of the material. The treatment is an supplementary 

process over the traditional heat treatment process in which the materials are cooled down 

to the particular cryogenic temperature at a controlled rate, retained at the stage for a longer 

duration and brought back to room temperature and tempered to ease the brittleness of the 

material. Cryogenic treatment brings some remarkable improvements to the mechanical 

properties like increasing the wear resistance, tensile strength, hardness and refining the 

microstructure of the materials (Jaswin and Lal 2010). In recent times, cryo-processing has 

been successfully applied in non-convention machining processes resulting in fruitful 
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application in EDM and wire EDM through treatment of electrodes and wires which are used 

for machining of toughened and high strength to weight ratio materials (Kumar et al. 2012; 

Jafferson and Hariharan 2013;Kapoor et al. 2012; Gill and Singh 2010). Some of the 

important parameters involved in cryogenic treatment of materials are cooling rate, soaking 

temperature, soaking duration and heating rate (Gill et al. 2010). Many studies have 

reported that soaking duration is an influential parameter than soaking temperature (Jaswin 

and Lal2010; Xu et al. 2007;Lal et al. 2001;Collins and Dormer 1997). However, studies on 

effect of cryogenic treatment of brass electrodes in electrical discharge in machining of 

Inconel 718 are limited in literature. 

 In view of this, present chapter investigates the effect of deep cryo-treated (-1960 C) 

brass electrodes subjected to different soaking durations on the machinability of Inconel 718 

work material. The machining performance of the process are evaluated in terms of material 

removal rate (MRR), electrode wear ratio (EWR), surface roughness, radial overcut and 

white layer thickness which are function of process variables viz. open circuit voltage, 

discharge current, pulse-on-time, duty factor, flushing pressure and  cryogenic treatment 

soaking duration of electrodes. The experimental design is planned as per Box-Behnken 

design of response surface methodology (RSM). Regression analysis is conducted to relate 

the process variable with machining performance characteristics. An evolutionary multi-

objective particle swarm optimization (MOPSO) algorithm has been applied for simultaneous 

optimization of performance characteristics. To  deal with  subjectiveness  and  

impreciseness  in  the  decision  making, the  non-dominated  solutions  obtained  through  

MOPSO  have  been  ranked  further by applying maximum deviation theory(MDT). 

 

4.2 Proposed MOPSO algorithm 

 The details of MOPSO algorithm have been already discussed in previous chapter 

section 3.2. 

 

4.3 Solution ranking 

 The details of the Maximum deviation theory have been already discussed in previous 

chapter section 3.3. 
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4.4 Experimental strategy and materials 

 Experiments are carried out in a die sinking CNC EDM machine (Electronica Elektra S50 

CNC) is shown in Figure 4.1. Positive polarity for electrode and side flushing is used to 

conduct the experiments. The specification of the machine is given in Table 4.1. The details 

of the work material and its properties have been already discussed in the previous chapter 

in section 3.4. The electrode material is the most critical part as it directly affects the 

machining cost of the process. Hence, commercially available brass has been chosen as 

the electrode material because of its lower electrical and thermal conductivity with an 

objective to improve its mechanical properties through deep cryogenic treatment and make 

the material suitable for industrial application. Three brass rods are brought in form of 20 

mm diameter and 70 mm length. For suitable machining; the machining diameter is reduced 

to 13.5mm. Out of these three tool materials, one of the tool material is left untreated and 

other two tools are deep cryogenically treated varying soaking duration of 24-hr and 36-hr. 

The details of the experimental strategy have been discussed in the previous chapter 3.5. 

For suitable machining the parameters are coded using equation 3.22. Table 4.2 shows the 

levels of the process parameters. 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 4.1 CNC EDM machine (Electronica Elektra S50 CNC) 
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Table 4.1 Specification of the CNC die sinkerEDM machine Electronica ElektraS50 CNC 

Mechanism of process 
Controlled erosion (melting and evaporation) through a 
series of electric spark 

Spark gap 0.010- 0.500 mm 

Spark frequency 200 – 500 kHz 

Working  Current  1-50A 

Working  voltage across the gap 30- 200 V 

Maximum Flushing Pressure 0.5 Pa 

Metal removal rate (max.) 500 mm
3
/min 

Specific power consumption 2-10 W/mm
3
/min 

Dielectric fluid Kerosene, liquid paraffin. 

Dielectric tank Capacity  

Travel limit   X-axis                                   300mm 
                     Y-axis                                  300mm 
                     Z-axis                                  250mm 

 

 

Table 4.2 Process parameters and their levels 

Process Parameters Symbols 
                     Levels 

-1 0 1 

Open circuit voltage  in  V A 70 80 90 

Discharge current  in A B 3 5 7 

Pulse-on-time  in µs C 100 200 300 

Duty factor in % D 80 85 90 

Flushing pressure  in Bar E 0.2 0.3 0.4 

Cryogenic treatment soaking duration in Hrs. F 0 24 36 
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4.4.1 Deep cryogenic treatment  

 To avoid thermal shock to the material, the cryogenic treatment is performed under dry 

condition where the material is not directly subjected to the liquid nitrogen. The cryogenic 

treatment for the brass electrodes is accomplished in cryogenic freezer Kryo 560-16 shown 

in Figure 4.2. The freezer consists of a treatment chamber coupled with a liquid nitrogen 

tank through an insulated tubular pipe. The liquid nitrogen flowing into the freezer is 

controlled by a solenoid valve. The thermocouple inside the chamber senses the 

temperature and provides information to the programmable digital temperature controller to 

operate the solenoid valve. Liquid nitrogen passes through the tubular pipe and enters into 

to freezer in gaseous state. The programmable digital temperature controller controls 

cryogenic treatment parameters viz. lowering temperature, soaking duration, cooling rate 

and heating rate. First, one tool material is placed inside the freezer and the temperature is 

slowly reduced to the temperature of liquid nitrogen -1960 C by computerized programmable 

controller at the rate of 10C/min. At this temperature, the material is held constant for 24-hrs 

before the material is slowly brought to room temperature at rate of 10C/min. After reaching 

the room temperature, the material is subjected to two stages of tempering cycles for 

relievingthe stresses induced during cryogenic treatment. Tampering operation is executed 

by increasing the temperature up to +1960 C at the rate of 10C/min and then slowly bringing 

back to the room temperature. Similar procedure is followed for the third tool material except 

that the soaking duration is kept constant for 36-hrs instead of 24-hrs. Figure 4.3 shows the 

graphical representation of deep cryogenic treatment and two stage tempering process for 

both the cycle followed in the study. UnithermTM 2022 is used for measuring the thermal 

conductivity of the tool material before and after cryogenic treatment. The micro hardness of 

the material is measured by Vaiseshika Micro Hardness tester. The mechanical properties of 

the tool material for the untreated and treated samples (with soaking durations of 24-hrs and 

36-hrs) have been furnished in Table 4.3. 
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Figure 4.2Cryogenic freezer PLANER Kryo 560-16 

Table 4.3 Mechanical property of brass tool before and after cryogenic treatment 

Composition Property Untreated 
Treated with 

soaking duration 
24-hrs. 

Treated with 
soaking duration 

36-hrs. 

Cu 62% Zn 38% Thermal Conductivity (W/m.K) 108 121 129 

 Micro Hardness (VHN) 202 241 265 
 Average grain size (nm) 143.72 132.38 111.64 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3Graphical representations of deep cryogenic treatment and two stage tempering 

process for both the cycle 

0 10 20 30 40 50 60 70 80

-200

-100

0

100

200

T
e

m
p

e
ra

tu
re

 i
n

 0
 C

Time in hrs.

 Cryogenic Treatment 24-hrs and Tempraring cycle 

 Cryogenic Treatment 36-hrs and Tempraring cycle



78 
 

4.4.2 Microstructural analysis and X-ray Diffraction analysis 

The micro structural investigations for the brass samples were carried out using 

Olympus (model no-BX-5175E21P, Japan) optical microscope at 400X magnification.The 

optical micrograph images for the untreated and treated samples at identical magnifications 

have been shown in Figure 4.4 (a-b-c) below. From the optical images, it can be clearly 

visualized that the grain boundaries are interconnected and continuous within themselves in 

untreated samples whereas treated samples with soaking duration 24-hrs exhibit separate 

and distinct grain boundaries and the micro structure is densed with average grain size 

smaller than untreated samples. However, treated samples with soaking duration 36-hrs 

have more refined and smaller grains and microstructure is more densed due to longer 

soaking duration of cryogenic treatment when compared to other two samples. 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Untreated brass 
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(b) Cryogenic-treated brass with soaking duration 24-hrs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(C)Cryogenic-treated brass with soaking duration 36-hrs 

Figure 4.4(a, b and c) Microstructures of three electrode samples used in the study 



80 
 

These optical microscope images are further supported by the X-RD analysis reports. 

The X-RD analysis for the treated and untreated brass samples are carried out on an X-ray 

diffractometer (model no-X-Pert PRO, PANalytical, PW 3040/00, Netherland). The average 

grain size is calculated using the Debye Scherrer’s relation 

GS =
0.89α

βcos θ
                                                                                                                           (4.1) 

where α is the wavelength of  X-ray used, β-is the line broadening at half the maximum 

intensity (FWHM) in radians in the 2θ scale, θ is the Bragg angle, and GS is the grain size in 

nanometre. The calculated values of the average grain size are provided in the Table 4.3. 

The X-RD analysis report reveals that due to deep cryogenic treatment the average 

grain size is reduced up to 7.78% and 25.43% for soaking duration of 24-hrs and 36-hrs 

respectively.  

 

4.4.3 Calculation of performance measures 

The EDM process is performed on Inconel 718 alloy rectangular plates having 

dimension of 5×105×110 mm3 as shown in Figure 4.5. Each experiment is conducted for 20 

minutes and the time is noted with a stopwatch. After each experimental run, the work piece 

and the electrodes are removed from the machine and are cleaned and dried out for 

weighing. A precision electronic balance (accuracy up to 0.001gm) is used for measuring 

the weights of the work and electrode materials before and after machining.The details of 

the calculation of the performance measures have been already discussed in the previous 

chapter in section 3.5.1.Table 4.4 shows the Box-Behnken experimental design along with 

obtained performance measures. 
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Figure 4.5 Work materials after machining with three brass electrodes 

 

Table 4.4 Box-behnken experimental design along with obtained performance measures 

Run 
order 

A B C D E F 
MRR 

mm
3
/min 

EWR 
% 

Surface 
Roughness 

µm 

Over 
cut 
mm 

White 
Layer 

Thickness 
µm 

1 -1 -1 0 -1 0 0 2.50 92.12 8.40 0.15 24.30 

2 1 -1 0 -1 0 0 2.00 97.03 8.43 0.14 24.40 

3 -1 1 0 -1 0 0 6.20 119.10 9.50 0.25 28.70 

4 1 1 0 -1 0 0 5.10 123.20 9.70 0.24 28.60 

5 -1 -1 0 1 0 0 3.89 99.30 8.60 0.19 24.80 

6 1 -1 0 1 0 0 2.55 105.21 8.67 0.20 24.90 

7 -1 1 0 1 0 0 7.00 125.15 9.75 0.28 28.60 

8 1 1 0 1 0 0 5.80 129.40 10.20 0.27 28.10 

9 0 -1 -1 0 -1 0 2.40 89.31 7.90 0.14 24.70 

10 0 1 -1 0 -1 0 5.30 118.26 9.60 0.26 28.10 

11 0 -1 1 0 -1 0 1.90 105.19 9.50 0.24 26.00 

12 0 1 1 0 -1 0 3.70 130.09 11.30 0.34 29.00 

13 0 -1 -1 0 1 0 2.20 91.43 8.20 0.15 24.80 

14 0 1 -1 0 1 0 5.40 121.37 9.75 0.25 28.20 

15 0 -1 1 0 1 0 2.20 110.29 9.30 0.25 26.20 

16 0 1 1 0 1 0 4.10 130.19 10.20 0.35 28.90 

17 0 0 -1 -1 0 -1 3.60 132.18 10.30 0.39 38.38 
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18 0 0 1 -1 0 -1 2.90 136.17 11.90 0.47 39.38 

19 0 0 -1 1 0 -1 4.20 142.36 10.60 0.45 39.10 

20 0 0 1 1 0 -1 3.50 145.40 12.50 0.52 39.48 

21 0 0 -1 -1 0 1 3.65 73.12 7.70 0.07 15.25 

22 0 0 1 -1 0 1 2.92 85.33 8.90 0.11 16.45 

23 0 0 -1 1 0 1 4.30 79.26 7.90 0.09 16.65 

24 0 0 1 1 0 1 3.55 86.41 8.90 0.15 17.95 

25 -1 0 0 -1 -1 0 5.30 111.10 9.10 0.21 26.40 

26 1 0 0 -1 -1 0 4.40 115.23 9.20 0.19 26.50 

27 -1 0 0 1 -1 0 6.10 125.12 9.40 0.25 26.80 

28 1 0 0 1 -1 0 5.20 131.05 9.35 0.25 26.90 

29 -1 0 0 -1 1 0 5.40 115.44 9.00 0.22 26.55 

30 1 0 0 -1 1 0 4.40 121.37 8.95 0.19 26.60 

31 -1 0 0 1 1 0 6.05 111.17 9.15 0.24 26.95 

32 1 0 0 1 1 0 5.20 128.08 9.23 0.22 27.00 

33 0 -1 0 0 -1 -1 2.90 127.06 8.90 0.39 37.38 

34 0 1 0 0 -1 -1 5.40 152.42 12.20 0.54 41.48 

35 0 -1 0 0 1 -1 2.99 130.19 9.30 0.36 37.48 

36 0 1 0 0 1 -1 5.80 150.11 12.35 0.56 41.18 

37 0 -1 0 0 -1 1 2.89 69.13 6.30 0.07 15.22 

38 0 1 0 0 -1 1 5.91 79.23 8.50 0.14 20.45 

39 0 -1 0 0 1 1 3.00 67.32 6.35 0.04 15.57 

40 0 1 0 0 1 1 5.99 82.06 8.70 0.14 20.65 

41 -1 0 -1 0 0 -1 5.40 135.37 11.10 0.39 39.28 

42 1 0 -1 0 0 -1 4.60 141.39 10.90 0.34 39.33 

43 -1 0 1 0 0 -1 3.99 145.42 12.70 0.37 40.28 

44 1 0 1 0 0 -1 3.20 148.45 12.60 0.36 40.38 

45 -1 0 -1 0 0 1 4.80 71.16 7.90 0.09 16.25 

46 1 0 -1 0 0 1 4.20 73.13 7.70 0.06 16.55 

47 -1 0 1 0 0 1 3.95 82.14 8.90 0.14 17.65 

48 1 0 1 0 0 1 3.30 87.30 8.60 0.13 17.75 

49 0 0 0 0 0 0 4.99 125.03 8.75 0.25 27.70 

50 0 0 0 0 0 0 4.50 121.42 8.35 0.20 27.50 

51 0 0 0 0 0 0 5.50 127.43 9.00 0.26 28.00 

52 0 0 0 0 0 0 4.60 123.23 8.40 0.20 27.45 

53 0 0 0 0 0 0 5.30 126.50 8.90 0.25 28.05 

54 0 0 0 0 0 0 4.70 122.70 8.50 0.21 27.65 
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4.5 Results and discussions 

 The experiments have been conducted as per box-behnken design to analyze the effect 

of important process parameters on the performance measures viz. MRR, EWR, surface 

roughness, radial overcut and white layer thickness. Analysis of variance (ANOVA) is 

conducted for the performance measures and significance of each parameter is observed at 

the significance level of 0.05. Table 4.5 shows the ANOVA for MRR with percentage of 

contribution of each parameter and their interactions. It shows that parameters such as 

discharge current, pulse-on-time, open circuit voltage, duty factor, interaction terms such as 

discharge current×pulse-on-time and square terms  of open circuit voltage, discharge 

current, pulse-on-time, duty factor, flushing pressure  have significant effect on MRR. 

Soaking duration is found to be an insignificant parameter for MRR. The Table also 

indicates that discharge current happens to be the most influential parameter for MRR with a 

percentage contribution of 58.48% followed by pulse-on-time, open circuit voltage and duty 

factor with percentage contribution of 5.85%, 5.62% and 4% respectively. Flushing pressure 

is found to an insignificant process parameter for MRR.  The coefficient of determination 

(R2) and adjusted (R2) values are found to be 97.28% and 95.49% respectively. It is to be 

noted that the lack of fit is not significant for MRR. 
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Table 4.5 ANOVA for MRR 

 
Sum of Degree Mean F p-value 

 

 

Source Squares 
of 

freedom Square Value Prob> F 
 

% 
Contribution 

Model 81.38 21 3.98 54.4 < 0.0001 significant  

A-Open circuit voltage 4.71 1 4.71 64.36 < 0.0001 
 

5.63 

B-Discharge Current 48.96 1 48.96 669.31 < 0.0001 
 

58.48 

C-Pulse-on-time 4.9 1 4.9 66.93 < 0.0001 
 

5.85 

D-Duty Factor 3.35 1 3.35 45.83 < 0.0001 
 

4.00 

E-Flushing Pressure 0.074 1 0.074 1.01 0.323 
 

0.09 

F-Soaking Duration 1.67E-05 1 1.67E-05 2.28E-04 0.9881 
 

0.00 

A×B 0.026 1 0.026 0.36 0.5519 
 

0.03 

A×D 0.039 1 0.039 0.53 0.4706 
 

0.05 

A×F 0.014 1 0.014 0.2 0.6597 
 

0.02 

B×C 0.72 1 0.72 9.84 0.0036 
 

0.86 

B×D 0.024 1 0.024 0.33 0.5692 
 

0.03 

B×E 0.029 1 0.029 0.4 0.5341 
 

0.03 

B×F 0.061 1 0.061 0.84 0.367 
 

0.07 

C×E 0.08 1 0.08 1.09 0.3035 
 

0.10 

C×F 0.06 1 0.06 0.82 0.3718 
 

0.07 

A
2
 1.39 1 1.39 18.99 0.0001 

 

1.66 

B
2
 4.81 1 4.81 65.81 < 0.0001 

 

5.75 

C
2
 11.12 1 11.12 151.95 < 0.0001 

 

13.28 

D
2
 0.57 1 0.57 7.76 0.0089 

 

0.68 

E
2
 0.38 1 0.38 5.19 0.0296 

 

0.45 

F
2
 0.065 1 0.065 0.89 0.3524 

 

0.08 

Residual 2.34 32 0.073 
   

2.80 

Lack of Fit 1.53 27 0.057 0.35 0.9666 not significant  

Pure Error 0.81 5 0.16 
   

 

Cor Total 83.72 53 
    

 

  

Table 4.6 shows the ANOVA table for EWR with percentage of contribution of each 

parameter and their interactions. The table shows that soaking duration, discharge current, 

pulse-on-time, duty factor, open circuit voltage, interaction terms-discharge current×soaking 

duration, duty factor×flushing pressure and square terms of discharge current, pulse-on-

time, duty factor, soaking duration are important process parameters. The Table also shows 

that soaking duration is the most influential parameter for EWR with percentage contribution 

of 78.35% followed by discharge current, pulse-on-time, duty factor and open circuit voltage 

with percentage contribution of 10.66%, 2.13%, 1.04% and 0.64% respectively. Flushing 

pressure is found to be an insignificant parameter for EWR. The coefficient of determination 

(R2) and adjusted (R2) values are found to be 98.9% and 98.4% respectively. It is to be 

noted that the lack of fit is not significant for EWR. 
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Table 4.6 ANOVA for EWR 

  Sum of 
Degree 

of  Mean F p-value   
% 

Contribution 
Source Squares freedom Square Value Prob> F 

 
 

Model 29660.1 19 1561.06 162.8 < 0.0001 significant  

A-Open circuit voltage 194.09 1 194.09 20.24 < 0.0001 
 

0.65 

B-Discharge Current 3197.04 1 3197.04 333.42 < 0.0001 
 

10.66 

C-Pulse-on-time 641.08 1 641.08 66.86 < 0.0001 
 

2.14 

D-Duty Factor 311.9 1 311.9 32.53 < 0.0001 
 

1.04 

E-Flushing Pressure 1.42 1 1.42 0.15 0.7031 
 

0.00 

F-Soaking Duration 23495.7  1 23495.7 2450.39 < 0.0001 
 

78.36 

A×D 12.13 1 12.13 1.26 0.2686 
 

0.04 

A×E 20.42 1 20.42 2.13 0.1537 
 

0.07 

B×C 24.82 1 24.82 2.59 0.1169 
 

0.08 

B×F 52.22 1 52.22 5.45 0.0257 
 

0.17 

C×D 4.52 1 4.52 0.47 0.4972 
 

0.02 

C×F 25.93 1 25.93 2.7 0.1093 
 

0.09 

D×E 93.84 1 93.84 9.79 0.0036 
 

0.31 

D×F 18.57 1 18.57 1.94 0.173 
 

0.06 

A
2
 38.68 1 38.68 4.03 0.0526 

 

0.13 

B
2
 850.93 1 850.93 88.74 < 0.0001 

 

2.84 

C
2
 129.52 1 129.52 13.51 0.0008 

 

0.43 

D
2
 62.28 1 62.28 6.5 0.0155 

 

0.21 

F
2
 730.06 1 730.06 76.14 < 0.0001 

 

2.43 

Residual 326.01 34 9.59 
   

0.65 

Lack of Fit 298.88 29 10.31 1.9 0.2457 
not 

significant 
 

Pure Error 27.13 5 5.43 
   

 

Cor Total 29986.1 53          

  

Table 4.7 shows the ANOVA table for surface with percentage of contribution of each 

parameter and their interactions. From the table, it is observed that soaking duration, 

discharge current, pulse-on-time, duty factor, interaction terms-pulse-on-time×soaking 

duration and square terms of open circuit voltage, pulse-on-time, soaking duration are 

important process parameters. The Table also shows that soaking duration is the most 

influential parameter for surface roughness with percentage contribution of 58.99% followed 

by discharge current, pulse-on-time and duty factor with percentage contribution of 18.60%, 

9.62% and 0.39% respectively. Open circuit voltage and flushing pressure are found to be 

insignificant process parameters for surface roughness. The coefficient of determination (R2) 

and adjusted (R2) values are found to be 96.1% and 94.1% respectively. It is to be noted 

that the lack of fit is not significant for surface roughness. 
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Table 4.7 ANOVA for Surface roughness 

  Sum of 
Degree 

of   Mean F p-value 
 

% 
Contribution 

Source Squares freedom Square Value Prob> F 
 

 

Model 103.592 18 5.87 53.33 < 0.0001 significant  

A-Open circuit voltage 3.75×10
-5

 1 3.75×10
-5

 3.41×10
-4

 0.9854 
 

0.00 
B-Discharge Current 19.98 1 19.98 181.65 < 0.0001 

 
18.60 

C-Pulse-on-time 10.34 1 10.34 93.95 < 0.0001 
 

9.62 
D-Duty Factor 0.42 1 0.42 3.81 0.0591 

 
0.39 

E-Flushing Pressure 0.025 1 0.025 0.22 0.6385 
 

0.02 
F- Soaking Duration 63.38 1 63.38 576.07 < 0.0001 

 
58.99 

A×B 0.038 1 0.038 0.34 0.5615 
 

0.04 
B×C 0.038 1 0.038 0.34 0.5615 

 
0.04 

B×E 0.083 1 0.083 0.75 0.392 
 

0.08 
B×F 0.41 1 0.41 3.68 0.0632 

 
0.38 

C×E 0.38 1 0.38 3.48 0.0705 
 

0.35 
C×F 0.46 1 0.46 4.14 0.0495 

 
0.43 

D×F 0.061 1 0.061 0.56 0.4606 
 

0.06 
A

2
 1.18 1 1.18 10.71 0.0024 

 
1.10 

C
2
 5.46 1 5.46 49.65 < 0.0001 

 
5.08 

D
2
 0.16 1 0.16 1.43 0.2394 

 
0.15 

E
2
 0.047 1 0.047 0.43 0.5162 

 
0.04 

F
2
 1.13 1 1.13 10.24 0.0029 

 
1.05 

Residual 3.85 35 0.11 
   

3.58 

Lack of Fit 3.48 30 0.12 1.57 0.3275 
not 

significant 
 

Pure Error 0.37 5 0.074 
   

 

Cor Total 107.442 53          

  

Table 4.8 shows the ANOVA table for radial overcut with percentage of contribution of 

each parameter and their interactions. ANOVA for Radial overcut shows that soaking 

duration, discharge current, pulse-on-time, duty factor, interaction terms-discharge 

current×soaking duration and square terms of open circuit voltage, soaking duration are 

important process parameters. The Table also shows that soaking duration is the most 

influential parameter for radial overcut with percentage contribution of 79.01% followed by 

discharge current, pulse-on-time and duty factor with percentage contribution of 8.88%, 

2.83% and1.18% respectively. Open circuit voltage and flushing pressure are found to 

exhibit insignificant effect for radial overcut. The coefficient of determination (R2) and 

adjusted (R2) values are found to be 97.5% and 96.6% respectively. It is to be noted that the 

lack of fit is not significant for radial overcut. 
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Table 4.8 ANOVA for radial overcut 

  Sum of 
 Degree 

of Mean F p-value   
% 

Contribution 
Source Squares freedom Square Value Prob> F    

Model 0.79 21 0.037 45.19 < 0.0001 significant  
A-Open circuit 

voltage 1.38×10
-3

 1 1.38×10
-3

 1.66 0.2062 
 

0.17 
B-Discharge 

Current 0.072 1 0.072 86.52 < 0.0001 
 

8.89 

C-Pulse-on-time 0.023 1 0.023 28.05 < 0.0001 
 

2.84 

D-Duty Factor 9.6×10
-3

 1 9.60×10
-3

 11.58 0.0018 
 

1.19 
E-Flushing 
Pressure 1.6×10

-4
 1 1.60×10

-4
 0.19 0.6632 

 

0.02 

F-Soaking Duration 0.64 1 0.64 770.82 < 0.0001 
 

79.01 

A×C 4.5×10
-4

 1 4.50×10
-4

 0.54 0.4666 
 

0.06 

A×D 1.56×10
-4

 1 1.56×10
-4

 0.19 0.6671 
 

0.02 

B×D 3×10
-4

 1 3.00×10
-4

 0.36 0.5516 
 

0.04 

B×E 2.48×10
-4

 1 2.48×10
-4

 0.3 0.5881 
 

0.03 

B×F 4.14×10
-3

 1 4.14×10
-3

 4.99 0.0325 
 

0.51 

C×D 5×10
-5

 1 5.00×10
-5

 0.06 0.8076 
 

0.01 

C×F 3.24×10
-4

 1 3.24×10
-4

 0.39 0.5363 
 

0.04 

D×E 4.35×10
-4

 1 4.35×10
-4

 0.52 0.474 
 

0.05 

D×F 3.13×10
-4

 1 3.13×10
-4

 0.38 0.5436 
 

0.04 

A
2
 0.01 1 0.01 12.19 0.0014 

 

1.23 

B
2
 2.82×10

-4
 1 2.82×10

-4
 0.34 0.5638 

 

0.03 

C
2
 1.50×10

-4
 1 1.50×10

-4
 0.18 0.6733 

 

0.02 

D
2
 1.99×10

-3
 1 1.99×10

-3
 2.4 0.1313 

 

0.25 

E
2
 1.67×10

-3
 1 1.67×10

-3
 2.01 0.1656 

 

0.21 

F
2
 0.014 1 0.014 16.48 0.0003 

 

1.73 

Residual 0.027 32 8.29×10
-4

 
   

        3.33 

Lack of Fit 0.023 27 8.47×10
-4

 1.15 0.4843 
not 

significant 
 

Pure Error 3.67×10
-3

 5 7.34×10
-4

 
   

 
Cor Total 0.81 53          

   

 Table 4.9 shows the ANOVA table for white layer thickness with percentage of 

contribution of each parameter and their interactions. It shows that parameters such as 

discharge current, pulse-on-time, duty factor, soaking duration, interaction terms such as 

discharge current×soaking duration and square terms of pulse-on-time, duty factor, and 

soaking duration have significant effect on white layer thickness. The Table also shows that 

soaking duration is the most influential parameter for white layer thickness with percentage 

contribution of 95.55% followed by discharge current, pulse-on-time and duty factor with 

percentage contribution of 2.87%, 0.22% and 0.04% respectively. Open circuit voltage and 

flushing pressure are found to be insignificant parameters for white layer thickness. The 

coefficient of determination (R2) and adjusted (R2) values are found to be 99.83% and 
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99.72% respectively. It is to be noted that the lack of fit is not significant for white layer 

thickness. 

Table 4.9 ANOVA for white layer thickness 

 
Sum of 

Degree 
of  Mean F p-value 

 

% 
Contribution 

Source Squares freedom Square Value Prob> F 
 

 

Model 3097.37 20 154.87 948.97 < 0.0001 significant  

A-Open circuit Voltage 8.44×10
-3

 1 8.44×10
-3

 0.052 0.8215 
 

0.00 

B-Discharge Current 88.97 1 88.97 545.2 < 0.0001 
 

2.87 

C-Pulse-on-time 6.86 1 6.86 42.03 < 0.0001 
 

0.22 

D-Duty Factor 1.36 1 1.36 8.35 0.0068 
 

0.04 

E-Flushing Pressure 0.055 1 0.055 0.34 0.5651 
 

0.00 

F-Soaking Duration 2964.59 1 2964.59 18165.89 < 0.0001 
 

95.55 

A×B 0.08 1 0.08 0.49 0.4887 
 

0.00 

B×C 0.15 1 0.15 0.93 0.3427 
 

0.00 

B×D 0.32 1 0.32 1.96 0.1708 
 

0.01 

B×E 0.045 1 0.045 0.28 0.6024 
 

0.00 

B×F 0.79 1 0.79 4.83 0.0352 
 

0.03 

C×F 0.17 1 0.17 1.07 0.3089 
 

0.01 

D×F 0.54 1 0.54 3.31 0.0778 
 

0.02 

E×F 0.07 1 0.07 0.43 0.5161 
 

0.00 

A
2
 0.27 1 0.27 1.67 0.2052 

 
0.01 

B
2
 0.62 1 0.62 3.8 0.0596 

 
0.02 

C
2
 1.72 1 1.72 10.52 0.0027 

 
0.06 

D
2
 6.04 1 6.04 37.03 < 0.0001 

 
0.19 

E
2
 0.071 1 0.071 0.44 0.5135 

 
0.00 

F
2
 16.86 1 16.86 103.29 < 0.0001 

 
0.54 

Residual 5.39 33 0.16 
   

0.19 

Lack of Fit 5.07 28 0.18 2.89 0.1198 
not 

significant 
 

Pure Error 0.31 5 0.063 
   

 
Cor Total 3102.76 53 
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 The process models for the performance measures obtained through regression 

analysis are given below: 

MRR =+4.93-0.44×A+1.43×B-0.45×C+0.37×D+0.055×E-8.333×10-4×F-0.057×A×B-

0.049×A×D+0.043×A×F-0.30×B×C - 

0.055×B×D+0.042×B×E+0.087×B×F+0.100×C×E+0.061×C×F+0.37×A2-0.68×B2-

1.04×C20.23×D2+0.19×E2-0.080×F2(Coded form)                                                  (4.3) 

 

EWR  =+124.29 + 2.84 × A + 11.54 × B + 5.17 × C + 3.60 × D + 0.24 × E- 31.29 × F + 0.87 

× A × D + 1.60 × A × E - 1.76 × B × C - 2.56 × B × F - 0.75 × C × D + 1.27 × C × F - 

3.43× D × E-1.52 × D × F- 1.92 × A2 - 8.72× B2 - 3.51 × C2 - 2.44 × D2 - 8.34 × F2  

        (Coded Form)                                                                                                             (4.4) 

Surface 

roughness =+8.67 + 1.25× 10-3 × A + 0.91 × B + 0.66 C+0.13× D-0.032× E - 1.63 × F + 

0.069 ×A × B - 0.069 × B × C-0.072 × B × E - 0.22 ×B × F-0.22 × C × E-0.17 × C × F 

- 0.087 × D × F + 0.34 × A2 + 0.72 × C2+0.12 × D2 + 0.065 × E2 + 0.33 × F2 

     (Coded Form)                                                                                                     (4.5)   

Radial  

overcut=+0.23 - 7.583 × 10-3 × A + 0.055 × B +  0.031 × C + 0.020 × D - 2.583 ×10-3 × E- 

0.16  × F + 7.5 × 10-3 × A × C + 3.125 × 10-3 × A × D - 6.125 × 10-3× B × D + 3.937 × 

10-3× B × E- 0.023 × B × F + 4.5 × 10-3× C × F -7.375 × 10-3 × D × E - 6.25 × 10-3× D 

× F- 0.031  × A2 + 5.236 ×10-3× B2 + 3.819 × 10-3 × C2+ 0.014 × D2+ 0.013 ×E2 + 

0.036 × F2  (Coded Form)                                                                                       (4.6) 

White layer thickness=+27.73+0.019 × A+1.93 × B+0.53 × C+0.24 × D+0.048 × E-11.11 × 

F-0.100 × A × B-0.14 B × C-0.20 × B × D-0.053× B × E+0.31 × B × F+0.10 × C × 

F+0.26 × D × F+0.094 × E × F-0.16 × A2-0.25 × B2-0.41 × C2-0.77 × D2-0.083 × 

E2+1.28 × F2(Coded Form)                                                                                     (4.7) 

 

The machined surface of the tool is observed with the scanning electron microscope 

(SEM) (Model - JEOL JSM-6084LV) at 100 X magnification after completion of fifty four 

experimental runs as shown in Figure 4.6 (a,b and c). From the SEM micrographs, it can be 

clearly observed that the machined surface area is greatly damaged due to higher meting 

and evaporation from tool tip for the untreated electrode. However, improved machined 

surface is achieved due to less melting of the electrode from surface and tip for treated 

electrode with longer soaking duration (36-hrs). Electrode treated with 24-hrs soaking 
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duration exhibits a machined surface quality between untreated and treated with 36-hrs 

soaking duration. Hence, it can be concluded that improved machined surface and proper 

retention of tool shape can be achieved with longer duration of soaking period. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Untreated brass 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) Cryogenic-treated electrode with soaking duration of 24-hrs 

 



91 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c) Cryogenic-treated electrode with soaking duration of 36-hrs 

Figure 4.6(a, b and c) SEM images of tool tip 

 Figure 4.7 (a and b) shows the SEM micrographs taken with the parametric conditions of 

A=80V, B=5A, C=300μs, D=80%, E=0.2bar, F=0-hrs and A=80V, B=5A, C=300μs, D=80%, 

E= 0.2bar, F=36-hrs respectively. From these figures, it is observed that the surface quality 

of the work piece improves because cracks and pores on the machined surface diminish as 

the soaking duration increases. From this, it can be concluded that machined surface quality 

heavily depends on proper retention of electrode shape. Cryo-treated tool with longer 

soaking duration produces finest surface quality on the machined surface due to proper 

retention of tool shape and uniform sparking. 
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 (a) SEM micrograph at A=80V, B=5A, C=300μs, D=80%, E=0.3bar, F=0-hrs 

 

 

 

 

 

 

 

 

 

 

 

 

 (b) SEM micrograph at A=80V, B=5A, C=300μs, D=80%, E=0.3bar, F=36-hrs 

Figure 4.7(a and b) SEM images of the machined surface of the work piece 

 

Cracks and pores 
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 Figure 4.8(a) and (b) shows the SEM micrographs of white layer thickness taken at 

parametric condition at A=70V B=3A C=200µs D=80% E=0.3bar F=24 hrs and at A=70V 

B=7A C=200µs D=80% E=0.3bar F=24 hrs respectively. From the micrographs it can be 

clearly visible that white layer thickness increases with increase discharge current from 3A 

to 7A. Increase in discharge current significantly improves the spark energy which in turn 

increases the volume of molten material eroded both the electrodes. As a result, it becomes 

difficult to be flushed away by the dielectric fluid and settles down on the machined surface 

in turn increases the white layer thickness. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Micrograph at A=70V B=3A C=200µs D=80% E=0.3bar F=24hrs 
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(b)Micrograph at A=70V B=7A C=200µs D=80% E=0.3bar F=24 hrs 

Figure 4.8(a) and (b) SEM micrograph showing white layer at on the cross section of 

the machined surface 

   

 

 Figure 4.9 (a) and (b) shows the SEM micrographs of white layer thickness taken at 

parametric condition at A=80V B=5A C=100µs D=80% E=0.3bar F=0-hrs and at A=80V 

B=5A C=100µs D=80% E=0.3bar F=36-hrsrespectively. From the micro graphs, it can be 

observed that white layer thickness decreases with increase in cryogenic treatment soaking 

duration from 0-hrs to 36-hrs.Owing to deep cryogenic treatment the thermal and 

mechanical properties such as thermal conductivity and micro hardness of the tool material 

improves. This phenomenon permits easy dissipation of heat from tool material which 

results in better retention in tool shape, uniform sparking and superior surface quality on the 

machined surface. This phenomenon improves the flushing efficiency of the machined 

surface and reduces deposition of molten metal and thus reduces the white layer thickness.  

 

 

 



95 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Micrograph at A=80V B=5A C=100µs D=80% E=0.3bar F=0 hrs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) Micrograph at A=80V B=5A C=100µs D=80% E=0.3bar F=36hrs 

 Figure 4.9(a) and (b) SEM micrograph showing white layer on the cross section of the 

machined surface 
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The machining efficiency of the EDM process is directly evaluated in terms of material 

removal rate (MRR). Hence it is the most important performance measure of the process. 

Figure 4.10 shows the variation of MRR discharge current and open circuit voltage. It shows 

that MRR increases briskly with increase in discharge current. Discharge current happens to 

be the most dominant process parameter and directly governs the spark energy. Increase in 

discharge current significantly increases the spark energy higher volume of material is 

removed from the machined surface. The figure also shows that MRR initially decreases 

with the increase of open circuit voltage for any value of discharge current but shows a slight 

increasing trend after reaching a minimum value. A similar trend has been also reported in 

the experimental investigation of Lee and Li (2001). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10 Surface plot of MRR with open circuit voltage and discharge current 

Figure 4.11 shows the variation of MRR with pulse-on-time and discharge current. It 

shows that for all value of discharge current MRR increases with increase in pulse-on-time 

initially but shows a decreasing after reaching a pulse-on-time of 200µs.Increasing the 

pulse-on-time increases the spark energy and in turn higher MRR is produced. But 

continuous application of same heat flux decreases the pressure inside the plasma channel 

and since the molten metal volume remains constant, further increase in pulse-on-time 

causes decrease in MRR. Similarly, from the surface plot of MRR discharge current and 

duty factor it is observed that MRR increases with increase in briskly with increase in 
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discharge current and duty factor except at the lower values of the both parameters due to 

smaller value of spark energy. It was expected that MRR will improve due to deep cryogenic 

treatment of the brass electrode. However, the low thermal conductivity and high micro 

hardness of Inconel 718 work material does not allow higher volume of material to be 

eroded from the work surface. As a result, MRR remains constant with increase in soaking 

duration. Hence, parameters such as soaking duration and flushing pressure have no effect 

on MRR. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11Surface plot of MRR with pulse-on time and discharge current 

 EWR is an important performance measure in EDM as it directly affects the machining 

cost and time. Figure 4.12 shows the surface plot of EWR with discharge current and 

soaking duration. Figure shows that EWR increases briskly with increases in discharge 

current at lower level of soaking duration. Higher values of discharge current leads to 

significant increase in spark energy, which in turn influences increases in the volume of the 

molten metal from both the electrodes causing increase in EWR. The figure also shows that 

EWR varies inversely with soaking duration. At the cryogenic temperature, the thermal 

vibration of atoms in a metal becomes weaker resulting in easy movement of electrons 

inside the metal. This phenomenon increases the electrical conductivity of the metal. As per 

Wiedemann-Franz-Lorenz Law, increase in electrical conductivity increases the thermal 

conductivity of the material. The increase in thermal conductivity decreases the local 

temperature rise of the material due to faster heat transfer away from metal surface reducing 

tool wear. As the soaking duration increases, the increase in wear resistance property of 
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electrode increases due to improvement in thermal conductivity and micro hardness. The 

heat dissipation capacity of the electrodes increases due to increase in thermal conductivity 

which in turn declines TWR and EWR. Increasing soaking duration up to 36-hrs further 

reduces the grain size of the electrodes and the microstructure becomes refined leading to 

considerable increase in micro hardness of the material. Hence, the resistance against 

penetration of heat for the treated electrodes is increased. Therefore, vaporization and 

melting of material in treated tools are reduced causing reduction in EWR at higher value 

soaking duration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12Surface plot of EWR with discharge current and soaking duration 

 Figure 4.13 shows variation of EWR with pulse-on-time and duty factor. It shows that 

EWR increases with increase in pulse-on-time initially but shows a decreasing trend at 

higher value of pulse-on-time. This is caused due to decrease in spark energy density in the 

spark gap between electrodes because the diameter of the plasma channel expands with 

increase in pulse-on-time. Another reason for lower wear ratio at higher pulse-on-time is due 

to the attachment of carbon particles on to the electrode tip causing increase in the wearing 

resistance of tool and reducing EWR. A similar trend has been also observed by previous 

researchers (Srivastava and Pandey 2012). Figure also shows that EWR increases with 

increase in the duty factor.  Increase in duty factor causes increase in the spark energy 

across the gap between the electrodes which increases EWR. Similarly, EWR increases 

with increase in open circuit voltage and duty factor observed from the surface plot of EWR 

with open circuit voltage and duty factor. 
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Figure 4.13 Surface plot of EWR with Duty factor and pulse-on-time 

 Figure 4.14 shows the surface plot of surface roughness with discharge current and 

soaking duration. Figure shows that surface quality deteriorate with increase in discharge 

current at lower value of soaking duration. As discharge current increases, the spark energy 

between the electrodes increases resulting in removal of lager size material from the 

machined surface and hence produces poor surface quality. The figure also indicates that 

surface quality improves gradually as soaking duration increases. At the lower level of 

soaking duration, heat generated during EDM cannot dissipate from the electrode due to 

poor thermal conductivity of the untreated tool. This leads to vaporizing and melting of the 

machined surface of tool tip and the machined surface gets damaged. Due to non-uniform 

sparking between the electrodes, the surface produced is of poor quality. As the soaking 

duration increases, the wear resistance property of electrode increases due to improvement 

in thermal conductivity and micro hardness. This allows easy dissipation of heat from 

electrodes which in turn results in improvement in surface integrity, better retention in tool 

shape, uniform sparking and superior surface quality. 
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Figure 4.14 Surface plot of surface roughness with discharge current and soaking duration 

 Figure 4.15 shows the surface plot of surface roughness with pulse-on-time and soaking 

duration. It shows that surface roughness increases with increase in pulse-on-time for all 

values of soaking duration. Increase in pulse-on-time causes high spark energy which 

enables detachment of large sized particle from the machined surface and the surface 

becomes rough. Similarly the surface plot of duty factor and soaking duration indicates that 

surface roughness increases slowly with increase in duty factor. Open-circuit voltage and 

flushing pressure have little effect on surface roughness. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15 Surface plot of surface roughness with pulse-on-time and soaking duration 
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 For precise and accurate machining minimization of over cut is vital. Figure 4.16 shows 

the surface plot of Radial overcut with discharge current and soaking duration. The figure 

indicates that over cut increases briskly with the increase in discharge current at lower level 

of soaking duration. As discharge current increases, the spark energy across the gap 

between electrodes increases resulting in more material to be vaporized from work surface 

and increase in overcut. The figure also indicates that over cut decreases with increase in 

soaking duration. At the lower level of soaking duration, heat generated during EDM cannot 

dissipate through the electrode due to poor thermal conductivity of the untreated tool. This 

causes vaporization and melting of material due to increase in the local temperature rise of 

the material disturbing the roundness of electrode. This results in non-uniform sparking and 

hence production accuracy of the drilled holes is poorer. However, for the treated electrodes 

with soaking duration 24-hrs the thermal conductivity and micro hardness of the material is 

higher in comparison with untreated electrodes. Increasing the soaking duration, further 

improves the thermal conductivity and micro harness and the microstructure become 

refined. This reduces vaporization and melting of material from the tool tip and roundness of 

electrode material is maintained. As a result, the production accuracy of the drilled holes is 

increased due to uniform sparking and proper retention in tool shape. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16 Surface plot of radial overcut with discharge current and soaking duration 
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Figure 4.17 shows the surface plot of Radial overcut with duty factor and pulse-on-time. 

The surface plot shows that overcut increases gradually with increase in duty factor and 

pulse-on-time. Increasing duty factor increases the number of sparks per unit time. This 

results in increase in material removal rate and in turn influences increases in over cut. 

Increasing pulse-on-time also increases the over cut on the machined surface due to 

prolonged occurrence of spark discharges. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.17 Surface plot of Radial overcut with duty factor and pulse-on-time 

Figure 4.18 shows the variation of white layer thickness with discharge current and 

soaking duration. It shows that white layer thickness increases rapidly with increase in 

discharge current. This is obvious, as increase in discharge current significantly improves 

the spark energy higher volume of molten material is eroded from electrodes. As a result, it 

becomes difficult to be flushed away by the dielectric fluid and gets deposited on the 

machined surface in turn increases the white layer thickness. The figure also shows that 

white layer thickness varies inversely with increase in soaking duration. Deep cryogenic 

treatment improves the thermal conductivity and micro hardness of the tool material. This 

allows easy dissipation of heat from tool material which results in better retention in tool 

shape, uniform sparking and superior surface quality on the machined surface. This 

phenomenon improves the flushing efficiency of the machined surface and reduces 

deposition of molten metal and thus reduces the white layer thickness. As the molten metal 

volume remains unaffected with increasing the soaking duration further increase in soaking 

duration reduces the white layer thickness.  
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Figure 4.18Surface plot of white layer thickness with soaking duration and discharge current 

Figure 4.19 shows the variation of white layer thickness with pulse-on-time and soaking 

duration. It shows that white layer thickness increases with increase in pulse-on-time. 

Increase in pulse-on-time increases the spark energy between the electrodes. The molten 

metal volume increases due to prolonged occurrence of spark discharges. Due to improper 

flushing action higher volume of molten metal gets deposited on the machined surface and 

thus increases the white layer thinness on the machined surface. Similarly, from the surface 

plot of white layer thickness soaking duration and duty factor it is observed, that white layer 

thickness increases with increase in duty factor. Increases in duty factor, increases the no of 

sparks per unit time which in turn, increases the molten metal volume and as a result the 

white layer thinness on the machined surface is increased. It was expected that flushing 

pressure would have played a vital role in reducing the white layer thickness, but within the 

scope this experiment it was observed that flushing pressure and   open circuit voltage have 

subtle effect on white layer thickness. 
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Figure 4.19 Surface plot of white layer thickness with pulse-on-time and soaking duration 

In this study, five responses such as (MRR, EWR, surface roughness, radial overcut and 

white layer thickness) are considered. However, all the five responses may not be 

applicable simultaneously for industrial applications. Therefore, two responses are 

considered to be optimized treating other three responses are treated as constraints at a 

time. The constrained value is selected from the experimental observations. The empirical 

relation between the process parameters and process responses established from the RSM 

analysis is used as objective function for solving the multi-objective particle swarm 

optimization (MOPSO) problem. In the present work, the objectives are maximization of 

MRR and minimization of EWR, surface roughness, radial overcut and white layer thickness 

which are functions of process parameters viz. open circuit voltage, discharge current, 

pulse-on-time , duty factor, flushing pressure and soaking duration.  

Ten optimization problems are formed considering two responses as objectives and 

three as constraints. The empirical relation between input parameters and responses 

obtained in equations 4.3-4.7 are used as functional relations. MOPSO algorithm discussed 

in section 3.2 is coded MATLAB 13 for solving minimization problems.  

Problem 1: 

Maximize MRR  

Minimize EWR  
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Subject to 

Surface roughness    6.3 

Radial overcut   0.042 

White layer thickness  15.22 

where 6.3, 0.042 and 15.22are the minimum values of surface roughness, Radial overcut 

and white layer thickness obtained from the experimental table 4.4 respectively.  

Problem 2: 

Maximize MRR  

      Minimize surface roughness  

      Subject to 

EWR 67.32 

  Radial overcut   0.042 

  White layer thinness 15.22 

where 67.32, 0.042 and 15.22 are the minimum values of EWR and radial overcut and white 

layer thickness obtained from the experimental table 4.4 respectively. 

Problem 3: 

Maximize MRR  

     Minimize radial overcut 

     Subject to 

EWR 67.32 

  Surface roughness   6.3 

White layer thinness 15.22 

where 67.32, 6.3and 15.22are the minimum values of EWR, surface roughness and white 

layer thickness obtained from the experimental table 4.4 respectively. 

Problem 4 

Maximize MRR  

     Minimize white layer thickness 

Subject to  

EWR 67.32 

  Surface roughness   6.3 

  Radial overcut   0.042 

where 67.32, 6.3 and 0.042 are the minimum values of EWR, surface roughness and Radial 

overcut obtained from the experimental table 4.4 respectively 
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Problem 5: 

      Minimize EWR  

      Minimize Surface roughness  

      Subject to 

MRR 7 

  Radial overcut   0.042 

White layer thinness 15.22 

where 7,0.042 and 15.22 are the maximum value of MRR and  minimum values radial 

overcut  and white layer thickness obtained from the experimental table 4.4 respectively. 

 

Problem 6: 

Minimize EWR  

Minimize Radial overcut  

Subject to 

MRR 7 

Surface roughness  6.3 

White layer thinness 15.22 

where 7, 6.3 and 15.22 are the maximum value of MRR and minimum values of surface 

roughness and white layer thickness obtained from the experimental Table 4.4 respectively. 

Problem 7: 

Minimize EWR 

Minimize white layer thickness 

 Subject to 

MRR 7 

Surface roughness  6.3 

Radial overcut   0.042 

where 7, 6.3 and 0.042 are the  maximum value of MRR and minimum values of surface 

roughness and Radial overcut obtained from the experimental Table 4.4 respectively. 

Problem 8: 

Minimize Surface roughness 

Minimize Radial overcut 

      Subject to 

MRR 7 
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EWR 67.32 

White layer thinness 15.22 

where7, 67.32 and 15.22 are the  maximum value of MRR and minimum values of EWR and 

white layer thickness  obtained from the experimental Table 4.4 respectively. 

     Problem 9: 

     Minimize Surface roughness 

     Minimize white layer thickness 

Subject to  

MRR 7 

EWR 67.32 

Radial overcut   0.042 

where 7, 67.32 and 0.042 are the  maximum value of MRR and minimum values of EWR 

and Radial overcut obtained from the experimental Table 4.4 respectively. 

    Problem 10: 

Minimize Radial overcut 

Minimize white layer thickness 

 Subject to 

MRR 7 

EWR 67.32 

Surface roughness  6.3 

where 7, 67.32 and 6.3 are the  maximum value of MRR and minimum values of EWR and 

surface roughness  obtained from the experimental Table4.4 respectively 

It is to be noted equivalent minimization function is used in the MATLAB program 

wherever an objective is maximized.  

The optimization model was run on in a Pentium IV desktop. Simulation study is carried 

out to demonstrate the potentiality of MOPSO algorithm. The initial population chosen for 

the algorithms is 120. The parameters employed for MOPSO are as follows: the size of 

archive is 100, the inertia weight is 0.4 and both the cognitive and social parameters (c1 and 

c2) are taken as 1.2. This led to the development of ten sets Pareto-fronts viz. MRR and 

EWR, MRR and surface roughness, MRR and radial overcut, MRR and white layer 

thickness, EWR and surface roughness, EWR and radial overcut, EWR and white layer 

thickness, surface roughness and radial overcut, surface roughness and white layer 

thickness, radial overcut and white layer thickness generating optimal solution for the 
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responses. Figure 4.20 shows the Pareto-front for MRR and EWR. A Sample set of the 

optimal solution for MRR and EWR has been given in Table 4.10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.20 Pareto front objectives for MRR and EWR 
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Table 4.10Pareto optimal solution for MRR and EWR with corresponding variable setting 

Run A B C D E F 
 

 Hrs. 

MRR EWR 

 order (V) (A) (µs) (%) (bar) mm
3
/min % 

1 70.81 7.00 161.97 88.46 0.20 36 6.80 82.27 

2 70.81 7.00 154.63 88.07 0.20 36 6.79 81.38 

3 70.81 7.00 150.89 88.13 0.20 36 6.78 81.14 

4 70.81 7.00 140.44 88.22 0.20 36 6.75 80.32 

5 70.99 7.00 143.18 87.82 0.20 36 6.73 80.30 

6 71.02 7.00 154.96 86.61 0.20 36 6.72 80.05 

7 71.02 7.00 149.90 86.68 0.20 36 6.71 79.72 

8 70.99 7.00 145.97 86.70 0.20 36 6.71 79.38 

9 70.99 7.00 144.21 86.75 0.20 36 6.70 79.28 

10 70.81 7.00 138.97 86.69 0.20 36 6.70 78.60 

11 70.81 7.00 140.46 86.48 0.20 36 6.70 78.51 

12 70.99 7.00 139.76 86.33 0.20 36 6.67 78.39 

13 70.81 7.00 131.72 86.51 0.20 36 6.65 77.68 

14 70.81 7.00 144.33 85.19 0.20 36 6.64 77.31 

15 70.81 7.00 136.70 85.33 0.20 36 6.61 76.75 

16 70.81 7.00 126.13 85.94 0.20 36 6.58 76.42 

17 70.81 7.00 126.30 85.65 0.20 36 6.57 76.07 

18 71.02 7.00 125.01 85.64 0.20 36 6.53 76.07 

19 71.02 7.00 137.36 84.50 0.20 36 6.53 75.85 

20 70.81 7.00 126.70 85.03 0.20 36 6.53 75.33 

21 70.81 7.00 135.37 84.25 0.20 36 6.52 75.17 

22 70.81 7.00 125.45 84.90 0.20 36 6.51 75.01 

23 70.81 7.00 122.61 84.81 0.20 36 6.48 74.57 

24 70.81 7.00 120.30 84.82 0.20 36 6.46 74.32 

25 70.81 7.00 120.61 84.26 0.20 36 6.42 73.58 

26 70.99 7.00 117.14 84.28 0.20 36 6.37 73.31 

27 70.99 7.00 113.46 84.60 0.20 36 6.36 73.30 

28 70.81 7.00 118.14 83.84 0.20 36 6.36 72.67 

29 70.99 7.00 117.07 83.65 0.20 36 6.31 72.37 

30 70.99 7.00 118.72 83.35 0.20 36 6.30 72.12 

31 70.81 7.00 112.55 83.59 0.20 36 6.28 71.61 

32 70.81 7.00 116.01 83.25 0.20 36 6.28 71.52 

33 70.81 7.00 108.97 83.80 0.20 36 6.27 71.47 

34 70.81 7.00 117.02 82.95 0.20 36 6.26 71.17 

35 70.81 7.00 111.80 83.09 0.20 36 6.22 70.74 

36 70.99 7.00 100.00 90.00 0.35 36 6.22 70.72 

37 70.99 7.00 111.78 82.87 0.20 36 6.18 70.51 

38 70.99 7.00 110.24 82.82 0.20 36 6.16 70.23 

39 70.81 7.00 113.25 82.28 0.20 36 6.15 69.61 
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40 70.81 7.00 105.66 82.86 0.20 36 6.13 69.59 

41 70.81 7.00 103.85 82.92 0.20 36 6.12 69.42 

42 70.81 7.00 100.00 83.13 0.20 36 6.09 69.24 

43 70.81 7.00 100.00 83.11 0.20 36 6.09 69.21 

44 71.02 7.00 100.00 83.01 0.20 36 6.06 69.18 

45 71.02 7.00 104.91 82.44 0.20 36 6.05 68.92 

46 71.02 7.00 107.57 82.09 0.20 36 6.04 68.69 

47 70.81 7.00 100.00 82.65 0.20 36 6.04 68.47 
 

In the present investigation, application of MOPSO results in large number of non-

dominated solutions for optimization of objectives. The Pareto-optimal solutions obtained 

through MOPSO have been ranked by the composite scores obtained through maximum 

deviation theory (MDT) to choose the best solution. The decision matrix is normalized using 

the equations 3.11 and 3.12 appropriately. The objective weights are determined for the 

normalized values of objectives by applying maximum deviation method using equation 

3.13-3.20. The weighted objective values are estimated by multiplying the normalized 

objective values and the objective weights. The best solution is selected depending upon 

the composite scores obtained by addition of the all the weighted objective function values 

for each alternative. The objectives with highest composite score are chosen as the best 

solution. Table 4.11 shows the best ranked solution for all combination of responses 

obtained through maximum deviation theory. 
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Table 4.11 Best ranked solution for multiple objectives 

Multiple objectives A B C  D E F Objective Normalized Weighted Composite 
 (Volt) (Amp)  (µs) (%) (Bar) (Hrs.)   objectives Normalized Score 

MRR and EWR 70.81 7 136.6 85.3 0.2 36 6.61 76.75 0.8232 0.3153 0.4282 0.1513 0.5795 

MRR and               

Surface roughness 72.13 5.2 179.8 86.7 0.3 36 5.88 7.75 0.7776 0.3767 0.4069 0.1796 0.5865 

MRR and              

 Radial overcut 70.03 5.2 108.5 85.0 0.3 36 5.45 0.03 0.7599 0.4107 0.3997 0.1947 0.5944 

MRRand White layer             

thickness 72.76 7 125.3 86.6 0.4 36 6.44 19.29 0.9453 0.4188 0.5799 0.1619 0.7418 

EWR and               

Surface roughness 70.17 3 100 80 0.2 36 44.25 7.38 1 0 0.5047 0 0.5047 

EWR and               

Radial overcut 89.53 7 100 82.4 0.2 36 65.76 0.06 0.2589 0.7456 0.1294 0.3728 0.5022 

EWR and white              

Layer thickness 70.19 3 100 80 0.2 36 44.26 12.21 0.1798 0.1374 0.3459 0.2864 0.6323 

Surface roughness               

and Radial overcut 85.92 3 161.5 84.39 0.26 36 6.77 0.023 0.688 0.385 0.3437 0.1927 0.5364 

Surface roughness              

and white layer              

thickness 75.31 3 100 80 0.2 36 7.09 12.39 0.7199 0.3582 0.3561 0.181 0.5371 

White layer 
thickness and 
Radial overcut 

70.03 3 100 80 0.2 36 12.22 0.002 0.5268 0.4820 0.2634 0.2407 0.5042 
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4.6 Conclusions 

 In this work, a hybrid approach of responses surface methodology (RSM) combined with a 

novel multi-objective particle swarm optimization algorithm (MOPSO) has been proposed for the 

optimization of various machining parameters in electrical discharge machining using cryo-

treated brass tool. It shows that brass can be used as a potential electrode material for EDM 

after deep cryogenic treatment with longer soaking duration. In the second phase, maximum 

deviation theory (MDT) of objective weights determination is used to estimate the weights for 

the attributes. The composite score for all the non-dominated solutions is obtained through 

summing the weighted objective values. The best solution is selected from all the non-

dominated solution considering the highest composite score to avoid subjectiveness and 

impreciseness in the decision making. Some of the major findings of the research work are 

discussed in the paragraph below. 

 It is observed that soaking duration, discharge current, pulse-on-time and duty factor exhibit 

significant influence on the performance measures. The thermal conductivity and micro-

hardness of brass electrode improves with increase in soaking duration (Table 4.3). The treated 

tools help in effective heat transfer away from the electrode increasing the wearing resistance of 

the tool. From analysis of variance for MRR, it is observed that discharge current is found to be 

the most influential parameter with a percentage contribution of 58.48% followed by pulse-on-

time, open circuit voltage and duty factor with percentage contribution of 5.85%, 5.62% and 4% 

respectively. From analysis of variance for EWR it is observed that soaking duration is found to 

be the most influential parameter with percentage contribution of 78.35% followed by discharge 

current, pulse-on-time, duty factor and open circuit voltage with percentage contribution of 

10.66%, 2.13%, 1.04% and 0.64% respectively. From analysis of variance for surface 

roughness, it is observed that soaking duration is found to be the most influential parameter with 

percentage contribution of 58.99% followed by discharge current, pulse-on-time and duty factor 

with percentage contribution of 18.60%, 9.62% and 0.39% respectively. From analysis of 

variance for radial overcut, it is observed that soaking duration is found to be the most influential 

parameter with percentage contribution of 79.01% followed by discharge current, pulse-on-time 

and duty factor with percentage contribution of 8.88%, 2.83% and 1.18% respectively. From 

analysis of variance for white layer thickness, it is observed that soaking duration is found to be 

the most influential parameter with percentage contribution of 95.55% followed by discharge 

current, pulse-on-time and duty factor with percentage contribution of 2.87%, 0.22% and 0.04% 

respectively. The study confirms that significant reduction in EWR, surface roughness, radial 

overcut and white layer thickness can be achieved if the tools are subjected to longer soaking 
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duration (treated up to 36 hrs.). It is observed that EWR, surface roughness, radial overcut and 

white layer thickness can be reduced upto 48.29%, 31.72%, 88.33% and 58.45% respectively 

due to longer treatment of soaking duration when experiment numbers 35 (untreated brass tool) 

and 39 (cryo-treated brass tool for soaking duration of 36 hrs.) shown in (Table 4.4) were 

compared. This indicates that soaking duration is an important parameter to improve 

performance measures in EDM. Scanning electron microscope (SEM) micrograph (Figures 4.6 

a-b-c) show that electrodes treated with longer soaking duration can maintain good surface 

integrity of the machined surface and retain initial shape of the tool. The improvement in thermal 

properties of brass electrode allows easy dissipation of heat from tool material. As a result, 

better retention in tool shape, uniform sparking and superior quality of the machined surface is 

achieved. The flushing efficiency of the machined surface improves owing to improved 

machined surface quality which in turn reduces the deposition of molten material on the 

machined surface and decreases the white layer thickness. Cryogenic treatment soaking 

duration hardly influence MRR. It was expected that deep cryogenic treatment of the brass 

electrode will result in higher MRR. But, the high micro-hardness and low thermal conductivity of 

Inconel 718 work material does not allow higher volume of material to be eroded from the work 

surface. With improved thermal conductivity and micro-hardness, brass can be used as 

potential electrode material to produce precise and accurate EDMed components, particularly in 

finishing operation. 
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5.1 Introduction 

In the previous chapter, it is observed that brass can be used as a potential tool material 

after deep cryogenic treatment with longer soaking duration. Moreover, it was expected that 

deep cryogenic treatment to brass tool will enhance material removal from machined 

surface. But the high micro-hardness and poor thermal conductivity of Inconel 718 does not 

allow higher volume of material to be eroded from machined surface. However, few studies 

have reported that deep cryogenic treatment to work piece can enhance material removal 

from machined surface (Gill and Singh 2010).Hence, in this chapter, an attempt has been 

made to analyze the machining efficiency of the process through deep cryogenic of both the 

electrodes. 

The material removal, surface quality and dimensional accuracy of the machined surface 

on the work material are related to the amount of spark energy used to erode material 

during machining. Increase in spark energy improves the material removal but creates 

numerous adverse effect such as increasing cracks, pores, heat affected jones (HAZ) and 

inducing residual stresses on the machined surface (Das et al. 2003; Kumar et al. 2009). 

Owing to the complex nature of the process involving the physics of series of spark 

discharges, it is difficult to observe the process experimentally and find suitable parametric 

setting to improve the machining efficiency. Thus, low machining efficiency, poor surface 

finish and dimensional accuracy of the machined surface are the major concerns for tool 

engineers working on EDM. To overcome these difficulties, machining in the presence of 

suspended powders known as powder mixed EDM (PMEDM) is attempted (Padhee et al. 

2012). The presence of electrically conductive powders increases the spark gap between 

the electrodes and decreases the insulating strength of the dielectric fluid during machining 

(Padhee et al.2012; Wong et al.1998; Ming and He 1995; Chow et al.2000). Therefore, the 

process becomes more stable and results in improved material removal and surface quality 

on the machined surface.  

It has been already discussed in the previous chapter that deep cryogenic treatment 

brings some remarkable improvements in the mechanical properties like increasing the wear 

resistance, thermal conductivity, hardness and refining the microstructure of the materials 

(Jaswin and Lal 2010). In recent times, cryogenic treatment has been successfully applied 

to non-convention machining processes resulting in fruitful application in EDM and wire 

EDM through treatment of electrodes and wires which are used for machining of toughened 

and low conductive materials (Kumar et al.2012; Jafferson and Hariharan2012; Kapoor et al. 

2012). This results in effective heat transfer away from the electrodes and in turn improves 
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the wear resistance property and improved machining characteristics of the EDM process. 

As far as, PMEDM is concerned, a good amount of work is reported in the literature to use 

suspended powders in the dielectric medium for enhancing the machining efficiency (Peças 

and Henriques 2008; Kansal et al. 2005;Kansal et al. 2007a; Patel et al. 2009). However, 

reports to analyze the machining efficiency of the process by the hybrid approach of both 

type of modifications have been scarce in the literature. 

In view of this, present work has been undertaken to compare the machining efficiency 

of different cryo-treated (-1960 C) work-tool pair (Inconel 718 super alloy and brass 

electrode) in the presence of suspended fine graphite powder particles with an objective to 

enhance  the machining efficiency and fulfill minimum surface damage. Hence, commercially 

available Inconel 718 and brass are used as the work piece and tool material respectively 

owing to their poor thermal and electrical conductivities. The objective is to make both the 

materials suitable for industrial application by enhancing their mechanical properties and 

analyzing the machining efficiency of different work-tool pair through cryogenic treatment. 

The machining efficiency of the process has been evaluated in terms of material removal 

rate (MRR), electrode wear ratio (EWR), surface roughness, radial overcut and white layer 

thickness which  are function of process parameters viz. open circuit voltage, discharge 

current, pulse-on-time, duty factor, concentration of fine graphite powder and cryogenically 

treated work-tool pair. Regression analysis is carried out to relate the performance 

measures with process variable. A multi-objective particle swarm optimization algorithm 

(MOPSO) is used to obtain the optimal Pareto front and compared with popular multi- 

objective optimization algorithm, NSGA II. Finally, non-dominated solutions obtained through 

MOPSO algorithm is further ranked by applying maximum deviation theory (MDT). 

 

5.2 Powder-mixed EDM 

In PMEDM process, a suitable fine powdered particle is mixed into the dielectric fluid 

either in the same tank or in a different tank. A stirring device is employed inside the 

machining tank for better movement of the powder particles inside the dielectric fluid. For 

proper circulation of fine powdered particles inside the machining tank a small circulation 

pump of capacity 0.25 hp is employed. The suction head distance from the outlet of the tank 

to the pump usually kept short so as to ensure proper suction of dielectric and powdered 

particles into the spark gap. In order to separate the debris from the dielectric fluid, two 

permanent magnets are positioned at the bottom of machining tank. The presence of 

conductive powder particles promotes the breakdown of dielectric within the spark gap and 
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increases the spark gap between electrodes. The conductive powder particles come close 

to each other and organize themselves to form the shape of a chain under the sparking 

area. The powder particles interlocked within themselves in the direction of flow of current. 

The interlocking forms a chain and works as a bridge in between electrodes. This 

phenomenon declines the insulating strength of the dielectric fluid. Early explosion in the 

gap occurs due to easy short circuit between electrodes. This allows faster sparking 

discharges and increase in material removal rate due to rapid erosion of work material. 

Simultaneously, the suspended powder particles modify the plasma channel to become 

widen (Kansal et al. 2007b). The powder particles uniformly distribute the spark discharges 

and reduce the spark density on the machining spot. As a result, tiny particles are eroded 

from the machined surface and thus the machined surface quality is improved.  

 

5.2.1Experiment set up  

Experiments are carried out in a die sinking EDM machine (ELECTRONICA- 

ELECTRAPULS PS 50ZNC) with servo-head (constant gap). The specification of machine is 

provided in Table 5.1. Positive polarity for electrode and side flushing was used to conduct 

the experiments. 

 

Table 5.1 Specification of the EDM machine ELECTRONICA- ELECTRAPLUSPS 50ZNC 

Mechanism of process 
Controlled erosion (melting and evaporation) through a 
series of electric spark 

Spark gap 0.010- 0.500 mm 

Spark frequency 200 – 500 kHz 

Working  Current 1-70A 

Working  voltage across the gap 30- 250 V 

Maximum Flushing Pressure 0.5 Pa 

Metal removal rate (max.) 5000 mm
3
/min 

Specific power consumption 2-10 W/mm
3
/min 

Dielectric fluid EDM oil, Kerosene, liquid paraffin. 

Dielectric tank Capacity  

Travel limit   X-axis                                   400mm 
                     Y-axis                                  400mm 
                     Z-axis                                  400mm 

 

 

 

The conventional EDM machining tank is replaced with a fabricated tin tank of 

300×300×300 mm3 dimension. A circulation pump (TULLU green 50) of capacity 0.25 hp is 

employed to the same tank where machining is performed. A stirring device is employed 
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inside the tank so as to avoid particle settling inside the tank during machining. The outlet of 

the machining tank is connected to the suction head of the pump and the inlet of the tank is 

connected to the flushing nozzles through delivery head. The outlet and inlet of the tank is 

provided with two pressure gauges and control valves so as to control flow of dielectric into 

the machining tank. The control valve helps in maintaining a constant height of liquid inside 

the tank. Two permanent magnets are placed inside the tank to separate the debris from the 

dielectric fluid. The front elevation of the fabricated tank along with the pump, stirring 

devices and other accessories has been shown in Figure 5.1 (a-b). Figure (a) shows the 

front elevation and Figure (b) shows the top view of the machining tank along with the 

accessories. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) PMEDM experimental set up (Front view) 
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(b) PMEDM experimental set up (Top view) 

Figure 5.1 (a-b) PMEDM experimental set up  

 Graphite powder is suspended into the commercial available kerosene oil (specific 

gravity 0.817). The size of the powder particle is from 10 to 20µm. Each experimental run is 

conducted for 20 minutes and weight of the work and tool materials were recorded. Positive 

polarity for electrode and side flushing is used to conduct the experiments.  

 

5.3 Experimental strategy and materials 

 The details of the work material and its properties have been already discussed in 

section 3.4. Commercially available Inconel 718 and brass were considered as the work 

piece and tool material respectively owing to their poor thermal and electrical conductivities. 

Three brass rods are brought in form of 20 mm diameter and 70 mm length. For suitable 

machining, the machining diameter is reduced to 13.5mm. Inconel 718 were brought in form 

of plate thickness of 5mm and area (100×100) mm2 and are reduced to number of small 

pieces for suitable machining. In this work, both work piece and tool materials were 

cryogenically treated at low temperature to enhance the mechanical properties of materials. 

The work piece and electrode materials were cryogenically treated to the temperature of -

1960C at the rate of 10C/min. At this temperature, the material is held constant for 36-hrs (as 

better result is achieved at longer soaking duration) before the material is slowly brought 

back to the room temperature at rate of 10C/min. After reaching the room temperature, the 
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work material is subjected to two stages of tempering cycles for relieving the stresses 

induced during cryogenic treatment. Tampering operation is executed by increasing the 

temperature up to +1960C at the rate of 10/min and then slowly bringing back to the room 

temperature. Tampering is only essential for nickel based alloys, not for copper and its 

alloys. The details of the cryogenic treatment and its accessories have been already 

discussed in chapter 4.4.1. For machining purpose, representation is made as: deep cryo-

treated work piece and tool material are written as treated work piece (TW) and treated tool 

(TT) respectively. Similarly, non- treated work piece and tool material are written as non-

treated work piece (NW) and non-treated tool (NT) respectively. The details of the 

experimental strategy have been discussed in the previous chapter 3.5. For suitable 

machining the parameters are coded using equation 3.22.  

5.3.1 Scanning electron microscopic analysis and X-ray diffraction analysis 

 A scanning electron microscope (SEM) and X-ray diffraction (XRD) study were carried 

out to distinguish the likely changes brought into the electrodes by the deep cryogenic 

treatment. The micrographs were analyzed in a high resolution analytical SEM (Model - 

JEOL JSM-6084LV) at 500X magnification. The micrographs with identical magnifications 

for each treated and untreated electrodes are shown in Figures 5.2 (a-b) and 5.3 (a-b). From 

the micrographs 5.2 (a-b), it can be clearly visualized that the  micro structure is more 

refined and densed due to smaller particles size owing to deep cryogenic treatment when 

compared to untreated brass sample. Similarly, from Figures 5.3 (a-b),   it can be observed 

that the micro structure is more refined and denser due to smaller particle sizes in 

comparison with untreated Inconel 718 sample. The figure also shows that micro holes in 

the micro-structure are filled with few carbide fillers owing to deep cryogenic treatment. 
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(a) Untreated brass 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) Cryogenic treated brass 

Figure 5. 2 (a and b) Microstructure of brass electrodes samples used in the present study 
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(a)Untreated Inconel 718 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) Cryogenic treated Inconel 718 

Figure 5.3 (a and b) Microstructure of work piece Inconel 718 samples used in the present 

study 
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 These scanning electron microscope (SEM) images are further supported by the XRD 

analysis. The XRD analysis for the treated and untreated brass and Inconel 718 samples 

are carried out on an X-ray diffractometer (model no-X-Pert PRO, PANalytical, PW 3040/00, 

Netherland). The average grain size is calculated using the Debye Scherrer’s 

relation(equation 4.1). The calculated values of the average grain size are provided in the 

Table 5.2. 

 The XRD analysis report reveals that the average grain size is reduced upto 23.44% and 

6.06% for treated brass and Inconel 718 samples respectivelydue to deep cryogenic 

treatment. Table 5.2 shows the properties of the tool and work piece before and after 

cryogenic treatment.Table 5.3 shows the levels of the process parameters. 

 

Table 5.2Properties of the tool and work piece before and after cryogenic treatment 

Property 
Untreated 

Brass 
Cryogenic treated 

Brass 

Untreated 
Inconel 718 

Cryogenic treated 
Inconel 718 

Thermal Conductivity (W/m.K) 108 122 6.7 10.3 

Micro Hardness (VHN) 212 276 382 385 
Average grain size (nm) 65.72 50.31 125.54 117.92 

 

Table 5.3 Process parameters and their levels 

Process Parameters Symbols 
Levels 

-1 0 1 

Open circuit voltage  in  V A 70 80 90 

Discharge current  in A B 3 5 7 

Pulse-on-time  in µs C 100 200 300 

Duty factor in % D 80 85 90 

Concentration of graphite powder in gm./lit E 0 2 4 

Work-Tool pair F NW-TT TW-NT TW-TT 
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5.3.2 Calculation of performance measures 

The details of the calculation of the performance measures have been already discussed 

in the previous chapter in section 3.5.1. Table 5.4 shows the Box-Behnken experimental 

design along with obtained performance measures. Figure 5.4 shows the three 

combinations of work-tool pair after machining. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 Three combinations of work-tool pair after machining 
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Table 5.4 Box-behnken experimental design along with obtained performance measures 

Run 
order 

A B C D E F 
MRR 

mm
3
/min 

EWR 
% 

Surface 
Roughness 

µm 

Radial 
overcut 

mm 

White 
Layer 

Thickness 
µm 

1 -1 -1 0 -1 0 0 3.44 80.12 6.40 0.17 31.50 

2 1 -1 0 -1 0 0 1.80 87.58 6.43 0.14 31.60 

3 -1 1 0 -1 0 0 6.59 106.77 8.50 0.36 35.90 

4 1 1 0 -1 0 0 4.89 109.05 8.70 0.33 35.80 

5 -1 -1 0 1 0 0 2.85 84.74 6.80 0.18 31.60 

6 1 -1 0 1 0 0 1.70 90.43 6.62 0.17 31.70 

7 -1 1 0 1 0 0 7.10 106.13 8.80 0.35 35.40 

8 1 1 0 1 0 0 5.10 113.21 9.10 0.33 34.90 

9 0 -1 -1 0 -1 0 1.50 97.56 5.90 0.14 32.40 

10 0 1 -1 0 -1 0 5.04 122.02 8.60 0.33 35.80 

11 0 -1 1 0 -1 0 1.70 101.32 7.50 0.24 33.70 

12 0 1 1 0 -1 0 4.40 126.56 10.35 0.42 36.70 

13 0 -1 -1 0 1 0 2.27 82.02 5.70 0.13 30.80 

14 0 1 -1 0 1 0 6.80 97.78 8.30 0.32 34.10 

15 0 -1 1 0 1 0 1.75 89.78 6.72 0.15 32.10 

16 0 1 1 0 1 0 6.35 96.05 8.80 0.34 34.80 

17 0 0 -1 -1 0 -1 3.62 109.99 8.20 0.38 38.84 

18 0 0 1 -1 0 -1 2.54 116.01 9.80 0.46 39.84 

19 0 0 -1 1 0 -1 3.85 118.98 8.50 0.41 39.26 

20 0 0 1 1 0 -1 2.85 122.78 10.40 0.47 39.64 

21 0 0 -1 -1 0 1 3.80 78.91 5.70 0.07 23.12 

22 0 0 1 -1 0 1 3.40 84.04 6.80 0.11 24.23 

23 0 0 -1 1 0 1 3.90 80.06 5.80 0.07 24.12 

24 0 0 1 1 0 1 4.90 81.04 6.70 0.13 25.42 

25 -1 0 0 -1 -1 0 4.10 113.87 9.10 0.24 34.10 

26 1 0 0 -1 -1 0 2.99 117.56 9.20 0.20 34.20 

27 -1 0 0 1 -1 0 4.30 110.12 9.40 0.25 34.10 

28 1 0 0 1 -1 0 3.15 119.42 9.35 0.24 34.20 

29 -1 0 0 -1 1 0 4.75 96.45 6.50 0.16 32.50 

30 1 0 0 -1 1 0 2.81 101.24 6.45 0.11 32.45 

31 -1 0 0 1 1 0 4.95 101.34 6.61 0.14 32.50 

32 1 0 0 1 1 0 2.95 105.36 6.71 0.11 32.50 

33 0 -1 0 0 -1 -1 2.20 110.95 8.90 0.39 38.34 

34 0 1 0 0 -1 -1 5.56 132.53 13.20 0.63 40.44 

35 0 -1 0 0 1 -1 2.40 98.97 6.71 0.25 36.62 

36 0 1 0 0 1 -1 6.18 122.95 10.81 0.54 38.32 

37 0 -1 0 0 -1 1 2.50 79.15 6.30 0.10 23.09 

38 0 1 0 0 -1 1 5.99 90.41 9.50 0.25 27.32 
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5.4 Results and discussions 

The experimental data collected as per Box-behnken design are analysed to establish 

the influence of various process parameters on the performance measures using analysis of 

variance (ANOVA) at significance level of 0.05.Table 5.5 shows the ANOVA for MRR with 

percentage of contribution of each parameters and their interactions. It shows that open 

circuit voltage, discharge current, pulse-on-time, powder concentration, work-tool pair, 

interaction terms discharge current×powder concentration and square terms of discharge 

current, pulse-on-time are important parameters.The table also shows that discharge current 

is the most influential parameter for MRR with a percentage contribution of 70.98% followed 

by open circuit voltage, work-tool pair, powder concentration and pulse-on-time with 

percentage contribution of 8.68%, 3.03%, 2.11% and 1.17% respectively.It is also observed 

that comparatively higher percentage of variation is explained by treatment of work piece-

tool combination than suspended powder particles on MRR.Duty factor is found to be an 

insignificant parameter for MRR.The coefficient of determination (R2) and adjusted (R2) 

values are found to be 95.15% and 91.51% respectively. It is to be noted that the lack of fit 

is not significant for MRR. 

 
 
 
 
 
 

39 0 -1 0 0 1 1 2.75 69.08 3.81 0.04 23.44 

40 0 1 0 0 1 1 7.10 79.23 7.20 0.20 28.14 

41 -1 0 -1 0 0 -1 3.90 94.95 9.10 0.42 39.74 

42 1 0 -1 0 0 -1 2.80 102.05 8.90 0.34 39.79 

43 -1 0 1 0 0 -1 2.99 102.56 10.60 0.38 38.78 

44 1 0 1 0 0 -1 2.50 107.65 10.50 0.36 38.75 

45 -1 0 -1 0 0 1 4.80 77.15 5.60 0.11 22.12 

46 1 0 -1 0 0 1 4.10 84.01 5.55 0.06 22.42 

47 -1 0 1 0 0 1 3.40 82.99 6.80 0.16 23.52 

48 1 0 1 0 0 1 2.90 89.12 6.59 0.13 23.62 

49 0 0 0 0 0 0 3.90 104.41 6.72 0.24 34.90 

50 0 0 0 0 0 0 3.75 100.05 6.35 0.19 33.72 

51 0 0 0 0 0 0 4.30 106.76 7.10 0.25 35.20 

52 0 0 0 0 0 0 3.60 101.16 6.20 0.19 32.00 

53 0 0 0 0 0 0 4.40 108.43 6.70 0.24 35.15 

54 0 0 0 0 0 0 3.40 100.51 6.40 0.20 33.85 
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Table 5.5 ANOVA for MRR 

    Sum of 
Degree 

of  
Mean 

F p-value   
% 

Contribution 
  Source Squares freedom Square Value Prob> F    

 
Model 107.64 23 4.68 19.39 < 0.0001 significant  

 
A-Voltage 9.98 1 9.98 41.38 < 0.0001 

 

8.69 

 
B-Discharge current 81.55 1 81.55 337.94 < 0.0001 

 

70.99 

 
C-Pulse-on-time 1.35 1 1.35 5.61 0.0245 

 

1.18 

 
D-Duty Factor 0.62 1 0.62 2.59 0.1183 

 

0.54 

 
E-Powder concentration 2.43 1 2.43 10.05 0.0035 

 

2.12 

 
F-Work-Tool pair 3.49 1 3.49 14.46 0.0007 

 

3.04 

 
A×B 0.1 1 0.1 0.43 0.5175 

 

0.09 

 
A×C 0.082 1 0.082 0.34 0.5643 

 

0.07 

 
A×E 0.35 1 0.35 1.46 0.2361 

 

0.30 

 
B×C 0.074 1 0.074 0.31 0.5836 

 

0.06 

 
B×D 0.25 1 0.25 1.03 0.3183 

 

0.22 

 
B×E 1.09 1 1.09 4.5 0.0422 

 

0.95 

 
B×F 0.061 1 0.061 0.25 0.6181 

 

0.05 

 
C×D 0.77 1 0.77 3.19 0.0844 

 

0.67 

 
C×F 0.33 1 0.33 1.36 0.253 

 

0.29 

 
D×F 0.53 1 0.53 2.2 0.1486 

 

0.46 

 
E×F 0.036 1 0.036 0.15 0.7003 

 

0.03 

 
A

2
 0.36 1 0.36 1.49 0.2325 

 

0.31 

 
B

2
 1.31 1 1.31 5.42 0.0268 

 

1.14 

 
C

2
 2.04 1 2.04 8.44 0.0068 

 

1.78 

 
D

2
 0.15 1 0.15 0.64 0.4317 

 

0.13 

 
E

2
 0.061 1 0.061 0.25 0.6185 

 

0.05 

 
F

2
 0.28 1 0.28 1.14 0.2936 

 

0.24 

 
Residual 7.24 30 0.24 

   

6.30 

 
Lack of Fit 6.47 25 

0.26 
1.68 0.2974 

not 
significant 

 

 
Pure Error 0.77 5 0.15 

   

 

  Cor Total 114.88 53          

 

Table 5.6 shows the ANOVA for EWR with percentage of contribution of each parameter 

and their interactions. It shows that open circuit voltage, discharge current, pulse-on-time, 

powder concentration, work-tool pair and square terms of open circuit voltage, discharge 

current, powder concentration, work-tool pair are important process parameters. The Table 

also shows that work-tool pair is the most influential parameter for EWR with a percentage 

contribution of 47.84% followed by discharge current, powder concentration open circuit 

voltage and pulse-on-time with percentage contribution of 19.17%, 11.78%, 1.73%, 1.06% 

respectively. When machining is done in the presence of suspended powder particles with 
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cryogenically treated electrodes, the influence of cryogenic treatment of work-tool pair is 

much higher on EWR than the suspended powder particles. Duty factor is found to be an 

insignificant parameter for EWR. The coefficient of determination (R2) and adjusted (R2) 

values are found to be 93.61% and 90.59% respectively. It is to be noted that the lack of fit 

is not significant for EWR. 

Table 5.6 ANOVA for EWR 

  Sum of 
Degree 

of  Mean F p-value   
% 

Contribution 
Source Squares freedom Square Value Prob> F    

Model 10871.76 17 639.52 31.01 < 0.0001 significant  

A-Voltage 201.2 1 201.2 9.76 0.0035 
 

1.73 

B-Discharge current 2223.18 1 2223.18 107.81 < 0.0001 
 

19.14 

C-Pulse-on-time 123.4 1 123.4 5.98 0.0195 
 

1.06 

D-Duty Factor 42.72 1 42.72 2.07 0.1587 
 

0.37 

E-Powder concentration 1368.36 1 1368.36 66.36 < 0.0001 
 

11.78 

F-Work-Tool pair 5556.52 1 5556.52 269.45 < 0.0001 
 

47.84 

B×C 9.48 1 9.48 0.46 0.502 
 

0.08 

B×E 43.49 1 43.49 2.11 0.1551 
 

0.37 

B×F 72.9 1 72.9 3.54 0.0682 
 

0.63 

D×E 14.85 1 14.85 0.72 0.4017 
 

0.13 

D×F 38.76 1 38.76 1.88 0.1788 
 

0.33 

A
2
 133.82 1 133.82 6.49 0.0153 

 

1.15 

B
2
 311.36 1 311.36 15.1 0.0004 

 

2.68 

C
2
 34.42 1 34.42 1.67 0.2046 

 

0.30 

D
2
 81.18 1 81.18 3.94 0.0549 

 

0.70 

E
2
 301.52 1 301.52 14.62 0.0005 

 

2.60 

F
2
 317.62 1 317.62 15.4 0.0004 

 

2.73 

Residual 742.37 36 20.62 
   

6.39 

Lack of Fit 680.31 31 21.95 1.77 0.2744 
not 

significant 
 

Pure Error 62.06 5 12.41 
   

 

Cor Total 11614.14 53          

 

Table 5.7 shows the ANOVA for surface roughness with percentage of contribution of 

each parameter and their interactions. It shows that discharge current, pulse-on-time, 

powder concentration, work-tool pair and square terms of open circuit voltage, discharge 

current, powder concentration, work-tool pair are important process parameters. It is 

observed that work-tool pair is found to be the most influential parameter for surface 

roughness with a percentage contribution of 37.97% followed by discharge current, powder 

concentration and pulse-on-time with percentage contribution of 28.58%, 12.99% and 6.07% 

respectively. It is to be noted that influence of cryogenic treatment of work-tool pair is higher 
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on surface quality of the machined surface than the suspended powder particles. Duty factor 

and open circuit voltage are found to be insignificant parameters for surface roughness. The 

coefficient of determination (R2) and adjusted (R2) values are found to be 94.94% and 

92.34% respectively. It is to be noted that the lack of fit is not significant for surface 

roughness. 

Table 5.7 ANOVA for surface roughness 

  Sum of 
Degree 

of  Mean F p-value   
% 

Contribution 
Source Squares freedom Square Value Prob> F    

Model 160.81 18 8.78 36.48 < 0.0001 significant  

A-Voltage 5.04×10
-4

 1 5.04×10
-4

 2.1×10
-3

 0.9637 
 

0.00 

B-Discharge current 48.37 1 48.37 201.05 < 0.0001 
 

28.58 

C-Pulse-on-time 10.28 1 10.28 42.75 < 0.0001 
 

6.07 

D-Duty Factor 0.38 1 0.38 1.57 0.2186 
 

0.22 

E-Powder concentration 22 1 22 91.46 < 0.0001 
 

13.00 

F-Work-Tool pair 64.26 1 64.26 267.1 < 0.0001 
 

37.97 

A×B 0.053 1 0.053 0.22 0.6423 
 

0.03 

B×E 0.048 1 0.048 0.2 0.6565 
 

0.03 

B×F 0.41 1 0.41 1.7 0.2005 
 

0.24 

C×E 0.42 1 0.42 1.74 0.1957 
 

0.25 

C×F 0.35 1 0.35 1.45 0.2371 
 

0.21 

D×F 0.1 1 0.1 0.42 0.5207 
 

0.06 

A
2
 2.26 1 2.26 9.4 0.0042 

 

1.34 

B
2
 1.41 1 1.41 5.86 0.0208 

 

0.83 

C
2
 0.29 1 0.29 1.22 0.277 

 

0.17 

D
2
 0.65 1 0.65 2.7 0.1092 

 

0.38 

E
2
 3.91 1 3.91 16.24 0.0003 

 

2.31 

F
2
 5.62 1 5.62 23.34 < 0.0001 

 

3.32 

Residual 8.42 35 0.24 
   

4.98 

Lack of Fit 7.89 30 0.26 2.46 0.1595 
not 

significant 
 

Pure Error 0.53 5 0.11 
   

 

Cor Total 169.2315 53          

 

Table 5.8 shows the ANOVA for radial overcut with percentage of contribution of each 

parameter and their interactions. It shows that open circuit voltage, discharge current, pulse-

on-time, powder concentration, work-tool pair, interaction terms discharge current×work-tool 

pair, pulse-on-time×powder concentration and square termsof open circuit voltage, 

discharge current, powder concentration, work-tool pair are important process parameters. It 

is observed that work-tool pair is found to be the most influential parameter for radial overcut 

with a percentage contribution of 58.70% followed by discharge current, powder 
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concentration and pulse-on-time with percentage contribution of 23.91%, 3.91% and 1.52% 

respectively. When machining is done in the presence of suspended powder particles with 

cryogenically treated electrodes, the influence of cryogenic treatment of work-tool pair is 

higher on radial overcut than the suspended powder particles. Duty factor is found to be 

insignificant parameters for surface roughness. The coefficient of determination (R2) and 

adjusted (R2) values are found to be 97.9% and 96.7% respectively. It is to be noted that the 

lack of fit is not significant for radial overcut. 

Table 5.8 ANOVA for radial overcut 
  
 Sum of 

Degree 
of  Mean F p-value   

% 
Contribution 

Source Squares freedom Square Value Prob> F    

Model 0.9 19 0.047 84.56 < 0.0001 significant  

A-Voltage 6.83×10
-3

 1 6.83×10
-3

 12.18 0.0014 
 

0.74 

B-Discharge current 0.22 1 0.22 398.06 < 0.0001 
 

23.91 

C-Pulse-on-time 0.014 1 0.014 24.13 < 0.0001 
 

1.52 

D-Duty Factor 5.23×10
-4

 1 5.23×10
-4

 0.93 0.3412 
 

0.06 

E-Powder concentration 0.036 1 0.036 64.79 < 0.0001 
 

3.91 

F-Work-Tool pair 0.54 1 0.54 964.22 < 0.0001 
 

58.70 

A×C 6.48×10
-4

 1 6.48×10
-4

 1.16 0.29 
 

0.07 

A×D 3.90×10
-4

 1 3.9×10
-4

 0.7 0.4102 
 

0.04 

B×D 4.21×10
-4

 1 4.21×10
-4

 0.75 0.3927 
 

0.05 

B×E 3.15×10
-4

 1 3.15×10
-4

 0.56 0.4588 
 

0.03 

B×F 6.16×10
-3

 1 6.16×10
-3

 10.98 0.0022 
 

0.67 

C×E 2.78×10
-3

 1 2.78×10
-3

 4.95 0.0329 
 

0.30 

C×F 4.73×10
-4

 1 4.73×10
-4

 0.84 0.3649 
 

0.05 

D×E 4.96×10
-4

 1 4.96×10
-4

 0.88 0.3536 
 

0.05 

E×F 1.86×10
-3

 1 1.86×10
-3

 3.32 0.0774 
 

0.20 

A
2
 4.02×10

-3
 1 4.02×10

-3
 7.17 0.0113 

 
0.44 

B
2
 0.033 1 0.033 59.05 < 0.0001 

 
3.59 

E
2
 2.53×10

-3
 1 2.53×10

-3
 4.51 0.0411 

 
0.28 

F
2
 0.024 1 0.024 42.77 < 0.0001 

 
2.61 

Residual 0.019 34 5.61×10
-4

 
   

2.07 

Lack of Fit 0.015 29 5.25×10
-4

 0.68 0.769 
not 

significant 
 

Pure Error 3.85×10
-3

 5 7.70×10
-4

 
   

 

Cor Total 0.92 53          

 

Table 5.9 shows the ANOVA for white layer thickness with percentage of contribution of 

each parameter and their interactions. It shows that discharge current, pulse-on-time, 

powder concentration, work-tool pair, interaction terms discharge current×work tool pair, 

powder concentration×work-tool pair and square terms open circuit voltage, work-tool pair 



130 
 

are important parameters.It is observed that work-tool pair is found to be the most influential 

parameter for white layer thickness with a percentage contribution of 88.02% followed by 

discharge current, powder concentration and pulse-on-time with percentage contribution of 

4.62%, 0.72% and 0.21% respectively. The table also shows that when machining is done in 

the presence of suspended powder particles with cryogenically treated electrodes the 

influence of cryogenic treatment work-tool pair is much higher on white layer thickness than 

the suspended powder particles.Duty factor and open circuit voltage are found to be an 

insignificant parameter for white layer thickness. The coefficient of determination (R2) and 

adjusted (R2) values are found to be 98.3% and 97.6% respectively. It is to be noted that the 

lack of fit is not significant for white layer thickness. 

Table 5.9 ANOVA for white layer thickness 

 

 

 

  Sum of 
Degree 

of  Mean F p-value   
% 

Contribution 
Source Squares freedom Square Value Prob> F    

Model 1471.64 16 91.98 137.03 < 0.0001 significant  

A-Voltage 1.20×10
-3

 1 1.20×10
-3

 1.79×10
-3

 0.9664 
 

0.00 

B-Discharge current 69.12 1 69.12 102.98 < 0.0001 
 

4.62 

C-Pulse-on-time 3.07 1 3.07 4.58 0.039 
 

0.21 

D-Duty Factor 0.066 1 0.066 0.099 0.7553 
 

0.00 

E-Powder concentration 10.83 1 10.83 16.13 0.0003 
 

0.72 

F-Work-Tool pair 1317.2 1 1317.2 1962.35 < 0.0001 
 

88.02 

B×C 0.13 1 0.13 0.19 0.6686 
 

0.01 

B×D 0.32 1 0.32 0.48 0.4942 
 

0.02 

B×F 3.29 1 3.29 4.9 0.0331 
 

0.22 

C×F 1.98 1 1.98 2.95 0.0942 
 

0.13 

D×F 0.49 1 0.49 0.72 0.4007 
 

0.03 

E×F 3.14 1 3.14 4.67 0.0372 
 

0.21 

A
2
 5.64 1 5.64 8.4 0.0063 

 
0.38 

C
2
 0.79 1 0.79 1.18 0.2854 

 
0.05 

E
2
 0.21 1 0.21 0.32 0.5763 

 
0.01 

F
2
 47.41 1 47.41 70.63 < 0.0001 

 
3.17 

Residual 24.84 37 0.67 
   

1.66 

Lack of Fit 17.27 32 0.54 0.36 0.967 
not 

significant 
 

Pure Error 7.56 5 1.51 
   

 

Cor Total 1496.47 53          
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The process models for the responses obtained through regression analysis are given 

below: 

MRR= + 3.89 - 0.65 × A + 1.84 × B - 0.28 × C + 0.12 × D + 0.32 × E + 0.34 × F -0.11 × A × 

B + 0.10 × A × C - 0.21 × A × E - 0.096 × B × C + 0.18 × B × D + 0.26 × B × E + 0.088 × B × 

F + 0.19 × C × D + 0.081 × C × F + 0.13 × D × F + 0.067 × E × F - 0.13 × A2 + 0.37 × B2 -

0.47 × C2 + 0.053 × D2 - 0.063 × E2 + 0.14 × F2 

(Coded form)                                                                                                            (5.1) 

EWR  = + 103.55 + 2.90 × A + 9.62 × B + 2.27 × C + 1.33 × D - 7.55 × E - 15.22 × F - 1.09 

× B × C - 1.65 × B × E - 3.02 × B × F + 1.36 × D × E - 2.20 × D × F - 3.61 × A2-5.50 × 

B2 -1.83 × C2 + 2.81 × D2 + 5.41 × E2 - 5.56 × F2 

(Coded form)                                                                                                            (5.2) 

Surface  

roughness = + 6.58 - 4.583 × 10-3×A+1.42×B+0.65×C+0.13×D-0.96×E-1.64×F+0.081×A×B-

0.055 × B × E - 0.23 × B × F - 0.23 × C × E - 0.15 × C × F - 0.11 × D × F + 0.47 × A2  

+ 0.37 B2 + 0.17 × C2 + 0.25 × D2 + 0.62 × E2 + 0.74 × F2 

(Coded form)                                                                                                          (5.3) 

Radial  

overcut = + 0.22 - 0.017 × A + 0.096 × B + 0.024 × C + 4.667 × 10-3 × D - 0.039 × E - 0.15 × 

F + 9.000 × A× C + 4.938 × 10-3  × A × D - 7.250 × 10-3 × B × D + 4.438 × B × E-

0.028 × B × F - 0.019 × C × E + 5.437 × 10-3 × C× F - 7.875 × 10-3× D × E+0.015 × E 

× F-0.019 × A2+0.056 × B2-0.015 × E2+0.045 × F2 

(Coded form)                                                                                                            (5.4) 

White layer  

Thickness = + 34.19 + 7.083 × 10-3 × A + 1.70 × B + 0.36 × C + 0.052 × D - 0.67 × E-7.41 × 

F - 0.13 × B × C - 0.20 ×  B × D + 0.64 × B × F + 0.35 × C × F + 0.25 × D × F + 0.63 

× E × F - 0.70 × A2 - 0.27 × C2 - 0.14 × E2-2.11 × F2 

(Coded form)                                                                                                          (5.5) 
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 Figure 5.5 (a and b) shows the Scanning Electron Microscope (SEM) micrographs of the 

machined surface of the work piece at parametric condition at A=80V, B=7A, C=200μs, 

D=85%, E=0gm/liter, F= NW-TT and at A=80V, B=7A, C=200μs, D=85%, E=4gm/liter, F= 

NW-TT respectively. From the micrographs, it can be clearly observed that machined 

surface quality improves as the cracks and voids on the machined surface reduce with 

increase in powder concentration from 0gm/liter to 4gm/liter. 

 

 

 

 

 

 

 

 

 

 

(a) SEM micrograph at A=80V, B=7A, C=200μs, D=85%, E=0gm/liter, F=NW-TT 

 

 

 

 

 

 

 

 

 

 

 (b) SEM micrograph at A=80V, B=7A, C=200μs, D=85%, E=4gm/liter, F= NW-TT 

Figure 5.5 (a and b) SEM images of the machined surface of the work piece 

Cracks and pores 
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 Figure 5.6 (aand b) shows the SEM micrographs of the machined surface of the work 

piece at parametric condition A=80V, B=5A, C=300μs, D=80%, E=2gm/liter, F=NT-TT and 

at A=80V, B=5A, C=300μs, D=80%, E=2gm/liter, F= TW-TT. From the micrographs, it can 

be clearly observed that machined surface quality improves significantly while the work-tool 

pair is varied from NT-TT toTW-TT. Hence, it can be concluded that the surface 

qualityproduced,is superior when both the electrodes arecryogenically treated in comparison 

to that when only tool is treated. 

 

 

 

 

 

 

 

 

 

(a) SEM micrograph at A=80V, B=5A, C=300μs, D=80%, E=2gm/liter, F= NW-TT 

 

 

 

 

 

 

 

 

 

 

 

 (b) SEM micrograph at A=80V, B=5A, C=300μs, D=80%, E=2gm/liter, F= TW-TT 

Figure 5.6 (a and b) SEM images of the machined surface of the work piece 

Cracks and pores 
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Figure 5.7 (a and b) shows the SEM micrographs of the white layer thickness on the 

cross section of the work piece at parametric condition at A=80V, B=7A, C=200μs, D=85%, 

E=0gm/liter, F= NW-TT and at A=80V, B=7A, C=200μs, D=85%, E=4gm/liter, F= NW-TT 

respectively. From the micrographs it can be clearly observed that white layer thickness 

decreases with increase with increase in powder concentration from 0gm/liter to 4gm/liter. 

 

 

 

 

 

 

 

 

 

 

 (a) SEM micrograph at A=80V, B=7A, C=200μs, D=85%, E=0gm/liter, F= NW-TT 

 

 

 

 

 

 

 

 

 

 (b) SEM micrograph at A=80V, B=7A, C=200μs, D=85%, E=4gm/liter, F= NW-TT 

Figure 5.7 (a and b) SEM micrograph showing whitelayer on the cross section of the 

machined surface 
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Figure 5.8 (a and b) shows the SEM micrographs of the white layer thickness on the 

cross section of the work piece at parametric A=80V, B=5A, C=300μs, D=80%, E=2gm/liter, 

F= NW-TT and at A=80V, B=5A, C=300μs, D=80%, E=2gm/liter, F=TW-TT. From the 

micrographs, it can be clearly observed that the white layer thickness on the cross section of 

the work piece decreases significantly when the work-tool pair is varied from NW-TT to TW-

TT. Thus, it can be concluded that the white layer thickness produced, is smaller when both 

the electrodes are cryogenically treated in comparison to that when only tool is treated. 

 

 

 

 

 

 

 

 

 

 (a) SEM micrograph at A=80V, B=5A, C=300μs, D=80%, E=2gm/liter, F= NW-TT 

 

  

 

 

 

 

 

 

 

(b) SEM micrograph at A=80V, B=5A, C=300μs, D=80%, E=2gm/liter, F= TW-TT 

Figure 5.8 (a and b) SEM micrograph showing white layer on the cross section of the 

machined surface 
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 In EDM, material removal rate (MRR) is the most important performance measure. For 

cost effective machining, maximization of MRR is vital.  Figure 5.9 shows the variation of 

MRR with discharge current and open circuit voltage. It shows that MRR increase 

monotonically with increase in discharge current. Increase in discharge current significantly 

improves the spark energy. As a result, higher volume of material is eroded from the 

machined surface and in turn, it influences increase in MRR. The figure also shows that 

MRR decreases with increase in open circuit voltage for all value of discharge current. This 

phenomenon matches the studies reported by previous researchers Pradhan and Biswas 

(2010) and Lee and Li (2001). 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9 Surface plot of MRR with discharge current and open circuit voltage 

  

 Figure 5.10 shows the variation of MRR with discharge current and pulse-on-time. It 

shows that MRR increases with increase in pulse-on-time initially but shows a decreasing 

beyond a pulse-on-time of 200µsfor all value of discharge current. Increasing the pulse-on-

time increases the spark energy and in turn influences increase in MRR. But continuous 

application of same heat flux decreases the pressure inside the plasma channel. Since the 

molten metal volume remains constant, further increase in pulse-on-time causes reduction in 

MRR. 
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Figure 5.10 Surface plot of MRR with discharge current pulse-on-time 

 Figure 5.11 shows the variation of MRR with powder concentration and work-tool pair. 

Form the figure its can clearly observed that for all the combination of work-tool pair MRR 

increases with increase in powder concentration. This is because the powder mixed in the 

dielectric fluid forms bridging effect in between the electrodes. This phenomenon enables 

the dispersion of spark discharge into numerous increments which in turn increases the 

volume of eroded material from work piece and hence increases the MRR. The figure also 

shows that treated work piece (TW) and treated tool (TT) work-tool pair exhibits the highest 

MRR. Non-treated work piece (NW) and treated tool (TT) work-tool pair exhibits the lowest 

MRR. Treated work piece (TW) and non-treated tool (NT) work-tool pair exhibits MRR value 

those between TW-TT and NW-TT work-tool pairs. Hence, it is very much evident that deep 

cryogenic treatment of work piece can increase the MRR leading to productivity of the 

process.  The material removal mechanism in EDM is primarily dependent up on the work 

material’s ability to absorb and dissipate heat. The poor thermal and electrical conductivity 

of Inconel 718 super alloy does not permit easy absorption of heat deep inside in to work 

piece. As a result, the local temperature rise on the machined surface is low and in turn 

declines MRR. Due to deep cryogenic treatment, the thermal and electrical conductivity of 

work piece improves. At the cryogenic temperature, the thermal vibration of atoms in a metal 

becomes weaker resulting in easy movement of electrons inside the metal. This 

phenomenon increases the electrical conductivity of the metal. As per Wiedemann-Franz-



138 
 

Design-Expert® Software

MRR
7.1

1.5

X1 = E: Powder concentartion
X2 = F: Work-Tool pair

Actual Factors
A: Voltage = 0.00
B: Discharge current = 0.00
C: Pulse-on-time = 0.00
D: Duty Factor = 0.00

  -1.00

  -0.50

  0.00

  0.50

  1.00

-1.00  

-0.50  

0.00  

0.50  

1.00  

3.3  

3.65  

4  

4.35  

4.7  

  
M

R
R

  

  E: Pow der concentartion    F: Work-Tool pair  

Lorenz Law, increase in electrical conductivity increases the thermal conductivity of the 

material. Due to improvement in thermal conductivity, the heat penetration and dissipation 

capacity of the work piece improves, which eventually increases the MRR. However, it is 

observed that treatment to work piece does not have any impact in increasing wearing 

resistance of tool. As reflected from the surface plot, the maximum value of MRR is obtained 

at the highest level of powder concentration while TW is machined with TT. This is because, 

when both the electrodes are treated, the spark energy generated between them is higher in 

comparison to other two work-tool pair due to improvement in thermal conductivities, which 

eventually results in higher MRR. Duty factor has little effect for variation of MRR, but still it 

is observed that MRR increases very slowly with increase of duty factor. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11 Surface plot of MRR with powder concentration and work-tool pair 

For suitable industrial applications maximizing MRR is not always desirable as tool wear 

also increases along with increases of MRR. Therefore, minimization of wear ratio of 

electrodes is of greatest importance, as it directly affects the cost of machining of the 

process. Figure 5.12 show the surface plot of EWR with discharge current and open circuit 

voltage. Figure shows that EWR increases briskly along with increase in discharge current 

and open circuit voltage except at smaller value of both the parameters. This is obvious, as 

an increase in both parameters significantly improves the spark energy, which in turn 
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increases the molten metal volume eroded from both the electrodes and influences increase 

in MRR. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12 Surface plot of EWR with open circuit voltage and discharge current 

Figure 5.13 shows the variation of EWR with powder concentration and work-tool pair. 

The figure indicates that EWR varies inversely with increase in powder concentration. EWR 

ratio refers to ratio of, weight loss of tool material to weight loss of work material due to 

machining. It has been already discussed, that the MRR increases with increases in powder 

concentration due to bridging effect in between the electrodes. This phenomenon ultimately 

reduces EWR with increase in powder concentration. Another reason for decrease of EWR 

with increase in powder concentration is due to attachment of carbon particles to the tool tip 

which eventually reduces tool wear and in turn declines EWR. The figure also shows that 

TW-TT work-tool pair exhibits the best performance with respect to EWR. NW-TT work-tool 

pair exhibits the highest EWR.TW-NT work-tool pair exhibits EWR value those between TW-

TT and NW-TT work-tool pairs. Due to deep cryogenic treatment the thermal conductivity 

and micro hardness of tool improves which in turn decreases the local temperature rise of 

the tool material due to faster heat transfer away from metal surface and thus reducing tool 

wear. Hence, for NW-TT work-tool pair only tool wear is reduced without out causing any 

significant improvement to MRR. In this work, it has been already observed that treatment to 

work piece only increases the MRR. Hence, for TW-NT work-tool pair only MRR is increased 
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without causing any significant decreases to tool wear. However, it is observed that 

treatment to both the electrodes significantly improves MRR and declines tool wear due to 

improvement in thermal conductivities, which ultimately influences decrease in EWR. Hence, 

it is very much evident that deep cryogenic treatment of both work piece and tool material 

can increase the MRR and reduce tool erosion resulting beneficial for both the electrodes 

leading to productivity of the process. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13Surface plot of EWR with powder concentration and work-tool pair 

 Figure 5.14 shows the variation of EWR with discharge current and pulse-on-time. 

Figure shows that EWR increases briskly for all the value of discharge current and pulse-on-

time except at lower value of both the parameters. This is obvious, as discharge current and 

pulse-on time significantly improves the spark energy higher volume of material is eroded 

from both the electrodes resulting in increasing EWR. Effect of duty factor for variation of 

EWR is minimal, but still it is observed that at higher value of duty factor EWR shows a slight 

increasing trend due to increase in spark energy. 
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Figure 5.14 Surface plot of EWR with discharge current and pulse-on-time 

 The surface quality and integrity of the machined parts are the important performance 

measure to determine the machining efficiency of the process. Figure 5.15 shows the 

variation of surface roughness with discharge current and pulse-on-time. As reflected from 

the figure, the surface quality deteriorates heavily with increase in discharge current and 

pulse-on-time. Increasing discharge current and pulse on time significantly improves the 

spark energy resulting in lager size particle to be eroded from machined surface and thus 

degrading the surface quality. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.15 Surface plot of surface roughness with discharge current and pulse-on-time 
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Figure 5.16 Surface plot of surface roughness with discharge current with powder 

concentration 

 Figure 5.16 shows the variation of surface roughness with discharge current and powder 

concentration. Figure shows that for all values of discharge current surface roughness 

decreases with increases in powder concentration. From this it is quite evident, that powder 

added to the dielectric fluid improves the surface quality due to modification of plasma 

channel. The powder particles uniformly distribute the spark discharge as the plasma 

channel is widened. This phenomenon reduces the spark density on the machining spot. As 

a result, tiny particles are eroded from the machined surface and thus the machined surface 

quality is improved. 

 Figure 5.17 shows the surface plot of surface roughness with discharge current and 

work-tool pair. Figure shows that for all combination of work-tool pair surface roughness 

increases with increase in discharge current. As reflected from the figure, TW-TT work-tool 

pair exhibits the best performance with respect to surface quality. NW-TT work-tool pair 

exhibits the worst performance with respect to surface quality.TW-NT work-tool pair exhibits 

the surface quality value those between TW-TT and NW-TT work-tool pairs. Hence, it is 

quite evident that the surface quality of the machined surface is better when both the 

electrodes treated in comparison with either treatment of tool or treatment of work piece. 

Treatment to both the electrodes improves the thermal conductivities of both the electrodes. 

As a result, the heat absorption and dissipation capacity of both the electrodes improves. 

This phenomenon reduces the excessive vaporization and melting of both the electrodes. 
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Consequently, the initial shape retention is better in comparison with other work-tool pair. 

Hence, the sparking is more uniform and evenly distributed spark discharges takes place; 

which ultimately results in superior quality of the machined surface. Another reason of 

achieving improved surface quality when both the electrodes are treated is due to 

improvement in flushing efficiency. In EDM, the machined surface quality and integrity are 

closely related to recast layer formation. Higher value of surface roughness leads to higher 

value of recast layer thickness and vice-versa. Owing to deep cryogenic treatment of both 

the electrodes, the excessive heating and vaporization of electrodes are reduced due to 

improvement in thermal conductivities. As a result, the volume of debris formed during 

machining is also reduced. The smaller volume of molten metal pool gets flushed away 

easily without being accumulated on the machined surface and thus improving the surface 

quality of the machined surface. Parameters such as open circuit voltage and duty factor 

have little effect for variation of surface roughness. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.17 Surface plot of surface roughness with discharge current and work-tool pair 
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In EDM, the dimensional accuracy of the drilled holes is evaluated in terms of radial 

overcut. Therefore, for precise and accurate machining minimization of over cut is vital. 

Figure 5.18 shows the variation of radial over cut with discharge current and pulse-on-time. 

Figure shows that overcut increases with increase in discharge current and pulse-on-time. 

This is obvious as increase in both the parameters significantly improves the spark energy. 

As a result, the molten metal volume increases and wider craters are produced on the 

machined surface which intern influence increase in over cut.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.18 Surface plot of radial overcut with discharge current and pule-on-time 

Figure 5.19 shows the variation of radial overcut with powder concentration and work-

tool pair. Figure shows that for all combination of work-tool pair radial overcut decreases 

with increases in powder concentration.  The presence of suspended powder particle 

increases the spark gap and forms a bridging effect in between electrodes. As a result, the 

plasma channel gets widened and reduces the electrical spark density on the machining 

spot. This phenomenon reduces the spark energy and distributes the discharges more 

evenly throughout the machined surface, which in turn produces shallow craters and over 

cut is minimized. The figure also shows that TW-TT work-tool pair exhibits the best 

performance with respect to overcut. NW-TT work tool pair exhibits the worst performance 

with respect overcut.TW-NT work tool pair exhibits overcut value those between TW-TT and 

NW-TT work tool pairs. Hence, it is quite evident that preciseness and accuracy of the drilled 

holes is better when both the electrodes are treated as compared to when either work piece 
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is treated or tool is treated. This is because, treatment to either tool or work piece reduces 

vaporization and melting of that particular electrode due to improvement in its thermal 

conductivity and micro hardness. The roundness of the untreated electrodes gets damaged 

due to local temperature rise and excessive heating owing to poor mechanical properties. 

However, treatment to both the electrodes allows easy absorption and dissipation of heat of 

both the electrodes due to improvement in their thermal conductivities. As a result, the initial 

shape and roundness retention for the electrodes is better as before. The spark is uniformly 

distributed on the machined surface which ultimately improves the accuracy of the drilled 

holes improving productivity of the process. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.19 Surface plot of radial overcut with powder concentration and work-tool pair 

 The White layer is formed due to improper flushing of molten metal pool by the dielectric 

and later solidifies on the machined surface after cooling. Formation of white layer severely 

damages the surface integrity of the machined surface, increasing number of cracks and 

voids. Therefore, it is important to minimize white layer thickness to achieve improved 

surface quality. Figure 5.20 shows the variation of white layer thickness with discharge 

current and pulse-on-time. Figure shows that white layer thickness increases briskly with 

increase in discharge current for all the levels of pulse-on-time. But the increase is more 

pronounced up to a pulse-on-time of 200µs, beyond which the white layer thickness shows a 

slight decreasing trend due to decrease in MRR. This is obvious, as increasing discharge 

current and pulse-on-time significantly improves the spark energy which in turn increases 
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the molten metal volume. The debris solidifies on the machined surface due to improper 

flushing and thus increasing the white layer thickness. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.20 Surface plot of white layer thickness with discharge current and pulse-on-time 

 Figure 5.21 shows variation of white layer thickness with powder concentration and 

work-tool pair. As reflected from figure, for all the combination of work-tool pair white layer 

thickness decreases with increase in powder concentration. The presence of conductive 

powder particles promotes the breakdown of dielectric within the spark gap and increases 

the spark gap between electrodes. Thus, the plasma channel gets widened and enlarged. 

The powder particles uniformly distribute the spark discharges, and reduce the spark density 

on the machining spot. As a result, tiny particles are eroded from the machined surface and 

the surface quality is improved. Consequently, the formation of surface cracks, micro holes, 

micro voids and surface roughness are reduced. Due to improved surface quality the 

flushing efficiency increases and the molten metal pool gets flushed away easily without 

being accumulated on the machined surface. This phenomenon reduces the white layer 

thickness. The figure also shows that TW-TT work tool pair exhibits the best performance 

with respect to white layer thickness. NW-TT work-tool pair exhibits the worst performance 

with respect to white layer thickness.TW-NT work-tool pair exhibits white layer thickness 

value those between TW-TT and NW-TT work-tool pair. Therefore, it can be concluded that 

treatment to both the electrodes produces thinner white layer as compared to either 

treatment of work piece or treatment of tool. It has been already discussed that treatment to 
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both the electrodes significantly improves the surface quality of the machined surface. 

Again, when both the electrodes are treated the excessive melting and vaporization is 

reduced due improvement in thermal properties which in turn reduces the molten metal pool 

on the machined surface. These phenomenon, allows easy flushing of debris from the 

machined surface and reducing the white layer thickness. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.21 Surface plot of white layer thickness with powder concentration and work-tool 

pair 

 In this chapter, a novel multi-objective particle swarm optimization (MOPSO) technique 

is proposed with the goal of finding approximations of the optimal Pareto front and is 

compared with another  popular multi-objective algorithm known as non-dominated sorting 

genetic algorithm II (NSGA-II) proposed by Deb et al.(2002)which has been  fruitfully applied 

for solving  many problems. The algorithms are compared in terms of in terms of four 

performance metrics. In this study, five responses such as (MRR, EWR, surface roughness, 

radial overcut and white layer thickness) are considered. However, all the five responses 

may not be applicable simultaneously for industrial applications. Therefore, two responses 

are considered to be optimized treating other three responses are treated as constraints at a 

time. The constrained value is selected from the experimental observations. The empirical 

relation between the process parameters and process responses established from the RSM 

analysis is used as objective function for solving in MOPSO and NSGA II algorithms. In the 

present work, the objectives are maximization of MRR and minimization of EWR, surface 

roughness, radial overcut and white layer thickness which are functions of process 
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parameters viz. open circuit voltage, discharge current, pulse-on-time , duty factor, 

concentration of fine graphite powder and work-tool pair. Work-tool pair is a qualitative 

process parameter whereas, open circuit voltage, discharge current, pulse-on-time, duty 

factor, flushing pressure are quantitative process parameters. The quantitative parameters 

are real numbers that lies in the range [-1, 1]. For the qualitative parameters, the nearest 

integer part of the real numbers has been considered. The ranges of the qualitative 

parameters (work-tool pair) are considered in the manner if the values lie in the range [-1 to -

0.3], it is treated as -1 or non-treated work piece-treated tool (NW-TT), [-0.29 to+0.3] as 0 or 

treated work piece-non treated tool (TW-NT) and [+0.31 to+1] as 1 or treated work piece-

treated tool (TW-TT). 

Ten optimization problems are formed considering two responses as objectives and 

three as constraints. The empirical relation between input parameters and responses 

obtained in equations 5.1-5.5 are used as functional relations. MOPSO and NSGA-II 

algorithms are coded MATLAB 13 for solving minimization problems.  

Problem 1: 

Maximize MRR  

Minimize EWR  

Subject to 

Surface roughness 3.81 

Radial overcut   0.042 

White layer thickness 22.12 

where 3.81, 0.042  and 22.12 are the minimum values of surface roughness, radial overcut  

and  white layer thickness obtained from the experimental Table 5.4 respectively.  

Problem 2: 

Maximize MRR  

      Minimize surface roughness  

      Subject to 

EWR     69.08 

  Radial overcut   0.042 

  White layer thinness 22.12 

where 69.08, 0.042 and 22.12 are the minimum values of EWR and radial overcut and white 

layer thickness obtained from the experimental table 5.4 respectively. 

Problem 3: 

Maximize MRR  
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     Minimize radial overcut 

     Subject to 

EWR     69.08 

  Surface roughness 3.81 

White layer thinness 22.12 

where 69.08, 3.81  and 22.12 are the minimum values of EWR, surface roughness and 

white layer thickness  obtained from the experimental table 5.4 respectively. 

Problem 4 

Maximize MRR  

     Minimize white layer thickness 

Subject to  

EWR     69.08 

  Surface roughness 3.81 

  Radial overcut   0.042 

where 69.08, 3.81 and 0.042 are the minimum values of EWR, surface roughness and radial 

overcut obtained from the experimental table 5.4 respectively 

Problem 5: 

      Minimize EWR  

      Minimize Surface roughness  

      Subject to 

MRR  7.1 

  Radial overcut   0.042 

White layer thinness 22.12 

where 7.1,0.042 and 22.12 are the maximum value of MRR and  minimum values radial 

overcut  and white layer thickness obtained from the experimental table 5.4 respectively. 

Problem 6: 

Minimize EWR  

Minimize Radial overcut  

Subject to 

MRR   7.1 

Surface roughness 3.81 

White layer thinness 22.12 
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where 7.1, 3.81 and 22.12  are the  maximum value of MRR and minimum values of surface 

roughness and white layer thickness  obtained from the experimental Table 5.4 respectively. 

Problem 7: 

Minimize EWR 

Minimize white layer thickness 

 Subject to 

MRR   7.1 

Surface roughness 3.81 

Radial overcut   0.042 

where 7.1, 3.81 and 0.042  are the  maximum value of MRR and minimum values of surface 

roughness and radial over cut  obtained from the experimental Table 5.4 respectively. 

Problem 8: 

Minimize Surface roughness 

Minimize Radial overcut 

      Subject to 

MRR   7.1 

EWR  69.08 

White layer thinness 22.12 

where 7.1, 69.08 and 22.12  are the  maximum value of MRR and minimum values of EWR 

and white layer thickness  obtained from the experimental Table 5.4 respectively. 

     Problem 9: 

     Minimize Surface roughness 

     Minimize white layer thickness 

Subject to  

MRR   7.1 

EWR  69.08 

Radial overcut   0.042 

where 7.1, 69.08 and 0.042  are the  maximum value of MRR and minimum values of EWR 

and radial overcut  obtained from the experimental Table 5.4 respectively. 

    Problem 10: 

Minimize radial overcut 

Minimize white layer thickness 

 Subject to 
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MRR   7.1 

EWR  69.08 

Surface roughness 3.81 

where 7.1, 69.08 and 3.81 are the  maximum value of MRR and minimum values of EWR 

and surface roughness  obtained from the experimental Table 5.4 respectively 

 It is to be noted equivalent minimization function is used in the MATLAB program 

wherever an objective is maximized.  

 

5.5 Performance estimation of Pareto frontiers obtained through MOPSO and NSGA II 

The effectiveness of the proposed MOPSO algorithm is compared with another popular 

multi-objective algorithm known as non-dominated sorting genetic algorithm II (NSGA-II) 

which was first introduced by Deb et al.(2002) and successfully applied in many multi-

objective problems(Basu 2008; Ghiasi et al.2011). 

Based on exhaustive experimentation, Figures 5.22-5.25 are drawn to compare the 

Pareto front between objectives MRR-EWR, MRR-surface roughness, MRR-radial overcut 

and MRR-white layer thickness respectively. The Pareto fronts reveals that a small decrease 

of one objective value can cause a large increase in the other conflicting objective value. 

The results convey two messages: (1) Focusing on optimizing a single objective may result 

in bad performance of the other objective (2) The trade-off relationship between the 

objectives is not always easy to predict. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.22 Pareto front for objectives MRR and EWR 
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Figure 5.23 Pareto front for objectives MRR and Surface roughness 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.24 Pareto front for objectives MRR and Radial overcut 
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Figure 5.25 Pareto front for objectives MRR and white layer thickness 

There are two goals in a multi-objective optimization: (i) convergence to the Pareto-

optimal set (ii) maintenance of diversity in solutions of the Pareto-optimal set. These two 

tasks cannot be measured adequately with one performance metric. Many performance 

metrics have been suggested to evaluate the non-dominated solutions (Deb et al. 2002; 

Karimi et al. 2010). To evaluate comprehensively the non-dominated solutions obtained by 

the MOPSO and NSGA-II algorithm, four performance metrics are considered in this work. 

The following performance measures are used to compare the results of non-dominated 

solutions obtained by multi-objective algorithms. 

Mean ideal distance (MID): The MID measurement presents the proximity between non-

dominated solutions and ideal point (0, 0). Algorithm A is considered to have more 

opportunity to reach the Pareto frontier than algorithm B if A has the lower value of MID than 

B. MID of algorithm can be obtained by the following formulation. 

MID =
 Ci

n
i=1

n
                                                    (5.6) 

where n is the number of non-dominated solutions and Ci =  f1i
2 + f2i

2  

f1i and f2i are the objective function values for solution i. The performance of the algorithm 

will be better if the value of MID is lower. 

The rate of achievement to two objectives simultaneously (RAS): The value of this measure 

is calculated from the following relation. Smaller value of this criterion indicates a higher 

quality solution. 
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RAS =
  f1i−f1

best  n
i=1 + f2i−f2

best  

n
                                                  (5.7) 

f1
best and f2

best are the best solutions in the non-dominated sets for objectives 1 and 2. 

Spread of non-dominance solutions (SNS): The spacing metric aims at assessing the 

spread (distribution) of vectors throughout the set of non-dominated solutions. This criterion, 

which is known as an indicator of diversity, is calculated from the following relation: 

SNS =  
 (MID −C i )2n

i=1

n−1
                              (5.8) 

Diversification matrix (DM): This performance measure gives an indication of the diversity of 

solutions obtained from a given algorithm. 

DM =   max f1 − min f1 
2 +  max f2 − min f2 

2                          (5.9) 

where max f1  and max f2 is the maximum objective functions value of the  of non-dominated 

solutions and min f1  and min f2 is the minimum objective functions value of the of non-

dominated solutions. Larger values of SNS and DM are indicative of higher quality solutions. 

The results obtained by the proposed algorithms are compared in terms of the 

performance metrics with the NSGA-II. Table 5.10 presents the comparative results of two 

algorithms with respect to four performance measures.  Table 5.10 indicates that MOPSO 

results are superior to the NSGA-II in most of the case with respect to MID, RAS, SNS and 

DM performance measures. 
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Table 5.10 Performance metrics of Pareto frontiers 
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The best obtained values are marked in bold letter 

 

 

 

Problem 
MID  RAS   SNS  Diversity (DM)  

MOPSO NSGA-II MOPSO NSGA-II MOPSO NSGA-II MOPSO NSGA-II 

MRR-EWR 65.7498 65.8022 8.3503 7.6495 4.2534 4.23872 15.6689 13.4729 

MRR-Surface roughness 10.893 10.9044 0.3287 0.4462 0.2072 0.2032 0.72495 0.6289 

MRR-Radial overcut 4.689 5.067 1.521 1.9004 1.887 1.1717 4.231 3.775 

MRR-White layer thickness 24.188 26.124 6.1521 6.5721 2.0758 1.749 8.35711 8.1579 

EWR-Surface roughness 61.561 62.756 4.1892 5.193 2.052 1.8695 7.7894 7.2128 

EWR-Radial overcut 61.781 62.439 4.1926 5.0568 2.9254 1.761 7.983 7.5412 

EWR-White layer thickness 62.5583 62.824 1.808 1.2593 0.72351 0.6783 3.2694 2.3854 

Surface roughness-radial 
overcut 

4.5821 4.556 0.135667 0.11834 0.1048 0.09157 0.374852 0.32598 

Surface roughness-White 
layer thickness 

20.939 21.6522 0.9013 1.47 0.2833 0.2813 1.514 1.092 

Radial overcut-White layer 
thickness 

20.089 19.571 0.2704 0.2719 0.19017 0.1072 0.7894 0.4215 
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In the present investigation, application of MOPSO results in large number of non-

dominated solutions for optimization of objectives. The Pareto-optimal solutions obtained 

through MOPSO have been ranked by the composite scores obtained through maximum 

deviation theory (MDT) to choose the best solution. The decision matrix is normalized using 

the equations 3.11 and 3.12 appropriately. The objective weights are determined for the 

normalized values of objectives by applying maximum deviation method using equation 

3.13-3.20. The weighted objective values are estimated by multiplying the normalized 

objective values and the objective weights. The best solution is selected depending upon 

the composite scores obtained by addition of the all the weighted objective function values 

for each alternative. The objectives with highest composite score are chosen as the best 

solution. Table 5.11 shows the pareto optimal solution set for objectives MRR and EWR with 

corresponding variable setting. Table 5.12 shows the best ranked solution for all 

combination of responses obtained through maximum deviation theory. 
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Table 5.11 Pareto optimal solution for MRR and EWR with corresponding variable setting 
Run 

Order 
A 
V 

B 
A 

C 
µs 

D 
% 

E 
gm/lit. 

F  
(work-tool) 

MRR 
(mm

3
/min) 

EWR 
% 

1 74.80 6.85 100 88.80 3.94 TW-TT 7.57 76.85 
2 74.54 6.83 100 88.39 3.95 TW-TT 7.53 76.35 
3 70.75 6.65 100 88.12 3.90 TW-TT 7.50 73.27 
4 70.37 6.49 100 87.72 3.92 TW-TT 7.26 72.83 
5 70.37 6.17 100 87.24 3.91 TW-TT 6.75 72.71 
6 70.04 6.02 100 87.06 3.90 TW-TT 6.54 72.25 
7 70.04 5.87 100 86.57 3.87 TW-TT 6.30 71.90 
8 70.08 5.55 100 86.71 3.97 TW-TT 5.90 71.79 
9 70.30 5.55 100 86.39 3.90 TW-TT 5.85 71.76 
10 70.50 5.35 100 85.65 3.91 TW-TT 5.56 71.38 
11 70.20 5.29 100 86.28 3.91 TW-TT 5.53 71.15 
12 70.04 5.24 100 85.98 3.94 TW-TT 5.47 70.82 
13 70.30 5.13 100 85.75 3.94 TW-TT 5.31 70.73 
14 70.24 5.09 100 86.22 3.96 TW-TT 5.28 70.73 
15 70.20 5.09 100 85.76 3.88 TW-TT 5.25 70.44 
16 70.04 5.05 100 86.01 3.95 TW-TT 5.23 70.33 
17 70.20 4.99 100 85.81 3.94 TW-TT 5.15 70.25 
18 70.04 4.97 100 86.03 3.95 TW-TT 5.13 70.09 
19 70.61 4.76 100 85.57 3.94 TW-TT 4.84 69.80 
20 70.51 4.70 100 86.26 3.97 TW-TT 4.80 69.73 
21 70.50 4.71 100 84.90 3.85 TW-TT 4.76 69.29 
22 70.08 4.69 100 84.78 3.83 TW-TT 4.75 68.76 
23 70.20 4.55 100 85.54 3.95 TW-TT 4.62 68.57 
24 70.08 4.56 100 84.78 3.85 TW-TT 4.61 68.24 
25 70.08 4.50 100 84.65 3.84 TW-TT 4.55 67.98 
26 70.04 4.49 100 84.93 3.88 TW-TT 4.55 67.94 
27 70.08 4.38 100 85.23 3.93 TW-TT 4.44 67.61 
28 70.24 4.32 100 84.66 3.90 TW-TT 4.36 67.39 
29 70.24 4.26 100 85.37 3.96 TW-TT 4.31 67.26 
30 70.30 4.26 100 85.24 3.95 TW-TT 4.30 67.24 
31 70.24 4.23 100 85.43 3.94 TW-TT 4.27 67.06 
32 70.04 4.22 100 84.69 3.88 TW-TT 4.26 66.66 
33 70.08 4.16 100 84.72 3.85 TW-TT 4.19 66.34 
34 70.04 4.11 100 84.97 3.95 TW-TT 4.15 66.16 
35 70.20 4.09 100 84.63 3.90 TW-TT 4.12 66.13 
36 70.30 4.05 100 84.59 3.90 TW-TT 4.08 66.03 
37 70.24 4.01 100 83.39 0.39 TW-TT 4.03 65.82 
38 70.39 4.00 100 84.13 0.39 TW-TT 4.01 65.75 
39 70.51 3.94 100 84.70 0.40 TW-TT 3.96 65.63 
40 70.37 3.94 100 84.13 0.39 TW-TT 3.95 65.42 
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Table 5.12 Best ranked solution for multiple objectives 

Multiple objectives A B C  D E F Objective Normalized Weighted Composite 

 
(Volt) (Amp)  (µs) (%) (gm/l) Tool 

  
objectives Normalized Score 

MRR and EWR 70.75 6.65 100 88.12 3.90 TW-TT 7.50 73.27 0.5158 0.5509 0.2596 0.2736 0.5333 

MRR and               

Surface roughness 71.15 6.84 181.9 89.9 4 TW-TT 8.44 7.23 0.8430 0.6827 0.4204 0.3421 0.7626 

MRR and              

Radial overcut 70.07 7 112.2 90 4 TW-TT 8.42 25.51 0.6710 0.5518 0.3725 0.2455 0.6180 

MRR and White layer              

thickness 70.07 7 112.26 90 4 TW-TT 8.42 25.51 0.9366 0.1168 0.4938 0.0552 0.5490 

EWR and               

Surface roughness 74.80 3 100 85.07 3.09 TW-TT 
61.38 4.51 0.3847 0.6889 0.1923 0.3444 0.5368 

EWR and               

Radial overcut 70.07 3 100 85.0 4 TW-TT 58.55 0.056 0.7808 0.9165 0.3894 0.4594 0.8488 

EWR and white              

Layer thickness 70.07 3 100 83.05 3.09 TW-TT 57.96 20.23 0.8487 0.3658 0.4711 0.1627 0.6338 

Surface roughness               

and Radial overcut 86.05 3 100 84.74 4 TW-TT 4.59 0.026 0.6670 0.4787 0.3230 0.2468 0.5699 

Surface roughness              

and white layer              

thickness 89.54 3 100 80 3.09 TW-TT 4.93 19.99 0.3548 0.8743 0.1713 0.4522 0.6235 

Radial over cut and  88.35 3.16 100 80 4 TW-TT 20.27 0.003 0.6281 0.4384 0.3161 0.2177 0.5339 
white layer thickness 
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5.6 Conclusions 

 The work implemented in this Chapter is novel in the sense of application of an hybrid 

approach of investigation on powder-mixed EDM of cryogenically treated electrodes on 

Inconel 718 super alloy. It is observed that the process is quite effective to machine Inconel 

718 work material with cryogenically treated brass electrode. In the second stage, a novel 

multi-objective particle swarm optimization algorithm (MOPSO) has been proposed and 

compared with another popular multi-objective algorithm NSGA II in order to achieve the 

optimal Pareto front. From the study, it is observed that MOPSO algorithm is superior to 

NSGA II algorithm. To end with, the best solution is identified from a large number of non-

dominated solutions using maximum deviation theory (MDT) to avoid subjectiveness and 

impreciseness in the decision making. Some of the most significant conclusions from the 

extensive experimental analysis are discussed in the paragraph below. 

 It is observed that discharge current, pulse-on-time, powder concentration and work-tool 

pair exhibit significant effect on performance measures. The thermal conductivity and micro-

hardness of brass electrode improves due to deep cryogenic treatment. As a result, the 

wearing resistance of the tool increases due to easy dissipation of heat. Due to deep 

cryogenic treatment, the heat dissipation capacity of Inconel 718 work material improves 

and helps in decreasing local temperature rise on the work piece surface owing to 

improvement in thermal conductivity. Consequently, the ability of the work piece to absorb 

and dissipate heat increases which eventually increases the MRR. The study confirms that 

significant improvement on material removal rate and reduction in EWR, surface roughness, 

radial overcut and white layer thickness can be achieved if both the electrodes are 

cryogenically treated. It is observed that MRR can be increased up to 71.92% and EWR, 

surface roughness, radial overcut and white layer thickness can be reduced up to 33.99%, 

35.57%, 72.82% and 35.87% respectively when both the electrodes are cryogenically 

treated and worked in a powder mixed dielectric condition when experiment numbers 20 

(untreated work piece and treated tool) and 24 (both tool and work piece treated) shown in 

(Table 5.4) were compared. This shows that treatment to both the electrodes results in 

better EDM performance measures in comparison to either treatment of the tool or treatment 

of the work piece. It is also observed that the presence of suspended powder particles can 

enhance the machining efficiency of the process. Comparison of experiment numbers 12 

(no suspended particles in dielectric, treated work piece and untreated tool) and 16 (highest 

concentration of suspended particles in dielectric, treated work piece and untreated tool) 

(Table 5.4) indicates that MRR can be increased up to 44.31% and EWR, surface 
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roughness, radial overcut and white layer thickness can be reduced up to 24.10%, 14.97%, 

19.04% and 5.17% respectively when machining is done in the presence of suspended 

powder particles. From analysis of variance for MRR, it is observed that discharge current is 

found to be the most influential parameter with a percentage contribution of 70.98% followed 

by open circuit voltage, work-tool pair, powder concentration and pulse-on-time with 

percentage contribution of 8.68%, 3.03%, 2.11% and 1.17% respectively. From  analysis of 

variance for EWR, it is observed that work-tool pair is found to be the most influential 

parameter with a percentage contribution of 47.84% followed by discharge current, powder 

concentration open circuit voltage and pulse-on-time with percentage contribution of 

19.17%, 11.78%, 1.73%, 1.06% respectively. From analysis of variance for surface 

roughness, it is observed that work-tool pair is found to be the most influential parameter 

with a percentage contribution of 37.97% followed by discharge current, powder 

concentration and pulse-on-time with percentage contribution of 28.58%, 12.99% and 6.07% 

respectively. From analysis of variance for radial overcut, it is observed that work-tool pair is 

found to be the most influential parameter with a percentage contribution of 58.70% followed 

by discharge current, powder concentration and pulse-on-time with percentage contribution 

of 23.91%, 3.91% and 1.52% respectively. From analysis of variance for white layer 

thickness, it is observed that work-tool pair is found to be the most influential parameter with 

a percentage contribution of 88.02% followed by discharge current, powder concentration 

and pulse-on-time with percentage contribution of 4.62%, 0.72% and 0.21% respectively. 

When machining is done in the presence of suspended powder particles with cryogenically 

treated electrodes, the influence of cryogenic treatment work-tool pair is relatively higher on 

performance measures than the suspended powder particles. SEM micrographs (Figures 

5.6, 5.7, 5.8 (a and b)) show that machined surface quality and surface integrity is superior 

when machining is done in the presence of suspended powder particles and both the 

electrodes are cryogenically treated. 
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6.1 Introduction 

 Electrical discharge machining (EDM) process is a popular method amongst non-

traditional machining processes finding an extensive application in industries such as die 

and mould making, aerospace, automotive and other industrial usages. The machining 

process involves controlled erosion of electrically conductive materials by the initiation of 

repetitive electrical spark discharge between the tool and the work piece separated by 

dielectric fluid. The complicated nature of the process involving physics of spark 

discharges makes the process difficult to analyse the process experimentally and to 

evaluate the performance measures.EDM literature reveals that a good number of 

experimental investigations have been reported until now but they could be severely 

limited by work piece-tool combinations and time constraint for experimentation. It is also 

observed that only a few studies have been reported until now to analyse the process 

numerically (Saleh 2006; Kansal 2008; Joshi and Pande 2009;Joshi and Pande 2010; 

Mohanty et al.2013; Allen and Chen 2007;Izquierdo et al. 2009).Furthermore, 

experimental approaches could be error prone, time consuming and expensive. 

Therefore, there exists a vital needto propose a numerical model for precise and 

accurate prediction of performance measures, which can effect considerable saving in 

time as well as reduce the experimentation cost. 

 To address these important issues, in this chapter,a thermal model based on finite 

element analysis has been proposed to predict the MRR and TWR when work piece 

Inconel 718 is machined with a variety of electrodes viz. copper, graphite and brass. A 

coupled thermo-structural model has been also proposed to estimate the induced 

residual stresses on work piece. The numerical model is validated by comparing the 

experimental results obtained from the Chapter 3. Numerical model for estimating 

various performance measures under different work-tool combination have been 

developed. Parametric analysis is carried out on the proposed model to investigate the 

effect of important process parameters on theperformance measures. 

 

6.2 Proposed integrated process model for EDM 

The procedural steps of the process model for the EDM process model has been 

shown Figure 6.1. The model principally consists of two stages such as the numerical 

modelconsidering the thermo-structural characteristics of the process and an 

experimental model to validate the numerical model when work material Inconel 718 is 

machined with variety electrodes such as brass, copper and graphite. The approach has 

definite advantages for tool engineers, since it can be adoptedfor prediction of important 

performance measures of the EDM process before going for actual cutting operation. 
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The model provides an inexpensive and time saving alternative to study the performance 

of machiningbefore going for actual cutting operation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 Proposed integrated process model for EDM 

 

6.3Simulation of EDM process 

6.3.1Thermal modelling of the process 

 In EDM process, the dielectric medium ionizes due to high electric potential resulting 

in plasma arc to be produced. The primary mechanism of material removal in EDM 

process isdue to extreme heat generated by the plasma spark in erosion process which 

causes melting of material from both work piece as well as tool. The highly ionized 

chargedparticles of the plasma raise the temperature of thework piece and tool material 

past theirmelting point, occasionally even higher thanthatofboilingpoint of the electrodes. 

Therefore, for thermal analysis of the process, conduction is considered as primary 

mode of heat transfer. Transient nonlinear analysis of the single spark operation of EDM 

process has been carried out in ANSYS 10 software. 

6.3.2Assumptions in the analysis 

 Homogeneous and isotropic material is assumed both for the work piece and 

tool. 

 The material properties of both the tool and work piece depend on temperature.  

Numerical Model 
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 There is only one mode of heat transfer i.e. conduction. Other heat losses are 

ignored. 

 It is assumed that spark radius is a function of discharge current and time. 

 The analysis is made for a single spark. 

 Flushingefficiency is considered as 100% 

 Ambient temperature is assumed to be room temperature i.e. 298K. 

6.3.3 Governing equation required for the analysis 

Fourier heat conduction equation is considered as governing equation for the thermal 

analysis of the EDM process. ANSYS solves the differential equation for the heat 

transfer of the two dimensional axisymmetric model. The equation is given by 

ρc
∂T

∂t
=

1

r

∂

∂r
 kr

∂T

∂r
 +

∂

∂z
 k

∂T

∂Z
 (6.1) 

wherer and zdenote cylindrical coordinates of the work and tool material,T-Temperature 

in kelvin,k-Thermal conductivity in W/m.k, ρ-Density in kg/m3, t-Timein seconds,c-

Specific heat in J/kgk of the work and tool material, 

6.3.4 Desired boundary conditions 

     The boundary conditions associated with the EDM process are shown in Figure 6.2. 

The work piece is submerged in dielectric medium.AD is an axi-symmetric boundary. 

Insulated boundary condition is assumed for the boundaries away from the spark radius 

i.e. for CD and BC and heat flux is applied at the top surface of the boundary AB. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 6.2 Anaxi-symmetric two dimensional model for the EDM process analysis 
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6.3.5 Heat input required for analysis 

Heat input, materialproperties and radius of spark are the significant factors which 

affect considerablyfor theprecise calculation of responses in single spark EDM 

analysis.In this model, Gaussian distribution of heat flux is assumed with quantity of heat 

entering into the two-dimensional domain is given by relation 

qw r =
4.56PVI

πRs
2 exp  −4.5  

r

Rs
 
2
 (6.2) 

where qw- Heat entering into the work and tool material, P-Fraction of heat going to work 

and tool material, V-Discharge voltage in (V),I-discharge current in (A),Rs-Spark radius 

(μm). 

6.3.6 Spark radiuscalculation 

Different methodshave been proposed in the literature for calculation of spark radius. 

Erden (1983) has proposed an empirical relation for calculation of spark radius in which 

spark radius is a function of discharge power and time. A methodology suggested by 

Pandey and Jilani (1986) based on the boiling point temperature, energy density and the 

thermal diffusivity of work material finds limited applications.The semi-empirical relation 

derived by Ikaiand Hashiguchi (1995) has been adopted by Joshi and Pande 

(2009)known as “equivalent heat input radius” which a function is of discharge current 

and pulseontime has been adopted in this model. It is given as follows 

Rs =  2.04exp − 3 I0.43Ton
0.44                                                       (6.3) 

where Rsis spark radius in (μm), I discharge current in (Amp) and Ton is the pulse-on-time 

in (µs).   

6.3.7 Discharge energy 

In EDM process, the current produced by the pulse generator develops an equilateral 

triangle as shown in Figure 6.3. If the average working voltage is V, then the single 

discharge energy is given by the following relation 

∆E =  V τ i τ dτ = V × K × Ton
2                                                                                    

(6.4)
 

where ∆E is total discharge energy in (mJ) and K denotes the rising slope of the electrical 

current, measured in terms ofAmp μs . 
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Figure 6.3 Wave form of current for a single discharge 

6.3.8 Total dischargeenergy distribution 

The total energy developedduring spark discharge gets scattered into three sections, a 

portion of it is absorbed by work piece, a portion of it is carried away by the tool and the 

rest is being dissolved in the dielectric liquid(Joshi and Pande 2009). Shankar et 

al.(1997) have recommended that 40-45% of the heat is absorbed by the work piece. 

Joshi and Pande (2009) have suggested an energy distribution of 1-8% for work piece 

and 18.3% for tool material.In this work, comparing theexperimental and numerical 

analysis,an energy distribution of 1.7-4.5% for work piece, 3.2-7.5% for brass tool,8.5-

18% for copper tool and 8.1-14.8% for graphite tool is suggested. 

6.3.9 Solution methodology of thermal analysis in ANSYS software 

     ANSYSTM 10.0 has been employed to solve the governing equation (Equation6.1) 

with boundary conditions as shown in Figure 6.2 by finite element method to compute 

the temperature distribution. The two-dimensional, axisymmetric, thermal solid element 

(PLANE 55), continuum of size 0.35×0.3 mm has been considered for the thermal 

analysis. Model geometry is created and meshing is done with element size of 1µm. 

Material property such as density, specific heat and thermal conductivity is employed 

along with initial bulk temperature is set at 298 K. The heat flux equation is introduced 

(Equation6.2) and applied to the spark location on the centre of the two dimensional 

continuum. Temperature distribution is obtained. The node having temperature more 

than melting point temperature is identified and killed to eliminate from mesh. The MRR 

and TWR are calculated using coordinate data of the craters of work and tool material 

respectively. 

6.3.10Solution methodology for coupled thermal-structural analysis 

The extreme temperature gradient produced on the work material due to sequence of 

spark discharges causes residual stresses to develop on work surface.This leads to 

structural disorder affecting the surface integrity and reducing the fatigue life of the 
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machined surfaces. Therefore, it is important to know the exact value induced residual 

stress on the machined parts so that it can be minimized. To estimate the residual stress 

distribution on the work piece, a coupled thermal-structural analysis has been employed 

in sequence to predict the residual stresses with ANSYS 10 as the FEM solver 

considering two planes PLANE 55 for thermal analysis and PLANE 42 for structural 

analysis. After killing the elements above the melting temperature of the work piece, the 

residual stress distribution is estimated by solving the previously obtained temperature 

profiles in structural environment applying structural boundary conditions. The relation 

between the thermal stress analysis and thermal loading is given by 

      ,meD                                                                                                            (6.5) 

where               
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where D is the elasticity matrix, σ is the stress matrix, е is the strain matrix, E is the 

Young‟s modulus, v the Poisson‟s ratio, α the coefficient of thermal expansion, ΔT the 

thermal loading because of temperature change and m is the latent heat of fusion. 

The structural boundary conditions (as shown in Figure 2) are given by 

 ur = 0and ty = 0 on boundary AD; 

 uy = 0and tr = 0 on boundary CD; 

 ty = 0andtr = 0 on boundaries AB and BC. 

 

6.4Modelvalidation through experimentation 

 The thermo-structural model determines performance parameters considering the 

occurrence of a single spark analysis. In actual practice the material removal in EDM 

during machining is influenced by many factors viz. flushing efficiency, presence of 

debris in dielectric fluid, ignition delay and phase change of electrode materials. 

However,it is utmost difficult to include these factors into the process model.In this work, 

thecalculation of MRR (for process parameters shown in Table 6.2) is done assuming 

that all sparks are equally effective with 100% flushing efficiency of dielectric fluid. To 

validate the above proposed numerical model the obtained results from the analysis are 
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compared with the experimental study carried out in chapter 3. Table 6.1 shows the 

temperature dependant properties of work material Inconel 718. Table 6.2 shows the 

comparison of the predicted results of the numerical analysis with experimental results 

obtained from Chapter 3. 

Table 6.1 Temperature dependant material properties of Inconel 718 

 

Table 6.2 Comparison of the predicted results of the numerical analysis with 
experimental results from chapter 3 

Run 
order 

A B C D E F 

Numerical 
MRR 

mm
3
/min 

Experimental 
MRR 

mm
3
/min 

Numerical 
TWR 

mm
3
/min 

Experimental 
TWR 

mm
3
/min 

Numerical 
Residualstressin 
radial direction 

(MPa) 

1 -1 -1 0 -1 0 0 19.50 18.23 4.50 4.19 1710.00 
2 1 -1 0 -1 0 0 12.48 12.03 2.45 2.22 1808.00 
3 -1 1 0 -1 0 0 43.20 41.20 6.20 5.79 1914.00 
4 1 1 0 -1 0 0 33.10 32.50 6.10 5.88 1850.00 
5 -1 -1 0 1 0 0 27.50 26.90 4.40 4.28 1747.00 
6 1 -1 0 1 0 0 23.10 22.10 4.50 4.31 1808.00 
7 -1 1 0 1 0 0 37.40 36.10 6.50 5.85 1835.00 
8 1 1 0 1 0 0 31.90 31.20 6.10 5.90 1905.00 
9 0 -1 -1 0 -1 0 27.70 26.90 4.70 4.59 1685.00 
10 0 1 -1 0 -1 0 41.00 40.20 6.43 6.09 1889.00 
11 0 -1 1 0 -1 0 17.40 16.10 4.10 3.99 1690.00 
12 0 1 1 0 -1 0 32.00 30.50 5.50 5.00 1911.00 
13 0 -1 -1 0 1 0 25.10 24.10 5.10 4.64 1729.00 
14 0 1 -1 0 1 0 41.00 38.90 6.43 6.00 1861.00 
15 0 -1 1 0 1 0 18.00 16.50 4.10 4.09 1742.00 
16 0 1 1 0 1 0 31.10 29.80 5.50 5.08 1860.00 
17 0 0 -1 -1 0 -1 13.51 12.80 8.33 7.98 1590.00 
18 0 0 1 -1 0 -1 5.25 5.10 6.33 5.97 1660.00 
19 0 0 -1 1 0 -1 19.00 17.90 8.50 8.00 1785.00 
20 0 0 1 1 0 -1 13.50 12.50 7.50 7.02 1711.00 
21 0 0 -1 -1 0 1 34.10 33.80 3.50 3.29 1845.00 
22 0 0 1 -1 0 1 28.49 28.01 2.80 2.59 1820.00 
23 0 0 -1 1 0 1 45.00 44.50 3.40 3.34 1800.00 
24 0 0 1 1 0 1 37.00 36.10 2.80 2.64 1750.00 
25 -1 0 0 -1 -1 0 22.76 22.50 5.01 4.95 1750.00 
26 1 0 0 -1 -1 0 16.50 15.50 5.50 4.90 1826.00 
27 -1 0 0 1 -1 0 38.10 36.70 5.05 4.92 1800.00 
28 1 0 0 1 -1 0 23.70 23.50 5.15 4.96 1772.00 
29 -1 0 0 -1 1 0 27.10 26.30 5.40 4.97 1780.00 
30 1 0 0 -1 1 0 16.50 15.90 5.30 4.88 1826.00 
31 -1 0 0 1 1 0 32.10 31.90 5.25 4.98 1800.00 
32 1 0 0 1 1 0 25.10 24.70 5.30 4.99 1772.00 
33 0 -1 0 0 -1 -1 7.10 6.81 7.00 6.91 1469.00 
34 0 1 0 0 -1 -1 21.50 20.10 9.00 8.81 1794.00 
35 0 -1 0 0 1 -1 7.10 7.01 7.10 6.94 1469.00 
36 0 1 0 0 1 -1 21.30 20.20 9.10 8.89 1794.00 
37 0 -1 0 0 -1 1 21.00 20.05 2.40 2.28 1800.00 
38 0 1 0 0 -1 1 50.10 48.80 3.98 3.91 1920.00 

Temperature  in 
O
C (T) 20 100 300 500 700 900 1350 

Density in kg/m
3 
() 8146 8120 8052 7979 7899 7803 7300 

Thermal conductivity in W/m.K (k) 11.4 12.5 14.0 15.5 21.5 26 31.3 
Specific heat in J/kg.K  (C) 427.14 441.74 481.74 521.74 561.74 601.74 691.74 
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39 0 -1 0 0 1 1 26.20 26.12 2.40 2.34 1800.00 
40 0 1 0 0 1 1 50.10 48.90 3.98 3.94 1920.00 
41 -1 0 -1 0 0 -1 19.00 18.20 8.33 7.94 1725.00 
42 1 0 -1 0 0 -1 13.00 11.95 8.01 7.91 1681.00 
43 -1 0 1 0 0 -1 13.10 11.85 7.20 6.98 1714.00 
44 1 0 1 0 0 -1 6.50 5.92 7.50 7.00 1535.00 
45 -1 0 -1 0 0 1 44.02 43.10 4.00 3.88 1798.00 
46 1 0 -1 0 0 1 35.72 35.10 4.01 3.95 1777.00 
47 -1 0 1 0 0 1 35.96 35.90 2.80 2.69 1879.00 
48 1 0 1 0 0 1 27.50 27.10 2.75 2.74 1829.00 
49 0 0 0 0 0 0 21.00 18.50 4.90 4.79 1757.00 
50 0 0 0 0 0 0 21.00 21.50 4.90 4.69 1757.00 
51 0 0 0 0 0 0 21.00 16.70 4.90 5.09 1757.00 
52 0 0 0 0 0 0 21.00 20.40 4.90 4.59 1757.00 
53 0 0 0 0 0 0 21.00 18.30 4.90 5.09 1757.00 
54 0 0 0 0 0 0 21.00 19.60 4.90 4.54 1757.00 

 

 From Table 6.2, it is clear that the values of the responses predicted by numerical 

model are closer to the experimental results for MRR, TWR and residual stress (RS) in 

radial direction. Thus, it can be concluded that the numerical model providesaccurate 

prediction of responses which confirms the validation of the numerical model. Figures 

6.4-6.6 showscraters predicted by the numerical analysis while machining with brass, 

copper and graphite tool respectively. It is easily noticeable that craters produced with 

graphite electrode are wider and deeper which leading to higher MRR whereas craters 

produced with brass electrode are narrow and smaller having less MRR. Craters 

predicted through copper tool are slightly smaller in radius and depth in comparison to 

graphite tool. The higher thermal conductivity of graphite and copper electrode generates 

higher value of spark energy in between electrodes in comparison to brass tool causing 

higher amount of material to be removed while machining with graphite and copper tool. 
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Figure 6.4 Predicted crater of MRR 5.25 mm3/min at open circuit voltage 80V, discharge 
current 5 A, pulse-on-time 300µs, duty factor 80% flushing pressure 0.3 bar machined 
with brass toolfor 18th reading 

 

 

 

 

 

 

 

 

 

Figure 6.5 Predicted crater of MRR 38.1 mm3/min at open circuit voltage 70V, discharge 
current 5 A, pulse-on-time 300µs, duty factor 90%flushing pressure 0.2 bar machined 
with copper tool for 27th reading 

 

 

 

 

 

 

 

 

 

Figure 6.6 Predicted crater of MRR 45 mm3/min at open circuit voltage 80V, discharge 
current 5 A, pulse-on-time 100µs, duty factor 90% flushing pressure 0.3 bar machined 
with graphite tool for 23th reading 
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Figure 6.7 Predicted TWR of 9 mm3/min at open circuit voltage 80V, discharge current 
7A, pulse-on-time 200µs, duty factor 85%,flushing pressure 0.2 bar,brass tool for 34th 
reading 

 

 

 

 

 

 

 

 

 

 
Figure 6.8 Predicted TWR of 6.1 mm3/min at open circuit voltage 90V, discharge current 
7A, pulse-on-time 200µs, duty factor 80%,flushing pressure 0.3 bar, copper tool for 4th 
reading 

 

 

 

 

 

 

 

 

 

Figure 6.9 Predicted TWR of 3.98 mm3/min at open circuit voltage 80V, discharge 

current 7A, pulse-on-time 200µs, duty factor 85%,flushing pressure 0.2 bar, graphite tool 

for 38th reading 
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Figures 6.7-6.9 shows tool wear occurred on a two dimensional axisymmetric model 

in brass, copper and graphite tool respectively. It is quite clear that tool wear on brass 

tool is higher while machining Inconel 718 in comparison to copper tool and graphite tool. 

This is probably due to high melting point temperature and high thermal conductivity of 

graphite and copper tool material leading to minimal tool wear in comparison with brass 

tool.  

 

 

 

 

 

 

 

 

 

 

Figure 6.10 Thermal stress directly after heat flux in radial directionat open circuit voltage 
90V, discharge current 7A, pulse-on-time 200µs, duty factor 80%, flushing pressure 0.3 
bar, copper tool for 4th reading 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.11 Thermal stress directly after heat flux in circumferential directionat open 
circuit voltage 90V, discharge current 7A, pulse-on-time 200µs, duty factor 80%, flushing 
pressure 0.3 bar, copper tool for 4th reading 

 

Figures 6.10 and 6.11 shows the finite element stress distribution of the thermal 

stress directly after the heat flux in radial and circumferential direction respectively. It is 
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to be noted that the stresses being developed just below the spark is compressive 

whereas the stresses away from the spark is tensile.This is obvious, as the work piece 

heats up after application of heatflux; it unable to expand immediatelyleading to 

generation of compressive thermal stresses in beneath the crater. Similar trend of 

thermal stress distribution has been also observed in the structural model of Alen and 

Chen (2007). 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.12 Residual thermal stress in radial directionat open circuit voltage 90V, 
discharge current 7A, pulse-on-time 200µs, duty factor 80%, flushing pressure 0.3 bar, 
copper tool for 4th reading 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.13 Residual thermal stress in circumferential directionat open circuit voltage 
90V, discharge current 7A, pulse-on-time 200µs, duty factor 80%, flushing pressure 0.3 
bar, copper tool for 4th reading 

Figures 6.12 and 6.13 shows the residual stress remaining in the work piece in radial 

and circumferential direction respectively after the work piece reaches to the room 
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temperature. The compressive stress beneath the crater changes to tensile stress after 

completion of cooling period. The tensile stresses are at their highest near the crater of 

the work material and moving away from crater the value decreases gradually. It is to be 

noted that stress distribution of radial and circumferential stress components are similar 

after the completion of cooling period. A similar trend has been also reported in the 

numerical investigation of Alen and Chen (2007) which confirms the validation of the 

structural model. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.14 Predicted residual thermal stress of 1660MPa in radial direction at open 
circuit voltage 80V, discharge current 5 A, pulse-on-time 300µs, duty factor 80% flushing 
pressure 0.3 bar machined with brass tool for 18th reading 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.15 Predicted residual thermal stress of 1800MPa in radial direction at open 
circuit voltage 70V, discharge current 5 A, pulse-on-time 200µs, duty factor 90%flushing 
pressure 0.2 bar machined with copper tool for 27th reading 
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Figures 6.14-6.16 shows the residual stresses developed on work piece in radial 

direction while machining with brass, copper and graphite tool respectively. From the 

figures it can be observed that the residual stress developed on work material Inconel 

718 is comparatively higher while machining with graphite and copper electrode in 

comparison to brass electrode. Due to higher thermal conductivity of the graphite and 

copper electrode the spark energy in between electrodes is higher in comparison to 

brass. This induces higher value of residual stress on the work surface. However,owing 

to poor thermal conductivity of brass electrode smaller value of material is eroded from 

the machined surface, which induces smaller residual stress on the machined surface. 

 

 

 

 

 

 

 

 

 

 

Figure 6.16Predicted residual thermal stress1920MPain radial direction at open circuit 
voltage 80V, discharge current 7 A, pulse-on-time 200µs, duty factor 85%flushing 
pressure 0.2 bar machined with graphite tool for 38th reading 

In this work, the predicted values of residual stress are compared with earlier studies 

reported by researchers Das et al. (2003) and Allen and Chen (2007).The figures 

indicate that higher value of residual stress is near to the spark locality. This particular 

stress is primarily responsible for the formation of micro-cracks and voids which are 

observed so often on machined surface during SEM analysis.It is to be noted that using 

L6 steel work piece Das et al. (2003) have found residual stress value higher than the 

ultimate tensile strength of the material. In this work, Inconel 718 is used as work 

material which possesses an ultimate tensile strength of about 1300 MPa. From Table 

6.2 it can clearly observed, that the predicted values of the residual stress are higher 

than ultimate tensile strength of Inconel 718 work piece. This is clear indication that 

micro cracks and voids will definitely occur on the machined surface. To relate this 

phenomenon with the experimental analysis, the microcracks and voids are clearly 

visible on the machined surface thorough SEM analysis in chapter 3 figures 3.5 and 3.6. 

Even if, theorders of magnitude of stresses do not match, the distribution of stress 
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matches well with studies reported by previous researchers (Das et al. 2003;Allen and 

Chen 2007). The difference in stress value is due to the difference in thermal and 

mechanical properties and different machining condition of both the materials. 

However,the largest value of residual stress obtained by Allen and Chen (2007) using 

molybdenum work piece is only 376Pa. This is due to the higher thermal conductivity of 

molybdenum work piece (138 W/m.K), which is much higher than thermal conductivity of 

Inconel 718(11 W/m.K) which allows easy dissipation of heat and induces smaller value 

of residual stress on the machined surface. 

6.4.1 Experimental Validation of Residual Stress 

It is not easy tovalidatethe residual stress resultsobtained from a single spark 

analysis by comparing the same with experimentally obtained results from the multi-

spark analysis (Das et al. 2003). However, in this work the work material used in Chapter 

3(Inconel 718) after machining is subjected to the X-Ray Diffraction analysis to estimate 

the induced residual stressexperimentally and is compared with predicted results of the 

thermo-structural model. The X-ray diffraction measurement is performed in an 

advanced X-ray Diffraction System BRUKER D8 Discover operating at 40 kV and 40 mA 

is shown in Figure 6.17(a). Figure 6.17(b) shows the work material on experimental set 

up.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) X-ray Diffraction machineBRUKER D8 Discover 
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(b) Work material Inconel 718 on Experimental set up 

Figure 6.17 X-ray Diffraction machine BRUKER D8 Discover 

For experimental stress measurement the work material is cut in to number of small 

pieces so as to fit in the holder of the machine. The X-ray Diffraction System is provided 

with a vertical goniometer equipped with a Cu-radiation source, λCuKα= 1.54 A.The plane 

considered for the analysis was (3 1 1) andtilt angle „ψ‟ was varied from ± 45o.The 

residual stress profiles are conventionally analysed using sin2ψ method. Peak positions 

were calculated using the conventional Gaussian curve fitting and the slope of the line 

represents the magnitude of the residual stress for a given Sin2ψ. This calculation was 

performed usingthe commercial software Leptos 7 by BRUKER. Figure 6.18 shows the 

strain versussin2ψ plot of Inconel 718.The X-ray diffraction patterns of the measure peak 

of thework material Inconel 718 at different tiltangles (ψ) is shown in Figure 6.19. Boththe 

figures shown here are meant for a particularsample i.e. for experiment no 1 only. Similar 

procedure was adopted tomeasure the residual stresses for other sample. 

Figure 6.18 Strain Versus Sin2ψ plot 
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Figure 6.19X-ray diffraction peak of Inconel 718 at different tilt (ψ) angles 

Table 6.3 shows calculated values of the residual stress obtained through 

experimental investigationin radial and circumferential directionsin comparison with 

numerical results along with machining conditions. From the table it can be observed 

thatalthough the exact values of experimental and numerical results of stresses do not 

match, the order of magnitude of the predicted values of stress obtained through the 

thermo-structural model isexistingwithin the results of the experimental investigation. 

Hence, it can be concluded that the thermo-structural model provides reasonably 

accurate prediction of responses. 

Table 6.3 Residual stress value obtained through experimental investigation in 
comparison with numerical results along with machining conditions 

Run 
order 

A 
in 

Volt 

B 
in 

Amp 

C 
in 
µs 

D 
in 
% 

E 
in 

Bar 

F 
Tool 

Expt. 
Stress in 

radial  
direction 
(MPa) 

Num. 
Stress in  

radial 
direction 
(MPa) 

Expt. 
Stressin 

circumferential 
direction 
(MPa) 

Num. 
Stress in 

circumferential 
direction 
(MPa) 

1 70 3 200 80 0.3 Copper 1650±210 1780 -468±80 -486 
2 90 3 200 80 0.3 Copper 1686±250 1808 -480±92 -505 
3 70 7 200 80 0.3 Copper 1805±210 1914 -585±115 -562 

 

6.5 Parametric study on the proposed model 

Parametric investigations were conducted by the proposed numerical EDM process 

model with an objective to realize the impact of input process parameters on the 

responses.The input parameters such as discharge current is varied from 3 to 13 Amp in 

the steps of 2 Amp, pulseontime is varied from 100 to 400µs in steps of 100µs, duty 

factor is varied from 80 to 90% in steps of 5%, and break down voltage is varied from 40 
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to 50V in steps of 5V.  More than one hundred twenty numerical simulations were 

conducted to investigate the influence of selected processes parameters on the 

responses. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.20 Variation of MRR with discharge current 

6.5.1 Effect of discharge current on MRR, TWR and residual stress 

The mostdominant process parameters in EDM process is discharge current as it 

significantly affects the total discharge energy. Figure 6.20shows the variation of MRR 

with discharge current. It is clearly evident that MRR increases briskly with 

increaseindischargecurrentfor any value of dutyfactor. As the duty factor increases, the 

increase of MRR with increase of discharge current is more pronounced. Smaller values 

of discharge current and duty factor lead to better surface finish during machiningwhile 

greater values are suggested for rough and course machining. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.21 Variation of TWR with discharge current 
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Figure 6.21 shows the variation tool wear rate with discharge current. Figure shows 

thaterosion of tool is faster at higher values of discharge current and duty factor which 

results decreasingproductivity and increasing the cost of machining of the EDM process. 

So, smaller value of discharge current and duty factor are suggested with minute tool 

wear for increasing productivity of the process. 

Figure 6.22 shows the variation of residual stress with discharge current. Residual 

stress increases rapidly with increase in discharge current and voltage affecting the 

surface integrity and reducing the fatigue life of the machined surfaces. Hence, moderate 

ranges of discharge current and voltage can be adopted for least stresses to be 

developed on machined surface with an objective to maximize the material removal rate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.22 Variation of residual stress with discharge current 

 

Figures 6.23 and 6.24shows the variation in crater radius and crater depth with 

discharge current. It is quite clearly evident that both crater radius and depth increase 

monotonically with increase in discharge current. Therefore, higher value of discharge 

current produces wider and deeper holes which will lead to higher material removal but 

causes rough machining. For finishing machining operation, smaller ranges of discharge 

current can be suggested subjected to smaller and narrow craters. 

 

 

 

 



180 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.23 Variation of crater radius with discharge current 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.24 Variation of crater depth with discharge current 

 

6.5.2Effect of pulse-on-time on MRR, TWR and residual stress 

The interval for which the total discharge energy is to be applied on the work surface 

is called as pulseontime. It is an important process parameter in EDM process as it 

decides spark duration. Figure6.25 shows the variation of MRR with pulseontime.It 

shows an increasing trend with increase in pulseontime initially and then shows a 

reducing trend before reaching an extreme value. This is perhaps due to constant duty 

factorwhich is causing a reduction in flux density due to lack of sparks. Similar 

observations have also been observed by Joshi and Pande (2009)and experimental 
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investigation of Panda and Bhoi (2005).Smaller value of pulseontime usually (100-

250)µscan be adopted for improved MRR which might cause rough machining while, 

higher value of pulseontime greater than 250µsare suggested for finishing machining 

operation. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.25 Variation of MRR with pulse-on-time 

Figure 6.26 shows the variation of residual stress with pulse on time. It shows a 

decreasing trend with increase in pulse on time. Constant duty factor is causing a 

reduction in flux density decreasing the heat affected zones leading to fall in residual 

stress. Hence, moderate range of current and higher value of pulse on time, usually 

greater than 300µs, is recommended for increased MRR and small residual stresses on 

wok piece during machining. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.26 Variation of residual stress with pulse-on-time 
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Figure 6.27 Variation of TWR with pulse-on-time brass tool 

Figure 6.27 show the variation in tool wear with pulseontime on the copper tool. 

Following the trend of material removal rate, tool wear also increases with increase in 

pulseontime initially but shows a decreasing trend further before reaching an extreme 

value matching to the numerical analysis of Joshi and Pande (2009). This is perhaps due 

to constant duty factor which is causing a reduction in flux density due to lack of sparks. 

Spark duration of greater than 300µs is convenient for finishing machining condition as 

tool wear is minimal. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.28 Variation of crater radius with pulse-on-time  
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 Figures6.28 and 6.29 shows the variation in crater radius and crater depth with 

pulseontime respectively. Crater radius increases slightly with increase in pulseontime 

and remains constant at higher values of current but tends to decrease for lower value of 

current (5 amp.). However, crater depth shows a decreasing trend with increase in pulse-

on-time. Since duty factor is remaining constant, number of sparks per unit time 

decreases with the increase of pulse-on-time causing decrease in crater radius and 

crater depth. As a result, MRR per pulse gets reduced. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.29 Variation of crater depth with pulse-on-time  

5.3 Effect of duty factor on MRR, TWR and residual stress 

The important process parameter which controls the number of sparks per unit time 

is the duty factor. It is defined as the ratio of pulseontime to total spark time. Higher 

values of duty factor indicateincrease in number of sparks per unit time. It can be 

observed from Figures 6.17 and 6.18 that increase in duty factor results in increase of 

MRR and TWR. For finishing machining condition, smaller valuesof duty factor can be 

suggested while upper ranges can be recommended for higher MRR with more tool 

wear.However, duty factor doesnot contribute much to the variation of residual stresses. 

 

6.6 Conclusions 

A numerical approach of modelling of electrical discharge machining on Inconel 718 

super alloy has been presented in this chapter.The results obtained by numerical 

analysis are validated through extensiveexperimentation on a die-sinking EDM machine. 

It can be concluded, that numerical method provides reasonably accurate estimation of 

responses. The proposed model provides an inexpensive time saving alternative to study 
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the performance of machining before going for actual cutting operation.Parametric study 

is carried out on important process parameters to study their effects on responses. The 

proposed model can be used for selecting ideal process states to improve EDM process 

efficiency and finishing capability.The approach can be extended to study machining 

behaviour of other work-tool piece combinations. Therefore, prediction of residual 

stresses helps the tool engineers to go for robust machining operation. Some of the 

major findings from the model are discussed in the paragraph below. 

The parametric study carried on proposed model indicates that discharge current, 

open circuit voltage, and pulse-on-time exhibit significant effect on performance 

measures. It is observed that craters produced with graphite and copper electrodes are 

wider and deeper in comparisontocrater produced withbrass electrode leading to higher 

MRRfor copper and graphite electrode. Owing to higher thermal conductivity tool wear is 

minimal while machining with graphite and copper electrode in comparison to brass 

electrodes. The thermo-structural model proposed in the study, shows that compressive 

stresses developed beneath the crater and moving away from crater both radially and 

axially the stress becomes tensile.On comparison of experiment numbers 18 (brass tool) 

and 22 (graphite tool) shown in Table 6.2, it is observed that residual stress can be 

reduced up to 8.97% if machined with brass tool. 
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7.1 Introduction 

This work explores the influence of different tools, deep cryogenic treatment of tools 

subjected to different soaking duration and a hybrid approach of powder mixed EDM of 

cryogenically treated electrodes on machinability of Inconel 718 super alloy through 

extensive experimentation and analysis. The data collected for the study is based on a Box-

Behnken design, a popular response surface methodology. Regression analysis is 

conducted to relate the machining parameters with the performance measures. A novel 

multi-objective particle swarm optimization (MOPSO) algorithm has been adopted for 

simultaneous optimization of multiple objectives.The best ranked solution is identified from a 

large number of non-dominated solutions applying maximum deviation theory.Finally, a 

thermal model based on finite element method has been proposed to predict the MRR and 

TWR when work piece is machined with different electrode materials. A coupled thermo-

structural model has been also proposed to estimate the residual stresses. 

 

7.2 Summary of finding   

Extensive experimental and numerical simulationsare carried out to analyze theinfluence 

of important process parameters on performance measures of the EDM process. Some of 

the major findings from this research work are discussed in the paragraphs below: 

From the exhaustive study of different tool materials (Chapter 3), it is observed that tool 

material, discharge current and pulse-on-time are found to be the important process 

parameters for all the performance measures while machining Inconel 718. From ANOVA 

table (Table 3.6), it is observed that tool material is the most influential parameter for MRR 

with highest percentage of contribution of 49.74% followed by discharge current, pulse-on-

time, open circuit voltage and duty factor with percentage contribution of 24.76%, 5.48%, 

5.40% and 4.16% respectively. From Table 3.7,  it is observed that tool material is found to 

be the most influential parameter for EWR with highest percentage of contribution of 61.84% 

followed by discharge current, pulse-on-time, open circuit voltage and duty factor with 

percentage contribution of 2.44%, 2.37%, 1.76% and 1.56% respectively.From Table 3.8, it 

is observed that tool material is found to be the most influential parameter for surface 

roughness with highest percentage of contribution of 67.13% followed by discharge current, 

pulse-on-time and open circuit voltage with percentage contribution of 16.88%, 3.78% 

and0.16% respectively.From Table 3.9, it is observed that tool material is found to be the 

most influential parameter for radial overcut with highest percentage of contribution of 

85.56%, followed by discharge current, pulse-on-time and duty factor with percentage 
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contribution of 8%, 2.56% and 0.07% respectively. From Table 3.10, it is observed that tool 

material is found to be the most influential parameter for white layer thickness with highest 

percentage of contribution of 96.94% followed by discharge current, pulse-on-time and duty 

factor with percentage contribution of 1.53%, 0.14% and 0.09% respectively. Material 

removal is comparatively high while machining with graphite tool followed by copper and 

brass. Due to high value of spark energy between electrodes, graphite and copper 

electrodes exhibit high MRR in comparison to brass electrode. EWR is comparatively less 

with the use of graphite electrode followed by copper electrode because low TWR and high 

MRR is observed.Brass electrode exhibits the poorest performance with regard to EWR due 

to high TWR. Brass tool at small values of discharge current produces fine surface quality 

followed by copper and graphite tools due to small spark energy between electrodes 

causing erosion of smaller size particle from machined surface. On comparison of 

experiment numbers 18 (brass tool) and 22 (graphite tool) shown in Table 3.5, it is observed 

that MRR can be increased up to 449.21% whereas EWR can be reduced up to 92.08% 

while machining with graphite electrode. It is also observed that surface roughness, radial 

overcut and white layer thickness can reduced up to 52.77%, 77.65% and 63.85% 

respectively while machining with brass electrode. Graphite electrode exhibits the poor 

performance in regard to the radial overcut followed by copper due to high MRR. Brass 

electrode at small values of discharge current produces precise and accurate EDMed 

components owing to small MRR suited for finishing operation. Owing to higher MRR, 

graphite electrode produces thicker white layer thickness on the machined surface. Brass 

electrode at small values of spark energy produces small value of white layer on the 

machined surface. Copper electrode produces white layer value those between graphite and 

brass.Hence, it can be concluded that graphite tool is more favorable than the copper and 

brass electrodes for machining of Inconel 718 work material if high material removal and low 

tool wear is desired, particularly in roughing operation.  

From the study of cryogenic treatment of tool (Chapter 4), it is observed that the thermal 

conductivity and micro-hardness of brass electrode improves as soaking duration increases 

(Table 4.3). The treated tools help in effective heat transfer away from the electrode 

increasing the wearing resistance of the tool. From ANOVA table (Table 4.5), it is observed 

that discharge current is found to be the most influential parameter for MRR with a 

percentage contribution of 58.48% followed by pulse-on-time, open circuit voltage and duty 

factor with percentage contribution of 5.85%, 5.62% and 4% respectively. From Table 4.6, it 

is observed that soaking duration is found to be the most influential parameter for EWR with 
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percentage contribution of 78.35% followed by discharge current, pulse-on-time, duty factor 

and open circuit voltage with percentage contribution of 10.66%, 2.13%,1.04% and 0.64% 

respectively.From Table 4.7, it is observed that soaking duration is found to be the most 

influential parameter for surface roughness with percentage contribution of 58.99% followed 

by discharge current, pulse-on-time and duty factor with percentage contribution of 18.60%, 

9.62% and 0.39% respectively.From Table 4.8, it is observed that soaking duration is found 

to be the most influential parameter for radial overcut with percentage contribution of 

79.01% followed by discharge current, pulse-on-time and duty factor with percentage 

contribution of 8.88%, 2.83% and1.18% respectively.From Table 4.9, it is observed that 

soaking duration is found to be the most influential parameter for white layer thickness with 

percentage contribution of 95.55% followed by discharge current, pulse-on-time and duty 

factor with percentage contribution of 2.87%, 0.22% and 0.04% respectively. The study 

confirms that significant reduction in EWR, surface roughness, radial overcut and white layer 

thickness can be achieved if the tools are subjected to longer soaking duration (treated up to 

36 hrs.). Comparison of experiment numbers 35 (untreated brass tool) and 39 (cryo-treated 

brass tool for soaking duration of 36 hrs.) (Table 4.4), it is observed that EWR, surface 

roughness, radial overcut and white layer thickness can be reduced up to 48.29%, 31.72%, 

88.33% and 58.45% respectively due to longer treatment soaking duration. This shows that 

soaking duration is an important parameter to improve performance measures in EDM. 

Scanning electron microscope (SEM) micrograph (Figures 4.6 a-b-c) show that electrodes 

treated with longer soaking duration can maintain good surface integrity of the machined 

surface and retain initial shape of the tool. The improvement in thermal properties of brass 

electrode allows easy dissipation of heat from tool material. As a result, better retention in 

tool shape, uniform sparking and superior quality of the machined surface is achieved. The 

flushing efficiency of the machined surface improves owing to improved machined surface 

quality which in turn reduces the deposition of molten material on the machined surface and 

decreases the white layer thickness. Soaking duration, discharge current, pulse-on-time and 

duty factor exhibit significant influence on the performance measures. Cryogenic treatment 

soaking duration hardly influence MRR. It was expected that deep cryogenic treatment of 

the brass electrode will result in higher MRR. But, the high micro-hardness and low thermal 

conductivity of Inconel 718 work material does not allow higher volume of material to be 

eroded from the work surface. With improved thermal conductivity and micro-hardness, 

brass can be used as potential electrode material to produce precise and accurate EDMed 

components, particularly in finishing operation. 
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From the hybrid experimental investigation of powder-mixed dielectric and cryogenically 

electrodes (Chapter 5), it is observed that the thermal conductivity and micro-hardness of 

brass electrode improves due to deep cryogenic treatment. As a result, the wearing 

resistance of the tool increases due to easy dissipation of heat. Due to deep cryogenic 

treatment, the heat dissipation capacity of Inconel 718 work material improves and helps in 

decreasing local temperature rise on the work piece surface owing to improvement in 

thermal conductivity. Consequently, the ability of the work piece to absorb and dissipate 

heat increases which eventually increases the MRR. The study confirms that significant 

improvement on material removal rate and reduction in EWR, surface roughness, radial 

overcut and white layer thickness can be achieved if both the electrodes are cryogenically 

treated. Comparisonof experiment numbers 20 (untreated work piece and treated tool)and 

24 (both tool and work piece treated) (Table 5.4), it is observed that MRR can be increased 

upto71.92% and EWR, surface roughness, radial overcut and white layer thickness can be 

reduced upto 33.99%, 35.57%, 72.82% and 35.87% respectively when both the electrodes 

are cryogenically treated and worked in a powder mixed dielectric condition. This shows that 

treatment to both the electrodes results in better EDM performance measures in comparison 

to either treatment of the tool or treatment of the work piece. The study also reveals that the 

presence of suspended powder particles can enhance the machining efficiency of the 

process. Comparison of experiment numbers 12 (no suspended particles in dielectric, 

treated work piece and untreated tool) and 16 (highest concentration of suspended particles 

in dielectric, treated work piece and untreated tool) (Table 5.4) indicates that MRR can be 

increased up to 44.31% and EWR, surface roughness, radial overcut and white layer 

thickness can be reduced up to 24.10%, 14.97%, 19.04% and 5.17% respectively when 

machining is done in the presence of suspended powder particles.From ANOVA table 

(Table 5.5), it is observed that discharge current is found to be the most influential 

parameter for MRR with a percentage contribution of 70.98% followed by open circuit 

voltage, work-tool pair, powder concentration and pulse-on-time with percentage 

contribution of 8.68%, 3.03%, 2.11% and 1.17% respectively. From  Table 5.6, it is observed 

that work-tool pair is found to be the most influential parameter for EWR with a percentage 

contribution of 47.84% followed by discharge current, powder concentration open circuit 

voltage and pulse-on-time with percentage contribution of 19.17%, 11.78%, 1.73%, 1.06% 

respectively. From Table 5.7, it is observed that work-tool pair is found to be the most 

influential parameter for surface roughness with a percentage contribution of 37.97% 

followed by discharge current, powder concentration and pulse-on-time with percentage 
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contribution of 28.58%, 12.99% and 6.07% respectively. From Table 5.8, it is observed that 

work-tool pair is found to be the most influential parameter for radial overcut with a 

percentage contribution of 58.70% followed by discharge current, powder concentration and 

pulse-on-time with percentage contribution of 23.91%, 3.91% and 1.52% respectively. From 

Table 5.9, it is observed that work-tool pair is found to be the most influential parameter for 

white layer thickness with a percentage contribution of 88.02% followed by discharge 

current, powder concentration and pulse-on-time with percentage contribution of 4.62%, 

0.72% and 0.21% respectively. From above comparisons, it can be concluded that when 

machining is done in the presence of suspended powder particles with cryogenically treated 

electrodes, the influence of cryogenic treatment work-tool pair is relatively higher on 

performance measures than the suspended powder particles.Discharge current, pulse-on-

time, powder concentration and work-tool pair exhibits significant effect on performance 

measures. SEM micrographs (Figures 5.6, 5.7, 5.8 (a and b)) show that machined surface 

quality and surface integrity is superior when machining is done in the presence of 

suspended powder particles and both the electrodes are cryogenically treated.  

Finally, parametric study carried on thermo-structural model (Chapter 6) indicates that 

discharge current, open circuit voltage, and pulse-on-time exhibit significant effect on 

performance measures. It is observed that, craters produced with graphite and copper 

electrodes are wider and deeper in comparison to crater produced with brass electrode 

leading to higher MRR for copper and graphite electrode. Owing to higher thermal 

conductivity tool wear is minimal while machining with graphite and copper electrode in 

comparison to brass electrodes. The thermo-structural model proposed in the study, shows 

that compressive stresses developed beneath the crater and moving away from crater both 

radially and axially the stress becomes tensile. On comparison of experiment numbers 18 

(brass tool) and 22 (graphite tool) shown in Table 6.2, it is observed that residual stress can 

be reduced up to 8.97% if machined with brass tool.  . 

 

7.3 Contribution of this research work 

This work provides optimum parametric setting for achieving enhanced machining 

efficiency considering the current research trends and developments arising in EDM. The 

study reflects the complex and higher order effects of the various important process 

parameters on performance measures through experimental analysis and justification. 

Inconel 718 is used as work piece material owing to its extensive application in aerospace 

engineering viz. manufacturing of components for liquid fueled rockets, rings and casings, 
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sheet metal parts for aircraft, land-based gas turbine engines, cryogenic tank fasteners and 

instrumentation parts.This work shows that deep cryogenic treatment helps in achieving 

enhanced machining efficiency even for low conductive materials like Inconel 718 and brass 

as work-tool pair. The thermo-structural model proposed in this study provides an 

inexpensive time saving alternative to study performance of machining before going for 

actual cutting operation.Therefore, accurate prediction of crater dimension and induced 

residual stresses will help the tool engineers to set the best parameters for machining 

operation instead of depending on human judgments. The study offers useful information for 

controlling the machining parameters to improve the machining efficiency of the EDMed 

components. 

PSO  has  an  inherent  drawback  of  getting  trapped  at  local  optimum  due  to  large 

reduction in velocity values as iteration proceeds and poses difficulty in reaching ideal 

solution. The mutation operator predominantly used in genetic algorithm is embedded with 

PSO to avoid such drawbacks of PSO and improve solution quality. A novel multi-objective 

particle swarm optimization algorithm (MOPSO) has been proposed to get the pareto-

optimal solution. Maximum Deviation Theory (MDT) is usedto select the best solutionfrom a 

large number of non-dominated solutions to avoid subjectiveness and impreciseness in the 

decision making for the engineers. 

 

7.4 Limitation of the study 

In spite of several advantages obtained through proposed study, the followings may be 

treated as limitations since they have not been addressed in this study. 

Surface crack density and heat affected zone of the machined surface has not been 

considered as process outputs. The effect of process parameter on these performance 

measures has not been studied.The present study mainly develops empirical, numerical and 

artificial intelligence models but theoretical or mathematical approach needs to be 

developed to study the effect of process parameters on various performance 

measures.Numerical modeling has not been extended for cryogenic treatment and powder-

mixed cryogenic treatment experimental investigation. 

 

7. 5 Future scope 

The present work provides a wide scope for future investigators to explore many aspects 

of EDM process. Followings are some recommendations for future research: 
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The effect of process parameters on surface crack density, heat affected zone and 

circularity of the machined surface can be studied. Mathematical  approach  can  be  

developed  to  study  the  effect  of  process  parameters  on various performance 

measures.Other improved and hybrid non-traditional optimization techniques viz. cuckoo 

search, ant colony optimization, artificial bee colony and fire fly algorithms can be used for 

achieving optimal parametric setting for simultaneously optimize various important 

performance measures. Finite element models can be extended for cryogenic treatment and 

powder-mixed cryogenic treatment experimental investigation. 
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