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Abstract
Recently nanotechnology has become a challenging area of research. Accordingly, a new class
of materials with revolutionary properties and devices with enhanced functionality has been
developed by various researchers. Structural elements such as beams, membranes and plates in
micro or nanoscale have a vast range of applications. Conducting experiments at nanoscale size
is quite difficult and so development of appropriate mathematical models plays an important
role. Among various size dependent theories, nonlocal elasticity theory pioneered by Eringen
is being increasingly used for reliable and better analysis of nanostructures. Finding solutions
for governing partial differential equations are the key factor in static and dynamic analyses of
nanostructures. It is sometimes difficult to find exact or closed-form solutions for these differ-
ential equations. As such, few approximate methods have been developed by other researchers.
But, the existing methods may not handle all sets of boundary conditions and sometimes those
are problem dependent. Accordingly, computationally efficient numerical methods have been
developed here for better understanding of static and dynamic behaviors of nanostructures.
Also these numerical methods can handle all classical boundary conditions of the static and
dynamic problems of nanobeams and nanoplates with ease.

It may be noted that application of numerical methods converts bending problem to system
of equations while buckling and vibration problems to generalized eigen value problems. The
present thesis first investigates bending of nanobeams and nanoplates. Next buckling and vi-
bration of the above nanostructural members are studied by solving the corresponding partial
differential equations. In the above regard, various beam and plate theories are considered for
the analysis and corresponding results are reported after the convergence study and validation in
special cases wherever possible. Finally, few complicating effects are also considered in some
of the problems. As regards, structural members (nanobeams and nanoplates) with variable
material properties are frequently used in engineering applications to satisfy various require-
ments. For efficient design of nanostructures, sometimes non-uniform material properties of
the nano-components should also be studied. As such, we have considered here non-uniform
material properties of nanobeams and nanoplates and investigated the deflection in static prob-
lems and vibration characteristics in vibration problems. Similarly, other complicating effects
such as surrounding medium and temperature are important in the nanotechnology applications
too. Accordingly, the effect of these complicating effects on the nanobeams and nanoplates
have also been investigated in detail.

It is worth mentioning that Rayleigh-Ritz and differential quadrature methods have been used to
solve the above said problems. In the Rayleigh-Ritz method, simple and boundary characteris-
tic orthogonal polynomials have been used as shape functions. Use of boundary characteristic
orthogonal polynomials in the Rayleigh-Ritz method has some advantages over other shape
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functions. This is because of the fact that some of the entries of stiffness, mass and buckling
matrices become either one or zero. On the other hand, Differential Quadrature (DQ) method
is also a computationally efficient method which can be used to solve higher order partial dif-
ferential equations that may handle all sets of classical boundary conditions. Accordingly DQ
method has also been used in solving the problems of nanobeams with complicating effects.

In view of the above, systematic study of static and dynamic problems of nanobeams and
nanoplates are done after reviewing the existing ones. Various new results of the above prob-
lems are reported in term of Figures and Tables. The new results obtained through the above
mathematical models may serve as bench mark and those may certainly be used by design
engineers and practitioners to validate their experimental work for better design of the related
nanostructures.

Keywords: Boundary characteristic orthogonal polynomials, Chebyshev polynomials, vi-
bration, buckling, bending, nanobeams, nanoplates, mode shapes, aspect ratio, length, nanos-
tructures.

x



 

 

 

 

 

 

 

Chapter 1 

 

Introduction 
 

 

 

 

 

 



Chapter 1

Introduction

1.1 Background

Nanotechnology is concerned with the fabrication of functional materials and systems at the
atomic and molecular levels. Recently, development of nanotechnology enables a new gen-
eration of materials with revolutionary properties and devices with enhanced functionality
(Ansari and Sahmani 2011) having a vast range of applications, such as in medicine, electron-
ics, biomaterials and energy production (Şimşek and Yurtcu 2013). Recently nanomaterials
have encouraged the interest of the scientific researchers in mathematics, physics, chemistry
and engineering. These nanomaterials have outstanding mechanical, chemical, electrical, op-
tical and electronic properties. Because of these properties, the nanomaterials are perceived
to be the components for various nanoelectromechanical systems and nanocomposites. Some
of the common examples of these nanomaterials are nanoparticles, nanowires and nanotubes
(viz. carbon nanotubes, ZnO nanotubes), etc. Nanomaterials are the basis material of many
nanoscale objects which are referred to as nanostructures (Murmu and Adhikari 2010a). It is
thus quite important to have proper knowledge of mechanical behavior for the development of
nanostructures. Studying the behavior of structures at very small length scales has become one
of new frontier of research in the area of computational nanomechanics (Ansari and Sahmani
2011). Structural elements such as beams, sheets and plates in micro or nanolength scale which
are commonly used as components in microelectromechanical systems (MEMS) or nanoelec-
tromechanical systems (NEMS) devices (Lu et al. 2007), present a significant challenge to
researchers in nanomechanics (Mahmoud et al. 2012). Invention of carbon nanotubes (CNTs)
by Ijima in 1991 has initiated a new era in nano-world (Danesh et al. 2012). Some of the
excellent properties of CNTs are high stiffness, low density, very high aspect ratio, remark-
able electronic properties, high conductivity and high strength (Ehteshami and Hajabasi 2011).
Some of the applications of CNTs include atomic force microscopes (AFMs), field emitters,
nanofillers for composite materials and nanoscale electronic devices. They are also used for
the development of superconductive devices for microelectromechanical (MEM) and nano-
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electromechanical (NEM) system applications (Wang and Varadan 2006). Therefore, research
on CNTs may contribute to some new applications (Wang and Varadan 2006). Hence static and
dynamic behaviors of CNTs have become one of the interesting topic in the past few years.

Similar to CNTs, nanoplates in the form of graphene sheets have aroused interest due to their
unique superior properties. Graphene sheets are commonly used as components in MEMS/NEMS
devices such as resonators, mass sensors and atomistic dust detectors (Farajpour et al. 2011).
Nanoplates may be used as thin film elements, nanosheet resonators and paddle like resonators
(Aksencer and Aydogdu 2012).

Conducting experiments at nanoscale size is quite difficult and expensive. In this regard, devel-
opment of appropriate mathematical models for nanostructures (such as graphene, carbon nan-
otube, nanorod, nanofibre etc.) became an important concern (Pradhan and Phadikar 2009b).
Generally three approaches such as atomistic, hybrid atomistic-continuum mechanics and con-
tinuum mechanics have been developed to model nanostructures (Narendar and Gopalakrishnan
2012). Some of atomistic approaches are classical Molecular Dynamics (MD), Tight Bind-
ing Molecular Dynamics (TBMD) and Density Functional Theory (DFT) (Wang and Varadan
2006). But the atomic methods are limited to systems with a small number of molecules and
atoms. As such, it is restricted to the study of small scale modeling (Wang and Varadan 2006).
Also this approach is computationally intensive and very expensive (Pradhan and Phadikar
2009a). Continuum mechanics results are found to be in good agreement with those obtained
from atomistic and hybrid approaches (Narendar and Gopalakrishnan 2012).

Small scale of nanotechnology’s makes the applicability of classical or local continuum models
such as beam, shell and plate questionable. Classical continuum models do not admit intrinsic
size dependence in the elastic solutions of inclusions and inhomogeneities. At nanoscale size,
the material microstructure such as lattice spacing between individual atoms becomes increas-
ingly important and the discrete structure of the material can no longer be homogenized into a
continuum. It is therefore needed to extend continuum models for considering scale effect in
nanomaterial studies. As the length scales are reduced, the influences of long range interatomic
and intermolecular cohesive forces on the static and dynamic properties become significant
and thus could not be neglected. Classical continuum mechanics exclude these effects and thus
fail to capture the small scale effects when dealing with nanostructures. It is found that small
size analysis using local theory over predicts the results. Therefore it is quite necessary to
consider small effects for correct prediction of nanostructures (Narendar and Gopalakrishnan
2012). Small scale effects and the atomic forces must be incorporated in the realistic design of
the nanostructures [viz., nanoresonantors, nanoactuators, nanomachines and nanooptomechan-
ical Systems] to achieve solutions with acceptable accuracy. Both experimental and atomistic
simulation results show that when the dimensions of the structures become small then the size
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effect has significant role in the mechanical properties (Murmu and Adhikari 2010a). Classi-
cal continuum models are scale free theory and it does not include the effects arising from the
small scale (Murmu and Adhikari 2010a). As such, various size-dependent continuum models
such as strain gradient theory (Nix and Gao 1998), couple stress theory (Hadjesfandiari and
Dargush 2011), modified couple stress theory (Asghari et al. 2010) and nonlocal elasticity
theory (Eringen 1997) came into existence. Among these theories, nonlocal elasticity theory
pioneered by Eringen has been widely used by the researchers (Thai 2012). Recent literature
shows that nonlocal elasticity theory is being increasingly used for reliable and better analysis
of nanostructures (Murmu and Adhikari 2010a). Applications of nonlocal continuum mechan-
ics include lattice dispersion of elastic waves, fracture mechanics, dislocation mechanics and
wave propagation in composites (Aydogdu 2009). Generally, nonlocal elasticity theory is used
in two forms that is nonlocal differential elasticity and nonlocal integral elasticity (Ghannad-
pour et al. 2013). But nonlocal differential elasticity is more popular due to its simplicity
(Ghannadpour et al. 2013). In nonlocal elasticity theory, the stress at a point is a function of
the strains at all points in the domain whereas in classical continuum models, the stress at a
point is a function of the strains at that points in the domain (Murmu and Adhikari 2010a).

In the last few years, there has been extensive research on the bending, free vibration and buck-
ling of nanostructures based on nonlocal elasticity theory. Vibration analysis of nanostructures
include applications in structural engineering such as long span bridges, aerospace vehicles,
automobiles and many other industrial usages. When nanostructure-elements are subjected to
compressive inplane loads then, these structures may buckle (Emam 2013). It is well known
fact that buckling of a nanostructure initiates instability. In this context, knowledge of buckling
load is quite necessary. As such, proper understanding of the stability response under in plane
loads for nanostructures is quite necessary.

Beam theories such as Euler-Bernoulli beam theory (EBT), Timoshenko beam theory (TBT),
Reddy-Bickford beam theory (RBT), general exponential shear deformation beam theory (ABT),
Levinson beam theory (LBT) and plate theories such as classical plate theory (CPT), first-order
shear deformation plate theory FSDT), third-order shear deformation plate theory (TSDT) etc.
have been developed by various researchers (Wang et al. 2000).

In Euler-Bernoulli beam theory, both transverse shear and transverse normal strains are ne-
glected. In Timoshenko beam theory, a constant state of transverse shear strain and also shear
stress with respect to the thickness coordinate is included. Due to this constant shear stress
assumption, shear correction factors are needed to compensate the error. Shear correction fac-
tors depend on the material and geometric parameters, the loading and boundary conditions.
Next, we have different third order beam theories such as Reddy-Bickford beam theory (RBT),
Levinson beam theory (LBT) etc. In these theories, shear correction factors are not needed
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(Wang et al. 2000). Levinson derived equations of equilibrium using vector approach. As
such, governing equations are same as those of Timoshenko beam theory. But Reddy derived
equations of motion using the principle of virtual displacements. Thus Reddy (Reddy 1997)
and Levinson beam theories have same displacement and strain fields with different equations
of motion. One may also note that the equations of Levinson’s beam theory cannot be derived
from the principle of total potential energy (Reddy 2007).

In classical plate theory, both transverse shear and transverse normal strains are neglected. In
FSDT , transverse shear strain is assumed to be constant with respect to the thickness coor-
dinate. As such, shear correction factors are taken into consideration to compensate the error.
Similar to third-order beam theories, shear correction factors are not needed in third-order plate
theories (Wang et al. 2000).

Structural members with variable material properties are frequently used in engineering to sat-
isfy various requirements. The literature reveals that previous studies done in nanobeams and
nanoplates are mostly with constant parameters. But in actual practice, there may be a variation
in these parameters. Hence for practical applications of nanobeams and nanoplates, one should
investigate geometrically non-linearity model of nanostructures. Study of various aspects of
nanotubes such as bending, buckling and thermal properties etc. has attracted considerable at-
tentions among the researcher of nanotechnology. Thermal effects can induce an axial force
within CNTs which may lead to bending and buckling (Lee and Chang 2009). Thermal vibra-
tion frequencies may be used to estimate Young’s modulus of various nanotubes. Therefore,
investigation of thermal effect is having great importance. Moreover, the surrounding elastic
medium such as Winkler-type and Pasternak-type elastic foundation has also a great influence
on the analysis of carbon nanotubes.

As mentioned in the above paragraphs, conducting experiments at nanoscale size is quite dif-
ficult to handle. In this regard, mathematical modeling of nanostructures is quite necessary.
In all of the above said problems, differential equations play a vital role. These are solved
by using analytical methods in simple cases and solutions have been given for few boundary
conditions. Unfortunately, these analytical methods are not capable of handling all sets of
boundary conditions. Also, exact or closed-form solutions for the governing differential equa-
tions may sometimes be difficult. In this regard, one may seek approximate solution of the
above problems. Accordingly, computationally efficient numerical methods are developed here
which may suit to investigate the static and dynamic behaviors of nanostructures (nanobeams
and nanoplates) with all classical boundary conditions.
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1.2 Literature review

In this section, we have discussed some of the relevant works that have been carried out by the
previous authors. First we have discussed below bending, buckling and vibration of nanobeams
and then the nanoplates.

1.2.1 Nanobeams

Here, we have shown some of the relevant works related to bending, buckling and vibration of
nanobeams.

1.2.1.1 Bending

Reddy (2007) reformulated various nonlocal beam theories such as Euler-Bernoulli, Timo-
shenko, Reddy and Levinson used for the study of bending, buckling and vibration of nanobeams.
Equations of motion of the above beam theories are presented along with analytical solutions
for simply-supported edge condition. In another work, Reddy and Pang (2008) presented an-
alytical solutions for bending, buckling, and vibration of nanobeams subjected to four sets of
boundary conditions. Aydogdu (2009) developed a general nonlocal beam theory to derive gov-
erning equations from which all the well known beam theories have been obtained. A nonlocal
shear deformation beam theory has been proposed by Thai (2012) which has strong similarities
with nonlocal Euler-Bernoulli beam theory with respect to the equations of motion, bound-
ary conditions and stress resultant expressions. Analytical solutions have also been presented
for a nonlocal sinusoidal shear deformation beam theory (Thai and Vo 2012). Şimşek and
Yurtcu (2013) examined bending and buckling of a functionally graded (FG) nanobeam based
on nonlocal Timoshenko and Euler-Bernoulli beam theories. Analytical solutions have been
presented by Wang et al. (2006) for bending of nanobeams based on nonlocal Timoshenko
beam theory. Some of the numerical methods such as Ritz and Differential Quadrature (Wang
and Bert 1993; Janghorban and Zare 2011 ) have also been developed for bending analysis of
nanobeams. Ghannadpour et al. (2013) applied Ritz method to study bending, buckling and vi-
bration analyses of nonlocal Euler beams. Civalek and Demir (2011) used Differential Quadra-
ture method to investigate buckling and bending analyses of cantilever carbon nanotubes based
on Euler-Bernoulli beam theory. Alshorbagy et al. (2013) applied finite element method for
static analysis of nanobeams based on nonlocal Euler-Bernoulli beam theory. Similarly, finite
element method has also been applied by Eltaher et al. (2013a) to analyse static and stability
of functionally graded nanobeams. Civalek and Akgöz (2009) presented deflection shapes and
bending moment for nonlocal Euler-Bernoulli beams subjected to different boundary condi-
tions. Bending analysis of tapered nanowires with circular cross section has been investigated
by Janghorban (2012).
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1.2.1.2 Buckling

Buckling analysis of nano rods/tubes has been investigated analytically by Wang et al. (2006)
based on nonlocal Euler-Bernoulli and Timoshenko beam theories. Static nonlinear postbuck-
ling response of nanobeams has been studied analytically by Emam (2013) and the results show
that as the nonlocal parameter increases, critical buckling load reduces. Some of the other stud-
ies based on analytical methods are: (Aydogdu 2009; Thai 2012; Reddy and Pang 2008; Kumar
et al. 2008; Şimşek and Yurtc 2013; Yang and Lim 2011). One of the numerical methods such
as Rayleigh-Ritz method has been employed in some of the studies such as buckling analy-
sis of single-walled carbon nanotubes in thermal environments (Ansari et al. 2011a, 2011b),
bending, buckling and vibration problems of nonlocal Euler beams (Ghannadpour et al. 2013),
buckling analysis of single-walled carbon nanotubes subjected to different boundary conditions
(Ansari et al. 2011) etc. Differential transformation method has been applied by Pradhan and
Reddy (2011) to predict the buckling behavior of Single Walled Carbon Nanotube (SWCNT)
embedded in Winkler foundation. Ghannadpour and Mohammadi (2010) applied Chebyshev
polynomials in the Rayleigh-Ritz method to investigate buckling analysis of nanorods based
on Timoshenko beam theory. Sahmani and Ansari (2011) developed state-space method to
study buckling of nanobeams based on Euler-Bernoulli, Timoshenko and Levison beam theo-
ries. Effect of temperature on the buckling analysis of SWCNTs embedded in elastic medium
has been investigated by Narendar and Gopalakrishnan (2011). Nonlocal shell model has been
used by Yan et al. (2010) to study nonlocal effect on axially compressed buckling of triple
walled carbon nanotubes under the influence of temperature. Some of the studies in context
with buckling of single layered graphene sheets based on plate theories are: (Pradhan 2009; ,
Pradhan and Murmu 2010a; Pradhan 2012; Narendar 2011; Anjomshoa et al. 2014; Analooei
et al. 2013). Buckling analysis of SWCNTs embedded in an elastic medium has been analyzed
by Murmu and Pradhan (2009b) based on nonlocal Timoshenko beam theory. Differential
quadrature method has been employed to study thermal buckling analysis of embedded SWC-
NTs subjected to various edge conditions ( Murmu and Pradhan 2010). Analytical solution of
thermal buckling behavior of nanobeams has been analyzed by Tounsi et al. (2013) based on
higher order beam theory.

1.2.1.3 Vibration

Integral equation approach has been employed by Xu (2006) to investigate free transverse vi-
bration of nano-to-micron scale beams and the author found that the nonlocal effect on the
natural frequencies and vibrating modes is negligible for microbeams while it plays a crucial
role in nanobeams. Peddieson et al. (2003) formulated nonlocal version of Euler-Bernoulli
beam theory. Free vibration of Euler-Bernoulli and Timoshenko nanobeams based on nonlocal
continuum mechanics has been solved analytically by Wang et al. (2007). These authors have
given the frequency parameters for different scaling effect parameters. They have given first
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five mode shapes of clamped nanobeams based on nonlocal Timoshenko beam theory for vari-
ous values of scaling effect parameter. Nonlocal elasticity model has been used by Loya et al.
(2009) to study free transverse vibration of cracked Euler-Bernoulli nanobeams. Investigations
have also been carried out for vibration of multiwalled carbon nanotubes. Ansari and Ramezan-
nezhad (2011) studied nonlocal Timoshenko beam model for investigating the large amplitude
vibrations of embedded multiwalled carbon nanotubes including thermal effects. Murmu and
Adhikari (2010a) developed an analytical method to investigate transverse vibration of double-
nanobeam systems based on nonlocal elasticity theory. One may find significant role of non-
local effects in nanoscale devices (Lu et al. 2006). Some numerical methods like meshless
(Roque et al. 2011), differential quadrature (Pradhan and Murmu 2010), finite element (Eltaher
et al. 2013b) and Rayleigh-Ritz have also been applied in various studies related to vibration
of nanobeams. It is not always possible to find analytical solutions for all set of boundary
conditions at the edges. In this regard, Rayleigh-Ritz method (Bhat 1985, 1991; Chakraverty
et al. 1999, 2007; Chakraverty 2009; Chakraverty and Petyt 1997; Dickinson 1978; Singh
and Chakraverty 1994a, 1994b, 1992) is an efficient numerical method in handling all set of
classical boundary conditions. Chebyshev polynomials and boundary characteristic orthogo-
nal polynomials have been used in the Rayleigh-Ritz method to study vibration of Timoshenko
nanobeams (Mohammadi and Ghannadpour 2011; Behera and Chakraverty 2014a, b). Previous
authors have also considered various complicating effects in the vibration of nanobeams based
on nonlocal elasticity theory. Zhang et al. (2005) investigated double walled carbon nanotubes
to examine the influence of nonlocal parameter on the natural frequencies. Double nanobeam
systems are useful in nano-optomechanical systems and sensor applications. Seeing practical
applications, authors have studied vibration of double nanobeam systems and the study shows
that small scale effects are higher with increasing nonlocal parameter in the in-phase vibration
than in the out-of-phase vibration (Murmu and Adhikari 2010). A detailed study has also been
conducted to analyze the influences of nonlocal parameter, length of the tubes, spring constant
and end supports on the nonlinear free vibration characteristics of SWCNTs (Yang et al. 2010)
and Double Walled Carbon NanoTubes (Ke et al. 2009). Eltaher et al. (2012) studied free vi-
bration of functionally graded size dependent nanobeams. Free vibration of SWCNTs has been
investigated based on nonlocal Levinson beam theory (Maachou et al. 2011) and Timoshenko
beam theory (Zidour et al. 2012; Benzair et al. 2008) in thermal environment by employing
analytical solution for simply supported edge condition. Authors found that vibration char-
acteristics are strongly dependent on temperature change. Similar thermal effect may also be
seen on the instability of SWCNTs conveying fluid (Wang et al. 2008). Thermal effect on the
vibration of double-walled carbon nanotubes has been investigated analytically by Zhang et
al. (2007) for simply supported edge condition. Differential quadrature method has also been
employed by Murmu and Pradhan (2009a) to study thermo-mechanical vibration SWCNTs
embedded in elastic medium. Murmu and Adhikari (2009) studied small scale effect on the
vibration of nonuniform nanocantilever. Rafiei et al. (2012) investigated small-scale effect on
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the vibration of non-uniform carbon nanotubes conveying fluid and embedded in viscoelastic
medium. Phadikar and Pradhan (2010) developed finite element nonlocal elastic nanobeams
and nanoplates.

1.2.2 Nanoplates

In this section, we have discussed some of the previous work related to nanoplates.

1.2.2.1 Bending

Analytical solution for bending of simply-supported rectangular nanoplate has been presented
by Aghababaei and Reddy (2009) based on third-order shear deformation plate theory. Kana-
nipour (2014) applied differential quadrature method (DQM) to investigate bending of two-
dimensional rectangular nanoplates based on Kirchhoff and Mindlin plate theories. An analyt-
ical method as been adopted by Nami and Janghorban (2013) to solve the governing equations
for static analysis of simply supported nanoplates based on trigonometric shear deformation
theory in conjunction with nonlocal elasticity theory. Alibeigloo et al. (2013) studied bending
of a simply supported rectangular graphene sheets based on three dimensional theory of elas-
ticity. Bending analysis of rectangular nanoplates subjected to mechanical loading has been
investigated by Nami and Janghorban (2014). Alzahrani et al. (2013) analyzed small scale
effect on the bending of nanoplates embedded in two-parameter elastic medium and subjected
to hygro-thermo-mechanical loading.

1.2.2.2 Buckling

Stability analysis of of nanoplates subjected to both uniaxial and biaxial in-plane loadings has
been studied by Naderi and Saidi (2014) based on modified nonlocal Mindlin plate theory.
Analytical solution for the buckling analysis of rectangular nanoplates has been presented by
Hashemi and Samaei (2011) based on the nonlocal Mindlin plate theory. Bedroud et al. (2013)
investigated axisymmetric buckling analysis of moderately thick circular or annular Mindlin
nanoplates under uniform radial compressive in-plane load. Ravari and Shahidi (2013) de-
veloped finite difference method to study axisymmetric buckling behavior of circular annular
nanoplates and solid disks under uniform compression. Anjomshhoa (2012) presented Ritz
solution for buckling analysis of embedded orthotropic circular and elliptical nanoplates based
on nonlocal elasticity theory. Zenkour and Sobhy (2013) studied thermal buckling of single-
layered graphene sheets lying on an elastic medium. Biaxial buckling behavior of single-
layered graphene sheets (SLGSs) has been investigated by Ansari and Sahmani (2013) based on
nonlocal plate models. Thermal buckling characteristic of orthotropic arbitrary straight-sided
quadrilateral nanoplates embedded in an elastic medium has been investigated by Malekzadeh
et al. (2011b)

8



1.2.2.3 Vibration

Differential quadrature method has been used by Malekzadeh and Shojaee (2013) to investi-
gate free vibration nanoplates based on nonlocal two variable refined plate theory. Wang et al.
(2011) applied Navier’s approach to study vibration behaviors of simply supported Kirchhoff
and Mindlin nanoscale plates with consideration of surface effects. Wang and Wang (2011)
investigated mechanisms of nonlocal effect on the vibration of nanoplates. Again differential
quadrature method has been used by Malekzadeh et al. (2011a) to examine free vibration of
orthotropic arbitrary straight-sided quadrilateral nanoplate using first order shear deformation
theory. Murmu and Pradhan (2009) investigated the effects of small scale on the free in-plane
vibration of nanoplates. Adali (2012) developed semi-inverse method to derive variational
principle for nonlocal continuum model of orthotropic graphene sheets embedded in an elastic
medium. Rayleigh-Ritz method has also been applied by Chakraverty and Behera (2014) to
study vibration of rectangular nanoplates. Pradhan and Phadikar (2009b) presented analytical
solutions for vibration of nanoplates based on classical plate theory and first order shear defor-
mation plate theory using Navier’s approach. Aksencer and Aydogdu (2011) presented Levy
type solution for vibration of nanoplates based on classical plate theory. Analooei et al. (2013)
studied vibration of orthotropic nanoplates using spline finite strip method. Jomehzadeh and
Saidi (2012) studied nonlinear vibration of nanoplates. Small-scale effect on the vibration of
nanoplates subjected to a moving nanoparticle has been studied by Kiani (2011). Similarly,
vibration of piezoelectric nanoplates has been investigated by Liu et al. (2013) based on the
nonlocal theory.

1.3 Gaps

Nanotechnology is a recent development which enables a new generation of materials and de-
vices. For design of nanostructures, one should have proper knowledge about their mechanical
and physical behaviors. As such, few authors have investigated bending, buckling and vibra-
tion of nanobeams and nanoplates. Bending problems simplify to system of linear equations
whereas buckling and vibration problems convert to eigen value problems. In this respect,
previous authors have developed different methods for the solution of these problems. But,
sometimes the existing methods are not computationally efficient and may not handle all sets
of boundary conditions with ease. Also these methods may not handle the problems with com-
plicating effects. It is revealed from literatures that a very little effort has been made for the
problems of vibration and buckling analyses of Reddy and Levinson nanobeams. Moreover,
structural elements with variable material properties are frequently used in practical applica-
tions. But, very few studies have been done for such types of nanobeams and nanoplates. It
is also well known that computations become complex when nonlocal elasticity theory is in-
troduced. Having these in mind one has to develop computationally efficient methods very
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carefully to handle the above said problems. Accordingly, following are the broad aims and
objectives of the present work.

1.4 Aims and objectives

In view of the above gaps, our aim in this research is to develop numerical methods that may
best suit to solve bending, buckling and vibration of nanobeams and nanoplates. Some of the
complicating effects are also taken into consideration. As such, we include below the objectives
related to the present research:

• development of numerical methods for solving the partial differential equations related
to bending, buckling and vibration of nanobeams and nanoplates;

• bending analysis of nanobeams;

• buckling analysis of nanobeams with complicating effects such as non-uniformity, tem-
perature and Winker as well as Pasternak foundations;

• bending and buckling of rectangular nanoplates;

• vibration of rectangular nanoplates subjected to various classical boundary conditions;

• vibration of rectangular nanoplates with complicating effects such as non-uniformity and
Winkler as well as Pasternak foundations;

1.5 Organization of the thesis

Present work deals with the solution of bending, buckling and vibration of nanobeams and
nanoplates. Accordingly, this thesis consists of nine chapters which investigate numerical meth-
ods for the above problems. Various complicating effects such as non-uniformity, temperature
and Winker as well as Pasternak foundations have also been considered. Recently, effort has
been made by various researchers to solve these types of problems but a lot of important in-
formation is still missing in the existing literature. Further, some of the known methods are
computationally expensive and may not handle all sets of classical boundary conditions. The
purpose of the present work is to fill these gaps. Accordingly, the contents of the nine chapters
are summarized below:

Chapter 1 includes a brief introduction of nanostructures and their applications. This chapter
highlights advantage of small scale effect on the nanotechnology applications and importance
of nonlocal elasticity theory. Various beam and plate theories have been discussed and related
literatures are systematically reviewed. Gaps as well as aims and objectives of the present study
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are included here. This chapter also addresses some of the preliminaries of nanostructures re-
lated to our problems.

Chapter 2 incorporates the details of the numerical methods such as Rayleigh-Ritz and differ-
ential quadrature that have been used in the present problems. Advantage of these numerical
methods and systematic procedure for applying boundary conditions has also been highlighted.

Chapter 3 addresses bending and buckling analyses of nanobeams. Bending analysis has
been carried out based on Euler-Bernoulli and Timoshenko nonlocal beam theories by us-
ing boundary characteristic orthogonal polynomials as shape functions in the Rayleigh-Ritz
method. Differential quadrature method has been employed to study buckling analysis of non-
uniform nanobeams based on four beam theories such as Euler-Bernoulli, Timoshenko, Reddy
and Levinson. Buckling analysis of embedded nanobeams under the influence of temperature
has also been investigated based on Euler-Bernoulli, Timoshenko and Reddy beam theories.
In these problems, boundary characteristic and Chebyshev polynomials have been used in the
Rayleigh-Ritz method respectively for Euler-Bernoulli and Timoshenko beam theories. Fur-
ther, differential quadrature method has been employed for buckling analysis of nanobeams
embedded in elastic foundations based on nonlocal Reddy beam theory. Effects of temperature
and foundation parameters on the buckling load parameter have also been investigated.

Chapter 4 deals with bending and buckling problems of nanoplates based on classical plate
theory in conjunction with nonlocal elasticity theory of Eringen. In this chapter, rectangular
nanoplates are considered. Two-dimensional simple polynomials have been implemented in
the Rayleigh-Ritz method to investigate these problems. Effects of length, nonlocal parameter
and aspect ratio on the non-dimensional maximum deflection have been discussed. Similarly,
effects of length, nonlocal parameter, aspect ratio, stiffness ratio and foundation parameters on
the buckling loads have also been included.

In Chapter 5, vibration of nanobeams has been investigated. Rayleigh-Ritz method with sim-
ple polynomials and boundary characteristic orthogonal polynomials has been implemented to
compute vibration characteristics of Euler-Bernoulli and Timoshenko nanobeams. Differential
quadrature method has been used to investigate four types of nonlocal beam theories such as
Euler-Bernoulli, Timoshenko, Reddy and Levinson. In these problems, differential equations
are converted into single unknown variable and boundary conditions have been substituted in
the coefficient matrices. Convergence study along with validation in special cases has been car-
ried out. Effect of scaling effect parameter on the frequency parameter has been investigated
for different boundary conditions. Mode shapes for some specified boundary conditions are
presented for different values of scaling effect parameter. In particular, new results have been
presented for Reddy and Levinson beam theories.
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Chapter 6 presents numerical solution of vibration of nanobeams with complicating effects.
The complicating effects such as non-uniformity, temperature and Winker as well as Pasternak
foundations have been taken into consideration. At first, Rayleigh-Ritz method with boundary
characteristic orthogonal polynomials has been used to investigate vibration of non-uniform
Euler-Bernoulli and Timoshenko nanobeams. Non-uniformity is assumed to arise due to linear
and quadratic variations in Young’s modulus and density with space coordinate. Comparisons
have been made for uniform nanobeams with that of known results in special cases. Variation of
non-uniform parameter on the frequency parameter is depicted in term of plots. Next, vibration
analysis of embedded nanobeams with elastic foundations has been analyzed in the influence of
temperature. The nanobeam is embedded in elastic foundations such as Winkler and Pasternak.
Here, three types of nonlocal beam theories such as Euler-Bernoulli, Timoshenko and Reddy
are taken into consideration. Rayleigh-Ritz method has been used with boundary characteris-
tic orthogonal polynomials and Chebyshev polynomials as shape functions for Euler-Bernoulli
and Timoshenko nonlocal beam theories respectively. On the other hand, differential quadra-
ture method has been implemented for vibration analysis of embedded nanobeams with elastic
foundation based on Reddy nonlocal beam theory. Effects of temperature, Winkler and Paster-
nak coefficients on the frequency parameter have also been investigated.

In Chapter 7, vibration of rectangular nanoplate has been studied based on classical plate the-
ory in conjunction with nonlocal elasticity theory of Eringen. Here, two-dimensional simple
polynomials have been used as shape functions in the Rayleigh-Ritz method. It may be noted
that there are 24 possible sets of boundary conditions for rectangular nanoplate. Accordingly,
new results have been presented in term of boundary conditions. Parametric studies such as
effects of length, aspect ratio and nonlocal parameter on the frequency parameters have been
carried out. Three-dimensional mode shapes have also been presented for some of the typical
boundary conditions.

Chapter 8 describes solution of vibration of nanoplates with various complicating effects. Two-
dimensional simple polynomials and boundary characteristic orthogonal polynomials have been
used as shape functions in the Rayleigh-Ritz method. Complicating effects such as non-
uniformity is assumed by taking linear and quadratic variations of Young’s modulus and den-
sity along space coordinate. Comparison has been made in special cases. Investigation has also
been done for the nanoplate when it is embedded in elastic foundation such as Winkler and
Pasternak. Effects of non-uniform parameters and elastic foundation on the frequency parame-
ter have also been depicted in term of plots.

Based on the present work, Chapter 9 summarizes the conclusions of the study and suggestions
for future work.
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1.6 Preliminaries

Next, we have discussed some of the preliminaries related to the bending, buckling and vibra-
tion of nanobeams and nanoplates based on nonlocal elasticity theory which will be frequently
used in the subsequent chapters. Firstly, we have shown overview of nonlocal elasticity theory.

1.6.1 Review of nonlocal elasticity theory

According to nonlocal elasticity theory, the nonlocal stress tensor σ at a point x is expressed as
(Murmu and Adhikari 2010a)

σ(x) =

∫
V

K(|x′ − x| , α)τdV (x′) (1.1)

where τ is the classical stress tensor, K(|x′ − x| , α) the nonlocal modulus and |x′ − x| the
Euclidean distance. The volume integral is taken over the region V occupied by the body. Here
α is a material constant which depends on both internal and external characteristic lengths.
According to Hooke’s law

τ(x) = C(x) : ϵ(x) (1.2)

where C is the fourth-order elasticity tensor, ϵ the classical strain tensor and : denotes double
dot product.
Eq. (1.1) is the integral constitutive relation which is quite difficult to solve. Hence equivalent
differential form of this equation may be written as (Murmu and Adhikari 2010a)

(1− α2L2∇2)σ = τ, α =
e0lint
L

(1.3)

where ∇2 the Laplace operator, e0 is a material constant which could be determined from exper-
iments or by matching dispersion curves of plane waves with those of atomic lattice dynamics,
lint is an internal characteristic length such as lattice parameter, C-C bond length or granular
distance while L is an external characteristic length which is usually taken as the length of the
nanostructure. The term e0lint is called the nonlocal parameter which reveals scale effect in
models or it reveals the nanoscale effect on the response of structures.

1.6.2 Beam theories

In this section, we have discussed displacement fields, energies of the system and governing
equations which are used for our problems. In all the beam theories (Redddy 2007), x, y, z
coordinates are taken along the length, width and thickness (the height) of the beam respec-
tively. All applied loads and geometry are such that the displacements (u1, u2, u3) along the
coordinates (x, y, z) are only functions of x and z coordinates as well as time t. A schematic
diagram for nanobeams embedded within an elastic medium characterized by spring constant
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Kw and shear constant Kg has been shown in Fig. 1.1.

Fig. 1.1 Single-walled carbon nanotube embedded within an elastic medium

Next, we have discussed four types of beam theories viz. Euler-Bernoulli beam theory, Timo-
shenko beam theory, Reddy beam theory and Levinson beam theory. In all the beam theories,
we have not considered axial displacement of the point (x, 0) on the mid-plane (z = 0) of
the beam. One may note that the notations M,P,Q,R which will be used in our subsequent
paragraphs are defined as below:

M =
∫
A
zσxxdA, P =

∫
A
z3σxxdA, Q =

∫
A
σxzdA, R =

∫
A
z2σxzdA.

1.6.2.1 Euler-Bernoulli beam theory (EBT)

Based on Euler-Bernoulli beam theory, the displacement fields are given by (Redddy 2007)

u1 = −z∂w
∂x

u2 = 0

u3 = w(x, t)

(1.4)

where (u1, u2, u3) are the displacements along x, y and z coordinates respectively and w is the
transverse displacement of the point (x, 0) on the mid-plane (z = 0) of the beam.

The only nonzero strain of the Euler-Bernoulli beam theory is written as

εxx = −z∂
2w

∂x2
(1.5)

Governing equation of Euler-Bernoulli nanobeams may be written as (Reddy 2007)

∂2M

∂x2
+ q − N̄

∂2w

∂x2
= m0

∂2w

∂t2
(1.6)
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where q is the transverse force per unit length, N̄ the applied axial compressive force and m0 is
the mass inertia defined by m0 =

∫
A
ρdA = ρA with A as the cross-sectional area of the beam.

According to Eringen’s nonlocal theory (Eringen 1987), the constitutive relation for Euler-
Bernoulli nanobeam is given by (Reddy 2007)

M − µ
∂2M

∂x2
= −EI ∂

2w

∂x2
(1.7)

where E is the Young’s modulus and I is the second moment of area about y− axis. It may
be noted here that µ = (e0lint)

2 is the nonlocal parameter where e0 and lint denote material
constant and internal characteristic length respectively.

Using Eqs. (1.6) and (1.7), nonlocal form of M may be written as

M = −EI ∂
2w

∂x2
+ µ

(
N̄
∂2w

∂x2
− q +m0

∂2w

∂t2

)
(1.8)

Governing equation in terms of displacement is rewritten as

−EI ∂
4w

∂x4
+ µ

∂2

∂x2

[
N̄
∂2w

∂x2
− q +m0

∂2w

∂t2

]
+ q − N̄

∂2w

∂x2
= m0

∂2w

∂t2
(1.9)

1.6.2.2 Timoshenko beam theory (TBT)

The displacement fields are based on (Reddy 2007)

u1 = zϕ(x, t)

u2 = 0

u3 = w(x, t)

(1.10)

where ϕ is the rotation of the cross-section.

The nonzero strains of the Timoshenko beam theory are given by

ϵxx = z
∂ϕ

∂x
(1.11)

γxz = ϕ+
∂w

∂x
(1.12)

Constitutive relations for Timoshenko beam theory may be written as (Reddy 2007)

M − µ
∂2M

∂x2
= EI

∂ϕ

∂x
(1.13)

Q− µ
∂2Q

∂x2
= ksGA

(
ϕ+

∂w

∂x

)
(1.14)
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where G is the shear modulus and ks is the shear correction factor.

Governing equations of this beam theory are (Reddy 2007)

∂M

∂x
−Q = m2

∂2ϕ

∂t2
(1.15)

∂Q

∂x
+ q − N̄

∂2w

∂x2
= m0

∂2w

∂t2
(1.16)

Using Eqs. (1.13-1.16), nonlocal form of M and Q may be be obtained as

M = EI
∂ϕ

∂x
+ µ

[
−q + N̄

∂2w

∂x2
+m0

∂2w

∂t2
+m2

∂3ϕ

∂x∂t2

]
(1.17)

Q = GAks

(
ϕ+

∂w

∂x

)
+ µ

∂

∂x

[
−q + N̄

∂2w

∂x2
+m0

∂2w

∂t2

]
(1.18)

Using Eqs. (1.17-1.18) in Eqs. (1.15-1.16), we have the governing equations as

GAks

(
∂ϕ

∂x
+
∂2w

∂x2

)
+ q − N̄

∂2w

∂x2
− µ

[
∂2q

∂x2
− N̄

∂4w

∂x4

]
= m0

(
∂2w

∂t2
− µ

∂4w

∂x2∂t2

)
(1.19)

EI
∂2ϕ

∂x2
−GAks

(
ϕ+

∂w

∂x

)
= m2

∂2ϕ

∂t2
− µm2

∂4ϕ

∂x2∂t2
(1.20)

1.6.2.3 Reddy beam theory (RBT)

Displacement fields for Reddy beam theory are based on (Reddy 2007)

u1 = zϕ(x, t)− c1z
3

(
ϕ+

∂w

∂x

)
u2 = 0

u3 = w(x, t)

(1.21)

where c1 = 4
3h2 with h as the height of the beam.

The nonzero strains of the Reddy beam theory are

εxx = z(1− c1z
2)
∂ϕ

∂x
− c1z

3∂
2w

∂x2

γxz = (1− c2z
2)

(
∂w

∂x
+ ϕ

) (1.22)

where c2 = 4
h2 .

16



Nonlocal constitutive equations take the following form in case of RBT

M̂ − µ
∂2M̂

∂x2
= EÎ

∂ϕ

∂x
+ EĴ(−c1)

(
∂ϕ

∂x
+

∂2w

∂x2

)
Q̂− µ

∂2Q̂

∂x2
= GĀ

(
ϕ+

∂w

∂x

)
+GĪ(−c2)

(
ϕ+

∂w

∂x

)
P − µ

∂2P

∂x2
= EJ

∂ϕ

∂x
+ EK(−c1)

(
∂ϕ

∂x
+

∂2w

∂x2

) (1.23)

where I, J and K are the second, fourth and sixth order moments of area respectively about
the y− axis and are defined as (I, J,K) =

∫
A
(z2, z4, z6)dA.

Also M̂ =M − c1P , Q̂ = Q− c2R, Î = I − c1J , Ĵ = J − c1K, Ā = A− c2I , Ī = I − c2J ,
Ã = Ā− c2Ī .

M̂ and Q̂ are given by (Reddy 2007)

M̂ = EÎ
∂ϕ

∂x
− c1EĴ

(
∂ϕ

∂x
+

∂2w

∂x2

)
+ µ

[
−c1

∂2P

∂x2
− q + N̄

∂2w

∂x2
+m0

∂2w

∂t2

]
(1.24)

Q̂ = GÃ

(
ϕ+

∂w

∂x

)
+ µ

[
−c1

∂3P

∂x3
+ N̄

∂3w

∂x3
− ∂q

∂x

]
+ µmo

∂3w

∂x∂t2
(1.25)

As such, governing equations may be written as (Reddy 2007)

GÃ

(
∂ϕ

∂x
+

∂2w

∂x2

)
− N̄

∂2w

∂x2
+ q + µ

[
N̄

∂4w

∂x4
−

∂2q

∂x2

]
+ c1EJ

∂3ϕ

∂x3
− c21EK

(
∂3ϕ

∂x3
+

∂4w

∂x4

)
= m0

(
∂2w

∂t2
− µ

∂4w

∂x2∂t2

)
(1.26)

EÎ
∂2ϕ

∂x2
− c1EĴ

(
∂2ϕ

∂x2
+

∂3w

∂x3

)
−GÃ

(
ϕ+

∂w

∂x

)
= 0 (1.27)

It may be noted here that in our problems, we have neglected the higher order inertias i.e.
m2,m4 and m6.

1.6.2.4 Levinson beam theory (LBT)

Levinson beam theory is based on the following displacement fields (Reddy 2007)

u1 = zϕ(x, t)− c1z
3

(
ϕ+

∂w

∂x

)
u2 = 0

u3 = w(x, t)

(1.28)

It may be noted that displacement and strain fields of the Levinson beam theory is the same as
that of Reddy beam theory.
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Governing equations are given as follows (Reddy 2007)

∂Q

∂x
+ q − N̄

∂2w

∂x2
= m0

∂2w

∂t2

∂M

∂x
−Q = m2

∂2ϕ

∂t2

(1.29)

Nonlocal constitutive relations may be expressed as (Reddy 2007)

M − µ
∂2M

∂x2
= EI

∂ϕ

∂x
+ EJ(−c1)

(
∂ϕ

∂x
+
∂2w

∂x2

)
Q− µ

∂2Q

∂x2
= GA

(
ϕ+

∂w

∂x

)
+GI(−c2)

(
ϕ+

∂w

∂x

)
(1.30)

Using Eqs. (1.29) and (1.30), M and Q are obtained as

M = EI
∂ϕ

∂x
− c1EJ

(
∂ϕ

∂x
+
∂2w

∂x2

)
+ µ

[
−q + N̄

∂2w

∂x2
+m0

∂2w

∂t2
+m2

∂3ϕ

∂x∂t2

]
(1.31)

Q = GĀ

(
ϕ+

∂w

∂x

)
+ µ

[
N̄
∂3w

∂x3
− ∂q

∂x
+m0

∂3w

∂x∂t2

]
(1.32)

Utilizing Eqs. (1.31)- (1.32), governing differential equations may be transformed to

GĀ

(
∂ϕ

∂x
+
∂2w

∂x2

)
+ q − N̄

∂2w

∂x2
+ µ

[
N̄
∂4w

∂x4
− ∂2q

∂x2

]
= m0

(
∂2w

∂t2
− µ

∂4w

∂2x∂t2

)
(1.33)

EI
∂2ϕ

∂x2
− c1EJ

(
∂2ϕ

∂x2
+
∂3w

∂x3

)
−GĀ

(
ϕ+

∂w

∂x

)
= m2

(
∂2ϕ

∂t2
− µ

∂4ϕ

∂2x∂t2

)
(1.34)

1.6.3 Plate theory

In this section, we have shown some of the preliminaries related to classical plate theory. Fig.
1.2 shows the coordinate system used for nanoplate. The x, y, z coordinates are taken along the
length, width and thickness of the plate respectively and origin is chosen at one corner of the
mid-plane of the plate.

Fig. 1.2 Schematic of single layered nanoplate
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1.6.3.1 Classical plate theory (CLPT)

Based on classical plate theory, the displacement fields (u1, u2, u3) at time t are written as
(Pradhan and Phadikar 2009b)

u1 = u(x, y, t)− z
∂w

∂x

u2 = v(x, y, t)− z
∂w

∂y

u3 = w(x, y, t)

(1.35)

where u, v, w denote displacement of the point (x, y, 0) along x, y, z directions respectively.

The strain components are expressed as

εxx = ∂u
∂x

− z ∂2w
∂x2 , εyy = ∂v

∂x
− z ∂2w

∂y2
, εxy = 1

2

(
∂u
∂y

+ ∂v
∂x

− 2z ∂2w
∂x∂y

)
, εzz = εxz = εyz = 0

Nonlocal constitutive relations take the form

Mxx − µ∇2Mxx = −D

(
∂2w

∂x2
+ ν

∂2w

∂y2

)
Myy − µ∇2Myy = −D

(
∂2w

∂y2
+ ν

∂2w

∂x2

)
Mxy − µ∇2Mxy = −D(1− ν)

∂2w

∂x∂y

(1.36)

where (Mxx,Myy,Mxy) are moment resultants, ∇2 the Laplacian operator in 2-D cartesian co-
ordinate system and D = Eh3

12(1−ν2)
denotes bending rigidity of the plate.

In the expression of bending rigidity, h is the thickness of the plate, E the Young’s modulus
and ν is the Poisson’s ratio.

Governing equation in terms of the displacement is written as (Pradhan and Phadikar 2009b)

−D∇4w + (1− µ∇2)

[
q +Nxx

∂2w

∂x2
+Nyy

∂2w

∂y2
+ 2Nxy

∂2w

∂x∂y
−m0

∂2w

∂t2
+m2

(
∂4w

∂x2∂t2
+

∂4w

∂y2∂t2

)]
= 0 (1.37)

where q is the transverse distributed load and (Nxx, Nxy, Nyy) are in-plane force resultants.
Also m0 and m2 are mass moments of inertia which are defined as

m0 =
∫ h

2

−h
2

ρdz, m2 =
∫ h

2

−h
2

ρh2dz with ρ as the density of the material.
It may be noted here that in all of the above beam and plate theories if µ = 0, then we

obtain expressions for local beam and plate theories.
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Chapter 2

Numerical methods

Two important numerical methods such as Rayleigh-Ritz and differential quadrature have been
applied to investigate bending, buckling and vibration of nanobeams and nanoplates. The nov-
elty of the methods is that boundary conditions may easily be handled. In this chapter, we have
discussed elaborately about theses methods.

2.1 Rayleigh-Ritz method

Rayleigh-Ritz method has been implemented in the bending, buckling and free vibration of
nanobeams based on Euler-Bernoulli and Timoshenko beam theories. We have also applied
Rayleigh-Ritz method in the bending, buckling and free vibration of nanoplates based on classi-
cal plate theory. As such, we have discussed Rayleigh-Ritz method for the above said problems.

One may note that subsequent notations have been defined in the preliminaries of Chapter 1.

2.1.1 Bending problems

We have investigated bending of nanobeams based on Euler-Bernoulli and Timoshenko beam
theories. Boundary characteristic orthogonal polynomials have used as shape functions in the
Rayleigh-Ritz method. As such, we have discussed below the procedure of application of
Rayleigh-Ritz method in the bending of nanobeams.

2.1.1.1 Euler-Bernoulli beam theory

The strain energy U may be given as (Wang et al. 2000)

U = −1

2

∫ L

0

M
d2w

dx2
dx (2.1)

where M may be obtained from Eq. (1.8) by setting N̄ and all time derivatives to zero. As
such,
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M = −EI d
2w

dx2
− µq (2.2)

The potential energy of the transverse force q may be given as (Ghannadpour et al. 2013)

V = −
∫ L

0

qwdx (2.3)

The total energy UT of the system is written as

UT =
1

2

∫ L

0

(
EI

(
d2w

dx2

)2

+ µq
d2w

dx2
− qw

)
dx (2.4)

It is important to note that in all of the problems in subsequent chapters, the domain has been
transformed from [0, L] to [0, 1] by using the relation X = x

L
. As such, we discussed the meth-

ods taking the domain as [0, 1].

To apply Rayleigh-Ritz method, the displacement function (w) can be represented in the form
of a series

w(X) =
n∑

k=1

ckφk (2.5)

where n is the number of terms needed in the series and ck’s are unknowns. Here φk are polyno-
mials which are consisting of a boundary polynomial specifying support conditions (essential
boundary conditions) multiplied by one-dimensional simple polynomials. That is φk = ffk

with fk = Xk−1, k = 1, 2, ...n and f = Xu(1−X)v where u and v takes the values 0, 1 and 2
respectively for free (F), simply supported (S) and clamped (C) edge conditions respectively.
If instead of simple polynomials, Chebyshev polynomials (Tk) are used then φk = fTk. These
Chebyshev polynomials are well known and we have T0 = 1, T1 = X and then Tn+1 may be
obtained by the recurrence relation T(n+1)(X) = 2XTn(X)− Tn−1(X).

When φk are orthogonal polynomials then Gram-Schmidt process as discussed below may be
used to obtain these polynomials from set of linearly independent functions Fk = ffk. Then
orthonormal polynomials φ̂k may be obtained from orthogonal polynomials φk if we divide
φk by the norm of φk. Below, we have included detailed procedure to obtain orthogonal and
orthonormal polynomials.

φ1 = F1, φk = Fk −
k−1∑
j=1

βkjφj (2.6)

where
βkj =

< Fk, φj >

< φj, φj >
, k = 2, 3, ...n, j = 1, 2, ...k − 1.

and <,> denotes inner product of two functions.
We define inner product of two functions, say, φi and φk as

< φi, φk >=

∫ 1

0

φi(X)φk(X)dX, i = 1, 2, ...n (2.7)
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Here we have taken weight function as 1.

Similarly, norm of the function φk is defined as

∥φk∥ =< φk, φk >
1
2

As such, normalized functions φ̂k may be obtained by using

φ̂k =
φk

∥φk∥

In the bending problem (Chapter 3), we have considered orthonormal polynomials (φ̂k) in Eq.
(2.5). As such, substituting Eq. (2.5) in Eq. (2.4) and minimizing UT as a function of cj’s, one
may obtain the following system of linear equation

n∑
j=1

aijcj = Pcbi (2.8)

where aij , bi and Pc are defined in Chapter 3.

2.1.1.2 Timoshenko beam theory

In this beam theory, the strain energy may be expressed as (Wang et al. 2007)

U =
1

2

∫ L

0

(
M
dϕ

dx
+Q

(
ϕ+

dw

dx

))
dx (2.9)

where bending momentM and shear forceQmay be obtained by setting N̄ and all time deriva-
tives to zero respectively in Eqs. (1.17) and (1.18). As such,

M = EI
dϕ

dx
− µq (2.10)

Q = ksGA

(
ϕ+

dw

dx

)
− µ

dq

dx
(2.11)

The potential energy of the transverse force q may be given as (Ghannadpour et al. 2013)

V = −
∫ L

0

qwdx (2.12)

As such, the total energy UT of the system is then written as

UT =
1

2

∫ L

0

(
EI

(
dϕ

dx

)2

− µq
dϕ

dx
+ ksGA

(
ϕ+

dw

dx

)2

− µ
dq

dx

(
ϕ+

dw

dx

)
− qw

)
dx

(2.13)

For applying Rayleigh-Ritz method, each of the unknown functions w and ϕ may now be
expressed as the sum of series of polynomials viz.
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w(X) =
n∑

k=1

ckφk (2.14)

ϕ(X) =
n∑

k=1

dkψk (2.15)

where n is the number of terms needed in the series and ck’s and dk’s are unknowns. Here
φk and ψk are polynomials which are consisting of boundary polynomial specifying support
conditions (essential boundary conditions) multiplied by one-dimensional simple polynomials
viz. φk = fwX

k−1 and ψk = fϕX
k−1. It may be noted that fw and fϕ are the boundary func-

tions corresponding to unknown functions w and ϕ respectively which are given in Table 2.1
for some of the boundary conditions. Similarly, one may find boundary functions for other
boundary conditions also.

If instead of simple polynomials, Chebyshev polynomials (Tk) are used then φk = fwTk and
ψk = fϕTk.

When φk and ψk are orthogonal polynomials then Gram-Schmidt process may similarly be
used as discussed in section 2.1.1.1 in order to obtain these polynomials from the set of linearly
independent functions Fk and Gk where Fk = fwfk and Gk = fϕfk with fk = Xk−1, k =

1, 2, ...n. Then orthonormal polynomials φ̂k may be obtained as in previous section 2.1.1.1
from orthogonal polynomials φk. Similarly, ψ̂k may also be obtained.

Table 2.1 Boundary functions used for different edge conditions (TBT)

Boundary condition fw fϕ

S-S X(1−X) 1

C-S X(1−X) X

C-C X(1−X) X(1−X)

C-F X X

In the bending analysis of Timoshenko nanobeams (Chapter 3), we have used φ̂k and ψ̂k in
Eqs. (2.14) and (2.15) respectively. As such, substituting Eqs. (2.14) and (2.15) in Eq. (2.13)
and then minimizing UT as a function of constants, one may find the following system of linear
equations for Timoshenko beam theory

[K]{Z} = Pc{B} (2.16)

where Z is a column vector of constants, [K], {B} and Pc are defined in Chapter 3.
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2.1.2 Vibration problems

We have analyzed vibration of nanobeams based on Euler-Bernoulli and Timoshenko beam
theories. In this problem, we have considered one-dimensional simple polynomials and bound-
ary characteristic orthogonal polynomials as shape functions in the Rayleigh-Ritz method. As
such, we present below the procedure for handling the above problems.

2.1.2.1 Euler-Bernoulli beam theory

For free vibration, we assume displacement function as harmonic type viz.

w(x, t) = w0(x)sinωt (2.17)

where w0 is amplitude of the displacement component of free vibration of nanobeam and ω
denotes natural frequency of vibration.

As such, maximum strain energy Umax may be given as

Umax = −1

2

∫ L

0

M
d2w0

dx2
dx (2.18)

where M may be obtained from Eq. (1.8) by setting N̄ and q to zero. As such, M may be given
by

M = −EI d
2w0

dx2
+ µ

(
−ρAω2w0

)
(2.19)

Here we have taken m0 = ρA.

Maximum kinetic energy is expressed as

Tmax =
1

2

∫ L

0

ρAω2w2
0dx (2.20)

where ρ denotes the density of beams.

Rayleigh Quotient λ2 may be obtained by equating maximum kinetic and strain energies which
is given in Chapter 5.

In the vibration of Euler-Bernoulli nanobeams (Chapter 5), simple polynomials (φk) and or-
thonormal polynomials (φ̂k) are used in Eq. (2.5). As such, substituting Eq. (2.5) in the
Rayleigh Quotient and minimizing Rayleigh Quotient with respect to the constant coefficients,
a generalized eigen value problem will be obtained as

[K] {Z} = λ2 [Ma] {Z} (2.21)

where Z is a column vector of constants and the matrices [K] as well as [Ma] are the stiffness
and mass matrices which are defined in respective Chapters.
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2.1.2.2 Timoshenko beam theory

Here also, we have considered free harmonic motion viz. w(x, t) = w0(x)sinωt and ϕ(x, t) =
ϕ0(x)sinωt.

Maximum strain energy may be given as (Wang et al. 2007)

Umax =
1

2

∫ L

0

(
M
dϕ0

dx
+Q

(
ϕ0 +

dw0

dx

))
dx (2.22)

Bending moment M and shear force Q may be obtained by setting N̄ and q to zero respectively
in Eqs. (1.17) and (1.18). As such, we have

M = EI
dϕ0

dx
+ µ

[
−ρAω2w0 − ρIω2dϕ0

dx

]
(2.23)

Q = GAKs

(
ϕ0 +

dw0

dx

)
− µρAω2dw0

dx
(2.24)

Maximum kinetic energy is written as (Wang et al. 2007)

Tmax =
1

2

∫ L

0

(
ρAω2w2

0 + ρIω2ϕ2
0

)
dx (2.25)

Equating maximum kinetic and strain energies, one may obtain Rayleigh Quotient (λ2) which
is given in Chapter 5.

In the vibration of Timoshenko nanobeams (Chapter 5), we have used simple polynomials (φk

and ψk) and orthonormal polynomials (φ̂k and ψ̂k) in Eqs. (2.14) and (2.15).

Substituting Eqs. (2.14) and (2.15) in the Rayleigh-Quotient and minimizing λ2 with respect
to the unknown coefficients cj and dj , the following generalized eigen value problem will be
obtained

[K] {Z} = λ2 [Ma] {Z} (2.26)

where Z is a column vector of constants and the matrices [K] as well as [Ma] are stiffness and
mass matrices which are given in Chapter 5.

2.2 Plate theory

Here we have discussed the procedure for applying Rayleigh-Ritz method in the bending, buck-
ling and vibration analyses of nanoplates based on classical plate theory. Consider a rectangular
nanoplate with the domain a ≤ x ≤ b, a ≤ y ≤ b in xy− plane where a and b are the length
and the breadth of the nanoplate respectively. The x− and y− axes are taken along the edges of
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the nanoplate and z− axis is perpendicular to the xy− plane. The middle surface being z = 0

and origin (O) is at one of the corners of the nanoplate (Fig. 2.1).

Fig. 2.1 Geometry of the nanoplate

2.2.1 Classical plate theory

2.2.1.1 Bending problem

To apply Rayleigh-Ritz method, one should have knowledge about energies of the system. As
such, we have shown below energies of orthotropic nanoplates embedded in elastic foundations
such as Winkler and Pastrnak.

The strain energy (U) of orthotropic nanoplates may be given by (Anjomshoa 2013)

U =
1

2

∫ a

0

∫ b

0

{
D11

(
∂2w

∂x2

)2

+ 2D12

(
∂2w

∂x2

∂2w

∂y2

)
+D22

(
∂2w

∂y2

)2

+ 4D33

(
∂2w

∂x∂y

)2

+kw

[
w2 + µ

((
∂w

∂x

)2

+

(
∂w

∂y

)2
)]

+kp

[(
∂w

∂x

)2

+

(
∂w

∂y

)2

+ µ

((
∂2w

∂x2

)2

+ 2

(
∂2w

∂x∂y

)2

+

(
∂2w

∂y2

)2
)]}

dxdy (2.27)

where w is the displacement and µ = (e0lint)
2 is the nonlocal parameter with e0 as mate-

rial constant and lint as internal characteristic length of the system (lattice parameter, granular
distance, distance between C-C bonds). Here kw and kp denote the Winkler and Pasternak co-
efficients of the elastic foundation respectively and Dij are flexural rigidities of the nanoplate
which are defined as

D11= Exh3

12(1−νxνy)
, D12= νyExh3

12(1−νxνy)
= νxEyh3

12(1−νxνy)
, D22= Eyh3

12(1−νxνy)
and D33=Gxyh3

12

In the expression of flexural rigidities, h is the height of the nanoplate, Ex and Ey the Young’s
moduli, νx and νy the Poisson’s ratios and Gxy the shear modulus of the nanoplate.
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In case of isotropic nanolates, the potential energy (Eq. 2.27) reduces to

U =
1

2
D

∫ a

0

∫ b

0

{(
∂2w

∂x2

)2

+ 2ν

(
∂2w

∂x2

∂2w

∂y2

)
+

(
∂2w

∂y2

)2

+ 2(1− ν)

(
∂2w

∂x∂y

)2

+kw

[
w2 + µ

((
∂w

∂x

)2

+

(
∂w

∂y

)2
)]

+kp

[(
∂w

∂x

)2

+

(
∂w

∂y

)2

+ µ

((
∂2w

∂x2

)2

+ 2

(
∂2w

∂x∂y

)2

+

(
∂2w

∂y2

)2
)]}

dxdy (2.28)

where D = Eh3

12(1−ν2)
is flexural rigidity for isotropic nanoplate.

The potential energy of the transverse force q may be given by (Anjomshoa 2013)

V = −q
[
w − µ

(
∂2w

∂x2
+
∂2w

∂y2

)]
(2.29)

The total energy UT of the system may be written as

UT = U + V (2.30)

Displacement function w may be expressed as the sum of series of polynomials. As such,

w(X) =
n∑

k=1

ckφk (2.31)

where n is the number of terms needed in the series and ck’s are unknowns. Here φk are the
polynomials which are consisting of a boundary polynomial specifying support conditions (es-
sential boundary conditions) multiplied by two-dimensional simple polynomials viz. φk = ffk

where fk are two-dimensional simple polynomials and f = Xu(1 − X)vY u1(1 − Y )v1 . Here
u = 0, 1, or 2 as the edge X = 0 is free, simply supported or clamped. Same justification can
be given to v, u1 and v1 for the edges X = 1, Y = 0 and Y = 1. The edge conditions are taken
in anticlockwise direction starting at the edge X = 0 and obtained by assigning various values
to u, v, u1 and v1 as 0, 1, 2 for free, simply supported and clamped edge conditions respectively.
Fig. 2.2 shows the handling of using S-C-S-C boundary condition. Similarly other boundary
conditions may also be handled.

Fig. 2.2 Boundary condition
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Whenφk are orthogonal polynomials then Gram-Schmidt process as discussed in section 2.1.1.1
has been used to obtain these polynomials respectively from set of linearly independent func-
tions Fk where Fk = ffk. Then orthonormal polynomials φ̂k may be obtained from orthogonal
polynomials φk as discussed in section 2.1.1.1.

Substituting Eq. (2.31) in Eq. (2.30) and then minimizing total energy of the system as a
function of constants, one may obtain following system of linear equation.

n∑
j=1

aijcj = Pcbi (2.32)

where aij, Pc and bi are given in Chapter 4.

2.2.1.2 Buckling problem

For this problem, we have the strain energy same as that of Eq. (2.27).

The potential energy due to axial compressive force is written as (Anjomshoa 2013)

Va =
1

2
Nxx

∫ a

0

∫ b

0

{(
∂w

∂x

)2

+ µ

((
∂2w

∂x2

)2

+

(
∂2w

∂x∂y

)2
)

+
Nyy

Nxx

[(
∂w

∂y

)2

+ µ

((
∂2w

∂y2

)2

+

(
∂2w

∂x∂y

)2
)]

2
Nxy

Nxx

[
∂w

∂x

∂w

∂y
+ µ

(
∂2w

∂x2

∂2w

∂x∂y
+

∂2w

∂y2
∂2w

∂x∂y

)]}
dxdy (2.33)

For uniform in-plane compression, we have used the relations Nxx = Nyy = −N , Nxy = 0.

Accordingly, Eq. (2.33) reduces to

Va =
1

2
Nxx

∫ a

0

∫ b

0

{(
∂w

∂x

)2

+ µ

((
∂2w

∂x2

)2

+

(
∂2w

∂x∂y

)2
)

+

(
∂w

∂y

)2

+ µ

((
∂2w

∂y2

)2

+

(
∂2w

∂x∂y

)2
)}

dxdy

Equating above energies of the system, one may get Rayleigh-quotient ((N̄0) which is given in
Chapter 4.

Substituting Eq. (2.31) into Rayleigh-quotient, we get a generalized eigen value problem as

[K] {Z} = N̄0 [Bc] {Z} (2.34)

where K and Bc are the stiffness and buckling matrices given in Chapter 4 and Z is a column
vector of constants.
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2.2.1.3 Vibration Problem

In this case, we have considered free harmonic motion.

As such, maximum strain energy for isotropic nanoplate is given by

Umax =
1

2
D

∫ a

0

∫ b

0

{(
∂2w0

∂x2

)2

+ 2ν

(
∂2w0

∂x2

∂2w0

∂y2

)
+

(
∂2w0

∂y2

)2

+ 2(1− ν)

(
∂2w0

∂x∂y

)2

+kw

[
w2

0 + µ

((
∂w0

∂x

)2

+

(
∂w0

∂y

)2
)]

+kp

[(
∂w0

∂x

)2

+

(
∂w0

∂y

)2

+ µ

((
∂2w0

∂x2

)2

+ 2

(
∂2w0

∂x∂y

)2

+

(
∂2w0

∂y2

)2
)]}

dxdy(2.35)

Maximum kinetic energy (Tmax) is given by (Anjomshoa 2013)

Tmax =
1

2
m0ω

2

∫ a

0

∫ b

0

{
w2

0 + µ

((
∂w0

∂x

)2

+

(
∂w0

∂y

)2
)}

dxdy (2.36)

Equating maximum kinetic and strain energies, one may obtain the Rayleigh-quotient (λ2).

Substituting Eq. (2.31) into Rayleigh-quotient (λ2) , we get a generalized eigen value problem
as

[K] {Z} = λ2 [Ma] {Z} (2.37)

where K and Ma are respectively the stiffness and mass matrices which are given in Chapter 7.

2.3 Differential quadrature method (DQM)

We have used differential quadrature method in the buckling and vibration analyses of nanobeams.
As such, we have first shown governing equations which are then converted to single variable.

2.3.1 Buckling problems

We have shown below governing differential equations for buckling analyses of nanobeams
based on four types of beam theories such as Euler-Bernoulli, Timoshenko, Reddy and Levin-
son.
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2.3.2 Euler Bernoulli beam theory (EBT)

Following governing equation for buckling analysis may be obtained from Eq. (1.9) by setting
q and all time derivatives as zero

−EI d
4w

dx4
+ µN̄

d4w

dx4
− N̄

d2w

dx2
= 0 (2.38)

2.3.3 Timoshenko beam theory (TBT)

For this theory, governing equation is obtained from Eqs. (1.19) and (1.20) by setting q and all
time derivatives as zero and is written as

GAKs

(
dϕ

dx
+
d2w

dx2

)
− N̄

d2w

dx2
+ µN̄

d4w

dx4
= 0 (2.39)

EI
d2ϕ

dx2
−GAKs

(
ϕ+

dw

dx

)
= 0 (2.40)

Eliminating ϕ from Eqs. (2.39) and (2.40), governing equations can be written in terms of one
variable as

−EI d
4w

dx4
+ EI

N̄

ksGA

d4w

dx4
− µEI

N̄

ksGA

d6w

dx6
− N̄

d2w

dx2
+ µN̄

d4w

dx4
= 0 (2.41)

2.3.4 Reddy beam theory (RBT)

Governing equation for RBT may be obtained from Eqs. (1.26) and (1.27) by setting q and all
time derivatives as zero

GÃ

(
dϕ

dx
+
d2w

dx2

)
− N̄

d2w

dx2
+ µN̄

d4w

dx4
+ c1EJ

d3ϕ

dx3
− c21EK

(
d3ϕ

dx3
+
d4w

dx4

)
= 0 (2.42)

EÎ
d2ϕ

dx2
− c1EĴ

(
d2ϕ

dx2
+
d3w

dx3

)
−GÃ

(
ϕ+

dw

dx

)
= 0 (2.43)

Again eliminating ϕ from Eqs. (2.42) and (2.43), governing equations is obtained in terms of
displacement as

105

84
GÃ

d4w

dx4
− 1

105
EI

d6w

dx6
= − 105

84EI
GÃN̄

d2w

dx2
+

105

84EI
µGÃN̄

d4w

dx4
+

68

84
N̄
d4w

dx4
− 68

84
µN̄

d6w

dx6

(2.44)
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2.3.5 Levinson beam theory (LBT)

In this case, governing equation is obtained from Eqs. (1.33) and (1.34) by again setting q and
all time derivatives as zero

GĀ

(
dϕ

dx
+
d2w

dx2

)
− N̄

d2w

dx2
+ µN̄

d4w

dx4
= 0 (2.45)

EI
d2ϕ

dx2
− c1EJ

(
d2ϕ

dx2
+
d3w

dx3

)
−GĀ

(
ϕ+

dw

dx

)
= 0 (2.46)

Eliminating ϕ from Eqs. (2.45) and (2.46), the reduced governing differential equation is

4

5
EI

N̄

GĀ

d4w

dx4
− EI

d4w

dx4
− 4

5
EIµ

N̄

GĀ

d6w

dx6
− N̄

d2w

dx2
+ µN̄

d4w

dx4
= 0 (2.47)

2.3.6 Vibration problems

Here, we have shown governing equations for free vibration analysis based on four beam the-
ories such as Euler-Bernoulli, Timoshenko, Reddy and Levinson. Here free harmonic motion
has been assumed. Also we have used the relations m0 = ρA and m2 = ρI .

2.3.7 Euler-Bernoulli beam theory (EBT)

For EBT, the governing equation for vibration analysis may be obtained from Eq. (1.9) by
setting q and N̄ to zero and is written as

EI
d4w0

dx4
+ µρAω2d

2w0

dx2
= ρAω2w0 (2.48)

2.3.8 Timoshenko beam theory (TBT)

In this case, governing equation may be obtained from Eqs. (1.19) and (1.20) by setting q and
N̄ to zero and we have

GAKs

(
dϕ0

dx
+
d2w0

dx2

)
= ρAω2

(
−w0 + µ

d2w0

dx2

)
(2.49)

EI
d2ϕ0

dx2
−GAKs

(
ϕ0 +

dw0

dx

)
= ρIω2

(
−ϕ0 + µ

d2ϕ0

dx2

)
(2.50)

Eliminating ϕ0 from Eqs. (2.49-2.50) and neglecting coefficient of ω4
n, governing equations can

be transformed to

−EI
d4w0

dx4
=

EI

ksGA
ρAω2

(
d2w0

dx2
− µ

d4w0

dx4

)
+ ρIω2

(
d2w0

dx2
− µ

d4w0

dx4

)
− ρAω2

(
w0 − µ

d2w0

dx2

)
(2.51)
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2.3.9 Reddy beam theory (RBT)
Governing equation for RBT may be obtained from Eqs. (1.26) and (1.27) by setting q and N̄
to zero and is obtained as

GÃ

(
dϕ0

dx
+

d2w0

dx2

)
+ c1EJ

d3ϕ0

dx3
− c21EK

(
d3ϕ0

dx3
+

d4w0

dx4

)
= −ρAω2

(
w0 − µ

d2w0

dx2

)
(2.52)

EÎ
d2ϕ0

dx2
− c1EĴ

(
d2ϕ0

dx2
+

d3w0

dx3

)
−GÃ

(
ϕ0 +

dw0

dx

)
= 0 (2.53)

Eliminating ϕ0 from Eqs. (2.52) and (2.53), governing equations may be obtained in terms of
w0 as

GÃ
5

4

d4w0

dx4
− 1

105
EI

d6w0

dx6
= −17

21
ρAω2 d

2w0

dx2
+

17

21
µρAω2 d

4w0

dx4
+GÃ

105

84EI
ρAω2

(
w0 − µ

d2w0

dx2

)
(2.54)

2.3.10 Levinson beam theory (LBT)

For this beam theory, governing equations may be obtained from Eqs. (1.33) and (1.34) by
setting q and N̄ to zero and is written as

GĀ

(
dϕ0

dx
+
d2w0

dx2

)
= −ρAω2

(
w0 − µ

d2w0

dx2

)
(2.55)

EI
d2ϕ0

dx2
− c1EJ

(
d2ϕ0

dx2
+
d3w0

dx3

)
−GĀ

(
ϕ0 +

dw0

dx

)
= −ρIω2

(
ϕ0 − µ

d2ϕ0

dx2

)
(2.56)

Eliminating ϕ0 from Eqs. (2.55) and (2.56)and neglecting coefficient of ω4
n, the governing

differential equation reduces to
(
−ρAω2 d

2w0

dx2
+ ρAµω2 d

4w0

dx4
−GĀ

d4w0

dx4

)(
EI

GĀ
−

c1EJ

GĀ

)
− c1EJ

d4w0

dx4
+ ρAω2

(
w0 − µ

d2w0

dx2

)
= ρIω2

(
d2w0

dx2
− µ

d4w0

dx4

)
(2.57)

Next, we have briefly explained the procedure for applying differential quadrature method in
the above equations. We have considered the functionw(X) in the domain [0, 1] with n discrete
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grid points. First derivative at point i, wi
′ = dw

dX
at X = Xi is given by (Wang and Bert 1993)

wi
′ =

n∑
j=1

Aijwj

wi
′′ =

n∑
j=1

Bijwj

wi
′′′ =

n∑
j=1

Cijwj

wi
IV =

n∑
j=1

Dijwj

(2.58)

where i = 1, 2, ..., n and n is the number of discrete grid points.
Here Aij, Bij, Cij and Dij are the weighting coefficients of the first, second, third and fourth
derivatives respectively.

Determination of Weighting coefficients

Computation of weighting coefficient matrix A = (Aij) is the key step in the DQM. In the
present investigation, we have used Quan and Chang ’s (1989) approach to compute weighting
coefficients Aij . As per this approach, matrix A = (Aij) may be computed by the following
procedure.

Aij =
1

Xj −Xi

n∏
k ̸=i
k ̸=j
k=1

Xi −Xk

Xj −Xk

, i ̸= j, i = 1, 2, ..., n j = 1, 2, ..., n (2.59)

Aii =
n∑

k ̸=i
k=1

1

Xi −Xk

, i = j, i = 1, 2, ..., n (2.60)

Once weighting coefficients of first order derivatives are computed, weighting coefficients of
higher order derivatives may be obtained by simply matrix multiplication as follow.

B = Bij =
n∑

k=1

AikAkj (2.61)

C = Cij =
n∑

k=1

AikBkj (2.62)
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D = Dij =
n∑

k=1

AikCkj =
n∑

k=1

BikBkj (2.63)

Selection of mesh point distribution

We assume that the domain 0 ≤ X ≤ 1 is divided into (n − 1) intervals with coordinates of
the grid points given as X1, X2, ..., Xn. These Xi’s have been computed by using Chebyshev-
Gauss-Lobatto grid points. That is

Xi =
1
2

[
1− cos

(
i−1
n−1

.Π
)]

Application of boundary condition

Above matrices A,B,C and D are converted into modified weighting coefficient matrices
Ā, B̄, C̄ and D̄ as per the boundary condition. First, we denote

Ā1 =


0 A1,2 · · · A1,n

0 A2,2 · · · A2,n

· · · · · · · · · · · ·

0 An,2 · · · An,n

 , Ā2 =


A1,1 A1,2 · · · A1,n−1 0

A2,1 A2,2 · · · A2,n−1 0

· · · · · · · · · · · · · · ·

An,1 An,2 · · · An−1,n−1 0



In view of the above, we now illustrate the procedure for finding modified weighting coefficient
matrices as per the considered boundary conditions and are discussed below:

simply supported-simply supported (S-S)

For this boundary condition, Eq. (2.58) may be rewritten in matrix form as

A =


A1,1 A1,2 · · · A1,n−1 A1,n

A2,1 A2,2 · · · A2,n−1 A2,n

...
...

...
...

An,1 An,2 · · · An,n−1 An,n





w1

w2

...

wn


=



w1
′

w2
′

...

wn
′


(2.64)

Firstly, to apply boundary condition w1 = wn = 0, Eq. (2.64) becomes
0 A1,2 · · · A1,n−1 0

0 A2,2 · · · A2,n−1 0
...

...
...

...

0 An,2 · · · An,n−1 0





w1

w2

...

wn


=



w1
′

w2
′

...

wn
′


(2.65)
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or
[Ā]{w} = {w′} (2.66)

For the second derivative, one has

{w′′} = [A]{w′} (2.67)

Using Eq. (2.66), one may obtain

{w′′} = [A][Ā]{w}

= [B̄]{w}
(2.68)

where B̄ = [A][Ā].

Now, since w′′
1 = w′′

n = 0, we have third order derivative as

{w′′′} = [Ā]{w′′} (2.69)

Using Eq. (2.68), one obtains

{w′′′} = [Ā][B̄]{w}

= [C̄]{w}
(2.70)

where [C̄] = [Ā][B̄].

Similarly, for fourth order derivative, we have

{wIV } = [A]{w′′′}

= [A][C̄]{w}

= [B̄][B̄]{w}

= [D̄]{w}

(2.71)

where [D̄] = [B̄][B̄] or [D̄] = [A][C̄].

Proceeding in the similar fashion as that of simply supported-simply supported, we have fol-
lowing modified coefficient matrices for other boundary conditions.

clamped-simply supported (C-S)

{w′} = [Ā]{w}
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{w′′} = [Ā1]{w′} = [Ā1][Ā]{w} = [B̄]{w} with [B̄] = [Ā1][Ā].

{w′′′} = [Ā2]{w′′} = [Ā2][B̄]{w} = [C̄]{w} with [C̄] = [Ā2][B̄]

{wIV } = [A]{w′′′} = [A][C̄]{w} = [D̄]{w} with [D̄] = [A][C̄].

clamped-clamped (C-C)

{w′} = [Ā]{w}

{w′′} = [Ā]{w′} = [Ā][Ā]{w} = [B̄]{w} with [B̄] = [Ā][Ā]

{w′′′} = [A]{w′′} = [A][B̄]{w} = [C̄]{w} with [C̄] = [A][B̄]

{wIV } = [A]{w′′′} = [A][C̄]{w} = [D̄]{w} with [D̄] = [A][C̄].

clamped-free (C-F)

{w′} = [Ā1]{w}

{w′′} = [Ā1]{w′} = [Ā1][Ā1]{w} = [B̄]{w} with [B̄] = [Ā1][Ā1]

{w′′′} = [Ā2]{w′′} = [Ā2][B̄]{w} = [C̄]{w} with [C̄] = [Ā2][B̄]

{wIV } = [Ā2]{w′′′} = [Ā2][C̄]{w} = [D̄]{w} with [D̄] = [Ā2][C̄]

It may be noted that while substituting values of the derivatives in the governing differential
equations, one has to use [Ā], [B̄], [C̄], [D̄] as per the specified boundary conditions.

Substituting Eq. (2.58) in any of the Eqs. (2.38, 2.41, 2.44, 2.47) depending upon the beam
theories, a generalized eigen value problem for buckling problem obtained as

[K] {W} = N̄0 [Bc] {W} (2.72)

where K is the stiffness matrix, Bc is the buckling matrix.

Substituting Eq. (2.58) in any of the Eqs. (2.48, 2.51, 2.54, 2.57) depending upon the beam
theories, a generalized eigen value problem obtained for vibration problem as

[K] {W} = λ2 [Ma] {W} (2.73)

where K is the stiffness matrix, Ma is the mass matrix and λ2 is the frequency parameter.
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Chapter 3

Bending and buckling of nanobeams

As discussed in Chapter 1 that bending and buckling analyses of nanostructures play an impor-
tant role. As such, this chapter is concerned with bending and buckling of nanobeams. Bending
analysis has been carried out based on Euler-Bernoulli and Timoshenko beam theories in con-
junction with nonlocal elasticity theory of Eringen (Eringen 1972). Boundary characteristic
orthogonal polynomials have been used as shape functions in the Rayleigh-Ritz method. Var-
ious parametric studies have been carried out and shown. Deflection and rotation shapes of
nanobeams with specified boundary conditions have also been presented.

Next, differential quadrature method has been applied for buckling of non-uniform nanobeams
based on four beam theories such as Euler-Bernoulli, Timoshenko, Reddy and Levinson. Here,
we have also investigated buckling of nanobeams embedded in elastic medium such as Winkler
and Pasternak under the influence of temperature. Boundary characteristic orthogonal polyno-
mials and Chebyshev polynomials have been applied in the Rayleigh-Ritz method to investigate
buckling of embedded nanobeams based on Euler-Bernoulli and Timoshenko beam theories
respectively. Also, differential quadrature method has been employed to study buckling of em-
bedded nanobeams based on Reddy beam theory. Here also, various parametric studies have
been carried out and have been shown graphically.
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Bending of nanobeams

It is already discussed in Chapter 2 that non-dimensionalisation may be done by introducing
variable X as

X =
x

L

In this problem, we have considered uniform transverse distributed load viz. (q(X) = q0).
Both Euler-Bernoulli and Timoshenko beam theories are considered. Rayleigh-Ritz method
with boundary characteristic orthogonal polynomials as shape functions have been applied.
Application of the method converts bending problem to system of linear equations as discussed
in section 2.1.1.1. In the system of linear equation for EBT [Eq. (2.8)], the notations aij, bi and
Pc are defined as follows:

Pc =
q0L4

EI

aij =
∫ 1

0
φ̂i

′′φ̂j
′′dX

bi =
∫ 1

0
(φ̂i − µ

L2 φ̂i
′′)dX

where i = 1, 2, ...n and j = 1, 2, ...n.

Similarly, in the system of linear equation for TBT [Eq. (2.16)], the notations K and B are
given as

B =

b1b2
 where

b1 =


∫ 1

0
φ1dX
...∫ 1

0
φidX

 , b2 =


∫ 1

0
µqLφ1

′

...∫ 1

0
µqLφ1

′dX


K =

k1 k2

k3 k4

 where k1, k2, k3 and k4 are submatrices which are given by

k1(i, j) =
∫ 1

0
2ksGAφ̂i

′φ̂j
′dX

k2(i, j) =
∫ 1

0
2ksGALφ̂i

′ψ̂jdX
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k3(i, j) =
∫ 1

0
2ksGALψ̂iφ̂j

′dX

k4(i, j) =
∫ 1

0
(2ksGAL

2ψ̂iψ̂j + 2EIψ̂i

′
ψ̂j

′
)dX

3.1 Numerical results and discussions

The parameters used in this investigation are (Alshorbagy et al. 2013; Reddy 2007): E =

30 × 106, h = 1, ks = 5
6
, nu = 0.3. A uniformly distributed load (q0 = 1) has been taken

into consideration. System of linear equations have been solved by using MATLAB. It is well
known fact that non-dimensional maximum deflection is evaluated at the center of the beam
which is given by Wmax = −w × 102

(
EI
q0L4

)
. At first, convergence study has been carried

out to find minimum number of terms required for computation. As such, Fig. 3.1 shows
convergence of EBT nanobeams for L

h
= 10 and µ = 1.5nm2 with C-S support. One may note

that n = 4 is sufficient for obtaining converged results. Next, the obtained results are compared
with available literature and is shown below (Table 3.1). One may find close agreement of the
results.

1 1.5 2 2.5 3 3.5 4
0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.6

n

W
m

ax

Fig. 3.1 Convergence of non-dimensional maximum center deflection for EBT

Table 3.1 Comparison of non-dimensional maximum center deflection (Wmax) for C-S and C-C boundary
conditions

C-S C-C

µ Present Ref.* Present Ref.*

0 0.50 0.52 0.24 0.0.26

1 0.52 0.58 0.24 0.26

2 0.59 0.61 0.24 0.26

3 0.60 0.64 0.24 0.26

*Alshorbagy et al. (2012)
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Next, we have carried out some of the parametric studies which are discussed below. It is noted
here that unless mentioned defection and rotation would denote non-dimensional maximum
center deflection and non-dimensional maximum center rotation respectively.

3.1.1 Effect of aspect ratio

Fig. 3.2 illustrates effect of aspect ratio on the deflection of nanobeams. Here, we have shown
variation of deflection with aspect ratio for both local and nonlocal cases. The figure is plotted
for both EBT and TBT beam theories. Nonlocal results have been computed for µ = 1nm2.
Aspect ratio (L

h
) varies from 10 to 50 with the consideration of C-S boundary condition. One

may observe that in case of local EBT, aspect ratio has no effect on the beam deflection whereas
in nonlocal EBT, deflection is dependent on the aspect ratio. It may also be noticed that in case
of both local and nonlocal TBT, deflection is dependent on the aspect ratio. The dependency of
the responses on the aspect ratio for local TBT is unique due to the effect of shear deformation.
As aspect ratio decreases, the difference between the solutions of EBT and TBT becomes highly
important.
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Fig. 3.2 Effect of the aspect ratio on the deflection

3.1.2 Effect of scale coefficient

Effect of scale coefficient on the bending response of nanobeams has been demonstrated in
Fig. 3.3 for different values of L

h
. Results have been given for TBT nanobeams with L

h
= 10

and C-S edge condition. It is seen from the figure that bending responses vary nonlinearly
with the scale coefficient. One may also observe that bending responses of nanobeams with
lower aspect ratios are strongly affected by the scale coefficient than those of nanobeams with
relatively higher aspect ratios. Hence, one may conclude that local beam model may not be
suitable for adequate approximation for the nanosized structures.
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Fig. 3.3 Effect of the scale coefficient on the deflection

3.1.3 Effect of boundary conditions

Non-dimensional maximum center deflection of nanobeams under uniform load have been
computed for different boundary conditions and have been shown graphically in Fig. 3.4. It
is observed that C-C is having smallest deflection for a particular value of nonlocal parameter.
One may note that in case of C-C edge condition, there is no effect of the nonlocal parameter
on the deflection whereas in case of S-S and C-S supports, deflection increases with increase
in nonlocal parameter. Hence effect of nonlocal parameter on the deflection is inconsistent for
different boundary conditions.
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Fig. 3.4 Effect of the scale coefficient on the deflection for different boundary conditions

3.1.4 Deflection and rotation shapes

In this subsection, we have examined the behavior of deflection and rotation shapes of nanobeams
along its length for different boundary conditions. Figs 3.5-3.7 show variation of deflection
with length for S-S, C-S and C-C edge conditions respectively. It is observed from the figures
that deflection of S-S and C-S nanobeams increases with increase in nonlocal parameter. It is
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due to the fact that increasing nonlocal parameter causes increase in bonding force of atoms
and this force is constraint from its boundaries which increases deflection (Alshorbagy et al.
2013 ). Another observation is seen that nonlocal parameter has no effect on the deflection of
C-C nanobeams because of its constrained nature. Next, we have shown variation of rotation
with length for S-S, C-S and C-C edge conditions respectively in Figs. 3.8-3.10. It may be
noticed that rotation behaves differently than that of deflection. Increasing nonlocal parameter
decreases rotation of S-S and C-C nanobeams upto mid length and after wards increase in non-
local parameter increases rotation. One may also notice that nonlocal parameter has no effect
on the rotation of C-C nanobeams.
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Fig. 3.5 Static deflection of S-S nanobeams for different nonlocal parameters
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Fig. 3.6 Static deflection of C-S nanobeams for different nonlocal parameters
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Fig. 3.7 Static deflection of C-C nanobeams for different nonlocal parameters
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Fig. 3.8 Static rotation of S-S nanobeams for different nonlocal parameters
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Fig. 3.9 Static rotation of C-S nanobeams for different nonlocal parameters
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Fig. 3.10 Static rotation of C-C nanobeams for different nonlocal parameters
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Buckling of non-uniform nanobeams

As we have discussed in the Chapter 1 that study of non-uniform nanobeams play a vital role for
the design of nanodevices. As such, we have investigated buckling of non-uniform nanobeams
having exponentially varying stiffness. Four types beam theories have been taken into consid-
eration. Differential quadrature method has been employed and the boundary conditions are
substituted in the coefficient matrices. Some of the new results in terms of boundary conditions
have also been shown.

In this problem, we have assumed exponential variation of the flexural stiffness (EI) as:

EI = EI0e
−ηX

where I0 is the second moment of area at the left end and η is the positive constant.

Here, following non-dimensional terms have been used

X =
x

L

W =
w

L

α =
e0a

L
= scaling effect parameter

N̄0 =
N̄L2

EI0
= buckling load parameter

Ω =
EI0

ksGAL2

Ω̄ =
GÃL2

EI0

Ω̂ =
EI0
GĀL2

Below we have shown the non-dimensionalized forms of the governing differential equations
for EBT, TBT, RBT and LBT in Eqs. (3.1-3.4) respectively.

e−ηX d4W

dX4
= N̄0

(
α2 d

4W

dX4
− d2W

dX2

)
(3.1)

e−ηX d4W

dX4
= N̄0

(
Ωe−ηX d4W

dX4
− Ωe−ηXα2 d

6W

dX6
− d2W

dX2
+ α2 d

4W

dX4

)
(3.2)
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105

84
Ω̄
d4W

dx4
− 1

105
e−ηX d6W

dx6
= N̄0

(
−105

84
Ω̄eηX

d2W

dX2
+

105

84
Ω̄eηXα2 d

4W

dX4
+

68

84

d4W

dX4
− 68

84
α2 d

6W

dX6

)
(3.3)

e−ηX d4W

dX4
= N̄0

(
4

5
Ω̂e−ηX d4W

dX4
− 4

5
Ω̂e−ηXα2 d

6W

dX6
− d2W

dX2
+ α2 d

4W

dX4

)
(3.4)

By the application of differential quadrature method, one may obtain generalized eigen value
problem as

[K] {W} = N̄0 [Bc] {W} (3.5)

where K is the stiffness matrix and Bc is the buckling matrix.

3.2 Numerical results and discussions

In this section, numerical results have been computed by solving Eq. (3.5) using MATLAB
program developed by the authors. Differential quadrature method has been employed and
boundary conditions are implemented in the coefficient matrices. Here unless mentioned, buck-
ling load would denote the critical buckling load parameter (first eigen value). It may be noted
that the following parameters are taken for the computation (Sahmani and Ansari 2011; Reddy
2007): E = 70Gpa, υ = 0.23, h = 1, ks = 5/6.

3.2.1 Convergence

To find the minimum number of grid points for obtaining desired results, a convergence study
has been carried out for EBT and TBT nanobeams. To show how the solution is being affected
by grid points, variation of critical buckling load parameter with number grid points (n) has
been shown in Fig. 3.11. In this figure, we have taken e0a = 1nm, non-uniform parameter
(η) = 0.2 and L = 10nm. The convergence has been shown for simply supported edge
condition only. From this figure, one may observe that convergence is achieved as we increase
number of grid points. It may be noted that eleven grid points are sufficient to compute the
results.
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Fig. 3.11 Variation of N̄0
cr with grid points

3.2.2 Validation

To validate the present results, we compare our results with that of available in the literatures.
For the validation purpose, we consider an uniform (η = 0) nanobeam. To compare our re-
sults of EBT and TBT nanobeams with Wang et al. (2006), we have considered a beam of
diameter d = 1nm, Young’s modulus E = 1Tpa and Poisson’s ratio υ = 0.19. The com-
parison has been shown in Table 3.2 for three types of boundary conditions such as S-S, C-S
and C-C. In this table, critical buckling load parameter (in nN) for EBT and TBT nanobeams
with L/d=10 have been presented for various values of scale coefficients (0nm, 0.5nm, 1nm).
Similarly, buckling load of RBT and LBT nanobeams have been compared respectively with
Emam (2013) and Sahmani and Ansari (2011) in Table 3.3. It may be noted that comparison
for RBT nanobeams has been made with aspect ratio (L

h
) as 10 and nonlocal parameter (µ) as

0nm2, 1nm2, 2nm2, 3nm2 while comparison for LBT nanobeams has been done with L
h
= 50

and µ = 0nm2, 0.5nm2, 1nm2, 1.5nm2. In this table, we have considered S-S and C-C edge
conditions. It is seen that critical buckling load parameter (N̄0

cr) decreases with increase in
nonlocal parameter. From these tables, one may observe close agreement of results with that
of available in the literatures.
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Table 3.2 Comparison of critical buckling load parameter N̄0
cr (nN) for EBT and TBT nanobeams

EBT TBT

L/d e0a Present Ref.* Present Ref.*

S-S

10 0 4.8447 4.8447 4.7835 4.7670

0.5 4.7280 4.7281 4.6683 4.654

1 4.4095 4.4095 4.3534 4.3450

C-S

10 0 9.91109 9.9155 9.5580 9.5605

0.5 9.4348 9.4349 9.1934 9.1179

1 8.2461 8.2461 8.0356 8.0055

C-C

10 0 19.3789 19.379 18.4342 18.192

0.5 17.6381 17.6381 16.7783 16.649

1 13.8939 13.8939 13.2165 13.273

*Wang et al. (2006)

Table 3.3 Comparison of critical buckling load parameter (N̄0
cr) for RBT and LBT nanobeams

RBT

S-S C-C

L/h µ Present Ref.* Present Ref.*

10 0 9.6228 9.6228 35.8075 35.8075

1 8.7583 8.7583 25.6724 25.6724

2 8.0364 8.0364 20.0090 20.0090

3 7.4245 7.4245 16.3927 16.3927

LBT

S-S C-C

L/h µ Present Ref.** Present Ref.**

50 0 9.8595 9.8616 39.4170 39.4457

0.5 9.8401 9.8422 39.3589 39.3899

1 9.8207 9.8228 38.2958 39.3118

1.5 9.8014 9.8036 38.2072 39.2351

*Emam (2013)

**Sahmani and Ansari (2011)
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3.2.3 Effect of small scale

In this paragraph, the significance of scale coefficient has been highlighted. First, we define
buckling load ratio as N̄0calculated using nonlocal theory

N̄0 calculated using local theory . This buckling load ratio serves as an index to
estimate quantitatively the small scale effect on the buckling solution. To state the importance
of scale coefficient, variation of buckling load ratio (associated with first mode) with scale co-
efficient (e0lint) has been shown in Figs. 3.12-3.15. It may be noted that Figs. 3.12 and 3.13
present graphical results for RBT nanobeams with guided and simply supported-guided re-
spectively. Similarly, Figs. 3.14 and 3.15 illustrate results for LBT nanobeams with guided and
simply supported-guided respectively. In these figures, we have taken non-uniform parameter
(η) as 0.4. Results have been shown for different values of aspect ratio (L

h
). It is noticed from

the figures that buckling load ratios are less than unity. This implies that application of local
beam model for the buckling analysis of carbon nanotubes would lead to over prediction of the
buckling load if the small length scale effect between the individual carbon atoms is neglected.
As the scale coefficient (e0lint) increases, buckling loads obtained by nonlocal beam model
become smaller than those of its local counterpart. In other words, buckling load parameter ob-
tained by local beam theory is more than that obtained by nonlocal beam theory. So, presence
of nonlocal parameter in the constitutive equation is significant in the field of nanomechanics.
It is also observed that the small scale effect is affected by L

h
. This observation is explained

as: When L
h

increases, buckling load ratio comes closer to one. This implies that buckling
load parameter obtained by nonlocal beam model comes closer to that furnished by local beam
model. Hence small scale effect is negligible for a very slender carbon nanotube (CNT) while it
is significant for short carbon nanotubes (CNTs). This implies that if we compare magnitude of
small scale effect with length of the slender tube, the small scale (internal characteristic length)
is so small that it can be regarded as zero.
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Fig. 3.12 Variation of buckling load ratio with e0lint
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Fig. 3.13 Variation of buckling load ratio with e0lint
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Fig. 3.14 Variation of buckling load ratio with e0lint
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Fig. 3.15 Variation of buckling load ratio with e0lint

3.2.4 Effect of non-uniform parameter

In this subsection, effect of non-uniformity (η) on the critical buckling load parameter is illus-
trated. This analysis will help design engineers in their design to have an idea of the values of
critical buckling load parameter. Fig. 3.16 shows the variation of critical buckling load param-
eter (N̄0

cr) with non-uniform parameter η. In this graph, we have considered EBT nanobeam
with C-S edge condition having L = 50nm. Results have been shown for different values of
scale coefficients. It is observed that with increase in non-uniform parameter, critical buckling
load parameter decreases. This decrease is attributed to the decrease of stiffness of the beam.
It is also observed that with increase in nonlocal parameter, critical buckling load parameter
decreases. This shows that local beam theory (µ = 0) over predicts buckling load parame-
ter. Hence, for better predictions of buckling load parameter, one should consider nonlocal
theory. Next, to investigate the influence of non-uniform parameter on the higher buckling
modes, variation of buckling load parameter (N̄0) with non-uniform parameter (η) has been
presented in Fig. 3.17. Here we have considered LBT nanobeams with S-S edge condition
having µ = 2nm2 and L = 15nm. It is seen from figure that buckling load parameters de-
crease with increase in non-uniform parameter and this decrease is more significant in case of
higher modes.
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Fig. 3.17 Variation of N̄0 with non-uniform parameter

3.2.5 Effect of aspect ratio

One of the another important factor that design engineers should keep in mind, that is the
effect of aspect ratio. To investigate the effect of aspect ratio (L

h
) on the critical buckling load

parameter, variation of critical buckling load parameter with L
h

has been shown in Figs. 3.18-
3.21. Results have been shown for different values of scale coefficients (0.5nm, 1nm, 1.5nm).
In these graphs, we have considered EBT and TBT nanobeams with edge conditions such as
C-S and C-C. Numerical values have been obtained by taking η = 0.5. It is observed that
buckling load increases with increase in L

h
. It is also noticed that buckling load decreases with

increase in scale coefficient. Hence one should incorporate nonlocal theory in the buckling
analysis of nanobeams. One may also notice that for a particular value of L

h
, results obtained

by TBT nanobeams are less as compared to EBT nanobeams. This is due to the absence of
transverse shear stress and strain in EBT nanobeams. One may say TBT nanobeams predict
better prediction of buckling load than EBT nanobeams.
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3.2.6 Effect of various beam theories

Modeling of nanostructures based on beam theories is one of the important area in the field of
nanotechnology. To investigate the effect of various beam theories such as EBT, TBT, RBT and
LBT on the buckling load parameter, variation of critical buckling load parameter with scale
coefficient has been shown in Fig. 3.22 for various types of beam theories. In this figure, C-S
boundary condition is taken into consideration with L = 10nm and η = 0.5. It is seen from
the figure that EBT predicts higher buckling load than other types of beam theories. It is due
to the fact that in EBT, transverse shear and transverse normal strains are not considered. It is
also noted that beam theories such as TBT, RBT and LBT predict approximately same results.
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Fig. 3.22 Variation of N̄0
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3.2.7 Effect of boundary condition

For designing engineering structures, one must have proper knowledge about boundary condi-
tions. It will help engineers to have an idea without carrying out detail investigation. Therefore,
analysis of boundary conditions is quite important. In this subsection, we have considered the
effect of boundary condition on the critical buckling load parameter. Fig. 3.23 depicts varia-
tion of critical buckling load parameter of TBT nanobeam with scale coefficient for different
boundary conditions. This graph is plotted with L = 10nm and η = 0.2. It is observed form
the figure that C-C nanobeams are having highest critical buckling load parameter and simply
supported-guided nanobeams are having lowest critical buckling load parameter.
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Buckling of embedded nanobeams

Here, we have investigated buckling of embedded nanobeams in thermal environments based on
EBT, TBT and RBT beam theories. The nanobeam is embedded in elastic foundations such as
Winkler and Pasternak. Rayleigh-Ritz has been applied in EBT and TBT with shape functions
as boundary characteristic orthogonal polynomials and Chebyshev polynomials respectively.
Differential quadrature method has been employed in buckling of embedded nanobeams based
on RBT.

For simplicity and convenience in mathematical formulation, following non-dimensional pa-
rameters have been introduced here

X = x
L

, W = w
L

, α = e0a
L

, N̂ = N̄L2

EI
, τ = I

AL2 , Ω = EI
ksGAL2 , Ω̄ = GÃL2

EI
, Kg =

kgL2

EI
,

Kw = kwL4

EI
, N̂θ =

NθL
2

EI
, N̂m = NmL2

EI

3.2.7.1 Euler-Bernoulli beam theory

The strain energy may be written as Eq. (2.1).

The potential energy due to the axial force may be expressed as (Amirian et al. 2013)

Va =
1

2

∫ L

0

{
N̄

(
dw

dx

)2

+ few

}
dx (3.6)

where N̄ is the axial force and is expressed as N̄ = Nm +Nθ. Here Nm is the axial force due
to the mechanical loading prior to buckling and Nθ is the axial force due to the influence of
temperature change which is defined by Nθ = − EA

1−2ν
αxθ.

In this expression, E is the Young’s modulus, A the cross sectional area, ν the Poisson’s ratio,
αx the coefficient of thermal expansion in the direction of x axis and θ is the change in tem-
perature. Also fe is the density of reaction force of elastic foundation which is expressed as
fe = kww − kg

d2w
dx2 where kw denotes Winkler modulus and kg denotes shear modulus of the

elastic medium.

Using Hamilton’s principle and setting coefficient of δw to zero, we obtain following governing
equation of motion

d2M

dx2
+ N̄

d2w

dx2
− kww + kg

d2w

dx2
= 0 (3.7)
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Using Eqs. (3.7) and (1.7), M in nonlocal form may be written as

M = −EI d2w
dx2 + µ

[
−N̄ d2w

dx2 + kww − kg
d2w
dx2

]
Let us substitute Nm = −Pb

Equating energies of the system, we may obtain Rayleigh-quotient (N̄0) from the following
eigen equation in non-dimensional form

N̄
0

[(
dW

dX

)2

+ α
2

(
d2W

dX2

)2]
=

(
d2W

dX2

)2

− Kwα
2
W

d2W

dX2
+ Kgα

2

(
d2W

dX2

)2

+ KwW
2 − KgW

d2W

dX2
+ N̂θ

(
dW

dX

)2

+ N̂θα
2

(
d2W

dX2

)2

(3.8)

where N̄0 = PbL
2

EI
is the non-dimensional buckling load parameter.

Here, we have used orthonormal polynomials (φ̂k) in Eq. (2.5). Substituting Eq. (2.5) in Eq.
(3.8) and minimizing N̄0 with respect to constant coefficients, the following eigenvalue value
problem may be obtained as

[K] {Z} = N̄0 [Bc] {Z} (3.9)

where Z is a column vector of constants, stiffness matrix K and buckling matrix Bc are given
as below:
K(i, j) =

∫ 1

0
((2+2Kgα

2+2N̂θα
2)φ̂′′

i φ̂
′′
j −Kwα

2φ̂′′
i φ̂j −Kwα

2φ̂iφ̂
′′
j +2Kwφ̂iφ̂j −Kgφ̂

′′
i φ̂j −

Kgφ̂iφ̂
′′
j + 2N̂θα

2φ̂′
iφ̂

′
j)dX

Bc(i, j) =
∫ 1

0
(2φ̂′

iφ̂
′
j + 2α2φ̂′′

i φ̂
′′
j )dX

3.2.7.2 Timoshenko beam theory

The strain energy may be given as Eq. (2.9).

The potential energy due to the axial force may be expressed as Eq. (3.6).

Using Hamilton’s principle, governing equations are obtained as

dM

dx
−Q = 0 (3.10)

dQ

dx
+ N̄

d2w

dx2
− fe = 0 (3.11)

Using Eqs. (3.10-3.11) and Eqs. (1.13-1.14) , one may obtain bending moment M and shear
force Q in nonlocal form as

M = EI
dϕ

dx
+ µ

[
−N̄ d2w

dx2
+ fe

]
(3.12)
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Q = ksGA

(
ϕ+

dw

dx

)
+ µ

[
−N̄ d3w

dx3
+ kw

dw

dx
− kg

d3w

dx3

]
(3.13)

Equating energies of the system, one may obtain following expressions for TBT nanobeams in
non-dimensional form as

N̄0

[(
dW

dX

)2

− α2 dϕ

dX

d2W

dX2
− α2 d

3W

dX3

(
ϕ+

dW

dX

)]
=

(
dϕ

dX

)2

− N̂θα
2 dϕ

dX

d2W

dX2
−Kwα

2W
dϕ

dX

−Kgα
2 d

2W

dX2

dϕ

dX
+

1

Ω

(
ϕ+

dW

dX

)2

− N̂θα
2 d

3W

dX3

(
ϕ+

dW

dX

)
+Kwα

2 dW

dX

(
ϕ+

dW

dX

)
−Kgα

2 d
3W

dX3

(
ϕ+

dW

dX

)
+ N̂θ

(
dW

dX

)2

+KwW
2 −KgW

d2W

dX2
(3.14)

In this probelm, we have used Chebyshev polynomials in the Rayleigh-Ritz method. As such,
we introduce another independent variable ξ as ξ = 2X − 1 which transforms the range
0 ≤ X ≤ 1 into the applicability range −1 ≤ ξ ≤ 1.

SubstitutingNm = −Pb and equating energies of the system, one may obtain Rayleigh Quotient
(N̄0) from following equation

N̄0

[
4

(
dW

dξ

)2

− 8α2 dϕ

dξ

d2W

dξ2
− 8α2 d

3W

dξ3

(
ϕ+ 2

dW

dξ

)]
= 4

(
dϕ

dξ

)2

− 8N̂θα
2 dϕ

dξ

d2W

dξ2
+ 2Kwα

2W
dϕ

dξ
−

8Kgα
2 d

2W

dξ2
dϕ

dξ
+

1

Ω

(
ϕ+ 2

dW

dξ

)2

+KwW
2

− 8N̂θα
2 d

3W

dξ3

(
ϕ+ 2

dW

dξ

)
+ 4N̂θ

(
dW

dξ

)2

+Kwα
2 dW

dξ

(
ϕ+ 2

dW

dξ

)
− 4KgW

d2W

dξ2

− 8Kgα
2 d

3W

dξ3

(
ϕ+ 2

dW

dξ

)
(3.15)

where N̄0 = PbL
2

EI
is the buckling load parameter.

Substituting Eqs. (2.14) and (2.15) in Eq. (3.15) and minimizing N̄0 with respect to the con-
stant coefficients, the following eigenvalue value problem is obtained

[K] {Z} = N̄0 [Bc] {Z} (3.16)

where Z is a column vector of constants. HereK andBc are the stiffness and buckling matrices
for TBT nanobeams which are given by
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K =

k1 k2

k3 k4

 where k1, k2, k3, k4 are submatrices and are given as

k1(i, j) =
∫ 1

−1
(8( 1

Ω
+Kwα

2+N̂θ)φi
′φj

′−16(N̂θα
2+Kgα

2)φi
′′′φj

′−16(N̂θα
2+Kgα

2)φi
′φj

′′′+

2Kwφiφj − 4Kgφi
′′φj − 4Kgφiφj

′′)dξ

k2(i, j) =
∫ 1

−1
(−8N̂θα

2φi
′′ψj

′+2Kwα
2φiψj

′−8Kgα
2φi

′′ψj
′+4 1

Ω
φi

′ψj−(8N̂θα
2+8Kgα

2)φi
′′′ψj+

2Kwα
2φi

′ψj)dξ

k3(i, j) =
∫ 1

−1
(−8N̂θα

2ψi
′φj

′′ + 2Kwα
2ψi

′φj − 8Kgα
2ψi

′φj
′′ + 4 1

Ω
ψiφj

′ − 8N̂θα
2ψiφj

′′′ +

2Kwα
2ψiφj

′ − 8Kgα
2ψiφj

′′′)dξ

k4(i, j) =
∫ 1

−1
(8ψi

′ψj
′ + 2 1

Ω
ψiψj)dξ

Bc =

B1 B2

B3 B4


where B1, B2, B3, B4 are submatrices and are given as

B1(i, j) =
∫ 1

−1
(8φi

′φj
′ − 16α2φi

′φj
′′′ − 16α2φi

′′′φj
′)dξ

B2(i, j) =
∫ 1

−1
(−8α2φi

′′ψj
′ − α2φi

′′′ψj)dξ

B3(i, j) =
∫ 1

−1
(−8α2ψi

′φj
′′ − 8α2ψiφj

′′′)dξ

B4(i, j) = 0

3.2.7.3 Reddy beam theory (RBT)
Governing equations of embedded nanobeams based on Reddy beam theory may be written as
(Reddy 2007)

GÃ

(
dϕ

dx
+

d2w

dx2

)
− N̄

d2w

dx2
− kww + kg

d2w

dx2
+ µ

[
N̄

d4w

dx4
+ kw

d2w

dx2
− kg

d4w

dx4

]
+ c1EJ

d3ϕ

dx3
− c21EK

(
d3ϕ

dx3
+

d4w

dx4

)
= 0

(3.17)

EÎ
d2ϕ

dx2
− c1EĴ

(
d2ϕ

dx2
+

d3w

dx3

)
−GÃ

(
ϕ+

dw

dx

)
= 0 (3.18)

57



Eliminating ϕ from Eqs. (3.17) and (3.18), governing equations may be obtained in terms of
displacement as

−
(
68

84
N̄ +

105

84EI
GÃµN̄

)
d4w

dx4
+

105

84EI
GÃN̄

d2w

dx2
+
68

84
µN̄

d6w

dx6
=

(
68

84
µkg +

1

105
EI

)
d6w

dx6
− 105

84EI
GÃkww

−
(
68

84
kg +

68

84
µkw +

105

84EI
GÃµkg +

21

84
GÃ

)
d4w

dx4
+

(
68

84
kw +

105

84EI
GÃkg +

105

84EI
GÃµkw

)
d2w

dx2

(3.19)

Substituting Nm = −Pb, governing equation in non-dimensional form is obtained as

N̄0

[(
68

84
− 105

84
Ω̄α2

)
d4W

dX4
− 105

84
Ω̄
d2W

dX2
− 68

84
α2 d

6W

dX6

]
=

(
68

84
α2Kg +

1

105
+

68

84
α2N̂θ

)
d6W

dX6
+(

−68

84
Kg −

68

84
α2Kw − 105

84
Ω̄α2Kg −

21

84
Ω̄− N̂θ

68

84
+

105

84
Ω̄α2N̂θ

)
d4W

dX4
− 105

84
Ω̄Kw

+

(
68

84
Kw +

105

84
Ω̄Kg +

105

84
Ω̄α2Kw +

105

84
Ω̄N̂θ

)
d2W

dX2
(3.20)

where N̄0 = PbL
2

EI
is the buckling load parameter.

Application of differential quadrature method in Eq. (3.20), one may obtain generalized eigen
value problem as

[K] {W} = N̄0 [Bc] {W} (3.21)

where K is the stiffness matrix and Bc is the buckling matrix.

3.3 Numerical results and discussions

Buckling of single-walled carbon nanotubes (SWCNTs) embedded in elastic medium including
thermal effect has been investigated. The elastic medium is modeled as Winkler-type and
Pasternak-type foundations. The effective properties of SWCNTs are taken as follows (Benzair
et al. 2008; Murmu and Pradhan 2009b): Young’s modulus (E) = 1000 GPa, Poisson’s ratio
(ν) = 0.19, shear correction factor (ks) =0.877, αx = −1.6 × 10−6K−1 for room or low
temperature and αx = 1.1× 10−6K−1 for high temperature. A computer code is developed by
the authors in MATLAB based on Eq. (3.9), (3.16) and (3.21).

3.3.1 Convergence

First of all, convergence test has been performed to find minimum number of terms required
for computation. As such, Figs. 3.24 and 3.25 illustrate convergence of critical buckling load

58



parameter (N̄0
cr) respectively for EBT and RBT. In Fig. 3.24, we have considered C-S edge

condition with L
h

= 20, e0a = 1nm,Kw = 60, Kg = 4, θ = 10K and in Fig. 3.25, we
have taken Kw = 50, Kg = 2, θ = 20K, e0a = 1.5nm, L

h
= 20 with C-S support. Similarly

Table 3.4 shows convergence of critical buckling load parameter of nanobeams based on TBT.
In this table, we have taken Kw = 50, Kg = 2, θ = 10K, e0a = 1nm, L

h
= 10 and C-S

edge condition. One may note that convergence test has been performed in low temperature
environment. Above convergence patterns show that ten grid points are sufficient to obtain
results in the present analysis.

3 4 5 6 7 8 9 10
28.22

28.24

28.26

28.28

28.3

28.32

28.34

28.36

n

N̄
0 c
r

Fig. 3.24 Convergence of critical buckling load parameter (EBT)

Table 3.4 Convergence of first three buckling load parameters (TBT)

n First Second Third

4 22.2348 39.7800 65.3622

5 22.1742 38.0072 51.6357

6 22.1711 37.6160 49.2176

7 22.1600 37.6100 47.9400

8 22.1616 37.4205 43.5535

9 22.1500 35.8300 37.7600

9 22.1500 35.8300 37.7600
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Fig. 3.25 Convergence of critical buckling load parameter (RBT)

3.3.2 Validation

To validate the present results, a comparison study has been carried out with the results of Wang
et al. (2006). For this comparison, we have taken Kw = 0, Kg = 0 and θ = 0K. As such,
Figs. 3.26-3.27 show graphical comparisons of EBT and TBT nanobeams respectively. In Fig.
3.26, we have considered C-S support with L

d
= 14 and in Fig. 3.27, we have considered S-S

support with L
d
= 10. Similarly, tabular comparison has been tabulated in Table 3.5 for RBT

nanobeams with that of Emam (2013) for L
h
= 10. For this comparison, we have taken same

parameters as that of Emam (2013). One may find a close agreement of the results. This shows
the suitability and reliability of the present method for the buckling analyses of SWCNTs.

0.5 1 1.5 2
3.5

4

4.5

5

Scale coefficient

N̄
0 c
r

 

 
Present
Wang et al. (2006)

Fig. 3.26 Comparison of critical buckling load parameter (EBT)
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Fig. 3.27 Comparison of critical buckling load parameter (TBT)

Table 3.5 Comparison of critical buckling load parameter (RBT)

S-S C-C

L/h µ Present Ref.* Present Ref.*

10 0 9.6228 9.6228 35.8075 35.8075

1 8.7583 8.7583 25.6724 25.6724

2 8.0364 8.0364 20.0090 20.0090

3 7.6149 7.4245 16.3927 16.3927

*Emam (2013)

3.3.3 Effect of Winkler modulus parameter

In this subsection, we have investigated the influence of surrounding medium on the buckling
of SWCNTs. The elastic medium is modeled as Winkler-type and Pasternak-type foundations.
Figs. 3.28-3.30 illustrate effect of Winkler modulus parameter on the buckling solutions based
on EBT, TBT and RBT respectively. We have shown these graphical results in low temperature
environment with Kg = 0. Numerical values taken for this computation are θ = 30K, L

h
= 10

in Fig. 3.28 with C-F support whereas in Fig. 3.29, we have taken θ = 10K, L
h
= 20 with

S-S support and in Fig. 3.30, we have taken θ = 10K, L
h
= 30 with C-C support. In these

figures, results have been shown for various values of scale coefficients. The Winkler modulus
parameter is taken in the range of 0-400. It is observed from these figures that critical buckling
load parameter (N̄0

cr) decreases with increase in scale coefficient. It may be noted that results
associated with e0a = 0nm correspond to those of local beam theory. One may observe that
results obtained by local beam theory are over predicted than that of obtained by nonlocal beam
theory. Therefore, nonlocal theory should be considered for buckling analysis of structures at
nanoscale. It is seen that critical buckling load increases with increase in Winkler modulus
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parameter. This is because that the nanotube becomes stiffer when elastic medium constant is
increased. In addition, it is also observed that critical buckling loads show nonlinear behavior
with respect to stiffness of surrounding matrix for higher e0lint values. This may be due to the
fact that increase of the Winkler modulus causes CNT to be more rigid.
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Fig. 3.28 Effect of the Winkler modulus parameter on critical buckling load parameter (EBT)
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Fig. 3.29 Effect of the Winkler modulus parameter on critical buckling load parameter (TBT)
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Fig. 3.30 Effect of the Winkler modulus parameter on critical buckling load parameter (RBT)

3.3.4 Effect of Pasternak shear modulus parameter

In this subsection, effect of Pasternak shear modulus parameter on the buckling has been exam-
ined. As such, Figs. 3.31-3.33 show the distribution of critical buckling load parameter against
Pasternak shear modulus for EBT, TBT and RBT respectively in low temperature environment.
Numerical values of parameters are chosen as Kw = 0, θ = 10K, L

h
= 40 with C-S support in

Fig. 3.31 whereas in Fig. 3.32, we have taken Kw = 50, θ = 10K, L
h
= 20 with C-S support

and in Fig. 3.33, we have taken Kw = 0, θ = 10K, L
h
= 20 with S-S edge condition. Graph is

plotted for various values of scale coefficients with Pasternak shear modulus parameter rang-
ing from 0-10. It is observed from the figures that critical buckling load parameter associated
increases with Pasternak shear modulus parameter. This increase is influenced by small scale
coefficient. With increase in scale coefficient, critical buckling load parameter for a particular
Pasternak shear modulus parameter decreases. Here it is also observed that unlike Winkler
foundation model, the increase of critical buckling load parameter with Pasternak foundation is
linear in nature. This is due to the domination of elastic medium modeled as the Pasternak type
foundation model. Same observation has also been reported in Murmu and Pradhan (2009b).
Next, we have analyzed the effect of Pasternak foundation model over Winkler foundation
model. As such, Fig. 3.34 illustrates the critical buckling load parameter of RBT nanobeams as
a function of small scale coefficient in low temperature environment with L

h
= 10 and C-C edge

condition. It may be observed that critical buckling load parameter obtained from Pasternak
foundation model is relatively larger than those obtained from the Winkler foundation model.
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Fig. 3.31 Effect of Pasternak shear modulus parameter on critical buckling load parameter (EBT)
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Fig. 3.32 Effect of Pasternak shear modulus parameter on critical buckling load parameter (TBT)
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Fig. 3.33 Effect of Pasternak shear modulus parameter on critical buckling load parameter (RBT)
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3.3.5 Effect of temperature

Here, effect of temperature on the buckling of nanobeams embedded in elastic medium has
been investigated. As such, Figs. 3.35-3.37 show variation of thermal load ratio (associated
with first mode) with change in temperature (θ) respectively for EBT, TBT and RBT. In Fig.
3.35, we have taken S-S nanobeam with L

h
= 20, e0a = 2nm,Kw = 50, Kg = 2. Similarly,

we have taken L
h
= 50, e0a = 0.5nm,Kw = 50, Kg = 2 with C-C support in Fig. 3.36 and

L
h
= 10, e0a = 1.5nm,Kw = 50, Kg = 2 with C-C support in Fig. 3.37.

Here, we define thermal load ratio (χthermal) as χthermal =
Buckling load with thermal effect

Buckling load without thermal effect .

It is noticed that in low temperature environment, thermal load ratios are more than unity. This
implies that buckling load parameter considering thermal effect is larger than ignoring influence
of temperature change. Whereas in high temperature environment, thermal load ratios are less
than unity. This implies that buckling load parameter considering thermal effect is smaller than
excluding influence of temperature change. In other words, critical buckling load parameter
increases with increase in temperature in low temperature environment while they decrease
with increase in temperature in high temperature environment. Same observation have also
been noted in Refs. (Murmu and Pradhan 2009a; Zidour et al. 2012; Maachou et al. 2011;
Murmu and Pradhan 2010).
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Fig. 3.35 Change of thermal load ratio with change in temperature (EBT)
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Fig. 3.36 Change of thermal load ratio with change in temperature (TBT)
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Fig. 3.37 Change of thermal load ratio with change in temperature (RBT)
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3.3.6 Effect of aspect ratio

To illustrate the effect of aspect ratio on the critical buckling load parameter, variation of buck-
ling load ratio with the aspect ratio (L

h
) has been shown in Fig. 3.38 for different magnitudes

of temperature change. Results have been shown for TBT nanobeam with Kw = 50, Kg =

2, e0a = 1nm and S-S edge condition. It is observed that buckling load ratio (associated with
first mode) increases with increase in aspect ratio. In addition, it is also seen that critical load
is also dependent on temperature change (θ). The differences in magnitudes of buckling load
ratio for different temperature changes are larger in low aspect ratios while the differences in
magnitudes of buckling load ratio for different temperature changes are smaller for large aspect
ratios. It is also seen that for larger temperature change, the rate of increase of buckling load
ratio is less compared to smaller temperature change. One may note that same observation may
also be seen in case of EBT and RBT beam theories.
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Fig. 3.38 Change of buckling load ratio with aspect ratio

3.4 Conclusions

Rayleigh-Ritz method has been used for bending of nanobeams based on both Euler-Bernoulli
and Timoshenko beam theories in conjunction with nonlocal elasticity of Eringen. Nonlocal
parameter has no effect on the deflection of C-C nanobeams whereas in case of S-S and C-
S supports, deflection increases with increase in nonlocal parameter. Again, Rayleigh-Ritz
method has been applied to investigate thermal effect on the buckling of nanobeams embedded
in elastic medium. Application of Rayleigh-Ritz method converts bending problems to system
of linear equations and buckling to generalized eigen value problem.

Differential quadrature method has been employed for buckling analysis of non-uniform nanobeams
based on four different beam theories such as EBT, TBT, RBT and LBT. Non-uniform material
properties are assumed by taking exponentially varying stiffness. New results have been shown
for two types of boundary conditions such as guided and simply supported-guided. Similarly,
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differential quadrature method has also been applied to investigate thermal effect on the buck-
ling of nanobeams embedded in elastic medium based on nonlocal Reddy beam theory. Theo-
retical formulations include effects of small scale , elastic medium and temperature change. It is
seen that results obtained based on local beam theory are over estimated. Critical buckling load
parameter increase with increase in Winkler and Pasternak coefficients of elastic foundation.
It may again be observed that thermal load ratio is more than unity in case of low temperature
environment while thermal load ratio is less than unity in case of high temperature environment.
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Chapter 4

Bending and buckling of nanoplates

In this chapter, we have discussed bending and buckling of nanoplates based on classical plate
theory in conjunction with nonlocal elasticity theory of Eringen. Two-dimensional simple poly-
nomials have been used as shape functions in the Rayleigh-Ritz method. Complicating effects
such as Winkler and pasternak foundation models have been considered.

Bending of nanoplates

We have investigated bending of nanoplates in the absence of elastic foundation. As such, the
strain energy may be obtained from Eq. (2.28) by setting kw = kp = 0.

U =
1

2
D

∫ a

0

∫ b

0

{(
∂2w

∂x2

)2

+ 2ν

(
∂2w

∂x2

∂2w

∂y2

)
+

(
∂2w

∂y2

)2

+ 2(1− ν)

(
∂2w

∂x∂y

)2
}
dxdy (4.1)

Similarly, the potential energy of the transverse force q may be given by Eq. (2.29).

We have introduced the non-dimensional variables X = x
a

and Y = y
b
.

The total potential energy UT of the system may be written in non-dimensional form as

UT = us + uv (4.2)

where

us =
1

2

∫ 1

0

∫ 1

0

{
D

a4

[(
∂2w

∂X2

)2

+ 2νR2

(
∂2w

∂X2

∂2w

∂Y 2

)
+R4

(
∂2w

∂Y 2

)2

+ 2(1− ν)R2

(
∂2w

∂X∂Y

)2
]}

dXdY

(4.3)

uv = −
∫ 1

0

∫ 1

0

q

[
w − µ

a2

(
∂2w

∂X2
+R2 ∂

2w

∂Y 2

)]
dXdY (4.4)

Here R = a
b

is the aspect ratio.
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Substituting Eq. (2.31) in Eq. (4.4) and then minimizing UT as a function of constants, one
may obtain following system of linear equation

n∑
j=1

aijcj = Pcbi (4.5)

where aij =
∫ 1
0

∫ 1
0

[
φi

XXφj
XX +R4φi

Y Y φj
Y Y + νR2

(
φi

XXφj
Y Y + φi

Y Y φj
XX
)
+ 2(1− ν)R2φi

XY φj
XY
]
dXdY

bi =
∫ 1

0

∫ 1

0

(
φi − µ

a2

(
φi

XX +R2φi
Y Y
))

dXdY and Pc =
qa4

D
.

4.1 Numerical results and discussions

Above system of linear equation has been solved by using MATLAB. It should be noted that
present study is subjected to uniformly distributed loading (q(X) = q0). Non-dimensional
maximum center deflection (Wmax) is given by (Aghababaei and Reddy 2009) −w×

(
Eh2

q0a4

)
×

100.

4.1.1 Convergence

First of all, convergency has been carried out to find the minimum number of terms required
for computation. As such, Fig. 4.1 shows convergence of simply supported nanoplates with
µ = 0.5nm2, R = 1 and a = 10nm. One may find from this figure that convergency is attained
at n = 7.
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Fig. 4.1 Variation of non-dimensional maximum center deflection (Wmax) with n

4.1.2 Validation

Next, to show the reliability and accuracy of the present method, our numerical results are
compared with those available in literature for simply supported nanoplates. As such, tabular
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comparison has been given in Table 4.1 with Aghababaei and Reddy (2009). For this com-
parison, same parameters as that of Aghababaei and Reddy (2009) have been used. One can
see that our results are in a good agreement with analytical solutions. It is noted that S-S-S-S
would denote simply supported-simply supported-simply supported-simply supported bound-
ary condition.

Table 4.1 Comparison of non-dimensional maximum center deflection of S-S-S-S nanoplate

µ = 0 µ = 0.5 µ = 1 µ = 1.5 µ = 2 µ = 2.5 µ = 3

Present 4.0673 4.3637 4.7601 5.0565 5.4530 5.8094 6.1058

Ref.* 4.0083 4.3702 4.7322 5.0942 5.4561 5.8181 6.1800

*Aghababaei et al. (2009)

In the following paragraphs, we have investigated some of the parametric studies.

4.1.3 Effect of aspect ratio

To investigate the effect of aspect ratio on the deflection, variation of deflection ratio with as-
pect ratio has been illustrated in Fig. 4.2 for F-S-F-S nanoplate with a = 5nm. Here, we define
deflection ratio as

deflection ratio= deflection calculated by nonlocal theory
deflection calculated using local theory .

One may notice that deflection ratio increases with increase in aspect ratio. In other words,
increasing aspect ratio will decrease non-dimensional maximum center deflection. Same ob-
servation has also been reported in Aghababaei and Reddy (2009). It is noticed that deflection
ratio increases with increase in nonlocal parameter. From the above graph, one may notice that
that nonlocal effect on the deflection ratio is more in higher values of aspect ratio.
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Fig. 4.2 Variation of deflection ratio with aspect ratio
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4.1.4 Effect of length

Next, Fig. 4.3 depicts effect of length on the non-dimensional maximum center deflection.
Results have been shown for different nonlocal parameters with R = 1 and S-C-S-C edge
condition. It is figured out that non-dimensional maximum center deflection decreases with
increase in length. It is also noticed that for each length of the nanoplates, the non-dimensional
maximum center deflection increases with increase in the nonlocal parameter. Again, One may
see that as the length of nanoplates increases, the non-dimensional maximum center deflection
increases for each value of the nonlocal parameter. This is due to the fact that size-dependency
plays a vital role in the nonlocal elasticity theory.
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Fig. 4.3 Variation of Wmax with length

4.1.5 Effect of nonlocal parameter

To illustrate effect of nonlocal parameter on the deflection, Fig. 4.4 illustrates variation of
nonlocal parameter with non-dimensional maximum center deflection. In this figure, we have
taken a = 10nm, R = 2 with F-C-F-C edge condition. One may find increase in nonlocal
parameter will increase deflection.
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Buckling of nanoplates

In this analysis, we have considered orthotropic nanoplates embedded in elastic medium such
as Winkler and Pasternak.

As such, one may obtain Rayleigh-quotient in non-dimensional form as

N̄0 =
Ub

Vb
(4.6)

where

Ub =
1

2

∫ 1

0

∫ 1

0

{
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2
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+R4
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)2

+ 4
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2
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∂X2
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+R2
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)2
)

+
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(
∂2W

∂Y 2

)2
)]

+Kw

[
W 2 +

µ

a2

((
∂W

∂X

)2

+R2

(
∂W

∂Y

)2
)]}

dXdY

Vb =
1

2

∫ 1

0

∫ 1

0

{(
∂W

∂X

)2

+
µ

a2

((
∂2W

∂X2

)2

+R2

(
∂2W

∂X∂Y

)2
)

+R2

(
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+
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∂2W
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)2

+R2
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∂2W

∂Y 2
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)}

dXdY

Here N̄0 = Nxxa2

E2h3 is the non-dimensional buckling load parameter.

Substituting Eq. (2.31) into Rayleigh-quotient, we get a generalized eigen value problem as
discussed in Chapter 2. In the generalized eigen value problem [Eq. (2.34)], stiffness matrix
(K) and buckling matrix (Bc)are given as

K(i, j) =
∫ 1
0

∫ 1
0

[
E1
E2

φi
XXφj

XX +R4φi
Y Y φj

Y Y + νxR2
(
φi

XXφj
Y Y + φi

Y Y φj
XX
)
+ 4

Gxy

E2
(1− νxνy)R2φi

XY φj
XY
]
dXdY

Bc(i, j) =
∫ 1
0

∫ 1
0

(
φi

Xφj
X + µ

a2

(
φi

XXφj
XX +R2φi

XY φj
XY
)
+R2φi

Y φj
Y + µ

b2

(
φi

XY φj
XY +R2φi

Y Y φj
Y Y
))

dXdY

4.2 Numerical results and discussions

4.2.1 Convergence

Convergence study has been carried out in order to establish the required degree of the polyno-
mial set for desired results and is presented in Fig. 4.5. In this figure, we have taken stiffness
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ratio (E1

E2
)= 10, nonlocal parameter (µ) = 1nm2, length (a) = 10nm and aspect ratio (R) = 1.

Results have been shown for Kw = 50 and Kp = 2 with S-S-S-S edge condition. one may see
from this figure that n = 25 is sufficient in the present analysis.
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Fig. 4.5 Variation of N̄cr with grid points

4.2.2 Validation

To validate the present results, a comparison study has been carried out in Table 4.2 with Thai
and Kim (2011). For this, same parameters as that of Thai and Kim (2011) have been used.
Results have been shown for four types of boundary conditions. Here, the two opposite edges
parallel to the x-axis are simply supported and the other two edges can have any arbitrary
conditions such as free, simply supported or clamped conditions as shown in the table. One
may observe a close agreement of the results.

Table 4.2 Comparison of non-dimensional critical buckling load parameter for S-S-S-S nanoplate

E1

E2
S-S F-C F-S F-F

Present Ref.* Present Ref.* Present Ref.* Present Ref.*

10 5.5669 5.5707 1.7688 1.7733 1.0158 1.0165 1.2772 1.2745

25 11.6885 11.7003 2.8069 2.8271 1.0147 1.0148 1.2652 1.2737

40 17.7922 17.8060 3.8041 3.8804 1.0143 1.0144 1.2682 1.2735

*Thai and Kim (2011)

4.2.3 Effect of length

To investigate the effect of length on the buckling load parameter, variation of buckling load
ratio with length has been shown in Fig. 4.6 for F-S-C-S nanoplates with R = 1, a = 10nm

and stiffness ratio as 10. Results have been shown for different values of nonlocal parameters
(0nm2 − 4nm2) in the absence of elastic foundation. It is observed that buckling load ratio
increases with increase in length. This observation may be explained as: Assuming lint as
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constant, increasing length (a) would lead to decrease in small scale effect (µ/a2). It is also
noticed that buckling load ratio are highest in case of µ = 0 and goes on decreasing with
increase in nonlocal parameter. From this, we may also say that nonlocal theory should be
taken into account for buckling analysis of small enough nanoplates.
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Fig. 4.6 Variation of buckling load ratio with length

4.2.4 Effect of aspect ratio

In this subsection, we have considered the effect of aspect ratio on the buckling load parameter
in the absence of elastic foundation. Fig. 4.7 shows the effect of buckling load ratio associ-
ated with first mode of F-S-S-S nanoplate with aspect ratio taking a = 10nm, E1

E2
= 10. It is

observed that buckling load ratio decreases with increase in aspect ratio. One may notice that
buckling load ratio decreases with increase in nonlocal parameter. As the nonlocal parameter
increases, critical buckling load ratio obtained from nonlocal plate theory become smaller than
those of its local counterpart. This shows that, nonlocal theory should be considered for buck-
ling of nanoplates.
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Fig. 4.7 Change of buckling load ratio with aspect ratio
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4.2.5 Effect of stiffness ratio

Next, investigation has been performed to examine the effect of stiffness ratio on the critical
buckling load parameter of nonlocal orthotropic plate model of nanoplate. As such, Fig. 4.8
illustrates variation of buckling load ratio with stiffness ratio for S-S-S-S nanoplates with a =

5nm and R = 1. Results have been shown in the absence of elastic foundation for different
nonlocal parameters (µ = 0.5nm2, 1nm2, 2nm2). It is observed from the figure that buckling
load ratio decreases with increase with stiffness ratio. In other words, stiffness ratio has an
increasing effect on the critical buckling load parameter.
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Fig. 4.8 Effect of stiffness ratio on buckling load ratio

4.2.6 Effect of nonlocal parameter

Here, we have examined the effect of nonlocal parameter on the buckling load parameter in
the absence of elastic foundation. Variation of critical buckling load with nonlocal parameter
has been illustrated in Fig. 4.9 for S-C-S-C edge condition. In this graph, we have taken
a = 10nm,R = 2, E1

E2
= 10. It is clearly seen from the figure that critical buckling load

parameter decreases with increase in nonlocal parameter. This implies that application of local
beam model for buckling analysis of graphene sheets would lead to over prediction of the
buckling load. Hence, nonlocal beam theory should be used for better predictions of buckling
load of nanoplates.

77



0 0.5 1 1.5 2 2.5 3
2

4

6

8

10

12

14

16

Nonlocal parameter (µ)

N̄
0 c
r

Fig. 4.9 Small scale effect on critical buckling load parameter

4.2.7 Effect of elastic foundation

Here, the effects of Winkler and Pasternak elastic foundations on the critical buckling load
parameter have been studied. As such, Figs. 4.10-4.11 show variation of buckling load ratio
with Winkler and Pasternak coefficients respectively. In these figures, we have taken a =

10nm, E1

E2
= 10, R = 2 with S-C-S-C edge condition. Effect of Winkler coefficient on the

buckling load ratio has been analyzed taking Kp = 0 and effect of Pasternak coefficient on
the buckling load ratio has been investigated taking Kw = 0. Results have been computed for
different values of nonlocal parameters (µ = 0nm2, 0.5nm2, 1nm2, 2nm2, 3nm2). It is seen
from the figures that buckling load ratio increases linearly by increasing the stiffness of the
elastic foundation either through the springy (Winkler coefficient) or the shear effect (Pasternak
coefficient). It is also noticed from these figures that the shear effect of the elastic foundation
has more noticeable influence on the buckling load ratio.
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Fig. 4.10 Effect of Winkler modulus parameter on the buckling load ratio
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Fig. 4.11 Effect of Pasternak shear modulus parameter on buckling load ratio

4.3 Conclusions

Rayleigh-Ritz method with two-dimensional simple polynomials has been implemented to an-
alyze bending and buckling of rectangular nanoplate. Bending analysis has been carried out
in isotropic case while buckling study has been investigated for orthotropic nanoplate. Var-
ious parametric studies have been investigated. One may easily handle all sets of boundary
conditions by the application of Rayleigh-Ritz method. Application of Rayleigh-Ritz method
converts bending problem to system of linear equation and buckling problem to generalized
eigen value problem.
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Chapter 5

Vibration of nanobeams

In this chapter, Rayleigh-Ritz method has been applied to study vibration of nanobeams based
on Euler-Bernoulli and Timoshenko beam theories. Next, differential quadrature method has
been used to investigate vibration of nanobeams based on four types of beams such as Euler-
Bernoulli, Timoshenko, Reddy and Levinson. In the Rayleigh-Ritz method, both one-dimensional
simple polynomials and boundary characteristic orthogonal polynomials have been used as
shape functions.

Vibration of nanobeams using Rayleigh-Ritz method

In this analysis, we have used the following non-dimensional terms

X =
x

L

W =
w0

L

α =
e0a

L
= scaling effect parameter

τ =
I

AL2

λ2 =
ρAω2L4

EI
= frequency parameter

Ω =
EI

ksGAL2
= shear deformation parameter

Application of Rayleigh-Ritz method would convert vibration problems to generalized eigen
value problems which have been discussed in section 2.1.2. In generalized eigen value equa-
tion [Eq. (2.21)], stiffness and mass matrices for EBT are given by
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K(i, j) =
∫ 1

0
φi

′′φj
′′dX

Ma(i, j) =
∫ 1

0
φiφj − α2

2
φiφj

′′ − α2

2
φi

′′φjdX

Similarly in the generalized eigen value equation for TBT nanobeams [Eq. (2.26)], matrices K
and Ma are defined as

K =

k1 k2

k3 k4

 where k1, k2, k3, k4 are submatrices and are given by

k1(i, j) =
∫ 1

0
φi

′φjdX

k2(i, j) =
∫ 1

0
φi

′ψjdX

k3(i, j) =
∫ 1

0
ψiφj

′dX

k4(i, j) =
∫ 1

0
(ψiψj + Ωψi

′ψj
′)dX

Ma =

m1 m2

m3 m4

 where m1, m2, m3, m4 are submatrices and are given as

m1(i, j) = Ω
∫ 1

0
φiφjdX

m2(i, j) = Ωα2

2

∫ 1

0
φiψj

′dX

m3(i, j) = Ωα2

2

∫ 1

0
ψi

′φjdX

m4(i, j) = Ω
∫ 1

0
(τψiψj + τα2ψi

′ψj
′)dX

5.1 Numerical results and discussions

Frequency parameters of SWCNT have been computed by using Rayleigh-Ritz method. In
the numerical evaluations, following parameters have been used (Wang et al. 2007): diameter,
d = 0.678nm, L = 10d, t = 0.066, ks = 0.563, E = 5.5TPa, G = E/[2(1 + v)], ν = 0.19

and I = Πd4/64.

In this study, frequency parameters of both Euler-Bernoulli and Timoshenko nanobeams have
been computed. Results have been investigated for different scaling effect parameters and
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boundary conditions. Firstly, frequency parameters are being computed taking simple polyno-
mials of the form X i−1 in the Rayleigh-Ritz method. Then the polynomials are orthogonalized
by Gram-Schmidt process and are used in the Rayleigh-Ritz method to obtain frequency pa-
rameters. Table 5.1 shows the convergence studies of first three frequency parameters (

√
λ) for

S-S and C-S Euler-Bernoulli nanobeams taking α = 0.5 and L = 10d. Similarly, convergence
studies of first three frequency parameters for S-S and C-S Timoshenko nanobeams are tabu-
lated in Table 5.2 for α = 0.5 and L = 10d. In these tables, it is observed that the frequency
parameters are close to the results of Wang et al. (2007) as the value of n increases. In Table
5.3, first four frequency parameters of Euler-Bernoulli nanobeams have been compared with
results of Wang et al. (2007) and are found to be in good agreement. Similarly results of Timo-
shenko nanobeams subjected to various boundary conditions have been compared with Wang et
al. (2007) in Table 5.4 for different scaling effect parameters. From Tables 5.3 and 5.4, it can be
clearly seen that the nonlocal results are smaller than the corresponding local ones. Frequency
parameters of nanobeams subjected to F-F and S-F boundary conditions have been given in
Table 5.5 for different scaling effect parameters. It may be noted that the frequency parameters
obtained by using orthonormalized polynomials are same as that of using simple polynomials.
But here the computations become more efficient and less time is required for the execution
of the program. It is due to the fact that some of the matrix elements become zero or one due
to the orthonormality. One of the interesting facts in this analysis is that C-C nanobeams have
highest frequency parameters than other boundary conditions. It helps the design engineers to
obtain desired frequency parameters as per the application.

The behavior of scaling effect parameter on the frequency parameter is shown in Figs. 5.1-5.3
respectively for S-S, C-S and C-C Euler-Bernoulli nanobeams. Similarly, Figs. 5.4-5.6 show
variation of frequency parameter with the scaling effect parameter respectively for S-S, C-S and
C-C Timoshenko nanobeams. In these figures, first four frequency parameters have been shown
for both Euler-Bernoulli and Timoshenko nanobeams. From these figures, it is depicted that
frequency parameters are over predicted when local beam model is considered for vibration
analysis of nanobeams. As the scaling effect parameter increases, frequency parameters of
nonlocal nanobeams become smaller than those of its local counterpart. This reduction can
be clearly seen when we consider higher vibration modes. The reduction is due to the fact
that the nonlocal model may be viewed as atoms linked by elastic springs while in case of
local continuum model, the spring constant is assumed to take an infinite value. So small scale
effect makes the nanobeams more flexible and nonlocal impact cannot be neglected. As such,
nonlocal theory should be used for better predictions of high natural frequency of nanobeams.
Mode shapes are useful for engineers to design structures because they represent the shape
that the structures will vibrate in free motion. Sometimes, the knowledge of higher modes is
necessary before finalizing the design of an engineering system. Thus, while studying vibration
problems viz. beam, plate or shell, one may always see the tabulation of the higher frequencies
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in the open literature. As such, the present investigators have reported first few higher modes
in Fig. 5.7 for benchmarking the results which may help the researchers of nanotechnology. In
Fig. 5.7, we have given first four deflections of nonlocal C-C Euler-Bernoulli nanobeams with
scaling effect parameters as 0, 0.3 and 0.6. It can be seen that mode shapes are affected by small
length scale. By understanding the modes of vibration, we can better design the structures as
per the need.

Table 5.1 Convergence of first three frequency parameters for Euler-Bernoulli nanobeams

S-S C-S

n First Second Third First Second Third

3 2.3026 3.8475 5.0587 2.7928 3.9140 5.6488

4 2.3026 3.4688 5.0587 2.7900 3.8530 4.8090

5 2.3022 3.4688 4.3231 2.7899 3.8341 4.6708

6 2.3022 3.4604 4.3231 2.7899 3.8327 4.6194

7 2.3022 3.4604 4.2945 2.7899 3.8325 4.6122

8 2.3022 3.4604 4.2945 2.7899 3.8325 4.6106

9 2.3022 3.4604 4.2941 2.7899 3.8325 4.6105

10 2.3022 3.4604 4.2941 2.7899 3.8325 4.6105

11 2.3022 3.4604 4.2941 2.7899 3.8325 4.6105

Table 5.2 Convergence of first three frequency parameters for Timoshenko nanobeams

S-S C-S

n First Second Third First Second Third

3 2.3867 3.6631 10.4677 2.7315 4.1148 6.8252

4 2.2760 3.6630 4.5482 2.7210 3.6916 4.8857

5 2.2760 3.3477 4.5481 2.7186 3.6521 4.3489

6 2.2756 3.3477 4.0425 2.7186 3.6373 4.2753

7 2.2756 3.3423 4.0425 2.7186 3.6364 4.2391

8 2.2756 3.3426 4.0212 2.7186 3.6362 4.2352

9 2.2756 3.3423 4.0212 2.7186 3.6362 4.2341

10 2.2756 3.3423 4.0209 2.7186 3.6362 4.2341

11 2.2756 3.3423 4.0209 2.7186 3.6362 4.2341
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Table 5.3 Validation of first four frequency parameters of Euler-Bernoulli nanobeams

Mode no. α = 0 α = 0.1 α = 0.3

Present Ref.* Present Ref.* Present Ref.*

S-S

1 3.1416 3.1416 3.0685 3.0685 2.6800 2.6800

2 6.2832 6.2832 5.7817 5.7817 4.3013 4.3013

3 9.4248 9.4248 8.0400 8.0400 5.4423 5.4422

4 12.566 12.566 9.9162 9.9162 6.3630 6.3630

C-S

1 3.9266 3.9266 3.8209 3.8209 3.2828 3.2828

2 7.0686 7.0686 6.4649 6.4649 4.7668 4.7668

3 10.210 10.210 8.6517 8.6517 5.8371 5.8371

4 13.252 13.352 10.469 0.469 6.7145 6.7143

C-C

1 4.7300 4.7300 4.5945 4.5945 3.9184 3.9184

2 7.8532 7.8532 7.1402 7.1402 5.1963 5.1963

3 10.996 10.996 9.2583 9.2583 6.2317 6.2317

4 14.137 14.137 11.016 11.016 7.0482 7.0482

*Wang et al. (2007)
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Table 5.4 Validation of first four frequency parameters of Timoshenko nanobeams

Mode no. α = 0 α = 0.1 α = 0.3

Present Ref.* Present Ref.* Present Ref.*

S-S

1 3.0742 3.0929 3.0072 3.0243 2.6412 2.6538

2 5.9274 5.9399 5.4400 5.5304 4.1357 4.2058

3 8.4057 8.4444 7.3662 7.4699 5.0744 5.2444

4 10.601 10.626 8.9490 8.9874 6.0173 6.0228

C-S

1 3.7336 3.7845 3.6476 3.6939 3.1784 3.2115

2 6.2945 6.4728 6.0015 6.0348 4.4926 4.6013

3 8.4762 8.1212 7.5816 7.8456 5.3307 5.5482

4 10.861 10.880 9.2044 9.2751 6.2286 6.2641

C-C

1 4.3980 4.4491 4.3026 4.3471 3.7578 3.7895

2 6.7711 6.9524 6.3507 6.4952 4.8196 4.9428

3 9.1185 9.1626 8.1274 8.1969 5.6082 5.8460

4 11.014 11.113 9.1456 9.5447 6.1194 6.4762

*Wang et al. (2007)

Table 5.5 First four frequency parameters of Timoshenko nanobeams and some new boundary conditions

Mode no. α = 0 α = 0.1 α = 0.3 α = 0.5 α = 0.7

S-F

1 0.0009 0.0008 0.0001 0.0001 0.0001

2 3.8065 3.7118 3.2121 2.7378 2.3931

3 6.4684 6.0146 4.5340 3.6575 3.1302

4 8.7295 7.7276 5.3708 4.2542 3.6193

F-F

1 0.0009 0.0008 0.0008 0.0004 0.0004

2 4.5443 4.4253 3.8029 3.2201 2.8043

3 7.0857 6.5603 4.8810 3.9150 3.3428

4 9.2673 8.1717 5.6529 4.4805 3.8132
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Fig. 5.1 Change of frequency parameter with α (S-S)
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Fig. 5.2 Change of frequency parameter with α (C-S)
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Fig. 5.3 Change of frequency parameter with α (C-C)
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Fig. 5.4 Change of frequency parameter with α (S-S)
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Fig. 5.5 Change of frequency parameter with α (C-S)
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Fig. 5.6 Change of Frequency parameter with α (C-C)
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Fig. 5.7 First four deflection shapes of clamped-clamped nanobeams
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Vibration of nanobeams using differential quadrature method

In this section, differential quadrature method has been employed to study various nonlocal
beam theories such as Euler-Bernoulli, Timoshenko, Reddy and Levinson. Boundary condi-
tions have been substituted in the coefficient matrices.

In this problem, we have introduced following non-dimensional terms

X =
x

L

W =
w0

L

α =
e0a

L
= scaling effect parameter

τ =
I

AL2

λ2 =
ρAω2L4

EI
= frequency parameter

Ω =
EI

KsGAL2
= shear deformation parameter

Ω̄ =
GÃL2

EI

Ω̂ =
EI

GĀL2

Below we have included the non-dimensionalized forms of the governing differential equations
respectively for EBT, TBT, RBT and LBT in Eqs. (5.1-5.4).

d4W

dX4
= λ2

(
W − α2d

2W

dX2

)
(5.1)

d4W

dX4
= λ2

(
−τ d

2W

dX2
+ α2τ

d4W

dX4
− Ω

d2W

dX2
+ Ωα2d

4W

dX4
+W − α2d

2W

dX2

)
(5.2)

Ω̄
5

4

d4W

dx4
− 1

105

d6W

dx6
= λ2

(
−17

21

d2W

dX2
+

17

21
α2d

4W

dX4
+

105

84
Ω̄

(
W − α2d

2W

dX2

))
(5.3)

d4W

dX4
= λ2

[
W +

(
α2τ +

4

5
α2Ω̂

)
d4W

dX4
−
(
τ + α2 +

4

5
Ω̂

)
d2W

dX2

]
(5.4)

By the application of differential quadrature method, one may obtain generalized eigen value
problem as

[S] {W} = λ2 [Ma] {W} (5.5)

where S is the stiffness matrix and Ma is the mass matrix.
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5.2 Numerical results and discussions

Frequency parameters (
√
λ) have been obtained by solving Eq. (5.5) using computer code

developed by the authors. Lowest four eigen values corresponding to first four frequency pa-
rameters have been reported for different boundary conditions. In this investigation, various
parameters used for numerical evaluations are as follows (Reddy 2007): E = 30×106, ν = 0.3,
L = 10nm; G = E

2(1+ν)
, ks = 5

6
and unless mentioned L

h
= 10.

5.2.1 Convergence

A convergence study is being carried out for finding the minimum number of grid points to
obtain converged results. Lower frequency parameters converge first than successive higher
frequency parameters. First three frequency parameters converge with less number of grid
points than fourth one. Hence convergence of fourth frequency parameter (

√
λ4) of EBT and

RBT nanobeams is shown in Fig. 5.8. In this graph, µ is taken as 1nm2 with S-S boundary
condition. It is seen that fourth frequency parameter converges at sixteen grid points. Hence,
sixteen grid points are taken for obtaining the converged results of first four frequency param-
eters of nanobeams based on four beam theories.
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Fig. 5.8 Variation of frequency parameter with grid points

5.2.2 Validation

Validation of the proposed method is confirmed by comparing obtained results with those avail-
able in literature (Wang et al. 2007; Reddy 2007). For this purpose, same parameters as used in
Wang et al. (2007) and Reddy (2007) are taken. Comparison of the fundamental frequency pa-
rameter has been shown in Table 5.6 for S-S edge condition. Results have been compared for all
four types of beam theories. In this table, µ is taken from 0nm2 to 4nm2. Similarly, comparison
of the results of Timoshenko nanobeams subjected to different boundary conditions (S-S, C-C,
C-S, C-F) has been reported in Table 5.7 for different scaling effect parameters. It is observed
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from the above table (Table 5.6) that fundamental frequency parameter of EBT nanobeams is
higher than other types of nanobeams. One may see from Table 5.7 that no nontrivial real fre-
quencies will exist for cantilever beams once the scaling effect parameter approaches the value
0.6138. This is due to the fact that successive odd and even vibration modes approach each
other and are suppressed with the increasing value of α. In addition, real frequencies can be
obtained for only first few modes once value of α approaches 0.6138. Similar findings are also
reported in Refs. (Wang et al. 2007) and (Reddy 2007). We have also incorporated graphical
comparison in Fig. 5.9 with Wang et al. (2007) for TBT nanobeams with S-S support. Sim-
ilarly, Fig. 5.10 shows graphical comparison with Reddy (2007) for Reddy nanobeams with
L
h
= 10. One may observe that a close agreement of the results is achieved.

Table 5.6 Comparison of fundamental frequency parameter (λ) for S-S nanobeams

µ EBT Ref.* TBT Ref.* RBT Ref.* LBT Ref.*

0 9.8696 9.8696 9.7200 9.7454 9.7200 9.7454 9.7400 9.7657

0.5 9.6347 9.6347 9.4953 9.5135 9.5100 9.5135 9.5055 9.5333

1 9.4159 9.4159 9.2973 9.2973 9.3000 9.2974 9.3003 9.3168

1.5 9.2113 9.2113 9.1113 9.0953 9.1000 9.0954 9.0991 9.1144

2 9.0195 9.0195 8.9359 8.9059 8.9100 8.9060 8.9004 8.9246

2.5 8.8392 8.8392 8.7703 8.7279 8.7300 8.7279 8.7231 8.7462

3.0 8.6693 8.6693 8.6136 8.5601 8.5600 8.5602 8.5260 8.5780

3.5 8.5088 8.5088 8.4650 8.4017 8.4017 8.4017 8.3682 8.4193

4.0 8.3569 8.3569 8.2238 8.2517 8.2517 8.2517 8.2188 8.2690

*Reddy (2007)
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Table 5.7 Comparison of first three frequency parameters (
√
λ) for different boundary conditions

S-S C-S

α 0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7
√
λ1 3.0603 2.6752 2.2994 2.0193 3.6089 3.2754 2.7857 2.4328

Ref.* 3.0243 2.6538 2.2867 2.0106 3.6939 3.2115 2.7471 2.4059
√
λ2 5.7309 4.2831 3.4498 2.9506 6.0430 4.7424 3.7170 3.2654

Ref.* 5.5304 4.2058 3.4037 2.9159 6.0348 4.6013 3.7312 3.2003
√
λ3 7.4153 5.2033 4.2693 3.5290 7.7055 5.5870 4.4767 3.8929

Ref.* 7.4699 5.2444 4.1644 3.5453 7.8456 5.5482 4.4185 3.7666

C-C C-F

α 0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7
√
λ1 4.3785 3.7069 3.3068 2.8823 1.8796 1.9158 2.0225 -

Ref.* 4.3471 3.7895 3.2420 2.8383 1.8650 1.8999 2.0024 -
√
λ2 6.4405 4.9223 3.7730 3.4473 4.4303 3.7543 2.9355 -

Ref.* 6.4952 4.9428 3.9940 3.4192 4.3506 3.6594 2.8903 -
√
λ3 8.0856 5.7696 4.6909 3.9600 6.5710 5.0652 - -

Ref.* 8.1969 5.8460 4.6769 3.9961 6.6091 5.0762 - -

*Wang et al. (2007)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
2

2.2

2.4

2.6

2.8

3

3.2

3.4

Scaling effect parameter (α)

Fr
eq

ue
nc

y 
pa

ra
m

et
er

 

 
Present
Wang et al. (2007)

Fig. 5.9 Comparison of results with Wang et al. (2007)
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Fig. 5.10 Comparison of results with Reddy (2007)

5.2.3 Effect of nonlocal parameter

Effect of nonlocal parameter on the first four frequency parameters (
√
λ) of nanobeams based

on four beam theories is analyzed. In this analysis, boundary conditions such as S-S, C-S,
C-C and C-F are taken into consideration. Both tabular and graphical results are presented
in this context. Table 5.8 shows first four frequency parameters of S-S, C-S, C-C and C-F
EBT nanobeams for different nonlocal parameters. From this table, it is seen that frequency
parameters decrease with increase in nonlocal parameter except fundamental frequency param-
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eter of C-F nanobeams. It is also observed that frequency parameters increase with increase
in mode number. One of the interesting observation is that C-C nanobeams are having high-
est frequency parameters than other set of boundary conditions at the edges. Similarly Table
5.9 gives first four frequency parameters of S-S, C-S, C-C and C-F Timoshenko nanobeams
subjected to various boundary conditions. Here also, it is noticed that frequency parameters
decrease with nonlocal parameter except fundamental frequency parameter of C-F nanobeams.
From this table also, one may see higher frequency parameters in case of C-C nanobeams. Sim-
ilarly, first four frequency parameters of Reddy nanobeams subjected to S-S, C-S, C-C and C-F
have been reported in Table 5.10 to illustrate the effect of nonlocal parameter on the frequency
parameters. From the above table, one may conclude same observation as that of EBT and RBT
nanobeams. Frequency parameters of Levison nanobeams subjected to different boundary con-
ditions have been presented in Table 5.11. Here, one may observe that frequency parameters
decrease with increase in nonlocal parameter except fundamental frequency parameter of C-F
nanobeams. Next, to highlight the importance of nonlocal theory, variation of frequency ra-
tio
(

frequency parameter calculated using nonlocal theory
frequency parameter calculated using local theory

)
associated with first four mode numbers with (e0a)

has been shown in Figs 5.11-5.14 respectively for EBT, TBT, RBT and LBT. In these figures,
we have taken S-S boundary condition. This frequency ratio serves as an index to estimate
quantitatively the small scale effect on the vibration solution. It is clearly seen from the figures
that the frequency ratios are less than unity. This implies that application of local beam model
for vibration analysis of carbon nanotubes would lead to over prediction of the frequency in
particular higher frequency if the small length scale effect between individual carbon atoms is
neglected. Hence, nonlocal beam theory should be used for better predictions of higher fre-
quencies of nanobeams.

One of the important observation seen in this analysis is that frequency parameters of TBT,
RBT and LBT nanobeams are having approximately same results. EBT nanobeam over pre-
dicts frequency parameters than TBT, RBT and LBT nanobeams since it neglects transverse
shear and stain. In all the beam theories, fundamental frequency parameter decreases with
increase in nonlocal parameter in S-S, C-S, C-C boundary conditions while fundamental fre-
quency parameter increases with nonlocal parameter in case of cantilever nanobeams. Higher
frequency parameters decrease with nonlocal parameter in case of all boundary conditions. Ex-
cept fundamental frequency parameter of C-F nanobeam, frequency parameter associated with
nonlocal nanobeams are smaller than the corresponding local nanobeams. This reduction is
clearly seen in case of higher vibration modes. This means that application of local beam mod-
els would lead to over-prediction of frequency parameters. Hence nonlocal theory should be
incorporated for better prediction of higher frequencies of nanobeams.
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Table 5.8 First four frequency parameters of nanobeams based on Euler-Bernoulli beam theory

S-S C-S

µ λ1 λ2 λ3 λ4 λ1 λ2 λ3 λ4

0 3.1416 6.2832 9.4248 12.5664 3.9266 7.0686 10.2102 13.3518

1 3.0685 5.7817 8.0400 9.9161 3.8209 6.4649 8.6517 10.4688

2 3.0032 5.4324 7.3012 8.8000 3.7278 6.0545 7.8405 9.2811

3 2.9444 5.1683 6.8118 8.1195 3.6448 5.7488 7.3089 8.5619

4 2.8908 4.9581 6.4520 7.6407 3.5701 5.5079 6.9204 8.0573

5 2.8418 4.7846 6.1709 7.2764 3.5024 5.3107 6.6179 7.6740

C-C C-F

0 4.7300 7.8532 10.9956 14.1358 1.8751 4.6941 7.8548 10.9955

1 4.5945 7.1403 9.2583 11.0138 1.8792 4.5475 7.1459 9.2569

2 4.4758 6.6629 8.3739 9.7519 1.8833 4.4170 6.6753 8.3683

3 4.3707 6.3108 7.8004 8.9916 1.8876 4.2994 6.3322 7.7877

4 4.2766 6.0352 7.3840 8.4593 1.8919 4.1924 6.0674 7.3617

5 4.1917 5.8107 7.0611 8.0551 1.8964 4.0942 5.8550 7.0272

Table 5.9 First four frequency parameters of nanobeams based on Timoshenko beam theory

S-S C-S

µ λ1 λ2 λ3 λ4 λ1 λ2 λ3 λ4

0 3.1155 6.0867 8.8180 11.2766 3.8887 6.8298 9.5203 11.9354

1 3.0492 5.6421 7.6300 9.0990 3.7905 6.2794 8.1477 9.5019

2 2.9893 5.3236 6.9697 8.1207 3.7033 5.8978 7.4094 8.4532

3 2.9349 5.0786 6.5211 7.5123 3.6252 5.6101 6.9187 7.8093

4 2.8851 4.8813 6.1876 7.0798 3.5545 5.3815 6.5574 7.3547

5 2.8393 4.7172 5.9251 6.7487 3.4902 5.1934 6.2747 7.0080

C-C C-F

0 4.6813 7.5696 10.2199 12.5894 1.8800 4.6400 7.5700 10.2200

1 4.5494 6.8946 8.6377 9.8772 1.8801 4.5001 6.9012 8.6358

2 4.4338 6.4408 7.8215 8.7567 1.8838 4.3743 6.4531 7.8164

3 4.3312 6.1048 7.2888 8.0772 1.8875 4.2611 6.1242 7.2788

4 4.2394 5.8412 6.9005 7.6002 1.8913 4.1584 5.8686 6.8844

5 4.1563 5.6261 6.5987 7.7007 1.8953 4.0643 5.6624 6.5754
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Table 5.10 First four frequency parameters of nanobeams based on Reddy beam theory

S-S C-S

µ λ1 λ2 λ3 λ4 λ1 λ2 λ3 λ4

0 3.1218 6.1317 8.9488 11.5349 3.8978 6.8844 9.6685 12.2178

1 3.0492 5.6423 7.6340 9.1022 3.7905 6.2797 8.1492 9.5063

2 2.9843 5.3015 6.9325 8.0777 3.6963 5.8728 7.3713 8.4116

3 2.9258 5.0437 6.4678 7.4531 3.6125 5.5714 6.8646 7.7523

4 2.8726 4.8385 6.1262 7.0135 3.5374 5.3347 6.4955 7.2910

5 2.8239 4.6693 5.8592 6.6791 3.4693 5.1413 6.2087 6.9413

C-C C-F

0 4.6930 7.6344 10.3861 12.8968 1.8800 4.6500 7.6400 10.3900

1 4.5494 6.8951 8.6398 9.8831 1.8801 4.5001 6.9017 8.6380

2 4.4250 6.4132 7.7834 8.7171 1.8841 4.3645 6.4261 7.7778

3 4.3156 6.0626 7.2350 8.0228 1.8882 4.2434 6.0835 7.2238

4 4.2183 5.7904 6.8394 7.5395 1.8924 4.1341 5.8205 6.8211

5 4.1309 5.5700 6.5338 7.1741 1.8968 4.0345 5.6102 6.5071

Table 5.11 First four frequency parameters of nanobeams based on Levinson beam theory

S-S C-S

µ λ1 λ2 λ3 λ4 λ1 λ2 λ3 λ4

0 3.1155 6.0867 8.8180 11.2766 3.8887 6.8298 9.5203 11.9354

1 3.0431 5.6008 7.5224 8.8983 3.7810 6.2253 8.0141 9.2720

2 2.9783 5.2625 6.8312 7.8968 3.6864 5.8197 7.2459 8.2010

3 2.9199 5.0067 6.3732 7.2861 3.6025 5.5197 6.7461 7.5567

4 2.8669 4.8030 6.0366 6.8566 3.5272 5.2843 6.3824 7.1062

5 2.8183 4.6350 5.7736 6.5295 3.4590 5.0921 6.0999 6.7647

C-C C-F

0 4.6813 7.5696 10.2199 12.5894 1.8800 4.6400 7.5700 10.2200

1 4.5354 6.8242 8.4777 9.6161 1.8804 4.4853 6.8312 8.4757

2 4.4092 6.3417 7.6303 8.4753 1.8844 4.3482 6.3549 7.6247

3 4.2986 5.9919 7.0893 7.7974 1.8884 4.2261 6.0128 7.0784

4 4.2004 5.7211 6.6996 7.3262 1.8926 4.1162 5.7507 6.6821

5 4.1123 5.5020 6.3989 6.9701 1.8969 4.0161 5.5412 6.3737
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Fig. 5.11 Variation of frequency ratio with e0a (EBT)

0 0.2 0.4 0.6 0.8 1
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Scale coefficient

Fr
eq

ue
nc

y 
ra

tio

 

 

Mode 1
Mode 2
Mode 3
Mode 4

Fig. 5.12 Variation of frequency ratio with e0a (TBT)
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Fig. 5.13 Variation of frequency ratio with e0a (RBT)
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Fig. 5.14 Variation of frequency ratio with e0a (LBT)

5.2.4 Effect of various beam theories

To investigate the effect of various beam theories such as EBT, TBT, RBT and LBT on the
frequency parameter, variation of fundamental frequency parameter with nonlocal parameter
for nanobeams based on various beam theories is shown in Fig. 5.15. In this figure, C-C
boundary condition is taken into consideration. It is seen from the figure that EBT predicts
higher frequency parameter than other types of beam theories. It is due to the fact that, in EBT
transverse shear stress and transverse strain are not considered. Beam theories such as TBT,
RBT and LBT predict approximately closer results. Next we have compared EBT and TBT
for understanding the effect of transverse shear deformation and rotary inertia on the vibration
frequencies. In contrast to EBT, TBT accounts transverse shear deformation and rotary inertia.
To investigate effects of transverse shear deformation and rotary inertia on the vibration analy-
sis, Fig. 5.16 shows frequency ratio of nonlocal Timoshenko beam to that of the corresponding
nonlocal Euler beam (λNT

λNE
) with respect to L

h
for a given scale coefficient of e0a = 0.1nm.

In this figure, we have included first and fourth modes with S-S boundary condition. It is ob-
served that for all value of L/h, frequency ratios are smaller than unity in these modes. This
means that frequency parameter obtained by nonlocal Timoshenko beam theory is smaller than
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frequency parameter obtained using nonlocal EBT. This indicates that transverse shear defor-
mation and rotary inertia would lead to reduction of frequencies. One may found that this
reduction is seen for higher modes and for small L/h. This point is discussed as: Frequency
ratio associated with fundamental mode approaches unity in case of long tubes while for short
tubes (for example L/h = 10), the frequencies of nonlocal Timoshenko and nonlocal Euler
beams deviate somewhat from each other. Frequency ratio associated with fourth mode is sig-
nificantly smaller than unity especially at small L

h
. It is also observed that at higher values of L

h
,

effects of transverse shear deformation and rotary inertia still have an appreciable effect on the
fourth mode. Therefore, effects of transverse shear deformation and rotary inertia would lead
to reduction of frequencies and the reduction is clearly seen at higher modes and also at small
L
h

. Hence Timoshenko beam model should be considered when L
h

is small and when higher
vibration modes are considered.
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5.2.5 Effect of boundary conditions

In this subsection, we have considered the effect of boundary condition on the frequency pa-
rameter. Fig. 5.17 depicts variation of fundamental frequency parameter of TBT nanobeam
with nonlocal parameter for different boundary conditions. It is observed form the figure that
C-C nanobeams are having highest frequency parameter and C-F nanobeams are having lowest
frequency parameter. It is also seen that frequency parameters decrease with increase in non-
local parameter for S-S, C-S, and C-C boundary conditions but frequency parameters increase
with nonlocal parameter in case of C-F nanobeams.
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Fig. 5.17 Variation of frequency parameter with nonlocal parameter

5.2.6 Effect of aspect ratio

Effect of aspect ratio (L/h) on the first four frequency parameters has been investigated. First
four frequency parameters of TBT and RBT nanobeams are given in Table 5.12 for different
L/h (10, 12, 14, 16, 18). In this table, we have considered S-S boundary condition. Graphical
results are illustrated in Figs. 5.18 where variation of first four frequency parameter with L/h
has been shown for TBT nanobeams. In these figures, L/h ranges from 10 to 20. It is noticed
that frequency parameter increases with increase in L/h . It is also seen that effect of L/h is
more pronounced for higher vibration modes.

Table 5.12 First four frequency parameters of TBT and RBT nanobeams for different L/h

TBT RBT

L/h λ1 λ2 λ3 λ4 λ1 λ2 λ3 λ4

10 2.9893 5.3236 6.9697 8.1207 2.9843 5.3015 6.9325 8.0777

12 2.9951 5.3681 7.1001 8.3744 2.9936 5.3642 7.1029 8.3959

14 2.9981 5.3915 7.1713 8.5200 2.9977 5.3925 7.1833 8.5550

16 2.9998 5.4048 7.2129 8.6075 2.9997 5.4071 7.2258 8.6415

18 3.0008 5.4130 7.2386 8.6626 3.0009 5.4153 7.2501 8.6919
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Fig. 5.18 Variation of frequency parameter with aspect ratio

5.3 Conclusions

Vibration characteristics of Euler-Bernoulli and Timoshenko nanobeams have been computed
by using simple polynomials and orthonormal polynomials in the Rayleigh-Ritz method. Both
tabular and graphical results are given for different scaling effect parameters and boundary con-
ditions. Results are also tabulated for some new boundary conditions (S-F and F-F). Deflection
shapes of nonlocal C-C Euler-Bernoulli nanobeams are presented for different scaling effect
parameters.

Differential quadrature method has been applied to investigate free vibration of nanobeams
based on different beam theories such as Euler-Bernoulli, Timoshenko, Reddy and Levinson in
conjunction with Eringen’s nonlocal elasticity theory. Boundary conditions have been imple-
mented in the coefficient matrix which is quite easy to handle. Effects of nonlocal parameter,
boundary condition, aspect ratio and beam theories on the frequency parameters have been an-
alyzed.
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Chapter 6

Vibration of nanobeams with complicating
effects

Vibration of nanobeams with non-uniform material properties

In this investigation, we have considered carbon nanotube with non-uniform material properties
which is assumed as per the following relations.

E = E0(1 + pX + qX2), ρ = ρ0(1 + rX + sX2)

where E0 and ρ0 denote Young’s modulus and density at the left end of the carbon nanotube
and p, q, r, s denote the non-uniform parameters.

Here, we have introduced the following non-dimensional parameters

X =
x

L

W =
w0

L

α =
e0a

L
= scaling effect parameter

τ =
I

AL2

λ2 =
ρ0Aω

2L4

E0I
= frequency parameter

Ω =
EI0

ksGAL2
= shear deformation parameter

To apply Raleigh-Ritz method, one needs Rayleigh quotient which is obtained by equating
maximum kinetic and strain energies. As such, one may obtain Rayleigh quotient in non-
dimensional form for EBT as
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λ2 =

∫ 1

0
(1 + pX + qX2)(d

2W
dX2 )

2dX∫ 1

0
(1 + rX + sX2)(W 2 − α2W d2W

dX2 )dX
(6.1)

Similarly, Rayleigh quotient in non-dimensional form for TBT is obtained as

λ2 =

∫ 1

0
(1 + pX + qX2)(

(
dϕ
dX

)2
+ 1

Ω
(ϕ+ dW

dX
)2)dX∫ 1

0
(1 + rX + sX2)(W 2 + τϕ2 + α2W dϕ

dX
+ τα2

(
dϕ
dX

)2
)dX

(6.2)

As such, matrices K and Ma for EBT are given as below:

K(i, j) =
∫ 1

0
(1 + pX + qX2)φi

′′φj
′′dX

Ma(i, j) =
∫ 1

0
(1 + rX + sX2)

(
φiφj − α2

2
φiφj

′′ − α2

2
φi

′′φj

)
dX

Similarly, matrices K and Ma for TBT are given as:

K =

k1 k2

k3 k4

 where k1, k2, k3 and k4 are submatrices and are given by

k1(i, j) =
∫ 1

0
(1 + pX + qX2)φi

′φjdX

k2(i, j) =
∫ 1

0
(1 + pX + qX2)φi

′ψjdX

k3(i, j) =
∫ 1

0
(1 + pX + qX2)ψiφj

′dX

k4(i, j) =
∫ 1

0
(1 + pX + qX2)(ψiψj + Ωψi

′ψj
′)dX

Ma =

m1 m2

m3 m4

 where ubmatrices m1,m2,m3,m4 are as follows

m1(i, j) = Ω
∫ 1

0
(1 + rX + sX2)φiφjdX

m2(i, j) = Ωα2

2

∫ 1

0
(1 + rX + sX2)φiψj

′dX

m3(i, j) = Ωα2

2

∫ 1

0
(1 + rX + sX2)ψi

′φjdX

m4(i, j) = Ω
∫ 1

0
(1 + rX + sX2)(τψiψj + τα2ψi

′ψj
′)dX
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6.1 Numerical results and discussions

In the numerical evaluations, following parameters of SWCNT have been used (Wang et al.
2007): diameter, d = 0.678nm; Length, L = 10d; thickness, t = 0.066; shear correction
factor, ks = 0.563; Young’s modulus, E0 = 5.5TPa; shear modulus, G = E0/[2(1 + ν)];
Poisson’s ratio ν = 0.19 and second moment of area I = Πd4

64
.

6.1.1 Convergence

A convergence study has been shown in Tables 6.1 and 6.2 respectively for EBT and TBT. In
these tables, we have shown convergence of first three frequency parameters (

√
λ). Here, we

have taken non-uniform parameters as p = q = r = s = 0.1 and scaling effect parameter as
0.3. Convergency has been reported for S-S and C-S edge conditions. It is clearly seen form
the table that convergency is achieved as we increase the number of terms. One may notice that
n = 11 is sufficient for computing the results.

Table 6.1 Convergence of first three frequency parameters of EBT nanobeams

S-S C-S

n λ1 λ2 λ3 λ1 λ2 λ3

3 2.6803 4.7956 6.4334 3.2675 4.8388 7.2365

4 2.6801 4.3104 6.4307 3.2643 4.7903 6.0470

5 2.6797 4.3101 5.4811 3.2643 4.7640 5.9176

6 2.6797 4.3018 5.4807 3.2643 4.7630 5.8429

7 2.6797 4.3018 5.4432 3.2643 4.7627 5.8367

8 2.6797 4.3018 5.4432 3.2643 4.7627 5.8344

9 2.6797 4.3018 5.4426 3.2643 4.7627 5.8343

10 2.6797 4.3018 5.4426 3.2643 4.7627 5.8343

11 2.6797 4.3018 5.4426 3.2643 4.7627 5.8343
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Table 6.2 Convergence of first three frequency parameters of TBT nanobeams

S-S C-S

n λ1 λ2 λ3 λ1 λ2 λ3

3 2.7683 4.5273 10.3126 3.0810 5.0918 7.7717

4 2.6394 4.5264 5.7314 3.1743 4.5316 6.1565

5 2.6394 4.1354 5.7298 3.1720 4.4990 5.4307

6 2.6390 4.1354 5.0898 3.1720 4.4814 5.3652

7 2.6390 4.1286 5.0898 3.1720 4.4807 5.3184

8 2.6390 4.1286 5.0627 3.1720 4.4805 5.3151

9 2.6390 4.1286 5.0627 3.1720 4.4805 5.3139

10 2.6390 4.1286 5.0622 3.1720 4.4805 5.3138

11 2.6390 4.1286 5.0622 3.1720 4.4805 5.3138

6.1.2 Validation

For the validation purpose, we have considered an uniform (p = q = r = s = 0) nanobeam. To
compare our results with that of Wang et al. (2007), we have taken same parameters as that of
Wang et al. (2007). Table 6.3 shows comparison of first three frequency parameters of Euler-
Bernoulli and Timoshenko nanobeams for simply-supported boundary conditions. Results have
been compared with scaling effect parameters as 0, 0.3 and 0.5. It is noticed from the table that
frequency parameters (

√
λ) decrease with increase in scaling effect parameter. From this table,

one may observe close agreement of the results with that of available literature .

Table 6.3 Comparison of frequency parameters for uniform nanobeams

EBT

α = 0 α = 0.3 α = 0.5

Present Ref.* Present Ref.* Present Ref.*

3.1416 3.1416 2.6800 2.6800 2.3022 2.3022

6.2832 6.2832 4.3013 4.3013 3.4604 3.4604

9.4248 9.4248 5.4422 5.4422 4.2941 4.2941

TBT

3.0742 3.0929 2.6412 2.6538 2.2412 2.2867

5.9274 5.9399 4.1357 4.2058 3.3957 3.4037

8.4057 8.4444 5.0744 5.2444 4.1044 4.1644

*Wang et al. (2007)
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6.1.3 Effect of non-uniform parameter

In this sub-section, we have studied the effects of non-uniform parameters on the frequency
parameters. Four cases are considered here which are discussed below.

Case 1: Density varies with space coordinate and Young’s modulus as constant viz. ρ =

ρ0(1 + rX + sX2) and E = E0. Here following subcases may arise

(a) s = 0 and r ̸= 0

(b) r = 0 and s ̸= 0

(c) r ̸= 0 and s ̸= 0

Case 2: Young’s modulus varies with space coordinate and density as constant viz. E =

E0(1 + pX + qX2) and ρ = ρ0. Here also following three subcases may arise

(a) p = 0 and q ̸= 0

(b) q = 0 and p ̸= 0

(c) p ̸= 0 and q ̸= 0

Case 3: Young’s modulus and density both vary with space coordinate viz. E = E0(1 + pX +

qX2) and ρ = ρ0(1 + rX + sX2). Four subcases arise here are

(a) linear variations of Young’s modulus and density.

(b) quadratic variations of Young’s modulus and density.

(c) linear variation of Young’s modulus and quadratic variation of density.

(d) linear variation of density and quadratic variation of Young’s modulus.

Figs. 6.1-6.2 are the pictorial representation of case 1(a) and 1(b) respectively. Here, we have
considered TBT nanobeams to show the behavior of first two frequency parameters with r and
s respectively for the scaling effect parameters as 0, 0.1, 0.5. In Fig. 6.1, we have considered
S-S boundary condition and in Fig. 6.2, we have taken C-S boundary condition. The solid
and dotted lines represent first and second frequency parameters respectively. Also α and α∗
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depict scaling effect parameters for first and second frequency parameters respectively. Varying
parameter varies from −0.5 to 0.5. In these figures, it can be clearly seen that frequency
parameters decrease with r and s. To show the results of case 1(c), we have given the results in
two ways. Firstly, keeping r constant, varying s and secondly, keeping s constant, varying r.
For these two cases, the results are illustrated in Figures 6.3-6.4 respectively with S-S boundary
condition. From these figures also we can conclude that, if we fix one and other vary then the
frequency parameters decrease with the increase of varying parameter.
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Fig. 6.1 Variation of frequency parameters with r
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Fig. 6.2 Variation of frequency parameters with s

−0.5 0 0.5
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

 s

Fr
eq

ue
nc

y 
pa

ra
m

et
er

 

 

α=0
α=0.1
α=0.5
α*=0
α*=0.1
α*=0.5

Fig. 6.3 Variation of frequency parameters with s
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Fig. 6.4 Variation of frequency parameters with r

Figs. 6.5-6.6 are the depiction of case 2(a) and case 2 (b) respectively. Graphical result have
been shown for TBT nanobeams with S-S boundary condition. Varying parameter varies from
−0.5 to 0.5. Graphs are drawn for first two frequency parameters. It is observed that frequency
parameters increase with q and p. The results of case 2(c) are given in Fig. 6.7 where p is fixed,
q varies and in Fig. 6.8 where q is fixed, p varies. Here we have considered C-S boundary
condition. In these graphs, it is observed that the frequency parameters increase with increase
of varying parameter.
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Fig. 6.5 Variation of frequency parameters with q
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Fig. 6.6 Variation of frequency parameters with p
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Fig. 6.7 Variation of frequency parameters with q
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Fig. 6.8 Variation of frequency parameters with p

Results of case 3 are given for EBT nanobeams and four subcases are considered. First, we
have shown the effects of non-uniform parameters when density and Young’s modulus vary
quadratically. This case may be achieved by assigning zero to p and r. Variation of first two
frequency parameters with s has been illustrated in Fig. 6.9 keeping q constant (0.1). Simi-
larly, effect of q on the first two frequency parameters has been shown in Fig. 6.10 keeping
s constant (0.1). In these graphs, varying parameters range from -0.5 to 0.5 with C-S edge
condition. Results have been shown for different values of scaling effect parameters (0, 0.3 and
0.7). One may see that frequency parameters increase with q and decrease with s. It is also
observed that frequency parameters decrease with increase in scaling effect parameter. This
means that frequency parameters are over predicted when we consider local beam model for
vibration analysis of nanobeams. It is also observed that frequency parameters increase with
increase in mode number.

In this paragraph, we have presented the effects non-uniform parameters when density and
Young’s modulus vary linearly. This is achieved by taking q and s to zero. Graphical variation
of frequency parameters with p taking r constant (0.2) has been shown in Fig. 6.11. Similarly,
graphical variation of frequency parameters with r taking p constant (0.2) has been shown
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in Fig. 6.12. The graphs are plotted for different values of scaling effect parameters with C-S
boundary condition. It is noticed that frequency parameters increase with p and decrease with r.

Here, we have considered the effects of non-uniform parameters when Young’s modulus varies
linearly and density varies quadratically. This is the situation which is obtained by taking q and
r as zero. Figs. 6.13 and 6.14 depict variation of frequency parameters with s and p respec-
tively. In these graphs, we have taken S-S boundary condition with non-varying parameter as
0.1. Results have been shown for different values of scaling effect parameters. In these graphs,
one may observe that frequency parameters decrease with s and increase with p.

Next, we have analyzed the effects of non-uniform parameter when Young’s modulus varies
quadratically and density varies linearly. For this, we have taken p and s as zero. Variations of
first two frequency parameters with q and r have been given in Figs. 6.15 and 6.16. Results
have been shown with the non-varying parameter as 0.1 and boundary condition as S-S. In these
graphs, one may see that frequency parameters decrease with r and increase with q.

−0.5 0 0.5
2

3

4

5

6

7

8

 s

Fr
eq

ue
nc

y 
pa

ra
m

et
er

 

 

α=0

α=0.3

α=0.7

α*=0

α*=0.3

α*=0.7

Fig. 6.9 Variation of frequency parameters with s
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Fig. 6.10 Variation of frequency parameters with q
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Fig. 6.11 Variation of frequency parameters with r
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Fig. 6.12 Variation of frequency parameters with p
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Fig. 6.13 Variation of frequency parameters with s
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Fig. 6.14 Variation of frequency parameters with p
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Fig. 6.15 Variation of frequency parameters with r

−0.5 0 0.5
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

 q

Fr
eq

ue
nc

y 
pa

ra
m

et
er

 

 

α=0

α=0.3

α=0.7

α*=0

α*=0.3

α*=0.7

Fig. 6.16 Variation of frequency parameters with q

6.1.4 Effect of small scale parameter

To investigate the behavior of scaling effect parameter on the frequency parameters, variation
of frequency ratio for EBT nanobeams with scale coefficient (e0a) has been shown in Figs.
6.17-6.18 with C-F and S-F boundary conditions respectively.
Frequency ratio is calculated as frequency parameter calculated using nonlocal theory

frequency parameter calculated using local theory .

In these graphs, we have shown the results for the first four modes with the non-uniform pa-
rameters as p = 0.1, q = 0.2, r = 0.3, s = 0.4. It is observed from the figures that frequency
ratios are less than unity. This implies that application of local beam model over predicts the
frequency. It is also observed that frequency parameters decrease with increase in scale coef-
ficient. This decrease is more pronounced in case of higher vibration modes. Thus, nonlocal
theory should be employed for better predictions of higher frequencies. It is also noticed that in
case of C-F nanobeams, fundamental frequency parameter obtained by nonlocal theory is more
than that furnished by local beam theory. Thus, fundamental frequency parameter of cantilever
nanobeams behave differently than other boundary conditions.
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Fig. 6.17 Variation of frequency ratio with e0a (C-F)
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Fig. 6.18 Variation of frequency ratio with e0a (S-F)

6.1.5 Effect of boundary condition

Effect of boundary condition on the frequency parameters is investigated. Variation of funda-
mental frequency parameter with α is shown in Fig. 6.19 for all sets of boundary conditions
with p = 0.1, q = 0.2, r = 0.3, s = 0.4. One may observe that except cantilever nanobeams,
frequency parameter decreases with increase in α. It is also noticed that C-C nanobeams are
having highest frequency parameter and C-F nanobeams are having lowest frequency parame-
ter.

0 0.1 0.2 0.3 0.4 0.5
1.5

2

2.5

3

3.5

4

4.5

5

α

F
re

qu
en

cy
 p

ar
am

et
er

 

 
S−S
C−S
C−C
C−F
S−F
F−F

Fig. 6.19 Variation of frequency parameter with α

6.1.6 Effect of aspect ratio

To investigate the effect of aspect ratio on the frequency parameters, variation of frequency ratio
with scale coefficient has been illustrated in Fig. 6.20. The graph is plotted for C-C boundary
condition with p = 0.1, q = 0.2, r = 0.3, s = 0.4. Results have been shown for different values
of L

d
. It is observed that small scale effect is affected by L

d
. This observation is explained as

follows: When L
d

increases, frequency ratio comes closer to one. This implies that frequency
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parameter obtained by nonlocal beam model comes closer to that furnished by local beam
model. Hence small scale effect is negligible for a very slender carbon nanotube (CNT) while
it is significant for short carbon nanotubes (CNTs). This implies that if we compare magnitude
of small scale effect with length of the slender tube, the small scale (internal characteristic
length) is so small that it can be regarded as zero. Next, we have shown variation of first three
frequency parameters with L

d
in Fig. 6.21 with p = 0.1, q = 0.2, r = 0.3, s = 0.4. In this

figure, µ is taken as 0.1nm2 and L
d

ranges from 10-100 where d is assumed to be 0.678nm. In
this graph, one may notice that frequency parameter increases with L/d.
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Fig. 6.21 Variation of frequency parameter with L
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6.1.7 Mode shapes

First few higher mode shapes are given in Figs. 6.22-6.23 for comparing the results which may
help the researchers. Here first four mode shapes of S-S and C-S boundary conditions are given
with scaling effect parameters as 0, 0.3 and non-uniform parameters as p = 0.1, q = 0.2, r =

0.3, s = 0.4. One may observe that mode shapes are affected by scaling effect parameter.

110



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X

W

 

 

α=0
α=0.3

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

X

W

 

 

α=0
α=0.3

0 0.2 0.4 0.6 0.8 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

X

W

 

 

α=0

α=0.3

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

X

W

 

 

α=0
α=0.3

Fig. 6.22 First four deflection shapes of S-S Euler-Bernoulli nanobeams
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Fig. 6.23 First four deflection shapes of C-S Euler-Bernoulli nanobeams
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Vibration of nanobeams embedded in elastic foundations

Here, we have investigated vibration of embedded nanobeams in thermal environments based
on EBT, TBT and RBT beam theories. The nanobeam is embedded in elastic foundations such
as Winkler and Pasternak. Rayleigh-Ritz has been applied in EBT and TBT with shape func-
tions as boundary characteristic orthogonal polynomials and Chebyshev polynomials respec-
tively. Differential quadrature method has been employed in vibration of embedded nanobeams
based on RBT.

For simplicity and convenience in mathematical formulation, the following non-dimensional
parameters are introduced

X = x
L

, W = w0

L
, α = e0a

L
, τ = I

AL2 , Ω = EI
ksGAL2 , Ω̄ = GÃL2

EI
, λ2 = ρAω2L4

EI
, Kg =

kgL2

EI
,

Kw = kwL4

EI
, N̂θ =

NθL
2

EI

6.2 EBT

Maximum strain energy Umax may be given as Eq. (2.18).

Maximum kinetic energy is written as Eq. (2.20).

Maximum potential energy due to the axial force may be expressed as

Va =
1

2

∫ L

0

{
N̄

(
dw0

dx

)2

+ few0

}
dx (6.3)

where the parameters have already been defined in section 3.2.7.1. Here again we have defined
N̄ as the axial force which is expressed as N̄ = Nm +Nθ. It is noted that Nm will be taken as
zero for vibration analysis.

Using Hamilton’s principle setting coefficient of δw0 to zero, we obtain following governing
equation

d2M

dx2
+Nθ

d2w0

dx2
− kww0 + kg

d2w0

dx2
= −ρAω2w0 (6.4)

As such, M in nonlocal form may be written as

M = −EI d2w0

dx2 + µ
[
−ρAω2w0 −Nθ

d2w0

dx2 + kww0 − kg
d2w0

dx2

]
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One may obtain Rayleigh Quotient from the following equation of EBT nanobeams.

λ2

[
W 2 − α2W

d2W

dX2

]
=

(
d2W

dX2

)2

+N̂θα
2

(
d2W

dX2

)2

−Kwα2W
d2W

dX2
+Kgα

2

(
d2W

dX2

)2

+N̂θ

(
d2W

dX2

)2

+KwW 2−KgW
d2W

dX2

(6.5)

Here, we have used orthonormal polynomials (φ̂k) in Eq. (2.5). Substituting Eq. (2.5) in Eq.
(6.5) and minimizing λ2 with respect to constant coefficients, the following eigenvalue value
problem may be obtained as

[K] {Z} = λ2 [Ma] {Z} (6.6)

where Z is a column vector of constants and stiffness matrix K as well as mass matrix Ma are
given by

K(i, j) =
∫ 1

0
((2+2Kgα

2+2N̂θα
2)φ̂′′

i φ̂
′′
j −Kwα

2φ̂′′
i φ̂j −Kwα

2φ̂iφ̂
′′
j +2Kwφ̂iφ̂j −Kgφ̂

′′
i φ̂j −

Kgφ̂iφ̂
′′
j + 2N̂θα

2φ̂′
iφ̂

′
j)dX

Ma(i, j) =
∫ 1

0
(2φ̂iφ̂j − α2φ̂′′

i φ̂j − α2φ̂iφ̂
′′
j )dX

6.3 TBT

Maximum strain energy Umax may be given as Eq. (2.22).

Maximum kinetic energy is written as Eq. (2.25).

Maximum potential energy due to work done may be written as Eq. (6.3).

Applying Hamilton’s principle and setting coefficient of δw0 and δϕ0 to zero, governing equi-
librium equations are obtained as

dM

dx
−Q = −ρIω2ϕ0 (6.7)

dQ

dx
+Nθ

d2w0

dx2
− fe = −ρAω2w0 (6.8)

Using Eqs. (6.7-6.8) and Eqs. (1.13-1.14) , one may obtain bending moment M and shear
force Q in nonlocal form as follows

M = EI
dϕ0

dx
+ µ

[
−ρIω2dϕ0

dx
− ρAω2w0 −Nθ

d2w0

dx2
+ fe

]
(6.9)

Q = ksGA

(
ϕ0 +

dw0

dx

)
+ µ

[
−ρAω2dw0

dx
−Nθ

d3w0

dx3
+ kw

dw0

dx
− kg

d3w0

dx3

]
(6.10)
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Equating maximum energies of the system, one may obtain following expressions for TBT
nanobeams

λ2

[
W 2 + τϕ2 + τα2

(
dϕ

dX

)2

+ α2W
dϕ

dX
+ α2 dW

dX

(
ϕ+

dW

dX

)]
=

(
dϕ

dX

)2

− N̂θα
2 dϕ

dX

d2W

dX2
−Kwα

2W
dϕ

dX

−Kgα
2 d

2W

dX2

dϕ

dX
+

1

Ω

(
ϕ+

dW

dX

)2

− N̂θα
2 d

3W

dX3

(
ϕ+

dW

dX

)
+

Kwα
2 dW

dX

(
ϕ+

dW

dX

)
+ N̂θ

(
dW

dX

)2

−Kgα
2 d

3W

dX3

(
ϕ+

dW

dX

)
+KwW

2 −KgW
d2W

dX2
(6.11)

In this probelm, we have used Chebyshev polynomials in the Rayleigh-Ritz method. As
such, we introduce another independent variable ξ as ξ = 2X − 1 which transforms the range
0 ≤ X ≤ 1 into the applicability range −1 ≤ ξ ≤ 1.

Now, Rayleigh Quotient may be obtained from the following equations of TBT nanobeams

λ2

[
W 2 + τϕ2 + 4τα2

(
dϕ

dξ

)2

+ 2α2W
dϕ

dξ
+ 2α2 dW

dξ

(
ϕ+ 2

dW

dξ

)]
= 4

(
dϕ

dξ

)2

− 8N̂θα
2 dϕ

dξ

d2W

dξ2
+

2Kwα
2W

dϕ

dξ
− 8Kgα

2 d
2W

dξ2
dϕ

dξ
+

1

Ω

(
ϕ+ 2

dW

dξ

)2

+ 4N̂θ

(
dW

dξ

)2

− 8N̂θα
2 d

3W

dξ3

(
ϕ+ 2

dW

dξ

)
+ 2Kwα

2 dW

dξ

(
ϕ+ 2

dW

dξ

)
− 8Kgα

2 d
3W

dξ3

(
ϕ+ 2

dW

dξ

)
+KwW

2 − 4KgW
d2W

dξ2

(6.12)

Substituting Eqs. (2.14) and (2.15) in Eq. (6.12) and minimizing λ2 with respect to the constant
coefficients, the following eigenvalue value problem is obtained

[K] {Z} = λ2 [Ma] {Z} (6.13)

where Z is a column vector of constants.

Here stiffness matrix K and mass matrix Ma for TBT nanobeams are given as follows

114



K =

k1 k2

k3 k4

 where k1, k2, k3, k4 are submatrices and are given as

k1(i, j) =
∫ 1

−1
(8( 1

Ω
+Kwα

2+N̂θ)φi
′φj

′−16(N̂θα
2+Kgα

2)φi
′′′φj

′−16(N̂θα
2+Kgα

2)φi
′φj

′′′+

2Kwφiφj − 4Kgφi
′′φj − 4Kgφiφj

′′)dξ

k2(i, j) =
∫ 1

−1
(−8N̂θα

2φi
′′ψj

′+2Kwα
2φiψj

′−8Kgα
2φi

′′ψj
′+4 1

1
Ω

φi
′ψj−(8N̂θα

2+8Kgα
2)φi

′′′ψj+

2Kwα
2φi

′ψj)dξ

k3(i, j) =
∫ 1

−1
(−8N̂θα

2ψi
′φj

′′ + 2Kwα
2ψi

′φj − 8Kgα
2ψi

′φj
′′ + 4 1

Ω
ψiφj

′ − 8N̂θα
2ψiφj

′′′ +

2Kwα
2ψiφj

′ − 8Kgα
2ψiφj

′′′)dξ

k4(i, j) =
∫ 1

−1
(8ψi

′ψj
′ + 2 1

Ω
ψiψj)dξ

Ma =

m1 m2

m3 m4

 where m1,m2,m3,m4 are submatrices and are defined as

m1(i, j) =
∫ 1

−1
(2φiφj + 8α2φi

′φj
′)dξ

m2(i, j) =
∫ 1

−1
(2α2φiψj

′ + 2α2φi
′ψj)dξ

m3(i, j) =
∫ 1

−1
(2α2ψiφj

′ + 2α2ψiφj
′)dξ

m4(i, j) =
∫ 1

−1
(2τψiψj + 2τα2ψi

′ψj
′)dξ

6.4 RBT
Governing equations for vibration of nanobeams embedded in elastic foundations are obtained
as

−ρAω2w0 = GÃ

(
dϕ0

dx
+

d2w0

dx2

)
− N̄

d2w0

dx2
− kww0 + kg

d2w0

dx2
+ c1EJ

d3ϕ0

dx3
− c21EK

(
d3ϕ0

dx3
+

d4w0

dx4

)
+ µ

[
N̄

d4w0

dx4
+ kw

d2w0

dx2
− kg

d4w0

dx4
− ρAω2 d

2w0

dx2

]
(6.14)

EÎ
d2ϕ0

dx2
− c1EĴ

(
d2ϕ0

dx2
+

d3w0

dx3

)
−GÃ

(
ϕ0 +

dw0

dx

)
= 0 (6.15)
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Eliminating ϕ0 from Eqs. (6.14) and (6.15), governing equations may be written as

−
(
68

84
N̄ +

105

84EI
GÃµN̄

)
d4w0

dx4
+

105

84EI
GÃN̄

d2w0

dx2
+
68

84
µN̄

d6w0

dx6
= ρAω2 105

84EI
GÃw0−

105

84EI
GÃkww0+(

68

84
kw +

105

84EI
GÃkg +

105

84EI
GÃµkw − 68

84
ρAω2 − 105

84EI
GÃµρAω2

)
d2w0

dx2

−
(
68

84
kg +

68

84
µkw +

105

84EI
GÃµkg +

21

84
GÃ− 68

84
µρAω2

)
d4w0

dx4
+

(
68

84
µkg +

1

105
EI

)
d6w0

dx6
(6.16)

Eq. (6.16) may be written in non-dimensional form as

λ2

(
105

84
Ω̄W −

(
68

84
+

105

84
Ω̄α2

)
d2W

dx2
+

68

84
α2 d

4W

dx4

)
=

(
−68

84
α2Kg −

1

105
+

68

84
α2N̂θ

)
d6W

dX6

+

(
68

84
Kg −

68

84
N̂θ +

68

84
α2Kw +

105

84
Ω̄α2Kg +

105

84
Ω̄− 105

84
Ω̄α2N̂θ

)
d4W

dX4

+

(
−68

84
Kw − 105

84
Ω̄Kg −

105

84
Ω̄α2Kw +

105

84
Ω̄N̂θ

)
d2W

dX2
+

105

84
Ω̄Kw (6.17)

Application of differential quadrature method in Eq. (6.17), one may obtain generalized eigen
value problem for RBT as

[K] {W} = λ2 [Ma] {W} (6.18)

where K is the stiffness matrix and Ma is the mass matrix.

6.5 Numerical results and discussions

Vibration of Single-Walled carbon nanotubes embedded in elastic medium under the influence
of temperature has been investigated. The elastic medium is modeled as Winkler-type and
Pasternak-type foundations. The effective properties of SWCNTs are taken as: (Benzair et al.
2008; Murmu and Pradhan 2009b): E = 1000 GPa, ν = 0.19, αx = −1.6× 10−6 for room or
low temperature and αx = 1.1× 10−6 for high temperature. A computer code is developed by
the authors in MATLAB.

6.5.1 Convergence

First of all, convergence test has been performed to find minimum number of terms required for
computing results. As such, Table 6.4 shows convergence of first three frequency parameters
(
√
λ) of EBT nanobeams with C-C support. In this table, we have taken Kw = 50, Kg =

2, θ = 20K, eoa = 0.5nm and L
h
= 10. Similarly, Table 6.5 shows convergence test for TBT

nanobeams. In this table, we have taken Kw = 50, Kg = 2, θ = 10K, e0a = 1nm, L
h
= 10

with C-C edge condition. Fig. 6.24 shows convergence of fundamental frequency parameter of
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nanobeams based on RBT where we have taken Kw = 50, Kg = 4, θ = 20K, e0a = 1nm, L
h
=

10 with S-S edge condition. Above convergence patterns show that ten grid points are sufficient
to obtain results in the present analysis.

Table 6.4 Convergence of first three frequency parameters of nanobeams (EBT)

n First Second Third

3 4.8718 7.8096 10.7781

4 4.8718 7.7285 10.7781

5 4.8718 7.7285 10.4761

6 4.8718 7.7273 10.4761

7 4.8718 7.7273 10.4657

8 4.8718 7.7273 10.4657

9 4.8718 7.7273 10.4656

10 4.8718 7.7273 10.4656

11 4.8718 7.7273 10.4656

Table 6.5 Convergence of first three frequency parameters (TBT)

n First Second Third

3 3.6493 6.4704 13.9265

4 3.5402 6.4669 9.1435

5 3.5402 5.8616 9.1309

6 3.5399 5.8616 7.9217

7 3.5399 5.8511 7.9214

8 3.5399 5.8511 7.8697

9 3.5399 5.8511 7.8697
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Fig. 6.24 Convergence of fundamental frequency parameter (RBT)
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6.5.2 Validation

To validate the present results of Euler-Bernoulli, a comparison study has been carried out with
the results of Wang et al. (2007). For this comparison, we have taken Kw = 0, Kg = 0 and
θ = 0K. As such, Figs. 6.25-6.26 show graphical comparisons of EBT and TBT nanobeams
respectively. In these figures, we have considered S-S support with L

h
= 10. Similarly, tabular

comparison study has been tabulated in Table 6.6 with that of Ansari and Sahmani (2012) for
L
d

= 40. Same parameters as that of Ansari and Sahmani (2011) have been taken for this
comparison. One may find close agreement of the results. This shows the suitability and
reliability of the present methods for the vibration analysis of SWCNTs.
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Fig. 6.25 Comparison of fundamental frequency parameter (EBT)
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Fig. 6.26 Comparison of fundamental frequency parameter (TBT)
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Table 6.6 Comparison of fundamental frequencies for various boundary conditions (RBT)

S-S C-S

µ Present Ref.* Present Ref.*

0.25 0.0164 0.0231 0.0321 0.0358

0.5 0.0164 0.0231 0.0320 0.0358

0.75 0.0164 0.0231 0.0320 0.0358

1 0.0164 0.0.0231 0.0319 0.0357

*Ansari and Sahmani (2012)

6.5.3 Effect of Winkler modulus parameter

In this subsection, we have investigated the influence of surrounding medium on the vibration
of SWCNTs. The elastic medium is modeled as Winkler-type and Pasternak-type foundations.
Figs. 6.27-6.29 illustrate effect of Winkler modulus parameter on the vibration solutions based
on EBT, TBT and RBT respectively. We have shown these graphical results in low temperature
environment with Kg = 0. Numerical values taken for this computation are θ = 20K, L

h
= 10

in Fig. 6.27 with C-S support whereas in Fig. 6.28, we have taken θ = 20K, L
h
= 10 with C–S

support and in Fig. 6.29, we have taken θ = 20K, L
h
= 20 with C-S support. The Winkler mod-

ulus parameter is taken in the range of 0-400. It is observed from these figures that frequency
parameter associated with first mode decreases with increase in scale coefficient. It may be
noted that results associated with e0a = 0nm correspond to those of local beam theory. One
may observe that results obtained by local beam theory are over predicted than that of obtained
by nonlocal beam theory. As the scale coefficient e0a increases, frequency parameter obtained
for nonlocal beam theory becomes smaller than those for its local counterpart. Therefore, non-
local theory should be considered for vibration analysis of structures at nanoscale. It is seen that
frequency parameter increases with increase in Winkler modulus parameter. This is because
that the nanotube becomes stiffer when elastic medium constant is increased. This increas-
ing trend of fundamental frequency parameter with surrounding elastic medium is influenced
significantly by the small scale coefficients. In addition, it is also observed that fundamental
frequency parameter show nonlinear behavior with respect to stiffness of surrounding matrix
for higher e0lint values. This may be due to the fact that increase of the Winkler modulus causes
CNT to be more rigid.
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Fig. 6.27 Effect of the Winkler modulus parameter on frequency parameter (EBT)
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Fig. 6.28 Effect of the Winkler modulus parameter on frequency parameter (TBT)
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Fig. 6.29 Effect of the Winkler modulus parameter on frequency parameter (RBT)
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6.5.4 Effect of Pasternak shear modulus parameter

In this subsection, effect of Pasternak shear modulus parameter on the vibration has been ex-
amined. Figs. 6.30-6.32 show the distribution of the fundamental frequency parameter against
Pasternak shear modulus for EBT, TBT and RBT respectively in low temperature environment.
Numerical values of parameters are chosen as Kw = 0, θ = 20K, L

h
= 30 with C-C support in

Fig. 6.30 whereas in Fig. 6.31, we have taken Kw = 200, θ = 10K, L
h
= 30 with C-C support

and in Fig. 6.32, we have taken Kw = 0, θ = 10K, L
h
= 10 with C-C edge condition. Graph is

plotted for various values of scale coefficients with Pasternak shear modulus parameter ranging
from 0-10. It is observed from the figures that frequency parameter associated with first mode
increases with Pasternak shear modulus parameter. This may be due to the effective stiffness of
elastic medium. With increase in scale coefficient, frequency parameter for a particular Paster-
nak shear modulus parameter decreases. It is also observed that unlike Winkler foundation
model, the increase of fundamental frequency parameter with Pasternak foundation is linear in
nature. This is due to the domination of elastic medium modeled as the Pasternak type foun-
dation model. Same observation has also been reported in Murmu and Pradhan (2009b). Next,
we have analyzed the effect of Pasternak foundation model over Winkler foundation model.
As such, Fig. 6.33 illustrates the fundamental frequency parameter of RBT nanobeams as a
function of small scale coefficient in low temperature environment with L

h
= 10 and C-C edge

condition. It may be observed that frequency parameter obtained from Pasternak foundation
model is relatively larger than those obtained from the Winkler foundation model.
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Fig. 6.30 Effect of Pasternak shear modulus parameter on frequency parameter (EBT)
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Fig. 6.31 Effect of Pasternak shear modulus parameter on frequency parameter (TBT)

0 2 4 6 8 10
4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5

5.1

5.2

K
g

Fr
eq

ue
nc

y 
pa

ra
m

et
er

 

 

e
0
l
int

=0

e
0
l
int

=0.5

e
0
l
int

=1

e
0
a=l

int

Fig. 6.32 Effect of Pasternak shear modulus parameter on frequency parameter (RBT)
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Fig. 6.33 Effect of frequency parameter with small-scale coefficients

122



6.5.5 Effect of temperature

Effect of temperature on the vibration of nanobeams embedded in elastic medium has been
investigated. Effect of temperature on the vibration solutions has been illustrated in Figs.
6.34-6.36 respectively for EBT, TBT and RBT respectively. In Fig. 6.34, we have taken S-
S nanobeams with L

h
= 10, e0a = 1.5nm,Kw = 10, Kg = 4. Similarly, we have taken

L
h
= 50, e0a = 0.5nm,Kw = 50, Kg = 2 with C-C support in Fig. 6.35 and L

h
= 30, e0a =

1nm,Kw = 50, Kg = 2 with C-C support in Fig. 6.36. It is noticed that fundamental frequency
parameter increases with increase in temperature in low temperature environment while they
decrease with increase in temperature in high temperature environment. Thus, one may say
that fundamental frequency parameter considering thermal effect are larger than those ignoring
the influence of temperature change in low temperature environment. While in high tempera-
ture environment, fundamental frequency parameter considering thermal effect are smaller than
those excluding the influence of temperature change. Same observation have also been noted
in Refs. (Murmu and Pradhan 2009a; Zidour et al. 2012; Maachou et al. 2011; Murmu and
Pradhan 2010).
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Fig. 6.34 Change of frequency parameter with temperature change (EBT)
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Fig. 6.35 Change of frequency parameter with temperature change (TBT)
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Fig. 6.36 Change of frequency parameter with temperature change (RBT)

6.5.6 Effect of aspect ratio

To illustrate the effect of aspect ratio on the fundamental frequency parameter, variation of fre-
quency ratio with the aspect ratio (L

h
) has been shown in Fig. 6.37 for different magnitudes

of temperature change. Results have been shown for EBT nanobeams with Kw = 50, Kg =

2, e0a = 1nm2 and C-C support in low temperature environment. It is observed that frequency
ratio increases with increase in aspect ratio. In addition, it is also seen that fundamental fre-
quency parameter is also dependent on temperature change (θ). The differences in magnitudes
of frequency parameter for different temperature changes are larger in low aspect ratios while
the differences in magnitudes of frequency parameter for different temperature changes are
smaller for large aspect ratios.
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6.6 Conclusions

Present study includes vibration characteristics of free vibration of non-uniform nanobeams
based on nonlocal elasticity theory. Boundary characteristic orthogonal polynomials have been
generated and are applied in the Rayleigh-Ritz method to study the effect of non-uniform pa-
rameters on the frequency parameters of Euler Bernoulli and Timoshenko nanobeams. Non-
uniform material properties of nanobeams are assumed by taking linear and quadratic variations
of Young’s modulus and density. Effects of non-uniform parameter, boundary condition, as-
pect ratio and scaling effect parameter on the frequency parameters have been investigated.
First four deflection shapes are given for S-S and C-S boundary conditions with scaling effect
parameters as 0 and 0.3.

Again, Rayleigh-Ritz method has been applied to investigate thermal effect on the vibration of
nanobeams embedded in elastic medium based on EBT and TBT. While differential quadrature
method has been applied to investigate thermal effect on the vibration of nanobeams embedded
in elastic medium based on nonlocal Reddy beam theory. Theoretical formulations include
effects of small scale, elastic medium and temperature change. It is seen that results obtained
based on local beam theory are overestimated. Frequency parameter increases with increase in
temperature, Winkler and Pasternak coefficients of elastic foundation.
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Chapter 7

Vibration of nanoplates

Here, we have considered vibration of isotropic nanoplate. Rayleigh-Ritz method has been em-
ployed with two-dimensional simple polynomials as shape functions. Parametric studies such
as effect of length, aspect ratio and nonlocal parameter have been analyzed. Three-dimensional
mode shapes for some specified boundary condition have been presented.

Maximum strain energy may be obtained by setting kw and kp as zero in Eq. (2.35).

U =
1

2
D

∫ a

0

∫ b

0

{(
∂2w0

∂x2

)2

+ 2ν

(
∂2w0

∂x2
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)
+

(
∂2w0

∂y2

)2

+ 2(1− ν)

(
∂2w0

∂x∂y

)2
}
dxdy (7.1)

Maximum kinetic energy may be written as Eq. (2.36).

Equating maximum kinetic and strain energies, one may obtain the Rayleigh-quotient as

ρhω2

D
=
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(

∂w0

∂y

)2)]
dxdy

(7.2)

where m0 is taken as ρh.

We have introduced the non-dimensional variables X = x
a

and Y = y
b

As such, non-dimensional Rayleigh-quotient is obtained as

ρhω2a4

D
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0
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(
∂W
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)2)]
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(7.3)
Substituting Eq. (2.31) into Eq. (7.3), we get a generalized eigen value problem as

[K] {Z} = λ2 [Ma] {Z} (7.4)
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where λ2 = ρha4ω2

D
is the non-dimensional frequency parameter, Z is a column vector of con-

stants, K and Ma are the stiffness and mass matrices which are given as follows

K(ij) = β2020
ij + νR2

(
β2002
ij + β0220

ij

)
+R4β0202

ij + 2(1− ν)R2β1111
ij

Ma(ij) = β0000
ij + µ

(
1
a

)2 (
β1010
ij +R2β0101

ij

)
where βklmna

ij =
∫ 1

0

∫ 1

0

[
∂k+lφi

∂Xk∂Y l

] [
∂m+naφj

∂Xm∂Y na

]
dXdY

7.1 Numerical results and discussions

Numerical values of the frequency parameter λ have been obtained by solving Eq. (7.4) using
a computer program developed by the authors in MATLAB which is run for different values of
n to get appropriate value of the order of approximation n.

7.1.1 Convergence

Table 7.1 shows convergence of first three frequency parameters for S-S-S-S, S-C-S-C, F-C-F-
C and F-S-F-S nanoplates with ν = 0.3, R = 2, µ = 2nm2 and a = 10nm. From this table, it
can be clearly seen that the frequency parameters (λ) approach to the results with the increasing
value of n and further increase of n does not have any effect on the results.
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Table 7.1 Convergence of first three frequency parameters of nanoplates

S-S-S-S S-C-S-C

n First Second Third First Second Third

10 35.0202 49.2575 80.6866 64.3936 69.6776 93.8351

15 35.0086 49.2575 68.5520 64.3898 69.6776 81.3358

20 35.0086 49.1652 68.5520 64.3898 69.6363 81.3358

25 35.0086 49.1652 67.9560 64.3898 69.6363 80.9277

30 35.0086 49.1650 67.9538 64.3898 69.6362 80.9271

35 35.0086 49.1646 67.9538 64.3898 69.6361 80.9271

40 35.0086 49.1646 67.9435 64.3898 69.6361 80.9210

45 35.0086 49.1646 67.9433 64.3898 69.6361 80.9210

47 35.0086 49.1646 67.9433 64.3898 69.6361 80.9210

F-C-F-C F-S-F-S

n First Second Third First Second Third

10 61.8442 62.2421 64.7394 29.2401 32.9761 44.9044

15 61.8442 61.9872 64.6373 29.0358 32.9761 42.9748

20 61.8388 61.9872 64.6373 29.0358 32.7816 42.9748

25 61.8388 61.9860 64.5829 29.0261 32.7816 42.7648

30 61.8385 61.9855 64.5823 29.0260 32.7780 42.7610

35 61.8255 61.9855 64.5823 29.0260 32.7769 42.7610

40 61.8255 61.9324 64.5823 29.0259 32.7769 42.7595

45 61.7567 61.9324 64.5815 29.0259 32.7769 42.7595

47 61.7567 61.9324 64.5815 29.0259 32.7769 42.7595

7.1.2 Validation

For comparison of the results with analytical solutions of Aksencer and Aydogdu (2011), nu-
merical results have been given in graphical form in Fig. 7.1 where variation of first two
frequency ratios with length a is given for nanoplates with S-S-S-S boundary condition. Here
aspect ratio is taken as 1 and nonlocal parameters are taken as 0nm2, 1nm2, 2nm2, 4nm2. From
this figure, we may say that increase in nonlocal parameter decreases frequency ratios. This
decreasing behavior is clearly noticed for higher modes. This is because of the fact that in-
crease in mode number decreases wavelength. Since nonlocal effects are more pronounced for
smaller wave lengths, so there will be no nonlocal effects after a certain length of nanoplates.
All these observations are expected and a close agreement of the results with Aksencer and Ay-
dogdu (2011) are seen. Next tabular comparison has been given in Table 7.2 with Aghababaei
and Reddy (2009) for the first three frequency parameters with R = 1 and a = 10nm. Results
have been verified for different nonlocal parameters with the consideration of S-S-S-S edge
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Fig. 7.1 Variation of frequency ratios with length of nanoplates

Table 7.2 Comparison of first three frequency parameters for S-S-S-S nanoplate

µ = 0 µ = 1 µ = 2 µ = 3 µ = 4

Present Ref.* Present Ref.* Present Ref.* Present Ref.* Present Ref.*

0.0963 0.0963 0.0880 0.0880 0.0816 0.0816 0.0763 0.0763 0.0720 0.0720

0.3874 0.3853 0.2884 0.288 0.2402 0.2399 0.2102 0.2099 0.1892 0.1889

0.8608 0.8669 0.5167 0.5202 0.4045 0.4063 0.3435 0.3446 0.3037 0.3045

*Aghababaei and Reddy (2009)

7.1.3 New results

First four frequency parameters are tabulated in Table 7.3 for nanoplates subjected to bound-
ary conditions (S-S-S-S, C-C-C-C, S-C-S-C, F-C-F-C and F-S-F-S) with nonlocal parameters
(0nm2 − 4nm2), length (a = 5nm) and aspect ratio as 1. From this table, it may be seen
that frequency parameters are highest in C-C-C-C and lowest in F-S-F-S for a particular value
of nonlocal parameter. Frequency parameters decrease with increase in nonlocal parameter
in all the boundary conditions. Table 7.4 gives first four frequency parameters for nanoplates
subjected to various boundary conditions having µ = 2nm2, R = 2 and length=5nm. From
Tables 7.3 (µ = 2nm2) and 7.4, it is observed that frequency parameters increase with increase
in aspect ratio for a particular boundary condition and nonlocal parameter. It is also seen that
frequency parameters are highest in C-C-C-C than other boundary conditions. One may also
see that from Table 7.4 that frequency parameters are lowest in C-F-F-F boundary condition.
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Table 7.3 First four frequency parameters of nanoplates for a = 5nm and a/b = 1

S-S-S-S

Mode no. µ = 0 µ = 1 µ = 2 µ = 4

1 19.7000 14.7556 12.2912 9.6800

2 49.3000 28.6157 22.1851 16.5455

3 49.3000 28.6157 22.1851 16.5455

4 79 38.7198 29.1902 21.3842

C-C-C-C

1 36 25.6182 20.9293 16.2072

2 73.4000 40.2819 30.8650 22.8363

3 73.4000 40.2819 30.8650 22.8363

4 108.2000 50.2722 37.5982 27.4081

S-C-S-C

1 29 21.1091 17.4090 13.5914

2 54.7000 31.3612 24.2491 18.0520

3 69.3000 38.4787 29.5537 21.9013

4 94.6000 45.1134 33.8697 24.7486

F-C-F-C

1 22.2000 18.0585 15.2936 11.7908

2 26.5000 18.7871 15.5360 12.4295

3 43.6000 23.5071 18.0136 13.5242

4 61.2000 33.3133 24.8433 18.1651

F-S-F-S

1 9.6000 8.1375 7.1737 5.9649

2 16.1000 11.7857 9.7195 7.5853

3 36.7000 20.0205 15.3247 11.3391

4 38.9000 24.1377 18.9747 14.2818
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Table 7.4 First four frequency parameters for a = 5nm, µ = 2nm2 and a/b = 2

B.Cs First Second Third Fourth

S-C-S-C 39.6000 40.7306 45.2329 52.5002

S-C-S-S 29.5537 33.8697 41.0402 49.9379

S-C-S-F 12.6602 21.6101 29.8275 32.1331

S-S-S-F 9.7195 20.5617 23.4617 31.2146

S-F-S-F 7.0937 11.5810 18.7576 22.7213

C-C-C-C 40.2856 43.4408 50.1693 58.9610

C-C-C-S 30.8647 37.5978 46.7047 53.5259

C-C-S-S 30.0688 35.5235 43.6951 53.1091

C-C-F-F 10.3208 16.5303 24.7089 28.6041

C-F-C-F 14.9166 15.5252 25.8441 27.5855

C-F-S-F 10.8033 13.0646 23.1535 25.2039

C-F-F-F 2.9265 6.5858 11.3837 18.3020

S-S-F-F 4.5285 12.6233 19.9921 22.1292

S-F-F-F 5.8101 8.2758 16.5722 18.8076

F-F-F-F 9.4809 11.2065 18.9165 20.3403

S-F-S-C 12.6602 21.6101 29.8275 32.1331

S-C-C-C 39.7909 41.9053 47.5163 55.5969

S-C-C-S 30.0688 35.5235 43.6951 53.1091

C-F-F-S 5.7331 14.4925 20.8909 24.3087

C-F-S-C 14.2968 24.6622 30.2733 35.5735

C-F-S-S 12.1174 23.6980 24.4128 32.6778

S-S-S-S 22.1851 29.1902 38.2287 44.1800

C-C-C-F 16.6358 28.1756 30.7702 38.0487

C-S-C-F 15.2788 24.8379 27.8202 34.5728

7.1.4 Effect of aspect ratio

To see the influence of aspect ratio on the frequency parameters of nanoplates, the behavior
of fundamental frequency parameter of C-C-C-C nanoplates with aspect ratio is plotted in Fig.
7.2 for length=10nm. The graph is shown for different nonlocal parameters. From the above
graph, it is seen that nonlocal effect on frequency parameters is more prominent in greater val-
ues of aspect ratio. This may be due to the fact that when the aspect ratio increases, nanoplates
become smaller for a specified length of nanoplates. This leads to an increase in the small scale
effect because size dependency plays a vital role in the nonlocal elasticity theory. Let us define
the relative error percent as
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Relative Error Percent = | Local Result-Nonlocal Result |
| Local Result| × 100

Neglecting nonlocal effect, the relative error percents for aspect ratios 1 and 3 with µ = 3nm2

are 23.97% and 54.09% respectively. Therefore, nonlocal theory should be considered for free
vibration of small scaled rectangular nanoplates with high aspect ratios. It is also observed
that for a particular nonlocal parameter, frequency parameters increase with increase in aspect
ratio. When we compare all nonlocal parameters, frequency parameters are highest in case of
µ = 0 i.e. local frequency parameter. This shows that frequency parameters are over predicted
when local beam model is considered for vibration analysis of nanoplates. As the scaling effect
parameter increases, frequency parameters for nonlocal nanoplates become smaller than those
of its local counterpart. This reduction can be clearly seen when we consider higher vibration
modes. The reduction is due to the fact that the nonlocal model may be viewed as atoms linked
by elastic springs while in case of local continuum model, the spring constant is assumed to
take an infinite value. So small scale effect makes the nanoplates more flexible and nonlocal
impact cannot be neglected. As such, nonlocal theory should be used for better predictions of
high natural frequency of nanoplates.
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Fig. 7.2 Variation of fundamental frequency parameter with aspect ratio

7.1.5 Effect of nonlocal parameter

To investigate the effect of small scale in different vibration modes, non-dimensional frequency
parameters associated with the first four modes are illustrated in Fig. 7.3 for different nonlocal
parameters. Here we have considered F-S-F-S nanoplates with aspect ratio as 2 and length
as 10nm. It is noticed that frequency parameters decrease with nonlocal parameter in all the
modes. It may be noted that this behavior is seen in all the boundary conditions. The nonlocal
effect is more pronounced in higher vibration modes. Neglecting nonlocal effect, the relative
error percents for the first and fourth mode number with µ = 2nm2 are found to be 25.57%

and 49.48% respectively. This shows noticeable influence of the nonlocal parameter on the
frequency parameters in higher modes.
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Fig. 7.3 Variation of first four frequency parameters with nonlocal parameter

7.1.6 Effect of length

Variation of the length of nanoplates on the fundamental frequency parameter of F-C-F-C
nanoplates with R = 2 is shown in Fig. 7.4 for different nonlocal parameters. From this fig-
ure, it is observed that frequency parameters obtained by local elasticity theory (with nonzero
nonlocal parameter) are always larger than those obtained by nonlocal theory of elasticity. It
is also noticed that for each length of nanoplates, frequency parameters decrease with increase
in the nonlocal parameter. Again, one may see that as the length of nanoplates increases, fre-
quency parameters increase. This is due to the fact that size-dependency plays a vital role in
the nonlocal elasticity theory. In other words, by increasing length of the nanoplates (a) and
assuming lint to be unchanged, small scale effect decreases. In this figure, it is also observed
that when we increase a, nonlocal curves approach the local curves. This means for large value
of a, all the results converge to those obtained from the classical theory of elasticity. Neglecting
nonlocal effect, the relative error percents of fundamental frequency parameter for a = 10nm

and a = 50nm with µ = 2nm2 are 30.61% and 1.91% respectively. Hence for free vibration of
large enough nanoplates, classical theory of elasticity may be used instead of nonlocal elasticity
theory.
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Fig. 7.4 Variation of fundamental frequency parameter with length

7.1.7 Mode shapes

Present investigators have reported first three modes shapes for two sets of boundary conditions
such as C-C-C-C and S-C-S-C in Figs. 7.5-7.6 with µ = 4nm2, a = 5nm and aspect ratio=1.
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Fig. 7.5 First four deflection shapes of C-C-C-C nanoplates
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Fig. 7.6 First four deflection shapes of S-C-S-C nanoplates

7.2 Conclusions

Rayleigh-Ritz method has been used which can handle any classical boundary boundary con-
ditions at the edges. Present method has been compared with available exact solutions for
S-S-S-S boundary condition in graphical form and are found to be in good agreement. Results
are given for different nonlocal parameters, length of the nanoplates and aspect ratios. It is
observed that non locality effects should be considered for vibration nanoplates. Present analy-
sis will be of great use to the design engineers who are designing microelectromechanical and
nanoelectromechanical devices.
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Chapter 8

Vibration of nanoplates with complicating
effects

In this chapter, we have shown vibration of nanoplates with complicating effects. Rayleigh-Ritz
method with two-dimensional simple polynomials as shape functions have been implemented.
Non-uniformity with elastic foundation has been taken into consideration. Parametric studies
such as effect of length, aspect ratio, nonlocal parameter, non-uniform parameter and elastic
foundation have been analyzed. Mode shapes for some specified boundary conditions have
also been presented.

Maximum strain energy may be given as in Eq. (2.35).

Maximum kinetic energy may be written as Eq. (2.36).

In this investigation, graphene sheets with non-uniform material properties have been consid-
ered. The non-uniform material properties is assumed as per the following relations

E = E0(1 + pX + qX2), ρ = ρ0(1 + rX + sX2)

Here, we have introduced the non-dimensional variables

X = x
a
, Y = y

b
, Kw = kwa4

D
, Kp =

kpa2

D

Rayleigh-Quotient in non-dimensional form may be written as

λ2 =

∫ 1
0

∫ 1
0 ca

[(
∂2W
∂X2

)2
+ 2νR2

(
∂2W
∂X2

∂2W
∂Y 2

)
+R4

(
∂2W
∂Y 2

)2
+ 2(1− ν)R2

(
∂2W
∂X∂Y

)2
+ ckw + ckg

]
dXdY

∫ 1
0

∫ 1
0 cb

[
W 2 + µ

a2

((
∂W
∂X

)2
+
(

∂W
∂Y

)2)]
dXdY

(8.1)
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where λ2 = ρ0ha4ω2

D0
, ca = (1 + pX + qX2), cb = (1 + rX + sX2),

ckw = Kw

[
W 2 + µ

a2

((
∂W
∂X

)2
+R2

(
∂W
∂Y

)2)] and

ckg = Kg

[(
∂W
∂X

)2
+R2

(
∂W
∂Y

)2
+ µ

a2

((
∂2W
∂X2

)2
+R2

(
∂2W
∂X∂Y

)2)
+ µ

b2

((
∂2W
∂X∂Y

)2
+R2

(
∂2W
∂Y 2

)2)]

Using orthonormal polynomials (φ̂k) and simple polynomials (φk) in Eq. (2.31) and substitut-
ing in Eq. (8.1), a generalized eigen value problem obtained as

[K] {Z} = λ2 [Ma] {Z} (8.2)

where Z is a column vector of constants, K and Ma are the stiffness and mass matrices given
as follows

K(ij) = ca

[
β2020
ij + νR2

(
β2002
ij + β0220

ij

)
+R4β0202

ij + 2(1− ν)R2β1111
ij +Kw

[
β0000
ij +

µ

a2
(
β1010
ij +R2β0101

ij

)]]
+ ca

[
Kp

[
β1010
ij +R2β0101

ij +
µ

a2
(
β2020
ij +R2β1111

ij

)
+

µ

b2
(
β1111
ij +R2β0202

ij

)]]

Ma(ij) = cb

[
β0000
ij + µ

(
1
a

)2 (
β1010
ij +R2β0101

ij

)]
with βklmna

ij =
∫ 1

0

∫ 1

0

[
∂k+lφi

∂Xk∂Y l

] [
∂m+naφj

∂Xm∂Y na

]
dXdY

8.1 Numerical results and discussions

Generalised eigen value problem Eq. (8.2) has been solved and eigen values of Eq. (8.2)
correspond to the frequency parameters. Different sets of boundary conditions (B.cs) have
been considered here with Poisson’s ratio as 0.3.

8.1.1 Convergence

Convergence of first three frequency parameters (λ) of S-S-S-S and C-C-C-C nanoplates has
been shown in Table 8.1 taking p = 0.2, q = 0.3, r = 0.4, s = 0.5, aspect ratio (R) = 1,
nonlocal parameter (µ)=2nm2 and length (a)=5nm. Results have been shown for Kw = 0

and Kp = 0. One may see that n = 37 is sufficient for computing converged results for
nanoplates without elastic foundation. Again, convergence of embedded nanoplates has been
shown in Table 8.2 for S-S-S-S edge condition. Numerical values of parameters are taken as
p = q = r = s = 0.1, Kw = 200, Kp = 5, µ = 1nm2, a = 10nm. It is observed that
converged results for embedded nanoplates are obtained at n = 46. It is also noticed that
frequency parameters increase with mode number.

137



Table 8.1 Convergence of first three frequency parameters of S-S-S-S and C-C-C-C nanoplates

S-S-S-S C-C-C-C

n λ1 λ2 λ3 λ1 λ2 λ3

5 11.8785 24.3785 24.4884 19.7881 29.8410 29.9750

10 11.5401 20.9273 24.2786 19.7317 29.0494 29.1283

15 11.5366 20.9013 20.9271 19.7210 29.0469 29.1277

20 11.5366 20.8621 20.8924 19.7210 29.0402 29.1049

25 11.5366 20.8404 20.8620 19.7203 29.0265 29.1048

30 11.5366 20.8404 20.8617 19.7196 29.0264 29.1047

35 11.5366 20.8403 20.8615 19.7196 29.0248 29.1030

36 11.5366 20.8400 20.8615 19.7196 29.0247 29.1030

37 11.5366 20.8400 20.8615 19.7196 29.0247 29.1030

Table 8.2 Convergence of first three frequency parameters of S-S-S-S nanoplates

n λ1 λ2 λ3

10 45.6173 63.9934 107.8843

15 45.6044 63.9885 90.5544

20 45.6044 63.8730 90.5418

25 45.6044 63.8729 89.7499

30 45.6044 63.8726 89.7465

35 45.6044 63.8721 89.7464

40 45.6044 63.8721 89.7328

45 45.6044 63.8721 89.7325

46 45.6044 63.8721 89.7325

8.1.2 Validation

Figs. 8.1 and 8.2 show graphical comparisons of S-C-S-C nanoplates with Aksencer and Ay-
dogdu (2011). For this comparison, we have taken p = q = r = s = Kw = Kp = 0 with
R = 1. In these graphs, variation of frequency ratio (associated with first two modes) with
length has been given for different nonlocal parameters (0nm2, 1nm2, 2nm2, 4nm2). One may
notice that increase in nonlocal parameter decreases frequency ratio. Same observation may
also be seen in Aksencer and Aydogdu (2011) and we may found a close agreement of the re-
sults. Next tabular comparison has been given in Table 8.3 with Aghababaei and Reddy (2009)
for the first three frequency parameters with R = 1 and a = 10nm. Results have been verified
for different nonlocal parameters with the consideration of S-S-S-S edge condition.
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Fig. 8.1 Variation of frequency ratio with length
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Fig. 8.2 Variation of frequency ratio with length

Table 8.3 Comparison of first three frequency parameters for S-S-S-S nanoplate

µ = 0 µ = 1 µ = 2 µ = 3 µ = 4

Present Ref.* Present Ref.* Present Ref.* Present Ref.* Present Ref.*

0.0963 0.0963 0.0880 0.0880 0.0816 0.0816 0.0763 0.0763 0.0720 0.0720

0.3874 0.3853 0.2884 0.288 0.2402 0.2399 0.2102 0.2099 0.1892 0.1889

0.8608 0.8669 0.5167 0.5202 0.4045 0.4063 0.3435 0.3446 0.3037 0.3045

*Aghababaei and Reddy (2009)

8.1.3 Effect of non-uniform parameter

In this sub-section, we have studied the effects of non-uniform parameters on the frequency pa-
rameters in the absence of elastic foundation. First, we have shown the effects of non-uniform
parameters when density and Young’s modulus vary quadratically. This case may be achieved
by assigning zero to p and r. Variation of first three frequency parameters with q has been
illustrated in Fig. 8.3 keeping s constant (0.3). Similarly, effect of s on the first three frequency
parameters has been shown in Fig. 8.4 keeping q constant (0.2). In these graphs, C-C-C-C
edge condition is taken into consideration and aspect ratio is taken as 2 and 3 respectively. One
may see that frequency parameters decrease with s and increase with q. It is also observed that
frequency parameters increase with increase in mode number.

In this paragraph, we have presented the effects non-uniform parameters when density and
Young’s modulus vary linearly. This is achieved by taking q and s to zero. Graphical variation
of frequency parameters with p taking r constant (0.3) has been shown in Fig. 8.5. Similarly,
graphical variation of frequency parameters with r taking p constant (0.2) has been shown in
Fig. 8.6. In these graphs, we have considered F-F-F-F boundary condition and aspect ratio as
1. It is observed that frequency parameters decrease with r and increase with p.
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Here, we have considered the effects of non-uniform parameters when Young’s modulus varies
linearly and density varies quadratically. This is the situation which is obtained by taking q and
r as zero. Figs. 8.7 and 8.8 depict variation of frequency parameters with p and s respectively.
In these graphs, C-C-C-C nanoplates with R = 2 are taken into consideration. It is noticed that
frequency parameters decrease with s and increase with p.

Next, we have analyzed the effects of non-uniform parameter when Young’s modulus varies
quadratically and density varies linearly. For this, we have taken p and s as zero. Variations of
first three frequency parameters with q and r have been illustrated in Figs. 8.9 and 8.10. Results
have been shown for F-F-F-F nanoplates with R = 1 In these graphs, one may see frequency
parameters increase with q and decrease with r.
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Fig. 8.10 Variation of frequency parameter with r

8.1.4 Effect of length

To investigate the effect of length on the frequency parameters, variation of fundamental fre-
quency parameter with length is shown in Fig. 8.11 for C-C-C-C nanoplates with R = 2,
p = 0.2, q = 0.3, r = 0.4, s = 0.5 in the absence of elastic foundation. Results have been
shown for different values of nonlocal parameters (0nm2, 0.5nm2, 1nm2, 2nm2, 3nm2, 4nm2).
It is seen that frequency parameter increases with increase in length. This observation may be
explained as follows. Assuming lint as constant, increasing length (a) would lead to decrease
in small scale effect (µ/a2). It is also noticed that frequency parameters are highest in case of
µ = 0 and goes on decreasing with increase in nonlocal parameter. This fact may also been
explained in terms of relative error percent. Let us define the relative error percent (REP) as

REP = | Local Result-Nonlocal Result |
| Local Result| × 100

Neglecting nonlocal effect, relative error percents of fundamental frequency parameter for
a = 3nm and a = 25nm with µ = 3nm2 are 78.6753% and 12.0950% respectively. From
this, we may also say that nonlocal theory should be taken into account for vibration analysis
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of small nanoplates.
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Fig. 8.11 Variation of fundamental frequency parameter with length

8.1.5 Effect of aspect ratio

In this subsection, we have considered effect of aspect ratio on the frequency parameters in the
absence of elastic foundation. Fig. 8.12 shows the effect of fundamental frequency parameter
of S-C-S-C nanoplate with aspect ratio taking a = 10nm, p = 0.1, q = 0.2, r = 0.3, s = 0.4. It
is seen that nonlocal effect on the frequency parameters is more prominent in greater values of
aspect ratio. This is due to the fact that for a particular length of nanoplates, increase in aspect
ratio would lead to smaller nanoplates which in turn leads to increase in small scale effect.
It is also observed that frequency parameter increases with aspect ratio. One may notice that
frequency parameter decreases with increase in nonlocal parameter. As the nonlocal parame-
ter increases, frequency parameters obtained from nonlocal plate theory become smaller than
those of its local counterpart. This reduction is clearly seen in case of higher vibration modes.
Effect of nonlocal parameter is seen more in case of higher aspect ratios. This fact may also
be explained in terms of relative error percent. Neglecting nonlocal effect, the relative error
percents for aspect ratios 1 and 3 with µ = 3nm2 are 22.5041% and 54.9963% respectively.
This shows that, nonlocal theory should be considered for free vibration of nanoplates with
high aspect ratios.
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Fig. 8.12 Variation of frequency parameter with aspect ratio

8.1.6 Effect of nonlocal parameter

Here, we have examined the effect of nonlocal parameter on the frequency parameters in the
absence of elastic foundation. Variation of frequency ratio (associated with first four mode)
with nonlocal parameter has been illustrated in Fig. 8.13 for S-C-S-C edge condition. In this
graph, we have taken a = 5nm,R = 1, p = 0.1, q = 0.2, r = 0.3, s = 0.4. It is clearly
seen from the figure that frequency ratio is less than unity. This implies that application of
local beam model for vibration analysis of graphene sheets would lead to over prediction of the
frequency. Hence, nonlocal beam theory should be used for better predictions of frequencies
of nanoplates. Neglecting nonlocal effect, the relative error percents for first and fourth mode
number of S-C-S-C nanoplates with µ = 0.5nm2, R = 1, a = 5nm are found to be 15.3605%

and 37.8513% respectively. This shows nonlocal effect on the frequency parameters is more in
higher modes.
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Fig. 8.13 Variation of frequency parameter with nonlocal parameter
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8.1.7 Effect of elastic foundation

In this subsection, effect of Winkler and Pasternak elastic foundations on the fundamental fre-
quency parameter of embedded nanoplate has been investigated. One may note from Eq. (8.2)
that the effects of elastic foundation enter through the stiffness matrix of the nanoplate i.e. [K].
Therefore, total stiffness of the embedded nanoplate increases as the stiffness of the elastic
foundation increases. This trend has been shown in Figs. 8.14 and 8.15 for for the springy
and shear effect of the elastic foundation respectively. Numerical values of the parameters are
taken as p = q = r = s = 0.1, a = 10nm,R = 2. In Fig. 8.14, we have considered Kp = 0

with C-C-C-C edge condition while in Fig. 8.15, we have taken Kw = 0 with S-S-S-S edge
condition. Results have been given for different values of nonlocal parameters. It is observed
from these figures that fundamental frequency parameter increases linearly by increasing the
stiffness of the elastic foundation either through the springy (Winkler coefficient) or the shear
effect (Pasternak coefficient).
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Fig. 8.14 Effect of Winkler coefficient on frequency parameter
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8.1.8 Mode shapes

First four mode shapes of F-C-F-C and F-S-F-S nanoplates are given respectively in Figs. 8.16-
8.17 with µ = 1nm2, a = 10nm, R = 2, p = q = r = s = 0.1.
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Fig. 8.16 First four deflection shapes of F-C-F-C nanoplates
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Fig. 8.17 First four deflection shapes of F-S-F-S nanoplates

8.2 Conclusion

Rayleigh-Ritz method has been applied to study free vibration of embedded isotropic rectangu-
lar nanoplates based on classical plate theory. It is observed that frequency parameters increase
with length, Winkler and Pasternak coefficients and also with aspect ratio. Nonlocal elasticity
theory should be considered for vibration of nanoplates having high aspect ratio. Similarly,
nonlocal elasticity theory should also be considered for vibration of nanoplates having small
length. One of the important observation seen that nonlocal effect is more in higher modes.
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Chapter 9

Conclusions and future directions

In view of the present study on bending, buckling and vibration of nanobeams and nanoplates,
conclusions are drawn and finally, recommendation for future work is also incorporated here.
In this investigation, nonlocal elasticity theory has been applied in all of the problems. The
main purpose of this study has been to develop computationally efficient numerical methods
for handling the above said problems. As such, boundary characteristic orthogonal polynomials
have been used as shape functions in the Rayleigh-Ritz method to investigate bending, vibra-
tion and buckling analyses of nanobeams and nanoplates. Similarly, Chebyshev polynomials
have been implemented in the Rayleigh-Ritz method to study vibration and buckling analy-
ses of Timoshenko nanobeams embedded in elastic foundation. Next, differential quadrature
method has been implemented in the buckling and vibration of nanobeams with and without
elastic foundation. All the problems are computationally solved by using MATLAB.

In the following paragraphs, conclusions are drawn with respect to various methods and the
application problems mentioned in previous Chapters.

9.1 Conclusions

• First two chapters give background of nanostructures and numerical methods such as
Rayleigh-Ritz and differential quadrature. The novelty of the Rayleigh-Ritz method has
been to handle any sets of boundary conditions by the chosen shape functions. Bend-
ing and buckling analyses of nanobeams have been investigated in Chapter 3. Non-
dimensional maximum deflection has been obtained at the center of beam. It has been
concluded that deflection is strongly dependent on the aspect ratio in case of nonlocal
EBT and TBT.

Non-uniformity is assumed in the buckling analysis by taking exponential variation of
flexural rigidity. New results have been presented for two types of boundary conditions
such as guided and simply supported-guided. Four types of beam theories have been
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considered here. Among these considered beam theories, Euler-Bernoulli beam theory
would lead to over prediction of the buckling loads than other types of beam theories.
Parametric studies such as effects of non-uniform parameter, nonlocal parameter, aspect
ratio, boundary condition and beam theories on the critical buckling load parameter have
been carried out systematically. It is found that critical buckling load decreases with
increase in non-uniform as well as nonlocal parameters while critical buckling load in-
creases with increase in aspect ratio. C-C nanobeams are found to have highest buckling
loads than other types of boundary conditions. It is observed that bending responses
increase with scale coefficient while buckling loads decrease with scale coefficient.

• Effects of Winkler and Pasternak coefficients of the elastic foundation on the critical
buckling load and frequency parameters have been investigated under the influence of
temperature in Chapter 3 and 5 respectively. It is observed that the increase of critical
buckling load and frequency parameters with Pasternak foundation is linear in nature
while this increasing trend is nonlinear in case of Winkler foundation. In low temperature
environment, buckling load and frequency increase with increase in temperature while in
high temperature environment, buckling load and frequency decrease with increase in
temperature. It may also be seen that for larger temperature change, the rate of increase
of buckling load ratio is less compared to smaller temperature change.

• In Chapter 4, bending analysis has been carried out for isotropic nanoplate and buck-
ling analysis has been investigated for orthotropic nanoplate. Convergence study has
been done to find minimum number of terms required to get desirable results. Effects of
length, nonlocal parameter and aspect ratio on the non-dimensional maximum deflection
have been systematically discussed. It is observed that deflection ratio increases with
increase in aspect ratio. One of the interesting behavior may be noticed in this chapter
that non-dimensional maximum deflection increases with increase in nonlocal parame-
ter. Parametric studies are done to know the effects of length, nonlocal parameter, aspect
ratio, stiffness ratio and elastic foundation on the buckling load. It may be noted from
these investigations that buckling load ratio decreases with increase in stiffness ratio and
elastic coefficients but buckling load ratio decreases with increase in nonlocal parameter.

• Vibration of nanobeams has been investigated in Chapter 5 to compute vibration charac-
teristics of Euler-Bernoulli and Timoshenko nonlocal beam theories. Boundary charac-
teristic orthogonal polynomials have been used as shape functions in the Rayleigh-Ritz
method. Use of orthonormality makes computations easier. This is because of the fact
that some of the entries of stiffness and mass matrices become either zero or one due
to orthonormality. Results have been reported for new boundary conditions viz. S-F
and F-F. Graphical results have been presented to show variation of frequency parameter
with scaling effect parameter. Next, we have used differential quadrature (DQ) method
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for vibration analysis of nanobeams based on four types of beam theories such as Euler-
Bernoulli, Timoshenko, Reddy and Levinson. In DQ method, differential equations are
converted into single unknown variable and boundary conditions have been implemented
in the coefficient matrices. As such, modified coefficient matrices for different bound-
ary conditions have been shown. Among the considered beam theories, Euler-Bernoulli
nanobeams show over prediction of frequency parameters. This is due to the fact that in
EBT, transverse shear stress and strain are not considered. We may conclude from this
analysis that the effects of transverse shear deformation and rotary inertia would lead to
reduction of frequencies. The reduction is clearly seen at higher modes and also at small
aspect ratio. It is also found that the effect of nonlocal parameter is more in higher modes.
Frequency parameters associated with higher mode for some of the beam theories in lit-
eratures are not reported. As such, we have computed the higher mode for Reddy and
Levinson nonlocal beam theories. Another interesting observation is that fundamental
frequency parameter of cantilever nanobeams do not decrease with increase in nonlocal
parameter.

• The literature reveals that previous studies done in nanobeams are mostly with constant
parameters like E and ρ. But in actual practice, there may be a variation in these param-
eters. Structural members with non-uniform material properties are frequently used in
engineering applications to satisfy various requirements. As such, we have investigated
non-uniform variation of Young’s modulus and density in Chapter 6. Non-uniformity is
assumed to arise due to linear and quadratic variations in Young’s modulus and density
of nanobeams with space coordinate. Possible cases of such linear and quadratic varia-
tions have been considered and discussed. Variation of non-uniform parameters on the
frequency parameter is depicted in term of plots. It is noticed that frequency parameters
are highest in C-C and lowest in C-F than other boundary conditions for a particular set
of nonhomogeneity parameters. So it may depend upon the application where design
engineers may need such desired frequency parameters.

• Vibration of rectangular nanoplate has been studied in Chapter 7 based on classical plate
theory in conjunction with nonlocal elasticity theory of Eringen. Present results have
been compared with available exact solutions for S-S-S-S boundary condition in graphi-
cal form and are found to be in good agreement. Variation of frequency parameters with
nonlocal parameter, length and aspect ratio has been presented for different boundary
conditions at the edges. Three-dimensional mode shapes have also been presented for
some of the boundary conditions.

• Investigation on vibration of nanoplates with complicating effects such as non-uniformity
and elastic foundation has been done in chapter 8. Non-uniformity is assumed by taking
linear and quadratic variations of Young’s modulus and density along space coordinate.
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Various possible cases of such variations have been investigated. Comparison has been
made in special cases. Effects of non-uniform parameters and Winkler as well as Paster-
nak coefficients have been depicted in term of plots. Various parametric studies have
been carried out. It is observed that frequency parameters increase with length, Winkler
as well as Pasternak coefficients and aspect ratio.

9.2 Future directions

Although exhaustive investigations are done related to the titled problems but there are still
some gaps which are the future directions of the present research. Accordingly few of them are
mentioned below:

• Nonlocal elasticity theory may be applied to other types of nanostructures such as nanorods
and nanosheets with various complicating effects.

• Suitable numerical methods may also be developed for handling non-classical boundary
conditions.

• It is found that most of analytical solutions have been presented for simply-supported
edge condition. As such, one may also try to develop analytical solutions for other
boundary conditions.

• Mostly, differential quadrature method has been applied for S-S, C-S, C-C and C-F edge
conditions. Accordingly, one may develop procedures for handling other sets of bound-
ary conditions.

• Other orthogonal polynomials such as legendre may also be used in the Rayleigh-Ritz
method.

• Rayleigh-Ritz method may also be applied in vibration, bending and buckling analyses
of nanoplates based on advanced plate theories such as refined plate theory .

• It may also be interesting to apply differential quadrature method in nanoplates subjected
to all sets of classical boundary conditions.

• Other complicating effects such as nonlinearity, piezoelectric, electromagnetic etc. may
be included in the present analysis.

• Static and vibration of nanobeams and nanoplates with some of the shapes such as el-
liptic, triangular, circular and annular etc. may also be done using nonlocal elasticity
theory.
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