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Abstract

Cloud computing shares data and offers services transparently among its users.

With the increase in number of users of cloud the tasks to be scheduled increases.

The performance of cloud depends on the task scheduling algorithms used in

the scheduling components or brokering components. Scheduling of tasks on

cloud computing systems is one of the research problem, Where the matching

of machines and completion time of the tasks are considered. Tasks matching

of machines problem is that, assume number of active hosts are Y, number of

VMs in each host are Z. Maximum number of possible Virtual Machines(VMs)

to schedule a single task is (y×z). If we need to schedule X tasks, number of

possibilities are (y × z)x. So scheduling of tasks is NP Hard problem. NP Hard

means this scheduling of tasks on VMs not having polynomial time complexity,

but it may have algorithm for verifying solution.

Fault-tolerance becomes an important key to establish dependability in cloud

computing system. In task scheduling, if task not completed in it’s deadline ,then

it is one type of fault in scheduling of tasks. In this thesis this type of faults are

taken and try to over come it.

In this thesis we present a non-preemptive scheduling algorithm, By inserting

the ideal time for postponing the task by ensuring the other task will completes its

execution with in the deadline. In simulation the proposed algorithm maximizes

the profit of 25%, throughput of 25% and minimizes the penalty of 20% over

EDF.
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Chapter 1

Introduction

1.1 Introduction

The computer scientists and mathematicians studied the problem of scheduling

for several decades[8][4][3]. The difficulty of scheduling problem is the tasks were

preemptive each other or the tasks were not preemptive each other. The data

centers are having hosts. Suppose there are ’x’ number of tasks,’y’ number of

hosts and each virtual machine having ’z’ number of virtual machines. So these

tasks are mapping to the virtual machines in (y × z)x ways. So The scheduling

of tasks is a NP Hard problem.

The general scheduling problem schedules the tasks according to the various

conditions. A task is characterized by ready time,execution time,deadline and

requirement of resources. While executing the tasks, the task may be interrupted

or may not be. If the task is interrupted then it is known as preemptive scheduling.

The tasks having the constraints are based on the precedence relation. The

execution of a task will start after completing the execution of its predecessors

tasks. The tasks which executed are characterized by the amounts of resources

available in the cloud. The goals in the scheduling is improve the utilization,

reduce the context switch due to the preemption, and reduce the communication

cost.

When the tasks are scheduled on the virtual machines, there may be a chance of

occurring the faults. The fault may occur either in the task or in the machine. If

the failure occurs in the tasks then the task restart job execution from the check

points. If the fault may occur in the machine then the task assigned to that
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Chapter1 Introduction

machine will migrate to another machine. We have presented a lazy evaluation

algorithm for executing the tasks. In this approach, the task will wait for some

idle period before it starts it’s execution.

Task migration can be done in two ways, either the copy of the task may be

migrated to another machine or the entire task will migrate to another machine.

For the temporary faults there is no need to do migration. The task will execute

on the same machine. In our proposed algorithm, if any failure occurs then the

fault detection and recovery algorithm is used to avoid the failures.

The characteristics of the cloud computing are the virtualization, distribu-

tion and dynamic extendibility. In the present days, software and hardware are

provided for supporting the virtualization. Many factors such as IT resource,

software, hardware, operating system and net storage are virtualized. The man-

agement of the resource in the platform is called as the cloud computing. The dy-

namic service provider of a cloud uses very large virtualized and scalable resources

over the Internet. Cloud computation is defined as the collection of computing

and communication resources over the distributed data centres and is shared by

many different users. Cloud computing has the most emerging paradigm area in

the Information Technology(IT). To judge the quality of a real time application

or services the major criteria is time. The real time services over the Internet, all

the tasks will meet their deadline guarantee such as hard real time systems.

In the presence of the faults, the fault tolerant computing deals with the com-

puting systems. A fault tolerant system may tolerate to one or more fault types

including (i) transient, intermittent or permanent hardware faults, (ii)hardware

and software design errors, (iii) operator errors (iv) externally induced upsets or

physical damage. In the past years, lots of research has been done on the fault

tolerant machines. Most of them are dealing with the hard ware faults. Hard-

ware and software redundancy are well-known effective methods for hardware

fault-tolerance, where extra hard ware (e.g., processors, communication links)

and software (e.g., tasks, messages) are added into the system to deal with faults.

The software fault refers to when the task is not going to complete their execution

2



Chapter1 Introduction

with in the deadline. Therefore, in this thesis, I have considered the timing fault.

The timing fault of the tasks are recovered by postponing the execution of the

tasks, in the cloud[2].

1.2 Real Time Tasks Scheduling : Case Study

Missile Guidance System[2]: In the missile guidance system the computers

are placed on the missile. A guided missile has the capable of sensing or track-

ing the target place. The deviation is calculated by the mounted computer and

placed on the missile from the required trajectory and changes the track of the

missile to guide it onto the target.

In an Air Defense System[2]: Monitoring the incoming enemy missiles in

the sky. The below example also highlights important characteristic of real time

applications. Since the behaviour of the controlling real time computing system

must be predictable, every incoming enemy missile must be destroyed without fail.

Computer On Board an Aircraft[2]: The modern aircraft has the auto

pilot option selected by the pilots. After selection the aircraft switches to auto

pilot mode then the control of the aircraft is taken by the on board computer.

The computer takes the control of take off, navigation, landing the aircraft. The

computer checks the acceleration and velocity of the aircraft.

3



Chapter1 Introduction

1.3 Literature Review

Table 1.1: Observation on Scheduling Algorithms for Real Time Tasks

Researcher Year Observation

Jung,

Daeyong,

et al.[4]

• 2013 • Proposed VM migration scheme re-

duces the rollback time and the task

waiting time when an instance occur

the out-of-bid situation.

Shivam

nagapal et

al.[7]

• 2013 • Proposes the advantages of the check-

point scheme is that the checkpoint is

made in the end after produces the re-

sult of the all nodes. This checkpoint

scheme will not cause domino effect.

Cecilia

Ekelin et

al.[1]

• 2006 • Presented a non preemptive schedul-

ing algorithm called Clairvoyant

EDF(CEDF).

R.Santhosh

et al.[8]
• 2013 • Presented a online, preemptive

scheduling with task migration algo-

rithm for cloud computing environment

is proposed in order to improve the

efficiency and to minimize the response

time of the tasks.

Dilbag

singh et

al.[10]

• 2012 • Proposed an approach for providing

the more availability for the requests of

cloud clients.
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Chapter1 Introduction

1.4 Motivation

� The cloud computing system deals with various tasks and resources. The

tasks are subjected to various kinds of faults.

� The main fault tolerance issues in cloud computing are detection and recov-

ery. The fault tolerant model is designed in cloud to provide a dependable

solution.

� Scheduling of tasks on various resources in a fault tolerant manner has been

improved in recent years.

1.5 Objective of The Thesis

1.To design a fault tolerance model which can provide reactive and proactive fault

tolerance in real time cloud computing.

2.Maximize the profit and Throughput.

3.Minimize the penalty.

1.6 Thesis Outline

A brief introduction of Real Time Systems ,Real time task scheduling and cloud

computing,than case study,than related work ,motivation and problem statement

are presented in Chapter 1.

The rest of the thesis organized in to the following chapters :

In chapter2, we discussed 5-3-4-6 principles of cloud computing, Fault tolerant

techniques and applications of fault tolerance.

In chapter3, we give the brief description about the task scheduling with fault

tolerance by using EDF and Proposed algorithm.

5



Chapter 2

5-3-4-6 priciples of cloud computing

2.1 Introduction

The aim of the thesis is to schedule the real time tasks on providing performance

parameters such as profit, utility, and throughput. We specify the system model

for the real time scheduling of tasks that will be used throughout the thesis.

In a chosen time frame physically affected is the purpose of the real time

systems.A real time system having two types of systems. The first one is computer

called controlling system and another is called controlled system. Based on the

availability of information, the controlling system interacts with the environment.

The real time system is differentiated from the non real time systems with a

common characteristics.

� Timing constraints: The timing constraints are impacted on the timing

behaviour of the tasks in terms of its release time and absolute time or

relative real deadlines of tasks. If a scheduled task will meet its timing

constraints then we say that the system works correctly.

� Safety Criticality: In the non real time systems the safety and reliability

of services are independent issues, but in the many real time systems the

safety and reliability are the major issues interactively bounding together

to keep it safety.

To maximize the utilization of resources in the cloud computing is the major con-

cern in the Real time systems. So the tasks are mapping to the virtual machines

in such way that it improves the overall performance and utilization of the system

also increases. In the real time services the tasks complete their execution before

6



Chapter2 5-3-4-6 priciples of cloud computing

the deadlines such that the system improve in throughput and efficiency. A real

time system is generally a controlling system , often embedded into other equip-

ment. It takes in information from its environment, processes it and generates a

response.

Cloud Computing[4]: Cloud computing provide the computing resources to

the users over the Internet. Instead of storing the data in the hard disk, we store

the data in virtual resources available in the cloud. To access the data from the

virtual resources we need the Internet. Cloud services provide the software’s from

third party service providers and users can use this software without installing

the software in their local machines. The cloud services include online file storage,

web mail, social networking sites and enterprise applications. Cloud computing

models can access the data from anywhere in the world. The Architecture of the

cloud computing is shown in fig.2.1

Figure 2.1: Cloud Computing Architecture

The definition of the cloud computing has been developed by the U.S. National

Institute of Standards and Technology (NIST):

The cloud computing is a on demand network access to shared a computing re-

7



Chapter2 5-3-4-6 priciples of cloud computing

sources like storage, servers, network and applications. The computational re-

sources are managed by the very less effort and convenience. The cloud comput-

ing models are categorised in to three service models, four deployment models and

five important characteristics.

2.2 The Essential Characteristics of Cloud Com-

puting

The five essential characteristics of cloud computing that offers businesses today.

They are on-demand self service, broad network access, resource pooling, rapid

elasticity, measured service.

On-demand self service: Without human interaction the cloud computing

resources are provisioned to the users. This is mostly done though a web based

self service portal.The customers can manage their own computing resources are

the on-demand self service. Cloud host provider will secure cloud hosting services

to the business. We have access to your services and we have the power to change

cloud services through an online control panel or directly with the provider. We

can change the storage networks ,software as needed and we can add or delete

the users. We have to pay the monthly subscription to the service provider and

it may vary to each provider.

Broad network access: The resources are accessible over the Internet and

supporting heterogeneous client platforms such as mobile devices and worksta-

tions in the cloud. The access point is used to get the resources from the cloud.

While moving the devices also we can get the services from the cloud. So the

users at the top level of the business. This broad network access the private

network with in the firewall of the company.

Resource pooling: From the pool of resources the customers can access their

own resources. The logical level separates the resources.

8
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Rapid elasticity: To suit our business models the cloud should be flexible and

scalable. The resources, users and software’s are can be added or removed in the

future. At any point of time the application will have the exactly capacity it

needs.

Measured service: The mesured service is the customer can pay the bill based

on their usage. Your bill based on the measures of the usage, and the number of

user accounts. The resources can be monitored from the user side and provider

side, based on this the users can pay their bill.

2.3 Service Models

The cloud computing has three service models.

Software as a Service: In The SaaS, The applications and resources are ac-

cessed over the Internet by using the web browser. The users can uses the software

without installing the software in to their local machines. So the users are not

concerned about the operating system,servers,storage,platform, etc. The software

as a service is popularized by the salesforce.com, based on the subscription basis

which distributes the software rather than the on-premise basis. The SaaS model

is used in the business applications including business accounts, collaboration and

business management.

Platform as a Service: The customers develops or installs its the operating

systems and application software’s.The PaaS is the platform as a service pro-

vide the platform for building, testing, and creating the applications.In PaaS the

provider provides a toolkit to the consumers like different SDK to compile their

software and host them on the providers resources. This helps the consumer to

have a fair control over the resources provided by the Cloud Provider.

Infrastructure as a Service: The Iaas is a infrastructure as a service provides

the hard ware and computing resources. The developers will have an authority

to access the resources in the IaaS. In the IaaS, the user can sends programs

9
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and related data to the service provider. The service provider’s computer does

the computation and returns the results to the user. The cloud infrastructure is

flexible, scalable, and virtualized. So the cloud can satisfy the user needs. The

examples of the IAAS are IBM Blue Cloud, Amazon EC2.

2.4 Deployment Models

Cloud services are available via a private cloud, community cloud, public cloud

or hybrid cloud.

Public Cloud: The services provided by a public cloud are available over the

Internet and are owned and managed by a cloud service provider. The examples

of the public cloud services like online photo storage, e-mail,socila network sites.

Some of the enterprise application services also provided by the public cloud.

Private Cloud: The services provided by a private cloud are the cloud infras-

tructure is managed or operated by the solely for a specific organization. The

services are managed by the organization or a third party service provider.

Community Cloud: The services provided by a community cloud are shared

by several organizations and the services are available only to those group of

organisations. The organisations or the third party service providers owns and

operates the infrastructure.

Hybrid Cloud: The hybrid cloud is a combination of any different methods

of resource pooling (for example it may combination of public and community

clouds).

Cloud Host[8] The large number of systems are integrated and they act as

a singli machine in cloud computing technologies. The hosting solutions are

depends on the single machine only but the security services are provided by

many servers. The advantage of the cloud technology will integrates the resources

such as ram or space and that will increase the website improvement.

10



Chapter2 5-3-4-6 priciples of cloud computing

A Virtual Machine(VM)[9] is usually a program or operating system, which

does not physically exist but is created within the another environment. A virtual

machine has two components : the host and the guest. The host is the virtual

machine host server , it process the memory,disk and network I/O and processing

power provided by the computing resources.The independent instance of an op-

erating system and application software are separated by the guest. In the host

virtual machine has the virtual workloads are called guests.

2.5 Fault Model

The sequence of the system’s external state is called the service. If the system

is deviated from correct state to fault state because of the one or more external

states is called service failure. The failure of the system is caused by an error.

The fault is an cause of the error.

Locality is based on the system boundary faults. That can be classified as

11
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Figure 2.2: Fault Types

� Atomic component fault: is the fault in the component cannot be sub-

divided.

� Composite component fault: is the atomic component faults can be

Aggregated in to a composite fault.

� System fault: is fault in the structure of the system.

� External fault: is the fault caused by the environment or by the users.

Effects does not meet the system’s specification because of the deviations.

� Value fault: Returns the computation result that does not meet system

specification.

� Timing fault: The service is not delivered in time.

12
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Duration is the fault persists with respect to the time duration.

� Transient fault: Recovers even though a server fails .

� Permanent fault: Does not recover because of the server failure.

Immediate happened when the system disobeys the system’s specification

� Resource depletion fault: To perform the task, system unable to receive

the resource.

� Physical fault: Hardware breakage or a mutation occurs in executable

software.

� Logical fault: System does not respond correctly according to the system’s

specification.

Ultimate happened during the phase cycle of the system development

� Specification fault: The requirement specifications are not proper.

� Design fault: The requirement and system design are not matched.

� Implementation fault: The design implementation and system imple-

mentation are not matched.

� Documentation fault: The documented system does not belongs to the

real system.

Output According to the state of the system behaviour when it produces a fault.

� Fail-stop: After reaching the maximum number of faults then the system

simply stopping.

� Fail-safe: Even though a system leads to failure the Unit gives out certain

result. Example is Traffic light controller.

2.6 Fault tolerance Techniques

The cloud computing effected by the various types of faults due to its virtualiza-

tion and Internet based computing. The fault tolerant techniques can be used in

the task level or in the work flow level based on the fault tolerant policies.

13
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2.6.1 Reactive Fault Tolerance

The effect of failures will be reduced by using the policies of the reactive policies

of the fault tolerance.

� Checkpointing: If a fault occur in the task while executing a task in the

virtual machine the task will restarts its execution from the previously state.

For developing the big applications, the checkpoint technique is efficient.

� Replication: The replication of the task means copy of the task. Different

tasks are executed on the different resources at the same time to get the

correct result. Replication can be done by using the tools like HA-Proxy,

Hadoop and AmazonEc2.

� Job migration: If the task has not completed it’s execution on a particular

machine then the task has to migrate to different machine for completing

the task successfully. This can be implemented by using the HA-Proxy.

� Task resubmission: When the task is going to fail on a particular ma-

chine then the task will resubmit to either the same machine or to a different

machine.

� User defined exception handling: Based on the failure the user can

defines the treatment to remove the faults.

� Rescue workflow: The work flow of the system will continues until the

system doesn’t move forward without tolerate the failed task.

14
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2.6.2 Proactive Fault Tolerance

In this policy we can avoid the faults by predicting them early and replace the

suspected components. So that the faults will not come what actually come.

� Software Rejuvenation: The system will reboots for a periodic times.

So that the system will starts from a clean state.

� Proactive Fault Tolerance using Self Healing: It automatically tol-

erates the faults When multiple instances of an application are running on

multiple virtual machines.

� Proactive Fault Tolerance using Pre-emptive migration: Preemp-

tive Migration depends on a feedback-loop control mechanism where the

application is constantly monitored and analysed.

We injected the fault as a timing fault and tolerate it by using user defined

exception handling.

2.7 Applications of Fault Tolerance Computing

Fault tolerant processing are utilized as a part of discriminating real time appli-

cations where we require continuous control for instance; power plant, clinics, air

ship, weapon, and so on. Long-life applications, for example, unmanned space

apparatus need to be profoundly tried and true which can be accomplished by

joining issue tolerant strategies into the framework. Essentially, here are high

accessibility applications for instance; electronic exchanging framework, OLTP,

system exchanging hardware additionally need flaw tolerant. In numerous ap-

plications upkeep operations are greatly excessive, awkward, or hard to perform

plan the framework so unscheduled support can be maintained a strategic dis-

tance from in phone exchanging frameworks, shuttle by adaptation to non-critical

failure[2].

15
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2.8 Concepts and Terms

2.8.1 Scheduling and Dispatching

Scheduling is the creation of a schedule: a (partially) ordered list specifying

how contending accesses to one or more sequentially reusable resources will be

granted. A schedule is intended to be optimal with respect to some criteria (such

as timeliness ones).

Number of algorithms proposed for scheduling real time tasks, main classes of

algorithms are defined as follows:

� Preemptive. The running task will be interrupted at any point of time

after assigning the task to the processor for active any other task is called

preemptive. This will be according to a predefined scheduling policy.

� Non-preemptive.If any task will starts it execution on the proceess, it

will execute until the task is completed by the processor.

� Static. The scheduling decisions are based on the fixed parameters before

submitting the tasks to their execution.

� Dynamic. The scheduling decisions are based on the dynamic parameters

that may change durin the execution of the tasks. This will improves the

resource utilization.

� Off-line. The scheduling algorithm executes the entire taska before their

actual execution in the off-line. The schedule obtained in this way will

stored in to a table and then executed by the dispatcher.

� On-line. The scheduling decisions are made at runt ime in the online

scheduling algorithm. There may be a new task enters into the system or

the running task terminates from execution.

� Optimal. An algorithm minimizes the cost function defined over the task

set is called optimal algorithm. If there is no cost function defined then

there is the only concern to achieve a feasible solution.

16
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� Heuristic. An heuristic algorithm provides a feasible solution but it may

or may not be a optimal.

In contrast, dispatching is the process of granting access to the currently most

eligible contending entity.

2.8.2 Schedulable and Non-Schedulable Entities

Schedulable entities (e.g., threads, tasks, and processes in both the application

and the system software) are scheduled by the scheduler. Non-schedulable en-

tities are most often in the system software and can include interrupt handlers,

operating system commands, packet-level network communication services, and

the operating systems scheduler. Non-schedulable entities can execute continu-

ously, periodically, or in response to events; their timeliness is a system design

and implementation responsibility. Now, we present the following definitions for

the scheduling which are available in the literate.

Definition 1 Valid Schedule A valid schedule of a set of tasks is a schedule

which satisfying the following properties[10]

� Each process can only start execution after its release time.

� All the precedence and resource usage constraints are satised.

� The total amount of processor time assigned to each task is equal to its

maximum or actual execution time.

Definition 2 Feasible schedule A feasible schedule of a set of tasks ψ is a valid

schedule by which every task completes by its deadline a set of tasks is schedulable

according to a scheduling algorithm if the scheduler always produces a feasible

schedule[10].

Definition 3 Optimal schedule An optimal schedule of a set of tasks ψ is

valid schedule of ψ with minimal lateness. A hard real-time scheduling algorithm

is optimal if the algorithm always produces a feasible schedule for a given set of

tasks[10].
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2.8.3 Timeliness Specification

In real time systems based on timeliness specification real time tasks can be of

the following type[1].

1. Deadline: A deadline is the time, in real time systems, task are acceptable

only if it complete it’s execution before the dead line. If task not complete

it’s execution then it will be rejected. Some times this rejection can causes

more loss. In real time systems task may complete it’s execution before

deadline or may not. Some time not complete in deadline is also allowed,

based on that real time systems are soft and hard[6].

2. Hard Deadline A hard real time system is one in which a failure of the

system to meet the specified worst case response time to an input or real

world event will lead to overall system failure. Hard real time systems are

easy to spot from their specifications which talk about maximum response

times and the effects of failure to meet that time. For example, a system

specification might state that given input X the system will respond with

output Y within 10ms. If it takes 10.1ms then the system could well fail

and you are out of a job[6].

Example Hard Real Time Systems:Heart Monitoring System used in

Coronary Care. Engine Management, ABS, Stability and Traction Control

systems in a car. Nuclear Power Station controlling the reaction. Air

Traffic Control system or Auto-pilot in an aircraft or helicopter. Digital

Signal Processor such as CD/MP3 player or digital filter (time is especially

critical here if acceptable sound is to be produced).

In other words, failure of a hard real-time system often results in complete

failure of the system, sometimes incurring significant cost and loss of life or

serious injury and damage. In summary, hard real time systems are time

critical.

3. Soft Deadline A soft real time system implies that failure to meet a spec-

ified response time merely results in system degradation not necessarily

18



Chapter2 5-3-4-6 priciples of cloud computing

outright failure. A Soft Real time systems specification will thus quote a

typical, suggested or average response time against which degradation (not

necessarily failure) can be judged. The response time of a Soft Real Time

system is thus not fixed and may improve or degrade within acceptable

limits depending upon system loading. Of course system degradation can

ultimately become system failure if the response time becomes so intolera-

ble that it no longer functions acceptably[2].

Example Soft Real Time Systems An Elevator control system Response

time varies with the time of day and passenger load. This could be said

to have failed if all the passengers decide it is quicker to walk instead, but

we might consider it to work acceptably if 95% of passenger requests are

met within 30 seconds, averaged over a day.An ATM for a bank Response

time varies with the time of day and load experienced by the bank central

computer. Failure could be said to have occurred if the transaction cannot

be completed without annoying the customer (say 2 mins). However suc-

cess might be measured by a system that on average completes 99.5% of

transactions within 1 min.

2.8.4 Task Scheduling

The most important thing in RTS is meeting task deadlines as explained above.

Scheduling of tasks involves the allocation of processors(including resources) and

time to tasks in such a way that certain performance requirements are met[5].

The task scheduling depends on the system performs schedulability and the task

are executed whether in the statically or in the dynamically and the result of the

tasks dispatched at runtime.

2.9 Conclusion

In this chapter, we discussed the essential characteristics of the cloud,service

models, deployment models, fault model fault tolerate techniques,application of

fault tolerance computing and scheduling and dispatching in the scheduling of

real time tasks.
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Chapter 3

Algorithm for Fault Tolerant Real Time

Scheduling in Cloud

3.1 Introduction

For a given task set, the problem is to generate a feasible solution. In the EDF

algorithm all the tasks are scheduled based on the their dead line times. All the

tasks are needed to complete their execution before the deadline and the task

will not start early before its ready queue arrival time. Lets assume the online

scheduling for real time system so the time is crucial.

The EDF is non-optimal for non-preemptive systems, The other algorithms

not guarantee to schedule more tasks than EDF. The future task arrivals are

not considered in the in the EDF. Let us assume the arrival times of the future

tasks are known. So in a non-preemptive system it is some time necessary not

to dispatch the tasks in the ready queue if it will prevent to meet the deadlines

of future tasks. For not dispatching the tasks in the ready queue we insert the

idle time. Due to the NP-completeness of the scheduling problem the problem

is when to insert idle time for any algorithm. Table 3.1 provide various for the

proposed task scheduling algorithm for cloud.
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SI Notation Description

1 H Host set.

2 Ha Active Host set.

3 hi ith Host.

4 Vi ith Host VM set.

5 vij ith Host jth VM.

6 T Task set.

7 tk kth task in set T.

8 ak kth task arrival time.

9 ek kth task execution time.

11 dk kth task deadline.

12 stmin
k possible earliest starting time of the task

tk.

13 stmax
k The possible latest start time of the task

tk.

Table 3.1: Tasks Scheduling Parameters

3.2 Problem Description and Task Scheduling

Model

=⇒ Let a cloud computing system consists of an infinite set of host machines

such as H = {h1, h2, h3, ...}.

=⇒ Let Ha = {h1, h2, h3, ..., hn}; are set of active host machines.

=⇒ Let H be the total host set.

=⇒ Let Vi = {vi1, vi2, vi3, ..., vim};m = |Vi|,are set of virtual machines with in the

host hi.

=⇒ Let us consider a task set T = {t1, t2, t3, ...} of independent tasks that arrive

dynamically.

=⇒ The task tk having parameters as tk = {ak, ek, dk} Where, ak is arrival time,

ek is execution time of task and dk is deadline time.
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In our proposed algorithm some of the special parameters are used they are

stmin
k is the possible earliest starting time of the task tk, stmax

k is The possible latest

start time of the task tk. initially the earliest starting time of the task stmin
k =ak

and the latest start time is stmax
k =dk − ek with respect to the deadline dk and

the execution timeek , these properties are not constant. The task depending on

the properties of the other tasks and the scheduling decisions. The task must

be starts its execution between the interval [stmin
k , stmax

k ]. The interval of the

task cannot be increased but it may decreased based on the results of the other

task. If the task tk will postponed then the earliest starting time of the task stmin
k

parameter would be increased. So by increasing the starting time of this task,

another task cannot start as late, stmax
l would be decreased.

Check Postpone conditions: The postpone condition is used to decide

whether to insert the idle time or not. The first task in the ready queue is

represented by tk, and the first task in the critical queue is represented by tl. The

task in the ready queue must be postponed to later by satisfying the following

three conditions.

1. (stmin
k + ek) > stmax

l

2. tk 6= tl

3. stmin
l ≤stmax

l

The condition 1 says that, executing the task tkearlier than the task tl. Then

the execution of the task tl is not possible.

The condition 2 says that the task in the ready queue and the task in the ready

queue were two different tasks.

The condition 3 says that the task in the critical queue tl has not misses its

deadline before.

If any of the above conditions fails then the task in the ready queue will dispatch

to the corresponding virtual machine. The task in the ready queue will postponed

to later by satisfying the above conditions.

The postponing of a task, it means stmin
k = stmin

l + el updated the earliest

starting time of the task. The postponed task will comes for execution by using
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the trigger. This procedure will repeat for the every first task in the critical

queue by holding the first condition. In the worst case the critical queue required

n updations.

Objective of this thesis is maximizes Absolute Profit, minimizes the Absolute

Penalty, and maximizes through of scheduling.

1. Absolute Profit:

Absolute profit is defined as sum of profit of all tasks completed in deadline.

In our proposed algorithm will get more profit compared to the EDF. Our

objective is to maximize the Absolute profit.

Absolute Profit = Σ tk.profit ∀ stmin
k + ek ≤ dk

2. Absolute Penalty:

Absolute penalty is defined as sum of penalty of all tasks misses their dead-

line. In our proposed algorithm attains less penalty compared to the EDF.

Our objective is to minimize the Absolute penalty.

Absolute Penalty = Σ tk.penalty ∀ stmin
k + ek > dk

3. Throughput:

Throughput calculates the number of tasks completed from the arrived set

of tasks in the ready queue. So we should maximize this this throughput.

Throughput = count(tasks) ∈ stmin
k + ek ≤ dk

3.3 Scheduling Algorithms

3.3.1 Algorithms Pseudo Code

This section having discussion of the two algorithms EDF, and proposed algo-

rithm

Here Inputs are T:Set of n Tasks, H:Set of m active Hosts, Vi:Set of VMs on

Host Hi
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Output is Executed Task Set ETSi,j Having tasks, which are successfully meet

their deadlines on VM j on Host i

Algorithm 1 EDF

Input: T, H, Vi:Set of VMs on Host Hi

Output: ETS:Successfully Executed Task set

1: MAX=max{dk,∀tkεT}

2: for i←1 to MAX do

3: RQ is empty set //Ready Queue

4: update RQ with new arrive task, and not assign task which is already

arrived

5: Sort RQ as Ascending order of Dead line of Tasks

6: if Task on kth host, lth VM complete execution then

7: ETS={ETS}
⋃
{successful completed task}

8: Free VMk,l

9: end if

10: if Task on kth host, lth VM reach dead line then

11: Free VMk,l

12: end if

13: for m← each task in RQ do

14: if kth host, lth VM is free then

15: Assign Task RQm to kth host, lth VM

16: end if

17: end for

18: end for

In algorithm3.3.1.1 it the scheduling of algorithm in EDF algorithm, which is

the existing one. In EDF algorithm the tasks are schedule based on the dead

line. In arrived tasks, the tasks which is less dealine time is schedule first. For

that sorting of ready queue is done in the ascending order. After that check for

availability of the free VM than task with nearest deadline is assign to VM.
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Algorithm 2 Proposed Algorithm

Input: T, H, Vi:Set of VMs on Host Hi

Output: ETS:Successfully Executed Task set

1: MAX=max{dk,∀tkεT}

2: Critical Queue CQ is formed based on ascending order of task’s stmax
k values

3: for i←1 to MAX do

4: RQ is empty set //Ready Queue

5: update RQ with new arrive task, and not assign task which is already

arrived

6: Sort RQ as Ascending order of Dead line of Tasks

7: if Task on kth host, lth VM complete execution then

8: ETS={ETS}
⋃
{successful completed task}

9: Free VMk,l

10: end if

11: if Task on kth host, lth VM reach dead line then

12: Free VMk,l

13: end if

14: t ← first task in CQ

15: for m← each task in RQ do

16: if stmin
m + em > stmin

t and m 6= t and stmin
t ≤ stmax

t then

17: stmin
m ← stmin

t +et

18: else

19: remove m task from CQ and update CQ

20: if kth host, lth VM is free then

21: Assign Task RQm to kth host, lth VM

22: end if

23: end if

24: end for

25: end for
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The algorithm3.3.1.2 will maintain two queues namely ready queue and critical

queue. From step 14 to step 21 refers the code above incorporated over EDF

algorithm in order to improve the performance. In EDF it wont care about the

future tasks. If the task will completes its execution has to be removed from

the ready queue and critical queue. If the postpone conditions are not satisfied

then the task in the ready queue will be dispatched for execution. Task will be

postponed to future time by satisfying the postpone conditions.

3.3.2 Time complexity of Two Algorithms

Assume dmax be the maximum dead line of all dead lines of task set T ,n be

the number of active available host,m be the maximum possible VMs in any

host,finally p be the maximum number of tasks that can be present in Ready

Queue in time span between 1 to dmax.

Now time complexity of algorithm is dmax × (p log(p) + p× n×m+ n×m)

where dmax is the time span of scheduling, it is multiply by three parts, in that

p log(p) + p is multiplied because sorting of ready queue ,here maximum possible

task at any time is p, multiplication with p × n × m is done because assign of

tasks in ready queue to host’s VM, multiplication with n × m is done because

free the VMs in each host after complete the execution of task.

Now finally we get

dmax × (p log(p) + p× n×m+ n×m) = O(dmax × p× n×m)

So time complexity of the two algorithms is O(dmax × p× n×m)

3.4 Simulation Results

In this section, we present the scheduling model simulation and results.
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3.4.1 Scheduling Model

For simulating our proposed algorithms, MATLAB R2009a is used over scheduling

model diagram is shown below.

Figure 3.1: Scheduling model

In fig3.1, it is shown the scheduling model of simulation. The scheduling model

having two type of queues ready queue and critical queue. It is having scheduler

which make decisions centrally as which host, which VM is assign to task in

ready queue. The assign task in migrated to host and VM. The task executed

successfully on VM than it will be accepted else task will be rejected.

3.4.2 Simulation Assumptions and Performance Parame-

ters

Assumptions of Task, Host ,VM parameters in the simulation model

Task

1. Number of Task in sequence {2,4,6,...,40}.

2. Arrival Time of Tasks in Range(CC) [1,25].

3. Execution time of Tasks in Range (1,75].
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4. Dead line of Tasks in Range(CC) (1,125].

5. All are Randomly Generated in mention Range.

Host and VMs

1. Number of Hosts are 2.

2. Number of VMs in each Host 3.

4. All are Randomly Generated in mention Range.

Performance parameters used in this simulation are

1. Absolute Profit.

2. Absolute Penalty.

3. Throughput.

Here Absolute Profit, Absolute Penalty, Throughput is calculated by varying

number of task by taking Host and VMs as fixed in number.

3.4.3 Simulation Results

In Simulation Results Graph is drawn between sets {Absolute Profit, Absolute

Penalty, Throughput}, {Number of Tasks}, so totally three graphs are shown.

After that explanation of that graphs is done.

The fig3.2 is plotted between Absolute Profit and Number of Tasks. Absolute

profit is defined as the sum of profits of all tasks completes their execution in

deadline. As the number of tasks increasing the number of tasks misses their

deadline in the EDF. But in our proposed algorithm less number of tasks misses

their deadline compared to the EDF. The result shows that our proposed algo-

rithm maximizes the profit of 25% over the EDF.

To depict the penalty, Fig3.3 shows the variation between the number of tasks

and the Absolute penalty. Absolute penalty is the number of tasks misses their

deadline. The result shows that our proposed algorithm minimizes the penalty

of 20% over the EDF.

The fig3.4 is plotted between Throughput and Number of Tasks. Throughput cal-

culates the number of tasks completed from the arrived set of tasks in the ready
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Figure 3.2: Absolute Profit Vs Number of Tasks

Figure 3.3: Absolute Penalty Vs Number of Tasks
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Figure 3.4: Throughput Vs Number of Tasks

queue. The result shows that our proposed algorithm maximizes the throughput

of 25% over the EDF.

3.5 Conclusion

In this chapter we have seen that task are scheduled by EDF and proposed algo-

rithm. By simulation results it is shown that the proposed algorithm maximizes

the profit and throughput of 25% over EDF algorithm. We have designed a task

scheduling model In this chapter, which is simulated for real time cloud comput-

ing systems.
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Thesis Conclusion and Future Work

The scheduling algorithms for cloud computing system is an challenging prob-

lem in recent years. Fault tolerant scheduling algorithm is needed in order to

provide the dependable solution for the cloud. The completion of task in the real

time cloud with in the deadline is concluded in my thesis. Although , a cloud

may suffer from various kinds of faults, we have provided the solution for timed

value fault. Our proposed algorithm maximizes the profit of 25%, minimizes the

penalty of 20%, maximizes the throughput of 25% over the EDF.

In the future work we will specify a scheduling algorithm by using the fault

tolerance techniques like checkpoint and VM migration. The fault may occur

either in the task or in the machine. If the task is faulty then it will starts it’s

execution from the checkpoint not from the beginning. If the machine is faulty

either the copy of the task or the original task will migrate to another machine.

By using these fault tolerance techniques we can avoid the faults in the future.
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