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Abstract

This paper presents a Performance Analysis of CUDA and OpenCL. Three

different cryptographic algorithms, i.e. DES, MD5, and SHA-1 have been selected

as the benchmarks for extensive analysis of the performance gaps between the two.

Our results show that, on the average scenario, CUDA performs 27% better than

OpenCL while in the best case scenario it takes over OpenCL by 30%.We also infer

that CUDA is more stable and completely masks the access latencies to the shared

memory due to the contention of 16 read ports. As far as the optimal number

of threads per block goes, 256 threads per block is the most performant choice,

proving that the CUDA architecture is able to deal with an increased pressure on

the register file without problems as CUDA scores 4.5times over OpenCL in terms

of stability.

Keywords: Performance Analysis, DES, MD5, SHA-1, CUDA, OpenCL
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Chapter 1

Introduction

The rapid development of computing ability on consumer grade hardware, espe-

cially in the area of using Graphics Processing Units (GPUs) for general purpose

computing using OpenCL, CUDA has rendered today’s enthusiast PC at or near

the level of the super computers of the late 90s.Parallel computing platforms and

programming models like OpenCL and CUDA have the advantage to provide an

application a bypass to a graphics processing unit which can be used for non-

graphical computing. A graphics processing unit (GPU), is a particular electronic

circuit intended to briskly control and adjust memory to speed up the formation

of pictures in a frame buffer. Scholarly scientists have researched naturally gath-

ering these projects into application-particular processors running on FPGAs and

business FPGA sellers are creating apparatuses to make an interpretation of these

to keep running on their FPGA gadgets [11].

As, more and more multi-core processors are taking over sequential ones, in-

creasing parallelism, rather than increasing clock rate, has become the chief appli-

ance for growth of performance [12] . Developers and scientists are really turning

out to be progressively intrigued by saddling this power for universally useful regis-

tering, an exertion referred to all in all as GPGPU (for General-Purpose computing

on the GPU) [13].

Owing to this tremendous performance prospective, GPU programming mod-

els have transformed from high-level languages such as HLSL [14],Cg [15],and

GLSL [16] to recent programming languages, which has successively increased

programmers load and thus enhanced GPUs acceptance. The launch of CUDA

1



Introduction

(Compute Unified Device Architecture) by NVIDIA in 2006 has diminished the

level of use of the graphical APIs for computational activities, resulting in wide-

spread use of GPU computing [9]. Similarly, a programming framework known

as APP (Advanced Parallel Processing) that is known to enable ATIs GPUs in

concurrence with the CPUs speeds up a number of requests [17]. These agendas

in terms have enabled the programmers to cultivate GPU computing application

without much knowledge on graphics.

Since, the method for application development varies from one programming

network to another inconvenience arises as the software development and its coun-

terparts have to be built again from the very beginning each time a new platform

is launched. This in turn gave rise to an Open Standard known as OpenCL(Open

Computing Language) overseen by the Khronos Group which allowed parallel pro-

grams to be executed across heterogenous stages giving programming designers

versatile and productive access to the force of diverse processing platform.

OpenCL gives a versatile dialect to GPU programming focusing on extremely

different parallel processing gadgets. Not at all like a CUDA portion, it possesses

a unique feature of being compiled at runtime. Despite what might be expected,

this in the nick of time arrange may permit the compiler to produce code which

would improve utilization of target GPU.CUDA can be utilized as a part of two

distinct ways, extensions furthermore by means of the driver API, which gives

low level control over the equipment and through runtime API that gives a C like

arrangement of runtimes. CUDA being produced by the same organization that

adds to the equipment it executes on is required to perform better coordinating

the processing attributes of the GPU. Considering these variables it is of most

extreme enthusiasm to contrast OpenCL’s execution with that of CUDA in genuine

applications. In this paper cryptographic algorithms are applied to investigate the

performance of CUDA and OpenCL. Comparison is carried out on NVIDIAs GPU,

since OpenCL is still immature and comparison against 5-yr old IBMSDK would

be clearly partial by intention. Moreover, on the multicore processor, there is

no model with comparable low-level granularity. In this way, the distinction in

2



1.1 Motivation Introduction

execution can be ascribed to the proficiency of relating programming structures

1.1 Motivation

With the advent of technology multi-core processors are dominating the sequen-

tial ones. This in a way has shifted the focus on increasing parallelism rather

clock-rate. The necessity of using the graphical APIs for computing applications

has been eliminated by the release of CUDA by NVIDIA in 2006.Likewise,other

programming models like APP came into existence allowing software engineers to

cultivate GPU computing applications without ardent knowledge graphical terms.

Since, these frameworks had their unique method of applications development, it

was quite inconvenient for software developers as they had to rebuilt everytime

a new platform was launched. This resulted in the development of OpenCL by

the Khronos group allowing parallel programming to be executed across heteroge-

neous platforms. Nevertheless, this raised the question of performance compromise

which is frequently the case with these type of common languages.

1.2 Objective

We emphasize on the performance comparison of CUDA and OpenCL by imple-

mentation of cryptographic algorithms as in our view this would be the most

relevant comparison. Firstly, since OpenCL is still immature on the Cell Broad-

band Engine and it would be quite unfair to compare it against the 4-yr old IBM

SDK. Secondly, both CUDA and OpenCL are inviting more and more attentive-

ness from prationers and researchers and in a way share core ideas in terms of

memory, platform, execution and programming models.

1.3 Thesis Contribution

1. A method has been proposed for performance analysis of CUDA and OpenCL.

2. Three different cryptographic algorithms, i.e. DES, MD5, and SHA-1 have

been selected as the benchmarks for extensive analysis of the performance

3



1.4 Thesis Organization Introduction

gaps between the two.

3. In order to analyze the performance of CUDA and OpenCL, a normalized

Performance Metric called as Performance Factor(PF) has been defined.

�

PF1Avg. =
Average ThroughputCUDA

Average ThroughputOpenCL

(1.1)

�

PF1Max. =
Maximum ThroughputCUDA

Maximum ThroughputOpenCL

(1.2)

�

PF2 =
Percentage Increase in Throughput−1

CUDA

Percentage Increase in Throughput−1
OpenCL

(1.3)

Where, PF1AV G ,PF1MAX ,and PF2 compare average performance,

peak performance and relative stability respectively.

1.4 Thesis Organization

� Chapter-2 In chapter 2, we have given a brief idea of GPU architecture and

an overview of OpenCL and CUDA and made a comparison between the

two. The Cryptographic algorithms which are implemented for performance

analysis are also discussed vividly.

� Chapter-3, In this chapter the Methodology and Experimental Setup adopted

for the analysis have been discussed.The parameters used in Performance

Metric have also been pondered through

� Chapter-4,This chapter deals with the implementation and analysis of the

pre-described algorithms in OpenCL and CUDA.Peak Performance, Average

Performance and Stability are taken into account for grading.

� Chapter-5, In this chapter,based on the results obtained we arrive at certain

conclusion.

4



Chapter 2

Literature Survey

2.1 GPU Architecture

GPUs a.k.a Graphical Processing Units are processors determined to diminish the

pressure on the CPU, when working on video graphics. Over the years, GPUs have

emerged as a vital component of computing platforms. GPUs can be perceived as

accelerators as well as co-processors. They do not essentially preclude the demand

for a CPU. Though CPUs primary job is to execute serial applications as fast as

possible but lately CPUs have evolved as multicore with an ability to achieve

multithreaded parallelism, the only backdrop being they are still optimised for

serial execution. On the part, GPUs are rather dedicated for the act of densely

threaded parallelism [2].

Recently, GPUs have evolved as a more general pur-pose computing element

from being just video and graphic accelerator referred to as General Purpose

Graphics Processing Units (GPGPUs) [8]. This course initiated with shader lan-

guages has lately transformed into an entire series of development tools to ease

general purpose GPU computing whose prime vendors being nVidia, AMD (for-

merly ATI) and Intel. GPUs being highly parallel, multithreaded programmable

devices with an ability to render real-time graphical applications have thousands

of cores with tremendous power capable of high precision floating point arithmetic

the very necessity of real-time video processing [18]. Graphics cards possessing

a very high memory bandwidth allow huge amounts of data to be transferred in

a single flow coupled with a large number of on chip registers which hold several

5



2.1 GPU Architecture Literature Survey

variable values while computation takes place [13].

GPU have an exponentially higher number of floating point operations per

second(FLOPS) as compared to a high end CPU which is crystal clear from the

fact that computation speed of a standard GPU is in few hundred gigaflops while

a high end CPU possesses few tens of gigaflops. GPUs proficiency in performing

compute intensive highly parallel tasks can attributed as the very reason for such

high computation speed .The GPUs are extensively being used for parallel appli-

cations i.e. applications where the problem is divided into number of parallel tasks

especially when the arithmetic operations exceed memory operations. Dataflow

between processors is reduced since the same program is completed on dierent

processing elements on dierent data sets. As a result, memory latency remains

hidden under the heavy calculations that take place inside the processors . Ap-

plications where usage of large data sets is high priority benefit from employing

parallel programming model [1].

2.1.1 GPU Processing Elements

Figure 2.1: Diagram of multiprocessors in GPU [1]

The GPUs bear a few Streaming Processing Clusters (SPC). All SPCs comprise

numerous streaming multiprocessors (SM), each one of which contains streaming

processors (otherwise called cores) that impart admission to local memory. Each

6



2.2 OpenCL Overview Literature Survey

core contains an intertwined multiply-adder for single exactness number-crunching

[2].

2.1.2 GPU Memory Organization

Every multiprocessor has a 16KB region of shared memory space with short access

times. The reason for shared memory is to go about as a methods for quick

correspondence between threads. Be that as it may, because of its speed, it can

likewise be utilized as a software engineer controlled memory cache.

GPUs have DRAM (Dynamic Random Access Memory).DRAM are available

at moderately 150x inactivity in correlation to shared memory. This memory

is consistently divided into four regions: local memory, global memory, constant

memory and texture memory. Global memory is steady between GPU calls as it is

quite convenient to all threads.It dwells o chip from the multiprocessors, bringing

about 100x access time contrasted with shared memory. Local memory, particular

to individual threads can likewise be utilized as a substitute in case the compiler

is inadequate to force in sought information into the gadget’s registers. Texture

memory being read-only is availed with texture cache for texture manipulation.

It is beneficial than global memory since the memory peruses don’t oblige an

access pattern to get better execution and computations are done outside the

kernel. Constant memory is additionally a read-only part which likewise has a

small cache of 8K.

Toward the end, host memory (framework’s primary memory) is open at a slant

and relatively slower to the GPU. Host memory space is convenient just to the

GPU when duplicated over the PCI-Express (Peripheral Component Interconnect

Express) bus to the GPU’s device memory.

2.2 OpenCL Overview

OpenCL is an open standard focused to give programming designers a standard

structure for simple access to different heterogeneous preparing stages that in-

clude exceptionally parallel GPUs, CPUs and different sorts of processors. The

7



2.2 OpenCL Overview Literature Survey

Figure 2.2: GPU Memory Hierarchy [2]

OpenCL standard specifies a programming standard taking into account C and

an arrangement of API. The details about the OpenCL structure can be found in

the OpenCL specifi- cation [19]. The OpenCL structure can be best depicted by

the four models

1. Platform Model

2. Execution Model

3. Memory Model

4. Programming Model

2.2.1 Platform Model

The OpenCL platform model as given in Figure 2.3 comprises of a host which is

typically a CPU associated with one or more OpenCL Compute Devices which

can be a CPU or a GPU. A Compute Device is a mix of Compute Units, which

are further isolated into Processing Elements, which arries out the real processing.

8



2.2 OpenCL Overview Literature Survey

Figure 2.3: OpenCL Platform Model [3]

2.2.2 Execution Model

The execution of an OpenCL system can be isolated in two sections: the device

code which runs on one or more Compute Devices and the host code which runs

on the host gadget. Kernels and memory objects are overseen by the host part

under a connection through command queue

1. Context:

The context constitutes of every last one of pieces important to utilize a

gadget for processing reason. By utilizing the OpenCL API, the host part

of the code makes a context object and subsequently different objects under

it, i.e. program object, kernel object, command queues object, and memory

objects.

2. Kernel:

The calculation that is executed on the processing elements is spoken to by

kernel. A case to illuminate the kernel idea is described. Accepting there

is a number cluster, i.e. an integer array of size 100 and the objective is to

add every integer by a constant. Kernel for this issue would just speak to

represent addition of one integer number by the constant , instantiating the

kernel 100 times to tackle the complete issue. In any case, out of thought

9
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for processor use and memory access, it is conceivable to add two integers

in the same kernel. In the event that that is the situation, the kernel would

be instantiated fifty times to tackle the complete issue.

3. Work Items and Work Groups:

Kernel execution on a gadget is characterized by a list space, called NDRange.

A NDRange is a N-dimensional list space, where N can fluctuate from one

to three. The kernel instance is known as a work-item. All the work-items

concentrate on the same piece of code. In any case, they as a rule take a shot

at distinctive information and there may be dissimilarity in their execution

way through the code. Every work-item is allocated a global ID which is

novel all through the indexed space.

Figure 2.4: OpenCL Execution Model [4]

The equivalent number of work-items are assembled together to frame a

work-group. All the work-groups have same measurements. The work-item

inside a work-group has a nearby ID that is exceptional over the work-group,

furthermore has entry to shared local memory. It is important to note here

that with fitting gadget bolster, the aggregate number of work-items may be

much more prominent than the quantity of handling components show in a

gadget.

10



2.2 OpenCL Overview Literature Survey

4. System and Memory Object:

The program object constitutes of the source code and the binary imple-

mentation of the kernels. The binary implementation can be generated from

the source code during application execution or a pre-compiled binary can

be loaded to create the program object. A program object is a library for

kernels because one program object may contain multiple kernels. Decides

of which kernel to execute during execution is done by application during

runtime.

The host creates memory objects, and through the OpenCL API, memory

is allocated on the device for the memory objects. The memory model is

described in detail in the next section.

5. Command Queue:

The command queue is connected with every gadget in the connection, and

memory exchange and kernel execution are facilitated utilizing it. There

are three sorts of commands which can be issued. Memory orders are gen-

erally used to exchange memory between the host and the gadget. Kernel

commands are utilized to begin the execution of kernels on the gadget. Syn-

chronization commands are utilized to control the execution requests.

When the commands have been booked on the queue, there are two con-

ceivable methods of execution. First one defined as in-order where current

command can start execution only if previous command has finished its part.

The other alternative being out-of-order execution. Here, commands don’t

sit tight for beforehand lined commands to complete execution.

2.2.3 Memory Model

The memory model utilized inside a Compute Device is demonstrated in Figure

2.2.3. The execution model discussed in 2.2.2 is plotted in this model. The

mapping of work-group happens onto a Compute Unit, while a work-item executes

on a PE (Processing Element). Work-items executing a piece have admittance to

11
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different locales of memory. Global memory gives authorization of read/write

access to all work-items of each work-group.

Moreover, work-items belonging to the same work-group have access to the lo-

cal memory. Contingent upon the gadget capability, local memory can be mapped

onto the dedicated memory locales of the gadget or onto the segments of the global

memory.

Figure 2.5: OpenCL Memory Model [3]

2.2.4 Programming Model

Under the OpenCL programming model, calculation can be performed in task

parallel, data parallel, or a crossover of these two models. The real center of the

OpenCL programming model is the data parallel model, where every work-item

chips away at an information thing actualizing SIMD.

The task parallel model can be acknowledged by enqueing various kernel ex-

ecution, where one and only work-item is made for every part. Despite the fact

that a couple GPUs give backing to this model, this is profoundly wasteful model

for the GPUs.

A hybrid model is conceivable where various bits each with numerous work-

items are enqueued for execution in the meantime.

1. Execution Flow in an OpenCL Application:

12
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The OpenCL application stream is indicated in Figure 2.2.4. The stream is

separated into two areas. A context is made by platform layer taking into

account accessible platforms, and the runtime layer makes all other vital

items expected to execute the piece.

2. Platform Layer:

In an OpenCL application, at first an inquiry is made for accessible OpenCL

plat-forms. Once the accessible platform rundown is gathered, the applica-

tion picks the one with the compatible device type and a context is made.

The conceivable gadget sorts allowable in the OpenCL specification are cl

device type gpu, cl device type cpu, and cl device type accelerator. The

craved number of gadgets from the accessible gadgets is included by the set-

ting. The gadgets are made selective to the setting once added to a context

until they are expressly discharged from the context.

3. Runtime Layer:

The depiction of errands thought to be a piece of the run-time layer is given

beneath. Host and the gadgets impart one another utilizing the commands.

A command queue is made for every gadget under the connection to is-

sue commands. A discretionary OpenCL object can be made, at whatever

point an order is issued. These event objects can be utilized for explicit

synchronization and permit the application to check for the finishing of the

command. To distribute memory on the gadgets, memory objects are made.

The application sets the authorization to read/write with these memory

objects from the host when they are made. By either stacking the source

code or by the twofold usage of one or more kernels, projects objects are

made. The binary representation can be middle of the road representation

or the gadget specific executable. The program objects are then fabricated

to create the gadget specific executable. The OpenCL usage chooses of the

move to be made in the manufacture stage depending on whether source

code, transitional representation, or an executable was utilized to make the
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system object.

The arrangement of the output is not under the OpenCL specification, and

the OpenCL execution chooses an organization of accommodation. The

kernel object is made once the executable is assembled in the program object.

One of the capacities actualized in the project item is spoken to by the kernel

object.

The information is exchanged to the gadget memory by issuing memory

duplicate commands against the associated memory objects before executing

the kernel. The memory exchange can either be blocking where once the

memory exchange is finished, the control is come back to the application

or non-blocking where control is returned after the memory exchange is

booked. The occasions are utilized for synchronization for a non-blocking

exchange. The estimations of the kernel arguments are situated once the

information is exchanged and the kernel through the command queue is

planned for execution. The output memory is exchanged to the host from

the gadget once the portion execution is finished. We can have an iterative

methodology where the same portion is planned to run once more. New data

information can be exchanged to the gadget, and after kernel execution new

output information can be exchanged back to the host.

2.3 CUDA Overview

Compute Unified Device Architecture, or CUDA, is NVIDIAs programming model

and parallel configuring stage. It is a full processing stage with an equipment

structural planning specification, which is upheld by expanded variants of pro-

gramming dialects. The CUDA equipment is in view of the innovation of GPU.

The GPU, or graphical processing unit, was authored by NVIDIA in 2000 [8].

During this period, VGA controllers were progressing to bolster quickening of 2D-

and 3D-illustrations, and the GPU presented an incorporated preparing unit that

upheld that of a conventional top of the line workstation representation pipeline,

subsequently there was a requirement for a term. From that point forward, GPUs
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have relentlessly ended up more broad, supplanting function rationale with pro-

grammable usefulness [18]. The first employments of GPUs for universally useful

registering (GPGPU) were acquired by misusing design programming APIs , for

example, the open source OpenGL and Microsofts DirectX libraries. This was

made conceivable by the distinct behavior of the APIs. The disservice was that

the client expected to have private information of the APIs and the capacity to

express projects regarding representation.

To tackle the issues related to GPGPU programming, NVIDIA introduced the

unified gadget building design, discharged CUDA C, a variant of standard C with

the expansions to bolster GPU programming. The first proficient gadget of CUDA,

speaking to CUDA capability v1.0 was the G80 structural planning, which was

first discharged in 2006. From that point forward new CUDA-based architectures

have included highlights bringing about upgrades of the ability specification of

CUDA, trailed by backing in CUDA C.

2.3.1 CUDA Programming Model

The programming model given by CUDA has permitted engineers to utilize the

force of the versatile parallel processors without breaking a sweat, empowering

them to accomplish velocity ups of a few times on an assortment of uses. Since

the arrival of CUDA by NVIDIA in 2007, a great deal of versatile parallel projects

were quickly developed for an expansive scope of uses, including sorting, network

solvers, looking, material science models and computational science.

CUDA gives some effortlessly comprehended deliberations that permit the pro-

grammer to concentrate on the efficiency of the algorithm and create versatile

parallel applications by outflow of parallelism expressly. It gives three key ab-

stractions which is a chain of importance of thread groups, shared memory, and

synchronization which give an unmistakable structure to the routine C for one

string of the pecking order. The reflections direct the developer to break the issue

into coarse sub-issues that can be unraveled freely in parallel, and afterward into

subsequent pieces that can be understood in parallel helpfully. The programming

model scales to substantial quantities of processor centers straightforwardly: an
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accumulated CUDA project can execute on any number of processors, and physical

processor tally needs to be known by run time environment [20] [19].

As was clarified some time recently, CUDA can likewise bolster heterogeneous

computation. The serial piece of the applications is run on the CPU, and par-

allel bits are loaded to the GPU. The CPU and GPU are dealt with as discrete

gadgets which have their own memory spaces. This configuration likewise permits

synchronous and covered calculation on both the CPU and GPU without contro-

versy for memory assets. The irreplaceable piece of the code for CUDA is the

kernel program. which works on the whole stream of information. The setting of

a CUDA piece is basically a C code for one thread of the pecking order, however

execution is in parallel over an arrangement of parallel threads. These strings are

masterminded into a progression of a matrix of thread blocks. A network is a

situated of thread blocks that can be autonomously transformed on the gadget

by planning blocks for execution on the MP and accordingly, they may execute in

parallel and threads of a block can just get to the shared memory. The execution

of thread block happens as littler gatherings of threads known as ”warps”. Thus,

individual threads that form a warp begin together at the same system address

yet they are allowed to execute and branch autonomously.

CUDA backings thread blocks can contains up to 512 threads. The thread

blocks may have one, two, or three measurements, got to through .x, .y, and .z

fields. Parallelism is expressly dictated by indicating the measurements of a lattice

and its thread blocks while propelling a kernel. Every kernel dispatch makes a

framework of obstructs that allocates one thread to every component of the vectors

and conveyance of the threads over the pieces happens. Every thread registers

a component list from its thread and block IDs, and the fancied estimation on

the comparing vector components is performed. The representation of CUDA

programming model as given in [4] is spoken to in Figure 2.7.

CUDA code is by and large straightforward and direct to compose than com-

posing parallel code for vector operations. In any case, while creating CUDA

code, it is vital to comprehend the routes in which the CUDA model is limited,
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to a great extent for the reasons of productivity. The summon of kernel in CUDA

Figure 2.6: Representation of CUDA programming Model [4]

is asynchronous, so the driver will return control to the application when it has

propelled the kernel. At the same time, for case, CUDA capacities which perform

memory duplicates are synchronous, and they certainly sit tight for all portions

to finish.

CUDA code is by and large basic and clear to compose than composing parallel

code for vector operations. Anyway, while creating CUDA programs, it is impor-

tant to comprehend the routes in which the CUDA model is limited, generally for

the reasons of effectiveness. The summon of portion in CUDA is asynchronous,

so the driver will return control to the application when it has propelled the ker-

nel. At the same time, for example, CUDA capacities which perform memory

duplicates are synchronous, and they certainly sit tight for all kernels to finish.

Amid the thread execution, individual threads have admittance to information

that settle in diverse memory spaces as given by Figure 2.8. Every thread has

admittance to a local memory. Every thread block has an imparted memory to

which all threads of the block have entry. Besides, all threads of different blocks

can get to same global memory. The texture and constant memory spaces are the

two other read-only memory spaces open by all threads: as given in Figure 2.8.
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Figure 2.7: Representation of CUDA Threads Blocks mapped on CUDA Memory
[4]

2.4 Similarities of CUDA and OpenCL

OpenCL and CUDA share a range of common ideas. They have similar memory,

platform, execution and programming models [9] [10]. Table 2.1. describes the

necessary details.

Table 2.1: A Comparison of General Terms [9] [10]

CUDA terminology OpenCL terminology
Global Memory Global Memory
Constant Memory Constant Memory
Shared Memory Local Memory
Local Memory Private Memory
Thread Work-item
Thread-block Work-group

2.5 DES Overview

There are two fundamental sorts of cryptography being used today - symmetric

cryptography and asymmetric cryptography. Symmetric key cryptography is the

most seasoned sort, though asymmetry cryptography is just being utilized openly

since the late 1970’s. Asymmetric cryptography was a real turning point in the
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quest for an immaculate encryption plan. Secret key cryptography does a reversal

to at any rate Egyptian times and is of concern here. It includes the utilization

of stand-out key which is utilized for both encryption and decryption (henceforth

the utilization of the term symmetric). It is essential for security purposes that

the secret key never be uncovered.

To finish encryption, most secret key calculations utilize two principle systems

substitution and permutation. Substitution is essentially a matching replacement

while permutation is a regrouping of the bit positions for each of the inputs. These

methods are used various times as a part of emphases called rounds. Decoding

becomes computationally infeasible without the secret key as non-linearity is ad-

ditionally brought into the encryption. This is attained to with the utilization of

S-boxes. One of the primary issues with secret key cryptography is key appro-

priation. For this manifestation of cryptography to work, both sides must have

a duplicate of the mystery key. This would need to be imparted over some safe

channel which, shockingly, is not that simple to accomplish [21].

2.5.1 Inner Workings of DES

DES (and a large portion of the other major symmetric figures) is taking into

account a figure known as the Feistel block cipher. This was a piece figure grew

by the IBM cryptography specialist Horst Feistel in the mid 70’s. It comprises of

various rounds where each round contains bit-rearranging, non-direct substitutions

(S-boxes) and selective OR operations. Most symmetric encryption plots today

are taking into account this structure (known as a feistel network) [22].

Similarly as with most encryption plans, DES expects two inputs - the plaintext

which is to be encrypted and the secret key. The way in which the plaintext is

acknowledged, and the key course of action utilized for encryption and decryption,

both focus the kind of figure it is. DES is accordingly a symmetric, 64 bit block

cipher as it uses the same key for both encryption and decryption and just works

on 64 bit keys of information at a time (be they plaintext or ciphertext). The key

size utilized is 56 bits, however a 64 bit (or eight-byte) key is the actual input.

The minimum noteworthy bit of every byte is either utilized for equality (odd for
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DES) or set subjectively and does not build the security at all. All blocks are

numbered from left to right which makes the eight bit of every byte the equality

bit [21].

When a plaintext message is gotten to be encrypted, it is masterminded into

64 bit pieces needed for data. On the off chance that the quantity of bits in the

message is not equally distinguishable by 64, then the last block will be padded.

Various permutations and substitutions are incorporated all through so as to build

the trouble of performing a cryptanalysis on the figure. Notwithstanding, it is by

and large acknowledged that the beginning and last changes offer next to zero

commitment to the security of DES and truth be told some product implementa-

tions preclude them (albeit entirely talking these are not DES as they don’t hold

fast to this standard)

2.5.2 Overall structure

The succession of occasions have been demonstrated that happen amid an encryp-

tion operation in Figure 2.9.A permutation is performed by DES on the whole 64

bit piece of information. It is then parted into two 32 bit sub-blocks, known as Li

and Ri which are subsequently forwarded to 16 rounds (see figure 2.3), where the

subscript i in Li and Ri demonstrates the present round. The rounds are indistin-

guishable and the impacts of expanding their number is twofold - the algorithm

fleeting effectiveness is diminished and its security is expanded. For DES 16 is

piked so that the disposal of any connection between the ciphertext and either the

plaintext or key is ensured. Toward the end of the 16th round the pre-output is

obtained by swapping the 32 bit Li and Ri .Clearly the final permutation gives us

the desired 64 bit ciphertext. As deduced from the figure the three basic phrases

are as:

1. Initial Permutation (IP - characterized in table 2.1) where the bits are rear-

ranged in order to frame the ”permuted data”.

2. This is followed by 16 iterations of permutation and substitution. The Last

iteration gives a 64 bit output which is a function of plain text and Key.
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Figure 2.8: Flow Diagram of DES algorithm for encrypting data [5].

Then the right and left halves are exchanged to produce the pre- Output.

3. As, the pre-output is gone through a stage which is essentially the converse

of the introductory change IP. The yield of IP−1 is the 64-bit cipher.

2.6 HASH Algorithm Overview

A cryptographic hash function has the very advantage of being practically impos-

sible to recreate the input data from its hash value. It is frequently referred to as

”the pillars of modern cryptography”. The input data is referred as the message,

while the hash value the message digest. The idyllic cryptographic hash function

has the following properties:

1. The hash value for any message can be easily computed.

2. It is infeasible to generate a message from its hash.

3. It is infeasible to modify a message without changing the hash.
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4. It is infeasible to find two different messages with the same hash.

MD5 measures data integrity by the assistance of 128 bit message. Professor

Ronald L. Rivest of MIT is the father of this algorithm [23]. The calculation

being best suited for 32 bit and 16 bit machines can be stretched out to 64 bit

machines. MD5 is a bit slower than MD4 algorithm as MD5 contains four rounds

as compared to three by MD4.MD5 being one way hash function arrangements

with security highlights. As the dependency on web increases it has become a

necessity to ensure that a legitimate record has been download from distributed

(P2P) servers/system. The SHA Algorithm is a cryptography hash function which

is better utilized as a part of data integrity and digital certificate. SHA is a unique

mark that demonstrates its development by N.I.S.T. as a U.S. Federal Information

Processing Standard (FIPS) [7].

2.6.1 MD5 Overview

1. Pad up bits and Append Length:

The message is padded up with zeroes and ones so that the final bit length

is equal to 448 mod 512.It is also ensured that the last bit length of the

message is 512N for an integer N.

2. Divide the input into 512-bit blocks:

The message obtained from Step 1 is divided into N progressive 512-bit

blocks m1, m2...........mn.

3. Initialize Chaining variable:

Chaining variables (A,B,C,D) each being of 32 bit size are initialized

A = 01 17 2d 43

B = 89 AB CD EF

C = FE DC BA 98

D = 76 54 32 10
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4. Process blocks:

A, B, C and D are combined with the input words, utilizing the functions

W, X, Y and Z. 16 fundamental operations are iterated via 4 rounds. By

utilizing The Message word M[i] and constant K[i ] the Processing block P

is connected to the four supports (A, B, C and D). Q,W,E,R are the four

sort of IRF(Info Related Functions) that apply the sensible administrators

,v, ! taking three 32-bit words as input and producing same bits of output

i.e. 32-bit word.

Q (A, S, D) = AS v not (A) F

W (A, S, D) = AS v S not (F)

E (A, S, D) = A xor S xor F

R (A, S, D) = S xor (A v not (F))

The functions A, S and D = P, as they do work in ”bitwise parallel” to

deliver the solid yield from the bits of A, S and D.

5. Hashed Output:

4 rounds are performed in Message Digest 5 (MD5) .

Figure 2.9: One MD5 iteration [6].
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2.6.2 SHA-1 Overview

1. Pad up bits:

Padding is added at the ttermination of the message length so that it be-

comes a multiple of 512.

2. Append length:

The appending length is computed in this Step

3. Divide the Input into 512-blocks:

In this step the input is divided into 512 bit blocks.

4. Initialize chaining variables:

Chaining variables are initialized here.5 chaining variables of 32 bit each give

a total of 160.

5. Process Blocks:

� The chaining variables are copied

� The 512 blocks are divided into 16 sub blocks

� 4 rounds are processed of 20 stages each [6].

Figure 2.10: One SHA-1 iteration [7].
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2.6.3 Parameters Used for MD5 and SHA-1 Algorithm

Parameters for MD5

Default Parameters

a = b + ((a + Process P (b, c, d) + M[i] + t[k]) <<< s)

Where:

1. Process P denotes a non-linear operation.

2. a, b, c, d are Chaining variables.

3. M[i] denotes For M[q x 16 + i ], which is the ith 32-bit word in the qth

512-bit block of the message.

4. t[k] denotes a constant.

5. <<< s denotes circular-left shift by s bits [7].

Actual Parameters:

Block Size: 128 bits

Key Length: 64 bits, 128 bits, 256 bits , 512 bits

Cryptanalysis: Strong Resistance against Digital Certificate

Steps: 16

Rounds: 4

Parameters for SHA-1.

Default Parameters

a=abcde(e+process ps5(a) + W [t] + k[t]),a,s30(b), c, d

Where:

1. Process p denotes status of logical operations st =<<<

2. a, b, c, d, e denote chaining variables

3. W[t] denotes other 32 bits bytes derived

4. K[t] denotes 5 additives constants as defined in [35] [36].
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Actual Parameters.

Block Size: 160 bits

Key Length: 128 bits

Cryptanalysis: Strong Resistance against Digital Certificate.

Steps: 20

Rounds: 4

2.6.4 Comparison between MD5 and SHA

Table 2.2: Comparison between MD5 and SHA

Keys For Comparison MD5 SHA-1

Security
Less Secure than
SHA

High Secure than
MD5

Message Digest Length 128 Bits 160 Bits
Attacks required to find
out original Message

2128 bit operations
required to break

2160 bit operations
required to break

Attacks to try and find two
messages producing the same MD

264 bit operations
required to break

280 bit operations
required to break

Speed
Faster
only 64 iterations

Slower than MD5
Required 80 iterations

Successful
attacks so far

Attacks reported
to some extents

No such attack
report yet
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Chapter 3

Methodology and Experimental
Setup

In this section, the methodologies adopted in this paper are explained along with

the used benchmarks and experimental test beds.

3.1 Performance Factor

In order to examine the performance of OpenCL and CUDA, a normalized Per-

formance Metric titled Performance Factor(PF) has been defined.

�

PF1Avg. =
Average ThroughputCUDA

Average ThroughputOpenCL

(3.1)

�

PF1Max. =
Maximum ThroughputCUDA

Maximum ThroughputOpenCL

(3.2)

�

PF2 =
Percentage Increase in Throughput−1

CUDA

Percentage Increase in Throughput−1
OpenCL

(3.3)

Where, PF1Avg. ,PF1Max. ,and PF2 compare average performance, peak perfor-

mance and relative stability respectively.

If PF<1, then performance of CUDA is worse than its counterpart; otherwise,

CUDA gives better or same performance. In an instinctual way, if |PR−1| < 0.1,

it is assumed that CUDA and OpenCL have same performance.
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3.2 Selected Benchmarks

Table 3.1: Selected Benchmarks

CLASS PERFORMANCE,METRIC DESCRIPTION
Cryptography Mkeys/sec DES
Cryptography Mhashes/sec MD5
Cryptography Mhashes/sec SHA-1

The Benchmarks selected include algorithms frequently used in cryptographic

encryptions. Since, these algorithms include complex mathematical calculations

GPU performance analysis becomes feasible.

3.3 Experimental Testbeds

The measurements and results are carried out on real hardware on Microsoft Visual

Studio platform. Table 3.2,3.3,3.4 denote the hardware environment, software

environment and GPU configuration respectively.

Table 3.2: Hardware Environment

Operating Sysyem Windows
Processor Intel(R)Core(TM)i5-241@2.30GHz
Installed Memory(RAM) 4.00GB(3.90 usable)
System Type 64-bit Operating System
Graphics Card NVIDIA GeForce 525M Version 340.62

Table 3.3: Software Environment

Platform Microsoft Visual Studio 12.0

CUDA version
CUDA
6.5

OpenCL version
OpenCL
2.0

Language C
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Table 3.4: Specifiations of GPU GT525M

Architecture Fermi
Core 96
Processor Clock Tester(MHz) 1200 MHz
Memory Clock 900 MHz
Memory Interface DDR3
Memory Interface Width 128-bit
Memory Bandwidth(GB/sec) 28.8
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Chapter 4

Implementation and Results

4.1 Implementation

Implementation strategies are adopted in order to fully exploit the computational

power of GPU and to generate as many Mkeys/sec or Mhashes /sec as possible.

4.2 Strategy

Crpytanalysis is performed on DES, MD5 and SHA-1 by Brute force attack.Each

thread operates on the same pice of code but with a different key value.

Figure 4.1: Checking passwords in parallel [8]

Since the entire key space cannot be checked at one go as the maximum number

of threads per block can only be 1024 so the key space is divided into subsequent

blocks.
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4.2.1 DES(Data Encryption Standard)

The Data Encryption Standard is one of the most popular encryption algorithms,

standardized by NIST in 1977 and subsequently maintained as a FIPS security

primitive up to 2005.Table 4.1 gives insight into DES.

Table 4.1: DES General Detail

Designers IBM
First Published 1977
Derived From Lucifer
Successors Triple DES,G-DES,DES-X,LOKI8
Key sizes 56 bits(+8 parity bits)
Block sizes 64 bits
Structure Balanced Feistel network
Rounds 16

Brute Force Cryptanalysis is carried out on DES with given plaintext and given

ciphertext.Keys are varied through the key space and the generated ciphertext is

checked with the given one.Keys generate per second by varying threads per block

are noted down for efficient comparison.

Figure 4.2: Depicts Mkeys/sec generated by varying threads per block from 32 to
256 during implementation of DES in CUDA and OpenCL
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4.2.2 Message Digest Algorithm

It is a widely used cryptographic hash function producing 128bit(16 byte) hash

value. Typically expressed in text format as a 32 digit hexadecimal number, it is

used to verify data integrity. Table 4.2 depicts general description of MD5. Brute

Table 4.2: MD5 General Detail

Designers Ronald Rivest
First Published April 1992
Series MD2,MD4,MD5,MD6
Digest Size 128
Structure Merkel-Damgard Construction
Rounds 4

Force Cryptanalysis is carried out on MD5 with given MD5 hash.Each thread

processes a password and checks the generated MD5 hash against the given hash

for a match.Hashes generate per second by varying threads per block in CUDA

and OpenCL are noted down for comparison.

Figure 4.3: Depicts Mhashes/sec generated by varying threads per block from 32
to 256 during implementation of MD5 in CUDA and OpenCL

4.2.3 SHA-1 (Secure Hash Algorithm)

Secure Hash Algorithm is a family of cryptographic hash function published by

(NIST) as a US Federal Processing Standard(FIPS) including SHA-0,SHA-1 and
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SHA-2.SHA-1 hash function is computed with 32-bit word. Table VIII depicts

general description of SHA-1. Brute Force Cryptanalysis is carried out on SHA-1

Table 4.3: SHA-1 General Detail

Designers National Security Agency
First Published 1995
Series (SHA-0)SHA-1SHA-2,SHA-3
Digest Size 160
Structure Merkel-Damgard Construction
Rounds 80

by comparing the generated hash with the given SHA-1 hash. The graph below

denotes the results obtained.

Figure 4.4: Depicts Mhashes/sec generated by varying threads per block from 32
to 256 during implementation of SHA-1 in CUDA and OpenCL
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4.3 Results

4.3.1 Comparing Peak Performance

Calculate Performance Factor(Max) in DES Implementation

Maximum throughput by implementing DES in CUDA =78.11 Mkeys/sec.

(from Fig.4.1)

Maximum throughput by implementing DES in OpenCL =58.45 Mkeys/sec.

(from Fig.4.1)

PF1Max.(DES) = 78.11/58.45 = 1.33

Where PF1Max.(DES) denotes the Performance Factor generated by implemen-

tation of DES in CUDA and OpenCL taking into account the maximum achievable

throughput.

Calculate Performance Factor(Max) in MD5 Implementation

Maximum throughput by implementing MD5 in CUDA =2411 Mhashes/sec.

(from Fig.4.2)

Maximum throughput by implementing MD5 in OpenCL =1891 Mhashes/sec.

(from Fig.4.2)

PF1Max.(MD5) = 2411/1891 = 1.27

Where PF1Max.(MD5) denotes the Performance Factor generated by implemen-

tation of MD5 in CUDA and OpenCL taking into account the maximum achievable

throughput.

Calculate Performance Factor(Max) in SHA-1 Implementation

Maximum throughput by implementing SHA-1 in CUDA =343 Mhashes/sec.

(from Fig.4.3)

Maximum throughput by implementing SHA-1 in OpenCL =284 Mhashes/sec.

(from Fig.4.3)

PF1Max.(MD5)= 343/284=1.20

Where PF1Max.(SHA−1) denotes the Performance Factor generated by imple-

mentation of SHA-1 in CUDA and OpenCL taking into account the maximum

achievable throughput.

PF1Max. = (1.33+1.27+1.20)/3=1.26.
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Where PF1Max. denotes the effective performance factor taking into account

the maximum achievable throughput by implementation of pre-described algo-

rithms.Fig.4.4 depicts the comparative results obtained.

Figure 4.5: Comparing Peak Performance

4.3.2 Comparing Average Performance

Calculate Performance Factor(Avg.) in DES Implementation.

Average throughput by implementing DES in CUDA =73.44 Mkeys/sec. (from

Fig.4.1)

Average throughput by implementing DES in OpenCL =51.08 Mkeys/sec.

(from Fig.4.1)

PF1Avg.(DES)= 73.44/51.08=1.43

Where PF1Avg.(DES) denotes the Performance Factor generated by implemen-

tation of DES in CUDA and OpenCL taking into account the average achievable

throughput.

Calculate Performance Factor(Avg.) in MD5 Implementation

Average throughput by implementing MD5 in CUDA =2167.2 Mhashes/sec.

(from Fig.4.2)

Average throughput by implementing MD5 in OpenCL =1783.2 Mhashes/sec.

(from Fig.4.2)
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PF1Avg.(MD5)= 2167.2/1783.2=1.21

Where PF1Avg.(MD5) denotes the Performance Factor generated by implemen-

tation of MD5 in CUDA and OpenCL taking into account the average achievable

throughput.

Calculate Performance Factor(Avg.) in SHA-256 Implementation

Average throughput by implementing SHA-1 in CUDA =322 Mhashes/sec.

(from Fig.4.3)

Average throughput by implementing SHA-1 in OpenCL =272.2 Mhashes/sec.

(from Fig.4.3)

PF1Avg.(SHA−1)= 322/272.2=1.18

Where PF1Avg.(SHA−1) denotes the Performance Factor generated by imple-

mentation of SHA-256 in CUDA and OpenCL taking into account the average

achievable throughput.

PF1AV G. = (1.43+1.21+1.18)/3=1.27

Where PF1Avg. denotes the effective performance factor taking into account

the averaged achievable throughput by implementation of pre-described algo-

rithms.Fig.4.5 depicts the comparative results obtained.

Figure 4.6: Comparing Average Performance
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4.3.3 Comparing stability

Calculate performance factor (Stability) in DES Implementation.

Percentage Increase in throughput by varying threads per block from 64 to 256

by implementation of DES in CUDA=1.53. (from Fig. 4.1)

Percentage Increase in throughput by varying threads per block from 64 to 256

by implementation of DES in OpenCL=8.16. (from Fig. 4.1)

PF2(DES) = [1.53]−1/[8.16]−1 = 5.33

Where PF2(DES) denotes the Performance Factor generated by implementation

of DES in CUDA and OpenCL w.r.t stability.

Calculate performance factor (Stability) in MD5 Implementation

Percentage Increase in throughput by varying threads per block from 64 to 256

by implementation of MD5 in CUDA=0.33. (from Fig. 4.2)

Percentage Increase in throughput by varying threads per block from 64 to 256

by implementation of MD5 in OpenCL=1.19. (from Fig. 4.2)

PF2(MD5) = [0.33]−1/[1.19]−1 = 3.6

Where PF2(MD5) denotes the Performance Factor generated by implementation

of MD5 in CUDA and OpenCL w.r.t stability.

Calculate performance factor (Stability) in SHA-1 Implementation

Percentage Increase in throughput by varying threads per block from 64 to 256

by implementation of SHA-1 in CUDA=9.93. (from Fig. 4.3)

Perentage Increase in throughput by varying threads per block from 64 to 256

by implementation of SHA-1 in OpenCL=7.98. (from Fig. 4.3)

PF2(SHA−256) = [0.58]−1/[2.81]−1 = 4.84

Where PF2(SHA−256) denotes the Performance Factor generated by implemen-

tation of SHA-1 in CUDA and OpenCL w.r.t stability.

PF2 = (5.33+3.6+4.84)/3=4.59

Where PF2 is the effective Performance factor taking into account the achiev-

able stability by implementation of DES, MD5, and SHA-1. Fig. 4.6 depicts the

results so obtained.
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4.3 Results Implementation and Results

Figure 4.7: Comparing Stability
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Chapter 5

Conclusions

In this paper three different algorithms, i.e. DES, MD5 and SHA-1 have been

used to compare the performance of CUDA with NVIDIAs implementation of

OpenCL. In our tests, CUDA scored over OpenCL in terms of Peak Performance

and Average Performance respectively. This is deducible from the fact that, on

the average scenario, CUDA performs 27 percent better than OpenCL while in

the best case scenario it takes over OpenCL by 30 percent.

As far as the optimal number of threads per block goes, 256 threads per block

is the most performant choice, proving that the CUDA architecture is able to deal

with an increased pressure on the register file without problems as CUDA scores

4.5times over OpenCL in terms of stability.

Thus, CUDA seems to be a better choice for applications where achieving

as high a performance as possible is the main priority. Otherwise, the choice

between CUDA and OpenCL can be made by taking into account factors such as

prior familiarity with either system, or available development tools for the target

GPU hardware.
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