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Abstract

We are providing a concise introduction to some methods for solving non-linear optimization problems. In
mathematics, non-linear programming (NLP) is the process of solving an optimization problem defined
by a system of equalities and inequalities, collectively termed constraints, over a set of unknown real
variables, along with an objective function to be maximized or minimized, where some of the constraints
or the objective function are non-linear. It is the sub-field of mathematical optimization that deals with
problems that are not linear. This dissertation conducts its study on the theory that are necessary for
understanding and implementing the optimization and an investigation of the algorithms such as Wolfe’s
Algorithm, Dinkelbach’s Algorithm and etc. are available for solving a special class of the non-linear
programming problem, quadratic programming problem which is included in the course of study.

Optimization problems arise continuously in a wide range of fields such as Power System Control (see
[2]) and thus create the need for effective methods of solving them. We discuss the fundamental theory
necessary for the understanding of optimization problems, with particular programming problems and
the algorithms that solve such problems.
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Chapter 1

Introduction to Non-Linear
Programming

1.1 Definition of Non-Linear Programming

Definition 1.1.1. Let z be a real valued function of n variables define by

z = f(x1, . . . , xn).

Suppose d1, d2, . . . , dm be a set of constraints such that

gi(x1, x2, . . . , xn){≤,≥, or =} di

for all i = 1, 2, . . . ,m, where g′is are real value function of n variables x1, . . . , xn. Finally, assuming xj ≥ 0,
j = 1, . . . , n. If either f(x1, . . . , xn) or some gi(x1, . . . , xn), i = 1, . . . ,m or both are non-linear, then a
problem to find an optimal solution of z for n-type (x1, . . . , xn) variables and satisfies the constraints is
called as a general non-linear programming problem.

1.2 Convex Sets and Functions

Convex Sets

Definition 1.2.1. A set S ⊂ Rn is called a convex set if

x1,x2 ∈ S ⇒ λx1 + (1− λ)x2 ∈ S ∀ 0 ≤ λ ≤ 1 (1.1)

Example 1.2.1. The geometrical interpretation of (1.1) is depicted in figure 1.1. We see that S2 is a
convex set while the same not happens with S1.

Figure 1.1: Example of Convex Set

Theorem 1.2.1. The convex set in Rn satisfies the following properties:

1. The intersection of any collection of convex set is a convex set.
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1.2. CONVEX SETS AND FUNCTIONS

2. If C is a convex set and λ ∈ R, then λC is a convex set.

3. If C and D are convex sets, then C +D is a convex set.

Convex Functions

A function f defined on T ⊂ Rn is said to be convex at a point x0 ∈ T if x1 ∈ T , 0 ≤ λ ≤ 1 and
λx0 + (1− λ)x1 ∈ T implies the following

f(λx0 + (1− λ)x1) ≤ λf(x0) + (1− λ)f(x1) (1.2)

A function f is said to be convex on T if it is convex on every point of T .

Example 1.2.2. The example of convex function can be understood by the follwoing figure 1.2:

Figure 1.2: Example of Convex Functions

Theorem 1.2.2. Let f be twice differentiable function on an open convex set T ⊂ Rn, then

1. f is convex on T if the H(x) (Hessian Matrix) of f is positive semi-definite for each x ∈ T .

2. f is strictly convex on T , if the H(x) of f is positive definite for each x ∈ T . The converse is not
true.

§ Definiteness of Matrix

Say we have

A =

x11 x12 x13
x21 x22 x23
x31 x32 x33


Then, A has three ‘second-order principles’submatrices and three ‘leading principals submatrices’. The
relationship between the principal minors and definiteness of a matrix are

1. An n× n matrix A is positive definite iff all its n leading principal minors are strictly positive.

2. An n× n matrix A is negative definite iff all its n leading principal minors alternate in signs, with
the sign of the kth order leading principal minor equal to (−1)k, i.e.

x11 < 0 ;

∣∣∣∣ x11 x12
x21 x22

∣∣∣∣ > 0 ;

∣∣∣∣∣∣
x11 x12 x13
x21 x22 x23
x31 x32 x33

∣∣∣∣∣∣ < 0
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Chapter 2

Unconstrained Optimization

2.1 Unconstrained Univariate Optimization

Univariate optimization defined as optimization of a scalar function of a single variable:

y = p(x) (2.1)

The importance of these optimization methods are given as follows:

1. There are many instances in engineering when we want to find the optimum of functions like
optimum reactor temperature, etc.

2. Almost all multivariable optimization methods in commercial use today contain a line search step
in their algorithm,

3. They are easy to illustrate and many of the fundamental ideas are directly taken over to multivari-
able optimization.

2.1.1 Necessary and Sufficient Conditions for an Optimum

For a twice continuously differentiable function p(x) (see (2.1)), the point x∗, is an optimum iff:

dp

dx
= 0 at x = x∗ (2.2)

d2p

dx2
< 0 at x = x∗ (2.3)

or
d2p

dx2
> 0 at x = x∗ (2.4)

Equation (2.2) provides the extreme points x∗, hence as a result, equation (2.3) as maximum or equation
(2.4) as minimum.

2.2 Unconstrained Multivariate Optimization

Non-Linear Optimization techniques concerns with optimizing a scalar function of two or more than two
variables as described mathematically in eq. (2.5)

y = p(x1, x2, x3, . . . , xn) (2.5)
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2.2. UNCONSTRAINED MULTIVARIATE OPTIMIZATION

2.2.1 Procedure for obtaining extreme points

Step 1 : Like we have seen in univariate unconstrained optimization, we have to obtain the extreme points
by partial differentiating the function:

∂p

∂x1
= 0

∂p

∂x2
= 0

...

∂p

∂xn
= 0



(2.6a)

(2.6b)

(2.6c)

(2.6d)

Step 2 : The eq. (2.6) results into the stationary points which is denoted by x̄.

Step 3 : Deduce the second derivative by substituting the stationary points and configure the matrix of these
values calling it as Hessian matrix at x̄.

Say, for three variables x1, x2 and x3, and the function defined as p = p(x1, x2, x3) the Hessian
matrix is given as

H(x̄) =

px1x1
px1x2

px1x3

px2x1
px2x2

px2x2

px3x1
px3x2

px3x3


Step 4 : Consider the leading minors of H(x̄) which is given as follows:

px1x1
;

∣∣∣∣ px1x1
px1x2

px2x1
px2x2

∣∣∣∣ ;
∣∣∣∣∣∣
px1x1

px1x2
px1x3

px2x1 px2x2 px2x2

px3x1 px3x2 px3x3

∣∣∣∣∣∣
Step 5 : (a) If the positive sign appears in the leading minors then, the point x̄ is minimum.

(b) If the leading minors are of alternate sign then the stationary point is maximum.
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Chapter 3

Constrained Optimization

Consider a situation where the non linear programming is comprising of some differentiable objective
functions and equality sign constraints, then the optimization is achieved by implementing Lagrangian
multipliers.

Definition 3.0.1. Say f(x1, x2) and g(x1, x2) are differentiable functions with respect to x1 and x2.
Consider the problem of maximizing and minimizing

z = f(x1, x2)

subject to constraints
g(x1, x2) = c

and x1 > 0, x2 > 0 and c is a constant. Introducing a function:

h(x1, x2) = g(x1, x2)− c

To find a necessary condition for maximizing or minimizing value of z a new function is constructed as
follows:

L(x1, x2;λ) = f(x1, x2)− λh(x1, x2) (3.1)

The λ is an unknown number called as Lagrangian multiplier whereas L is called as Lagrangian function.

3.1 Generalised Lagrangian Method to n-Dimesnsional Case

Consider the general NLPP
Maximise(or minimise) Z=f(x1, x2, x3, . . . , xn) subject to the constraints

gi(x1, x2, . . . , xn) = ci & xi ≥ 0, i = 1, 2, . . . ,m(m ≤ n)

The constraints can be written as

hi(x1, x2, . . . , xn) = 0 for i = 1, 2, . . . ,m

where,
hi(x1, x2, . . . , xn) = gi(x1, x2, . . . , xn)− ci (3.2)

12



3.1. GENERALISED LAGRANGIAN METHOD TO N -DIMESNSIONAL CASE

3.1.1 Necessary Condition for Maximum(Minimum)

To find the necessary condition for a maximum or minimum of f(x), the Lagrangian function L(x, λ) is
formed by introducing m Lagrangian multipliers λ = (λ1, λ2, . . . , λm). The function is given as

L(x, λ) = f(x) =

m∑
i=1

λihi(x). (3.3)

As we are working with only differentiable function, the necessary conditions for a maximum(minimum)
of f(x) are:

∂L

∂xj
=

∂f

∂xj
−

m∑
i=1

λi
∂hi(x)

∂xj
= 0 j = 1, 2, . . . , n (3.4)

∂L

∂λi
= −hi(x) = 0 i = 1, 2, . . . ,m (3.5)

These m + n necessary conditions also become sufficient for a maximum(minimum) of the objective
function if the objective function is concave(convex) and the side constraints are equality ones.

3.1.2 Sufficient Conditions for Maximum/Minimum of Objective Function(with
single Equality Constraint)

Let the Lagrangian function for a general NLPP involving n variables and one constraint be:

L(x, λ) = f(x)− λh(x). (3.6)

The necessary conditions for a stationary point to be a maximum or minimum are

∂L

∂xj
=

∂f

∂xj
− λ ∂h

∂xj
= 0(j = 1, 2, . . . , n) (3.7)

and,
∂L

∂λ
= −h(x) = 0 (3.8)

The sufficient conditions for a maximum or minimum require the evaluation at each stationary point of
n− 1 principal minors of the determinant given below:

∆n+1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 ∂h
∂x1

∂h
∂x2

. . . ∂h
∂xn

∂h
∂x1

∂2f
∂x2

1
− λ∂2h

∂x2
1

∂2f
∂x1∂x2

− λ ∂2h
∂x1∂x2

. . . ∂2f
∂x1∂xn

− λ ∂2h
∂x1∂xn

∂h
∂x2

∂2f
∂x2∂x1

− λ ∂2h
∂x2∂x1

∂2f
∂x2

2
− λ∂2h

∂x2
2

. . . ∂2f
∂x2∂xn

− λ ∂2h
∂x2∂xn

...
...

... . . .
...

∂h
∂xn

∂2f
∂xn∂x1

− λ ∂2h
∂xn∂x1

∂2f
∂xn∂x2

− λ ∂2h
∂xn∂x2

. . . ∂2f
∂x2

n
− λ ∂2h

∂x2
n

∣∣∣∣∣∣∣∣∣∣∣∣∣
If ∆3 > 0, ∆4 < 0, ∆5 > 0, . . . , the sign pattern being alternate, stationary points is local maximum,
otherwise, the point of local minimum is observed if ∆i = 0, ∀ i ≥ 2.

3.1.3 Sufficient Conditions for Maximum/Minimum of Objective Function
(with more than one equality constraints)

In this method we introduce the m Lagrangian multipliers λ = (λ1, λ2, . . . , λm), let the Lagrangian func-
tion for a general NLPP with more than one constraint be

L(x, λ) = f(x) = −
m∑
i=1

λjhj(x)(m < n). (3.9)
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3.1. GENERALISED LAGRANGIAN METHOD TO N -DIMESNSIONAL CASE

The necessary condition for the stationary points are:

∂L

∂xi
= 0 and

∂L

∂λj
= 0 (i = 1, 2, . . . , n; j = 1, 2, . . . ,m)

The sufficiency conditions for the Lagrange Multiplier Method of stationary point of f(x) to be maxima
or minima is defined as: Let

V =

(
∂2L(x, λ)

∂xi∂xj

)
n×n

(3.10)

be the matrix of the second order partial derivatives of L(x, λ) with respect to decision variables

and U = [hij(x)]m×n (3.11)

where

hij(x) =
∂hi(x)

∂xj
, i = 1, 2, . . . ,m; j = 1, 2, . . . , n

Now, define the Boardered Hessian Matrix i.e.

HB =

 O | U
. . . | . . .
UT | V


(m+n)×(m+n)

where O is a m × n null matrix, then the sufficient conditions for maximum and minimum stationary
points are given as follows:

Let (x0, λ0) for the function L(x;λ) be its stationary point.

1. x0 is a maximum point, if starting with principal minor of order (2m+1), the last (n−m) principal
minors of HB

0 form an alternating sign pattern starting with (−1)m+n

2. x0 is a minimum point, if starting with principal minor of order (2m+1), the last (n−m) principal
minors of HB

0 have the sign of (−1)m.

Example 3.1.1. Solve the NLPP:
Minimize Z = 4x21 + 22x + x33 − 4x1x2 subject to the constraints x1 + x2 + x3 = 15, 2x1 − x2 + 2x3 = 20.

Solution. Say,
f(x) = 4x21 + 22x + x33 − 4x1x2

h1(x) = x1 + x2 + x3 − 15

h2(x) = 2x1 − x2 + 2x3 − 20

Constructing the Lagrangian function; which is given as follow:

L(x, λ) = f(x)− λ1h1(x)− λ2h2(x)

= 4x21 + 22x + x33 − 4x1x2 − λ1(x1 + x2 + x3 − 15)− λ2(2x1 − x2 + 2x3 − 20)

Necessary conditions yielding stationary points are as follows:

∂L

∂x1
= 8x1 − 4x2 − λ1 − 2λ2 = 0

∂L

∂x2
= 4x2 − 4x1 − λ1 + λ2 = 0

∂L

∂x3
= 2x3 − λ1 − 2λ2 = 0

∂L

∂λ1
= −[x1 + x2 + x3 − 15] = 0

∂L

∂λ2
= −[2x1 − x2 + 2x3 − 20] = 0

14



3.2. CONSTRAINED OPTIMIZATION WITH INEQUALITY CONSTRAINTS

Solution to the problem is
x0 = (x1, x2, x3) = (33/9, 10/3, 8)

and
λ0 = (λ1, λ2) = (40/9, 52/9)

Clearly, one sees that n = 3 and m = 2, which means that n−m = 1 and (2m+ 1) = 5. Thus, one may
clearly inspects that HB

0 = 72 > 0 i.e. the sign of HB
0 is (−1)2. So, concluding that x0 is a minimum

point.

3.2 Constrained Optimization with Inequality Constraints

3.2.1 Kuhn-Tucker Condition

Consider the general NLPP:

Optimize Z = p(x1, x2, . . . , xn), subject to the constraints

gi(x1, x2, . . . , xn) ≤ ci and x1, x2, . . . , xn ≥ 0 and i = 1, 2, . . . ,m(m < n)

Convert the inequality into the equality by introducing some slack or surplus quantity and thus apply
lastly, Lagrangian Multiplier Method. The Lagrangian Multiplier Method works best if the NLPP follows
strictly the constraints inequality.

So, to convert the constraints inequality into equality one we use new non-negative variable S called
as slack variable. We use only non-negative slack variable to avoid an additional constraints S ≥ 0.

Introducing m slack variables in m inequality constraints, S = (S1, S2, . . . , Sm), then the problem can
be stated as:

Optimize Z = p(x1, x2, . . . , xn), subject to the constraints

hi(x1, x2, . . . , xn) + s2i = 0

where,

hi(x1, x2, . . . , xn) = gi(x1, x2, . . . , xn)− ci ≤ 0 and x1, x2, . . . , xn ≥ 0 and i = 1, 2, . . . ,m

Then the Lagrangian function for the above NLPP with m constraints is

L(x, s, λ) = p(x)−
m∑
i=1

λi[hi(x) + s2i ] (3.12)

where, λ = (λ1, λ2, . . . , λm) are Lagrangian Multiplier Vector. The necessary condition for p(x) to be a
maximum are:

∂L

∂xj
=

∂p

∂xj
−

m∑
i=1

λi
∂hi
∂xj

= 0 for j = 1, 2, . . . , n (3.13)

∂L

∂λi
= hi + s2i = 0 for i = 1, 2, . . . ,m (3.14)

∂L

∂si
= −2siλi = 0 for i = 1, 2, . . . ,m (3.15)

where
L = L(x, S, λ), p = p(x) and hi = hi(x)
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3.2. CONSTRAINED OPTIMIZATION WITH INEQUALITY CONSTRAINTS

Thus the Kuhn-Tucker conditions for a maximum is restated as:

pj =

m∑
i=1

λihij

λihi = 0

hi ≥ 0

λi ≥ 0

For the NLPP of maximising p(x1, x2, . . . , xn) subject to the inequality constraints hi(x) ≤ 0 (i =
1, 2, . . . ,m), the Kuhn-Tucker conditions are also the sufficient conditions for a maximum if p(x) is
concave and all hi(x) a convex function.
The K-T conditions for a minimization NLPP can be obtained in the similar manner.

Example 3.2.1. Use the Kuhn-Tucker conditions to solve the NLPP:

Max.Z = 8x1 + 10x2 − x21 − 2x22

subject to 3x1 + 2x2 ≤ 6, x1 ≥ 0, x2 ≥ 0

Solution. Here,
f(x) = 8x1 + 10x2 − x21 − 2x22

g(x) = 3x1 + 2x2, c = 6

h(x) = g(x)− c = 3x1 + 2x2 − 6

The K-T conditions are
∂f(x)

∂x1
− λ∂h(x)

∂x1
= 0,

∂f(x)

∂x2
− λ∂h(x)

∂x2
= 0

λh(x) = 0, h(x) ≤ 0, λ ≥ 0, where λ is the Lagrangian multiplier. That is

8− 2x1 = 3λ (3.16)

10− 2x2 = 2λ (3.17)

λ[3x1 + 2x2 − 6] = 0 (3.18)

3x1 + 2x2 − 6 = 0 (3.19)

λ ≥ 0 (3.20)

From eq. (3.18) either λ = 0 or 3x1 + 2x2 − 6 = 0. For λ = 0 does not provide any optimal solution,
but (3.19) provides an optimal solution at stationary point x0 = (x1, x2) = (4/13, 33/13). The K-T
conditions are sufficient conditions for providing maximum. Hence, by x0 the maximum value of Z is
21.3.

3.2.2 Graphical Method for solving NLPP

The Linear Programming Problem (LPP) provides the optimal solution at one of the extreme points of
the convex region which is generated by the constraints and the objective function of the problem. But
in NLPP, it is not necessary to determine the solution at a corner or edge of the feasible region, as the
following example depicts:

Example 3.2.2. Graphically solve
maximize z = 3x1 + 5x2

subject to
x1 ≤ 4

9x21 + 5x22 ≤ 216

provided that x1, x2 ≥ 0

16



3.2. CONSTRAINED OPTIMIZATION WITH INEQUALITY CONSTRAINTS

Solution. Say,
x1 = 4 (3.21)

x21
216
9

+
x22
216
5

= 1 (3.22)

Eq. (3.22) is an ellipse
On differentiating the objective function by considering it 3x1 + 5x2 = κ1 with respect to x1

dx2
dx1

= −3

5
(3.23)

But the differentiation of (3.22) with respect to x1 gives

dx2
dx1

= −18x1
10x2

(3.24)

So, we arrive at the conclusion that
3x1 = x2

after confronting (3.23) and (3.24), thus x1 = ±2, and x2 = 6 when x1 = 2. This leads to the optimal
solution which is max z = 36

Figure 3.1: Graph for the Optimal Solution

The shaded region is for feasible region, bounded by objective function 3x1 + 5x2 = κ and (3.21) and
(3.22).

1κ is a constant
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Chapter 4

Quadratic Programming

As the name suggests that, here we have to optimize the quadratic objective function subject to the
linear inequality constraints.Unlike LPPs, the optimal solution to a NLPP can be found anywhere on
the boundary of the feasible region and even some interior point of it. For LPPs, we have very efficient
algorithm to solve but no such algorithm exist for solving NLPP.

Definition 4.0.1. Let xT and C ∈ Rn. Let Q be a symmetric m× n real matrix. Then, the problem of
maximising

f(x) = Cx+
1

2
xTQx subject to the constraints

Ax ≤ bT and x ≥ 0

where, bT ∈ Rn and A is a m× n real matrix is called a general Quadratic Programming Problem.

The function xTQx relates a quadratic form. The quadratic form xTQx is said to be positive definite
if xTQx > 0 for x 6= 0 and positive semi-definite if xTQx ≥ 0 for all x such that there is one x 6= 0
satisfying xTQx = 0, then it is convex in x over all of Rn and vice versa.
These result help in enumerating whether the QPP f(x) is concave/convex and the implication of the
same on the sufficiency of the Kuhn-Tucker conditions for constrained maxima/minima of f(x).

4.1 Wolfe’s Algorithm:

Consider a Quadratic Programming Problem in the form:

Maximize = f(X) =

n∑
j=1

cjxj +
1

2

n∑
j=1

n∑
k=1

xjdjkxk

subject to the constraints

n∑
j=1

aijxj ≤ bi i = 1, 2, . . . ,m

xj ≥ 0 j = 1, 2, . . . , n

where,djk = dkj for all j and k. Also we assume that the Quadratic form xjdjkxk be negative semi-
definite.

The Wolfe’s Algorithm for solution of QPP is summarised as follows:

Step 1 : Convert the inequality constraints into equality constraints by introducing the slack variables r2i in
the ith constraints i = 1, 2, . . . ,m, and the slack variables q2j in the jth non-negativity constraint
j = 1, 2, . . . , n.
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4.1. WOLFE’S ALGORITHM:

Step 2 : Construct the Lagrangian function

L(X, q, r, λ, µ) = f(X)−
m∑
i=1

λi[

n∑
j=1

aijxj − bi + r2i ]−
n∑

j=1

µj(−xj + q2j )

where X = (x1, x2, . . . , xn), q = (q21 , q
2
2 , . . . , q

2
n), r = (r21, r

2
2, . . . , r

2
m), λ = (λ1, λ2, . . . , λm) and

µ = (µ1, µ2, . . . , µn).
On first order partial differentiating of function L(x, q, r, λ, µ) with respect to the components of
x, q, r, λ, µ and on equating the above derivatives to zero, which results Kuhn-Tucker condition from
the resulting equation.

Step 3 : Introduce the positive artificial variables Wj , j = 1, 2, . . . , n in the K-T condition

cj +

n∑
k=1

djkxk −
m∑
i=1

λiaij + µj = 0

for j = 1, 2, . . . , n and deduce the objective function to

Z = W1 +W2 + . . .+Wn

Step 4 : Now, obtain the initial basic feasible solution to the Linear Programming problem:

Minimize Z = W1 +W2 + . . .+Wn subject to the constraints

n∑
k=1

djkxk −
m∑
i=1

λiaij + µj +Wj = −cj (j = 1, 2, . . . , n)

n∑
j=1

aijxj + r2i = bi (i = 1, 2, . . . ,m)

Wi, λi, µj , xj ≥ 0 (i = 1, 2, . . . ,m, j = 1, 2, . . . , n)

Also satisfying the complementary slackness conditions:

n∑
j=1

µjxj +
m∑
i=1

r2i λi = 0

Step 5 : Now, we can apply two phase simplex method to obtain an optimum solution to the LPP of step
4, provided the solution satisfies the complementary slackness condition.

Step 6 : The optimum solution which we get from step 5 is an optimum solution to the given QPP.

Notes:

1. If the Quadratic programming problem is given in the minimization form,then convert it into
maximization one by suitable modification in f(X) and the ’≥’ constraints.

2. The solution of the given system is obtained by using Phase I of the simplex method. The solution
does not need the consideration of Phase II.We have to maintain the condition λiq

2
i = 0 = µjxj

every time.

3. Here we will observe that the Phase I will terminate in the usual manner i.e. the sum of all artificial
variables equal to zero only if the feasible solution exists.

Example 4.1.1. Maximize Z = 2x1 + 3x2 + 2x21 subject to
x1 + 4x2 ≤ 4, x1 + x2 ≤ 2, x1, x2 ≥ 0

Solution. The solution is given as follows:
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4.1. WOLFE’S ALGORITHM:

Step 1: First, introduce the slack variables in the constraints and deduce in equality form.Then the problem
can be restated as

MaxZ = 2x1 + 3x2 + 2x21

subject to
x1 + 4x2 + s21 = 4, x1 + x2 + s22 = 2,−x1 + s23 = 0,−x2 + s24 = 0

Step 2: Construct the Lagrangian function:

L(x1, x2, s1, s2, s3, s4, λ1, λ2, λ3, λ4) = (2x1 + 3x2 + 2x21)− λ1(x1 + 4x2 + s21 − 4)

− λ2(x1 + x2 + s22 − 2)− λ3(−x1 + s23)

− λ4(−x2 + s24)

Step 3: As −x21 is negative semi-definite quadratic form hence the maxima of L will be maxima of Z =
2x1 + 3x2 + 2x21.To get the necessary and sufficient condition for maxima of L , we equate the first
order partial derivative of L with respect to the decision variable with zero.

∂L

∂xi
= 0,

∂L

∂sj
= 0,

∂L

∂λj
= 0 for i = {1, 2} & j = {1, 2, 3, 4}

On simplification the above

4x+λ1 + λ2 − λ3 = 2, 4λ1 + λ2 − λ4 = 3

x1 + 4x2 + s21 = 4, x1 + x2 + s22 = 2

}
(4.1a)

(4.1b)

λ1s
2
1 + λ2s

2
2 + x1λ3 + x2λ4 = 0

x1, x2, s
2
1, s

2
2, λ1, λ2λ3, λ4 ≥ 0

}
(4.2a)

(4.2b)

To determine the optimal solution of the given problem, we introduce the artificial variables A1 ≥ 0 and
A2 ≥ 0 in the first two constraints of (4.1).

Step 4: Modified LPP is configured as follows

Maximize Z = −A1 −A2

subject to

4x+λ1 + λ2 − λ3 +A1 = 2

4λ1 + λ2 − λ4 +A2 = 3

x1 + 4x2 + x3 = 4

x1 + x2 + x4 = 2

x1, x2, x3, x4, A1, A2, λ1, λ2, λ3, λ4 ≥ 0

satisfying the complimentary slackness condition
∑
λixi = 0, where we replaced s21 by x3 and s22 by x4.

An initial basic feasible solution to the LPP is provided as
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



A1

A2

x3
x4

 =


2
3
4
2


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4.2. BEALE’S METHOD

Step 5 : Now the LPP will be solved by Two Phase Method

Figure 4.1: Initial Table of Phase 1

From the table 4.1, an observation is made that x1, λ1 or λ2 can enter the basis. But λ1 and λ2 will
not enter the basis, as x3 and x4 are in the basis.

Figure 4.2: Final Iteration:

Hence, the optimum solution is

x1 = 5/16, x2 = 59/64 and

Maximum of Z = 3.19

.

4.2 Beale’s Method

Beale’s algorithm is a very famous approach to solve quadratic programming problem which was sug-
gested by Beale. Here we do not implement Kuhn-Tucker conditions. In this algorithm, we divide the
variables into basic variables and non-basic variables arbitrarily and we use the result of classical calculus
to get the optimum solution of the given quadratic programming problem.

Let the QPP given in the form

Maximize p(X) = CTX +
1

2
XTQX

subject to
AX{≥,≤ or =} BT and
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4.2. BEALE’S METHOD

X ≥ 0, X ∈ Rn, B = (b1, b2, . . . , bm), C is n× 1 and Q is n× n symmetric matrix.

Algorithm:

Step 1: Deduce the objective function to maximization type and introduce the slack or surplus variables to
make the inequality constraints into equality one.

Step 2: Now, select the m variables as basic variables and remaining n−m variables as non-basic variables
arbitrarily. Denote the basic variables and non-basic variables as XB and XNB respectively. Now,
divide the constraints into basic and non-basic variables i.e. convert each basic variables in terms
of non-basic variables. Now the constraints equation can be expressed as

SXB + TXNB = b⇒ XB = S−1b− S−1TXNB

where the matrix A is converted into two sub matrices S and T corresponding to XB and XNB

respectively.

Step 3: Also express p(x) in terms of only non-basic variables and examine the partial differentiation of the
p(x) w.r.t. non-basic variable XNB . Thus we observe that as we increase the value of any non-basic
variables the value of objective function p(x) is improved. Now the constraints become

S−1TXNB ≤ S−1B (since XB ≥ 0)

Hence, any component of XNB can increase only until ∂p
∂XNB

= 0 or one or more components of
XB = 0.

Step 4: Now, we have m+1 non-zero variables and m+1 constraints which is basic solution to the modified
set of constraints.

Step 5: Go to step 3 and repeat the procedure until the optimal basic feasible solution is reached.

Example 4.2.1. Solve the problem using Beale’s Method:

Max Z = 4x1 + 6x2 − 2x21 − 2x1x2 − 2x22

subject to x1 + 2x2 ≤ 2
and x1, x2 ≥ 0

Solution. Solving the problem as follows:

Step 1:
Max Z = 4x1 + 6x2 − 2x21 − 2x1x2 − 2x22 (4.3)

subject to
x1 + 2x2 + x3 = 2 (4.4)

and x1, x2, x3 ≥ 0
taking XB = (x1) and XT

NB = (x2, x3). So, we can write

x1 = 2− 2x2 − x3 (4.5)

Step 2: Apply (4.5) in (4.3), we get

max f(x2, x3) = 4(2− 2x2 − x3) + 6x2 − 2(2− 2x2 − x3)−2(2− 2x2 − x3)x2 − 2x22

∂f

∂x2
= −2 + 8(2− 2x2 − x3) + 4x2 − 2(2− x3)

∂f

∂x3
= −4 + 4(2− 2x2 − x3) + 2x2
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4.2. BEALE’S METHOD

Now, (
∂f

∂x2

)
(0,0)

= 10

(
∂f

∂x3

)
(0,0)

= 4.

Here ‘+ve’value of ∂f
∂xi

indicates that the objective function will increase if xi increased. In the

same manner, ‘-ve’value of ∂f
∂xi

represents the decrement of the objective function.
Therefore, in order to have better improvement in objective function we have to increase x2.

Step 3: Increase in x2 to a value greater than 1, x1 results negative.
Since x1 = 2− 2x2 − x3

x3 = 0;
∂f

∂x2
= 0

That implies x2 = 5/6.
min(1, 5/6) = 5/6.
Now, the new basic variables is x2.

Second Iteration:

Step 1: Now, XB = (x2) and XNB = (x1 x3)T

x2 = 1− 1

2
(x1 + x3) (4.6)

Step 2: Substitute 4.6 in 4.3

max f(x1, x3) = 4x1 + 6(1− 1

2
(x1 + x3))− 2x21 − 2x1(1− 1

2
(x1 + x3))− 2(1− 1

2
(x1 + x3))2

∂f

∂x1
= 1− 3x1,

∂f

∂x3
= −1− x3(

∂f

∂x1

)
(0,0)

= 1(
∂f

∂x3

)
(0,0)

= −1

This implies that x1 can be introduced to increased objective function.

Step 3: Now, x2 = 1− 1
2 (x1 + x3) and x3 = 0.

Increase in x1 to a value greater than 2, x2 results negative.

∂f

∂x1
= 0

which implies that x1 = 1
3

min(2, 1/3) = 1/3 Thus, x1 = 1/3.
Hence x1 = 1/3, x2 = 5/6, x3 = 0 Therefore, the solution of Maxf(x) = 25/6.
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Chapter 5

Fractional Programming

5.1 Linear Fractional Programming

Linear fractional programming is unique type of non-linear programming in which the objective function
is the fraction of two linear function subject to linear constraints. Lots of practical application of frac-
tional programming exists such as construction planning, hospital planning and economic planning etc.

A linear fractional programming is an optimization problem of the form:

Minimize
cTx+ c0
dTx+ d0

(5.1)

subject to,
Ax = b. (5.2)

x ≥ 0.

It should be noticed that the objective function is the quotient of the two linear function.

5.1.1 Charnes & Cooper Algorithm

Charnes & Cooper developed very simple technique to optimize the linear fractional programming. The
basic idea of the development is that convert the linear fractional programming into linear programming
problem and then use simplex or any other method to solve that linear programming.

The algorithm to solve the linear fractional programming are as follows:

Step 1: Let

v = dTx+ d0, y0 =
1

v
> 0, y = y0x (5.3)

Then,
cTx+ c0
dTx+ d0

= y0(cTx+ c0) = cT y + c0y0

Step 2: Now the problem can be written as:
Minimize(cT y + c0y0)
subject to
Ay ≥ y0b,
dT y + d0y0 = 1,
y ≥ 0, y0 ≥ 0

Step 3: Now the above linear fractional programming can be solved by the simplex method. Also, the
optimal solution are
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5.1. LINEAR FRACTIONAL PROGRAMMING

Example 5.1.1. Apply the Charnes & Cooper Algorithm to solve:

Minimize z =

(
−6x1 − 5x2

2x1 + 7

)
subject to

x1 + 2x2 ≤ 3,

3x1 + 2x2 ≤ 6,

x1 ≥ 0, x2 ≥ 0

.

Solution. Let y = y0x. Applying step 1 of the above algorithm then the problem becomes:

Minimize z = −6y1 − 5y2

subject to
y1 + 2y2 − 3y0 ≤ 0, (5.4)

3y1 + 2y2 − 6y0 ≤ 0, (5.5)

2y1 + 7y0 = 1, (5.6)

y0 ≥ 0, y1 ≥ 0, y2 ≥ 0. After introducing the required slack variables in constraints (5.4) and (5.5)
respectively, and the artificial variable v1 ≥ 0 in constraint (5.6), we minimize the infeasibility form
v = v1. The iterations of the two ways simplex method for an optimal solutions are given below:

Figure 5.1: Table 1

where y3 and y4 are slack variables.

Figure 5.2: Table 2

The final iteration yields y00 = 1
10 > 0. Thus, the optimal solution is

x01 = y
0
1/y0

0 = 3/2

x02 = y
0
2/y0

0 = 3/4

Therefore, min z = − 51/40.
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5.2. NON-LINEAR FRACTIONAL PROGRAMMING

5.2 Non-Linear Fractional Programming

As the name of the concerned problem implies that the objective function is non-linear i.e. the ratio of
non-linear and linear function or linear and non-linear function or non-linear and non-linear function.
Here, we will use the concept of quadratic programming to solve the problem. To get the optimal solution
of the problem, a algorithm is given by scientist Dinkelbach known as Dinkelbach Algorithm.

A non linear fractional program is an optimization problem of the form:

Maximize
N(x)

D(x)
for x ∈ T (⊂ Rn).

Let F (q) = max [N(x)− qD(x)] be the optimal value of the non linear fractional problem where q is
known real number.

Necessary and Sufficient Condition:
The necessary and sufficient conditions for

q0 =
N(x0)

D(x0)
= max

N(x0)

D(x0)

is

F (q0) = F (q0, x0) = max [N(x)− q0D(x)] = 0

It is noticed here that x0 is the optimal solution for the non-linear fractional programming. From the
necessary and sufficient condition of the non-linear programming, as F (q) is continuous, we can convert
the non-linear programming as:

Find an xn ∈ T and qn = N(xn)/D(xn) such that for any δ > 0,

F (qn)− F (q0) = F (qn) < δ.

5.2.1 Dinkelbach Algorithm:

The algorithm can be started with q = 0 or by any feasible point x1 ∈ T such that q(x1) = N(x1)/D(x1) ≥
0

Step 1: Take q2 = 0 or q2 = N(x1)/D(x1) and proceed to step 2 with k = 2.

Step 2: To find an xk ∈ T use a suitable convex programming methods that maximizes [N(x) − qkD(x)].
Calculate

F (qk) = N(xk)− qkD(xk)

.

Step 3: If F (qk) < δ, terminate and we have

xk =

{
x0 if F (qk) = 0

xn if F (qk) > 0
(5.7)

where x0 is an optimal solution and xn an appropriate optimal solution to non-linear programming
problem. If F (qk) ≥ δ, evaluate qk+1 = N(xk)/D(xk) and go to step 2, replacing qk by qk+1.

Example 5.2.1. Solve the following problem by Dinkelbach Algorithm:
Maximize z = (2x1 + 2x2 + 1)/(x21 + x22 + 3)
subject to
x1 + x2 ≤ 3,
x1, x2 ≥ 0
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5.2. NON-LINEAR FRACTIONAL PROGRAMMING

Solution. Here, N(x) = 2x1 + 2x2 + 1, D(x) = x21 + x22 + 3, and
˜ T = x : x1 + x2 ≤ 3, x1 ≥ 0, x2 ≥ 0.

Clearly, D(x) > 0, N(x)isconcave, and D(x) is convex. Suppose δ = 0.01. To start the algorithm,
we let q2 = 0. Now, we have to maximize (2x1 + 2x2 + 1) for x ∈ T . An optimal solution to this linear
programming by simplex method is

x2 = (3, 0)T

Since F (q2) = 7 > δ, we find q3 = N(x2)/D(x2) = 7/12 and maximize

[(2x1 + 2x2 + 1)− 7
12 (x21 + x22 + 3)] for x ∈ T

The optimal solution to this quadratic program is found to be x3 = (3/2, 3/2)T . Now, F (q3) = 21/8 >
δ and q4 = N(x3)/D(x3) = 14/15. Hence, we maximize

[(2x1 + 2x2 + 1)− 14
15 (x21 + x22 + 3)] for x ∈ T

The optimal solution to this quadratic program is

x4 = (15/14, 15/14)T

Again, since F (q4) = 12/35 > δ and q5 = N(x4)/D(x4) = 518/519, we maximize

[(2x1 + 2x2 + 1)− 518
519 (x21 + x22 + 3)] for x ∈ T

The optimal solution to this program is

x5 = (519/518, 519/518)T .

Since F (q5) < δ, we terminate the algorithm, and an approxcimate optimal solution to the given
program is

x5 = (519/518, 519/518)T .
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