
Dynamic Virtual Machine Placement
in Cloud Computing

Arnab Kumar Paul
(Roll No: 213CS3190)

Department of Computer Science and Engineering
National Institute of Technology, Rourkela

Rourkela-769 008, Odisha, India
May, 2015.

Dynamic Virtual Machine Placement
in Cloud Computing

Thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Technology
in

Computer Science and Engineering
by

Arnab Kumar Paul
(Roll No: 213CS3190)

under the guidance of

Dr. Bibhudatta Sahoo

Department of Computer Science and Engineering
National Institute of Technology, Rourkela

Rourkela-769 008, Odisha, India
May, 2015.

Dedicated to my Parents and Siblings

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela - 769008, Odisha, India

CERTIFICATE

This is to certify that the work in the thesis entitled Dynamic Virtual Machine Placement

in Cloud Computing submitted by Arnab Kumar Paul is a record of an original research

work carried out by him under my supervision and guidance in partial fulfillment of the

requirements for the award of the degree of Master of Technology in Computer Science

and Engineering, National Institute of Technology, Rourkela. Neither this thesis nor any

part of it has been submitted for any degree or academic award elsewhere.

Dr. Bibhudatta Sahoo
Assistant Professor

Department of Computer Sc. and Engg.
Place: NIT, Rourkela National Institute of Technology
Date: 26-05-2015 Rourkela-769008

Acknowledgment

First of all, I would want to express my sincere respect and thanks towards my super-

visor Dr. Bibhudatta Sahoo, who has been the guiding light behind this work. I want to

acknowledge him for introducing me to the exciting field of Cloud Computing and giv-

ing me the opportunity to work under his guidance. His undivided faith in this topic and

ability to bring out the best of analytical and practical skills in people has been invalu-

able in tough periods. Without his invaluable suggestions and ever ready help it wouldn’t

have been possible for me to complete this thesis. I am extremely fortunate to have got a

chance to work alongside such a wonderful person.

I express my gratitude towards all the faculty members of the CSE Department for

their sympathetic cooperation.

During my studies at N.I.T. Rourkela, I made many friends. I would like to thank

them all, for all the great moments I had with them.

When I look back at my accomplishments in life, I can see a clear trace of my family’s

concerns and devotion everywhere. My dearest mother, whom I owe everything I have

achieved and whatever I have become; my beloved father, for always believing in me

and inspiring me to dream big even at the toughest moments of my life; and my sister

and brother-in-law; who were always my silent support during all the hardships of this

endeavor and beyond.

Arnab Kumar Paul

213CS3190

Abstract

Cloud computing enables users to have access to resources on demand. This leads to

an increased number of physical machines and data centers in order to fulfill the needs of

users which are continuously on the increase. The increase in the number of active phys-

ical machines is directly proportional to the increase in the energy consumption. Thus,

minimization of energy consumption has become one of the major challenges of cloud

computing in recent years. There are many ways to power savings in data centers, but the

most effective one is the optimal placement of virtual machines on physical machines. In

this thesis, the problem of dynamic placement of virtual machines is solved in order to op-

timize the energy consumption. A cloud computing model is built along with the energy

consumption model considering the states of physical machines and the energy consump-

tion during live virtual machine migrations and the changes in the states of physical ma-

chines. The intelligent algorithms having a centralized approach, like genetic algorithm

and simulated annealing algorithm have been used to solve the dynamic virtual machine

placement problem in earlier research works but many unreachable solutions may result.

Thus, a decentralized approach based on game theoretic method is used here in order to

reach optimal solutions and also a list of executable live virtual machine migrations is

provided to reach the optimal placement. In real world scenario, physical machines may

or may not cooperate with each other to arrive at an optimal solution. Therefore, in this

thesis both cooperative as well as non-cooperative game theoretic approaches have been

used to find optimal solution to the dynamic virtual machine placement problem. It is

seen that Nash equilibrium is achieved in polynomial time. The experimental results are

compared with the results of best fit approach. Results show that energy consumption is

minimized by modifying the placement of virtual machines dynamically.

Keywords - cloud computing; dynamic virtual machine placement; game theory; Nash

equilibrium; energy consumption

Contents

Acknowledgment v

Abstract vi

List of Figures ix

List of Tables xi

List of Acronyms xii

1 Introduction 1

1.1 Introduction . 1

1.1.1 Anatomy of Cloud Computing 2

1.1.2 Cloud Computing Architecture 4

1.2 Virtual Machine Placement in Cloud Computing 5

1.2.1 Static Virtual Machine Placement 6

1.2.2 Dynamic Virtual Machine Placement 8

1.3 Literature Survey . 9

1.4 Research Motivation . 10

1.5 Problem Statement . 11

1.6 Research Contribution . 12

1.7 Organization of Thesis . 12

2 Background and Problem Formulation 13

2.1 Introduction . 13

2.2 Dynamic VM Placement in Cloud Computing 13

2.3 Related Work . 15

2.4 Problem Formulation . 16

2.4.1 Energy Consumption Model . 18

2.4.2 Solution to Dynamic VM Placement Problem 22

2.5 Conclusion . 23

3 Cooperative Game Theory for Dynamic VM Placement 24

3.1 Introduction . 24

3.2 Game Theory . 24

3.2.1 Types of Game Scenarios . 25

3.2.2 Games in Normal Form . 26

3.2.3 Nash Equilibrium . 27

3.3 Literature Survey for Cooperative Game Theory 27

3.4 Observations . 30

3.5 System Model . 32

3.6 Problem Statement . 34

3.7 Optimization Algorithm for VDPPEC 36

3.8 Simulation and Results . 38

3.8.1 Energy Consumption Model . 38

3.8.2 Experimental Results . 39

3.9 Conclusion . 43

4 Non Cooperative Game Theory for Dynamic VM Placement 44

4.1 Introduction . 44

4.2 Literature Survey for Non Cooperative Game Theory 44

4.3 Observations . 46

4.4 Problem Formulation . 48

4.4.1 Problem Statement . 49

4.5 Optimization Algorithm for Non-Cooperative Dynamic VM Placement . 51

4.6 Simulation and Results . 53

4.6.1 Simulation Parameters . 53

4.6.2 Experimental Results . 54

4.7 Conclusion . 58

5 Conclusion and Future Work 59

Bibliography 60

Dissemination of Work 66

List of Figures

1.1 Core Elements of Cloud Node . 2

1.2 Data Center Representation . 3

1.3 Cloud Computing Architecture . 4

1.4 Static Virtual Machine Placement over Data Centers 6

1.5 Static Virtual Machine Placement over Physical Machines 7

1.6 Initial Solution i . 8

1.7 Target Solution s1 . 8

2.1 Initial Solution i . 14

2.2 Target Solution s1 . 14

2.3 Target Solution s2 . 14

2.4 States and their transitions . 19

2.5 Energy consumption of state switching 20

2.6 Unreachable Solution . 22

3.1 A prisoner’s Dilemma Game . 26

3.2 Centralized Decision Making in Cloud Computing 28

3.3 Proposed System Model . 33

3.4 No. of PMs Used vs No. of VMs (Available PMs Fixed at 40) 40

3.5 Energy Consumption vs No. of VMs (Available PMs Fixed at 40) 40

3.6 Execution Time vs No. of VMs (Available PMs Fixed at 40) 41

3.7 No. of PMs used vs No. of Available PMs (VMs Fixed at 100) 41

3.8 Energy Consumption vs No. of Available PMs (VMs Fixed at 100) 42

3.9 Execution Time vs No. of Available PMs (VMs Fixed at 100) 42

4.1 Proposed System Model . 48

4.2 en vs No. of Iterations . 54

4.3 Convergence of Non-Cooperative Algorithm (until en ≤ 0.003) 55

4.4 No. of PMs Used vs No. of VMs (Available PMs Fixed at 40) 55

ix

4.5 Energy Consumption vs No. of VMs (Available PMs Fixed at 40) 56

4.6 Execution Time vs No. of VMs (Available PMs Fixed at 40) 56

4.7 No. of PMs used vs No. of Available PMs (VMs Fixed at 100) 56

4.8 Energy Consumption vs No. of Available PMs (VMs Fixed at 100) 57

4.9 Execution Time vs No. of Available PMs (VMs Fixed at 100) 58

List of Tables

3.1 Cooperative Game Theory in Distributed Resource Management 30

3.2 List of symbols and their meanings . 36

3.3 Values for The Energy Consumption Parameters 38

4.1 Non Cooperative Game Theory in Distributed Resource Management . . 46

4.2 List of symbols and their meanings . 51

4.3 Values for The Energy Consumption Parameters 53

4.4 sum energy (en) vs No. of Iterations (for 20 PMs, 50 VMs) 54

xi

List of Acronyms

Acronym Description

DC Data Center
PM Physical Machine
VM Virtual Machine
SLA Service Level Agreement
VMP Virtual Machine Placement
QoS Quality of Service
CSP Cloud Service Provider
SP Service Provider
SaaS Software as a Service
IaaS Infrastructure as a Service
PaaS Platform as a Service
VMM Virtual Machine Monitor
CP Constraint Programming
CCA Canonical Correlation Analysis
SIP Stochastic Integer Programming
OVMP Optimal Virtual Machine Placement
HDCF Horizontal Dynamic Cloud Federation Platform

CHAPTER 1

INTRODUCTION

1.1 Introduction

Cloud computing acts as a model to enable users to have on demand access to computing

resources with minimal management effort. It’s emergence as a favored computing model

to support large scale processing of huge volumes of data is commendable. Several multi-

national organizations such as Google, Yahoo, Microsoft, Amazon and IBM have built

cloud platforms for enterprises and users to access the cloud services.

Data Centers have been used to provide powerful computing resources for critical ar-

eas, such as nuclear physics, scientific simulation and geothermal experiments. A Data

Center (DC) usually deploys a large number of Physical Machines (PMs) packed densely

to maximize space utilization. Virtualization is one of the key concepts of data center

management. The major advantage of virtualization is the possibility of running several

operating system instances on a single PM thus utilizing the hardware capabilities more

fully which allows administrators to save money on hardware and energy costs. In liter-

ature, these individual operating system instances are defined as Virtual Machines (VM).

The computing resources of DC are made available to the users through VMs.

The VM scheduling in a cloud computing environment is very crucial as the num-

ber of users continuously increase. The VM scheduling algorithm greatly affects the

performance of the whole system and its throughput. The placement of VMs to DCs is

called Virtual Machine Placement (VMP) over DCs and the placement of VMs to PMs is

called VMP over PMs. The effectiveness of VMP is related to a Quality of Service (QoS)

as per the services. The objective of VMP will be a minimum number of data centers

with a much larger per-data center utilization. More availability and flexibility of DCs

is achieved, while the operational costs and hardware expenses such as physical space,

energy etc. are reduced.

1

Chapter 1 : Introduction

In this thesis, Dynamic Virtual Machine Placement over Physical machines is consid-

ered for user/broker requests. A decentralized approach is used for decision making and

the existence of Nash Equilibrium is proved.

1.1.1 Anatomy of Cloud Computing

In cloud computing, virtualization acts as a key player in providing scalable and dynamic

architectures. Along with resource sharing and scalability, virtualization provides the

ability of virtual machine migration between physical servers for load balancing (20).

Figure 1.1: Core Elements of Cloud Node

Figure 1.1 shows the important elements in a node in cloud computing environment.

Virtualization component in a node is provided by an infrastructure layer known as Hyper-

visor (also called as Virtual Machine Monitor [VMM]). This layer provides the interface

to execute multiple instances of operating system at the same time on a single PM. The

hypervisor creates objects known as Virtual Machines which encapsulate operating sys-

tem, configuration and applications. Device emulation is also provided to the physical

machine either in hypervisor or as a VM. Virtual machine management takes place both

locally in different physical machines and globally in a Data Center (DC).

The nodes represented in Figure 1.1 are then multiplied on a physical network with

management orchestration over the entire infrastructure to form a Data Center (DC) as

shown in Figure 1.2.

2

Chapter 1 : Introduction

Figure 1.2: Data Center Representation

Hypervisors

Hypervisor acts as the base level of a physical machine (node). It manages the execu-

tion of the guest operating systems by providing them with a virtual operating platform.

These are known as virtual machines. The virtual machines share the virtualized hard-

ware resources of the node. The Linux Kernel Virtual Machine (KVM)is one of the best

hypervisors which is also deployed in production environments.

Device Emulation

Hypervisors provide platform where VMs can share the virtualized physical resources.

But in order to provide full virtualization, the whole node must be virtualized, which is

the job of a device emulator. An example of a complete package (emulator and hypervi-

sor) is QEMU.

Virtual Networking

Networking needs of a system intensifies as more and more VMs consolidate on physical

servers. Thus, instead of VMs communicating on the physical level, the whole network

3

Chapter 1 : Introduction

is also virtualized which reduces the load on the physical infrastructure. In order to op-

timally communicate between VMs, virtual switches are introduced. An example of a

virtual network provider in cloud environment is Open vSwitch.

1.1.2 Cloud Computing Architecture

In a cloud computing environment, users depend on cloud service providers to fulfill their

needs. Thus, some QoS parameters must be maintained by the cloud providers which are

cataloged in the Service Level Agreement (SLA). In order to achieve this, market oriented

architecture is needed instead of the traditional resource management architecture. Figure

1.3 showcases the cloud computing architecture which will support the market-oriented

resource allocation.

Figure 1.3: Cloud Computing Architecture

The cloud model is built using the following components.

Users or brokers which act on the behalf of users, submit their requests to the cloud

data center in order to be processed.

4

Chapter 1 : Introduction

SLA Resource Allocator provides the interface between the CSP/DC and the user/broker.

On submission of a user request, the Service Request Examiner checks the request for QoS

parameters’ requirements to make a decision whether to accept or reject the user request.

It obtains information from the VM Monitor on the availability of resources and already

available workload from the Service Request Monitor, thus ensuring that no overloading

occurs. Considering these parameters, the examiner assigns the user requests to VMs and

decides the allotted VMs’ resource requirements.

The Pricing operation makes decisions on the prices of service requests; that is whether

to charge the request on the basis of time of submission, or resource availability or sim-

ply based on fixed rates. This mechanism aids in effective prioritization of allocation of

resources in a data center.

Accounting operation is used to keep a tab on the actual resource consumption, accord-

ing to which the pricing mechanism can calculate the final cost to be charged from users.

It also helps in effective resource allocation decisions to be made by the service examiner

by using the historical resource usage information kept by the accounting mechanism.

The VM Monitor keeps a check on the resource requirements and VMs’ availabil-

ity. Dispatcher starts executing the accepted user requests on the allotted VMs. Service

Request Monitor keeps a tab on the status of the execution of the service requests.

1.2 Virtual Machine Placement in Cloud Computing

One of the major concepts in cloud computing is virtualization. It has the major advantage

that it allows the execution of several instances of the operating system on a single PM,

thus enabling complete utilization of the PM’s hardware capacities. These instances of the

operating system are called virtual machines. The placement of VMs in cloud computing

environment is very crucial since the number of cloud users is on the rise. The scheduling

of VMs greatly affects the whole system’s performance and throughput. Virtualization in

a physical machine is taken care of by Hypervisor as discussed in the previous section.

The virtual machine requests follow a two-tier distribution approach. A large number

of Physical Machines are deployed in a Data Centers. A Cloud Service Provider can have

multiple data centers. Thus the VM requests should be first distributed optimally over data

centers. The requests in each data center are then distributed over physical machines.

The virtual machine placement can be said to be two types.

5

Chapter 1 : Introduction

• Static virtual machine placement

• Dynamic virtual machine placement

1.2.1 Static Virtual Machine Placement

Static placement of VMs is done either during system startup or in offline mode. This

is the initial placement of VMs in the cloud computing environment. No prior mapping

of VMs is found. This type of VM placement does not consider either the states of the

virtual machines and physical machines, or the arrival rate of the user requests.

Below is the diagrammatic explanation of the centralized model for static virtual ma-

chine placement following the two tier approach. First, VM placement over data centers

and then the placement of requests over PMs in a particular data center are shown.

Figure 1.4 represents the flow of VM Requests from the users till they are distributed

over data centers.

Figure 1.4: Static Virtual Machine Placement over Data Centers

Cloud users use the services provided by the cloud service provider and issue requests.

These requests are in the form of virtual machine requests since every request will be

completed on a virtual machine on top of a physical machine. The VM requests comprise

the VM Requests Set. Every data center has multiple physical machines and a Data

Center Manager to control all the PMs. In order to control all the data centers, a Data

Center Controller is used.

6

Chapter 1 : Introduction

The data center controller receives the VM requests set. It then requests status infor-

mation from all the data center managers which have the information of their respective

data centers. The VM requests contain information of the resources (CPU, RAM, Net-

work etc.) needed in order to complete the request. The data center managers send

information of the available resources to the controller. The data center controller opti-

mally distributes VM requests to the data center managers following a heuristic algorithm.

This approach to distribute VM requests is a Centralized Approach, where the decision to

schedule requests depends on the central controller.

Figure 1.5 depicts the static placement of virtual machine requests in physical ma-

chines in a single data center.

Figure 1.5: Static Virtual Machine Placement over Physical Machines

In a data center, there are multiple physical machines on top of which lies the Virtual

Machine Monitor [VMM] (Hypervisor). The VMM has the responsibility for virtualiza-

tion in PMs. The data center manager sends requests to the VMMs to provide the status

information of all the physical machines. The data center manager already has the VM

requests’ information. Upon arrival of the status information from the VMMs, the DC

manager places the VM requests to the individual physical machines in order to process

them and send back the response to the cloud users. The placement of VM requests over

physical machines is also a centralized approach as the decision is taken by a central

authority, in this case the data center manager.

7

Chapter 1 : Introduction

1.2.2 Dynamic Virtual Machine Placement

If an existing mapping of VMs onto PMs is present, we go for dynamic placement of vir-

tual machines. The main goal of dynamic VM placement is to achieve optimum solutions

from the already present mapping of VMs at minimal cost. The optimality parameters

may vary from minimization of the response time to the minimization of energy con-

sumption or a combination of multiple parameters. The rate of arrival of user requests as

well as the states of both VMs and PMs need to be considered while taking a decision.

Below is an example of dynamic virtual machine placement.

Figure 1.6: Initial Solution i

Figure 1.7: Target Solution s1

Figure 1.6 shows the initial solution i for the dynamic VM placement problem. Seven

VMs are placed over four PMs. PM4 is in off state since no VM is running on it. As-

suming that all the PMs have same amount of resources, the VMs should be dynamically

distributed over different PMs in order to reduce energy consumption.

One such solution is shown in Figure 1.7. In order to reach solution s1 from i, live

migrations need to be performed. The list of migrations are : VM5 from PM2 to PM3,

migration of VM1 from PM1 to PM2 and finally migrate VM4 from PM2 to PM1.

Dynamic VM placement is explained in detail in chapter 2.

8

Chapter 1 : Introduction

1.3 Literature Survey

Cloud computing is a very emerging topic and research is being conducted for energy

efficient cloud environment. Virtual machine placement is one of the main research topics

along with optimal resource allocation in cloud computing.

Urgaonkar et al. (41) in 2004 focuses on the application placement problem in a

distributed systems environment. The aim is to maximize the number of applications

which can be hosted on the distributed platform satisfying the resource constraints. Borst

et al. (6), Ali et al. (1) and Amoura et al. (2) studied various resource management

methods in the distributed systems environment (multi-server, multi-processor, grid).

Thiruvenkadam et al. (39) worked upon server overload which is one of the main

problems in virtual machine placement. Comparison is shown between the greedy algo-

rithm, round-robin algorithm and power save algorithm which are used for virtual ma-

chine placement. A new lively based scheduling algorithm is proposed which is quicker.

Do et al. (11) focuses on application profiling for managing cloud resources efficiently. A

Canonical Correlation Analysis (CCA) technique is presented which predicts application

usage depending on their past usages. This helps in efficient VM placement.

Kantarci et al. (21) propose a Mixed Integer Linear Programming (MILP) method

in order to place VMs on data centers (inter and intra placement) by virtualizing the

background topology. The main objective is to minimize power consumption accounting

CPU frequency, memory and bandwidth capabilities of the host machines. Dupont et al.

(12) use Constraint Programming (CP) technique to create a flexible and energy-aware

framework for VM placement in cloud federated DCs. The simulation proves that the

framework is energy efficient with a low computation time.

Xu et al. (46) use genetic algorithm to solve virtual machine placement problem. It

focuses on multi objectives, namely resource wastage minimization, power consumption

and cost of thermal dissipation minimization. Simulation proves that the proposed ap-

proach solves the conflicting objectives while the bin packing algorithms cannot. Chaisiri

et al. (8) propose an Optimal Virtual Machine Placement (OVMP) algorithm. The algo-

rithm considers future demand and price uncertainty while solving using Stochastic Inte-

ger Programming (SIP) to minimize the cost of hosting VMs in a multiple cloud provider

environment. The simulation results show the possibility of minimizing users’ budgets

using this algorithm.

Hyser et al. (18) address the dynamic VM placement problem which uses an existing

9

Chapter 1 : Introduction

mapping for the initial point and then new placement solutions are generated for load

balancing among hosts. Hermenier et al. (15) constructs the VM placement problem as a

constraint satisfaction problem with objectives as minimization of number of used servers

and migration costs. Khazaei et al. (23) proposed a technique for analysis based on an

approximate Markov chain model using M/G/m/m+ r queueing systems for evaluating

the performance of a cloud computation center. The author also published another work

(22) which models Cloud Computing Centers using M/G/m Queues.

In 2014, Xiao et al. (45) modeled the dynamic VM placement problem as an evolu-

tionary game theoretic problem. It cites the problems in other centralized decision mak-

ing algorithms which are being removed by the decentralized approach. One of the major

problems in centralized intelligent algorithms like genetic algorithm, is the production of

unreachable solutions from the existing mapping.

1.4 Research Motivation

Cloud computing is an emerging area which is helpful in providing energy efficient solu-

tion to distributed computing by the use of virtualization. Thus, virtual machine requests’

distribution over the hosts form an integral part of the cloud computing architecture. The

decision making process can be either centralized or decentralized, but the aim has to

be to provide energy efficient solutions. The motivation for this work can be listed as

follows.

• In order to provide energy efficient solutions, the objective is to use lesser number

of PMs for processing the user requests. But the machines should not function at

the maximum utilization. Thus, we need to find a solution which minimizes the

number of PMs used with lesser utilization such that it is energy efficient.

• The centralized decision making process takes more time and is less energy efficient

than the decentralized process. Thus game theoretic methods should be used in

order to provide optimal solution to the VM placement problem, thus achieving

Nash equilibrium.

• All the evolutionary algorithms like the genetic algorithm, simulated annealing al-

gorithm do not provide the migrations needed to reach the optimal solution to the

10

Chapter 1 : Introduction

dynamic VM placement problem, thus unreachable solutions are not taken care of

(45).

1.5 Problem Statement

The dynamic virtual machine placement problem has been solved by many researchers.

But they haven’t considered the live migrations and thus may provide unreachable solu-

tions to the problem. The primary objective of this research is to model a cloud computing

framework such that the dynamic virtual placement problem can be solved while provid-

ing the live VM migrations to be executed in order to reach the solution.

This can be elaborated as follows :

• The motive is to model the dynamic placement problem in such a way that the states

of virtual machines and physical machines are taken into account. Also the list of

executable live VM migrations must be provided so that the optimal solution can

be obtained.

• The problem if solved using centralized evolutionary techniques has a risk of pro-

viding unreachable solutions. Thus, decentralized approach using congestion game

model must be used in order to provide the solutions to the dynamic virtual machine

placement problem.

• In real world scenario, physical machines may act selfishly and do not cooperate

to achieve an optimal solution to the problem. Thus both cooperative and non-

cooperative approaches should be discussed in order to reach to an optimal solution.

The solution to the dynamic VM placement problem is to achieved taking into con-

sideration the following constraints :

• Capacity Constraint - This condition ensures that the total resource requirements

of all the VMs running on a specific PM should be less than or equal to the total

resource availability of that particular PM.

• Placement Constraint - This constraint checks the criteria that a virtual machine

should run on only a single physical machine.

• SLA Constraint - The cloud model to be incorporated in the real world should follow

QoS parameters. Thus the service level agreement constraint keeps a tab on the

11

Chapter 1 : Introduction

QoS parameters enlisted in the agreement and ensures that they are not violated

when providing the optimal solution.

1.6 Research Contribution

The major contributions of this thesis can be written as:

• An energy consumption model is built to calculate the total energy consumption by

physical machines, keeping in mind many factors. Then a decentralized approach

is taken using cooperative game theory to optimally place virtual machines onto

physical machines dynamically so as to minimize the energy consumption.

• During the decentralized decision making process, it may so happen that the phys-

ical machines act in a selfish manner and do not cooperate with each other to arrive

at an optimal solution. Thus in this work, non-cooperative game theoretic approach

is also proposed to provide optimal solution to the dynamic virtual machine place-

ment problem.

1.7 Organization of Thesis

In this chapter, a summarized idea of cloud computing and virtual machine placement is

given along with the literature survey. We even discuss the motivation and the problem

statement. The remainder of the thesis has the following organization:

Chapter 2: A brief concept of dynamic VM placement problem and a literature survey

of the existing research in dynamic VM placement problem are mentioned in this chapter.

Chapter 3: In this chapter, we have shown the solution to the dynamic VM placement

problem in a cooperative game theoretic approach.

Chapter 4: This chapter provides a non-cooperative game theoretic approach in order

to reach an optimal solution to the dynamic VM placement problem.

Chapter 5: We draw the conclusion of our research work and also give some points

for the future work in this chapter.

12

CHAPTER 2

BACKGROUND AND PROBLEM FORMULATION

2.1 Introduction

VM placement problem can be distinguished into two kinds - static VM placement and

dynamic VM placement. The cases during which static placement of VMs is considered

are during system startup, or creation of new VMs which are to be placed onto PMs with-

out any movement of existing VMs, or when VMs are shut down. Static placement is

normally used during initial stages in offline mode, which may not be altered for pro-

longed time periods. But static VM placement does not consider the states of VMs and

PMs; also the rate of arrival for user requests is not dealt with.

Dynamic placement of VMs modifies the mapping of VMs onto PMs dynamically at

regular time intervals in order to provide optimal performance of the machines and not

violating the Service Level Agreement (SLA). In this chapter, dynamic VM placement

problem has been explained and then a detailed literature survey is given about the pre-

vious solutions to the VM placement problem. Also an energy consumption model is

built which takes into consideration three sections of energy consumption, namely energy

consumption of physical machines during different states, consumption of energy during

state transitions and energy usage during live VM migrations.

2.2 Dynamic VM Placement in Cloud Computing

Dynamic placement of VMs places VMs based on an existing mapping which is in con-

trast to the static placement of VMs which starts with no mapping. Dynamic VM place-

ment aims to reach optimal solutions from the existing mapping at minimum cost. This

would not shut down or stop the already running VMs, thus the placement solution should

13

Chapter 2 : Background and Problem Formulation

provide the list of live migrations to be executed in order to reach the optimal state from

the existing state. The whole process is in contrast to the static placement of VMs where

VMs can be stopped and restarted which increases the energy consumption and thus de-

grades the complete system performance. In order to execute dynamic placement of VMs,

states of physical machines should also be considered.

Figure 2.1: Initial Solution i

Figure 2.2: Target Solution s1

Figure 2.3: Target Solution s2

Dynamic VM Placement problem can be illustrated in Figures 2.1, 2.2 and 2.3. Figure

2.1 shows the initial solution i for the dynamic VM placement problem. Distribution

of seven VMs over four PMs is shown. PM4 is in off state since no VM is running

on it. Assuming that all the PMs have same amount of resources, the VMs should be

dynamically distributed over different PMs in order to reduce energy consumption. One

14

Chapter 2 : Background and Problem Formulation

such solution is shown in Figure 2.2. In order to reach solution s1 from i, live migrations

need to be performed. The list of migrations are : VM5 from PM2 to PM3, migration

of VM1 from PM1 to PM2 and finally migrate VM4 from PM2 to PM1. We can reach

another solution s2 from i as shown in Figure 2.3. Since there isn’t much space in PM1

and PM2 for the direct interchange of VM1 and VM3, there needs to be an involvement

of PM3. Thus the migrations needed for solution s2 to be reached are : the extra migration

of VM3 from PM2 to PM3, VM1’s migration from PM1 to PM2 and migrating VM3

from PM3 to PM1. But in order to reach s2 from i will result in more cost than to reach

solution s1 from initial placement i because of the migrations involving larger VMs. VM1

and VM3 could have been stopped and restarted in order to facilitate direct interchange

but that would involve more cost. Also the involvement of PM4 for the interchange of

VM1 and VM3 would result in higher costs since it would then consider the cost of state

change for PM4.

2.3 Related Work

There is existing research concerned with finding solutions to the dynamic VM placement

problem.

Hyser et al. (18) in 2007 studied the virtual machine placement scenario by developing

an autonomic controller which dynamically maps the virtual machines onto the physical

machines by following the users’ policies. This work also differentiated the static VM

placement and dynamic VM placement. The algorithms dealing with static VM placement

start with a clean slate, that is no initial mapping. For example, loading goods from

warehouse onto empty trucks. There isn’t any need for these algorithms to consider the

intermediate steps or the number of moves taken to reach the final state. This is in sharp

contrast to the algorithms dealing with dynamic VM placement problem which must find

optimal solutions from an initial mapping not a clean slate. In continuation with the

same example as above, all the items are already loaded in the trucks. There isn’t any

warehouse. An optimal solution has to found with all executable migrations of items

from one truck to another without violating any constraints.

In 2007, Wood et al. (43) presented a system called Sandpiper, which was was used for

automatic monitoring and detection of system hotspots. It also provided a new mapping

of VMs onto physical hosts and initiated the migrations too. Algorithms for hotspot

15

Chapter 2 : Background and Problem Formulation

detection focuses on signaling a need for migration of VMs whenever SLA violations are

detected either implicitly or explicitly. In the same year, Bobroff et al. (5) implemented

an algorithm based on first-fit approximation to find solution to the problem of dynamic

VM placement having the goal of price minimization. The problem was mapped as a

bin packing one where the minimum number of PMs to be needed for the VMs was

calculated and then a remapping was done for VMs onto PMs. The main disadvantage of

the algorithm was that, it didn’t look for unreachable solutions from the initial mapping.

A two phase process was developed by Hermenier et al. (16) in 2009 in order to

find solutions to the dynamic VM placement problem. The consolidation manager named

Entropy found solutions in two phases. The first phase finds out a placement keeping

in mind the constraints, VM set and the CPU requirements. It also provides the likable

configuration plan to achieve the desired mapping. The second phase tries to improve the

result computed in the first phase. It takes into account a refined set of constraints and

tries to minimize the number of migrations required. However very simple parameters are

considered in this work and also server consolidation is not taken as a factor.

Liao et al. (28) in 2012 affirmed that dynamic VM placement problem faced three ma-

jor challenges; multi-dimensional constraints, the initial state and the intermediary steps.

They proposed a system called GreenMap which was a VM-based management frame-

work to be able to execute live VM migrations considering the resource consumption

of servers and energy consumption. Simulated annealing based heuristic is used for the

optimization problem under the constraint of multi-dimensional resource consumption.

The two objectives namely, reduction in energy consumption and performance degrada-

tion are balanced to give the desired output. But the GreenMap system doesn’t address

heterogeneous physical hosts which invariably form the real life server clusters.

2.4 Problem Formulation

There are P Physical Machines (PMs). Every PM has a state associated with it. The states

included are : 1 = off, 2 = idle, 3 = ready and 4 = running. Thus we use an array PMS (1

X P) to specify the current state of a PM. For every PM, there are R different resources.

Thus we use an array PMR (R X P) to specify the amount of resources that every PM

has. Thus PMRij specifies the amount of resourcei that PMj has.

If there are V number of Virtual Machines (VMs), then an array VMR (R X V) is

16

Chapter 2 : Background and Problem Formulation

created in order to forecast requirement of resources for VMs for a certain period of time.

Thus VMRij indicates the requirement of ith resource by the jth VM. For all the V VMs,

we require I number of performance indicators. In order to represent the performance

requirements, we create an array VMP (I X V), where VMPij is the requirement of the

ith performance indicator for the jth VM.

The result of the virtual machine placement problem is stored in a mapping array M

(P X V). Mij can hold values 0 or 1. The value 1 indicates that jth VM is placed at the ith

PM, while the value 0 shows that jth VM is not running on the ith PM. We also require an

array MP (I X V) which indicates the level of performance of all the VMs. MPij means

the jth VM is performing at the ith level for a particular solution to the VM placement

problem.

The VM placement problem aims to optimize the targeted features of the system by

satisfying all the constraints. Performance optimization and cost optimization are the

essential objectives of the dynamic VM placement problem. Performance optimization

comes at an increased cost; thus most users do not aim for optimal performance as long

as Service Level Agreement (SLA) is met. The SLA can be modeled as constraints which

reduces the dynamic VM placement problem as a single objective problem focusing on

cost optimization. Since reduction in energy consumption is the main part of the cost, we

use it as the optimization objective.

The VM dynamic placement problem based on energy consumption (EC) (VDPPEC)

can be formulated as follows:

V DPPEC = min EC(M) (2.4.1)

such that,

Cri ≤ PMRri

(Cri = VMR × M ′ ; r = 1, 2,, R ; i = 1, 2,, P)
(2.4.2)

P∑
i=1

Mij = 1 (j = 1, 2,, V) (2.4.3)

MPiv ≥ VMPiv (i = 1, 2, , I; v = 1, 2, , V) (2.4.4)

17

Chapter 2 : Background and Problem Formulation

Equation 2.4.1 shows the optimization objective of the VM dynamic placement prob-

lem, i.e. minimization of energy consumption (EC) for a particular placement solution

(M).

The solution is arrived upon satisfying all the three constraints as shown in equations

2.4.2, 2.4.3 and 2.4.4. Equation 2.4.2 is the capacity constraint which checks the condi-

tion where the total resource requirements of the VMs running on a particular PM should

be lesser than or equal to the total available resources of the specific PM. M ′ is the trans-

position of the mapping matrix (M). Placement constraint is represented in Equation 2.4.3

which states that a VM should run on only one PM. Equation 2.4.4 shows that the SLA

should be met in VM placement solution.

2.4.1 Energy Consumption Model

The major part of energy consumption in a data center is produced by PMs which are

running. There are other causes of energy consumption such as cooling apparatus but

they form a much lesser percentage. Here we focus on the energy consumption or PMs

which is divided into three sections.

Energy consumption in different states

Existing research indicates that energy consumption can be minimized by the adjustment

of the states of PMs. Here 4 states of a PM are considered.

• off - This state consumes no energy.

• ready - PM is on but there are no active VMs on it. This state wastes energy con-

sumption if PM is kept in this state for a long time. But if PM is switched off, much

energy and time will be wasted to turn the PM back on to ready state.

• idle - This state exists as a result of a trade-off between off and ready states. PMs

in this state consumes lesser energy than PMs in ready state. Also lesser time and

energy will be required to turn a PM on from idle state to ready state.

• running - This state consumes the maximum energy.

The states and the transitions allowed are shown in Figure 2.4.

18

Chapter 2 : Background and Problem Formulation

Figure 2.4: States and their transitions

It is observed that energy consumption varies according to load changes in a PM (46).

Thus energy consumption of a PM depends on the PM’s utilization. Thus the energy

consumption for a PM can be modeled as:

EC(t) = FE × t + x × L(t)y (2.4.5)

In equation 2.4.5, EC(t) represents the energy consumed in time period t, FE is the

energy consumption that is fixed per unit time, L(t) is the load of PM in time t, and x and

y are the energy adjusting coefficients.

The above equation can be modified for modeling energy consumption of the ith PM

in a particular state, since the fixed energy consumption of a PM in every state is different.

ECi(t) = FEi(PMSi) × t + xi × Li(t)
yi (2.4.6)

Equation 2.4.6 calculates the energy consumption of PMi in time period t. FEi(PMSi)

is the fixed energy consumption per unit time of PMi in state PMSi. Li(t) is the load

of PMi for time period t, while xi is the energy coefficient of the ith PM and yi is the

relationship between load and energy of PMi.

Energy consumption during state switch

Following rules are maintained while calculating energy consumption during switching

of states of a PM.

• Energy consumption during switching between running and ready states can be

ignored.

• State switching between off and ready states is slower than switches between idle

and ready states.

• Switching off a PM costs lesser than keeping the PM in idle state.

19

Chapter 2 : Background and Problem Formulation

Thus we use an array ECS (P X 4) to store the energy consumption of state switches

since it is fixed for a particular state transition for a specific PM. The energy consumption

during state switching of PMi according to the array ECS can be seen in Figure 2.5.

Figure 2.5: Energy consumption of state switching

Energy consumption during live VM migrations

The consumption of energy during live virtual machine migrations are of three parts;

• Energy consumption by the source PM for preparation for migration.

• Energy consumption by the target PM for reception and rebuilding of the migrated

VM.

• Energy consumption by other physical equipment during VM migration.

We maintain three arrays in order for energy consumption during live VM migration.

EV S (P X V) denotes the energy consumption by source PM during migration.

EV Sij is the energy consumed by PMi for moving VMj out.

EV T (P X V) denotes the energy consumption by target PMs for receiving the mi-

grated VMs. Thus, EV Tij is the energy consumed by PMi for receiving the migrated

VMj .

EVX (P X P X V) is a three dimensional array which denotes the energy consumption

during migration. Thus EVXijk is the energy consumed during migration of VMk from

PMi to PMj .

Thus the energy consumption during live VM migrations can be modeled as follows:

EV Sij = αi × SZj + βi (2.4.7)

EV Tkj = αk × SZj + βk (2.4.8)

20

Chapter 2 : Background and Problem Formulation

EVXkj = γik × SZj (2.4.9)

where, αi, βi, αk, βk and γik are energy adjusting coefficients and SZj is the size of VMj .

The overall energy consumption model

The energy consumption due to the switching of states during the entire migration process

can be simplified. On comparison of the array PMS before and after the whole migration

process, an array PMST (4 X P) can be derived, which represents the state switching of

all PMs. Thus,

• PMST1j = 1 means PMj need state transition from off to ready.

• PMST2j = 1 means PMj need state transition from idle to ready.

• PMST3j = 1 means PMj need state transition from ready to idle.

• PMST4j = 1 means PMj need state transition from idle to off.

Thus the total energy consumption by state switching of PMs (EPS) for a particular

solution (M) of the VM placement problem can be calculated as:

EPS(M) =
P∑
i=1

4∑
k=1

(ECSik × PMSTki) (2.4.10)

In order to calculate the total energy consumption during live migration, we create 3

arrays by comparing the array M before and after migration. Array VMLM (P X P X

V) is created to show the live migrations for all the VMs. Thus, VMLMikj = 1 means

that VM ′
js migration from PMi to PMk is needed. Similarly 2 other arrays VMS (P

X V) and VMT (P X V) are created to show the sources of migrations and their targets

respectively. Thus VMSij = 1 means that VMj is migrated from PMi and VMTkj = 1

means that VMj is migrated to PMk.

Thus the total energy consumption during migration of VMs (EVM) for a particular

solution (M) can be calculated as:

EVM(M) =
P∑
i=1

V∑
j=1

(EV Sij × VMSij)+
P∑
k=1

V∑
j=1

(EV Tkj × VMTkj)

+
P∑
i=1

P∑
k=1

V∑
j=1

(EVXikj × VMLMikj)

(2.4.11)

21

Chapter 2 : Background and Problem Formulation

The total energy consumption by all the PMs in different states (EPM) for a particular

solution (M) can be given as:

EPM(M) =
P∑
i=1

ECi(t) (2.4.12)

Thus the total energy consumption by the VM placement problem (TEC) from initial

solution M ′ to solution M can be denoted as:

TEC(M) = EPS(M) + EVM(M) + EPM(M) − EPM(M ′) (2.4.13)

where, EPM(M ′) is the energy consumption of all PMs under initial solution M ′.

2.4.2 Solution to Dynamic VM Placement Problem

Dynamic virtual machine placement problem is NP-hard. There has been existing re-

search where attempts have been made to map the dynamic VM placement problem to

bin-packing problem which led to the development of evolutionary algorithms like, ge-

netic algorithms or particle swarm optimization algorithm. As explained in Section 2.2,

many problems arise when VMs have to be placed dynamically. While the evolutionary

algorithms like genetic algorithms tries to provide optimal solutions to the problem, there

may be solutions which are unreachable.

Figure 2.6: Unreachable Solution

Figure 2.6 shows an example of unreachable solution to the dynamic VM placement

problem. Figure 2.6(a) shows the placement of 4 VMs onto 2 PMs which form the initial

22

Chapter 2 : Background and Problem Formulation

solution sol0. The optimal solution sol is shown in Figure 2.6(b) which brings down

the energy consumption by a considerable amount. But the solution is unreachable since

there is no executable migration route from (a) to (b). In order to achieve the solution, a

third PM has to be switched on to handle the migrations which will again consume more

energy. Thus, in case of evolutionary algorithms, judgment has to be made whether the

optimal solution is reachable or not.

In this thesis, decentralized decision making is used with the help of congestion game

theory in order to find solutions to the dynamic VM placement problem. In Congestion

Games, a group of players is modeled to share a resource set. Every player selects a

subset of resources from the resource set in order to maximize the payoff (32). Here, PMs

will be modeled as players which will select a subset of VMs from the VM set in order to

minimize the consumption of energy. Nash Equilibrium is attained after a finite number

of iterations. This intelligent algorithm uses the initial mapping to obtain the optimum

solution and also generates the list of executable VM live migrations to reach the optimal

state. Thus no solution is unreachable.

2.5 Conclusion

In this chapter, the dynamic virtual machine placement problem has been discussed in

detail. Also, the already existing work concerned with finding solutions to the dynamic

VM placement problem is discussed. The problem statement is formulated along with the

discussion that the problem will be solved in this thesis in a decentralized manner with

the help of congestion game theory. The next chapter focuses on finding solutions to the

dynamic VM placement problem in cooperative game theoretic manner.

23

CHAPTER 3

COOPERATIVE GAME THEORY FOR DYNAMIC VM

PLACEMENT

3.1 Introduction

Minimization of power consumption in data centers has become one of the major prob-

lems in recent times. It has been observed that one of the most effective ways to save

power consumption is to optimize the VM placement dynamically in a virtualized data

center.

Decentralized approach is used for the dynamic placement of VMs over PMs in order

to optimize the energy consumption. A novel algorithm based on congestion game theory

has been proposed to solve the VM placement problem. It is proved that the algorithm

reaches Nash Equilibrium in polynomial time. Also the algorithm can take an initial

mapping as input and produce a list of live VM migrations as an output. It is considered

in this chapter that all the physical machines cooperate with one another to achieve the

optimal solution; thus cooperative game is used among physical machines.

3.2 Game Theory

Turocy et al. (40) defines game theory as the formal study of cooperation and conflict.

Hotz (17) describes a game as a set of players and their possibilities to play the game by

following some rules (strategies). The players can be individuals, agents or organizations.

The main subject of game theory are the situations where the result is mattered not only

by the decision of a single player but others as well.

24

Chapter 3 : Cooperative Game Theory for Dynamic VM Placement

The earliest instance of formal game theoretic analysis is Antoine Cournot’s study

of duopoly in 1838. In 1921, a formal theory of games was suggested by Emile Borel.

This was further studied upon by John von Neumann’s theory of parlor games in 1928.

The basic terminology and setup of game theory was established in Theory of Games and

Economic Behavior by von Neumann and Oskar Morgenstern in 1944. John Nash in 1950

showed that the games with finite number of players always have a point of equilibrium

where the players choose their best strategy taking into consideration the strategies of

other players. This equilibrium is known as Nash Equilibrium named after John Nash.

This pivotal point in non cooperative game theory has been used in various fields from

sociology, biology to computer science.

3.2.1 Types of Game Scenarios

There are mainly two types of game scenarios:

• Cooperative Game

• Non-Cooperative Game

Cooperative Game

Xhafa et al. (44) defines cooperative game as the game scenario where players form

coalitions in advance to discuss their actions. Cooperative game theory investigates such

coalition games by studying how successfully a coalition divides its proceeds (40).

The applications of cooperative game theory is mainly seen in cases related to political

science or international relations. In cloud computing, cooperative game theory is used

when data centers are managed by a single service provider or the providers form a coali-

tion such that the strategies of virtual machine placement are known by all the physical

machines and respective actions are taken to maximize the payoffs of all the SPs.

Non-Cooperative Game

The term non-cooperative implies that this type of game models the process of players

who are making choices thinking about their own interest.

25

Chapter 3 : Cooperative Game Theory for Dynamic VM Placement

The non cooperative game theory relates to realistic cloud computing where the ser-

vice providers do not form coalitions and a decision is made considering the selfish actions

of individual providers who want to maximize their profit.

3.2.2 Games in Normal Form

The representation of a game in normal form or strategic form is (19):

• The set of players N = {1 n}.

• Player i has a set of actions ai which are normally referred to as pure strategies.

• The set of all pure strategies is denoted by a = (a1 an).

• Player i has a payoff represented as the function of the action vectors is denoted by

ui : A → IR where ui(a) is i’s payoff if a is the strategy taken.

Normal form games are often represented in the form of a table. The most common

example is prisoner’s dilemma represented in Figure 3.1.

Figure 3.1: A prisoner’s Dilemma Game

In prisoner’s dilemma, the number of players is two with each having two pure strate-

gies, where ai = {C,D}; C is for cooperate and D is for defect. C indicates the payoff

to the row player (player 1) as a function of the pair of actions, while D is the payoff to

the column player (player 2). The game is explained as follows. Both the players are

caught committing a crime and are investigated in different cells in a police station. The

prosecutor comes to each of them and tells each of them:

If you provide a confession and accept to testify against the other; and if the partner

doesn’t confess; you will be set free. If both of you accept committing the crime, you will

both be sent to jail for two years. If you do not accept committing the crime but your

partner does, you will be given a sentence of three years imprisonment. If none of you

26

Chapter 3 : Cooperative Game Theory for Dynamic VM Placement

confess; only one year punishment will be given due to the lack of evidence.

So the payoff matrix shows the imprisonment time in years. The term cooperate means

that the partners cooperate with each other. The term defect means that you are accepting

the crime and agreeing to testify, and so you are breaking the agreement which you two

have.

3.2.3 Nash Equilibrium

If a set of strategies for the players constitute a Nash Equilibrium, it means that none of

the players can benefit by altering his/her strategy unilaterally.

A strategy ai is a best reply, also known as a best response, of player i to a set of

strategies a−i ∈ a−i for the other players if

ui(ai, a−i) ≥ ui(a
′
i, a−i) ; ∀ a′i (3.2.1)

A profile of strategies a ∈ A is a pure strategy Nash equilibrium if ai is a best reply to ai

for each i. That is, a is a Nash equilibrium if

ui(ai, a−i) ≥ ui(a
′
i, a−i) ; ∀ i, a′i (3.2.2)

A pure strategy Nash equilibrium only states that the action taken by each agent be the

best against the actual equilibrium actions taken by the other players, and not necessarily

against all possible actions of the other players.

In prisoner’s dilemma, Nash Equilibrium occurs if both player 1 and 2 cooperate (C).

If any of the players change his/her strategy, no player can benefit.

3.3 Literature Survey for Cooperative Game Theory

The process flow in centralized cloud computing is shown in Figure 3.2. Users on ac-

cessing services provided by the cloud service providers, send requests to the request

manager. The request manager has information of the details of every request. These de-

tails are given to the data center controller which has information of all the DCs provided

27

Chapter 3 : Cooperative Game Theory for Dynamic VM Placement

by the individual DC managers. The DC controller takes a centralized decision with re-

spect to both the information (request details and data center details) and then sends the

request to a particular data center manager. Data center manager thus has the details of

the request queue sent to that particular data center by data center controller. It fetches

the information of all the PMs present in the data center from the Hypervisor (Virtual

Machine Monitor). A centralized decision is taken by the data center manager and the

requests are sent to hypervisors which process the requests in virtual machines thus im-

plementing virtualization. The request is processed and response is given back to the user

by the response manager. This explains the two tier central decision making in cloud

computing.

Figure 3.2: Centralized Decision Making in Cloud Computing

In decentralized decision making, the two tier decision making process is taken by the

players. In the first tier, decision to distribute requests over data centers are taken by all

the data center managers which act as players. Next the players are the physical machine

which take the decision to optimally place virtual machines. The players may or may not

cooperate with each other in order to make a decision. In this thesis, the decentralized

decision making is implemented using game theory. Various works have already been

done in the field of cooperative game theory in cloud computing.

Wei et al. (42) uses cooperative game theory in order to find solution of the QOS

constrained problem of allocation of resources. Here problem solution is done in 2 steps.

First optimal problem solution is done by every participant independently without re-

28

Chapter 3 : Cooperative Game Theory for Dynamic VM Placement

source multiplexing. Next a mechanism is designed by considering strategies which are

multiplexed, of all the players. Existence of Nash Equilibrium is shown if resource allo-

cation problem has feasible solutions. This paper creates a useful analytical tool for the

solution of optimal scheduling problem.

No consideration for multi-tier architecture of web services and lack of emphasis on

stable placement of applications are the drawbacks in (42). These disadvantages are re-

moved by Lee et al. (27) where an evolutionary approach of game theory is designed

for stable and adaptive placement of applications. This paper implements Nuage which

uses an evolutionary game theoretic approach in order for stable adaptive deployment of

applications. The main goal of this work is to N applications on M hosts with the goal

that applications adapt their locations and allocation of resources is done on the basis

of resource and workload availability. In this work only CPU time share is considered

for assignment of resources to each VM. Resources such as memory space and network

bandwidth should also be considered for allocation of resources. Also there isn’t any

comparison of the evolutionary game theory with existing optimization algorithms.

General colocation game and process colocation game were introduced by Londoño et

al. in (29) in order to distribute resources to infrastructure providers. This work considers

a cooperative game theoretic framework where the objectives for resource management

were to maximize resource utilization and minimize total cost of the allocated resources.

The work also proves that achieving nash equilibrium is NP-complete. The main draw-

backs of this this work are though it provides best response computation, it is an expen-

sive framework. Also it does not consider P2P systems to optimize resource management

without the need for central authority.

Cooperative VM management for multi-organization environment in cloud computing

was done by Niyato et al. (34). Three types of resources are considered for VM manage-

ment; private cloud, on-demand plans and reservation of public CSP. The algorithm works

in two steps. First an optimization model is formulated for cooperative organizations and

optimal VM allocation problem is solved in order to minimize the total cost. Then net-

work game is used to analyze the cooperative framework. This work doesn’t consider the

stochastic nature of demand.

Resource allocation in Horizontal Dynamic Cloud Federation Platform (HDCF) envi-

ronment is studied by Hassan et al. (14). The work presents a cost effective and scalable

solution to the resource allocation problem using game theory. It studies both cooperative

and non-cooperative resource allocation games as well as both decentralized and central-

29

Chapter 3 : Cooperative Game Theory for Dynamic VM Placement

ized algorithms are presented in order to find optimal solutions. The major drawback

in this framework is that it doesn’t take into consideration the dynamic nature of clouds

where hundreds of clouds leave and join the federation in a dynamic manner.

Mao et al. (31) worked upon the problem of cloud service deployment by modeling it

as a congestion game. Only cost and quality of resources were considered. Every service

acts as a player which chooses a subset of resources for the maximization of his payoff. It

is shown that Nash equilibrium is reached in polynomial time. This work can be further

implemented in seeking solution to the placement of multiple cooperative heterogeneous

components over many cloud services.

New resource allocation game models (CT-RAG, CS-RAG) were introduced for prob-

lem solving in cloud computing by Sun et al. (37). Existence of Nash equilibrium is

shown but the work considers static game with no representation of fairness of tasks. The

problem of allocation of resources for PMs in cloud computing based on the uncertainty

principle of game theory and coalition formulation was studied by Pillai et al. (35). It is

shown that the solution gives higher request satisfaction and better resource utilization.

3.4 Observations

Table 3.1: Cooperative Game Theory in Distributed Resource Management

Researcher Game Environment Work

2009

Wei et al. (42) Cooperative Cloud Solves QOS constraint resource problem

by two step method and shows the exis-

tence of Nash equilibrium for an alloca-

tion game feasible solutions.

Londono et al.

(29)

Cooperative Cloud Introduces both General Colocation

Game (GCG) and Process Colocation

Game (PCG) for the solution to re-

source management problem in cloud

computing.

30

Chapter 3 : Cooperative Game Theory for Dynamic VM Placement

2010

Lee et al. (27) Cooperative Cloud Game theoretic approach to stable and

adaptive application placement in cloud

environment considering multi-tier archi-

tecture. The work considers only CPU

time share for application deployment.

Xhafa et al.

(44)

Grid Presents a survey of the game theoretic

models used for allocation of resources in

grid systems and their solution using meta

heuristic models.

2011

Niyato et al.

(34)

Cooperative Cloud Formulates model for optimal virtual ma-

chine allocation in cooperative organiza-

tions to minimize the total cost. The

stochastic nature of demand is not consid-

ered.

Niyato et al.

(33)

Cooperative Cloud Studies the cooperative behaviors of mul-

tiple cloud providers to present a hierar-

chical model of cooperative game. So-

lution is obtained using stochastic linear

programming game model.

Hassan et al.

(14)

Cooperative

and Non-

cooperative

Cloud Studies both cooperative and non-

cooperative games for the allocation

problem of resources in HDCF plat-

form presenting both centralized and

decentralized algorithms.

2012

Ge et al. (13) Mobile Cloud Formulates the congestion game model in

order to find the solution to the energy

minimization problem in mobile cloud

computing. Existence of Nash Equilib-

rium is proved.

31

Chapter 3 : Cooperative Game Theory for Dynamic VM Placement

Lu et al. (30) Cooperative Cloud Cooperative sharing of the resource and

revenue in a cloud federation environment

is considered from the game theoretic per-

spective. Cloud providers form coalition

in order to increase profit and resource

utilization.

2013

Mao et al.

(31)

Cooperative Cloud The cloud service deployment problem is

modeled as a congestion game with price

and quality as the performance objectives.

Each service is treated as a player which

selects a subset of resources to maximize

payoff.

2014

Sun et al. (37) Cooperative Cloud Group participation game strategy is pro-

posed for resource allocation problem.

Two game models namely CT-RAG and

CS-Rag are discussed. This work consid-

ers only static game with CPU as the sole

resource.

Pillai et al.

(35)

Cooperative Cloud Solution to resource allocation problem is

obtained based on formation of coalition

among agents and the uncertainty princi-

ple of game theory. This results in better

utilization of resources.

3.5 System Model

With increasing dependence on Cloud Service Providers (CSP) by consumers for comput-

ing needs, there has been an enhanced requirement of a specific level of QoS which has

to be followed by the CSPs. CSPs aim to meet the QoS parameters which are specified

in the negotiated Service Level Agreement (SLA). Thus, an improved cloud architecture

32

Chapter 3 : Cooperative Game Theory for Dynamic VM Placement

has to be developed which will cater to the needs of the consumers as well as the CSPs.

The problem model that has been used in this chapter is depicted in Figure 3.3.

Figure 3.3: Proposed System Model

The cloud architecture being referred here has many entities. Users or brokers which

act on the behalf of users, submit their requests to the cloud data center. SLA Resource

Allocator provides the platform between the CSP/DC and the user/broker. On submission

of a user request, the Service Request Examiner checks the request for QoS requirements’

parameters to decide whether or not to accept the user request. It makes sure that no

overloading occurs by keeping a tab on the availability of resources obtained from the VM

Monitor and already available system resource usage from the Service Request Monitor.

Keeping these in mind, the examiner assigns the user requests to VMs and decide the

requirements of resources for the allotted VMs.

VM requirements are given in the form of a vector x.(−→cpu) + y.(−−−→mem) + z.(−−−→cores),

where −→cpu is the CPU requirement in GHz, −−−→mem is the memory requirement in GB and
−−−→cores is the requirement for the number of cores. x, y and z are the multiplying factors

constraint to x+ y + z = 1

The VM Monitor keeps a check on the VMs’ availability and resource requirements.

Dispatcher begins executing the accepted user requests on the allotted VMs. Service

Request Monitor keeps a check on the progress of the execution of the service requests.

33

Chapter 3 : Cooperative Game Theory for Dynamic VM Placement

All Physical Machines (PMs) have a PM Controller which accepts the VM Request

queue sent from the dispatcher. The PM Controllers are as players for the cooperative

game theory which take the decision on the dynamic VM placement problem in order to

minimize energy consumption.

3.6 Problem Statement

Figure 3.3 refers to the system model which is used in order to find the solution to dynamic

VM placement problem.

There are n Physical Machines (PMs). Every PM has a state associated with it. The

states included are : 1 = off, 2 = idle, 3 = ready and 4 = running. Thus we use an array

PMS (1 X P) to specify the current state of a PM. For every PM, there are 3 resources,

namely CPU (GHz), Memory (GB) and number of cores. Thus we use an array PMR

(3 X n) to specify the amount of resources that every PM has. Thus PMRij specifies the

amount of resourcei that PMj has. The dynamic VM placement problem in this chapter

is solved by Cooperative Game Theory where the players are the physical machines. Thus

the resource status information is shared by all the PMs which aids in the problem solving

process.

There are Vi number of VMs in PMi. Let the maximum number of VMs present in

one particular PM be maxV .

maxV = max(Vi) ; 1 ≤ i ≤ n (3.6.1)

VM requirements are given in the form of a vector x.(−→cpu) + y.(−−−→mem) + z.(−−−→cores),

where −→cpu is the CPU requirement in GHz, −−−→mem is the memory requirement in GB and
−−−→cores is the requirement for the number of cores. x, y and z are the multiplying factors

constraint to x+ y + z = 1.

Thus a 3-dimensional array VMR (3 X maxV X n) is created in order to forecast

requirement of resources for VMs for a certain period of time. Thus VMRijk indicates

the requirement of ith resource by the jth VM residing in kth PM. For all the V VMs

where V =
n∑
i=1

Vi, we require I number of performance indicators. In order to represent

the performance requirements, we create an array VMP (I X V), where VMPij is the

requirement of the ith performance indicator for the jth VM. This performance indicator

34

Chapter 3 : Cooperative Game Theory for Dynamic VM Placement

acts as the SLA indicator.

The result of the virtual machine placement problem is stored in a mapping array M

(P X V). Mij can hold values 0 or 1. The value 1 indicates that jth VM is placed at the ith

PM, while the value 0 shows that jth VM is not running on the ith PM. We also require an

array MP (I X V) which indicates the level of performance of all the VMs. MPij means

the jth VM is performing at the ith level for a particular solution to the VM placement

problem.

The VM dynamic placement problem based on energy consumption (EC) (VDPPEC)

can be formulated as follows:

V DPPEC = min TEC(M) (3.6.2)

where,

TEC(M) = EPS(M) + EVM(M) + EPM(M) (3.6.3)

such that,

Cri ≤ PMRri

(Cri = VMR × M ′ ; r = 1, 2,, R ; i = 1, 2,, P)
(3.6.4)

P∑
i=1

Mij = 1 (j = 1, 2,, V) (3.6.5)

MPiv ≥ VMPiv (i = 1, 2, , I; v = 1, 2, , V) (3.6.6)

Equation 3.6.2 shows the optimization objective of the VM dynamic placement prob-

lem, i.e. minimization of energy consumption (EC) for a particular placement solution

(M).

The solution is arrived upon satisfying all the three constraints as shown in equations

3.6.4, 3.6.5 and 3.6.6. Equation 3.6.4 is the capacity constraint which checks the condi-

tion where the total resource requirements of the VMs running on a particular PM should

be less than or equal to the total available resources of the specific PM. M ′ is the transpo-

sition of the mapping matrix (M). Placement constraint is represented in Equation 3.6.5

which states that a VM should run on only one PM. Equation 3.6.6 shows that the SLA

should be met in VM placement solution.

35

Chapter 3 : Cooperative Game Theory for Dynamic VM Placement

3.7 Optimization Algorithm for VDPPEC

In this section, the algorithm based on congestion game theory for cooperative physical

machines has been discussed which is used for solving the dynamic VM placement prob-

lem. In order for better convenience for description of the algorithm, the symbols along

with their meanings have been listed in Table 3.2.

The algorithm is executed dynamically whenever any SLA constraint is violated. The

status of all the physical machines is shared by all the players. Thus, it is cooperative

game theory.

Table 3.2: List of symbols and their meanings

Symbols Meanings
n Number of physical machines
V Number of virtual machines
ρn Initial mapping of V VMs onto n PMs
δn Optimal mapping of V VMs onto n PMs after dynamic VM

placement
δαp−1 A strategy α for PMp−1
ϑ 3-dimensional matrix (n X n X V) showing the live migra-

tions to be executed. Thus, ϑikj = 1 means that VM ′
js

migration from PMi to PMk is needed.
S Strategy Matrix to store the collection of strategies for all

the PMs. Thus Sij means the jth strategy for the ith PM.
payoffi(δ

α
i) Total Energy Consumption if strategy α of PMi is taken.

Algorithm 1 is the calling module. Is takes the initial mapping of V virtual machines

onto n physical machines as input and produces the best strategy or the optimal mapping

with minimum energy consumption as the output. Also the the migrations needed to reach

to the optimal solution is given as output.

The algorithm uses the congestion game model which models a resource set being

shared by a group of players. Here every player selects a subset of resources from the

resource set in order to maximize his own payoff; here maximizing the payoff means

minimizing the energy consumption. Here, the physical machines are treated as players

which select a subset of VMs in order to minimize the total consumption of energy. Thus

algorithm 1 calls algorithm 2 for each player in order to reach Equilibrium at every step.

Every player, that is each Physical machine acts as a player and attempts to achieve

its own equilibrium by going through algorithm 2.

Algorithm 2 finds the best strategy for the ith PM. It takes as input the best strategy

36

Chapter 3 : Cooperative Game Theory for Dynamic VM Placement

Algorithm 1: Equilibrium for n players
Input: n Physical Machines, V Virtual Machines

Initial mapping for n players; ρn = (ρn0 , ρ
n
1 , , ρ

n
n−1)

Result: Best strategy for n players; δn = (δn0 , δ
n
1 , , δ

n
n−1)

Executable live migrations matrix; ϑ
for (i = 0; i < n; i++) do

Nash Equilibrium(i);

Algorithm 2: Nash Equilibrium(p)
Input: Best strategy for (p-1) Physical Machines

; δp−1 = (δp−10 , δp−11 , , δp−1p−2)
Output: Best strategy for p players; δp = (δp0 , δ

p
1, , δ

p
p−1)

∃δαp−1 ∈ S(p−1)j ,
payoffp−1(δ

α
p−1) ≤ payoffp−1(δp−1) ; ∀δp−1 ∈ S(p−1)j

δpp−1 ← δαp−1
δpi ← δp−1i , i ∈ [0, p− 2]
δp = (δp0 , δ

p
1, , δ

p
p−2 , δ

p
p−1)

j = 0 ;

for (i = 0; i < (p− 1); i = j) do
if (payoffi(δpi) ≤ payoffi(δi) ; ∀δi ∈ Sij) then

j++;
else
∃δαi ∈ Sij ,
payoffi(δ

α
i) ≤ payoffi(δi) ; ∀δi ∈ Sij

δpi ← δαi
j = 0 ;

for (i-1) PMs and gives as output the best strategy of i PMs. First the ith PM looks for the

best strategy which will consume the least energy. Then all the (i− 1) PMs change their

strategies accordingly so that equilibrium is maintained, that is optimal energy consump-

tion takes place. This algorithm thus produces the best strategy for every step for all the

n physical machines.

There are n players (Physical Machines) and V virtual machines. So in each step

in order to achieve Nash Equilibrium for a player the time complexity will be O(nV).

The algorithm for finding out the equilibrium for a particular step has to be repeated for

n players. Thus the time complexity to achieve Nash Equilibrium for n players will be

O(n2V). Thus this algorithm obtains the Nash Equilibrium in cooperative congestion

game for dynamic VM placement at a particular time frame in polynomial time.

37

Chapter 3 : Cooperative Game Theory for Dynamic VM Placement

3.8 Simulation and Results

In this section, simulation parameters are defined and experimental results are discussed to

evaluate the performance of Algorithm 1 and 2, which aim to optimally provide solutions

tot he dynamic VM placement problem. The simulation has been conducted using an

in-house simulation using JAVA on a desktop computer with Intel (R) Core (TM) i7-3770

processor, 3.4 GHz and 4 GB memory.

3.8.1 Energy Consumption Model

The parameters’ values for the energy consumption model which is proposed in this chap-

ter are given below (45).

The values of xi and yi are determined via function fitting graph related to CPU uti-

lization and are fixed at 61.06 and 2 respectively. Thus Equation 2.4.6 which calculates

the consumption of energy by PMs in different states can be written as :

ECi(t) = FEi(PMSi) × t + 61.06 × Li(t)
2 (3.8.1)

It is considered in the experiments that all the PMs are homogeneous in nature. Thus

the parameters’ values are same for all the PMs.

Table 3.3: Values for The Energy Consumption Parameters

States Running Ready Idle Off
Running FEi(running) = 32.2708 - - -
Ready - FEi(ready) = 32.2708 ECSi3 = 3.5 -
Idle - ECSi2 = 7.5 FEi(idle) = 0.5 ECSi4 = 5.5
Off - ECSi1 = 0 - FEi(off) = 0

Table 3.3 gives us the values for the parameter ECS and FE which are used to mea-

sure the PM’s energy consumption of state switching.

To determine the energy consumption during live VM migration, the parameters have

their values fixed; αi = 0.256, βi = 10.0825, αk = 0.256, βk = 10.0825 and γik = 0.5.

38

Chapter 3 : Cooperative Game Theory for Dynamic VM Placement

3.8.2 Experimental Results

Six sets of experiments are performed and the results are compared with results of Best

Fit algorithm. Best Fit Algorithm is a centralized algorithm which aims to place VMs into

the PM with the least available space and with no SLA violations, such that the PMs are

fully utilized. The steps involved in best fit procedure are defined in Algorithm 3.

Algorithm 3: Best Fit
Input: p Physical Machines, n Virtual Machines
Result: Best Fit placement strategy for n Virtual Machines
for (i = 0; i < n; i = i+ 1) do

Sort p PMs in increasing order of free space (remaining capacity)
for (j = 0; j < p; j = j + 1) do

if (Requirement(VMi) ≤ Capacity(PMj) then
Place VMi into PMj

break;

First three experiments are conducted by keeping the number of PMs fixed at 40.

The number of VM requests are varied from 10 to 150 and results obtained from best fit

algorithm (centralized approach) and cooperative game theoretic process (decentralized

approach) are compared.

Figure 3.4 shows the results of number of PMs used against number of VMs, keeping

the number of available PMs fixed at 40. It is seen that for lower number of VMs, the

number of PMs used is similar for both best fit and cooperative game theoretic approach.

But as the number of VMs increases, there is a marked difference between the results of

two approaches. Cooperative game theoretic algorithm optimizes the placement strategy

and uses lesser number of PMs for the placement of VMs onto PMs. For large number of

VMs, the best fit strategy uses all the PMs for the placement.

The result for energy consumption vs no. of VMs for a fixed number of available VMs

at 40 is shown in Figure 3.5. For large number of VMs, there is a great dissimilarity in the

consumption of energy between the placement strategies by best fit and game theoretic

approach. The lower energy consumption is due to the fact shown in Fig. 3.4 that lesser

number of PMs are used for dynamic placement by cooperative game theoretic approach

than the best fit procedure. Thus, there is a greater save in energy due to the change in the

states of PMs from running to idle.

The results of execution time vs no. of VMs are shown in Fig. 3.6. It is seen that for

lesser number of VMs, cooperative game theoretic approach takes lesser time to execute

39

Chapter 3 : Cooperative Game Theory for Dynamic VM Placement

Figure 3.4: No. of PMs Used vs No. of VMs (Available PMs Fixed at 40)

Figure 3.5: Energy Consumption vs No. of VMs (Available PMs Fixed at 40)

than the best fit approach. But as the number of VMs increases, the execution time for the

best fit approach becomes lesser. This is due to the fact that the game theoretic approach

follows a two-tier optimization strategy; that is first the player chooses the best strategy

and then other players selects their strategies optimally and this process continues for all

the players which leads to Nash Equilibrium.

The second set of simlations are run considering the fact that number of VMs are fixed

at 100 and number of PMs varies from 35-95 in intervals of 15. The lowest number of

PMs is taken as 35 since after many tests, it was seen that to place 100 VMs in best fit

approach, optimally 35 PMs were at least needed.

40

Chapter 3 : Cooperative Game Theory for Dynamic VM Placement

Figure 3.6: Execution Time vs No. of VMs (Available PMs Fixed at 40)

Figure 3.7 shows the experimental results of number of PMs used vs the number

of available PMs. It is clearly seen that for all the values, cooperative game theoretic

approach yields better results than best fit approach.

Figure 3.7: No. of PMs used vs No. of Available PMs (VMs Fixed at 100)

The results for energy consumption against number of available PMs are shown in

Figure 3.8. Since energy consumption is directly related to the number of PMs used,

that is the more the number of PMs in running state, greater is the energy consumption.

Since it is seen from fig. 3.7 that game theoretic approach uses lesser number of PMs

than the centralized approach to place the VMs, the energy consumption reduces in the

decentralized approach.

41

Chapter 3 : Cooperative Game Theory for Dynamic VM Placement

Figure 3.8: Energy Consumption vs No. of Available PMs (VMs Fixed at 100)

The variation of execution time against an increasing number of available PMs is

shown in Figure 3.9. Game theoretic approach takes slightly more time for giving the op-

timal placement strategy for dynamically placing VMs onto PMs, though this fact can be

overlooked because the decentralized approach gives a much lesser energy consumption

model compared to the best fit approach solution.

Figure 3.9: Execution Time vs No. of Available PMs (VMs Fixed at 100)

42

Chapter 3 : Cooperative Game Theory for Dynamic VM Placement

3.9 Conclusion

In this chapter, a novel decentralized procedure to dynamic VM placement problem is

given using cooperative congestion game theory. It is shown that the game theoretic ap-

proach gives an optimal solution which reaches Nash Equilibrium in polynomial time.

The experimental results and the comparisons with centralized approach (best fit algo-

rithm) clearly shows that energy consumption is reduced in game theoretic approach.

This overshadows the fact that the execution time is slightly greater in the decentralized

model than in the best fit solution.

43

CHAPTER 4

NON COOPERATIVE GAME THEORY FOR DYNAMIC

VM PLACEMENT

4.1 Introduction

In recent times, there has been a growth in the number of cloud users. Thus more number

of physical machines are needed in order to process the user requests, which leads to

greater energy consumption. As seen in the previous chapter, optimal placement of virtual

machines over physical machines is an effective method to minimize the consumption of

energy. This goal is not easy to achieve when there is no centralized approach towards

decision making and all the decision makers are allowed to act selfishly.

In this chapter, non-cooperative approach of game theory is used to arrive at a solution

for dynamic virtual machine placement problem. Every decision maker tries to minimize

its own energy consumption independently and eventually all of them reach the Nash

equilibrium. When the system attains Nash equilibrium, no decision maker can benefit

further by altering its own strategy. Thus the main goal of this chapter is to minimize

energy consumption in a decentralized cloud computing model by using non-cooperative

game theory.

4.2 Literature Survey for Non Cooperative Game Theory

Teng et al. in 2010 introduced a novel Bayesian Nash Equilibrium allocation algorithm

in order to find solution to the resource management problem in cloud computing (38).

It analyzes the bid proportion model where users are assigned resources in proportion to

their bids. The allocation solutions reach Nash equilibrium by gambling in stages which

44

Chapter 4 : Non Cooperative Game Theory for Dynamic VM Placement

is further simplified by considering that competition among users is for the same job type

consisting a sequential order of same type of jobs. In this model, the shortcoming is that

bidders fix the resource price and problems of response delay are not not addressed. In

the same year, Sun et al. in (36) used continuous double auction and Nash equilibrium

for the allocation of resources in cloud based on the M/M/1 queueing system. Sun et al.

took performance QOS and economic QOS as optimization objectives. The work in (36)

greatly improves the Quality of Service in terms of performance and economy. It is fair

to both resources and users by considering execution cost of ’pay per use’ services and

the average time of execution of user jobs.

The problem of service provisioning was studied by Ardagna et al. in (3). IaaS

providers host applications of Saas providers such that every SaaS complies with the SLA

(revenue and penalty) requirements. SaaS providers maximize revenues while cost of re-

sources by IaaS is minimized. IaaS providers maximize revenue by providing virtualized

resources.The following assumptions for SaaS providers are taken in this work.

• A single web service application is hosted on a single VM.

• Same web service application implemented by many VMs can run in parallel.

• All the virtual machines are uniform in terms of CPU and RAM capacity.

IaaS providers offer flat VMs, on-demand VMs and on-spot VMs for which SaaS providers

pay. The service provisioning problem is formulated and solved using game theory. The

main drawbacks in this work are listed as follows.

• Validation of the solution is missing by experiments in real world environment.

• The heuristic solutions adopted by IaaS and SaaS providers are not compared.

These drawbacks in 2011 are worked upon by Ardagna et al. and presented in 2013 (4).

Kong et al. (26) worked upon resource allocation among selfish virtual machines

by applying stochastic approximation methods. It thwarted non-cooperative behavior of

the VMs. The proposed approach is not implemented in a real world virtualized cloud

system. A cooperative game theoretic resource splitting solution in cloud computing was

formulated by Lu et al. in 2012 (30). Here multiple cloud providers cooperate with one

another in order to form a cloud federation which ensures greater profit since provider’s

capability to serve for public cloud users is enhanced. A game theoretic policy is formed

45

Chapter 4 : Non Cooperative Game Theory for Dynamic VM Placement

to aid SPs in the decision making process. The work’s performance is not gauged for

many cloud environments.

The co-scheduling problem addressed by Dhillon et al. in (10) involves a central au-

thority which provides solution to constrained optimization problem with an objective

function. This works provides an alternate game theoretic perspective using stable match-

ings theory which reduces the Stable Roommates Problem (SRP) to Stable Marriages

Problem (SMP). Chen et al. in (9) studied the use of game theory for live migration pre-

diction over cloud computing. It is shown that game theory improves Gilbert-Elliot model

for the prediction of the probability on dirty page.

4.3 Observations

Table 4.1: Non Cooperative Game Theory in Distributed Resource Management

Researcher Game Environment Work

2010

Kołodziej et

al. (24)

Non-

cooperative

Grid Combines non-cooperative game theo-

retic and genetic based meta heuristics

to achieve secure task allocation to ma-

chines in computational grids.

Teng et al.

(38)

Non-

cooperative

Cloud A new Bayesian Nash Equilibrium allo-

cation algorithm is introduced heteroge-

neous distribution of resources in cloud

computing. It analyzes the bid proportion

model.

Sun et al. (36) Non-

cooperative

Cloud Uses Nash equilibrium and continuous

double auction for allocation of resources

in cloud based on M/M/1 queueing sys-

tem with the objectives for optimization

as economic QOS and performance QOS.

46

Chapter 4 : Non Cooperative Game Theory for Dynamic VM Placement

2011

Ardagna et al.

(3)

Non-

cooperative

Cloud Provides an efficient algorithm for the

generalized Nash game model to allocate

and manage IaaS resources to SaaS com-

ponents during run time.

Kołodziej et

al. (25)

Non-

cooperative

Grid Presents symmetric non-zero game and

asymmetric Stackelberg game as non-

cooperative game approaches in order to

model the requirements of grid users on

resource and task allocation.

Kong et al.

(26)

Non-

cooperative

Cloud Applies stochastic approximation meth-

ods to obtain the stochastic solution of re-

source allocation problem among selfish

virtual machines.

2012

Buscemi et al.

(7)

Non-

cooperative

Grid Propose a non-cooperative grid job

scheduling game with the grid sites act-

ing as players and the strategies to be

the scheduling algorithms. It focuses on

global scheduling.

2013

Ardagna et al.

(4)

Non-

cooperative

Cloud Service provisioning problem is modeled

as a generalized Nash game. Two meth-

ods based on best-reply dynamics are pre-

sented and their solutions approach Nash

equilibrium. It is simulated on real pro-

totype environment deployed on Amazon

EC2.

47

Chapter 4 : Non Cooperative Game Theory for Dynamic VM Placement

Dhillon et al.

(10)

Non-

cooperative

Cloud The problem of VM co-scheduling which

decreases the performance of virtual ma-

chines is provided with a game theo-

retic perspective by using stable match-

ings theory.

4.4 Problem Formulation

The system model that is used in this chapter is the same as that used in the previous

chapter. The model is shown in Figure 4.1.

Figure 4.1: Proposed System Model

The major difference between the models in these two chapters is that the physical

machines which act as players for the game are non-cooperative here. This means that

the physical machines acting as players, will act selfishly and try to minimize its own

energy consumption independently. This non-cooperative model has to be solved using

non-cooperative game theoretic approach.

In order to arrive at an optimal decision, the decision making process takes help from

the VM Monitor and the Service Request Monitor to get information about the resource

48

Chapter 4 : Non Cooperative Game Theory for Dynamic VM Placement

availability and available workload on all physical machines. All physical machines have

a PM Controller which act as players for the non-cooperative decision making procedure.

4.4.1 Problem Statement

The dynamic VM placement problem is to be solved with the objective as to minimize

energy consumption. In this chapter non-cooperative game theory is used in order to

solve the problem since the physical machines acting as players take their own decisions

selfishly. Every PMi has Vi number of VMs which have to optimally placed. In order to

form the problem statement, the following arrays are used.

• PMS (1 X P) - This is used in order to save the present state of the physical machine.

Here, 4 states have been considered for every physical machine; 1 = off, 2 = idle, 3

= ready and 4 = running. There are a total of P physical machines.

• PMR (3 X P) - The array is used to specify the amount of resources every PM has.

Here, 3 resources are considered; memory, processor speed and number of cores.

• VMR (3 X V) - Let V be the total number of VMs in the system; that is combining

all PMs. The array is used to indicate the requirements of memory, processor speed

and number of cores for each VM.

• VMP (I X V) - It is considered that in the SLA, I number of performance indicators

are mentioned. Then, VMP is used to store the requirement of the performance

indicators for all the VMs.

• M (P X V) - This array is used to store the mapping of PMs to VMs. Thus Mij

should be 1 if VMj is placed in PMi, else 0.

• MP (I X V) - In order to store the performance of all the VMs, this array is used.

Thus arrays VMP and MP are used to see if the service level agreement is fol-

lowed or not.

• ECS (P X 4) - The energy consumption during switching of states is stored here. For

PMi, ECSi1 specifies the energy consumption during switching from off state to

ready state; ECSi2, ECSi3, ECSi4 for state switching from idle to ready, ready

to idle and idle to off respectively. It is considered that there is negligible energy

consumption during state transition form running to ready.

49

Chapter 4 : Non Cooperative Game Theory for Dynamic VM Placement

• VMLM (P X P X V) - This array is used to store the live VM migrations from one

PM to another PM.

The energy consumption model is described in chapter 2. The problem statement

of dynamic VM placement to minimize energy consumption (VMDPPEC) using non-

cooperative game theory can be stated as follows:

VMDPPEC = min TEC(M) (4.4.1)

where,

TEC(M) = EPS(M) + EVM(M) + EPM(M) (4.4.2)

such that,

Cri ≤ PMRri

(Cri = VMR × M ′ ; r = 1, 2,, R ; i = 1, 2,, P)
(4.4.3)

P∑
i=1

Mij = 1 (j = 1, 2,, V) (4.4.4)

MPiv ≥ VMPiv (i = 1, 2, , I; v = 1, 2, , V) (4.4.5)

Equation 4.4.1 shows the optimization objective of the VM dynamic placement prob-

lem, i.e. minimization of energy consumption (EC) for a particular placement solution

(M) which has to be solved using non-cooperative game theory.

EPS(M) is the total energy consumption by state switching of PMs for a particular

solution M .

EVM(M) calculates the total consumption of energy during live VM migrations for

the solution M .

EPM(M) gives the result of the total energy consumption of all the PMs in their

current states for the solution M .

The solution is arrived upon satisfying all the three constraints as shown in equations

4.4.3, 4.4.4 and 4.4.5. Equation 4.4.3 is the capacity constraint, Placement constraint

is represented in Equation 4.4.4 and Equation 4.4.5 shows that there should be no SLA

violations.

50

Chapter 4 : Non Cooperative Game Theory for Dynamic VM Placement

4.5 Optimization Algorithm for Non-Cooperative Dynamic

VM Placement

In this section, the algorithm based on non-cooperative theory which has been used to

solve the problem of dynamic virtual machine placement has been discussed. The sym-

bols used in the algorithm have been listed in Table 4.2.

Table 4.2: List of symbols and their meanings

Symbols Meanings
i Physical machine number
itr Iteration number
energy

(itr)
i Total energy of ith PM computed at iteration number itr

τ The accepted tolerance
δαp−1 A strategy α for PMp−1
en Tolerance at iteration number itr.

n∑
i=1

∣∣∣energy(itr−1)i − energy
(itr)
i

∣∣∣
command The instruction given to the neighbor PM. It has two values,

CEASE and CARRY ON .
SEND((a, itr, command), i) Send message (a, itr, command) to PMi

RECEIV E((a, itr, command), i) Receive message (a, itr, command) from PMi

VMLM TEMP Temporary live VM migration matrix.
M TEMP Temporary VM placement matrix.

Algorithm 4 shows the procedure for a PM to select its best placement every time

such that in every iteration the energy consumption by that physical machine is lesser

than the energy consumption in the previous iteration for that particular PM. Thus, all the

PMs act selfishly in order to optimally dynamically place VMs onto PMs such that energy

consumption is minimized.

Algorithm 4: Best Placement(i)
Input: VMLM TEMP, M TEMP, itr
Output: energyitri
while (1) do

Find new placement strategy for PMi;
Calculate energyitri
if (energyitri ≤ energyitr−1i) then

Update M TEMP, VMLM TEMP;
return(energyitri);

Practically speaking, in order to compute Nash Equilibrium, some coordination must

51

Chapter 4 : Non Cooperative Game Theory for Dynamic VM Placement

be present among the players; in this case the physical machines. Thus, the non-cooperative

procedure shown in algorithm 5 is devised where players (PMs) are synchronized in such

a manner that their individual placement strategies are updated in a round-robin fashion.

Algorithm 5: Non-Cooperative Algorithm
PM i; (i=1, 2,, n) executes:
1. Initial :

itr← 0;
energyitri ← 0;
en← 1;
sum energy← 0;
command← CARRY ON ;
prev = [(i-2) mod n] + 1;
next = [i mod n] + 1;

2. while (1) do
if (i = 1) // First PM then

prev = n;
if (itr 6= 0) then

RECEIVE((en, itr, command), prev);
if (en ≤ τ) then

SEND((en, itr, CEASE), next);
exit;

sum energy← 0;
itr← itr + 1;

else
// Other PMs
RECEIVE((sum energy, itr, command), prev);
if (command = CEASE) then

if (i 6= n) then
SEND((sum energy, itr, CEASE), next);

exit;

energyitri = Best Placement(VMLM TEMP, M TEMP, itr);
sum energy = sum energy +

∣∣∣energy(itr−1)i − energy
(itr)
i

∣∣∣;
SEND ((sum energy, itr, CARRY ON), next);

Algorithm 5 is executed for all the physical machines periodically or whenever SLA

violations are made. When the execution of the algorithm is over, the players will have

reached Nash Equilibrium, thus the strategies remain the same in equilibrium.

In this algorithm, the tolerance is maintained at a very small value, such that in every

iteration the energy consumption is reduced till a point that very small savings in energy

is seen in consecutive iterations. This is the point where the algorithm exits. In order

to facilitate the coordination among all the physical machines, messages are sent to the

next physical machine. The message consists of three arguments; the energy savings

made in that particular iteration, the iteration number and the command. If the command

52

Chapter 4 : Non Cooperative Game Theory for Dynamic VM Placement

is CARRY ON , it means that equilibrium has not been reached and best placement

strategy needs to be computed again. On the other hand, the command CEASE instructs

the next physical machine that it can exit the algorithm as equilibrium is reached. In every

iteration, the first PM checks the tolerance for the last iteration and accordingly initiates

the command sequence for all the PMs.

4.6 Simulation and Results

The simulation has been done using an in house simulation using Java. The simulation

parameters and the results are given in the next sections.

4.6.1 Simulation Parameters

The series of experiments have been performed considering the capacities of physical

machines as each having 12.8 GHz of processor speed, 8 GB memory and is octa-cored.

The capacities of VMs are chosen randomly from a fixed set of values.

In order to calculate the consumption of energy by every PM, we use the energy con-

sumption model described in chapter 2. The values for the parameters are shown in Table

4.3. To determine the energy consumption during live VM migration, the parameters have

their values fixed; αi = 0.256, βi = 10.0825, αk = 0.256, βk = 10.0825 and γik = 0.5.

Table 4.3: Values for The Energy Consumption Parameters

States Running Ready Idle Off
Running FEi(running) = 32.2708 - - -
Ready - FEi(ready) = 32.2708 ECSi3 = 3.5 -
Idle - ECSi2 = 7.5 FEi(idle) = 0.5 ECSi4 = 5.5
Off - ECSi1 = 0 - FEi(off) = 0

The Convergence of Nash Equilibrium

In order to prove that the non-cooperative algorithm converges to the nash equilibrium,

we have performed experiments; the results of which is shown in Figure 4.2 and Table

4.4. A system of 20 PMs and 50 VMs is considered.

53

Chapter 4 : Non Cooperative Game Theory for Dynamic VM Placement

Figure 4.2: en vs No. of Iterations

Table 4.4: sum energy (en) vs No. of Iterations (for 20 PMs, 50 VMs)

sum energy (en) No. of Iterations
10.09 10
2.84 20
0.76 30
0.043 40
0.0027 50

It is observed that the value of en converges to zero as the number of iterations in-

creases. This proves that we are achieving Nash Equilibrium in polynomial time. From

this experiment, for further simulations, we fix the value of τ as 0.003.

4.6.2 Experimental Results

Figure 4.3 shows the variation of the number of iterations needed to achieve a value for

sum energy less than τ (0.003) as the number of PMs increases. For this simulation, the

number of VMs has been fixed at 50.

Next, we perform a set of experiments keeping the number of PMs available fixed at

40 and increasing the number of VMs from 10 to 150. All the results obtained from the

non-cooperative game theoretic algorithm are compared with the results obtained from

cooperative game theoretic algorithm and best fit algorithm. The impact of selfishness is

seen in the results.

The number of PMs used in order to dynamically place the VMs are projected in

54

Chapter 4 : Non Cooperative Game Theory for Dynamic VM Placement

Figure 4.3: Convergence of Non-Cooperative Algorithm (until en ≤ 0.003)

Figure 4.4: No. of PMs Used vs No. of VMs (Available PMs Fixed at 40)

Figure 4.4. The results showing the energy consumption and execution time are shown in

Figures 4.5 and 4.6 respectively.

From the results, it is observed that number of PMs used and the energy consumption

for the non-cooperative game theoretic algorithm are similar to the results obtained from

the cooperative game theoretic approach. Both these algorithms give better results than

the best fit approach. But due to the non-cooperative nature of the players, that is PMs,

the execution time increases for the non-cooperative approach. But the increase in exe-

cution time is not drastic so as to discard the algorithm. For minimization of the energy

consumption, a slight increase in the execution time can be afforded.

55

Chapter 4 : Non Cooperative Game Theory for Dynamic VM Placement

Figure 4.5: Energy Consumption vs No. of VMs (Available PMs Fixed at 40)

Figure 4.6: Execution Time vs No. of VMs (Available PMs Fixed at 40)

Figure 4.7: No. of PMs used vs No. of Available PMs (VMs Fixed at 100)
56

Chapter 4 : Non Cooperative Game Theory for Dynamic VM Placement

Figure 4.8: Energy Consumption vs No. of Available PMs (VMs Fixed at 100)

The next set of experiments are performed for a number of VMs fixed at 100 while

the number of available PMs are increased from 35 to 95 in equal intervals of 15. The

results of the non-cooperative approach along with the comparison with the cooperative

procedure and the best fit algorithm are shown in Figures 4.7, 4.8 and 4.9.

Here too, the results obtained from the non-cooperative algorithm are similar to the

results of cooperative approach which are better than the best fit procedure’s results. But

the minimization of energy consumption via non-cooperative approach comes at a cost of

increased execution time.

Thus the impact of the non-cooperative nature of physical machines affects the exe-

cution time to achieve optimal placement of VMs onto PMs while minimizing the energy

consumption.

57

Chapter 4 : Non Cooperative Game Theory for Dynamic VM Placement

Figure 4.9: Execution Time vs No. of Available PMs (VMs Fixed at 100)

4.7 Conclusion

In this chapter, it is considered that the physical machines do not cooperate with each

other in the decision making process for dynamic virtual machine placement. Thus,

non-cooperative game theoretic approach is used to find solution to the dynamic virtual

machine placement problem. From the experimental results, it can be deduced that the

impact of selfishness increases the execution time but the energy consumption minimiza-

tion is similar to the cooperative game theoretic approach. Also the convergence of Nash

equilibrium is shown.

58

CHAPTER 5

CONCLUSION AND FUTURE WORK

In this thesis work, the problem of dynamic virtual machine placement has been ad-

dressed. After a deep analysis of the already existing research work in this area, a de-

centralized approach using game theory has been proposed here in order to optimize the

consumption of energy. First, an energy consumption model is built in view of the com-

plicated process of dynamic placement of virtual machines. Here, three factors have been

considered while building the model, namely energy consumption of physical machines

in different states, consumption of energy during the state transition of physical machines

and during live virtual machine migrations. In this work, both cooperative and selfish

nature of physical machines have been considered. Cooperative game theory using the

concept of congestion game and non-cooperative game theoretic approaches have been

used to propose new algorithms to optimally place virtual machines onto physical ma-

chines dynamically. For both the approaches, it is seen that Nash equilibrium is achieved

in polynomial time. Both the algorithms guarantee a list of live virtual machine migra-

tions to achieve the target solution from the initial mapping. Simulations are done and

the experimental results are compared with the best fit approach. Both cooperative and

non-cooperative algorithms help in minimizing the energy consumption, though the non-

cooperative game theoretic approach takes a longer execution time to give the optimal

result.

While conducting the simulations, fixed values are taken for calculating the energy

consumption of physical machines. Also it is assumed that all the physical machines are

homogeneous in nature. For further research, the values of the parameters for calculation

of energy consumption, should be computed dynamically. Also heterogeneous environ-

ment should be considered. In addition to these, energy consumption due to other factors

like cooling equipment which have not been considered in this work should be taken into

account in future.

59

Bibliography

[1] AL-ALI, R. J., AMIN, K., VON LASZEWSKI, G., RANA, O. F., WALKER, D. W.,

HATEGAN, M., and ZALUZEC, N., “Analysis and provision of qos for distributed

grid applications,” Journal of Grid Computing, vol. 2, no. 2, pp. 163–182, 2004.

[2] AMOURA, A. K., BAMPIS, E., KENYON, C., and MANOUSSAKIS, Y., “Schedul-

ing independent multiprocessor tasks,” in Algorithms—ESA’97, pp. 1–12, Springer,

1997.

[3] ARDAGNA, D., PANICUCCI, B., and PASSACANTANDO, M., “A game theoretic

formulation of the service provisioning problem in cloud systems,” in Proceedings

of the 20th international conference on World wide web, pp. 177–186, ACM, 2011.

[4] ARDAGNA, D., PANICUCCI, B., and PASSACANTANDO, M., “Generalized nash

equilibria for the service provisioning problem in cloud systems,” Services Comput-

ing, IEEE Transactions on, vol. 6, no. 4, pp. 429–442, 2013.

[5] BOBROFF, N., KOCHUT, A., and BEATY, K., “Dynamic placement of virtual ma-

chines for managing sla violations,” in Integrated Network Management, 2007.

IM’07. 10th IFIP/IEEE International Symposium on, pp. 119–128, IEEE, 2007.

[6] BORST, S., BOXMA, O., GROOTE, J. F., and MAUW, S., “Task allocation in a

multi-server system,” Journal of Scheduling, vol. 6, no. 5, pp. 423–436, 2003.

[7] BUSCEMI, M. G., MONTANARI, U., and TANEJA, S., “A game-theoretic analysis

of grid job scheduling,” Journal of Grid Computing, vol. 10, no. 3, pp. 501–519,

2012.

[8] CHAISIRI, S., LEE, B.-S., and NIYATO, D., “Optimal virtual machine placement

across multiple cloud providers,” in Services Computing Conference, 2009. APSCC

2009. IEEE Asia-Pacific, pp. 103–110, IEEE, 2009.

60

Bibliography

[9] CHEN, Y.-L., YANG, Y.-C., and LEE, W.-T., “The study of using game theory for

live migration prediction over cloud computing,” in Intelligent Data analysis and its

Applications, Volume II, pp. 417–425, Springer, 2014.

[10] DHILLON, J. S., PURINI, S., and KASHYAP, S., “Virtual machine coscheduling: A

game theoretic approach,” in Utility and Cloud Computing (UCC), 2013 IEEE/ACM

6th International Conference on, pp. 227–234, IEEE, 2013.

[11] DO, A. V., CHEN, J., WANG, C., LEE, Y. C., ZOMAYA, A. Y., and ZHOU, B. B.,

“Profiling applications for virtual machine placement in clouds,” in Cloud Comput-

ing (CLOUD), 2011 IEEE International Conference on, pp. 660–667, IEEE, 2011.

[12] DUPONT, C., GIULIANI, G., HERMENIER, F., SCHULZE, T., and SOMOV, A.,

“An energy aware framework for virtual machine placement in cloud federated data

centres,” in Future Energy Systems: Where Energy, Computing and Communication

Meet (e-Energy), 2012 Third International Conference on, pp. 1–10, IEEE, 2012.

[13] GE, Y., ZHANG, Y., QIU, Q., and LU, Y.-H., “A game theoretic resource allocation

for overall energy minimization in mobile cloud computing system,” in Proceedings

of the 2012 ACM/IEEE international symposium on Low power electronics and de-

sign, pp. 279–284, ACM, 2012.

[14] HASSAN, M. M., SONG, B., and HUH, E.-N., “Game-based distributed resource

allocation in horizontal dynamic cloud federation platform,” in Algorithms and Ar-

chitectures for Parallel Processing, pp. 194–205, Springer, 2011.

[15] HERMENIER, F., LORCA, X., MENAUD, J.-M., MULLER, G., and LAWALL,

J., “Entropy: a consolidation manager for clusters,” in Proceedings of the 2009

ACM SIGPLAN/SIGOPS international conference on Virtual execution environ-

ments, pp. 41–50, ACM, 2009.

[16] HERMENIER, F., LORCA, X., MENAUD, J.-M., MULLER, G., and LAWALL,

J., “Entropy: a consolidation manager for clusters,” in Proceedings of the 2009

ACM SIGPLAN/SIGOPS international conference on Virtual execution environ-

ments, pp. 41–50, ACM, 2009.

[17] HOTZ, H., “A short introduction to game theory,” 2006.

61

Bibliography

[18] HYSER, C., MCKEE, B., GARDNER, R., and WATSON, B. J., “Autonomic virtual

machine placement in the data center,” 2008.

[19] JACKSON, M. O., “A brief introduction to the basics of game theory,” 2011.

[20] JONES, M. T., “Anatomy of an open source cloud,” IBM developerWorks. Available:

http://www. ibm. com/developerworks/opensource/library/oscloud-anatomy. Visited

on May, 2010.

[21] KANTARCI, B., FOSCHINI, L., CORRADI, A., and MOUFTAH, H. T., “Inter-and-

intra data center vm-placement for energy-efficient large-scale cloud systems,” in

Globecom Workshops (GC Wkshps), 2012 IEEE, pp. 708–713, IEEE, 2012.

[22] KHAZAEI, H., MISIC, J., and MISIC, V. B., “Modelling of cloud computing cen-

ters using m/g/m queues,” in Distributed Computing Systems Workshops (ICDCSW),

2011 31st International Conference on, pp. 87–92, IEEE, 2011.

[23] KHAZAEI, H., MISIC, J., and MISIC, V. B., “Performance analysis of cloud com-

puting centers using m/g/m/m+ r queuing systems,” Parallel and Distributed Sys-

tems, IEEE Transactions on, vol. 23, no. 5, pp. 936–943, 2012.

[24] KOŁODZIEJ, J. and XHAFA, F., “A game-theoretic and hybrid genetic meta-

heuristic model for security-assured scheduling of independent jobs in computa-

tional grids,” Proc. of CISIS, pp. 93–100, 2010.

[25] KOŁODZIEJ, J. and XHAFA, F., “Modern approaches to modeling user requirements

on resource and task allocation in hierarchical computational grids,” International

Journal of Applied Mathematics and Computer Science, vol. 21, no. 2, pp. 243–257,

2011.

[26] KONG, Z., XU, C.-Z., and GUO, M., “Mechanism design for stochastic vir-

tual resource allocation in non-cooperative cloud systems,” in Cloud Computing

(CLOUD), 2011 IEEE International Conference on, pp. 614–621, IEEE, 2011.

[27] LEE, C., SUZUKI, J., VASILAKOS, A., YAMAMOTO, Y., and OBA, K., “An evo-

lutionary game theoretic approach to adaptive and stable application deployment in

clouds,” in Proceedings of the 2nd workshop on Bio-inspired algorithms for dis-

tributed systems, pp. 29–38, ACM, 2010.

62

Bibliography

[28] LIAO, X., JIN, H., and LIU, H., “Towards a green cluster through dynamic remap-

ping of virtual machines,” Future Generation Computer Systems, vol. 28, no. 2,

pp. 469–477, 2012.

[29] LONDOÑO, J., BESTAVROS, A., and TENG, S.-H., “Collocation games and their

application to distributed resource management,” tech. rep., Boston University Com-

puter Science Department, 2009.

[30] LU, Z., WEN, X., and SUN, Y., “A game theory based resource sharing scheme

in cloud computing environment,” in Information and Communication Technologies

(WICT), 2012 World Congress on, pp. 1097–1102, IEEE, 2012.

[31] MAO, Z., YANG, J., SHANG, Y., LIU, C., and CHEN, J., “A game theory of cloud

service deployment,” in Services (SERVICES), 2013 IEEE Ninth World Congress

on, pp. 436–443, IEEE, 2013.

[32] MILCHTAICH, I., “Congestion games with player-specific payoff functions,” Games

and economic behavior, vol. 13, no. 1, pp. 111–124, 1996.

[33] NIYATO, D., VASILAKOS, A. V., and KUN, Z., “Resource and revenue sharing with

coalition formation of cloud providers: Game theoretic approach,” in Proceedings

of the 2011 11th IEEE/ACM International Symposium on Cluster, Cloud and Grid

Computing, pp. 215–224, IEEE Computer Society, 2011.

[34] NIYATO, D., ZHU, K., and WANG, P., “Cooperative virtual machine manage-

ment for multi-organization cloud computing environment,” in Proceedings of the

5th International ICST Conference on Performance Evaluation Methodologies and

Tools, pp. 528–537, ICST (Institute for Computer Sciences, Social-Informatics and

Telecommunications Engineering), 2011.

[35] PILLAI, P. S. and RAO, S., “Resource allocation in cloud computing using the

uncertainty principle of game theory,”

[36] SUN, D., CHANG, G., WANG, C., XIONG, Y., and WANG, X., “Efficient nash

equilibrium based cloud resource allocation by using a continuous double auction,”

in Computer Design and Applications (ICCDA), 2010 International Conference on,

vol. 1, pp. V1–94, IEEE, 2010.

63

Bibliography

[37] SUN, W., ZHANG, D., ZHANG, N., ZHANG, Q., and QIU, T., “Group participation

game strategy for resource allocation in cloud computing,” in Network and Parallel

Computing, pp. 294–305, Springer, 2014.

[38] TENG, F. and MAGOULÈS, F., “A new game theoretical resource allocation algo-

rithm for cloud computing,” in Advances in Grid and Pervasive Computing, pp. 321–

330, Springer, 2010.

[39] THIRUVENKADAM, M. T. and KARTHIKEYANI, V., “An approach to virtual ma-

chine placement problem in a datacenter environment based on overloaded re-

source,” 2014.

[40] TUROCY, T. L. and VON STENGEL, B., “Game theory*: Draft prepared for the enci-

clopedia of information systems,” tech. rep., CDAM Research Report LSE-CDAM-

2001-09, 2001.

[41] URGAONKAR, B., ROSENBERG, A. L., and SHENOY, P., “Application placement

on a cluster of servers,” International Journal of Foundations of Computer Science,

vol. 18, no. 05, pp. 1023–1041, 2007.

[42] WEI, G., VASILAKOS, A. V., ZHENG, Y., and XIONG, N., “A game-theoretic

method of fair resource allocation for cloud computing services,” The Journal of

Supercomputing, vol. 54, no. 2, pp. 252–269, 2010.

[43] WOOD, T., SHENOY, P. J., VENKATARAMANI, A., and YOUSIF, M. S., “Black-box

and gray-box strategies for virtual machine migration.,” in NSDI, vol. 7, pp. 17–17,

2007.

[44] XHAFA, F. and KOLODZIEJ, J., “Game-theoretic, market and meta-heuristics ap-

proaches for modelling scheduling and resource allocation in grid systems,” in P2P,

Parallel, Grid, Cloud and Internet Computing (3PGCIC), 2010 International Con-

ference on, pp. 235–242, IEEE, 2010.

[45] XIAO, Z., JIANG, J., ZHU, Y., MING, Z., ZHONG, S., and CAI, S., “A solution

of dynamic vms placement problem for energy consumption optimization based on

evolutionary game theory,” Journal of Systems and Software, vol. 101, pp. 260–272,

2015.

64

Bibliography

[46] XU, J. and FORTES, J. A., “Multi-objective virtual machine placement in virtual-

ized data center environments,” in Green Computing and Communications (Green-

Com), 2010 IEEE/ACM Int’l Conference on & Int’l Conference on Cyber, Physical

and Social Computing (CPSCom), pp. 179–188, IEEE, 2010.

65

Dissemination

Dissemination

Published

1. Arnab Kumar Paul, Sourav Kanti Addya, Bibhudatta Sahoo, and Ashok Kumar Turuk,

”Application of Greedy Algorithms to Virtual Machine Distribution across Data Centers”

in 2014 Annual IEEE India Conference (INDICON), pp. 1-6, IEEE, 2014.

66

	Acknowledgment
	Abstract
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Introduction
	Anatomy of Cloud Computing
	Cloud Computing Architecture

	Virtual Machine Placement in Cloud Computing
	Static Virtual Machine Placement
	Dynamic Virtual Machine Placement

	Literature Survey
	Research Motivation
	Problem Statement
	Research Contribution
	Organization of Thesis

	Background and Problem Formulation
	Introduction
	Dynamic VM Placement in Cloud Computing
	Related Work
	Problem Formulation
	Energy Consumption Model
	Solution to Dynamic VM Placement Problem

	Conclusion

	Cooperative Game Theory for Dynamic VM Placement
	Introduction
	Game Theory
	Types of Game Scenarios
	Games in Normal Form
	Nash Equilibrium

	Literature Survey for Cooperative Game Theory
	Observations
	System Model
	Problem Statement
	Optimization Algorithm for VDPPEC
	Simulation and Results
	Energy Consumption Model
	Experimental Results

	Conclusion

	Non Cooperative Game Theory for Dynamic VM Placement
	Introduction
	Literature Survey for Non Cooperative Game Theory
	Observations
	Problem Formulation
	Problem Statement

	Optimization Algorithm for Non-Cooperative Dynamic VM Placement
	Simulation and Results
	Simulation Parameters
	Experimental Results

	Conclusion

	Conclusion and Future Work
	Bibliography
	Dissemination of Work

