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ABSTRACT 

 

Adaptive filter shows a significant role in the field of digital signal processing and 

wireless communication. It integrates LMS algorithm in real time situations because of its low 

computational complexity and simplicity. The adaptive distributed strategy is built on the 

diffusion cooperation scheme among nodes at different locations that are dispersed over a 

wide topographical area. Computations have been performed in all the nodes and all the results 

are shared among them so as to obtain precise parameters of interest.  

There are some scenarios where estimation parameters vary over both space and time 

domains across the network. A set of basis functions i.e. Chebyshev polynomials is used to 

describe the space-varying nature of the parameters and diffusion least mean-squares strategy 

is proposed to recover these parameters. The parameters of our concern are assessed for both 

one dimensional and two dimensional networks. Stability and convergence of the proposed 

algorithm have been analysed and expressions are derived to predict the behaviour. Network 

stochastic matrices are used to combine exchanged information between nodes. The results 

show that the performances of the networks also depend upon the combination matrices. The 

resulting algorithm is distributed, co-operative and able to respond to the real time changes in 

environment. 
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Chapter 1 

  Introduction 

1.1 Introduction 

Wireless network of sensors consists of vast collection of nodes i.e. sensors which are 

self-powered are distributed over some wide geographical area. The availability of low power 

sensors generates need for in-network processing. Data communication in future will be done 

by distributed network of sensors, mobile phones, connection of PCs. These sensors, in a 

wireless fashion, communicate with other nodes in the sensor network, by collecting 

information from their counterparts. There are numerous applications in remote sensing in 

which communication with other nodes plays an important role. So, sensing information, 

processing it and communicating it with others are the main features in distributed networks. 

Some applications include battlefield surveillance, medical applications, environmental 

monitoring, precision agriculture, target localization[1]. It is due to these types of applications 

that make efficient design and implementation of wireless network of nodes a field of research 

currently. In all the above cases, the robustness of the currently performing tasks and the 

improvement of the probability of signal detection can be done in distributed networks by 

providing spatial diversity which works along temporal dimension. During the estimation of 

required parameters of interest, communication among nodes and computations consume 

more power[10]. As the nodes i.e. sensors work with less battery power, it is of utmost 

necessity that we need to design networks with less communication.  
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Initially, to estimate a certain parameter of interest, all the nodes in a network collect 

noisy observations related to it. In centralized processing technique, the parameters of interest 

are estimated by extracting data i.e. local estimates of all nodes in the network by the central 

processor and getting fused. So this technique requires a powerful processor and immense 

amounts of communications between the central processor and nodes in a network. The liberty 

of the network is restricted and due to the presence of central node[5], a critical point of failure 

is also added in the network. The main drawback of the centralized technique is it restricts the 

ability of the nodes to adapt in real time to time varying data. This in turn degrades the tracking 

performance. Being non-robust to fusion center failure is another drawback of this procedure. 

Another way to increase tracking ability is by estimating required parameters of our 

interest from local observations and by cooperating with neighbors. Distributed processing 

copes with getting information from data merged at nodes which are spread over a wide 

geographic region. Every node in the network operates as an individual adaptive filter whose 

goal is to estimate required parameters of our regard by using local observations. These 

individual estimates of each node get united with its neighbors to get an estimate from the data 

at the nodes nearby. Case in point, each node in a network of nodes could gather noisy findings 

identified with required parameters of interest. The neighbors would then connect with one 

another in a certain way, as requested by the system topology, to take on at a rough estimate 

of the parameter. The main objective is to get an assessment that is just as precise as the case 

that would be acquired if every node had obtained the data over the entire web of nodes[10]. 

In wireless and sensor networks, distributed estimation algorithms are utilized where 
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robustness, scalability and low power consumption are preferable. So, these algorithms can 

have excess levels of communication exchange of information among the nodes. 

1.2 Motivation 

The availability of less power sensors is the motivation factor behind employing wireless 

distributed sensor networks. In wired networks, the sensor nodes are connected to a central 

processing unit through wires where all the processing is performed. Here, we focus on wireless 

distributed sensor networks in sensing and processing is distributed.  

In centralized processing solution, the parameters of interest are estimated by 

extracting data i.e. local estimates of all nodes in the network by the central processor and 

getting fused. So this technique requires a powerful processor and immense amounts of 

communications between the central processor and nodes in a network. The liberty of the 

network is restricted and due to the presence of central node, a critical point of failure is also 

added in the network[10]. The main drawback of the centralized technique is it restricts the 

ability of the nodes to adapt in real time to time varying data. This in turn degrades the tracking 

performance.  

Distributed processing copes with acquiring information from data amalgamated at 

particular nodes which are dispersed over a broad topographic area. In distributed 

implementation, all nodes in the network convey information to all the neighbors in the subset 

and processing is distributed among all the sensor nodes in the network. The information from 

neighbor sensor nodes is sent to certain nodes which are fused with that from certain nodes. 
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The result from the particular nodes depends not only on the local data but also on the data 

from the neighbors of the nodes. The potential of distributed implementations depends on the 

cooperation strategies which are permitted among sensor nodes.  

In incremental cooperation policy[8], data is allowed from one sensor node to 

successive node. This demands least amounts of interaction among the nodes and requires low 

power. The collaboration among the nodes is in the form of cyclic pattern.  On the other hand, 

diffusion implementation involves communication of each node with all of its neighbors as 

demanded by network topology. Compared to incremental solution, this technique requires 

more amounts of interaction between nodes in a network. This in turn increases consumption 

of power more than that of incremental solution. These drawbacks can be compensated by one 

thing i.e. the nodes in the network get access to more information from the neighboring nodes. 

At the same time, in diffusion cooperation scheme[9], the communications can be 

reduced by allowing each sensor node to interact with a subset of its neighbors only. The 

selection of neighbors can be done according to performance criterion. For the issues like less 

communications and computational complexity, operation in real-time, need for adaptive 

implementations, distributed least mean squares algorithms have been proposed for both 

computations and communications and for the robustness of implementations in LMS.   

Diffusion cooperation policies provide robustness to node and connection failure, good 

performance and are amiable to distributed implementations. In some diffusion algorithms 

used for adaptation over networks, the required parameters that have to be estimated are 

considered as space-invariant.   
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1.3 Objective 

The main objective of this is to achieve a precise estimate of a required parameter over 

a wide geographic region under consideration. For this, the sensors dispersed over a 

topographical region collect data from the information attained from the neighbors and reach a 

pinpoint estimate using cooperative policies. The sensors do not have any perception of their 

arrangement or who their neighbors are which a humorous thing is and yet their aim is to 

converge to an ideal value. In cooperative policies, there is an enormous collaboration among 

the sensors. The sensor nodes collaborate among themselves in such a pattern that output of 

nodes not only rely on the data obtained from themselves but also from their neighbors in the 

proximity of the considering nodes. To equip nodes with adaptive abilities, they have to share 

their information with others, should have the potential to adapt in real time.  Utilizing 

distributed strategies estimates are updated in real time through local interactions. Estimation 

and tracking of parameters of our concern over spatial domain are to be performed using 

cooperation strategies. Achievement of an estimate that is just as precise as the node which 

had access to information that is derived from data extracted from all the other sensor nodes 

and estimation of unfamiliar parameters over space where no readings are gathered i.e. 

interpolation mechanism are the main objectives.  

1.4 Thesis Layout 

The chapter 2 elucidates about the basics of distributed network, design aspects to be 

considered for the cooperation strategies i.e. incremental and diffusion schemes and their 
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formulation. The Chapter 3 describes about the estimation of space-time varying parameters 

for some phenomena using adaptive centralized and distributed optimization and also Runge’s 

phenomenon. The chapter 4 provides an idea of two-dimensional network with 4-connected 

and 8-connected neighbors and the deduction of space- varying regression model. The chapter 

5 shows the simulation results and discussion on them. The chapter 6 concludes the work and 

summarizes that has been observed from this. 
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Chapter 2 

Design Aspects for Cooperation Strategies 

Wireless sensor networks comprises of set of nodes which are scattered over a wide 

topographical region. These are self-powered and undergo local computing operation.  The 

nodes in a particular network communicate with all of its neighbors or with a centralized 

processor in a wireless approach. The technique which copes with acquiring information from 

the data gathered from the nodes in the whole network is known as distributed processing. The 

sensor nodes interact with their neighbors according to the network arrangement. The 

potential of performance of distributed networks depend on cooperation strategies.  Here, we 

consider incremental and diffusion cooperation strategies.  

2.1 Distributed network 

The main goal is assess an essential parameter of concern from the perceived data. 

Every node in the network acts as an adaptive filter whose goal is to assess the parameter from 

the local observations. The assessed readings in different nodes are amalgamated with those of 

other nodes in order to procure a better assessment. There are different procedures used for 

merging of estimates from different nodes. Such methods extract power and communication 

resources of a considerable amount. They might also restrict the tracking potential of the 

network to acknowledge in real time to the statistical changes in the data. If the distinctive 

filters greet mainly the local temporal data, their ability to utilize and acknowledge to spatial 

information across the sensor nodes is reduced.  
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Fig. 1 Distributed Network 

 

Consider a wireless network of N sensor nodes as shown in fig.1 which observe 

temporal data from various spatial sources with different data profiles. At each and every time 

instant, every node 𝑙 receives scalar quantity 𝑑𝑙(𝑡) of a random process. An unknown vector is 

to be assessed based on the readings gathered at N nodes dispersed over a network.  The main 

aim is to approximate some parameter vector for all nodes in the network. The nodes are 

considered as connected if they can interact with other nodes in the network. A node is 

connected to itself on all occasions. The group of nodes which are connected to a particular 

node 𝑙 is degree of the node and indicated by 𝑛𝑙. The total number of nodes linked to a node 𝑙, 

including itself is called as neighborhood of node 𝑙 and is indicated by 𝒩𝑙. 

2.2 Incremental Cooperation Strategy 

In this method, the information extracted from the data acquired from the nodes is 

flown one node to its successive node. This involves collaboration among the nodes in the form 

of cyclic pattern. As the data is passed from one sensor node to its adjacent node, it demands 

low power and communication resources. The following figure denotes incremental 

cooperation strategy. 



9 | P a g e  
 

 

Fig. 2 Incremental Cooperation Scheme 

 

The coloured dots denote nodes dispersed in a network. The data acquired from 

previous node is passed to the current node as in fig.2. This node performs necessary 

computations and gives the updated data to its successive node. Each node is denoted by 𝑙 and 

it has access to data  {𝑑𝑙(𝑡), 𝑢𝑙,𝑡} at every iteration 𝑡. This data is taken from information from 

different sources {𝒅𝑙 , 𝒖𝑙}, where 𝑙 = 1,2,⋯ ,𝑁 , 𝒅𝑙  is a scalar measurement and 𝒖𝑙  is Mx1 row 

regression vector. Regression data and observations are collected in a vector as follows: 

 𝑼 ≜ 𝑐𝑜𝑙{𝑢1, 𝑢2, … , 𝑢𝑁} (1.) 

 𝒅 ≜ 𝑐𝑜𝑙{𝑑1, 𝑑2, … , 𝑑𝑁} (𝑁 × 1) (2.) 

These quantities gather information from all the nodes. The main aim is to assess the Mx1 

vector 𝑤 that solves  

      𝐽(𝑤)𝑤
𝑚𝑖𝑛  (3.) 

Where 𝐽(𝑤) represents the cost function and is identified as MSE which is as follows: 

 𝐽(𝑤) = E‖𝒅 − 𝑼𝑤‖2           (4.) 

The optimal solution 𝑤 is determined by utilizing orthogonality condition as follows: 

 𝐸‖𝒅 − 𝑼𝑤‖2 = 0 (5.) 
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𝑤0 is the solution to the normal equations  

 𝑅𝑑𝑢= 𝑅𝑢𝑤
0 (6.) 

Where  𝑅𝑢=E𝑈∗𝑈  (𝑀 ×𝑀)  , 𝑅𝑑𝑢 =E𝑈∗𝑑=∑ 𝑅𝑑𝑢,𝑙
𝑁
𝑙=1    

𝑅𝑢 is the auto correlation and 𝑅𝑑𝑢 is the cross correlation quantities. 

So, the above equations demand access to complete information in the whole network 

i.e. {𝑅𝑢 , 𝑅𝑑𝑢}. Another approach is centralized processing and transfer the information to all 

the nodes in the network. The drawback of these methods is requirement of more number of 

computations, excessive amounts of interaction and more power by all the nodes. Another 

disadvantage is they do not have the potential to track the parameters with changes in the 

statistical data {𝑑𝑙(𝑡), 𝑢𝑙,𝑡} at each and every iteration t. 

2.2.1 Steepest Descent Technique 

The steepest descent and incremental methods are reviewed before we go for adaptive 

solution for incremental cooperation technique. The cost function has to be disintegrated into a 

number of error functions of all the nodes in the network as follows: 

 𝐽(𝑤) = ∑ 𝐽𝑙(𝑤)
𝑁
𝑙=1  (7.) 

Where 𝐽𝑙(𝑤) is the individual error function of each node in the network.  

 𝐽𝑙(𝑤) ≜ 𝐸|𝑑𝑙 − 𝑢𝑙𝑤|
2 (8.) 

 𝐽𝑙(𝑤) = 𝜎𝑑,𝑙
2 − 𝑅𝑢,𝑙𝑤 − 𝑤

∗𝑅𝑑𝑢,𝑙 + 𝑤
∗𝑅𝑢,𝑙𝑤 (9.) 
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The different parts in the above equation are as follows: 

𝜎𝑑,𝑙
2 = 𝐸|𝑑𝑙|

2,  𝑅𝑢,𝑙 = 𝐸𝑢𝑙
∗𝑢𝑙, and 𝑅𝑑𝑢,𝑙 = 𝐸𝑑𝑙𝑢𝑙

∗ 

The steepest descent form of equation for finding the solution of 𝑤0 is as follows: 

 𝑤𝑡 = 𝑤𝑡−1 − 𝜇[∇𝐽(𝑤𝑡−1)]
∗ , 𝑤−1 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 (10.) 

 
𝑤𝑡 = 𝑤𝑡−1 − 𝜇∑[∇𝐽𝑙(𝑤𝑡−1)]

∗

𝑁

𝑙=1

 
(11.) 

 
𝑤𝑡 = 𝑤𝑡−1 + 𝜇∑(𝑅𝑑𝑢,𝑙 − 𝑅𝑢,𝑙𝑤𝑡−1)

𝑁

𝑙=1

 
(12.) 

Where 𝑤𝑡  is an assessment of 𝑤0 at time instant 𝑡, 𝑤𝑡−1 is an assessment of 𝑤0 at time instant 

𝑡 − 1, ∇𝐽(𝑤𝑡−1) denotes gradient of cost function 𝐽(𝑤) found at iteration 𝑡 − 1 with respect to 

w, 𝜇 is step size which is positive.  

For a network arrangement, a cycle is defined such that every sensor node is linked to 

its immediate neighbour i.e. its adjacent node in the network. The following is the steepest 

descent implementation in which the local estimate 𝜓𝑙
(𝑡) is of node l. 

 𝜓0
(𝑡) = 𝑤𝑡−1 (13.) 

 𝜓𝑙
(𝑡) = 𝜓𝑙−1

(𝑡) − 𝜇𝑙[∇𝐽𝑙(𝑤𝑡−1)]
∗,   𝑙 = 1,2,⋯ , 𝑁 (14.) 

 𝑤𝑡 = 𝜓𝑁
(𝑡) (15.) 

𝜓𝑙
(𝑡) is an estimate at node 𝑙 at time instant 𝑡. 𝜓𝑙−1

(𝑡) is an estimate of previous node 𝑙 − 1 at 

iteration  𝑡. 𝜓𝑁
(𝑡)  is a local assessment at node N. At each iteration  𝑡, the global estimate  𝑤𝑡−1 



12 | P a g e  
 

for 𝑤0 is considered initially with 𝜓0
(𝑡) = 𝑤𝑡−1 and iterations are run which after all of them 

are completed, the local assessment at the last node N coincides with 𝑤𝑡  i.e. 𝑤𝑡 = 𝜓𝑁
(𝑡).  

2.2.2 Incremental Steepest Descent Technique 

Each and every node k receives information from its previous node i.e its immediate 

neighbour but in this procedure each node acquires global information 𝑤𝑡−1 to analyze 

∇𝐽𝑙(𝑤𝑡−1). Though the above iterative equations involve cooperation among the nodes in the 

network, they do not satisfy the condition of full distributed processing technique.  

To resolve this trouble, we consider incremental gradient methods. In this, each node 

assesses the gradient 𝛻𝐽𝑙(𝜓𝑙−1
(𝑡)) with respect to 𝜓𝑙−1

(𝑡) in contrast with 𝑤𝑡−1. Finally, this 

technique develops into an incremental version. The following are the iterative equations. 

 𝜓0
(𝑡) = 𝑤𝑡−1 (16.) 

 𝜓𝑙
(𝑡) = 𝜓𝑙−1

(𝑡) − 𝜇𝑙[𝛻𝐽𝑙(𝜓𝑙−1
(𝑡))]

∗
,   𝑙 = 1,2,⋯ , 𝑁 (17.) 

 𝑤𝑡 = 𝜓𝑁
(𝑡) (18.) 

The above equations show that they form a correct distributed method as the cooperation 

strategy relies on local information available. Obviously, each node interacts with its adjacent 

neighbor which in turn conserves communication resources and power.  

2.2.3 Incremental Adaptive Technique 

The operation of incremental technique is shown in fig. 3. To evaluate the gradient 

𝛻𝐽𝑙(𝜓𝑙−1
(𝑡)), the incremental technique depends on the perception of second order moments 

i.e. auto correlation and cross correlation matrices 𝑅𝑑𝑢,𝑙  and 𝑅𝑢,𝑙. The above equations can be 
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turned into adaptive form by superseding correlation matrices by their instantaneous 

estimations which are as follows: 

 𝑅𝑑𝑢,𝑙 ≈ 𝑑𝑙(𝑡)𝑢𝑙,𝑡
∗ (19.) 

 𝑅𝑢,𝑙 ≈ 𝑢𝑙,𝑡
∗𝑢𝑙,𝑡  (20.) 

The above estimations are obtained with the help of statistical data {𝑑𝑙(𝑡), 𝑢𝑙,𝑡} at every 

iteration 𝑡. Utilizing these estimations, the steepest descent incremental algorithm is 

transformed into distributed adaptive incremental algorithm or just incremental least mean 

squares technique.  

 

Fig. 3 Operation of Incremental mode 
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The equations are obtained in the following method: 

 𝜓0
(𝑡) = 𝑤𝑡−1 (21.) 

 [𝜓𝑙
(𝑡) = 𝜓𝑙−1

(𝑡) − 𝜇𝑙𝛻𝐽𝑙(𝜓𝑙−1
(𝑡))]

∗
,   𝑙 = 1,2,⋯ , 𝑁 (22.) 

 𝑤𝑡 = 𝜓𝑁
(𝑡) (23.) 

Substituting the equation in the following one gives 

 [𝜓𝑙
(𝑡) = 𝜓𝑙−1

(𝑡) − 𝜇𝑙𝛻𝐽𝑙(𝜓𝑙−1
(𝑡))]

∗
 (24.) 

 
[𝜓𝑙

(𝑡) = 𝜓𝑙−1
(𝑡) − 𝜇𝑙∑(𝑅𝑑𝑢,𝑙 − 𝑅𝑢,𝑙𝑤𝑡−1)

𝑁

𝑙=1

]

∗

 
(25.) 

 
[𝜓𝑙

(𝑡) = 𝜓𝑙−1
(𝑡) + 𝜇𝑙∑(𝑑𝑙(𝑡)𝑢𝑙,𝑡

∗ − 𝑢𝑙,𝑡
∗𝜓𝑙−1

(𝑡))

𝑁

𝑙=1

]

∗

 
(26.) 

Using the instantaneous estimations, the following equations are obtained. 

 𝜓0
(𝑡) = 𝑤𝑡−1 (27.) 

 𝜓𝑙
(𝑡) = 𝜓𝑙−1

(𝑡) + 𝜇𝑙𝑢𝑙,𝑡
∗(𝑑𝑙(𝑡) − 𝑢𝑙,𝑡𝜓𝑙−1

(𝑡)),   𝑙 = 1,2,⋯ ,𝑁 (28.) 

 𝑤𝑡 = 𝜓𝑁
(𝑖)  (29.) 

The nodes in the above equations use statistical data {𝑑𝑙(𝑡), 𝑢𝑙,𝑡} at each and every iteration t 

and perform the following operations to estimate the weights. 

1) Calculates the error quantity i.e. 𝑒𝑙(𝑡) = 𝑑𝑙(𝑡) − 𝑢𝑙,𝑡𝜓𝑙−1
(𝑡) 

2) Updates the estimate by the equation 𝜓𝑙
(𝑡) = 𝜓𝑙−1

𝑡 + 𝜇𝑙𝑒𝑙(𝑡) 

3) Transfers the updated assessment to its neighbouring node l+1 
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By this we can say that performance of incremental technique is much better than that 

of steepest descent technique because it utilizes spatial diversity efficiently. The steepest 

descent technique employs 𝑤𝑡−1 but incremental technique employs updates 

{𝜓0
(𝑡), 𝜓1

(𝑡), … . . , 𝜓𝑁−1
(𝑡)} . 

2.3 Diffusion Cooperation Strategy 

 

Fig. 4 Diffusion Cooperation Scheme 

 

In this strategy, each node is made to interact with all the nodes in its neighborhood at 

every iteration as shown in fig.4. In the computations, each node exchanges data with other 

nodes in its neighborhood and estimates the necessary parameters of our concern. So the data 

required to estimate the weights depends not only on the data from the node itself but also on 

the data from the nodes nearby the particular node. At each node, the traded data gets 

amalgamated and instantly given to a local adaptive filter.  
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Fig. 5 Diffusion in a phenomenon 

We can say that the passing of information among the nodes within the neighborhood 

of a particular node is in the form of diffusion as in fig.5. The diffused information makes the 

assessment as a function of not only temporal data but also spatial data of the nodes. This 

process improves the potential of adaptive filters i.e. nodes to adapt in real time with respect to 

the changes in the data statistics {𝑑𝑙(𝑡), 𝑢𝑙,𝑡} . The spatial data alters for all nodes. The analysis 

of all the nodes is more burdensome than studying about the performance of single adaptive 

filters because the nodes influence each other. 

2.3.1 Diffusion LMS formulation 

The main goal is to estimate the necessary parameters of our concern as precise as it 

can and dispatches the assessment of the vector to all the nodes in the network. Initially, a 

cooperation strategy has to be chosen if an adaptive estimation solution is to be derived. A 

sensor node k obtains a group of assessments at any time instant 𝑡 − 1. The unbiased estimates 

are  {𝜓𝑙
(𝑡−1)}𝑘∈𝒩𝑘

. The quantity 𝒩𝑙  is the symbol for neighborhood of 𝑙 which comprises of 
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group of all nodes connecting to it and including itself. The estimates are erroneous versions of 

𝑤0 as follows: 

 𝜓𝑙
(𝑡−1) = 𝑤0 - 𝜓𝑙

(𝑡−1) (30.) 

The local estimates of all nodes are amalgamated at node k which gives the following: 

 𝜙𝑙
(𝑡−1) = 𝑓𝑙(𝜓𝑘

(𝑡−1); 𝑘 𝜖 𝒩𝑙,𝑡−1) (31.) 

Where 𝑓𝑙  is local fusing function.  

Let 𝑓𝑙  be considered as some weighted combination like  

 𝜙𝑙
(𝑡−1) = ∑ 𝑐𝑙𝑘

𝑘 𝜖 𝒩𝑙,𝑡−1

𝜓𝑘
(𝑡−1) (32.) 

Where 𝑐𝑙𝑘  are coefficients used for combination which is to be calculated i.e. 𝑐𝑙𝑘 ≥ 0.    

 𝜙𝑙
(𝑡−1) = ∑

𝑐𝑙𝑘
∑ 𝑐𝑙𝑟𝑟 𝜖 𝒩𝑙,𝑡−1𝑘 𝜖 𝒩𝑙,𝑡−1

𝜓𝑘  (33.) 

Finally, these coefficients give rise to some coefficient matrices C = [𝑐𝑙𝑘] that bears information 

about network arrangement. For example, an item 𝑐𝑙𝑘  which is non-zero denotes that nodes 𝑙 

and 𝑘 are linked to each other. If the coefficients are defined again as  

 𝑐𝑙𝑘 ← 
𝑐𝑙𝑘

∑ 𝑐𝑙𝑟𝑟 𝜖 𝒩𝑙,𝑡−1

 (34.) 

then we get the following as the sum of all elements in row is equal to 1. 

 ∑𝑐𝑙𝑘 = 1, 𝑘 𝜖 𝒩𝑙,𝑡−1  

𝑘

 (35.) 
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So, this says that C is a stochastic matrix. The combining step helps in amalgamating 

information from all the nodes in the network into node 𝑙. In general, each node has different 

neighborhood 𝒩𝑙  for node 𝑙.  

In order to promote adaptivity, the aggregated assessment 𝜙𝑙
(𝑡−1) extracted from all 

the nodes in the neighborhood of 𝑙 is merged with the information of the node 𝑙 such that it 

can acknowledge the alterations in the surroundings and update it to 𝜓𝑙
(𝑡). So, this solution 

turns into an adaptive one which attains small erroneous levels in steady state when contrasted 

with non-cooperative solution. In non-cooperative solution, each node adapts without 

complete knowledge of data from the nodes themselves and that of aggregation.  

The diffusion scheme put forward is of the form as follows: 

 𝜙𝑙
(𝑡−1) = 𝑓𝑙(𝜓𝑘

(𝑡−1); 𝑘 𝜖 𝒩𝑙,𝑡−1) (36.) 

 𝜓𝑙
(𝑡) = 𝜙𝑙

(𝑡−1) + 𝜇𝑙𝑢𝑙,𝑡
∗(𝑑𝑙(𝑡) − 𝑢𝑙,𝑡𝜙𝑙

(𝑡−1)),   𝑙 = 1,2,⋯ ,𝑁 (37.) 

The above network is robust in nature, immune to connection failures and utilizes network 

connectivity. A linear combiner is used as an aggregating function. The scheme is as follows: 

 𝜙𝑙
(𝑡−1) = ∑ 𝑐𝑙𝑘

𝑘 𝜖 𝒩𝑙,𝑡−1

𝜓𝑘
(𝑡−1),     𝜙𝑙

(−1) =  0 (38.) 

 𝜓𝑙
(𝑡) = 𝜙𝑙

(𝑡−1) + 𝜇𝑙𝑢𝑙,𝑖
∗(𝑑𝑙(𝑡) − 𝑢𝑙,𝑡𝜙𝑙

(𝑡−1))   (39.) 

These equations are used for estimation purposes in the form of linear models.  

 𝒅𝑙(𝑡) =  𝒖𝑙,𝑡𝑤
𝑜 + 𝒏𝑙(𝑡)  (40.) 

Likely choices for combination matrix C[1] are metropolis, nearest neighbor and laplacian rules.  
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The following example of combination matrix is metropolis rule. 

𝑐𝑙𝑘 =

{
 
 

 
 

1

max (𝑛𝑙, 𝑛𝑘)
, if l and k are connected 

0,                             if l and k not connected 

1 −  ∑  𝑐𝑙𝑘 ,                               
𝑘𝜖𝒩𝑙
𝑙

𝑖𝑓 𝑙 = 𝑘
 

The following rule is of uniform combination. 

𝑐𝑙𝑘 = 1/(𝑛𝑙),       if 𝑙 ≠ 𝑘 are connected 

      𝑐𝑙𝑘 = 0,                  if 𝑙 and 𝑘  not connected 

Where, 𝐴𝑑  is NxN adjacent matrix which can formed as 

𝐴𝑑 = {
1,        𝑖𝑓 𝑙 𝑎𝑛𝑑 𝑘 𝑎𝑟𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑
0,                                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

If a node is connected to itself then [𝐴𝑑]𝑙𝑙 = 1.  
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Chapter 3 

Space-Time Varying Parameters 

In many theories on diffusion cooperation schemes, the parameters to be estimated are 

considered as space invariant. The complete group of nodes in a network detects and evaluates 

information which is obtained from a physical model represented by non-variable parameters 

over space. Nevertheless, there are different scenarios in which necessary parameters to be 

estimated are space varying in the network. The above situation is present in scenarios like 

tracing of distribution of population, observation of fluid flow in underground porous media, 

confinement of distributed sources in dynamic systems. The parameters altering in space are 

obtained by discretizing the coefficients of partial differential equation through spatial 

sampling.  

In the assessment of the parameters of our concern, the few techniques that have been 

applied to prior studies can be applied here too. The results depend on the utilization of central 

processing unit and distributed network and in-network processing results is less considered. 

Distributed algorithms are employed when the network in which nodes are present have no 

influential amalgamation centre and also when the amount of communication resources and 

power are not sufficient enough to supply to the complete network. A few number of 

distributed algorithms have been proposed in the papers including incremental method, 

consensus methods and diffusion methods. Incremental solutions demand cyclic path between 

the sensor nodes over the network and therefore vulnerable to connection failures. Consensus 

solutions necessitate doubly-stochastic combining policies and causes instability in the network 
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where the scenarios require relentless adaptation and tracking. Diffusion policies have the 

ability to track the parameters of our concern in a continual pattern and adapt with them in 

real time. Also, the networks provide stable behavior despite the arrangement of the nodes in 

the network.  

In this, the parameters of our concern are assessed and traced by developing the 

distributed algorithm with diffusion least mean squares policy and they alter over space[5] and 

time simultaneously. Initially, this outlook begins with designing the space varying regression 

model which describes the distinctive nature of the space varying situations. Partial differential 

equations are the crucial mathematical tools to describe the spatio-temporal processes. This 

model is derived by discretizing the partial differential equations in describing the dynamic 

systems with spatially altering features. Here, a set of basis functions have been introduced to 

indicate the space varying parameters in terms of a set of space-invariant coefficients. Based on 

this depiction, a diffusion LMS method has been proposed to estimates, tracks and interpolates 

the parameters of our concern over the network.  

3.1 Modeling 

In this part, the linear regression model has been introduced which is utilized to explain 

the systems with space altering features. Here, the model considered is evolution of pressure 

distribution in an inhomogeneous media[6]. To describe this, a second order one dimensional 

partial differential equation is used. This has space varying diffusion coefficient and input 

distribution. This method can extended to partial differential equations of over two-

dimensional space in shaping the space varying phenomena.  
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The PDE [4] that is considered is  

 𝜕𝑓(𝑥, 𝑖)

𝜕𝑖
=  

𝜕

𝜕𝑥
(𝜏(𝑥)

𝜕𝑓(𝑥, 𝑖)

𝜕𝑥
) + 𝑝(𝑥, 𝑖) 

(41.) 

where, 

(𝑥, 𝑖) 𝜖 [0, 𝐿] x [0,T] indicate variables across space and time, 

𝑓(𝑥, 𝑖) indicates the system distribution (e.g., pressure or temperature), 

𝜏(𝑥) is the space-varying coefficient, 

𝑝(𝑥, 𝑖) is the input distribution 

The partial differential equation[4],[12] considered is presumed to fulfil the boundary 

conditions 𝑓(0, 𝑖)= 𝑓(𝐿, 𝑖) = 0 for all i 𝜖 [0,T]. Hence, the distribution at the system at i=0 is 

given by 𝑓(𝑥, 0) = 𝑦(𝑥) for 𝑥 ∈ [0, 𝐿]. The Finite Difference Method[13] is employed for 

discretizing the partial differential equation over space and time domains. For N and P which 

are positive integers, ∆𝑥 = 𝐿/(𝑁 + 1) and 𝑥𝑙 = 𝑙∆𝑥  for 𝑙 ∈ {0,1,2,… . , 𝑁 + 1} and in the 

similar way ∆𝑖 = 𝑇/𝑃 and 𝑖𝑡 = 𝑡∆𝑖 for 𝑖 ∈ {0,1,2, … . , 𝑃}. The sampled values of the pressure 

distribution 𝑓𝑙(𝑡) ≜ 𝑓(𝑥𝑙0, 𝑖𝑡), input 𝑝𝑙(𝑡) ≜ 𝑝(𝑥𝑙, 𝑖𝑡) and space altering coefficient 𝜏(𝑥)  ≜

𝜏(𝑥𝑙). Hence, the recursive equation can be obtained from Finite Difference Method[13] as 

follows: 

 𝑓𝑙(𝑡) =  𝑣𝑙,𝑡𝑔𝑙
𝑜 +  ∆𝑖 𝑝𝑙(𝑡 − 1), 𝑙 𝜖 {1,  2,… . . ,   𝑁} (42.) 
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where the vectors 𝑔𝑙
𝑜 and 𝑣𝑙,𝑡 are defined as, 

 𝑔𝑙
𝑜 = [𝑔1,𝑙

𝑜 , 𝑔2,𝑙
𝑜 , 𝑔3,𝑙

𝑜]T (43.) 

 𝑣𝑙,𝑖 = [𝑓𝑙−1(𝑡 − 1), 𝑓𝑙(𝑡 − 1), 𝑓𝑙+1(𝑡 − 1)] (44.) 

The entries of 𝑔𝑚,𝑙
𝑜 are: 

 𝑔1,𝑙
𝑜  = 

𝑣

4
(𝜏𝑙−1 + 4𝜏𝑙 − 𝜏𝑙+1) (45.) 

 𝑔2,𝑙
𝑜 = 1 - 2𝜏𝑙  (46.) 

 𝑔3,𝑙
𝑜  = 

𝑣

4
(−𝜏𝑙−1 + 4𝜏𝑙 + 𝜏𝑙+1) (47.) 

where,  

𝑎 =  ∆𝑖/∆𝑥2 

𝑙 𝜖 {1,  2, … . . ,   𝑁} 

The above relation (3) is well-defined 𝑙 𝜖 {1,  2,… . . ,   𝑁}. This means that data sampling is not 

necessary at 𝑥 = {0, 𝐿} beacause 𝑓0(𝑡) and 𝑓𝑁+1(𝑡) have a close similarity to the boundary 

conditions 𝑓(0, 𝑖) and conditions 𝑓(𝐿, 𝑖). In the observing process i.e. estimation of 𝜏(𝑥), the 

nodes in the network collect erroneous information parts of 𝑓(𝑥, 𝑖) across the network. The 

error information is represented as follows: 

 𝑧𝑙(𝑡) =  𝑓𝑙(𝑡) + 𝑛𝑙(𝑡) (48.) 

where, 𝑛𝑙(𝑡) is a randomized noise term. 

The above equation can be written as,  

 𝑑𝑙(𝑡) =  𝑢𝑙,𝑡𝑔𝑙
𝑜 + 𝑛𝑙(𝑡)  (49.) 

where,  



24 | P a g e  
 

 𝑑𝑙(𝑡) =  𝑧𝑙(𝑡) − ∆𝑖 𝑝𝑙(𝑡 − 1) (50.) 

The space reliant model can be global to explain systems with more than one spatial 

dimension. The assumption that 𝑢𝑙,𝑡 is random because of the probability of erroneous samples 

is denoted by boldface notation 𝒖𝑙,𝑡. Therefore, 𝑔𝑙
𝑜 and 𝑢𝑙,𝑡  are both vectors of M dimensions. 

The noise is generally represented by 𝑣𝑙(𝑡) for various forms of errors which include noise in 

readings. So, the space altering regression model[5] is of the form: 

 𝒅𝑙(𝑡) = 𝒖𝑙,𝑡𝑔𝑙
𝑜 + 𝒗𝑙(𝑡) (51.) 

where, 𝒅𝑙(𝑡) 𝜖 ℝ, 𝒖𝑙,𝑡  𝜖 ℝ1×𝑀, 𝑔𝑙
𝑜𝜖 ℝ𝑀×1, 𝒗𝑙(𝑡) 𝜖 ℝ. So, the networks which monitor 

phenomena described by regression models of the form (12) are studied where the main aim is 

the space altering parameters of concern 𝑔𝑙
𝑜 are to be assessed 𝑙 𝜖 {1,  2,… . . ,   𝑁}. So, a 

distributed solution of diffusion cooperation strategy in the form of adaptive algorithm is 

required to estimate the parameters over both space and time. The accessible data {𝒅𝑙(𝑡), 𝒖𝑙,𝑡} 

that is obtained from the information extracted from all the N nodes at each location 𝑥𝑙 is to 

estimate the parameters 𝑔𝑙
𝑜.  

3.2 Optimization Techniques 

3.2.1 Centralized Optimization 

In centralized optimization, space altering parameters are found by diminishing the following 

global cost function over the variables 𝑔𝑙: 

 𝐽(𝑔1, … . . , 𝑔𝑁) ≜  ∑ 𝐽𝑙(𝑔𝑙)
𝑁
𝑙=1  (52.) 
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where, 

 𝐽𝑙(𝑔𝑙) ≜ 𝔼|𝒅𝑙(𝑡) −  𝒖𝑙,𝑡𝑔𝑙|
2
 (53.) 

In distributed mechanisms, to find 𝑔𝑙, some steps are essential to transform global cost 

(13) into a form for decentralized optimization. From (6)-(8) the collaboration is favorable 

because the 𝑔𝑙  of neighbors are associated with each other through space reliant function 𝜏(𝑥). 

Individually, if the nodes assess the space altering parameters by reducing 𝐽𝑙(𝑔𝑙), then at each 

time instant in order to find the model parameters over locations of space where readings are 

not taken, they have to send the estimates to an amalgamation center for interpolation. 

Cooperate strategies are utilized to help the nodes upgrade the assessments and accomplish 

more precise interpolation.  

3.2.2 Adaptive Distributed Optimization 

The nodes in the network accomplish their common objective through collaboration in 

all the distributed enhancement over the systems. So, the objective can be attained by finding 

the global parameter vector and using it in diminishing the cost function that comprises of the 

complete set of nodes. The anonymous parameters in (13) are node-reliant. In continuous pace 

domain, the items of every 𝑔𝑙  i.e. {𝑔1,𝑙
𝑜,…..,𝑔𝑀,𝑙

𝑜} are deduced into samples of M anonymous 

space-altering parameter functions {𝑔1
𝑜(x),…..,𝑔𝑀

𝑜(x)} at position 𝑥 = 𝑥𝑙 as shown in figure 1.  

To assess the space altering coefficients by the utilization of distributed optimization, 

the theory of interpolation is used to find a group of linear expansion coefficients mutual to all 

the nodes. The m-th unfamiliar space altering parameter function is conveyed as a distinctive 

linear arrangement of 𝑁𝑏 basis functions i.e. 
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 𝑔𝑚
𝑜(𝑥)= 𝑊𝑚,1𝑏1(𝑥)+ 𝑊𝑚,2𝑏2(𝑥)+………+𝑊𝑚,𝑁𝑏

𝑏𝑁𝑏(𝑥) (54.) 

Where, 𝑊𝑚,𝑛 are the sole expansion coefficients and 𝑏𝑛(𝑥) are the basis functions. Here the 

basis functions assumed are Chebyshev polynomials[14],[15]. The following are the expressions 

for basis functions: 

 𝑏1(𝑥) = 1 (55.) 

 𝑏2(𝑥) = 2𝑥 − 1 (56.) 

 𝑏𝑛+1(𝑥) = 2(2𝑥 − 1)𝑏𝑛(𝑥) −  𝑏𝑛−1(𝑥),        2 < 𝑛 < 𝑁𝑏 (57.) 

Based on the specification of applications and guidance of many concerns like less 

computational complexity, ability to interpolate at points where readings are not collected, 

efficiency in representation and properties like orthogonality, the selection of basis functions is 

done. The main advantage in using Chebyshev polynomials is it avoids Runge’s phenomenon 

and also produces worthy results in the above conditions.  

3.3 Runge’s Phenomenon 

Runge’s phenomenon results in deviating approximation. It is an issue of oscillations at 

the edges of an interim that happens when utilizing polynomial interpolation with polynomials 

of high degree more than an arrangement of equispaced interpolation points. Consider the 

situation where one yearns to insert through n+1 equispaced points of a function 𝑓(𝑥) utilizing 

the n-degree polynomial 𝑝𝑛(𝑥) that goes through those locations. Normally, one may 

anticipate that utilizing more points would lead toward a more exact remaking of 𝑓(𝑥). 

Notwithstanding, this specific arrangement of polynomial functions 𝑝𝑛(𝑥)  is not ensured to 

have the property of convergence in uniform fashion. The 𝑝𝑛(𝑥) created in this way might 
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actually separate far from 𝑓(𝑥) as n builds. This regularly happens in a oscillating example that 

amplifies close to the finishes of the interpolation points. So, error increases as n value 

increases. Polynomials with high degree are inappropriate to interpolate between equidistant 

points. Finally, the interpolation error surges with increase in degree of polynomials.  

3.4 Deduction of Regression Model 

The sampled form of m-th space altering parameter 𝑔𝑚
𝑜(𝑥) in (15) at 𝑥 = 𝑥𝑙 = 𝑙∆𝑥 is 

written as  

 𝑔𝑚,𝑙
𝑜 = 𝑊𝑚

𝑇𝑏𝑙  (58.) 

Where,  

 𝑊𝑚 = [𝑊𝑚,1,𝑊𝑚,2, … . ,𝑊𝑚,𝑁𝑏
]T (59.) 

 𝑏𝑙 = [𝑏1,𝑙 , 𝑏2,𝑙 , … . , 𝑏𝑁𝑏 ,𝑙]T (60.) 

Sampling the basis functions at locations 𝑥 = 𝑥𝑙 = 𝑙∆𝑥, produces all the elements 𝑏𝑛,𝑙  i.e. 

 𝑏𝑛,𝑙 =  𝑏𝑛(𝑥𝑙) =  𝑏𝑛(𝑙 △ 𝑥) (61.) 

Assembling all the samples of the parameter functions 𝑔𝑚
𝑜(𝑥) 𝑚 𝜖 {1,  2, … . . ,   𝑀} into a 

column vector as 

 𝑔𝑙
𝑜 = [𝑔1,𝑙

𝑜 , 𝑔2,𝑙
𝑜 , … . , 𝑔𝑀,𝑙

𝑜]𝑇 (62.) 

Utilizing the equation (18), the following is attained: 

 𝑔𝑙
𝑜 =  𝑊𝑜𝑏𝑙  (63.) 

Where,  
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𝑊𝑜 ≜  

[
 
 
 
 
𝑊1,1

𝑜 𝑊1,2
𝑜

𝑊2,1
𝑜 𝑊2,2

𝑜 ⋯
𝑊1,𝑁𝑏

𝑜

𝑊2,𝑁𝑏
𝑜

⋮ ⋱ ⋮
𝑊𝑀,1

𝑜 𝑊𝑀,2
𝑜

⋯ 𝑊𝑀,𝑁𝑏
𝑜
]
 
 
 
 

 

Rearrangement can be done by piling up all the columns of 𝑊𝑜𝑇 i.e. 𝑤𝑜= vec(𝑊𝑜𝑇). This 

transforms 𝑊𝑜 into an 𝑀𝑁𝑏 × 1 column vector. Using this, a block diagonal matrix can be 

defined as follows: 

 𝐵𝑙 ≜  𝐼𝑀⨂𝑏𝑙
𝑇  (64.) 

So, this makes the size of 𝐵𝑙 as 𝑀 ×𝑀𝑁𝑏. The equation (23) can be rewritten as: 

 𝑔𝑙
𝑜= 𝐵𝑙𝑤

𝑜 (65.) 

Substituting the above equation in (12), we obtain the following space varying regression 

model: 

 𝒅𝑙(𝑡) = 𝒖𝑙,𝑡𝐵𝑙𝑤
𝑜 +  𝒗𝑙(𝑡) (66.) 

So, the global cost function accordingly, becomes: 

 
𝐽(𝑤) =∑𝔼|𝒅𝑙(𝑡) −  𝒖𝑙,𝑡𝐵𝑙𝑤

𝑜|
2

𝑁

𝑙=1

 
(67.) 

3.5 Estimation using Optimization Techniques 

3.5.1 Centralized Optimization 

The following statistical conditions have been assumed for the data {𝒅𝑙(𝑡), 𝒖𝑙,𝑡 , 𝒗𝑙(𝑡)} in the 

network: 



29 | P a g e  
 

1) 𝒅𝑙(𝑡) and 𝒖𝑙,𝑡 are zero mean jointly wide sense stationary random processes with 

second order moments: 

 𝑟𝑑𝑢,𝑙 = 𝔼[𝒅𝑙(𝑡)𝒖𝑙,𝑡
𝑇] ∈  ℝ𝑀×1 (68.) 

 𝑅𝑢,𝑙 = 𝔼[𝒖𝑙,𝑡
𝑇𝒖𝑙,𝑡] ∈  ℝ

𝑀×𝑀 (69.) 

2) The regression information {𝒖𝑙,𝑡} are i.i.d over time, independent over space and 

covariance matrices 𝑅𝑢,𝑙  are positive definite ∀𝑙. 

3) Noise considered here,𝒗𝑙(𝑡), is i.i.d. over time and independent over space with 

variance {𝜎𝑣,𝑙
2}. 

4) The noise 𝒗𝑙(𝑡) is independent of the regression data 𝒖𝑚,𝑗 ∀𝑖, 𝑗, 𝑙, 𝑚. 

The ideal parameter 𝑤𝑜 for reducing the global cost function is to make the gradient vector of 

𝐽(𝑤) equal to zero. Using this, the following equations have been obtained: 

 
(∑𝑅1𝑢,𝑙

𝑁

𝑙=1

)𝑤𝑜 = ∑𝑟1𝑑𝑢,𝑙

𝑁

𝑙=1

 
(70.) 

Where, {𝑅1𝑢,𝑙 , 𝑟1𝑑𝑢,𝑙} are the second order moments of 𝒖𝑙,𝑡𝐵𝑙 and 𝒅𝑙(𝑡): 

 𝑅1𝑢,𝑙 ≜ 𝐵𝑙
𝑇𝑅𝑢,𝑙𝐵𝑙,    𝑟1𝑑𝑢,𝑙 ≜ 𝐵𝑙

𝑇𝑟𝑑𝑢,𝑙  (71.) 

After the solution for global parameter is obtained, the space altering parameters can 

be assessed at locations other than the node locations 𝑥𝑙. The result 𝑤𝑜 can be obtained in 

iteration utilizing steepest descent recursion: 

 
𝒘𝑡 = 𝒘𝑡−1 +  𝜇∑(𝑟1𝑑𝑢,𝑙 − 𝑅1𝑢,𝑙𝒘𝑡−1) 

𝑁

𝑙=1

 
(72.) 
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𝜇 is considered as step size which is greater than zero and 𝒘𝑡  is the assessment of 𝑤𝑜 at t-th 

iteration. The (33) shows that the powerful central processor necessitates to have the 

knowledge of the covariance matrices, 𝑅1𝑢,𝑙  and cross covariance matrices 𝑟1𝑑𝑢,𝑙  at all nodes. 

Knowing the matrices in advance is not possible and the instantaneous approximations are 

used. Using these approximations, the recursion equations can be led to centralized LMS 

scheme for assessment of space altering parameters of all the nodes in the network. 

 
𝒘𝑡 = 𝒘𝑡−1 +  𝜇∑[𝐵𝑙

𝑇𝒖𝑙,𝑡
𝑇(𝒅𝑙(𝑡) − 𝒖𝑙,𝑡𝐵𝑙𝒘𝑡−1)] 

𝑁

𝑙=1

 
(73.) 

 𝒈𝑙,𝑡 =  𝐵𝑙𝒘𝑡  (74.) 

Each sensor node, in every iteration, drives the information {𝒅𝑙(𝑡), 𝒖𝑙,𝑡} to the central 

processing unit for fusion to update the weight in the previous iteration, 𝒘𝑡−1. The latter 

equation shows the estimation of space altering parameters using the updated weights 𝒘𝑡  at 

iteration t and basis function matrix at position 𝑙 i.e. 𝐵𝑙. The second equation also denotes as 

the interpolation mechanism to approximate the space-altering parameters by utilizing the 

basis function matrix at each node, 𝐵(𝑥).  

3.5.2 Diffusion Optimization 

The optimization scheme is to decouple the global cost and write it as a group of 

constrained optimization problems with local weights 𝒘𝑙  as: 

 min
𝑤𝑙

∑ 𝑐𝑘,𝑙𝔼|𝒅𝑘(𝑡) −  𝒖𝑘,𝑡𝐵𝑘𝑤𝑙|
2

𝑘∈𝒩𝑙

 (75.) 
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Where, 𝑐𝑘,𝑙  are the elements of right stochastic matrix 𝐶 ∈  ℝ𝑁×𝑁 which satisfies: 

 𝑐𝑘,𝑙 = 0 if 𝑘 ∉  𝒩𝑙  and 𝐶𝕀 = 𝕀 (76.) 

𝕀 is a column matrix with unit entries.  

The limitations enforced all the nodes to agree on an precise result but this lowers the 

tracking and learning abilities of all the nodes in the network. It is always beneficial for the 

nodes that sense appropriate data to respond right away to it without delaying by waiting for 

all of them to get same result. This makes the information to be diffused among the nodes in 

the network.  

The scheme that does not undergo the tracking and learning abilities of all the nodes in 

real time is diffusion strategy which reduces the global cost solve the optimization problem for 

𝑙 𝜖 {1,  2,… . . ,   𝑁}: 

 min
𝑤
  ( ∑ 𝑐𝑘,𝑙𝔼|𝒅𝑘(𝑡) −  𝒖𝑘,𝑡𝐵𝑘𝑤|

2
+  

𝑘∈𝒩𝑙

∑ 𝑝𝑘,𝑙‖𝑤 − 𝜓𝑘‖
2)

𝑘∈𝒩𝑙\{𝑙}

 (77.) 

Where 𝜓𝑘  is the available assessment of the global parameter at node 𝑘. 𝒩𝑙\{𝑙} is the set of 

neighborhood of 𝑙 without including node 𝑙 and 𝑝𝑘,𝑙  are some parameters. The minimization of 

(38) leads to the following recursion equations: 

 𝝓𝑙,𝑡−1 =  ∑ 𝑎𝑘,𝑙
(1)𝒘𝑘,𝑡−1

𝑘∈𝒩𝑙

 (78.) 

 𝝍𝑙,𝑡 =  𝝓𝑙,𝑡−1 +  𝜇𝑙 ∑ [𝑐𝑘,𝑙𝐵𝑘
𝑇𝒖𝑘,𝑡

𝑇(𝒅𝑘(𝑡) − 𝒖𝑘,𝑡𝐵𝑘𝝓𝑙,𝑡−1)𝑘𝜖𝒩𝑙
] (79.) 

 𝒘𝑙,𝑡 =  ∑ 𝑎𝑘,𝑙
(2)𝝍𝑘,𝑡

𝑘𝜖𝒩𝑙

 (80.) 
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 𝒉𝑙,𝑡 =  𝐵𝑙𝒘𝑙,𝑡  (81.) 

In the algorithm, 𝜇𝑙  denotes the step size at node 𝑙 which is greater than zero. 𝒘𝑙,𝑡−1, 𝝍𝑙,𝑡, 

𝝓𝑙,𝑡−1 are the intermediary estimates of 𝑤𝑜, 𝑔𝑙,𝑡 is an intermediary estimate of 𝑔𝑙
𝑜 and 

{𝑎𝑙,𝑘
(1), 𝑎𝑙,𝑘

(2)} are non-negative elements of left stochastic matrices 𝐴1, 𝐴2 ∈  ℝ𝑁×𝑁  which 

satisfies: 

 𝑎𝑘,𝑙
(1) = 𝑎𝑘,𝑙

(2) = 0   if 𝑘 ∉  𝒩𝑙  

𝐴1𝑇𝕀 = 𝕀,     𝐴2𝑇𝕀 = 𝕀 

(82.) 

The following steps describe the operations performed by the above equations.  

1) The first step denotes the combination step which fuses {𝑤𝑘,𝑡−1}𝑘∈ 𝒩𝑙
 to create 𝝓𝑙,𝑡−1. 

2) The second step denotes the adaptation in which each node 𝑙 uses the information from 

the node itself and that of from the neighboring nodes i.e. {𝒅𝑙(𝑡), 𝒖𝑙,𝑡} to update 𝝓𝑙,𝑡−1 

to an intermediary assessment 𝝍𝑙,𝑡.  

3) The third step also denotes the combination step in which intermediary assessments 

{𝝍𝑙,𝑡}𝑘∈ 𝒩𝑙
 are combined to further align the global estimate at locations 𝑥𝑙 including 

neighbors. 

4) Finally, the anticipated parameters of our concern are assessed by utilizing the weights 

𝒘𝑙,𝑡.  

Using the 𝑁𝑏𝑀 global invariant coefficients in 𝑤𝑜, the proposed algorithm of diffusion 

LMS assesses 𝑁𝑀 spatially relying variables {ℎ𝑘
𝑜}. The combination matrices 𝐴1, 𝐴2, 𝐶 depend 

upon different choices. If 𝐴1 = 𝐴2 = 𝐶 = 𝐼, then the diffusion algorithm gets transformed into 

non-cooperative scheme. Making 𝐶 = 𝐼, the adaptation equation (40) changes to a scheme 
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where each node 𝑙 utilizes its own information to execute local adaptation. Using the choice, 

𝐴1 = 𝐼, 𝐴2 = 𝐴, where A is some left stochastic matrix makes it discards the first fusion step 

and it reduces to adaptation followed by combination which makes it Adapt-then-Combine 

(ATC) diffusion algorithm.  

 𝝍𝑙,𝑡 =  𝒘𝑙,𝑡−1 +  𝜇𝑙𝐵𝑙
𝑇𝒖𝑙,𝑡

𝑇(𝒅𝑙(𝑡) − 𝒖𝑙,𝑡𝐵𝑙𝒘𝑙,𝑡−1) (83.) 

 𝒘𝑙,𝑡 =  ∑ 𝑎𝑘,𝑙𝝍𝑘,𝑡

𝑘𝜖𝒩𝑙

 (84.) 

 𝒉𝑙,𝑡 =  𝐵𝑙𝒘𝑙,𝑡  (85.) 

The choice 𝐴1 = 𝐴, 𝐴2 = 𝐼 discards the second combination equation and algorithm minimizes 

to combination followed by adaptation which makes it Combine-then-Adapt (CTA) diffusion 

algorithm. 

 𝝓𝑙,𝑡−1 =  ∑ 𝑎𝑘,𝑙𝒘𝑘,𝑡−1

𝑘∈𝒩𝑙

 (86.) 

 𝒘𝑙,𝑡 =  𝝓𝑙,𝑡−1 +  𝜇𝑙𝐵𝑙
𝑇𝒖𝑙,𝑡

𝑇(𝒅𝑙(𝑡) − 𝒖𝑙,𝑡𝐵𝑙𝝓𝑙,𝑡−1) (87.) 

 𝒉𝑙,𝑡 =  𝐵𝑙𝒘𝑙,𝑡  (88.) 

Both the versions of diffusion algorithms i.e. ATC and CTA have been used for 𝐶 = 𝐼. The 

optimum values of the combination matrices differ from each other which depends upon the 

arrangement of network and communication between the nodes. The combination rules[1] 

used for stochastic matrices {𝐴1, 𝐴2, 𝐶} are  as follows: 
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Name Combination Rule (𝑘 ∈  𝒩𝑙 , 𝑘 ≠  𝑙) 

Uniform 𝑎𝑘,𝑙 = 1/𝑛𝑙 

Laplacian 𝑎𝑘,𝑙 = 1/𝑛𝑚𝑎𝑥 

Maximum Degree 𝑎𝑘,𝑙 = 1/𝑁 

Metropolis 
𝑎𝑘,𝑙 =

1

max (𝑛𝑙, 𝑛𝑘)
 

Relative Degree 𝑎𝑘,𝑙 = 
𝑛𝑘

∑ 𝑛𝑚𝑚 𝜖 𝒩𝑙
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Chapter 4 

Two-Dimensional Process Estimation 

4.1 Climate Models 

The practical application of the two dimensional network is climate model. The climate 

models are designed to foresee the weather. Weather prediction and forecasting is so difficult 

such that it comprises many calculations. It’s in the same way, an architect plans a model for a 

building, a scientist makes a climate model to predict the behavior of climate. Physics and 

chemistry of the biosphere, atmosphere are integrated into the climate models to predict the 

weather at some location or to respond to the question like predicting the next El Nino to occur 

and to monitor the concentration of greenhouse gases in the atmosphere.  

The major task for the climate models is to go into the future and see the weather 

conditions i.e. quicker than that of the variations in oceans and atmosphere. To perform this, 

the climate models have to undergo the large number of calculations and assumptions that are 

used for simplifications. To explore various features of climate, different kinds of models are 

required. A single aspect of climate can be predicted using one, two and three dimensional 

models. So, all the three different dimensional models can be applied to the processes in all the 

realms like oceans, land surface and atmosphere. 

Now and again, where difficult procedures change as indicated by a wide mixture of 

components, it can be best to start to investigate the procedures in just one dimension. For 

instance, when taking a gander at chemical responses that fluctuate with the physical 
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conditions through the depth of the air, one methodology is to take a gander at the reactions at 

every level from the beginning to the highest point of the atmosphere. One-dimensional 

models were at first utilized for energy related investigations of the atmosphere in the climate 

models. As more noteworthy certainty has gotten in the way a basic model handles a specific 

process, the thoughts are then consolidated into more mind boggling two-, three- and four 

(time)-dimensional representations which consolidate the motion of the atmosphere 

framework. 

The climate can be represented mathematically by the climate models. The models split 

the oceans, atmosphere, earth into a grid.  Here, the values of variables to be anticipated are 

wind, temperature, humidity, rainfall, pressure, etc. and they are calculated at every grid time 

at all times to estimate the future values. The climate models have to cope with the features of 

atmosphere for analysis of the ocean and surface temperatures. At the boundaries, the land 

surface and oceans are coupled with the atmosphere through interchange of heat, moisture, 

etc. These models are called as general circulation models (GCMs). Coupling the sea procedures 

to climatic GCMs is a noteworthy test. The warm limit of the seas is enormous contrasted with 

the air and can give to, or remove from, the climate, gigantic measures of dormant and warm 

warmth. Speaking to their warmth stockpiling, and the ingestion of greenhouse gases by the 

seas, in long haul simulations of atmosphere obliges an entire three-dimensional sea model, 

which re-enacts even the profound streams. Changes in the force and area of deep-water 

streams can at last have significant consequences for the air. Previously, changes in the flow of 

the seas have created major atmospheric reactions. 
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4.2 Modeling 

A two dimensional network with 𝑁 ×𝑁 nodes which are equally spaced over unit 

square (𝑥, 𝑦) ∈ [0,1] × [0,1] with spacing ∆𝑥 and ∆𝑦 is considered as shown in fig.(2). In these 

networks, each node can communicate with a set of 4 neighbours and 8 neighbours in fig. 6. As 

the number of neighbors of a node increases, the data accessed by the node increases. This, in 

turn, reduces the mean square error.  

                                                    

Fig. 6 Sets of neighbours 

 

The network observers a phenomena 𝑓(𝑥, 𝑦) defined by Poisson partial differential 

equation: 

 𝜕2𝑓(𝑥, 𝑦)

𝜕𝑥2
+ 
𝜕2𝑓(𝑥, 𝑦)

𝜕𝑦2
=  𝑔(𝑥, 𝑦) 

(89.) 

Where 𝑔(𝑥, 𝑦): [0,1]2 →  ℝ is an unfamiliar input function. The partial differential equation is 

presumed to have satisfied the following boundary conditions: 

𝑓(𝑥, 0) = 𝑓(0, 𝑦) = 𝑓(𝑥, 1) = 𝑓(1, 𝑦) = 0 
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The main aim is to assess the parameters from the nodes which receive noisy readings. 

The nodes considered here are the internal node locations. In order to discretize the partial 

differential equation, the finite difference method (FDM)[13] is employed with positioning of 

∆𝑥 and ∆𝑦 uniformly. The locations of nodes can be determined by 𝑥𝑙1 ≜ 𝑙1∆𝑥,  𝑦𝑙2 ≜  𝑙2∆𝑦 

and the sample values of the function can be identified by 𝑓𝑙1,𝑙2 ≜ 𝑓(𝑥𝑙1, 𝑦𝑙2) and 𝑔𝑜
𝑙1,𝑙2

≜

𝑔(𝑥𝑙1 , 𝑦𝑙2). The central difference strategy is utilized to approximate the second partial 

derivatives: 

 𝜕2𝑓(𝑥, 𝑦, 𝑖)

𝜕𝑥2
≈  

1

∆𝑥2
[𝑓𝑙1+1,𝑙2 − 2𝑓𝑙1 ,𝑙2 + 𝑓𝑙1−1,𝑙2] 

(90.) 

 𝜕2𝑓(𝑥, 𝑦, 𝑖)

𝜕𝑦2
≈ 

1

∆𝑦2
[𝑓𝑙1,𝑙2+1 − 2𝑓𝑙1,𝑙2 + 𝑓𝑙1,𝑙2−1] 

(91.) 

The above equations give rise to the following equation: 

 
𝑔𝑜

𝑙1,𝑙2
= 

1

∆𝑥2
(𝑓𝑙1+1,𝑙2 + 𝑓𝑙1,𝑙2+1  + 𝑓𝑙1−1,𝑙2 + 𝑓𝑙1,𝑙2−1 − 4𝑓𝑙1 ,𝑙2) 

(92.) 

To assess the space altering parameters 𝑔𝑙1,𝑙2, the information received by every node are 

erroneous samples as follows: 

 𝑧𝑙1,𝑙2(𝑡) =  𝑓𝑙1,𝑙2 + 𝒏𝑙1,𝑙2(𝑡) (93.) 

The error samples considered here are zero mean, white and not spatially dependent. Here, the 

reference signal which is denoted by 𝒅𝑙1,𝑙2(𝑡) in two dimensional networks is distorted signal of 

𝑔𝑜
𝑙1,𝑙2

. Using the erroneous samples, the reference signal is attained by (124) as follows: 

 
𝒅𝑙1,𝑙2(𝑡) =  

1

∆𝑥2
(𝑧𝑙1+1,𝑙2(𝑡) + 𝑧𝑙1,𝑙2+1(𝑡)  +  𝑧𝑙1−1,𝑙2(𝑡) + 𝑧𝑙1,𝑙2−1(𝑡) − 4𝑧𝑙1,𝑙2(𝑡)) 

(94.) 
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Using the equation (126), the two dimensional space altering regression model can be defined 

as follows: 

 𝒅𝑙1 ,𝑙2(𝑡) =  𝒖𝑙1 ,𝑙2(𝑡)𝑔
𝑜
𝑙1,𝑙2

+ 𝒗𝑙1 ,𝑙2(𝑡) (95.) 

If 𝒖𝑙1 ,𝑙2(𝑡) = 1, the above model turns into deterministic regression model in contrast with 

random regression model. So, we can say that diffusion scheme can be applied even to the 

regression models with deterministic information.  

In the two dimensional network, the space altering parameters  𝑔𝑜
𝑙1,𝑙2

 can be found by 

using two one-dimensional Chebyshev polynomials[14],[15] as basis functions. So, 𝑔𝑜
𝑙1,𝑙2

 can be 

conveyed as: 

 
𝑔𝑜

𝑙1,𝑙2
=  ∑𝑤𝑜𝑝𝑛,𝑙1 ,𝑙2

𝑁𝑏

𝑛=1

 
(96.) 

 𝑝𝑛,𝑙1 ,𝑙2 = 𝑏𝑛1,𝑙1𝑏𝑛2,𝑙2  (97.) 

Where, 𝑝𝑛,𝑙1,𝑙2  is an element of the two dimensional basis group, 𝑏𝑛1,𝑙1and 𝑏𝑛2,𝑙2  are the one 

dimensional Chebyshev polynomials used as basis functions in the 𝑥 and 𝑦 directions 

respectively.  
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Chapter 5 

Simulation Results and Discussion 

5.1 Simulation results 

The performance of the diffusion scheme has been shown from the computer 

simulations performed. For generating the learning curves, 200 experiments have been 

performed and averaged. The steady-state performances of the curves are shown for some 

iterations depending on the analysis of the curves. The measurement data 𝑑𝑙(𝑡) is attained 

using the data model at each node and the anticipated 𝑀 × 1 vector to be estimated is set as 

𝑤𝑜 = 𝑐𝑜𝑙{1,1,… . ,1}/√𝑀 where M is the size of the weights. Here M is considered as 2. For 

one dimensional case, a network of 7 nodes has been taken into account. In two-dimensional 

case, the network 7 × 7 nodes i.e. have been taken. The noise signal applied is white Gaussian 

noise with zero mean and variance, 𝜎2 = 0.0001. The input signal is presumed to be corrupt 

with white Gaussian noise zero mean. The step size considered here is 𝜇 = 0.01 and distance 

between the nodes is ∆𝑥 = 0.02. The quantities MSE, MSD have been found as follows: 

 𝑀𝑆𝐸 = |𝑑𝑙(𝑡) − 𝑢𝑙,𝑡𝜓𝑙−1
(𝑡)|

2
 (98.) 

 𝑀𝑆𝐷 = |𝜓𝑙
(𝑡) − 𝑤𝑜|

2
 (99.) 

The MSD values of the network have been obtained as shown in the following figures.  
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One-dimensional network: 

 

Fig. 7 MSD performance for step size values 

 

Fig. 8 MSD performance comparison of two nodes 
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Fig. 9 MSD performance of diffusion and centralized LMS 

 

Two dimensional network: 

 

Fig. 10 MSD performance of 4- and 8-connected neighbors 
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Fig. 11 MSD of relative and uniform combination rules 
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Chapter 6 

Conclusion 

6.1 Conclusion 

The results of this effort illustrate that performance is enhanced by cooperation scheme 

from the assessment of the parameters. It shows that the network is stable and improvement 

of global performance by the utilization of diffusion cooperation scheme. Utilizing the 

distributed adaptive algorithms and interpolation scheme, the parameters of our concern can 

be precise with their estimation and tracking with diffusion LMS strategy. The discussed 

algorithm assesses the parameters both at node positions and locations where no readings are 

collected. The performance of learning curves depends upon combination matrices that are 

used to merge information exchanged with the nodes. As the degree of all nodes varies, the 

stochastic matrices i.e. combination rules also vary. The learning curve with more step size 

converges faster than the one with less step size. The MSD values decrease with increase in 

number of neighbours.  
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