
A Combined Approach for Identifying
Crosscutting Concerns in an

Object Oriented System

Shantanu Kumar Biswal

Roll. 213CS3181 Master of Technology in Software Testing

under the supervision of of

Prof. Ramesh Kumar Mohapatra

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela – 769008, India

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/80147577?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Combined Approach for Identifying
Crosscutting Concerns in an

Object Oriented System

Dissertation submitted in

MAY 2015

to the department of

Computer Science and Engineering

of

National Institute of Technology Rourkela

in partial fulfillment of the requirements

for the degree of

Master of Technology

by

Shantanu Kumar Biswal

(Roll. 213CS3181)

under the supervision of

Prof. Ramesh Kumar Mohapatra

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela – 769 008, India

Computer Science and Engineering
National Institute of Technology Rourkela
Rourkela-769 008, India. www.nitrkl.ac.in

MAY, 2015

Certificate

This is to certify that the thesis work entitled A Combined Approach for Identifying

Crosscutting Concerns in an Object oriented system by Shantanu Kumar Biswal,

of computer science and engineering department bearing roll number 213CS3181,

is a research work carried out by him under the supervision and guidance of me

for the partial fulfillment for the award of the degree of Master of Technology in

Computer Science and Engineering Department at National Institute of Technology

Rourkela. To the best of my knowledge, neither this thesis nor any part of it has

been submitted for any degree or academic award elsewhere.

Ramesh Kumar Mohapatra

Assistant Professor

Department of CSE

NIT, Rourkela

Acknowledgment
I would like to express my great sense of gratitude and respect towards my

supervisor Prof. Ramesh Kumar Mohapatra, who has been the guiding me

continuously for my research work. He introduced me the research work in the field

of Aspect Mining and Aspect Oriented Programming and giving me an opportunity

to work under him. This would not be possible without his guidance,support and

encouragement. I am also grateful to the persons whose work i have referred in the

bibliography.

I would also like to thank all the professors, PhD scholars,and my friends for

encouraging me during my work.

At last but not the least I am thankful to my family members my wife Sagarika

and to support and help me during my hard times.

Shantanu Kumar Biswal

Abstract

A concern is an essential guideline and an important principle of software

engineering development. It refers to some particular concept, the ability to

identify functionalities,or some goal to encapsulate the related parts of a software

system. Crosscutting concerns of a program are the concerns that affect or crosscut

other concern. Usually these concerns are very hard to identify and cannot be

clearly separated from the rest of the system, as they are mixed with many core

concerns from the system leading to code scattering and code tangling. Identifying

crosscutting concerns will automatically improve the maintainability, reliability,

understandability and the evolution of the software system. Aspect mining is a

reverse engineering process that tries to find out crosscutting concerns in an object

oriented software system which is already developed. Aspect mining can be done

without using Aspect Oriented Software Development(AOSD) paradigm. Our goal

is to locate and identify the crosscutting concerns and then to re-factor them

into aspects, to obtain a system that can be easily understood, maintained and

modified. In our work we have implemented a combined approach for identifying

such crosscutting concerns as one approach is not efficient to identify some of the

crosscutting concerns. The first technique is the fan-in analysis which is a static

approach for identifying scattered codes whereas the second technique is the dynamic

analysis approach where execution traces are examined and recurring execution

patterns are obtained for identifying the tangled code.

Keywords :Aspect mining, Concern, Crosscutting concern, Aspects, Aspect

oriented programming.

Contents

Certificate ii

Acknowledgement iii

Abstract iv

List of Figures vii

List of Tables viii

1 Introduction 1

1.1 Software Evolution . 2

1.1.1 Procedural programming . 2

1.1.2 Functional Programming . 3

1.1.3 Logic Programming . 3

1.1.4 Object Oriented Programming (OOP) 3

1.1.5 Aspect Oriented Programming (AOP) 4

1.2 Problem statement . 4

1.3 Objectives . 4

1.4 Motivation . 5

1.5 Challenges . 6

1.6 Organization of the Thesis . 6

2 Aspect Mining:Background and Related Work 7

2.1 Aspect Mining . 7

2.1.1 Query-Based approach . 8

2.1.2 Generative Approach . 8

v

2.2 Related Work . 8

2.3 Basic Terminology . 10

2.3.1 Concern . 10

2.3.2 Crosscutting Concern . 11

2.3.3 Aspects . 12

2.3.4 Aspect Oriented Programming (AOP) 12

3 A Combined Approach for Identifying Crosscutting Concerns 13

3.1 Introduction . 13

3.2 A combined approach for identifying crosscutting concerns 14

3.2.1 Fan-in Analysis . 14

3.2.2 Pitfalls of Fan-in Analysis . 18

3.2.3 Dynamic Analysis . 18

3.3 Summary . 26

4 CASE STUDY 27

4.1 Introduction . 27

4.2 SquareRootDisk . 27

4.2.1 Fan-in analysis Result . 28

4.2.2 Dynamic Analysis Result . 31

4.3 Summary . 35

5 Conclusion 36

Bibliography 38

Dissemination 40

vi

List of Figures

2.1 Crosscutting concern . 11

3.1 Class Hierarchy . 15

3.2 Example of program trace . 21

4.1 Fan-in values . 29

4.2 Methods after filtration . 30

4.3 Program Trace . 32

vii

List of Tables

3.1 Fan-in values for the class hierarchy 16

4.1 High fan-in values . 30

4.3 Fan-in Analysis Result . 31

4.5 Dynamic Analysis Result . 34

4.7 Combined Result . 34

viii

Chapter 1

Introduction

The problems of object oriented programming are the improper decomposition

of modules into discrete concerns. Separation of concern is an important role of

software design. But some concerns which cannot be cleanly disintegrated from

the rest of the systems and mixed with many other core concerns leading to code

scattering and code tangling. Code scattering refers to the code which is spread

across the software system and code tangling refers to the code which is mixed

with other code. Crosscutting concerns are the concerns which affect or crosscut

other concerns. The symptoms of crosscutting concerns are code scattering and

code tangling. During maintenance phase a developer should localize the code

that implements the concern. This may perhaps oblige him to review a wide

range of modules as the concern is scattered over the software system. Identifying

these crosscutting concerns will automatically enhance the maintainability,

reliability,understandability and evolution of the software system. Examples of

crosscutting concerns are persistence, synchronization, exception handling, error

management and logging. The Aspect Oriented Programming (AOP) paradigm

encapsulates all crosscutting concerns and implement them in a localized manner.

It defines crosscutting concerns in a new language technique that uses point cuts

and advices. All the crosscutting concerns are put in a separate module called

aspect. But aspect mining is a reverse engineering process that tries to locate and

1

Chapter 1 Introduction

recognize crosscutting concerns without using aspect oriented programming in an

already developed software system. Different refactoring techniques are used to

encapsulate these crosscutting concerns into aspects. This is also called aspect

refactoring. This migration of legacy system (Object Oriented Programming) to

a new a programming paradigm(Aspect Oriented Programming) can improve the

system which can be easily understood and maintained.

1.1 Software Evolution

Evolution of software system is required for developing new systems, reducing

complexity, easy understanding and maintenance of the system. Different

programming paradigms are developed to help in the evolution of software

development. The programming paradigms are as follows:-

1.1.1 Procedural programming

Procedural programing is a programming paradigm which is based on the concept

of procedure call. It is derived from the structural programming and inherits some

of its features. Procedures focus on the functionality of the program rather than

the structure of the program. Procedures are also called methods or functions or

subroutines that perform certain functionality. It performs the required functionality

by executing a set of commands in a given sequence or procedure. Examples of such

programming paradigms are as follows:

� BASIC

� COBOL

� FORTRAN

� C

2

Chapter 1 Introduction

1.1.2 Functional Programming

It is a programming paradigm that builds the structure and elements of computer

programs. Any function of the program can be evaluated in terms of other functions.

Examples of such programming paradigms are as follows:-

� Lisp

� ML

� OCaml

1.1.3 Logic Programming

Logic programming is a programming paradigm that is based on the concept of

formal logic. In this programming language to perform certain functionality a set

of instructions to be written in logical form. The instructions should express some

rules and facts about the functionality. Major logic programming language families

are as follows:-

� Answer Set Programming(ASP)

� Datalog

1.1.4 Object Oriented Programming (OOP)

It is a programming paradigm where the functionalities are encapsulated in objects.

It encapsulates the features of data and functions into a single unit. The objects

are the basic run-time entities of a class where as a class encapsulates attributes

and functions. Now a days many programming languages support object oriented

programming for writing programs for all the domains. Examples of object oriented

programming paradigms are as follows:- Smalltalk, Java, C++ (to some extent).

� Smalltalk

3

Chapter 1 Introduction

� Java

� C++ (to some extent)

1.1.5 Aspect Oriented Programming (AOP)

It is a programming paradigm which complements object oriented programming.

It increases the modularity by encapsulating crosscutting concerns into a separate

module called aspect. So the key unit of modularity in AOP is aspect which is

same as a class in object oriented programming. It can’t replace object oriented

programming but complements it. It implements techniques like advices and point

cuts to refactor the crosscutting concerns into aspects. Example of AOP paradigm

is AspectJ

1.2 Problem statement

In our approach the different problem statements that we identified are as follows:-

1. Some programming tasks can’t be cleanly encapsulated into objects, but the

code is spread across the system called code scattering and some code is mixed

with other code called code tangling.

2. The result is crosscutting code, the code that cuts across many different classes

and methods.

3. Identifying these crosscutting concerns will automatically improve

maintainability, evolution and reliability of the system.

1.3 Objectives

Our approach focuses on the research direction of aspect mining where crosscutting

concerns are identified by using a combined approach. The various objectives of our

approach are as follows:-

4

Chapter 1 Introduction

� Objective-1:

Our first objective is to provide a solution for identifying maximum number of

crosscutting concerns from the source code. Aspect mining technique in both

static and dynamic analysis approaches are implemented for a better result.

� Objective-2:

Our solution is obtained by taking case studies of different benchmark

programs like SquareRootDisk and JHotDraw.

� Objective-3:

Our solution is compared with other approaches and the detailed report is

documented as a result.

� Objective-4:

The crosscutting concerns should be managed in a proper way. They can be

refactored into aspects like pointcuts and advices which is beyond our scope.

1.4 Motivation

Since the size and overall complexity of the software systems are increased day by

day, encapsulation of modules into separate concerns is very important. Crosscutting

concerns are the concerns which are scattered and tangled with other codes, and

hence very difficult to maintain and debug the software system. Aspect mining

is a reverse engineering process that tries to identify crosscutting concerns in

an already developed software system. Identifying these crosscutting concerns

will automatically improve the maintainability, understandability, evolution and

reliability of the system. This will be helpful for the users who are new to aspect

oriented programming. Different aspect mining techniques like fan-in analysis,

formal concept analysis, clone detection technique, clustering techniques and graph

based approaches are there. Some techniques are static in nature and others are

5

Chapter 1 Introduction

dynamic in nature. Combining any techniques appropriately can give better result

as these techniques alone cannot identify all the crosscutting concerns in the system.

1.5 Challenges

Identifying crosscutting concerns in smaller programs is relatively easier. But when

a larger program having 20K LOC or more than that it is very challenging to

identify and manage the crosscutting concerns. The various solutions and techniques

available are difficult to integrate with each other and they don’t provide any

common criteria for combining techniques. Concern mining are addressed at different

levels of granularity and difficult to compare and combine solutions. Manually

checking each module from the comment lines is very challenging factor. Availability

of open source softwares and tools as well as case studies are rather scarce.

1.6 Organization of the Thesis

Our thesis includes the following chapters.

1. Chapter 1: We have discussed the the introduction to aspect oriented

programming,various programming paradigms ,objectives and challenges of

aspect mining.

2. Chapter 2: We have gone through different related papers and research work

based on aspect mining.

3. Chapter 3: This chapter is based on our proposed work on fan-in analysis and

dynamic analysis.

4. Chapter 4: We evaluated our approach by taking a case study of a benchmark

program.

5. Chapter 5: In this chapter we focus on the conclusion and scope for future

work.

6

Chapter 2

Aspect Mining:Background and

Related Work

2.1 Aspect Mining

Aspect mining is a reverse engineering process that aims at identifying crosscutting

concerns in an existing, non-aspect oriented code. Identifying these crosscutting

concerns will automatically improve maintainability, reliability, understandability

and evolution of software system. It increases our understanding of crosscutting

code. Generally aspect mining techniques are not fully automatic. Most of the

aspect mining techniques are semi-automatic. It requires human involvement for

analyzing the seeds. Aspect mining tools generate all the candidate seeds from the

source code but the human experts can choose only the confirmed seeds which are

part of a crosscutting concern and reject all other seeds. Several aspect mining

approaches are developed and they are categorized under Query-based approach or

Generative approach.

7

Chapter 2 Aspect Mining:Background and Related Work

2.1.1 Query-Based approach

In this approach the user provides a search pattern for which the source code

locations are matched. Different tools based on this approach are developed. The

first tool is the Aspect Browser tool which uses lexical pattern for matching the

query code to the source code. An extension of this tool is called Aspect Mining Tool

(AMT) that provides support for type based pattern. AMTEX is an extension of

AMT that provides support for characterizing particular aspects. PRISM is another

aspect mining tool which uses lexical and type based patterns. FEAT is another

tool developed by Robillard and Murphy [1] which is an Eclipse plug-in that aims

at finding and analyzing concerns in source code.

2.1.2 Generative Approach

These approaches try to capture the crosscutting concerns automatically. They

use program analysis techniques to identify scattered and tangled code. A clone

detection technique [2] is a generative approach which is based on matching of

tokens at different locations in the source code. A fan-in analysis technique is a

semi-automatic process that tries to identify scattered code by using a fan-in value for

each method. Dynamic analysis approaches can automatically identify crosscutting

concerns by examining the execution traces and obtain the recurring execution

patterns and by applying formal concept analysis. Some clustering approaches are

applied for identifying crosscutting concerns where related concerns are grouped

together into the same cluster by using fan-in analysis [3] .

2.2 Related Work

Aspect mining is a relatively new research direction for identifying crosscutting

concerns. Different aspect mining techniques have been proposed. There

are different types of aspect mining techniques like Metrics analysis, Formal

8

Chapter 2 Aspect Mining:Background and Related Work

concept analysis, Execution relations, Clone detection techniques, Natural language

processing and Clustering approach.

Marin et al [4] have proposed an aspect mining technique based on the concept of

metric calculation. They calculate the fan-in metric for each method of the software

system. Their idea is to determining methods whose fan-in value is more than that

of a given threshold value. Analyzing these high fan-in methods for determining

crosscutting concerns in a software system.

Serban, G. and Moldovan, G. S. [5] have proposed a graph based aspect mining

technique to determine similar methods by using graph theory. In their approach

a graph is constructed between methods where nodes represent methods and edges

represent relationship between them. They determine a connex component between

methods and put them in a cluster. Then the cluster is analyzed to identify

crosscutting concerns.

Czibula et al [6] have proposed a new hierarchical agglomerative clustering

algorithm in aspect mining where a clustering approach is used to make clusters of

methods by considering a distance matrix. The methods representing a crosscutting

concern are grouped together in the same cluster.

Tonella and Ceccato [7] have also proposed an aspect mining technique based on

dynamic analysis. In their approach execution traces are generated by executing

the main functionalities for each use cases of a system. They use the concept of

formal concept analysis where each computational unit is subject to a concept.

The relationship between these computational units and the execution traces are

considered for identifying crosscutting concern.

Shepherd et al [8] have proposed an aspect mining approach based on clone

detection technique. They used program dependency graph to identify the codes

9

Chapter 2 Aspect Mining:Background and Related Work

that are present at different locations in the source code. These duplicate codes at

different places are further analyzed for discovering crosscutting code.

He and Bai [9] have proposed an aspect mining technique based on dynamic

analysis. In their approach execution traces are generated by executing each use

case of the system. From the execution trace clusters are formed and applying some

association rules to identify crosscutting concerns.

Brue and Krinke [10] have proposed an aspect mining technique based on dynamic

analysis. In their approach program traces are generated by running the program

under some data pool. These traces are then investigated for recurring execution

patterns based on different constraints.

2.3 Basic Terminology

The following different terms we can use in our approach.

2.3.1 Concern

A concern is an essential guideline and an important principle of software engineering

development. It refers to some particular concept, the ability to identify,or some goal

to combine and manipulate some parts of a system that are related. A concern is

a set of information that affects the code of a computer program. Concerns are

the design issues that the reflects in the stakeholders requirement. Examples of

concerns are performance, security, specific functionality etc. As each concern is

created by using modularity structure hence separation of concern would create a

good modular design. When concerns are well separated, individual sections can be

reused effectively.

A concerns intent is defined as the role of the concern where as a concerns extent

is the concrete representation of that concern. We can clearly trace the program

10

Chapter 2 Aspect Mining:Background and Related Work

from the requirements to implementation by separating of concerns in a program.

Core concerns are the primary concerns that represents the functionality of the

system where as secondary concerns are the concerns that reflect nonfunctional

parameters like security,reliability and QoS requirements.

2.3.2 Crosscutting Concern

Crosscutting concerns are the concerns which are spread across a number of program

components and crosscuts other concern. These concerns cant be clearly separated

from the rest of the system as they are mixed with other code. This results in a

problem to implement the changes is not localized as it is spread. The symptoms

of crosscutting concern lead to code scattering and code tangling. Code scattering

refers to the code which is spread across the system where as code tangling refers

to the code which is mixed with other code. Examples of crosscutting concerns are

logging, persistence, exception handling, synchronization etc.

Figure 2.1: Crosscutting concern

11

Chapter 2 Aspect Mining:Background and Related Work

2.3.3 Aspects

Aspects are tangled or scattered codes making it harder to understand and maintain.

In AOP, crosscutting concerns are implemented as aspects instead of fusing them

into core concerns. These aspects are additional units added to the program which

can be reused as the dependency among these modules is less. Aspects can reduce

code scattering and tangling and hence easy to understand the functionality of the

module. In AOP crosscutting concerns can be defined by using advices and point

cuts. Hence the combination of advices and point cuts is termed as aspect. For

example we can add a logging aspect to our application by defining a point cut and

giving a correct advice. An aspect weaver takes the aspects and core modules and

composes the final system.

2.3.4 Aspect Oriented Programming (AOP)

Aspect oriented programming is a programming paradigm that complements object

oriented programming by separating concerns into core modules. Aspect oriented

programming captures crosscutting concerns into a new module called aspect by

using advices and point cuts. AOP includes programing methods and tools that

support the modularization of concern at the level of source code, while Aspect

Oriented Software Development (AOSD) refers to the whole engineering process. In

AOP, aspects can be implemented by using new language technique like point cuts

and advices. AOP breaks the whole system into aspects as the basic module. AOP

implements all crosscutting concerns by encapsulating them into a separate module.

12

Chapter 3

A Combined Approach for

Identifying Crosscutting Concerns

3.1 Introduction

Crosscutting concerns are the concerns which crosscut other concerns. The

symptoms of crosscutting concerns are code scattering and code tangling. Identifying

these crosscutting concerns can automatically enhance maintainability,reliability,

understandability and evolution of the software system. Different aspect mining

techniques are proposed to identify these crosscutting concerns. Aspect mining

techniques may be static or dynamic. In static aspect mining technique the source

code is taken into consideration for identifying crosscutting concerns. From the

source code the abstract syntax tree is generated and hence the static call graph is

obtained from the syntax tree for calculating the number of callers for each method.

But in dynamic analysis, instead of taking the source code, the program is run

under certain inputs and execution traces are observed. From the execution traces

different execution relations are obtained. The recurring execution patterns of these

execution relations are generated and hence analyzed for crosscutting concerns.

13

Chapter 3 A Combined Approach for Identifying Crosscutting Concerns

3.2 A combined approach for identifying

crosscutting concerns

Different aspect mining techniques are implemented to identify crosscutting concerns

in already developed software system. In our approach we have combined two

techniques and tried to identify crosscutting concerns and we identified more

numbers of crosscutting concerns as compared to the other techniques. Our first

approach is fan-in analysis which tries to identify all scattered code whereas our

second approach is dynamic analysis approach which tries to identify all tangled

code.

3.2.1 Fan-in Analysis

It is a semi-automatic aspect mining approach which tries to identify all the scattered

code by computing the fan-in values of each and every method in the software system.

This approach consists of the following three steps:-

1. Fan-in Calculation

Calculation of fan-in metric for all the methods in the system.

2. Methd Filtration

Filtering methods to obtain a smaller range of methods which are likely to

implement crosscutting behavior. This step is called as Method filtration

phase.

3. Seed Analysis

Our last step is to analyze the remaining methods manually to identify those

methods which are actual crosscutting concerns. This step is called seed

analysis phase which can be done by considering the source code.

14

Chapter 3 A Combined Approach for Identifying Crosscutting Concerns

Calculation of fan-in metric

The callers of each method is calculated from the static call graph and the cardinality

will give the required fan-in value of the method. Hence fan-in can be defined as

a measure of number of distinct method bodies that call some other method. It is

therefore the number of incoming calls of a method. For example P,Q,R and S are

methods where P→ Q(P calls Q),S→Q and R→S then in that case the fan-in value

of Q is two because P is called from two different methods P and S whereas the fan-in

value of S is one as it is called from a single method R. But the polymorphic methods

affect the fan-in value of other methods. If a single abstract method is implemented

in two different sub classes or super classes then these implementations are separate

callers. Let us consider a class hierarchy as shown below.

Figure 3.1: Class Hierarchy

In this class hierarchy, polymorphic method a() is called from various classes.

Fan-in value of method a() in class M1 is not affected by the calls to method a() in

15

Chapter 3 A Combined Approach for Identifying Crosscutting Concerns

class M2 and vice-versa. Again fan-in value of method a() in class N1 is not affected

by the calls to method a() in class N2 and vice-versa. But calls to method a() in

class N1 can affect to classes B, M1, M2. Similarly calls to method a() in class M1

can affect to classes B, N1, N2. However for polymorphic methods the fan-in values

are changed and are obtained as shown in table below.

Table 3.1: Fan-in values for the class hierarchy

Call site M1.a() M2.a() N1.a() N2.a() P.a()

Call to method a() in M1 1 0 1 1 1

Call to method a() in M2 0 1 1 1 1

Call to method a() in N1 1 1 1 0 1

Call to method a() in N2 1 1 0 1 1

Call to method a() in P 1 1 1 1 1

Total fan-in value 4 4 4 4 5

Method Filtration

After calculating the fan-in values of all the methods, the next step is to obtain a

small range of methods with a higher chance of implementing crosscutting concerns.

In our approach we focus on high fan-in methods which are called many times and

hence spread across the system. The high fan-in value can be obtained by putting

some threshold value by observing the program. This value may be any absolute

value or any relative percentage. The threshold value is not fixed and may vary from

program to program. In our case study of SquareRootDisk and JHotdraw the value

may be 3 and 10 respectively. Different values may be taken and experiments are

done to fix the threshold value.

16

Chapter 3 A Combined Approach for Identifying Crosscutting Concerns

As all the high fan-in values above the threshold are not part of crosscutting

concerns. We apply another filtration technique to remove all the getters and setters

from the list of obtained methods. This can be based on the naming convention

(method matching the get∗ and set∗ pattern) of the methods.

At last we apply a manual step to filter the utility methods like toString(),classes

such as XMLDocumentUtils containg util in their name, collection manipulation

methods etc. As this is a manual step, we use some heuristics to identify utility

methods.

Seed Analysis

Our last step is to manually check the filtered methods to identify crosscutting

concerns. As this is a manual step we follow some heuristics and guidelines, so that

it will be easier to us for identifying crosscutting concerns.

� The callers should call the method at the beginning or at the end of its

execution.

� All callers should be all refinements of a single abstract method.

� The calls at the call site should occur with similar names.For example when

we use key or mouse events the call site should be like mouse handler or key

handler.

� All calls occur in methods implementing a certain objective or function or role.

� The high fan-in method should represent a concern that is known to be a

crosscutting concern.

� The methods concern or functionality should be conceptually different form

the key functionality of the calling class.

17

Chapter 3 A Combined Approach for Identifying Crosscutting Concerns

The call sites must be checked regularly to capture the caller methods in a point

cut mechanism and the high fan-in method into advices. For this seed analysis the

user must have some domain knowledge about the program.

3.2.2 Pitfalls of Fan-in Analysis

� It addresses crosscutting concerns that are scattered across the system. It

can’t identify the tangled code that is mixed with other code.

� It is very difficult task to decide the threshold value.

� Taking a high fan-in value can discard some of the crosscutting concern. Taking

a low fan-in value can increase the task of seed analysis and hence increase the

percentage of false positives.

� It is a semi-automatic process .Some parts are done automatically with the

help of fan-in tool. But the seed analysis part is done manually by the human

engineers.

� It requires some domain expertise to describe the concerns identified.

3.2.3 Dynamic Analysis

Static aspect mining techniques can observe the potential behavior of the program

where as dynamic analysis can reflect the run time behavior of a program. Due to the

static nature of fan-in analysis technique we missed some of the tangled code. Code

tangling refers to the code which is exist in several times in a software system and

can’t be encapsulated into a separate module. So here we implemented a dynamic

programming approach which tries to identify the tangled code. In this approach

we run the program and the execution traces are obtained. From these execution

traces we identify recurring execution patterns and from these patterns we determine

the patterns that describe certain role of the software system by applying certain

execution constraints.

18

Chapter 3 A Combined Approach for Identifying Crosscutting Concerns

Program Trace and Execution Relation

A program trace is a sequence of method executions that are obtained under certain

program run. In our approach we are tracing object oriented programs where

methods describe the logically related functionality. We focus on sequence of method

executions rather than their functionality. So we are interested only the entry and

exit as well as the signature of the methods.

We can define two terms to identify crosscutting concerns.

1. Outside aspects: Outside aspects are the patterns where execution of one

method is always followed by another method.

2. Inside aspects: Inside aspects are patterns where execution of one method is

always called inside another method.

Again these two classes of aspects can be further categorized as before or after

and first or last respectively. Hence we can define four terms such as outside before,

outside after, inside first and inside last. All these four terms are defined in the

algorithm below.

Algorithm 1 : (Dynamic Analysis)

1. Consider a program P ,whose execution trace is Tp

2. Let the method signature (Np) where only entry and exit of a method is

considered.{represents entry and }represents exit of a method.Hence method

B can be represented as B () {}

3. (a) Define outside before execution relation (S → Tp)

a→ b,a,b ε Np where [(a,ext),(b,ent)] is a sublist of Tp

(b) Define outside after execution relation (S ← Tp)

a← b,a,b ε Np where [(a,ext),(b,ent)] is a sublist of Tp

19

Chapter 3 A Combined Approach for Identifying Crosscutting Concerns

(c) Define inside first execution relation (S ` (Tp))

a ` b, a,b ε Np where [(b,ent),(a,ent)] is a sublist of Tp

(d) Define inside last execution relation (S a (Tp))

a a b, a,b ε Np where [(a,ext),(b,ext)] is a sublist of Tp

4. Define Uniformity constraint (U∼)

An execution relation s=a ∼ b ε S∼ , where ∼ ε (→,←, ` ,a)is uniform if ∀ c

∼ b ε S∼ :a=c and a,b,c ε Np ∪ {ψ }where ψ is the empty method signature.

5. Define Crosscutting constraint (R∼)

An execution relation s=a ∼ b ε U∼ , where ∼ ε (→,←, ` ,a)is crosscutting

if ∃ s′ =a ∼ c ε U∼ :b 6= c and a,b,c ε Np

Execution Relation

Consider a program P,whose execution Trace is Tp and Np defines the method

signature. A program trace Tp is shown in figure 3.2.

In a program trace we only focus on sequence of method execution,its entry and

exit points. The entry and exit points of a method can be represented by {(opening

curly brace) and }(closing curly brace) respectively. For example signature of method

B can be represented B () {}.

The crosscutting concerns can be reflected by either outside aspects or inside

aspects. The outside aspects may be outside before or outside after and the inside

aspects may be inside first or inside last. These four aspect candidates are defined

in the algorithm and can be explained below.

1. Outside before execution relation

20

Chapter 3 A Combined Approach for Identifying Crosscutting Concerns

Figure 3.2: Example of program trace

The method which is executed before the execution of another method and the

methods are executed sequentially is called as outside before execution relation.

It is denoted as (→). The relation a → b, a,b ε Np is called outside before

execution relation if [(a,ext),(b,ent)] is a sublist of Tp. The set of such execution

relations can be denoted as S →(Tp).After executing method a,method b will

be executed and the execution will be done sequentially.

2. Outside after execution relation

The method which is executed after the execution of another method and the

methods are executed sequentially is called as outside after execution relation.

It is the reverse of outside before execution relation. It is denoted as (←).

The relation a ← b, a,b ε Np is called outside after execution relation if

[(a,ext),(b,ent)] is a sublist of Tp. The set of such execution relations can

be denoted as S ←(Tp). Hence method b is executed only after the execution

of method a and this will be executed sequentially.

3. Inside first execution relation

21

Chapter 3 A Combined Approach for Identifying Crosscutting Concerns

The method which is executed as the first method inside another method is

called as inside first execution relation. It is denoted as (`). The relation a `

b, a,b ε Np is called inside first execution relation if [(b,ent),(a,ent)] is a sublist

of Tp. The set of such execution relations can be denoted as S `(Tp). Hence

method a is only method executed as the first method inside method b .

4. Inside last execution relation

The method which is executed as the last method inside another method is

called as inside last execution relation. It is denoted as (a). The relation a a

b, a,b ε Np is called inside last execution relation if [(a,ext),(b,ext)] is a sublist

of Tp. The set of such execution relations can be denoted as S a(Tp). Hence

method a is the only method executed as the last method inside method b .

The different execution relations that are obtained from the example trace as

shown in figure 3.2 as follows.

� The set of all outside before relation (S → (Tp))

Q () → P(),T () → U(),P () → Q(),R () → W(),Q () → F(),K () → V(),F ()

→ W(),W () → T(),H () → P(),Q () → S(),R () → T(),T () → F(),R () →

P(),Q () → K(),V () → T(),T () → E() .

� The set of all outside after relation (S ← (Tp))

P () ← Q(),U () ← T(),Q () ← P(),W () ← R(),F () ← Q(),V () ← K(),W

() ← F(),T () ← W(),P () ← U(),S () ← Q(),T () ← R(),F () ← T(),A () ←

R(),K () ← Q(),T () ← V(),E () ← T() .

� The set of all inside first relation (S `(Tp))

R ()` Q (), T ()` R (), K ()` F (), R ()` S (), W ()` V ().

� The set of all inside last relation (S a(Tp))

U ()a R (),R ()a Q (), W ()a Q (),V ()a F (), F ()a Q (),W ()a V (), E ()a

S ().

22

Chapter 3 A Combined Approach for Identifying Crosscutting Concerns

Execution Relation Constraints

The execution relations obtained so far are further refined to obtain crosscutting

concerns by applying our constraints to the execution relations. Recurring patterns

in the execution relations are thus potential crosscutting concerns. Thus we have

to find out recurring execution relations from our obtained execution relations by

applying some constraints to it. The first constraint is the uniformity constraint

where as the second one is a recurring pattern.

Before applying our constraints we have taken an assumption that there is no

other method execution between another method i.e, methods shouldn’t be nested.

There is no other method execution between method entry and exit. This absence

of nested method is called as empty method signature and can be denoted by ψ.

Now this empty method signature is added to the program trace Tp. Hence our

definitions can be changed from simple program trace to program trace including ε

relation.

1. Uniformity Constraint (U∼)

By considering the empty method signature we can define our uniformity

constraint as follows:-

An execution relation s=a ∼ b ε S∼,wher ∼ ε {←, →,`,a }is called uniform

if ∀ c ∼ b ε S∼;a=c and a,b,c ε Np ∪ {ψ }holds.

Uniformity defines the same pattern that is followed in the execution

relation.For example a → b is uniform if for every execution of b is preceded

by a that means a is always executed before b. If any other method rather

than a is executed before b ,for example c → b means c is executed before b

then this is not uniform as a and c are two methods executed before b.

Similarly we can apply this uniformity constraint to our other execution

relations like outside after, inside first and inside last. In outside after

23

Chapter 3 A Combined Approach for Identifying Crosscutting Concerns

execution relation the method which is executed after another method and the

same pattern should be followed i.e, for every execution of the after method

should be executed after the before method. For example b ← a where b is

executed after a. If b ← c that means b is executed after c is followed then

this is not uniform as b is executed after a and c. Always b should be executed

after a then it would be uniform.

Consider an inside first execution relation a ` b where method a is executed

as the first method inside method b. This execution relation is called as uniform

if for every execution of a should occur as the first method inside method b. If

another relation c ` b exist i.e, c is executed as the first method inside method

b and this relation is not uniform as methods a and c are executed as the first

method inside method b in different method executions.

Similarly consider an inside last execution relation a a b where method

a is executed as the last method inside method b.This execution relation is

called as uniform if for every execution of a should occur as the last method

inside method b. If another relation c a b exist i.e, c is executed as the last

method inside method b and this relation is not uniform as methods a and c are

executed as the last method inside method b in different method executions.

After applying these uniformity constraints to our execution relations we

can get the set of uniformity relation as follows:-

U→={Q () → S(),T () → E(),T () → U(),K() → V() }

U←={Q () ← P(),V () ← K() }

U`={R ()` Q (), R ()` S (), K ()` F () }

Ua={E ()a S (),V ()a F () }

2. Crosscutting constraint

24

Chapter 3 A Combined Approach for Identifying Crosscutting Concerns

Uniformity constraint can reduce the potential crosscutting concern seeds

and hence for better analysis of the remaining relations. After getting the

uniformity relation we can apply the crosscutting constraint to it. For this

analysis we have to remove the ψ -relation.

An execution relation s= a ∼ b ε U∼ is called crosscutting if ∃ s’=a ∼ c ε

U∼ and b 6= c where a,b,c ε Np holds i.e, it occurs repeatedly in the program

trace Tp. This constraint can be applied to all the execution relations and

hence the aspect candidates can be determined. After applying the constraint

to our execution relations we got the following patterns that represent the

crosscutting concern seeds.

R→= {T() → U (),T () → E () }

R←= {φ }

R`= {R () ` Q (),R () ` S () }

Ra= {φ }

From the above relation we found one aspect from the outside before execution

relation. The method T() is called before the execution of methods U() and

E (). Hence method T() is our first crosscutting concern obtained. There is

no such pattern exist while considering outside after execution relation. In

the inside first execution relation method R() is executed as the first method

inside methods Q() and S(). Hence method R() represents another crosscutting

concern. Again there is no such pattern exist in the inside last execution

relation.

.

25

Chapter 3 A Combined Approach for Identifying Crosscutting Concerns

3.3 Summary

In this chapter, we have discussed about the two important techniques of aspect

mining. The first technique is the fan-in analysis which is static in nature. It

tries to identify all the scattered codes in a software system. The three steps of

fan-in analysis such as fan-in metric calculation, method filtration and seed analysis

are explained properly with suitable examples. This technique is a semi-automatic

approach which needs some domain experts for identifying crosscutting concerns.

The second technique is the dynamic analysis approach where different execution

relations are obtained from a program trace. We described the four different

execution relations such as outside before, outside after, inside first and inside last

with an example. Then different constraints are applied on these execution relations

to obtain crosscutting concerns. This analysis tries to identify all the tangled code of

a software system. Hence combining these two techniques can identify both scattered

as well as tangled code. Hence combining these two techniques can give better result.

26

Chapter 4

CASE STUDY

4.1 Introduction

In order to identify all the crosscutting codes i.e, code scattering and code tangling

in an object oriented system we combined two approaches such as fan-in analysis and

dynamic analysis. Our approach can be implemented to any object oriented program

for our evaluation purpose we applied our approach to a bench mark programs.

There are different bench mark programs are developed for aspect mining.They are

SquareRootDisk, JHotDraw,JDraw, PetStore, JSokoApplet.JHotDraw and JDraw

are two dimensional drawing tools to draw different figures. JSokoApplet is a gaming

tool. For our case study analysis we have taken SquareRootDisk which is a small

java program used for scanning files and folders. It is a good implementation of

object oriented design pattern. Our next goal is to apply our approach to some

other bench mark programs.

4.2 SquareRootDisk

SquareRootDisk is a java application program which is used to scan files and folders.

It is a good implementation of object oriented design pattern. It has different

versions but we used version 1.4.2 for our analysis. It is small in size. It contains

27

Chapter 4 CASE STUDY

624 numbers of LOC, one package, 7 classes and 47 methods. Our analysis focuses

on these 47 methods.

4.2.1 Fan-in analysis Result

We applied our first technique to SquareRootDisk,a benchmark program to obtain

methods having fan-in value more than that of the threshold value. In order to

calculate fan-in metric and for method filtration we used a tool called FINT. It is

an eclipse plugin and requires 3.1 to 3.3 versions of eclipse. It is an open source

software which can be easily downloaded from Internet. The installation procedure

is very easy and to simply put jar version of the tool to the eclipse plugin file and

restart the IDE. It consists of three views such as fan-in analysis view, Seeds view

and Redirection-layer view.

In order to calculate the fan-in metric the tool first imports the source code into

the package explorer view of eclipse. Name the project as SquareRootDisk. The

tool first bulids the abstract syntax tree of the project and then creates its static

call graph. From the static call graph the callers for each callee is obtained and

the cardinality gives the required fan-in value. After calculating the fan-in values of

all the methods the result can be shown in the fan-in analysis view. The obtained

result is shown in figure 4.1 below.

Our second step is method filtration phase where we have to apply some

restrictions to the methods. We filter out all the getters and setters as well as library

and utility methods. After applying this step we found only 24 methods out of 47

methods. We filtered around 50 percentage of the methods. Then the important

criteria is the threshold value. We put a threshold value of 4 and obtained only one

method. Hence we put the threshold value 2 and found six methods. So around

another 60 percentage of the methods are filtered out. Hence for our case study the

28

Chapter 4 CASE STUDY

Figure 4.1: Fan-in values

threshold value is two. The six high fan-in methods and their callers can be shown

in figure 4.2 as below.

These six high fan-in methods are our are our crosscutting concern seeds. We

can analyze these seeds by using the point cuts rules as defined in the chapter-3.

The two high fan-in methods SelectJDialog() ans sharedData() are not

crosscutting concerns as their definition is a not a concern. Their call sites are

visited and call position is tracked. But we found no point cut rule is implemented

for these two methods.

Next we focused on the high fan-in values and obtained four methods as

29

Chapter 4 CASE STUDY

Figure 4.2: Methods after filtration

HelpJDialog()2,SaveJDialog()2, processfile()2, SquareRootDisk()2

Table 4.1: High fan-in values

Callee Caller

HelpJDialog() helpMenuItemActionPerfomed(), run()

SaveJDialog() saveMenuItemActionPerformed(), run()

SelectJDialog() analyzeMenuItem2ActionPerformed(),

analyzeMenuItemActionPerformed(), run()

SharedData() analyzeMenuItem2ActionPerformed(),

analyzeMenuItemActionPerformed(),initComponents(),SquareRootDisk()

processfile() getDirectorySize() ,run()

SquareRootDisk() jFileChooser1ActionPerformed(), main()

30

Chapter 4 CASE STUDY

Out of these four methods, three methods are constructors and they invoke

automatically. They are not part of a concern and their call position is not at the

beginning or at the end and they are not the refinements of a single abstract method.

Hence they are not a part of crosscutting concern.

Our last method processfile() is a concern which is used to scan the files and

folders. It is called from two different methods run() and getDirectorySize() which

are again representing two concerns. So it satisfies the point cut guidelines. Again

we checked its functionality which is different from the callers functionality. Hence

one crosscutting concern we found by fan-in analysis is processfile().

Table 4.3: Fan-in Analysis Result

Crosscutting

concern

Fan-in value Methods

Scan File 2 processfile()

4.2.2 Dynamic Analysis Result

We applied our second approach,Dynamic analysis to the same benchmark program

SquareRootDisk. We run the project and tried to cover all the functionalities of

the project. We used a dynamic call graph tool called Call Graph Viewer which is

an eclipse plugin. It can be easily downloaded from the eclipse market place and

installed. We run the program and it simply tracks its method executions. We only

considered method execution sequence rather than its functionality. We run our

project under different functionalities and obtained the following program trace as

shown in figure 4.3 .

From the above program trace in figure 4.3 we obtained the following execution

relations.

31

Chapter 4 CASE STUDY

Figure 4.3: Program Trace

� Outside before execution relation

GUISquareRootDisk() → HelpJDialog(),initComponents() →

actionPerformed(),HelpJDialog () → SelectJDialog(),SelectJDialog()

→ SaveJDialog(),SaveJDialog() → SquareRootDisk(),sharedData()

→ run(),run() → getdirectory(),getDirectorySize() →

printlist(),printlist() → initialDepth(),actionPerformed() →

keyPressed(),keyPressed() → actionPerformed(),initComponents() →

JFileChooser1ActionPerformed(),run() → processfile(),getDirectorySize()

→ processfile().

� Outside after execution relation

Outside after relations can be determined by reversing the outside before

32

Chapter 4 CASE STUDY

execution relation.

HelpJDialog() ← GUISquareRootDisk(),actionPerformed() ←

initcomponets(),SelectJDialog () ← HelpJDialog(),SaveJDialog()←

SelectJDialog(),SquareRootDisk() ← SaveJDialog(),run()

← sharedData(),getdirectory() ← run(),printlist() ←

getDirectorySize(),initialDepth() ← printlist(),keyPressed()

← actionPerformed(),JFileChooser1ActionPerformed() ←

initComponents(),processfile() ← run(),processfile() ← getDirectorySize().

� Inside first execution relation

initComponents() ` GUISquareRootDisk(),initComponents() `

SelectJDialog(),initComponents() ` SaveJDialog(), initComponents() `

HelpJDialog(),sharedData() ` SquareRootDisk().

� Inside last execution relation

actionPerfomed() a GUISquareRootDisk(),JButtonactionPerfomed()

a HelpJDialog(),JFileChooser1ActionPerfomed() a

SelectJDialog(),JFileChooser1ActionPerfomed() a

SaveJDialog(),initialDepth() a SquareRootDisk().

After getting all these execution relations we apply uniformity and

crosscutting constraints to it and we got the crosscutting concerns as below in

table 4.5.

Dynamic analysis identifies three methods that are part a crosscutting

concern. These methods are not identified by fan-in analysis as their fan-in

values are below the threshold and they are tangled code. It identifies a

concern which was earlier identified by fan-in analysis as we have considered

a small program. For large programs it can’t identify the scattered code. The

initComponents is the first method executed in four different methods such

33

Chapter 4 CASE STUDY

Table 4.5: Dynamic Analysis Result

Crosscutting concern Execution

Relation

Methods

initComponents() Inside first GUISquareRootDisk(), SaveJDialog(),

,SelectJDialog(),HelpJDialog()

processfile() Outside after run(),getDirectorySize()

JFileChooser1ActionPerformed() Inside last SelectJDialog(),SaveJDialog()

as GUISquareRootDisk,SaveJDialog,SelectjDialog,HelpJDialog.Similarly

processfile is a method which is executed after methods

run and getDirectorySize. Atlast we found another method

JFileChooser1ActionPerformed which is executed as the last method

inside methods SelectJDialog and SaveJDailog.

After combing the two techniques we got the result as shown in the table.

Table 4.7: Combined Result

Crosscutting concern fan-in

value

Type of code Technique

initComponents() 1 Code Tangling Dynamic

processfile() 2 Code Scattering Fan-in

JFileChooser1ActionPerformed() 1 Code tangling Dynamic

34

Chapter 4 CASE STUDY

4.3 Summary

In this chapter, we have implemented our combined approach to a bench mark

program SquareRootDisk and obtained the crosscutting concerns. Our first

technique,fan-in approach identifies only one crosscutting concern which is used to

scan the file. The method processfile() is spread across two classes having different

functionalities. Our second approach, dynamic analysis technique identifies three

crosscutting concerns out of which two crosscutting concerns are not identified by

fan-in analysis. Hence combining techniques can give better result.

35

Chapter 5

Conclusion

Crosscutting concerns are the concerns which are spread across the system as well

as mixed with other code making it difficult to maintain,debug and understand

the code. Hence identifying these crosscutting concerns will automatically improve

the code modularity by reducing the tangled code as well as scattered code. We

implemented a combined approach for identifying these crosscutting concerns. The

first technique is the fan-in analysis approach which tries to identify all the scattered

code. The complementary of this approach is a dynamic analysis which tries to

identify all the tangled code. Hence combining the techniques can give better

result. We implemented our approach to a benchmark program ”SquareRootDisk”

to identify the crosscutting concerns. It contains 7 classes and 47 methods. We

analyzed these methods and classes for our result. Next we will implement our

approach to other benchmark programs having more number of methods and classes.

Scope for Further Research

� We can apply our technique to other benchmark programs like PETStore and

JHotDraw for better result.

� The obtained crosscutting concerns can be re-factored into aspects by using

36

Conclusion

AspectJ Language.

� To use program slicing techniques for identifying crosscutting concerns.

� Finding the complexities and solution to reduce these complexities occur in

our approach.

� We will make it automatic by designing a tool.

37

Bibliography

[1] Martin P Robillard and Gail C Murphy. Concern graphs: finding and describing concerns

using structural program dependencies. In Proceedings of the 24th international conference

on Software engineering, pages 406–416. ACM, 2002.

[2] B Magiel, Av Deursen, Rv Engelen, and T Tourwe. An evaluation of clone detection techniques

for identifying crosscutting concerns. In Proc. Intl. Conf. Software Maintenance (ICSM). IEEE

Computer Society, 2004.

[3] Danfeng Zhang, Yao Guo, and Xiangqun Chen. Automated aspect recommendation through

clustering-based fan-in analysis. In 23rd IEEE/ACM International Conference on Automated

Software Engineering, 2008. ASE 2008, pages 278–287. IEEE, 2008.

[4] Marius Marin, Arie Van Deursen, and Leon Moonen. Identifying crosscutting concerns using

fan-in analysis. ACM Transactions on Software Engineering and Methodology (TOSEM),

17(1):3, 2007.

[5] Gabriela Serban and GRIGORETA SOFIA Moldovan. A graph algorithm for identification

of crosscutting concerns. Studia Universitatis Babes-Bolyai, Informatica, LI (2), pages 53–60,

2006.

[6] Istvan Gergely Czibula, Gabriela Czibula, and Grigoreta Sofia Cojocar. Hierarchical clustering

for identifying crosscutting concerns in object oriented software systems. INFOCOMP Journal

of Computer Science, 8(3):21–28, 2009.

[7] Paolo Tonella and Mariano Ceccato. Aspect mining through the formal concept analysis of

execution traces. In Proceedings of the 11th Working Conference on Reverse Engineering,

2004, pages 112–121. IEEE, 2004.

[8] David Shepherd, Emily Gibson, and Lori L Pollock. Design and evaluation of an automated

aspect mining tool. In Software Engineering Research and Practice, pages 601–607. Citeseer,

2004.

38

Bibliography

[9] Lili He and Hongtao Bai. Aspect mining using clustering and association rule method.

International Journal of Computer Science and Network Security, 6(2A):247–251, 2006.

[10] Silvia Breu and Jens Krinke. Aspect mining using event traces. In Proceedings of the 19th

International Conference on Automated Software Engineering, 2004, pages 310–315. IEEE,

2004.

39

Dissemination

Dissemination

Conference

1. Shantanu Kumar Biswal,Ramesh Kumar Mohapatra,A Combined Approach for Identifying

Crosscutting concerns in an Object Oriented System. International Conference on Recent

Innovations Science, Engineering and Management (ICRISEM -2015).

40

	Certificate
	Acknowledgement
	Abstract
	List of Figures
	List of Tables
	Introduction
	Software Evolution
	Procedural programming
	Functional Programming
	Logic Programming
	Object Oriented Programming (OOP)
	Aspect Oriented Programming (AOP)

	Problem statement
	Objectives
	Motivation
	Challenges
	Organization of the Thesis

	Aspect Mining:Background and Related Work
	Aspect Mining
	Query-Based approach
	Generative Approach

	Related Work
	Basic Terminology
	Concern
	Crosscutting Concern
	Aspects
	Aspect Oriented Programming (AOP)

	A Combined Approach for Identifying Crosscutting Concerns
	Introduction
	A combined approach for identifying crosscutting concerns
	Fan-in Analysis
	Pitfalls of Fan-in Analysis
	Dynamic Analysis

	Summary

	CASE STUDY
	Introduction
	SquareRootDisk
	Fan-in analysis Result
	Dynamic Analysis Result

	Summary

	Conclusion
	Bibliography
	Dissemination

