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ABSTRACT 

 

 

Windy areas, waterfalls, reservoirs, high tide locations are extremely helpful for generating clean 

and economical electrical energy by proper harnessing mechanism. Throughout the globe in last 

three to four decades generation of electricity out of these renewable sources has created wide 

interest. Induction generators are widely preferable in wind farms because of its brushless 

construction, robustness, low maintenance requirements and self protection against short circuits. 

However poor voltage and frequency regulation and low power factor are its weaknesses. The 

magnitude of terminal voltage and frequency is completely governed by the rotor speed, excitation 

and load. The mutual inductance plays a vital role in building up of the terminal voltage.  Apart 

from modeling a self excited induction generator, this thesis carried out a detailed dynamic analysis 

of self excited induction generator to analyze the effect of speed, excitation capacitance, and mutual 

inductance on dynamic power variations and frequency of power exchange and on torque 

variations. A V/f scalar voltage control scheme utilizing an IGBT based sinusoidal pulse width 

modulated inverter is simulated without load and with load to know the effect of proportional gain 

of PI controller on the shape of ac side current and on its frequency, simultaneously extracting the 

information on dynamic active power and reactive power variations for a fixed prime mover speed. 

As wind speed is continuously varying, the V/f scalar control scheme is simulated for a 

continuously varying wide range of prime mover speed. The generated constant ac voltage source is 

useful to frequency insensitive loads like lighting, heating. The available dc voltage across the DC 

link capacitor could be used to charge batteries and for further extension to a fixed frequency load, 

after being converted to ac source of same frequency using another converter. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 General 

The limited reserves of fossil fuels (coal, oil, and natural gas) remain the main source of 

electricity generated even today. The adverse effect of these fossil fuels is that they produce 

pollutant gases when they are burned in the process to generate electricity and the damage is 

irreversible. Fossil fuels are non-renewable energy sources. However, renewable energy resources 

(wind, solar, hydro, ocean, biomass and geothermal) are constantly replaced and are usually less 

polluting. 

 

Due to an increase in greenhouse gas emissions more attention is being given to renewable 

energy. As a renewable energy, wind is clean and abundant resource that can produce electricity 

with virtually no pollutant gas emission. Induction generators are widely used for wind powered 

electric generation, especially in remote and isolated areas, because they do not need an external 

power supply to produce the excitation magnetic field. Furthermore, induction generators have 

more advantages such as less cost, reduced maintenance, rugged and simple construction, brushless 

rotor (squirrel cage) and so on. 

Wind energy conversion may be mechanical or electrical in nature, but the present focus is 

on electricity generation. The maximum extractable energy from the 0-100 m layer of air has been 

estimated to be of the order of 1012 kWh per annum, which is of the same order as hydroelectric 

potential.  High speed and high efficiency of turbines were the necessary conditions for successful 

electricity generation. In the early decades of the twentieth century, aviation technology resulted in 

an improved understanding of the forces acting on blades moving through air. This resulted in the 

development of turbines with two or three blades. 
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1.2 Wind Turbine 

A wind turbine is a turbine driven by wind. Modern wind turbines are technologically 

advanced versions of the traditional windmills which were used for centuries in the history of 

mankind in applications like water pumping, crushing seeds to extract oil, grinding grains, etc. In 

contrast to the windmills of the past, modern wind turbines used for generating electricity have 

relatively fast running rotors. 

In principle there are two different types of wind turbines: those which depend mainly on 

aerodynamic lift and those which use mainly aerodynamic drag. High speed wind turbines rely on 

lift forces to move the blades, and the linear speed of the blades is usually several times faster than 

the wind speed. However, with wind turbines which use aerodynamic drag the linear speed cannot 

exceed the wind speed as a result they are low speed wind turbines. In general wind turbines are of 

horizontal axis type or vertical axis type. 

 

1.2.1 Vertical axis wind turbine 

The axis of rotation for this type of turbine is vertical. It is the oldest reported wind turbine. 

The modern vertical axis wind turbine design was devised in 1920s by a French electrical engineer 

G.J.M. Darrieus. It is normally built with two or three blades. A typical vertical axis wind turbine is 

shown in Fig. 1.1. Note that the C-shaped rotor blade is formally called a 'troposkien'. 

 

Fig.1.1 Vertical axis wind turbine 

The primary aerodynamic advantage of the vertical axis Darrieus machine is that the turbine 

can receive the wind from any direction without the need of a yaw mechanism to continuously 

orient the blades toward the wind direction. The other advantage is that its vertical drive shaft 
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simplifies the installation of gearbox and electrical generator on the ground, making the structure 

much simpler. On the disadvantage side, it normally requires guy wires attached to the top for 

support. This could limit its applications, particularly for offshore sites. Wind speeds are very low 

close to ground level, so although it might save the need for a tower, the wind speed will be very 

low on the lower part of the rotor. Overall, the vertical axis machine has not been widely used\ 

because its output power cannot be easily controlled in high winds simply by changing the pitch. 

Also Darrieus wind turbines are not self-starting, however straight-bladed vertical axis wind 

turbines with variable-pitch blades are able to overcome this problem. 

 

1.2.2 Horizontal axis wind turbine 

 

Horizontal axis wind turbines are those machines in which the axis of rotation is parallel to 

the direction of the wind. At present most wind turbines are of the horizontal axis type. Depending 

on the position of the blades wind turbines are classified into upwind machines and down wind 

machines as shown in Fig.1.2. Most of the horizontal axis wind turbines are of the upwind machine 

type. In this study only the upwind machine design is considered.  

 

 

Fig.1.2 Horizontal axis wind turbine (a) upwind machine (b) downwind machine 

Wind turbines for electric generation application are in general of three blades, two blades 

or a single blade. The single blade wind turbine consists of one blade and a counterweight. The 

three blades wind turbine has 5% more energy capture than the two blades and in turn the two 
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blades has 10% more energy capture than the single blade. These figures are valid for a given set of 

turbine parameters and might not be universally applicable. 

  

The three blade wind turbine has greater dynamic stability in free yaw than two blades, 

minimizing the vibrations associated with normal operation, resulting in longer life of all 

components. 

 

1.3 Power extracted from wind 

Air has a mass. As wind is the movement of air, wind has a kinetic energy. To convert this 

kinetic energy of the wind to electrical energy, in a wind energy conversion system, the wind 

turbine captures the kinetic energy of the wind and drives the rotor of an electrical generator. 

 

The kinetic energy (KE) in wind is given by 

 

                                                                      

2

2

1
mVKE                (1.1) 

 

where m- is the mass of air, in kg 

                    V-is the speed of air, in m/s 

 

The power in wind is calculated as the flux of kinetic energy per unit area in a given time, and can 

be written as 

 

                                                              

22

2

1

2

1)(
VmV

dt

dm

dt

KEd
P                          (1.2)

   

 

where  m is the mass flow rate of air per second, in kg/s, and it can be expressed in terms of the 

density of air (ρ in kg/m3) and air volume flow rate per second (Q  in m3/s) as given below 

 

                                                                          AVQm                 (1.3) 
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where  A-is the area swept by the blades of the wind turbine, in m2. 

 

Substituting equation (1.3) in (1.2), we get 

                                                                                 

3

2

1
AVP               (1.4) 

 

This is the total wind power entering the wind turbine. Remember that for this to be true V 

must be the wind velocity at the rotor, which is lower than the undisturbed or free stream velocity. 

This calculation of power developed from a wind turbine is an idealized one-dimensional analysis 

where the flow velocity is assumed to be uniform across the rotor blades, the air is incompressible 

and there is no turbulence where flow is inviscid (having zero viscosity). 

 

Fig.1.3 Change of wind speed and wind pressure around the wind turbine 

 

The volume of air entering the wind turbine should be equal to the volume of air leaving the 

wind turbine because there is no storage of air in the wind turbine. As a result, volume flow rate per 

second, Q , remains constant, which means the product AV remains constant. Hence when the wind 


rTP


rTP
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leaves the wind turbine, its speed decreases and expands to cover more area. This is illustrated in 

Fig. 1.3. 

 

Fig. 1.3 shows the idealized case where the wind continues to flow at a speed of V2 

downstream of the rotor. In reality the slow air in the wake 'diffuses' into the surrounding air 

through turbulence, so that further downstream the velocity of air will be equal to the undisturbed 

up stream wind speed because of the gain of energy from the surrounding wind. 

 

As shown in Fig. 1.3, Pr  is the atmospheric pressure of wind. The turbine first causes the 

approaching wind to slow down gradually, which results in a rise in wind pressure. Applying 

Bernoulli’s equation the wind has highest pressure, 
Pr  , just before the wind turbine and the wind 

has lowest pressure (lower than atmospheric pressure), 
Pr , just after the wind turbine. As the wind 

proceeds downstream, the pressure climbs back to atmospheric value, causing a further slowing 

down of the wind speed. The pressures immediately upwind and downwind of the rotor are related 

to the far upwind and downwind velocities V1and V2 by applying Bernoulli's equation separately for 

upwind and downwind. Using momentum theory the downwind force on the rotor is equal to the 

pressure drop across it multiplied with the rotor blade area. 

 

The force F on the rotor blades can be given by the rate of change of momentum,  

                                                                       )( 21 VVmF                (1.5) 

Using equation (1.2), the power extracted from the wind turbine TP is the difference between the 

upstream wind power , at 1A , and the downstream wind power, at 2A  given by,  

)(
2

1 2
2

2
1 VVmPT    

                                                                  
))((

2

1
2121 VVVVmPT  

            (1.6)
 

This power is calculated assuming that all the power lost by the wind has been extracted by the 

wind turbine and none has been lost through turbulence. 

The force F on the rotor blades multiplied by the wind speed at the rotor blades, TV , produces 

power given by 

                                                                     TT FVP                (1.7) 
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Substituting equation ( 1.5) in  (1.7 ) gives  

                                                                TT VVVmP )( 21                (1.8) 

Equating equations ( 1.6) and (1.8 ) gives  

                                                                    2
21 VV

VT


              (1.9) 

Therefore, the wind speed at the rotor blades, TV  is the average of the undisturbed up stream wind 

speed, 1V and the downstream wind speed, 2V . 

Using equation (1.3), the mass flow rate of air through the rotating blades of the wind turbine is  

                                                                  TTVAρm              (1.10) 

Substituting equation (1.9) in (1.10) the mass flow rate of air at the wind turbine is given by  

                                                                2
21 VV

Aρm T



           (1.11)

 

Substituting equation (1.11) in (1.6) gives the power absorbed by the wind turbine, which is the 

mechanical power at the shaft of the wind turbine, as  

                                                              







 


2
)(

2

1 212
2

2
1

VV
VVAρP TT

                                           (1.12)
 

This power is calculated assuming that all the power lost by the wind has been extracted by 

the wind turbine and none has been lost through turbulence. If all the power in the wind were 

extracted, the wind speed 2V would be zero and the air could not leave the wind turbine.  However, if 

there is no wind leaving the wind turbine the power extracted is zero because air has to exit the 

wind turbine in order to make the rotor blades rotate. 

Rearranging the above equation to express the mechanical power developed in the wind turbine in 

terms of the upstream wind speed at 1A , shown in Fig.1.2, gives 
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From equation (1.4), the total wind power 1P  at area 1A is 

                                                        
3
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            (1.14)
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Then the ratio of wind power extracted by the wind turbine to the total wind power at area 1A is the 

dimensionless power coefficient pC , where 
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Substituting equation (1.15) into equation (1.13) the wind power extracted by the wind turbine can 

be written as  

                                                       
pTT CVAρP 3

12

1


            (1.16)
 

or 

                                                       
pTT CVDP 3

1
2

8

1 
           (1.17)

 

where TD  is the sweep diameter of the wind turbine. 

 

1.4 Generators for wind power applications  

Mainly the generators which are used for electricity generation from wind power are 

permanent magnet synchronous generator, squirrel cage induction generator and doubly fed 

induction generator. 

1.4.1 Permanent Magnet Synchronous Generator 

Wind turbines run at inconveniently low speeds, typically 25-50 rpm. A speed-increasing 

gear box is required to run induction machines and conventional synchronous machines at 1000 or 

1500 rpm for operation with the utility network. Additional cost, weight, power loss, regular 

maintenance, and noise generation are some of the problems associated with the gear box. This 

speed boost is necessary, as induction and synchronous machines cannot be built with pole pitches 

less than 150 mm and a large number of poles in the range 120-240, necessary for the direct 

coupled generator turning at low speed, cannot be accommodated within an acceptable diameter of 

the generator, which should fit inside the nacelle with the gear box. Therefore, low-speed, direct-

coupled generators are required, particularly for turbines with large diameters.  
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Permanent magnet (PM) excitation considerably brings down the pole pitch requirement, 

which should be less than 40 mm. This allows the rotor to be within an acceptable diameter, which 

makes the housing of the generator inside the nacelle possible. In the surface-type permanent 

magnet machine, high-energy, rare-earth magnets such as neodymium-iron-boron (Nd-Fe-B) are 

mounted on the rotor surface. In per-unit terms, both the reactance values are small because of the 

large number of poles. This provides the PMSG with high peak torque capability to resist higher-

than-rated torque for short periods during wind gusts and repeated torque pulsations of up to 20% of 

the rated torque. 

1.4.2 Squirrel Cage Induction Generator 

The operation of a squirrel cage induction machine as a self-excited generator in isolation 

with variable-speed prime movers, such as wind turbines, has poor voltage and frequency 

regulation. For frequency insensitive loads, such as heating and lighting, it is adequate to maintain a 

near-constant terminal voltage. In fact, irrespective of the nature and amount of load, a constant 

terminal voltage with admissible regulation is required in most applications. The generated ac 

voltage may either be used directly or converted into dc voltage. Dc power can be used directly in 

certain dc equipment, such as battery chargers, or fed to the ac mains, or load, through an inverter. 

1.4.3 Doubly Fed Induction Generator 

The wound rotor induction machine, commonly known as the doubly fed induction generator, is 

finding increasing application, particularly in the megawatt range, in variable-speed wind energy 

conversion systems. When compared with motoring operation, the power handling capability of a 

wound rotor induction machine as a generator theoretically becomes nearly double. The rotor of the 

generator is coupled to the turbine shaft through a gear box so that a standard (1500/1800 rpm) 

wound rotor induction machine can be used. The gear ratio is so chosen that the machine’s 

synchronous speed falls nearly in the middle of the allowable speed range of the turbine (nearly 60-

110%). Above the rated wind speed, power is limited to the rated value by pitching the blades. The 

stator is directly connected to the fixed-frequency utility grid while the rotor collector rings are 

connected via back-to-back PWM voltage source inverters and a transformer/filter to the same 

utility grid. As the rotor power is a fraction of the total power of the generator, a rotor converter 

rating of nearly 35% of the rated turbine power is sufficient. The rotor-side PWM converter is a 
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stator flux based controller that provides independent control of the induction machine’s active and 

reactive powers. The grid-side converter is the dc-link voltage regulator that enables power flow to 

the grid, keeping the dc-link voltage level constant. 

 

1.5  Self Excitation and Line Excitation of Induction Generator 

Excitation current is responsible to magnetize the core and producing a rotating magnetic field. 

The excitation current for an induction generator connected to an external source, such as the grid, 

is supplied from that external source. If this induction generator is driven by a prime mover above 

the synchronous speed, electrical power will be generated and supplied to the external source. An 

isolated induction generator without any excitation will not generate voltage and will not be able to 

supply electric power irrespective of the rotor speed. Induction generators can be classified on the 

basis of excitation process as 

 Grid connected induction generator 

 Self-excited induction generator (SEIG) 

 

In general an ac machine requires reactive power for its operation. The grid connected 

induction generator takes its reactive power for excitation process from the grid supply, so it is 

called grid excited induction generator. The self excited induction generators draw reactive power 

from capacitors connected across its terminals. 

Based on the method of excitation, induction generators are classified namely as  

 Constant-voltage, constant-frequency generators 

 Variable-voltage, variable-frequency generators 

 

Self-excited induction generator means a cage rotor induction machine with shunt capacitors 

connected at their terminals for self excitation. These are primarily variable-voltage, variable 

frequency generators. Three charged capacitors connected to the stator terminals of the induction 

generator can supply the reactive power required by the induction generator.  
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Depending upon the prime movers used and their locations, generating schemes can be broadly 

classified as under 

 

 Constant speed constant frequency [CSCF] 

 Variable speed constant frequency [VSCF] 

 Variable speed variable frequency [VSVF] 

 

For the voltage to build up across the terminals of the induction generator, there are certain 

requirements for minimum rotor speed and capacitance value that must be met. When capacitors are 

connected across the stator terminals of an induction machine, driven by an external prime mover, 

voltage will be induced at its terminals. The induced emf and current in the stator windings will 

continue to rise until steady state is attained. At this operating point the voltage and current will 

continue to oscillate at a given peak value and frequency. The rise of the voltage and current is 

influenced by the magnetic saturation of the machine. In order for self-excitation to occur with a 

particular capacitance value there is a corresponding minimum speed. 

 

Self-excited induction generators are good candidates for wind powered electricity 

generation, especially in remote areas, because they do not need an external power supply to 

produce the excitation magnetic field. Permanent magnet generators can also be used for wind 

energy applications; however the generated voltage increases linearly with wind turbine speed. An 

induction generator can cope with a small increase in speed from its rated value because, due to 

saturation, the rate of increase of generated voltage is not linear with speed. Furthermore when there 

is a short circuit at the terminals of the self-excited induction generator (SEIG) the voltage collapses 

providing a self-protection mechanism. Additional advantages of SEIGs include lower cost, 

reduced maintenance, they are rugged with simple construction, and they have a brushless rotor 

(squirrel cage). Fig. 1.4 shows the SEIG driven by a wind turbine. 
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Fig. 1.4 SEIG with a capacitor excitation system driven by a wind turbine 

 

1.6 Suitability of SEIG for Wind Power Application 

Basset and Potter in 1935 first reported [1] that the induction machine can be operated as an 

induction generator in isolated mode by using external capacitor. In 1939, Wagner [2] gave an 

approximate method of analysis of self excited induction generator by separating the real and 

reactive parts of the circuits. In most of the cases it suffered from the frequency drop and poor 

voltage regulation. In such cases series capacitors were used to improve the voltage regulation. 

These early works are mainly experimental analysis [1, 2]. The main methods of representing a 

SEIG are the steady state model and the dynamic model. The steady state analysis of SEIG is based 

on the steady state per-phase equivalent circuit of an induction machine with the slip and angular 

frequency expressed in terms of per unit frequency and per unit angular speed. The steady state 

analysis includes the loop-impedance method [3-4, 8-11] and the nodal admittance method [12-13]. 

The loop-impedance method is based on setting the total impedance of the SEIG, i.e. including the 

exciting capacitance, equal to zero and then to find the steady state operating voltage and frequency 

using an iteration process. In the nodal admittance method the real and imaginary parts of the 

overall admittance of the SEIG are equated to zero. The equations are formulated based on the 

steady state conditions of the SEIG. The main drawback of using the per-phase steady state 

equivalent circuit model is that it cannot be used to solve transient dynamics because the model was 
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derived from the steady state conditions of the induction machine. The dynamic model of a SEIG is 

based on the d-q axes equivalent circuit or unified machine theory. For analysis the induction 

machine in three axes is transformed to two axes, d and q, and all the analysis is done in the d-q 

axes model. The results are then transformed back to the actual three axes representation. In the d-q 

axes, if the time varying terms are ignored the equations represent only the steady state conditions. 

The SEIG represented in d-q axes and the analyzed under steady state condition is reported in [5]. 

In [12, 20-21] the dynamic equations for the representation of SEIG conditions are given. In these 

papers the initial conditions that take into account the initial charge in the exciting capacitors and 

the remnant magnetic flux linkage in the iron core are not given. The d-q axes model of SEIG given 

in [21] reported that the dynamic generated voltage varies with the applied load, but there are no 

results that show what happens to the dynamic speed of the rotor when the generator is loaded. 

Hence it cannot be proven that whether the variation in voltage is due to a change in speed or not. 

In [15] a SEIG with electrical connection between stator and rotor windings is reported. This paper 

deals with the steady state performance of a SEIG realized by a series connection of stator and rotor 

windings of a slip-ring type induction machine and solved using d-q analysis. In this type of 

connection it has been claimed that it has the advantage of operating at a frequency independent of 

load conditions for a fixed rotor speed, however the angular frequency of the output voltage is equal 

to half of the rotor electrical angular speed, which means the prime mover should rotate at twice the 

normal speed to generate voltage with standard frequency. There is also concern regarding the 

current carrying capability of the stator and rotor windings because both of them are carrying the 

same current. If a single valued capacitor bank is connected, i.e. without voltage regulator, a SEIG 

can safely supply an induction motor rated up to 50% of its own rating and with a voltage regulator 

that maintains the rated terminal voltage the SEIG can safely feed an induction motor rated up to 

75% of its own rating [17]. In this case the SEIG can sustain the starting transients of the induction 

motor without losing self-excitation. The output voltage and frequency of an isolated induction 

generator vary depending on the speed of the rotor and the load connected to the generator. This is 

due to a drop in the speed of the rotating magnetic field . The wind turbine can be designed to 

operate at constant speed or variable speed. When the speed of the prime mover of the isolated 

induction generator drops with load, then the decrease in voltage and frequency will be greater than 

for the case where the speed is held constant. The AC voltage can be compensated by varying the 

exciting AC capacitors or using a controlled inverter and a DC capacitor. However the frequency 
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can be compensated only if there is a change in the rotor speed. Because the frequency of the three-

phase isolated induction generator varies with loading, its application should be for the supply of 

equipment insensitive to frequency deviations, such as heaters, water pumps, lighting, battery 

charging etc. Dynamic performance of self excited induction generator feeding different static loads 

is mentioned in [31].A nonlinear dynamic model is proposed in [38] along with the explanation of 

the experimental data. This theory takes into account the demerits of linear theory which could not 

account for slower growth of terminal voltage than exponential growth and for sustained sinusoidal 

oscillations for many cycles before collapsing. The performance of an isolated self excited 

induction generator driven by a wind turbine under unbalanced loads is studied in [39]. In this paper 

the whole system, including the induction generator, the capacitors and the loads is modeled using 

park transformation allowing saturation effect into account. Magnitude and frequency of the 

voltages are found to be less affected even if the load is unbalanced. 

 

1.6.1 Capacitance and rotor speed for self-excitation 

The minimum and maximum values of capacitance required for self-excitation of a three-

phase induction generator have been analyzed using a current model [8,10,21]. Calculation of the 

minimum capacitance required for self excitation using a flux model has also been reported in [23]. 

In the calculation of capacitance required for self-excitation, economically and technically, it is not 

advisable to choose the maximum value of capacitance. This is due to the fact that for the same 

voltage rating the higher capacitance value will cost more. In addition, if the higher capacitance 

value is chosen then there is a possibility that the current flowing in the capacitor might exceed the 

rated current of the stator due to the fact that the capacitive reactance reduces as the capacitance 

value increases. A de-excited induction generator can re-excite even if the load is already connected 

to it [18]. Wind speed can change from the minimum set point to the maximum set point randomly 

and the SEIG can be started at any point within the range of speed. It is essential to find the 

minimum and maximum speed required for self-excitation, when the generator is loaded.  In [30] 

the author has presented the analysis and calculation of the minimum and maximum speeds for self 

excitation to occur and for a particular value of capacitance.  
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1.6.2Effect of magnetizing inductance on self-excitation 

In the SEIG the variation of magnetizing inductance is the main factor in the dynamics of 

voltage build up and stabilization. Effect of variation of magnetizing inductance or magnetizing 

reactance during voltage build up has been reported in several papers. In [3-4, 8, 10-11, 13] the 

effect of magnetizing reactance on voltage build up is reported and the effect of magnetizing 

inductance for a known frequency of operation is reported in [12,16]. In these papers it has been 

shown that as the air gap voltage increases from zero, the value of magnetizing reactance starts at a 

given unsaturated value reaches a peak value than starts to decrease up to its rated value, which is a 

saturated value. In these analyses of the SEIG the magnetizing reactance for values of air gap 

voltage close to zero were ignored. Since magnetizing reactance is dependent on frequency it is 

avoided in transient analysis, rather magnetizing inductance is used. In [5,18,21,24] it has been 

shown that the magnetizing inductance or magnetizing reactance starts at a maximum unsaturated 

value and then decreases when the iron core saturates. Although this representation depicts the 

actual variation of magnetizing inductance, the significance of this characteristic has not been 

presented. 

1.6.3 Control of generated voltage and frequency 

The main problem in using a SEIG is the control of the generated voltage because the 

voltage amplitude and frequency drops with loading as well as with a decrease in the generator 

rotor speed [29]. For applications that require constant voltage and frequency the rectified DC 

voltage of the isolated induction generator should be controlled to remain at a given reference 

value. Then the constant DC voltage can be converted to constant AC voltage and frequency using 

an output inverter. In this way a control mechanism is implemented to regulate the output voltage 

and frequency from an induction generator. The generated voltage can be controlled by varying the 

rotor resistance of a self- excited slip-ring induction generator [28]. However a self-excited slip-ring 

induction generator will require more maintenance than a squirrel cage rotor due to the slip-rings 

and brush gear. The rms value of the generated voltage, irrespective of its frequency, can be 

controlled using variable capacitance values [6], or a fixed capacitor thyristor controlled reactor 

static VAR compensator [26], or continuously controlled shunt capacitors using anti-parallel IGBT 

switches across the excitation capacitor [22]. In a SEIG, a squirrel cage rotor is preferable to a 

wound rotor because the squirrel cage rotor has a higher thermal withstand capability and requires 
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less maintenance. Due to the higher thermal withstand capability of the squirrel cage rotor, a higher 

copper loss in the rotor is acceptable. 

Maintaining a constant frequency is not a problem for a fixed speed wind turbine system 

connected to the grid. However the problem is with the operation of SEIG. A stand-alone induction 

generator excited by a single DC capacitor and inverter/rectifier system can be used instead of the 

AC capacitor excited system. If a constant DC voltage is achieved then a load side inverter is used 

to produce a constant rms voltage and frequency. An inverter/rectifier can be shunt connected so 

that it carries only the exciting current or a converter can be connected in series so that it carries the 

full current, i.e. the exciting and load current [14,19,25,27]. A novel voltage controller for 

standalone induction generator using PWM-VSI is reported in [32]. In this paper speed was not 

taken into account but three phase reference voltage signal is generated considering the error output 

of the PI controller as synchronous frequency. The error input is generated by comparing the DC 

link capacitor voltage with the reference DC voltage. A similar but with a frequency control scheme 

is depicted in [33]. Both of these above two papers uses scalar control technique. A vector control 

scheme taking saturation effect into account is explained in [34]. The constant voltage operation of 

SEIG using optimization tools such as genetic algorithm, pattern search and quasi-newton is 

mentioned in [35]. A DSP based load controller for a single phase SEIG is described in [36]. A 

detailed vector control scheme using a hysteresis controller for constant voltage and frequency 

controller is reported in [37].The above papers did not mention the effect of speed, excitation 

capacitance, mutual inductance on dynamic power variations and frequency of power exchange and 

line voltage. 

1.7 Motivation and Objectives 

1.7.1 Motivation 

The continuously increasing energy demand has forced researchers in the energy area to go 

for alternative solutions to non renewable resources. Non renewable resources on the other hand is 

also limited and in the depleting mode. Humanity has also witnessed deep environmental hazards 

from non renewable sources in the recent past. The previous works of researchers in harnessing the 

clean renewable energy like wind, hydro, tidal, solar, biomass for electric power generation is the 

prime motivation to take up this project as a first step towards understanding the technology in the 

renewable energy sector. Though the induction generator self excitation phenomena is known since 
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1935, till date the work in the area of dynamic analysis, steady state analysis and control of voltage, 

frequency is a concern. The usefulness of an isolated induction generator is many fold especially 

where extension of national grid is not feasible or economical. The conversion of an already 

existing induction motor to an isolated induction generator locally by suitable technology transfer to 

the masses is the focus of this project. 

1.7.2 Objectives 

 To model the induction machine as a self excited induction generator taking dynamic 

mutual inductance into consideration by including both R and RL loads.  

 To analyze the effect of speed, excitation capacitance and mutual inductance on 

dynamic power variations and frequency of power exchange and line voltage. 

  Simulating a voltage control scheme to extract the information on active power and 

reactive power and torque variations under no load and loaded conditions.  

 To analyze the effect of proportional gain of PI controller on the shape of line 

current and on its frequency.  

 To experimentally verify the operation of a three phase induction machine as a self 

excited induction generator by including a capacitor bank in delta connected mode 

for the necessary reactive power supply.  

1.8 Scope and Organization of the Thesis 

There are six chapters in this thesis. The thesis presents the voltage control of self excited 

induction generator along with its modeling and analysis, when driven by a wind turbine. To have a 

good understanding of the prime mover an overview of the characteristics of wind turbines is 

presented. Analysis of an induction generator is done using d-q modeling and the theory of 

induction machines. 

 

In Section 1.6 of this chapter the literature related to isolated induction generators is 

reviewed. This involves clarifying the strengths and limitations of the previous works and 

highlighting the advantages of the research covered in the thesis. 
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In Chapter 2 reference frame theory and the induction machine modeling are presented. In 

electrical machine analysis a three-axes to two-axes transformation is applied to produce simpler 

expressions that provide more insight into the interaction of the different parameters. The d-q model 

for dynamic analysis is obtained using this transformation. It is shown that the three-axes to two-

axes transformation reduces the no. of equations to solve, simplifies the calculation of dynamic rms 

current, rms voltage, active power for the three-phase induction machine. The modeling of an 

induction machine using the conventional or steady state model and the d-q or dynamic model are 

explained. The voltage, current and flux linkage in the rotating reference frame and their phase 

relationships in the motoring region and generating region are presented. This chapter describes the 

fundamentals of induction machine modeling and characteristics as a preparation of the modeling 

and analysis of an isolated induction generator. Using this model the dynamic current, torque and 

power can be calculated more accurately. 

 

Chapter 3 deals with the modeling and analysis of an isolated three-phase induction 

generator excited by three AC capacitors connected at the stator terminals. The mathematical model 

of a self-excited induction generator and the initial charge in the capacitor is given. The initiation 

and process of self-excitation is presented, starting from a simple RLC  circuit as an analogy to a 

complete dynamic representation of a self-excited induction generator, i.e. the complete 

representation includes both steady state and transient conditions. The variation of magnetizing 

inductance of the induction machine is important in the voltage build up and stabilization of the 

generated voltage. It is shown that the characteristics of magnetizing inductance with respect to the 

rms induced stator voltage or magnetizing current determines the regions of stable operation as well 

as the minimum generated voltage without loss of self-excitation. The variation of the generated 

voltage for a self excited induction generator at constant and variable speeds for varying excitation 

capacitors has been investigated. More results which are not accessible in an experimental setup 

have been analyzed using simulation algorithms. 

 

In Chapter 4 the terminal voltage control in an isolated induction generator using an 

inverter/rectifier excitation with a single capacitor on the DC link is discussed. A scalar control 

technique is verified to control the excitation and the reactive power. When the speed of the prime 

mover is varied, the flux linkage in the induction generator is made to vary inversely proportional to 
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the rotor speed so that the generated voltage remains constant. The first scheme controls only the 

terminal voltage by keeping the modulation index fixed. The second scheme controls both terminal 

voltage and frequency by varying the modulation index as a part of control. Both the scheme use a 

single PI controller. 

 

Chapter 5 presents the experimental verification of an induction machine being run as a self 

excited induction generator using a capacitor bank of three power capacitors in delta connection. 

Open circuit test and short circuit test are performed to find the machine parameters. The 

magnetization characteristic curve of an induction machine was found by running it at synchronous 

speed.  

 

In Chapter 6 conclusions and suggestions for future work are given. 

 

Major Contributions in the thesis are :  

 Review of d-q axes modeling of induction generator. 

 Mathematical analysis of self excited induction generator. 

 Analysis of effects of speed, excitation capacitance and mutual inductance on self 

excitation process of induction generator. 

 Simulation of self excited induction generator with R-L load. 

 Design and analysis of a closed loop voltage control scheme for SEIG. 

 Simulation and analysis of closed loop voltage control scheme. 

 Experiments on voltage build-up of SEIG. 
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CHAPTER 2 

 

 

REFERENCE FRAME THEORY AND INDUCTION 

MACHINE MODELLING 

 

2.1 Introduction 

 

The dynamic performance of an induction machine is somewhat complex because the three-

phase rotor windings move with respect to the three-phase stator windings. This machine can be 

studied as a transformer with a moving secondary, where the coupling coefficients between the 

stator and rotor phases change continuously with the change of rotor position r since machine 

model can be described by differential equations with time-varying mutual inductances, but such a 

model is very complex. More conveniently, a three phase machine can be represented by an 

equivalent two-phase machine making the analysis simpler, but the problem of time varying 

parameters is a subject of concern. 

 

Some of the reference frame transformations proposed in this approach are as follows. 

 

-R.H.Park, in the 1920s formulated a change of variables, which, in effect, replaced the variables 

(Voltages, currents, and flux linkages) associated with the stator windings of a synchronous 

machine with variables associated with fictitious windings rotating with the rotor at synchronous 

speed. He transformed the stator variables to a synchronously rotating reference frame fixed in the 

rotor. All the time-varying inductances that occur due to an electric circuit in relative motion, and 

electric circuits with varying magnetic reluctances were eliminated. 
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-By transforming the rotor variables to variables associated with fictitious stationary windings, time 

varying inductances in the voltage equation of an induction machine due to electric circuits in 

relative motion can be eliminated. This was proposed by H.C. Stanley in the late 1930s. 

 

-G. Kron proposed a change of variables which eliminated the time-varying inductances of a 

symmetrical induction machine by transforming both the stator variables and the rotor variables to a 

reference frame rotating in synchronism with the rotating magnetic field. This reference frame is 

commonly referred to as the synchronously rotating reference frame. 

 

-Transformation of stator variables to a rotating reference frame that is fixed in the rotor was 

proposed by D. S. Brereton. This is essentially Park’s transformation applied to induction machines. 

 

In 1965, Krause and Thomas have shown that time-varying inductances can be eliminated by 

referring the stator and rotor variables to a common reference frame which may rotate at any speed 

(arbitrary reference frame). 

In this chapter, first transformation from a three phase system to a 2-phase stationary, ds-qs 

reference frame is reviewed. Then transformation from 2-phase stationary, ds-qs to synchronously 

rotating de-qe reference frame is reviewed. Power balance during reference frame transformations is 

carefully studied. Then the equations governing induction machine dynamics in  the stationary 

reference frame and corresponding d-axis and q-axis equivalent circuits are presented. After that, 

the induction machine model in synchronously rotating reference and corresponding d-axis and q-

axis equivalent circuits are discussed. 

2.2  Reference Frame Transformations 

The three axes are representing the real three phase supply system. However, the two axes 

are fictitious axes representing two fictitious phases perpendicular to each other. The transformation 

of three-axes to two-axes can be done in such a way that the two-axes are in a stationary reference 

frame, or in rotating reference frame. If the reference frame is rotating at the same angular speed as 

the excitation frequency, when the variables are transformed into this rotating reference frame, they 

will appear as constant dc values instead of time varying quantities.   
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2.2.1 Transformation into a stationary reference frame 

 

It is a transformation between three-phase a-b-c  stationary reference frame to two-phase ds-

qs  stationary reference frame. In the  Fig. 3.1, f can represent voltage, current, or  flux linkage. The 

superscript s indicates the variables, parameters, and transformation associated with stationary 

circuits.  

 

 

Fig. 2.1 Three-axes and two-axes in the stationary reference frame 

A change of variables which formulates a transformation of the three-phase variables of 

stationary circuit elements to a ds-qs reference frame can be expressed as : 
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In equation (2.1) sf0 is a variable that takes care of the unbalance in the variables of the 

three-axes system and is the same as the zero-sequence component in three phase system. It is 

important to note that the zero-sequence variables are not associated with the reference frame. 

Instead, the zero-sequence variables are related arithmetically to the abc variables, independent of 

θ. 

 

s
af , s

bf ,and s
cf are instantaneous quantities, which maybe any function of time. Portraying the 

transformation, as shown in Fig. 2.1, is particularly convenient when applying it to ac machines 

where the direction of s
af , s

bf ,and s
cf may also be thought of as the direction of the magnetic axes 

of the stator windings. They can also represent space vectors or the axes of distribution of the phase 

windings. The direction of s
qf  and s

df can be considered as the direction of the magnetic axes of 

the new windings created by the change of variables. 

 

The inverse of equation (2.1), which can be derived directly from the relationship givenin Fig. 2.1, 

is 
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In Fig. 2.1, if the q-axis is aligned with the a-axis, i.e. 0  , equation (2.1) will be written as: 
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and equation (2.2) will be simplified to: 
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In equations (2.3) and (2.4) the magnitude of the phase quantities, voltages and currents, in 

the three ( )abc  axes and two ( )dq axes remain the same. This transformation is based on the 

assumption that the number of turns of the windings in each phase of the three axes and the two 

axes are the same. Here the advantage is the peak values of phase voltages and phase currents 

before and after transformation remain the same.  

 

2.2.2 Transformation into a rotating reference frame 

 

The rotating reference frame can have any speed of rotation depending on the choice of the 

user. Selecting the excitation angular frequency as the speed of the rotating reference frame gives 

the advantage that the transformed variables, appear as constant (DC) values. In other words, an 

observer moving along at that same speed will see the space vector as a constant spatial 

distribution, unlike the time-varying values in the stationary abc  axes. 

 

In the previous section the transformation from a-b-c  axes to a stationary ds-qs  axes is 

given. Here the stationary ds-qs axes will be transformed into a rotating de-qe reference frame, which 

is rotating at e , excitation frequency. 

 

Fig. 2.2 shows the abc to rotating de-qe transformation in two steps, i.e, first transforming to 

stationary ds-qs  axes and then to rotating de-qe  axes. 
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(a)                                                                      (b) 

Fig. 2.2 Steps of the abc to rotating dq axes transformation (a) abc to stationary dq axes b) 

stationary dq to rotating dq axes 

 

Using geometry, it can be shown that the relation between the stationary s sd q  axes and rotating 

e ed q  axes is expressed as: 

 

                                                          

e
q
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f
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                                    (2.5) 

 

The angle θ is the angle between the q-axis of the rotating and stationary reference frames. 

Θ is a function of the angular speed, ω(t), of the rotating e ed q axes and the initial value, that is 

 

                                                           0
( ) ( ) (0)

t
t t dt                             (2.6) 

 

If the angular speed of the rotating reference frame is the same as the excitation frequency 

then the transformed variables in the rotating reference frame will appear constant (DC). 
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2.3 Power Balance in Reference Frame Transformation 

 

Assume that the three phase supply voltages are given by 

 

                                                           cosa m ev V t                                                                      (2.7)    

                                                           cos( 2 3)b m ev V t                          (2.8) 

                                                           cos( 2 3)c m ev V t                                     (2.9) 

Then applying above transformations; s sd q reference frame voltages are 

                                                          
coss

q a m ev v V t                         (2.10) 

and 

                                                              sins
d m ev V t                                    (2.11) 

 

 

Fig. 2.3 Voltage vector and its component in dq axes 

 

For a direct on line measurement s
dv  and s

qv will be calculated from the measured instantaneous 

values of av , bv and cv . For a balanced three-phase supply the magnitude of the peak phase voltage 

can be calculated as: 

 

                                                dqV  2 2s s
d qv v  2 2 2[(sin ) (cos ) ]m e eV t t   

                                                                        dq mV V                                     (2.12) 

Then the rms voltage will be 
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                                                                   2
dq

rms

V
V                        (2.13) 

Similarly, the three phase currents flowing in the system may be described as 

 

                                                             cos( )a m ei I t                                      (2.14) 

                                                             cos( 2 3 )b m ei I t                           (2.15) 

                                                             cos( 2 3 )c m ei I t                           (2.16)

       

Through the 3-phase to 2-phase ds-qs transformation:    

                                                           
cos( )s

q m ei I t  
                       (2.17)

 

                                                           sin( )s
d m ei I t                            (2.18) 

 

The magnitude of dqI can be calculated as 

                                                            
2 2s s

dq d qI i i   

                                                           
2 2 2[(sin( )) (cos( )) ]dq m e eI I t t        

                                                           dq mI I                                 (2.19) 

 

The currents in the stationary ds-qs  axes can be shown as in Fig. 2.4. 

 

Fig. 2.4 Current vector and its component in stationary dq axes 
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Since the magnitude of dqI is equal to mI and is the same as the peak magnitude of phase 

current in the abc-axes, the rms current can be evaluated from the instantaneous values in the ds-qs 

axes. Therefore using Equation (2.19) 

                                                                      2
dq

rms

I
I                                     (2.20) 

 

In three-phase three-wire system, only two phase currents ( ai and bi )are required to be measured. 

The third one ( ci ) can be derived from the fact that the three-phase currents add to a total of zero. 

Taking one sample of instantaneous values of currents flowing in any two phases of a three-phase 

system, the rms and the peak currents of the three-phase system can be obtained instantaneously. 

 

The transformation from three axes to two axes is done based on the concept that the peak 

values of the voltages and currents in three axes as well as two axes are the same. The total power 

in the system under consideration should remain the same regardless of the choice of reference 

frame. 

 

Since the voltages and currents in the three axes have the same peak values as those in the 

two axes, the power in the two-axes system should be multiplied by a factor 3/2 so that the 

transformation will keep the value of total power the same. 

 

Fig. 2.5 shows the voltage and current vectors with their components in the stationary dq-

axes. Once the components of the currents and voltages are calculated in the d and q axes then 

power is evaluated as 

 

                                                                

3
( )

2
s s s s
d d q qP i v i v                        (2.21a) 

 

If the currents and voltages are substituted in equation (2.21a) with the expressions given in 

the voltage and current measurement sections then the classical power expression becomes 
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3
cos

2 m mP I V                        (2.21b) 

 

Fig. 2.5 Voltage and current vectors with their components in the stationary dq-axes 

 

The two axes can be visualized as a machine having two windings. The power in the two 

axes system is related to that of the three axes system by the factor 3/2. Therefore, with the currents 

and voltages in the dq-axes, calculated from the instantaneous values of two-phase currents and 

two-phase voltages, the value of the active power (average power) can be computed 

instantaneously. 

 

 

2.4 Induction Machine Model in Stationary d-q Reference Frame 

 

Using the d-q representation, the induction machine can be modeled as shown in Fig.2.6. 

This representation is a general model based on the assumption that the voltage can be applied to 

both the stator and/or rotor terminals. In squirrel cage induction machines voltage is supplied only 

to the stator terminals. In general, power can be supplied to the induction machine (induction 

motor) or power can be extracted from the induction machine (induction generator). It all depends 

on the precise operation of the induction machine. When the induction machine operating as a 
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generator is connected to the grid and driven by an external prime mover, then the rotor should be 

driven above synchronous speed. 

 

When the machine is operated as a motor, power flows from the stator to the rotor, crossing 

the air gap. However, in the generating mode of operation, power flows from the rotor to the stator. 

Only these two modes of operation are dealt with in this investigation. The braking region, where 

the rotor rotates opposite to the direction of the rotating magnetic field, is not dealt with here. 

 

The advantage of the d q  axes model is that it is powerful for analyzing the transient and 

steady state conditions, giving the complete solution of any dynamics. The general equations for the 

d q representation of an induction machine, in the stationary reference frame, are given as : 
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         (2.22) 

 

 

where sR - stator winding resistance,   

rR - rotor winding resistance,   

mL - magnetizing inductance, H 

sL - stator leakage inductance )( lsL  + magnetizing inductance )( mL , H 

rL - rotor leakage inductance )( lrL + magnetizing inductance )( mL  , H 

r - electrical rotor angular speed in rad/sec and dtdp  , the differential operator. 

 

Equation (2.22) can be solved to form a matrix of first order differential equation as follows: 

 

                                                       
qss piL qrm piL qssqs iRv            (2.23) 

                                                       dss piL drm piL dssds iRv            (2.24) 
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qsm piL qrr piL dsmrqr iLv  drrrqrr iLiR           (2.25) 

                                               drrdsm piLpiL  drrqrrrqsmrdr iRiLiLv            (2.26) 

 

 

 

 

 

Fig. 2.6  d-q representation of induction machine 

 

Equations (2.23) and (2.25) are solved simultaneously to give qspi and qrpi . Similarly equations (2.24) 

and (2.26) are solved to give dspi and drpi .  

Multiplying Lr  with equation (2.23) and Lm  with equation (2.25) and solving for piqs, we have 

 

)(
1 2

2 drrrmqrrmdsrmqsrsqrmqsr

mrs

qs iLLiRLiLiLRvLvL
LLL

pi  



(a) 

 

And multiplying Lm with equation (2.23) and Ls with equation (2.25) and solving for piqr, we have 
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(
1

2
mrs

qr
LLL

pi


 )drrrsqrrsdsmrsqssmqrsqsm iLLiRLiLLiRLvLvL  
   (b) 

 

Next, equation (2.24) and equation (2.26) will be solved simultaneously as follows, 

 

Multiplying Lr  with equation (2.24) and Lm  with equation (2.26) and solving for pids, we have 

 

(
1

2
mrs

ds
LLL

pi


 )2
drrmqrrrmdssrqsrmdrmdsr iRLiLLiRLiLvLvL  

       (c) 

 

And multiplying Lm with equation (2.24) and Ls with equation (2.26) and solving for pidr, we have 

 

(
1

2
mrs

dr
LLL

pi


 )drrsqrrrsdssmqsmrsdrsdsm iRLiLLiRLiLLvLvL  
    (d) 

 

Rewriting equations (a), (b), (c) and (d) in a matrix form by taking L=LsLr – Lm
2,  

the first order differential equations can be written in a matrix form  as follows:
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 (2.27)        

            
 

where 2
s r mL L L L  .

 
Using the matrix shown in equation (2.22), the d q  representation given in Fig. 2.6 can be 

redrawn in detail, in a stationary reference frame, with separate direct and quadrature equivalent 

circuits as shown in Fig. 2.7. 
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(a) 

 

(b) 

 

Fig. 2.7 Detailed d-q representation of induction machine in stationary reference frame  

(a) d-axis reference frame    (b) q-axis reference frame 

 

 

From the stator side (for simplicity the superscript “s” which indicates stationary reference frame is 

not included with the currents, voltages and flux linkages) 

 

 

                                                                 ds  s ds m drL i L i                        (2.28) 

 

                                                                 qs  s qs m qrL i L i                       (2.29) 

qrr λω
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dmi
dsi dri
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qmi
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                                                                 dsv  ds
s ds

d
R i

dt


                       (2.30) 

                                                                qsv  qs
s qs

d
R i

dt


                       (2.31) 

 

From the rotor side 

 

                                                                 dr  m ds r drL i L i                       (2.32) 

                                                                 qr  m qs r qrL i L i                       (2.33) 

                                                                drv  dr
r dr r qr

d
R i

dt

                         (2.34) 

                                                                 qrv  qr
r qr r dr

d
R i

dt


                        (2.35) 

 

For the air gap flux linkage 

                                                      drmdsmdmmdm iLiLiL                                 (2.36)

                                qrmqsmqmmqm iLiLiL                                           (2.37) 

                                                               

 

The stator electrical input power to the induction machine during motoring operation or the stator 

electrical output power in generating mode is given by 

                                                                

3
( )

2e ds ds qs qsP i v i v                         (2.38) 

The electromagnetic torque eT generated by the induction machine is given by [6] 

                                                                 

3

2e P m rT P I 
 

                       (2.39) 

 

where m


= air gap flux linkage 

rI


=  rotor current space vector 

PP =  number of pole pairs of the induction machine. 



35 
 

 

Solving the cross product in equation (2.39) gives 

                                                                 

3
( )

2e P m qs dr ds qrT P L i i i i                       (2.40) 

 

The mechanical equation in the motoring region is 

                                                                

m
e m m

d
T J D T

dt

                         (2.41) 

 

and in the generating region it is given as 

                                                             

m
m e

d
T J D T

dt

                         (2.42) 

 

where   mT = mechanical torque in the shaft, Nm 

eT = electromagnetic torque, Nm 

m =  mechanical shaft speed )( Prm P   rad/sec 

D = friction coefficient, Nm/rad/sec 

J = Inertia, Kg-m2. 

 

The mechanical power generated during motoring or the mechanical power required to drive the 

induction generator is given by 

 

                                                                     m e mP T                        (2.43) 

 

2.5  Induction Machine Model in Rotating d-q Reference Frame 

 

The transformation of currents and voltages to a rotating reference frame gives a 

characteristic from a different perspective. The speed of the rotating reference frame can have any 

value. If the reference frame is rotating exactly at the excitation frequency then the difference 
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between the speed of the rotating reference frame, e , and the rotor speed, r , gives the slip 

frequency sl . 

Assuming the induction machine is only supplied from the stator side the equivalent circuit 

in the excitation reference frame of the d and q axes is shown in Fig. 2.8. 

 

 

(a) 

 

(b) 

Fig. 2.8 d-q representation of induction machine in the excitation ( e ) reference frame 

(a) d-axis reference frame   (b)  q-axis reference frame   

 

Unlike the stationary reference frame, in the excitation or synchronous reference frame the 

reference frame is rotating at the same speed as the excitation frequency or the synchronous speed. 

Since the voltages and currents have the excitation frequency they will appear as DC values. 
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2.6 Conclusion 

 

The three-axes to two-axes transformation and vice-versa are discussed in this chapter. It is 

shown that the three-axes to two-axes transformation simplifies all the computations including the 

calculation of rms current, rms voltage, and  active power in a three-phase system. The modeling of 

an induction machine using the d-q or dynamic model is explained in detail. The voltage, current 

and flux linkage in the reference frame and their phase relationships in the motoring region and 

generating region are presented. 
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CHAPTER 3 

 

 

TRANSIENT ANALYSIS OF A SELF EXCITED 

INDUCTION GENERATOR 

 

 

3.1 Introduction 

In the previous chapter, reference frame transformations and induction machine model in 2-

axis stationary, ds-qs reference frame and 2-axis synchronously rotating de-qe reference frame were 

discussed. In this chapter, detailed study of self excitation process in induction generator is studied. 

In section 3.2, self excitation process in R-L-C series circuit is described with reference to the 

characteristic roots. The process of terminal voltage build-up in self excited induction generator 

(SEIG) is also discussed in detail in this section. d-q axis model of SEIG is presented in section 3.3. 

Mathematical conditions for self excitation in induction generator is derived in section 3.4. In 

section 3.5, minimum capacitance and speed requirements for self excitation are derived. Dynamic 

d-q axis model of SEIG with R-L load is discussed in section 3.6. Finally detailed study with 

simulation results and discussions are presented in section 3.7. 

 

3.2 Process of self-excitation  

 

Whether it is a wound rotor induction machine or a squirrel cage induction machine voltage 

will develop across the capacitors connected to the stator terminals when the rotor of the induction 

machine is driven by an external prime mover. The voltage developed across the capacitors is the 

terminal voltage of the self-excited induction generator. 
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3.2.1 RLC circuit characteristics 

 

The behavior and analysis of the self-excited induction generator is similar to an RLC

circuit. Since the equations in the induction generator are complex, the principle of self excitation 

process will be explained first using a simple RLC circuit. For analysis purpose the RLC circuit 

given in Fig. 3.1 will be considered. The plus sign at the capacitor is the polarity for the initial 

capacitor voltage. 

 

Fig. 3.1 RLC  circuit 

 

 

Energy may be stored in an inductor or in a capacitor. A resistor is incapable of energy 

storage. Switch S in Fig. 3.1 is closed at 0t . In general the two initial conditions at  0t  are: 

current might have been flowing in the inductor (provided that the inductor was part of another 

circuit, not shown in Fig. 3.1, before  0t ) or initial voltage exists in the capacitor. If all initial 

conditions are zero then there will not be any transient or steady state current flow. 

 

In Fig. 3.1 assume that at the instant the switch is closed, the current is zero and the voltage across 

the capacitor is 0cc Vv  . When the switch is closed, the voltage equation in the RLC circuit is 

given by 

 

                                                     
 idt

Cdt

di
LRi

1
 coV  0                                   (3.1) 

coV

)(ti
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Introducing the p  operator for  dtd equation (3.1) can be rewritten as 

                                                                










pC
pLR

1
)(ti  coV                        (3.2) 

Then )(ti  can be expressed as 

                                                           )(ti 
CpRLp

pVco

12 
                        (3.3) 

If the denominator of  equation (3.3) is equated to zero, then 

 

                                                          CpRLp 12   0                         (3.4) 

Equation (3.4) is called the characteristic equation because it contains the information about the 

behavior  of the resulting current. The roots of the characteristic equation are 

 

                                  1p 
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2
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R 1
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and 2p 
L
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LCL

R 1

2

2

              

(3.5) 

 

Using the roots given in Equation (3.5) the complete solution for the current expression in Equation 

(3.3) is 

 

                                                                    )(ti  tptp eAeA 21
21                         (3.6) 

 

where 1A and 2A are determined from the initial conditions and circuit parameters, and 1p and 2p  are 

determined from the values of the circuit parameters R , L , and C . If the voltage across the 

capacitor )(tvc   is the output voltage of interest then coc Vidt
C

tv  
1

)( . 

In equation (3.5), if 
LCL

R 1

2

2







  then the roots 1p and 2p of equation (3.6) are complex 

quantities which can be expressed as  jp 1  and  jp 2 . Relating these expressions with 

equation (3.5), the real part of the roots,  , is always negative provided the resistance R is positive. 
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As a result with positive R there will be a decaying oscillation.  represents the rate at which the 

transient decays and  , the imaginary part of the roots, represents the frequency of oscillation. In 

passive circuits, like the RLC  circuit mentioned above, all transient solutions have negative  , 

meaning that the transient is reducing in magnitude with the progression of  time and finally decays 

to zero. However, if  is positive, this implies that the transient is growing with the progression of 

time, and in theory would increase to infinity.  can be positive only if the resistance R is negative. 

Negative resistance implies a power source whereas positive resistance implies a power sink. Fig. 

3.2 shows the current in the RLC circuit when L 0.1H, C 100µF, 0cV -10V  and the 

magnitude of resistance R is 1.2Ω with positive value in Fig. 3.2(a) and negative value in Fig. 

3.2(b). Close to 0t the magnitude of the instantaneous current flowing in the RLC circuit in both 

cases is the same. 

 

 

(a)                                                                          (b) 

Fig. 3.2 Current in series RLC  circuit (a) for R=1.2Ω and (b) for  R=-1.2Ω 

 

Transients which grow in magnitude as shown in Fig. 3.2(b), with a positive value of  , are 

very rare. There is no variation in any of the values of R , L  or  C  and as a result the current keeps 

on growing. Any current flowing in a circuit dissipates power in the circuit resistance. If there is an 

increasing current that dissipates increasing power, there  must be some energy source available to 
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supply the increasing power. This is in fact the case in the self-excited induction generator. The 

example  above of a very rare transient is characteristic of a SEIG where the power source is a 

prime mover. 

 

3.2.2  Buildup of terminal voltage in SEIG 

 

The process of voltage build-up is explained below: 

 

For any speed of the rotor, the residual flux generates a small synchronous emf Er. The steady state 

magnitude of the current through the LmC circuit is such that the voltage difference between the 

synchronous saturation curve  (voltage across across Lm) and the capacitor load line , at this value 

of the stator current equals Er. At this stage, the slip ‘s’ being zero for no speed difference between 

the rotor and the air-gap flux, no induced rotor  current flows and the machine operates as a 

synchronous generator. 

  

If   Er is less than  Er1, the machine operates in the stable steady state in the synchronous 

mode over the region oa. An increase in I in this region demands more synchronous voltage than 

the residual emf Er. Consequently, the increased I is not sustained and the current comes back to its 

original value. By the same reasoning, if  Er is between  Er1 and Er2, a stable synchronous mode of 

operation is observed over the region cd. For Er≥ Er2,, stable synchronous operation takes place 

from the point f onward. The regions ac and df are unstable, where, for the residual emf equal to 

Er1, or Er2, the machine terminal voltage rises owing to synchronous self excitation, before entering 

the next stable region. In the stable regions, the machine operates as a self-excited synchronous 

generator. 
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Fig. 3.3 Modified circuit model with speed emf in the rotor circuit 

 

 

 

Fig.3.4  Building up of voltage in a self excited induction generator (a) capacitor load line and the 

saturation curve, (b) the difference between them 

 

The possibility of a change over from synchronous generator operation to the self excited 

asynchronous generator mode occurs in the region where the saturation curve emf is greater than 

the capacitor voltage. While the machine operates in the synchronous mode, any disturbance 

initiates an oscillation in the LC resonance circuit formed by the machine terminal capacitance and 

the magnetizing inductance at the natural angular frequency  CLω mn 1 . Only at the points b and 
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e does nω  equal the synchronous frequency 1ω . Between the points b and e, the synchronous 

inductive reactance is greater than the capacitive reactance. Hence the natural frequency wn of 

oscillation is lower than the rotational (i.e., *synchronous) frequency 1ω . The air-gap flux 

associated with the oscillating current rotates at a speed lower than that of the rotor, implying a 

negative value of the slip. The corresponding rotational emf E(1-s), which exceeds E, drives a 

current into the stator circuit, building up the terminal voltage. 

 

The machine now enters the asynchronous generating mode. An unstable oscillatory 

condition between the capacitor and the magnetizing reactance still persists owing to a continuous 

fall in the effective value of the magnetizing reactance as the terminal voltage rises. The natural 

frequency of oscillation progressively increases, and sustained oscillation is reached when the 

capacitive reactance is close to, but still less than, the magnetizing reactance near the point e. The 

small negative slip compensates the losses in the stator circuit. With a resistive load connected 

across the capacitor, the circuit must be under damped to initiate the asynchronous generating 

mode.  

 

For an SEIG with constant speed, the speed of the rotating magnetic field lags behind the 

rotor speed. With the increase in the load of the SEIG, the magnitude of the negative slip increases. 

In this case, as the rotor speed is the input, the increase in slip is due to the decrease in the speed of 

the rotating magnetic field. Since generated voltage and frequency are proportional to the speed of 

the rotating magnetic field, a decrease in the speed of rotating magnetic field will inevitably 

decreases the generated voltage and frequency [40]. 

 

3.3  d-q  axis model of Self Excited Induction Generator 

 

Basically the model of a SEIG is similar to an induction motor. The only difference is that 

the self-excited induction generator has capacitors connected across the stator terminals for 

excitation. The conventional steady state per-phase equivalent circuit representation of an induction 

machine is convenient to use for steady state analysis. However, the d-q representation is used to 

model the self-excited induction generator under dynamic conditions. The d-q representation of a 
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self-excited induction generator with capacitors connected at the terminals of the stator windings 

and without any electrical input from the rotor side is shown in Fig. 3.5 below. 

 

The representation shown in Fig. 3.5 can be redrawn in detail, in a stationary stator 

reference frame, with direct and quadrature circuits separately represented as given in Fig. 3.6. The 

capacitance is labeled C in Fig. 3.6. 

 

The capacitor voltages in Fig. 3.6 can be represented as 

                                                                cqV  dti
C qs
1

 0cqV                                   (3.7) 

                                                               cdV  dti
C ds
1

 0cdV                        (3.8) 

Where  00 |  tcqcq VV  and 00 |  tcdcd VV are the initial voltage along the q-axis and d-axis capacitors, 

respectively. 

 

With mlss LLL  and mlrr LLL  the rotor flux linkage is given by 

                                                               qrλ  0qrqrrqsm λiLiL                         (3.9) 

 

                                                               drλ  0drdrrdsm λiLiL                                  (3.10) 

 

Where  00 |  tqrqr   and 00 |  tdrdr   are the remnant or residual rotor flux linkages along the q-

axis and d-axis, respectively. 

Then, with an electrical rotor speed of r , the rotational voltage in the rotor circuit along the q-axis 

is 

drr λω  rω  drrdsm iLiL   0drr λω  

                                                      drr λω  rω  drrdsm iLiL   qrK                      (3.11) 
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                    Fig. 3.5  d-q representation  of self excited induction generator 

 

(a) 

 

(b) 

 

Fig. 3.6  Detailed d-q model of SEIG in stationary reference frame  

(a) q-axis reference frame  (b) d-axis reference frame 
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and the rotational voltage in the d axis of the rotor circuit is 

 

qrr λω  rω  qrrqsm iLiL   0qrr λω  

                                                       qrr λω  rω  qrrqsm iLiL   drK                                 (3.12) 

 

where 0qrrdrK   and 0drrqrK   are constants, which represent the initial induced voltages 

along the d-axis and q-axis, respectively. The constants drK and qrK are due to the remnant or 

residual magnetic flux in the core, and r is the equivalent electrical rotor speed in radians/second. 

That is, 

 

                          Electrical speed   number of pole pairs mechanical speed 

 

The matrix equation for the d-q model of a self-excited induction generator, in the stationary 

stator reference frame, using the SEIG model given in Fig. 3.6 and from equations (3.11) and 

(3.12), is given as: 
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       (3.13) 

 

               Z                                                 IV                 VV 

 

Where Z  is the impedance matrix, IVis the stator and rotor currents vector and VVis the voltage 

vector due to initial conditions. 

 

3.4 Conditions for Self Excitation in Induction Generator 

 

Basically an induction machine is modeled using RLC circuit parameters. Self excitation in 

an induction generator is the growth of current and the associated increase in the voltage across the 
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capacitor without an external excitation system. As in Fig. 3.2(b), transients that grow in magnitude 

(self-excitation), with a positive real part of the root, can only happen if there is an external energy 

source that is able to supply all the power losses associated with the increasing current. The self-

excited induction generator is able to have a growing transient because of the external mechanical 

energy source that is driving the induction generator. The process of terminal voltage build up 

continues in the manner described until the iron circuit saturates and the voltage therefore stabilizes. 

In terms of the transient solution considered above, the effect of this saturation is to modify the 

magnetization inductance mL , such that the real part of the roots becomes zero; the transient then 

neither increases nor decreases and becomes a steady-state quantity giving a continuous self-

excitation. 

 

The energy source, referred to above, which is necessary for this type of unusual transient to 

occur, is provided by the kinetic energy (KE) of the rotor. If the rotor is driven by an external prime 

mover, the KE of the rotor is maintained and self-excitation and energy transfer continues 

permanently. The initiation of the process of self excitation is therefore a transient phenomenon and 

is better understood if analyzed using instantaneous values of currents and voltages. 

 

 

Unlike the simple RLC circuit that has been discussed, the roots for the self-excited 

induction generator which can be derived from equation (3.13) are dependent on the induction 

machine parameters, the capacitor connected at the stator terminals of the induction generator and 

the rotor speed when coupled to an external prime mover. Determination of the roots of the 

characteristic equation of the currents in the induction generator is the key to finding out whether 

the induction generator will self-excite or not. 

 

Equation (3.13) can be re written as 
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3.4.1 Direct matrix inversion 

 

The equation (3.14) representing a self-excited induction generator can be solved by 

applying Cramer’s rule or by finding the inverse of the impedance matrix, to determine the current 

expression. 

 

Cramer’s rule [1] is a mathematical tool for finding one of the variables in an unknown 

vector in a matrix equation based on the calculation of determinants. Applying Cramer’s rule to 

equation (3.14) results in 
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                   (3.15) 

 

 

Since the characteristic equation of the d-axis stator current is the determinant of the 

denominator, only the denominator part of dsi will be expanded. The determinant of the numerator 

will be represented by a variable U , which is dependent on the machine parameters, initial 

conditions, capacitance and electrical rotor speed. U affects only the magnitude of the current dsi

and does not contain any information on the behavior of the resulting current. The determinants in 

equation (3.15) can be evaluated [30] to give 
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                   (3.16) 

where 

 

6A  2C  4222 2 mmrsrs LLLLLL   
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5A  22C  2222
mrsrsrmsrrss LRLRLLLRLLLR   

4A  2C  22422222222 224)( mrsrmrmsrsrsrsrrrrs LRRωLωLLLLRRLRLRLωL   

 C2  22
mrrs LLLL   

3A  2     222222222 2 mrrsrrsrsssrrrsmrrsrs LRRLLLRCRLRRRLωRLLωRLLC   

2A  CLs2 )( 222
rrr RLω   22CRs )( 222

rrr RLω   222 rmr ωCLL  2
rL  rsr CRRL4  

1A  CRs2 )( 222
rrr RLω   rr LR2  

0A  )( 222
rrr RLω                  (3.17) 

 

Analyzing the denominator of equation (3.16) is sufficient to determine whether initiation of 

self-excitation will occur. To determine if there is an onset of self excitation, or not, the 

denominator of equation (3.16) is set to zero. That is 

 

                                          01
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3
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4
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6 ApApApApApApA   0                    (3.18) 

 

Equation (3.18) is a sixth order characteristic equation and it has six distinct roots which are first 

order complex roots in the form of 

 

)( 11 ωjσp  )( 11 ωjσp  )( 22 ωjσp  )( 22 ωjσp  )( 33 ωjσp  )( 33 ωjσp   0  

                  (3.19) 

 

If any of the roots has a positive real part, then at that given specific operating point there will be 

self-excitation. 

 

The current and voltage will grow until the magnetizing inductance saturates and makes the 

real part of the roots zero, which shows that there is a continuous oscillation (Alternating Current 

and Voltage) as long as the prime mover is driving the induction generator. The transient and steady 

state solution due to each of the roots can be obtained by using partial fraction expansion. 
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3.5 Minimum Speed and Capacitance for Self Excitation 

 

The induction machine used as the SEIG in this investigation is a three-phase squirrel cage 

induction machine  with specification: 4 pole, 415V delta connected, 14.6A, 10hp, 50Hz. The d-q 

model, shown in Fig. 3.6 is used because it provides the complete solution, transient and steady 

state, of the self-excitation process.  
 

When the three capacitors are connected in star the voltage rating of each capacitor is equal 

to the rated phase voltage. However, if the capacitors are connected in delta the voltage rating of 

each capacitor should be equal to the line-to-line voltage. In delta connected capacitors, even 

though the voltage rating of each capacitor is higher than the rating of the capacitors in star 

connection by a factor of 3 , the magnitude of the capacitance is lower by a factor 3, i.e. 1/3 of the 

capacitance in the star connection. 

 

When in the induction machine equivalent circuit, as shown in Fig. 3.6, with the switch S 

closed, and the machine is driven by a prime mover, voltage will start to develop at a corresponding 

minimum speed. The minimum speed for the onset of self-excitation can be obtained by solving the 

roots of the 6th order polynomial equation given in equation (3.18)  with different resistive loads 

and then searching if there is a positive real part in the roots. The minimum capacitance required for 

a given rotor speed of the induction generator can be found by fixing the rotor speed and then 

increasing the value of the capacitance until one of the real parts of the roots changes from negative 

to positive, passing through zero. The value of capacitance that makes the real part of one of the 

complex roots greater than zero is the minimum value of capacitance required for self excitation. To 

have a smooth plot of the minimum rotor speed versus minimum capacitance requirement, the 

capacitance was incremented by a small value. The detail of this procedure, theoretical 

determination of the minimum speed and minimum capacitance for a fixed speed by incrementing 

the capacitance, is given in the flow chart of Fig. 3.7. The simulated result is shown in Fig.3.8. 

 

Another way of finding the minimum rotor speed and corresponding minimum capacitance 

required for self-excitation is first to set the capacitance at a given value and then increase the rotor 
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speed until one of the real parts of the complex roots becomes positive. This is a good way to find 

the minimum capacitance and its corresponding minimum rotor speed in the experimental setup. 

 

 

Fig. 3.7 Flow chart to determine the minimum speed and minimum capacitance for SEIG at no load 

rωc

rω

rω

0rω
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There are two important rotor speeds; the first is the point at which self-excitation occurs 

and the second is where self-excitation is lost. For a given capacitance value the speed of the test 

machine was increased until the SEIG started to generate voltage, this is the normal way of 

achieving self-excitation. The capacitance value and the rotor speed at which the self-excitation 

started were recorded. For a particular capacitance value, the minimum rotor speed for self 

excitation, determined by increasing the rotor speed from zero, is greater than the minimum rotor 

speed obtained by decreasing the rotor speed until the SEIG looses its self-excitation.  

 

The principle of finding the minimum capacitance and the minimum rotor speed for self-

excitation at no load can be approximated by neglecting the stator winding resistance and stator 

leakage inductance so that the capacitive reactance and the magnetizing reactance will be equal. 

Since the induction generator starts without load the rotor speed is almost the same as the 

synchronous speed of the induction machine. The approximate minimum capacitance required for 

self-excitation is calculated in [30] using 

                                                                     mr Lω
C

2min

1
                       (3.20) 

where rω = the electrical rotor speed, in rad/s 

mL = the value of magnetizing inductance close to zero voltage, in H. 

 

Fig.3.8  Minimum excitation capacitance required for voltage build up of the SEIG under stand-

alone mode with varied resistive load 
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In no load motoring or generating operation the synchronous speed is almost equal to the 

electrical rotor speed. The SEIG needs to be started at no load. Hence it can be generalized that the 

capacitance required for the onset of self-excitation in the SEIG rotating at a rotor speed of r , is 

almost equal to the capacitance required to have a unity power factor in a motoring application, as 

the induction motor operates at no load and with an angular supply frequency of r . 

 

3.6 Simulation of self-excited induction generator with R-L Load 

 

In conducting an experimental analysis of a self-excited induction generator, it is difficult to 

get continuous values of a capacitance and determine the corresponding speed. Mostly the 

components are in discreet values. It is also hard to see the condition of the self-excitation beyond 

the rated values of the machine as it can damage the machine. Simulation is extremely useful in 

predicting the condition of self-excitation within the rated values of the machine and/or beyond 

these rated values. 

 

3.6.1 The modeling of self-excitation process 

 

To find the dynamics of a self-excited induction generator a mathematical model is 

developed. The solution of this mathematical model gives the complete characteristics comprising 

of transient and steady state for the voltage, current, power and frequency of a self-excited 

induction generator. With the help of this mathematical model the dynamic values of voltage, 

current and power of the SEIG at any given time can be evaluated. The mathematical model takes 

into account the initial conditions in the induction generator, namely the initial voltage in the 

exciting capacitors and the initial induced voltage due to remnant magnetic flux in the magnetic 

core. 

 

3.6.2  The dynamic representation of SEIG with RL  load 

 

The SEIG equivalent circuit shown in Fig. 3.6 can be loaded with a resistive load by 

connecting a resistance RL across the capacitor, C. With resistive load equation (3.13) is modified 

to the following equation 
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The capacitive current is given by  

                                                             LddsCd iii                         (3.22) 

The state equations for direct axis load voltage and quadrature axis voltage  is found from (3.22) as  

C

i
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C
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pv LqqsCq

Lq                                                (3.23) 

 

As the load voltage is given by Ld Ld Ldv Ri Lpi  , the state values of direct and quadrature current 

through the load is given by 
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Stator and rotor voltage equation is given by 

                                                dsv dssiR dss piL Ldv drm piL                     (3.25) 

                                                 
qsv qssiR qss piL Lqv qrm piL                     (3.26) 

                                                 drv dsm piL qsmiLω qrriLω drriR drr piL                    (3.27) 
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qrv  dsmiLω qsm piL qrriR qrr piL drriLω                    (3.28) 

Isolating the differential terms of the direct and quadrature currents of the rotor 
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Assuming the following leakage coefficient: 
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And for direct axis 
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The state space matrix involving an RL load is given by  
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3.7 Simulation Results and Discussion 

 

 To clearly demonstrate the effect of excitation capacitance and speed on voltage build-up 

time and on the magnitude of steady state voltage, a 22 kW induction machine whose parameters 

are given in appendix A is simulated without load as a self excited induction generator. The 

simulation results are shown below. The machine is simulated with three different speeds of 1100 

rpm, 1300 rpm, 1750 rpm and three different excitation capacitance of 48 Fμ , 85 Fμ , 200 Fμ . As 

could be observed from Fig.3.10 and Fig.3.11 when the capacitance is increased from 85 Fμ  to 200

Fμ  at the same rotor speed of 1100 rpm the magnitude of steady state voltage as well as time to 

reach the steady state voltage are both affected. It is shown in Fig.3.9 and Fig.3.12 that keeping the 

excitation capacitance fixed at 48 Fμ  and increasing the speed from 1300 rpm to 1750 rpm, the 
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terminal voltage is reached a stable steady voltage of nearly 1000 volts in less than 3.5 seconds 

from a case of just starting to build-up. 

 

 

Fig.3.9 Voltage build-up for 22Kw machine with 1300 rpm, 48 Fμ  

 

Fig.3.10 Voltage build-up for 22Kw machine with 1100 rpm, 85 Fμ  
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Fig.3.11 Voltage build-up for 22Kw machine with 1100 rpm, 200 Fμ  

 

 

Fig.3.12 Voltage build-up for 22Kw machine with 1750 rpm, 48 Fμ  
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MATLAB code is used to predict the generated voltage for a 10 h.p. three phase squirrel 

cage induction machine with an initial residual voltage of 10 volts rotating at a given speed with 

appropriate capacitors connected at the stator terminals to provide the necessary magnetizing 

current to establish the required flux in the air gap. The simulation results show that self excitation 

can be established and speeds on self-excitation investigated. In fig. 3.13 the voltage reaches to 

steady state after 5 seconds when the machine is run at 1200 rpm with a per phase excitation 

capacitance of 48 Fμ . 

 

 

 

 

Fig.3.13 . (a) Voltage build up at the terminal of the machine for 1200 rpm with a per phase 

excitation capacitance of 48 Fμ and with a RL load of 50  and 5mH, 

 (b) Simultaneous change of  magnetizing inductance with time, when voltage builds-up. 
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Fig.3.14  shows the voltage build up for 1400 rpm with same excitation capacitance and load. 

 

Fig.3.14 (a) Voltage build up at 1400 rpm and 48 Fμ  for RL load of 50  and 5mH, (b) 

Simultaneous change of magnetizing inductance with time, when voltage builds-up. 

Fig.3.15 shows the voltage build up for 1800 rpm with same excitation capacitance and load. 

 

Fig.3.15 (a) Voltage build up at 1800 rpm and 48 Fμ  for RL load of 50  and 5mH, (b) 

Simultaneous change of magnetizing inductance with time, when voltage builds-up. 
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Fig.3.16  (a)Voltage build up at 1800 rpm and 100 Fμ  for RL load of 50  and 5mH, (b) 

Simultaneous change of magnetizing inductance with time, when voltage builds-up. 

 

In Fig.3.16 the voltage builds up is shown when the machine is run at 1800 rpm with the 

same load but with an excitation capacitance of 100 Fμ . Fig.3.17, Fig.3.18 and Fig.3.19 show the 

generated voltage, line current, load current, active power, reactive power and electromagnetic 

torque responses. The load is 50Ω and 5mH. Fig.3.17 is for a speed of 1400rpm with excitation 

capacitance of 48µF. Fig.3.18 is for a speed of 1800 rpm with 48µF excitation capacitance. Fig.3.19 

is for an excitation capacitance of 100µF, at 1800 rpm speed.  
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Fig.3.17   The generated voltage, line current, load current, active power, reactive power and 

electromagnetic current for a rotor speed of 1400 rpm for load of 50Ω and 5mH with C=48µF 
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phase excitation capacitance. Results are shown for a period of 0.2 seconds from 5 seconds to 5.2 
seconds. Load is given at 4.5 seconds.  
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Fig.3.18   The generated voltage, line current, load current, active power, reactive power and 
electromagnetic current for a rotor speed of 1800 rpm for load of 50Ω and 5mH with C=48µF 
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Fig.3.19   The generated voltage, line current, load current, active power, reactive power and 
electromagnetic current for a rotor speed of 1800 rpm for load of 50Ω and 5mH with C=100µF 
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capacitive reactance is close to but slightly less than the magnetizing reactance. It is also shown that 

with constant speed and excitation capacitance, as the load on SEIG increases, speed decreases, So 

generated voltage and frequency decrease. D-Q axis model of SEIG with excitation capacitance is 

derived. Condition for self excitation in SEIG, with reference to characteristic roots of the system is 

derived. Requirements of minimum capacitance and speed for self excitation are derived. A flow 
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chart for computer program on finding minimum speed and minimum capacitance is discussed. 

Graph for minimum excitation capacitance required for voltage build-up of SEIG, as a function of 

load resistance is also plotted. Dynamic D-Q axis model of SEIG with R-L load is derived. Finally 

simulation results on voltage build-up transients are presented and discussed. The waveforms of 

phase voltage, mutual inductance, line current, load current, real power, reactive power and 

electromagnetic torque under different conditions of excitation capacitance and speed are plotted 

and discussed. In the next chapter, closed loop control of SEIG with PWM VSI is presented. 
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CHAPTER 4 

 

CLOSED LOOP CONTROL OF SEIG USING  

PWM-VSI 

 

4.1 Introduction 

 

The main drawback of using induction generators excited by three AC capacitors is their 

inherently poor voltage regulation and uncontrollable frequency of operation. The output voltage of 

a SEIG can be controlled by introducing an appropriate voltage regulating scheme. A number of 

schemes have been suggested for this purpose. However, the variation of the frequency of the SEIG 

with load and speed cannot be regulated by static means. As a result the equipment supplied by the 

three-phase SEIG discussed in Chapter 3 should be frequency insensitive (e.g. heater, water pump, 

lighting, battery charging etc). 

 

The scheme based on switched capacitors finds limited application because it regulates the 

terminal voltage in discrete steps. A saturable reactor scheme of voltage regulation involves a 

potentially large size and weight, due to the necessity of a large saturating inductor. In the 

short/long shunt configuration the series capacitor used causes the problem of resonance while 

supplying power to an inductive load. 

 

 In a three phase capacitor bank excited induction generator, the value of capacitance should be 

varied so that the terminal voltage remains constant at different rotor speeds. It is also shown that 

the value of capacitance is influenced by the load as well as by the load power factor. The problem 

is further aggravated by the uncertainty of the machine to re-excite after a short circuit unless some 

charge is provided. Loss of self-excitation could be disastrous in applications like aircraft power 

supplies. There should be a way to avoid this problem. An isolated induction generator with an 

excitation system provided by a single capacitor on the DC link side of the inverter can re-excite 
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even after a short circuit. Since a battery is required to control the switching of the IGBTs of the 

inverter, the same battery can be used for the initiation of voltage build up using scalar or vector 

control. 

 

4.2 Closed loop Voltage Control of SEIG 

 

In conventional self-excited variable-speed induction generators with a bank of capacitors 

connected across the machine terminals, the value of capacitance required is almost inversely 

proportional to the square of the prime mover speed, requiring large values of capacitance at low 

speeds. Uncontrolled variable voltage and frequency output of a self-excited induction generator is 

its major drawback which can be overcome by a large extent by using a power converter with a 

large DC-side capacitor connected between the induction generator and the power network.  

 

 

 When the excitation comes from the DC link capacitor of the converter, as covered in this 

chapter, then varying the current flowing to the generator by controlling the switching of the IGBTs 

varies the flux in the generator. Due to the switching of the inverter/rectifier the single DC side 

capacitor acts like a three-phase capacitor. The reactive current or the VAR required by the 

induction generator comes from the PWM converter through adjustment of magnitude and phase 

angle of reference sine waves. The dc link capacitor meets the excitation energy required by SEIG. 

 

 In a grid connected induction generator, the grid acts as a stiff voltage source so that the 

generator control structure is similar to a standard drive with sinusoidal front-end converter, i.e. by 

varying the modulation index, the terminal voltage at the induction generator can be varied with the 

rotor speed while the DC bus is maintained at constant voltage. 

 

For an induction generator operating in stand-alone mode there should be a system that 

regulates the output voltage. The output voltage is the DC voltage and the control system, which is 

implemented using scalar control, is required to keep this DC voltage at a constant level. The 

frequency of the generator voltage can vary with speed but the aim is to have constant peak voltage 

and as a result to have constant DC voltage. Once a constant DC voltage is achieved, a DC load can 
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use it directly. If required an inverter can be used to produce a constant voltage and frequency AC 

output. The electrical and mechanical connections for an isolated induction generator driven by a 

wind turbine are shown in Fig. 4.1. To simplify the diagram the control system is not included in 

Fig. 4.1. 

 

In Fig. 4.1 the turbine rotor speed will be varied depending on the wind speed. The system is 

loaded by a DC load connected at the terminals of the DC capacitor or an AC load can be connected 

via a second inverter that adjusts the frequency and peak voltage of the generated AC power supply. 

Induction generator is excited from a single DC capacitor by using an inverter arrangement. The 

voltage build up process is started from a small voltage in a charged DC capacitor or from a battery. 

During the voltage build up process the DC capacitor gets its charge from the induction generator 

via the rectifier. 
 

Scalar control of induction machine means control of the magnitude of voltage and 

frequency so as to achieve suitable torque and speed. Scalar control disregards the coupling effect 

on the generator. The voltage will be set to control the flux and the frequency in order to control the 

torque. Flux and torque are functions of frequency and voltage. Scalar control is different from 

vector control in which both magnitude and phase alignment of the vector variables are controlled. 

The main constraint on the use of a scalar control method for induction motors and generators is 

related to the transient response. If shaft torque and speed are bandwidth-limited and torque varies 

slowly, required speed response time varies from hundreds of milliseconds up to the order of almost 

a second, scalar control may work appropriately. Hydropower and wind power applications have 

slower mechanical dynamics. Therefore, the scalar control is still a good approach for renewable 

energy applications. The fundamental objective behind the scalar method is to provide a controlled 

slip operation. 
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Fig.4.1 Electrical and Mechanical arrangements in a wind turbine driven  

SEIG controlled by PWM Converter 

 

Figure 4.2 shows the control scheme of an induction generator-static inverter system with a 

dc load and capacitor. The frequency of the inverter is adjusted to give a small negative slip. 

Capacitor voltage is assumed to build up to a steady value.  The PWM inverter converts the dc 

voltage into ac voltage, which supplies the necessary magnetizing ampere-turns to establish the air-

gap flux of the machine. If the slip is made negative, the mechanical power gets converted into 

electrical power, which through the inverter, supplies the load connected across the capacitor. At 

the same time, it also replenishes the charge that has been drained from the capacitor. 

  

An increase in the load tends to decrease the capacitor voltage, which can be compensated 

by increasing the slip, i.e., reducing the inverter frequency.  At the same time, a constant dc voltage 

at reduced prime mover speed can be maintained by reducing the modulation index (ma) of the 

inverter in proportion to the speed. At varying loads and prime mover speeds, the frequency as well 

as modulation index, ma should be controlled in order to have a fairly constant dc voltage. As the 

output of the system is dc, its near constant value makes it easier both for supplying  it to dc loads 

and for feeding it to an ac grid system through an inverter.  
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Such a system has several advantages:  

 

(a) A single large DC capacitor is sufficient, instead of  a bank of three capacitors, 

(b) The value of the DC capacitor is not critical provided it is sufficiently large, and 

(c) The output voltage can be maintained constant over a wide range of speeds. 

 

For maintaining constant air-gap flux, the machine terminal V/f should be almost constant. 

Therefore ma is made proportional to the generated frequency for constant DC voltage. Assumption 

made in such systems  for analysis is that the built-up time of the capacitor voltage from a low 

initial value is large compared to the period of the alternating cycle. As a result, the inverter output 

can be assumed to have constant amplitude over one cycle of the generated voltage waveform. For 

sinusoidal PWM modulation technique, the peak of the fundamental component of the inverter 

output voltage per phase is  

 

                                                                 
1

1
( ) ( )

2 a cV t m V t
                                                            (4.1)

 

 

Since ( )cV t  is assumed to remain constant at least over one cycle, the inverter output for 

different phases can be assumed to be balanced. Hence the induction machine could be modeled in 

a synchronously rotating frame with the d-axis coinciding with the rotating space voltage vector of 

magnitude 1V . The induction machine modeled in  d-q synchronously rotating frame  is given by  
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                      (4.2) 

 

where dsI , qsI  and drI , qrI  are the direct-axis, quadrature-axis components of the time-varying 

peaks of the stator phase and rotor phase currents, respectively. 
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As the saturation of the main magnetic circuit is a critical factor, the magnetizing inductance 

should be estimated at each stage of the computation from the magnetizing current, whose peak 

value is given by 

 

                                                       
2 2( ) ( )m ds dr qs qrI I I I I   

                                                (4.3)
 

 

Because of the negative slip, the input current 1I  to the machine has a negative real part 

while the quadrature component lags behind the voltage.  As a generator, the current output of the 

machine is 1( )I , which leads the voltage by an angle,  . The feedback diodes in the inverter 

rectify the three-phase output currents. The rectified current, which is pulsating in nature with a 

frequency of 6 sf , feeds the DC load connected across the capacitor. Depending on the value of C , 

the pulsating current causes a corresponding ripple in the voltage riding above the mean value. The 

average voltage as well as the ripple go on increasing as long as the electrical power developed by 

the generator exceeds the sum total of  the power consumed by the load and the machine winding 

copper losses. 

 

4.3 System Description 

 

The scheme which is implemented in this thesis is a scalar voltage and frequency control 

scheme. The system description for the implementation of voltage control in an isolated induction 

generator is shown in Fig.4.2. The implemented system starts its excitation process from an external 

battery bV or it can be started from a charged capacitor. The external battery bV helps to charge the 

capacitor and also to start the buildup of flux in the core. When the generated DC voltage rises to a 

value higher than bV then the diode blocks the back flow of current to the battery. The diode can 

also be replaced with a switch that is operated by comparing the value of the battery voltage and the 

magnitude of the generated DC voltage in the capacitor. 

 

As discussed in Chapter  3  a self-excited induction generator using three AC capacitors and 

without any voltage control can start its voltage build up only from a remnant magnetic flux in the 
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core. The voltage build up starts when the induction generator is driven at a given speed and 

appropriate capacitance is connected at its terminals. However, for a system with a single DC 

capacitor, as explained in this Section, the voltage build up process cannot start from the remnant 

flux in the core due to the following reasons: 

 

a) There is no way of initiating the injection of exciting current into the induction generator via the 

inverter using vector control. 

b) The terminal voltage is not continuous because of the PWM switching in the inverter and the 

current is not sinusoidal. 

c) The power loss in the machine, the switching power losses in the inverter and the characteristic 

of all the instantaneous losses due to PWM switching. 

d) The losses in the generator increase because of the harmonics. 

 

As a result an initial voltage is required in the DC capacitor to start the voltage build up 

process. The initial voltage can be obtained from a previously charged DC capacitor or from a 

battery connected to the DC capacitor. The easiest method is to utilize the battery that supplies 

power to the IGBT drivers. The minimum initial voltage required in the DC capacitor is dependent 

on the components used in the inverter/rectifier, their combined forward voltage drop in the 

converter arrangement and the parameters of the induction generator. From the simulation, the 

voltage build up process can start for voltage as low as 10V. However, to have a good control and 

faster voltage build up process 48V is used. 48V is appropriate to implement the scheme at the 

lowest speed and the 48V can also be obtained from connecting several standard commercially 

available 12V batteries in series. 

As discussed in Chapter 3 during the voltage build up process the magnetizing inductance, mL , in 

an induction machine varies with the air gap voltage across it. The implementation of the variation 

of magnetizing inductance in the model of induction generator depicts the actual variation in the 

real system. 
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4.4 Mathematical Description of the Complete Closed Loop System 

 

The Scalar control scheme consists of  voltage and frequency controller is shown in Fig.4.2. 

This scheme is simulated in MATLAB. The induction machine parameters are given in Appendix 

A. 

 

Fig.4.2 A voltage control scheme for Self-Excited Induction Generator 

 

A. Modeling of Induction Generator 

Complete dynamic equations of induction generator taking saturation into account in the 

synchronously rotating reference frame is represented in matrix form as follows: 

 

                                                

ds

qs

d

dt



 

 
 

0 1

1 0
ds ds

s
qs qs

V i
R

V i


     
      

    

ds

qs



 
 
                        (4.4)

 

 



75 
 

 

                                        

dr

qr

d

dt



 

 
 

0 1
( )

1 0
dr dr

r r
qr qr

V i
R

V i
 

     
       

    

dr

qr



 
 
            (4.5)

 

 

 

B. Equations for electromagnetic torque and mechanical speed of the SEIG are expressed as 

follows: 

 3

4e qr dr qr dr

P
T i i  

            (4.6)
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             (4.7)

   
 

 

C. Modeling of 3-  PWM-VSI 

C.1 Model of the d.c side of the inverter 

       The capacitor voltage equation is governed by: 

dc
dc

Id
V

dt C
 

              (4.8)

   
 

where dcV is the voltage across the capacitor and dcI  is the current flowing through   

it. 

       The set point of dcV must be higher than the peak value of the generated phase       

voltage so that the stator current can be controlled. Total DC  link current dcI can be      

expressed in terms of inverter switching function as  

 

                                                      dc a ea b eb c ecI S i S i S i                                     (4.9) 

 

        Where, the suffix e identifies compensator phase currents. The three switching     
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Functions ( cba SSS ,, ) take the value of 1 if the upper switch in the given inverter leg is  

on and  0 if the lower switch is on and as  

0 ecebea iii  

bc

bc
eb

ab

ab
ea z

v
i

z

v
i  ,  

 

 

C.2  Model of PWM Inverter 

        The phase voltages are given by 
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         Line-to-line voltages generated by the inverter can be derived as: 

 

                                               ab ao boV V V              (4.13) 

                                               bc bo coV V V              (4.14) 

                                               ca co aoV V V              (4.15) 

 

 

D. Modeling of R-L Load 

A R-L load connected to the stator terminals of induction generator can be represented in 

the synchronously rotating reference frame as:           

                                                                        
qs L Lqs L Lqs e L Lds

d
V R i L i L i

dt
  

            (4.16)
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4.5 Implementation of  Control Algorithm 

 

A comparator compares the capacitor voltage with a reference voltage. The voltage error is 

processed through a P-I controller to generate the frequency of reference sine waves for PWM  

logic. The amplitude of sine waves or modulation index, ma is proportional to this frequency, so 

that a constant V/f control is achieved. 

P IK e K edt                 (4.17)

  
 

where  is the synchronous frequency, which is also the frequency of reference sine waves 

ref Ce V V   

refV  Reference Voltage 

CV =Capacitor Voltage 

PK  Proportional Constant 

IK =Integral Constant 

 

 

 

Fig.4.3 Control Structure 

 

4.6  Simulation Results 

 

The voltage control scheme of Fig.4.2 is simulated. The complete system is simulated for a 

rotor speed of 1400rpm for a time span of 60 seconds. 
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Fig.4.4 shows the voltage build-up over a span of 60 seconds reaching a steady state value 

of 220V. Fig.4.5 shows the phase ‘a’ current of the self excited induction generator. DC link 

capacitor voltage profile is shown in Fig.4.6. It reaches a voltage of 220V (set reference value) 

within 4 seconds of starting the system. The error in voltage is tracked by a PI controller  which in 

turn regulates switching instants of the IGBTs. As the load is put to the system, the terminal voltage 

reduced a little and as the load is removed, there is a increase in the terminal voltage as observed 

from Fig.4.6. The three phase IGBT inverter controls the power flow to the SEIG thus maintaining 

a constant voltage of 220V at the terminal of self-excited induction generator. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4.4  Terminal Voltage for a rotor speed of  1400rpm without  load. 
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Fig.4.5  Phase ‘a’ current of  SEIG without load 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4.6   DC link Capacitor Voltage 
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Fig.4.7 Active Power generated on no load condition 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.8 Reactive Power supplied at no load condition 
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Fig.4.9 Electromagnetic Torque generated 

 

Fig. 4.6 shows the dc link capacitor voltage profile as it tracks the reference value of 220 

volts at about 10 seconds. Fig.4.7, Fig.4.8 and Fig.4.9 shows the active power variation and reactive 

power and electromagnetic torque variation when the machine runs at 1400 rpm and  is excited by a 

dc link capacitor through a pulse width modulated voltage source inverter with an error proportional  

gain of unity. The line current is a distorted sinusoidal.  

 

The SEIG is loaded from 20 seconds to 40 seconds with 400W and 100 VAr load in parallel. 

The corresponding simulated results of terminal voltage, phase current, active power and reactive 

power variations are shown from Fig.4.10 to Fig.4.14. Between 20 to 40 seconds the decrease in 

active power is simultaneously followed by an increase in reactive power as observed from Fig.4.12 

and Fig.4.13. The loaded and unloaded SEIG is studied for a fixed prime mover speed of 1400 rpm. 
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Fig.4.10 Terminal Voltage of  loaded SEIG 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4.11 Phase ‘a’ current of   loaded SEIG 
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Fig.4.12 Active Power  of   loaded SEIG  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.13 Reactive  Power  of   loaded SEIG 
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Fig.4.14  Electromagnetic Torque of   loaded SEIG 

 

The effect of proportional gain when it is reduced from unity to 0.8 on the frequency and 

shape of phase current is shown in Fig.4.15.  The change in frequency shows that the PI controller 

acts as a frequency followed voltage controller. 

 

 

 

 

 

 

 

 

 

Fig.4.15  Phase ‘a’ current of   loaded SEIG with Kp=0.8. 
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For a loaded generator with the same parallel load of 400 W and 100 VAr  between 20 

seconds to 40 seconds, the output terminal voltage, active power and reactive power variations are 

studied when the rotor speed is varying from 1200 rpm to 2000 rpm instead of  a fixed rotor speed 

of 1400 rpm. The simulated results are shown from Fig.4.16 to Fig.4.21. 

 

Fig.4.16  Rotor Speed in rpm. 

 

 

 

 

 

 

 

 

 

 

 

Fig.4.17  Terminal Voltage for a continuously varying rotor speed. 
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Fig.4.18  Phase ‘a’ current for a continuously varying rotor speed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4.19  DC link capacitor voltage for a continuously varying rotor speed. 
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Fig.4.20  Active Power  for a continuously varying rotor speed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4.21 Reactive Power  for a continuously varying rotor speed. 
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4.7 Conclusion 

 

Instead of a capacitor bank of three AC capacitors, a single DC capacitor of large value is 

sufficient to build the voltage at the terminal of the self excited induction generator. A sinusoidal 

PWM inverter supplies the necessary VAR to the induction machine, thereby controlling the 

terminal output voltage. The DC side PI controller tracks the DC voltage offset by generating a 

proportional synchronous frequency at the output. The effect of proportional gain of PI controller is 

also shown in the simulation results. Finally simulation results on voltage build-up transients are 

presented and discussed. The waveforms of voltage, current, active power, reactive power and 

electromagnetic torque at a fixed prime mover speed under unloaded and loaded conditions are 

shown and discussed. In the next chapter, an experimental verification of an induction machine as a 

self excited induction generator by performing necessary tests is presented. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



89 
 

CHAPTER 5 

 

INDUCTION MACHINE AS A SELF EXCITED 

INDUCTION GENERATOR – AN EXPERIMENTAL 

VERIFICATION 

 

5.1 Introduction 

Machine modeling requires knowledge of the parameters of the machine. Whether the three-

phase induction machine is modeled using the conventional equivalent circuit or dq reference frame, 

the parameters of the machine is required. To have an accurate model of the machine, which 

represents all the characteristics of the physical machine, the parameters are determined accurately. 

Determination of equivalent circuit parameters through open circuit test and blocked rotor test are 

done. Accurate determination of magnetization characteristics by running the machine at 

synchronous speed through a prime mover is discussed. Mutual inductance as a function of 

magnetizing current is determined through accurate curve fitting. Finally the process of voltage 

build-up in self excited induction generator is studied in detail by performing a series of 

experiments. The prime mover speed, excitation capacitance and load are varied to study the 

voltage build-up process. 

 

5.2 Determination of Equivalent Circuit Parameters 

Open-circuit and short-circuit tests are conducted to find the parameters of the induction 

machine. It should be noted that the rotor leakage reactance is referred to the stator frequency and 

from the usual assumption Xls= Xlr . 

sR   is obtained from a DC measurement of stator resistance taking some consideration for skin 

effect.  
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5.2.1 Open-circuit test 

 

The open-circuit test is conducted by supplying rated voltage to the stator while driving the 

induction motor at its synchronous speed using an external prime mover. When the motor runs at 

synchronous speed the slip, s , becomes zero and as a result the current flowing in the rotor 

becomes zero. Then for the open-circuit test, the conventional equivalent circuit model can be 

reduced to the one shown in Fig. 5.1. 

 

Fig. 5.1 Per-phase equivalent circuit of three-phase induction machine under no load test 

 

with 0V = the measured open-circuit phase voltage V415  

0I =the measured open-circuit phase current A1.5  

0P = the measured open-circuit per-phase power W275  

So at slip s  0: 

 

As                                                        0cos PIV phph                                                       (5.1) 

phph IV

P


 0cos  

         129931.0  

And as                                                           sin phm II                                                    (5.2) 

          AI m 05677.5  
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So,                                                                   
m

ph
m I

V
X                                                           (5.3) 

                          1464.142  

  

5.2.2 Short-circuit test 

 

The short-circuit test (or blocked rotor or standstill test) is conducted by blocking the motor 

using a locking mechanism. At standstill, rated current is supplied to the stator. When the speed of 

the rotor is zero, the slip is unity. At this slip, the resistance on the rotor side is rR , which the 

referred rotor winding resistance. Fig. 5.2 shows the per phase equivalent circuit for the short-

circuit or standstill test condition. 

 

Fig. 5.2 Per-phase equivalent circuit at standstill (short-circuit test) 

 

At slip 1s ,  the test data are :  

 shV = the measured short-circuit phase voltage V100  

shI =the measured short-circuit phase current A6.14  

shP = the measured short-circuit three-phase power W1350  

Per phase  input resistance under short-circuit condition shR 
23 sh

sh

I

P
  333.6                             (5.4) 

Per phase input impedance under short-circuit condition shZ 
sh

sh

I

V  8493.6           (5.5) 
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Per phase input reactance under short-circuit condition shX  22
shsh RZ    608.2                (5.6)

  

Per phase stator and rotor leakage reactance  304.1
2

sh
lrls

X
XX                                      (5.7) 

 

Soon after the blocked rotor test the DC resistance of stator winding and rotor winding is measured. The 

respective measured AC resistances are found by taking 1.1 as the multiplication factor for considering 

the skin effect and mentioned below: 

sR Per phase resistance of stator winding  6837.0  

                                    

5.3 Determination of Magnetization Characteristics 

 

1. Circuit is connected as shown in the Fig. 5.3. The stator supply is given through an 

autotransformer. In this experiment the measurements are taken when the machine is 

rotating exactly at the synchronous speed (which cannot be achieved simply by running at 

no-load). First the induction machine was started as a motor with the help of the 

autotransformer. 

 

Fig.5.3  Circuit diagram for the synchronous speed test 

 

2. In order to bring the rotor to exactly the synchronous speed, the power  supply was given to 

the coupled dc machine. The d.c. machine was connected to the d.c. supply terminals in the 

separately excited configuration, with two different switches for the field and the armature. 
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Then speed was increased by reducing the field current of the d.c. machine. The rotor 

behaves as truly open-circuited, when the machine runs at synchronous speed. 

3. Then the open-circuit voltage-current characteristics were obtained by varying the stator 

voltage of the induction machine in steps, while varying the D.C. field resistance to keep the 

machine always at synchronous speed. 

4.  Readings are tabulated in Table 5.1. Magnetization characteristic i.e. the graph of stator 

voltage, Vg versus magnetizing current, Im  is plotted and shown in Fig. 5.4. 

 

5.3.1 Synchronous Speed Test Results 

 

In the experimental setup a DC motor was used as a prime mover. The rotor speed of the 

SEIG was varied by varying the speed of the DC motor while the capacitance was kept at a given 

value. It is possible to increase the capacitance for a given speed, however it is not as convenient as 

varying the speed and it is difficult to find capacitor values that will give a smooth variation of 

capacitance. The magnetization characteristic table is mentioned in Appendix A. 

 

            

 

Fig.5.4 Magnetization Curve of 4 pole, 10 hp Induction Machine at 1500 rpm 
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The technical reports are available on several possible ways to relate the air-gap voltage to 

the magnetizing current. The relationship between Vg and Im used in this work is established 

through the following nonlinear equation [41]: 

                         
2

2
1 3( )mK I

g mV FI K e K 
                         (5.8)

  
 

where 

K1, K2 and K3 are constants to be determined 

Vg  is the air-gap voltage across the magnetizing reactance (without external access) 

F is the frequency in p.u., defined as 

                                                            
basef

f
F                                                                        (5.9)

                  

where 

f is the rotor frequency. 

basef is the reference frequency used in the tests to obtain the excitation curve. 

The magnetizing reactance can be obtained directly from above equation as 

                                                    
 2

2
1 3

mg K I
m m

m

V
X L F K e K

I
   

           (5.10)
 

Table for determining Ki
’s  is mentioned in Appendix A.  Since the magnetization 

inductance Lm at a rated voltage is derived from the relationship between  Vg and Im, the result is a 

highly nonlinear function. The graph of Lm versus Im is shown in Fig.5.5. 

 

Fig. 5.5 Variation of mutual inductance with magnetizing current 
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5.4  Experiments  on Voltage build-up of SEIG 

 

5.4.1 Induction machine Rating 

 

The rating and parameters of the induction machine is given in Appendix A. 

 

5.4.2 Excitation capacitor Rating 

 

The rating of capacitive banks is 2.6 KVAr each, 415V, 5.1 A. The capacitance value comes out to 

be 48µF. 

5.4.3 Results 

 

 

Fig.5.6 Experimental Bench 

 

Magnetization Characteristic is experimentally plotted for the 10 hp, 50Hz induction 

machine by moving the shaft of the machine by a dc shunt motor. It is shown in Fig.5.4. Mutual 
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inductance as a function of magnetizing current is also experimentally determined and shown in 

Fig.5.5. Operating point should be chosen in the negative slope zone known as stable operating 

region. 

 

Photograph of the experimental setup is shown in Fig.5.6. The oscillogram of stator voltage 

during a build-up process is shown in Fig.5.7. In this case prime mover speed is set at 1115 rpm. 

Stator voltage is taken through a 10:1 probe. Oscilloscope settings are 13.6 V/div and 20ms/div. At 

this speed of 1115 rpm, SEIG is loaded using a lamp load of 200W/phase. The corresponding stator 

voltage waveform is shown in Fig.5.8, with same oscilloscope settings as in Fig.5.7. The stator 

voltage waveform during a build-up process at 1440 rpm is shown in Fig.5.9. The stator current 

waveform when it is loaded with 200W/phase is shown in Fig.5.10. Oscilloscope settings are 0.4 

A/div and 50ms/div. 

 

 

 

Fig.5.7   Stator voltage oscillation at a prime mover speed of 1115 r.p.m. 
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Fig.5.8   Stator voltage waveform when SEIG is loaded  

with a 200W/phase lamp load with a prime mover speed of 1115 r.p.m.  

(arrow mark shows the instant of loading) 

 

 

 

Fig.5.9  Stator voltage waveform during the voltage build-up  

for a prime mover speed of 1440 r.p.m. 
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Fig.5.10  The phase ‘a’ current waveform  

with a prime mover speed of 1310 r.p.m. for a 200W/phase lamp load. 

 

\ 

 

Fig.5.11  Waveform of voltage build-up for a prime mover speed of 1750 r.p.m. 
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Fig.5.12   Waveform showing failure of build-up  

for a prime mover speed of 1090 r.p.m. 

 

 

 

Fig.5.13   Voltage waveform of induction generator  

running at 1550 r.p.m. and connected to a grid. 
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Fig.5.14    Voltage waveform for grid disconnection. Induction generator acts as a SEIG  

when the first voltage spikes observed after voltage falls due to grid disconnection  

and voltage builds-up for a prime mover speed of 1700 r.p.m. 

Stator voltage waveform during a build-up process at 1750 rpm is shown in Fig.5.11. 

Fig.5.12 shows that for low values of speed (in this case 1090 rpm), the voltage collapses and fails 

to build-up. Fig. 5.13 shows the voltage waveform of line excited induction generator. Induction 

machine is in generating mode as it is run at 1550 rpm. Fig.5.14 shows the voltage waveform for 

sudden grid disconnection. Immediately after the grid is disconnected, generator voltage collapses, 

but again builds up in self excitation mode at a prime mover speed of  1700 rpm. 

 

5.5 Conclusion 

 

 In this chapter, experiments performed on an induction generator are reported. First open 

circuit tests and short circuit tests are performed and equivalent circuit parameters are determined. 

Then exact magnetization characteristic is plotted by rotating the induction machine at synchronous 

speed by a prime mover, i.e. shunt dc motor. From the experimentally plotted magnetization 

V
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ag
e
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V
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characteristics, mutual inductance as a function of magnetizing current is determined through 

accurate curve fitting technique. Mutual inductance is plotted as a function of magnetizing current 

and its value in the stable operating zone is determined from the graph. Finally, the voltage build-up 

process of self excited induction generator was experimentally studied by varying prime mover 

speed. Critical operating speed for optimum excitation capacitance is determined. Then grid 

connection and grid disconnection of induction generator is studied. Sudden grid disconnection of 

induction generator and its entry to self excitation mode again is studied. In the next chapter 

conclusion of the thesis is drawn. 
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CHAPTER 6 

 

CONCLUSIONS 
 

 

6.1 CONCLUSION 

 

 The operation of an induction machine as an induction generator in isolated mode is 

explored both by experimentally and through simulation. The drawback of a self excited induction 

generator without any control is its varying terminal voltage and frequency making it unfriendly for 

many applications. Experiment is undertaken for an induction machine of 10hp. The modeling of 

the machine in stationary reference frame is done to have a dynamic analysis. It was found that both 

speed and capacitance affects the magnitude of terminal voltage. Magnetizing inductance is the 

main parameter governing the voltage buildup process. The drawback of varying terminal voltage is 

overcome using a scalar voltage control scheme. The control scheme utilizes a sinusoidal pulse 

width modulation scheme using a PI control. Under varying load conditions, the PI controller 

proves out to be a good tracker of the reference making the terminal voltage constant in the given 

conditions. But still the problem of varying frequency persists. This problem is overcome using 

another scheme utilizing a generalized impedance controller. The impedance angle created between 

the generator output and the inverter output is utilized for active power and reactive power transfer 

thus acting both as a frequency and voltage controller. The self excited induction generator utilizing 

a voltage and frequency controller can act as a source to any load satisfying its current capacities 

and supporting a 50Hz system. Thus making it suitable for connection with an infinite grid. It is 

concluded that a self excited induction generator with its constant voltage and frequency is very 

much helpful in electrifying windy locations like hilly regions and sea shore sites creating a better 

sustenance for many dependencies. Major Contributions in the thesis are:  

 Review of d-q axes modeling of induction generator. 

 Mathematical analysis of self excited induction generator. 
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 Analysis of effects of speed, excitation capacitance and mutual inductance on self 

excitation process of induction generator. 

 Simulation of self excited induction generator with R-L load. 

 Design and analysis of a closed loop voltage control scheme for SEIG. 

 Simulation and analysis of closed loop voltage control scheme. 

 Experiments on voltage build-up of SEIG. 

 

 

6.2 SUGGESTIONS FOR FUTURE WORK 

 

 The control schemes employed in last 10 years used various ways of scalar and vector 

control techniques. Various possible ways of generation and control are explored without any 

comparison between schemes.  The scheme utilized in this thesis for voltage control is a V/f control 

scheme employing a sinusoidal pulse width modulation technique along with a PI controller 

switching the IGBTs at 5 KHz. The same scheme can be implemented using a fuzzy controller or 

adaptive fuzzy controller. The SEIG with SPWM converter can be controlled in field coordinates 

using decoupling control techniques. The vector control of generator currents, decoupling control of 

flux and speed of generator, decoupling control of real power, reactive power can be implemented 

in future research.  Instead of SPWM technique a SVPWM can be explored. A thorough study of 

comparison between different schemes of generation and control can be established. Power quality 

issues can be addressed in different isolated generation schemes. The scheme can be extended to 

work with other renewable sources like solar along with wind. The possibilities of interconnection 

to an existing grid and its eventualities under fault conditions could be studied. Study of running in 

parallel a system of generators with controlled voltage and frequency, thus creating a local source 

centre for a well habitat area will be a good suggestion for future work. 
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 APPENDIX A  

 

TABLE A.1   22  kW Induction Machine specifications 

 

                    Machine Parameters 

Power  22 kW 

Voltage (V) 400 

Current (A)  40 

Rs(Ω) 0.582 

Rr (Ω)        0.814 

Xls (Ω)    1.582 

Xlr (Ω)   1.47 

 

TABLE A.2   10 HP  Induction Machine specifications 
 

                    Machine Parameters  

Power (kW) 7.6 

Voltage (V) 415 

Current (A)  14.6

Rs(Ω) 0.6837

Rr (Ω)        0.451

Xls (Ω)    1.304

Xlr (Ω)   1.304
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                                       TABLE A.3     Magnetization Characteristic 

                                                    at 1500 rpm (Synchronous Speed) 

 

Applied Voltage 

(V) 

Current 

(A) 

0 0 

50 0.5 

80 1.0 

120 1.4 

180 2.0 

240 2.7 

270 3.0 

300 3.3 

320 3.5 

340 3.8 

360 4.0 

390 4.5 

420 5.2 

440 5.7 

450 6.1 
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TABLE A.4     Measurements for Determination of Ki
’s 

 

Order Measured 

current 

Measured 

Voltages 

Xm Formulas for Ki
’s 

1 Im1=1.0 Vg1=80 a=Vg1/Im1=80 49/24

1 3( )
a b

K c K
b c

     

      =3.8074 

2 Im2=3.0 Vg2=270 b= Vg2/Im2=90 

2 2
3

ln
49

24 m

b c
a b

K
I

 
  

=0.0056 

3 Im3=5.2 Vg3=420 c= 

Vg3/Im3=80.77 

2

3 2 ( )

b ac
K

b a c




 
=85.20 
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