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Abstract

Wireless sensor networks estimate some parameters of interest associated with the

environment by processing the spatio-temporal data. In classical methods the data

collected at different sensor nodes are combined at the fusion center(FC) through mul-

tihop communications and the desired parameter is estimated. However, this requires

a large number of communications which leads to a fast decay of energy at the sensor

nodes. Different distributed strategies have been reported in literature which use the

computational capability of the sensor nodes and the estimated local parameters of

the neighborhood nodes to achieve the global parameters of interest. However all

these distributed strategies are based on the least square error cost function which is

sensitive to the outliers such as impulse noise and interference present in the desired

and/or input data. Therefore there is need of finding the proper robust cost functions

which would be suitable for wireless sensor network in terms of communication and

computational complexities.

This dissertation deals with the development of a number of robust distributed

algorithms based on the notion of rank based nonparametric robust cost functions to

handle outliers in the (i) desired data; (ii) input data; (iii) in both input and desired

data; and (iv) desired data in case of highly colored input data. Exhaustive simulation

studies show that the proposed methods are robust against 50% outliers in the data,

provide better convergence and low mean square deviation.

Further this thesis deals with a real world application of energy efficient environ-

ment monitoring. A minimum volume ellipsoid is formed using distributed strategy

covering those sensor nodes which indicate the event of interest. In addition a novel

technique is proposed for finding the incremental path for regularly placed sensor

nodes. It is shown mathematically that the proposed distributed strategy enhances

the lifetime of the entire network drastically.

Keywords: Wireless Sensor Networks, Distributed Signal processing, Incremental

Minimum Wilcoxon Norm, Outliers, Incremental generalized rank norm, Pseudo Least

Squares, Minimum Volume Ellipsoid, Block Householder transformation
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SR-IMMWN Sign-Regressor Incremental Minimum Modified Wilcoxon Norm
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SS-IMWN Sign-Sign Incremental Minimum Wilcoxon Norm
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Chapter 1 Introduction

1.1 Introduction

Necessity is the mother of invention. Digital computer was invented with an objective

to compute a large amount of data within a small time interval. This became feasible

only due to the development of the notion of stored programme architecture. Devel-

opment of very-large-scale-integration (VLSI) system helps to decrease the size of the

computer to a large extent such that a number of functional units can be fabricated

on a single chip. This type of system is called embedded system. The applications of

embedded system extend from daily life use to the extreme applications like missile

and control of nuclear reactor. However, a single processor system cannot solve a

problem when the decision or action requires knowledge of different parts of a system

or an environment at the same time. In order to solve this type of problem a multi

agent system is required. The multi-agent system can monitor a process that changes

in both space and time. Wireless sensor network is the subset of this multi agent type

system, in which each agent is equipped with a sensor, a processor and connected to

the other agents by a wireless networking system.

1.2 Wireless Sensor Networks

Wireless sensor networks (WSNs) consist of spatially distributed autonomous sensor

nodes for monitoring physical or environmental parameters, such as temperature,

sound, vibration, pressure, humidity, motion or pollutants cooperatively. Each sensor

node comprises a sensing unit, a processing unit, a memory unit, a transmission unit

and a power supply unit [1, 2]. Sensor nodes are connected to each other through a

wireless networking system. In most of the applications of WSNs, the state of the

environment is to be estimated and appropriate action is to be taken accordingly.

The data is collected through the sensing unit of the sensor nodes. Transmission unit

of the sensor node is responsible for the transmission and reception of the data. The

sensor node powered externally by a battery.

The state of the environment is estimated by using the spatiotemporal data

recorded by the sensor nodes. Let us consider a popular application of WSNs in

precision agriculture. The objective is to save the crop by supplying appropriate
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amount of water to the plants. For this the sensor nodes equipped with humidity

measurement sensors are spread over the area of interest. The sensor nodes measure

the water content in their local regions and the data is sent to the fusion center (FC).

The event of interest may be considered mathematically as the vector containing the

position of the sensor nodes which measured less than the threshold. However, there

are several challenges associated with the practical use of WSNs. Since the sensors

have limited processing capability and are powered by external battery, there is need

of developing techniques which require less amount of computation and power to pro-

cess the measured data. Usually, the transmission unit of the sensor nodes requires

more power than the other units. Moreover, the sensor nodes share a common wireless

medium for communication, thus there is a need to decrease the communication over-

heads among the sensor nodes by intelligently using the available bandwidth. These

challenges motivate the researchers worldwide to design energy efficient strategies for

enhancing the lifetime of the WSNs as well as to efficiently fulfill the objective of the

state estimation.

1.3 Parameter Estimation in WSNs

This section deals with the mathematical formulation of the state estimation. As

previously discussed the objective is to estimate some parameters of interest as-

sociated with the environment. Let there be N number of sensor nodes present

in the environment and the measured data at the kth sensor node is denoted by

yk ∈ ℜn, k = 1, · · · , N . Thus the data collected from the environment can be rep-

resented as y =
[

yT
1 yT

2 · · · yT
N

]T

. Let the global parameter of interest to be

estimated be w ∈ ℜp. This problem of parameter estimation can be formulated as an

optimization problem using the theory of estimation as

w = arg max
w

E (fw,y (w,y)) (1.1)

where E is the expectation operator and fw,y is the joint probability density func-

tion(PDF). This problem of maximization can also be viewed as the minimization of
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the negative logarithm of the joint PDF. If the model is linear, the measured data

can be modeled as

y = XTw + v (1.2)

The parameter estimation problem in WSNs can be represented as

w = arg min
w

∥

∥y −XTw
∥

∥

2

2
(1.3)

1.3.1 Classical Method

In classical method sensor nodes measure the environment data and then send it to

the FC through multihop communications. This requires a large number of commu-

nications. Moreover, this strategy requires a proper organization of the sensor nodes

to route the data to the FC and hence is not robust against the failure of a sensor

node. Therefore after deployment the sensor nodes need to organize themselves to

find the shortest path to the FC. During multihop transmission sensor nodes present

near the FC lose more energy than those away from the FC. Subsequently the energy

of the sensor nodes near the FC decays below the threshold level. This is called as a

dead condition of the WSNs. However, there is sufficient amount of energy remains

unused. To increase the lifetime of the WSNs in-network processing capability of the

sensor nodes should be facilitated. This can be achieved by compressing the data

before transmission to the FC [3,4]. Moreover, these methods are not robust and not

adaptive to the change in environment.

1.3.2 Distributed Estimation in WSNs

To increase the lifetime of the WSNs and to make it robust against failure of any

sensor node, the sensors need to process its own data and only the estimated param-

eters should be shared among the neighboring sensors to obtain the global objective.

Based on different cooperation schemes, distributed strategies such as incremental

and diffusion techniques have been developed. The distributed estimation in WSN
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necessitates [5, 6]

J (w) =
N
∑

i=1

Jk (w) (1.4)

where J(w) and Jk(w) are the global objective and local objective at any sensor

node k, respectively. This means the global objective should be factorized into a sum

of local objectives.

1.3.3 Incremental Strategy

This strategy requires a predefined incremental path connecting each sensor node

present in the environment. Finding an incremental path for a large number of sensor

nodes is very difficult. In this strategy each node receives the estimate from the previ-

ous node and updates it using its own data to achieve a new estimate. This strategy

requires less number of communications among the sensor nodes. The distributed

incremental estimation based on the gradient of the cost function is given by

wi+1 = wi + µ∇
(

N
∑

k=1

(Jk (wi))

)

(1.5)

1.3.4 Diffusion Strategy

In case of diffusion strategy there is no need for any cyclic path connecting each

sensor node [7–10]. A sensor node uses a weighted sum of the estimates from the

neighborhood nodes and its own data to generate the aposteriori estimate which is

again transmitted back to its neighborhood nodes. The weight associated with the

estimates from neighborhood nodes can be calculated as [11]































φk,i−1 =
N
∑

i=1

p1,l,kwl,i−1

ψk,i = φk,i−1 + µk

N
∑

l=1

sl,k∇
(

Jl

(

φk,i−1

))

wk,i =
N
∑

l=1

p2,l,kψl,i

(1.6)
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where φk,i−1 is the convex combination of the previous iteration estimates, ψk,i is

the updated estimate, wk,i is the convex combination of updated estimates and p1,l,k,

p2,l,k are nonnegative real coefficients.

The aforementioned gradient based distributed strategies are based on the least

squares error cost function which is sensitive to the model uncertainty and outliers

present in the data. In addition to the additive white Gaussian noise(AWGN) inter-

ference and impulse noise can be viewed as outliers in the data. These problems can

be easily solved using a robust cost function.

1.4 Robust Statistics

Robust statistics provides an alternative approach to standard statistical methods,

for estimating location, scale and regression parameters [12–14]. The motivation

behind the development of robust estimators is that they are not affected by small

departure from the model. For example, small departure in a data set alters the

mean and variance by a large factor in comparison to the median and MAD. A robust

method is quantified by its influence function, breakdown point and sensitivity. Most

robust estimation methods use the following principle. Firstly, the samples affected

by outliers are detected and then their values are either made zero or decreased using

some function. These estimators are broadly categorized into three groups: M-type,

L-type and R-type.

1.4.1 M-Type Estimators

M-type estimators are called maximum likelihood type estimators. In this case the

likelihood function of some function of the error value is maximized [13, 15]. These

estimators may be called monotone or redescending estimators based on the function

being used. The former uses a convex function whereas the later uses a redescending

function. Huber’s function based estimator is one example of monotone M- estimator

and is given by
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ρH (e) =







1
2
e2, for e ≤ k

k |e| − k2

2
, for |e| > k

(1.7)

where k is a threshold value. The estimator based on the Huber’s function (1.7) is

not scale equivariant. Therefore a scale factor needs to be incorporated into it. The

threshold value k depends on the deviation of the error distribution from Gaussian

distribution. For heavy tailed noise distribution these estimators provide poor perfor-

mance. Therefore, bisquare weight function which is a redescending function is more

appropriate. The bisquare weight function is given by

ρB (e) =











k2

6

{

1−
[

1−
(

e
k

)2
]3
}

for |e| ≤ k

k2

6
for |e| > k

(1.8)

The gradient descent algorithm based a redescending function may get trapped a

local minima. This can be avoided by starting the estimation process with a robust

scale method to get a raw estimated near the global minima and then use redescending

estimators to reach global minima. However these methods require a large number of

computations.

1.4.2 L-Type Estimators

L-type estimators are called a linear combination of order statistics based estimators

[15]. In these estimators the residual errors are sorted in increasing order and the

middle error values are taken into account for designing the estimation criteria. These

estimators are scale equivariant but provides low estimation accuracy.

1.4.3 R-Type Estimators

R-type estimators are called as rank based estimators [16–18]. In these estimates, a

block of residual errors are taken into account and the score value corresponding to

the individual error is obtained from the rank value of that error. The score and error

values are used to design the norm. These norms are scale equivariant and provide
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better estimation accuracy. The Wilcoxon norm and the generalized rank norm are

the two popular norms.

1.5 Background and Scope of the Thesis

A number of reported materials are available for distributed estimation in wireless

sensor networks. Incremental and diffusion least mean squares (LMS) algorithms

have been proposed [5,7,11,19] which require less computational complexity. Due to

development of low power and efficient VLSI architectures, more sophisticated algo-

rithms like recursive least squares (RLS) and Kalman filter can also be implemented

in distributed scenario using less power. Accordingly incremental and diffusion recur-

sive least squares (RLS) algorithms have been suggested [20–23]. Distributed Gossip

based algorithms have also been developed for distributed estimation [24, 25]. All

these above methods only work well only in the presence of additive white Gaussian

noise(AWGN) in the desired data and very sensitive to the presence of outliers in

the data. This thesis deals with the development of some novel algorithms to handle

outliers in the desired data and/or input data.

As explained in Section 1.4 there are a number of robust cost functions are be-

ing used by statisticians for robust regression analysis. However, there is a need of

choosing the proper cost functions and novel implementation so that the computa-

tional and communication overheads can be reduced. In this thesis some novel robust

nonparametric algorithms based on the Wilcoxon norm is designed which require less

computations and/or provide faster convergence compared to the existing algorithms.

In practical situations outliers are also present in the input data [26, 27]. Hence

there is a need to develop robust methods to handle the outliers in the input data.

In this thesis some novel distributed algorithms based on the GR and HBR estimator

are developed which requires less computations and/or provide faster convergence

compared to previous existing algorithms.

In an environmental monitoring system, the FC always does most of the field es-

timation work using the entire measured data set. As a result the life time of the

network substantially decreases. Hence there is a requirement of designing an en-
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ergy efficient environment monitoring system so that life time of the entire network

is enhanced. A novel distributed minimum volume ellipsoid based method is devel-

oped for environment monitoring which requires less number of communication and

computation among the sensor node. Hence the proposed method is energy efficient.

1.6 Motivation Behind the Research Work

Impulse noise and co-channel or adjacent channel interference is also present in the

environment along with the additive white Gaussian noise(AWGN) [28, 29]. During

measurement process the sensor nodes may capture the impulsive noise and inter-

ference. Since The estimation of the probability density function(PDF) of impulse

requires large amount computation the estimation process can be made easy by view-

ing these as outliers in the input and desired data and to handle outliers robust cost

function based approach can be used. By this way the parameters associated with

the environment can be effectively estimated in real world environment.

However, R-type estimation using simple gradient descent method possess less

convergence speed. Hence, there is a need to design appropriate cost function based

on the notion R-type estimators, that should have better convergence speed and can

be implemented requiring less communication overheads.

Environmental monitoring is an important area of research in wireless sensor net-

work. In most of the cases the fusion center estimates the area where there is abnor-

mality in the environment. Hence, there is also a need for distributed estimation in

the environment which is affected by an abnormality. Ellipsoid is a generalized shape

which has been used by computer science people for cluster analysis. Moreover, there

is also a good amount of literature for finding the minimum volume ellipsoid (MVE)

covering a finite set of data. This motivates to use MVE method in distributed manner

to indicate the area where the abnormal condition has occurred.

1.7 Objective of the Thesis

The objective of present research work is to develop novel distributed robust algo-

rithms for wireless sensor network under different situations . These are:
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• To design a distributed algorithm which are robust against outliers present in

the desired and input and input data.

• To enables the new algorithms computationally and communication wise effi-

cient.

• To develop methodology to enhance the convergence speed of the algorithm and

performance wise superior.

• To design efficient distributed algorithms suitable for real world situation.

1.8 Structure and Chapter Wise Contribution of

the Thesis

Chapter 1

Introduction

The concept of distributed signal processing in wireless sensor network as well as the

basics of robust cost function based estimation are presented in this chapter. The

motivation behind the use of a rank based robust cost function method is outlined.

Moreover, the motivation for designing computationally efficient and communication

wise efficient algorithms are also outlined. The chapter wise contributions are also

dealt.

Chapter 2

Development of Robust Distributed Strategies for

Wireless Sensor Networks

In this chapter the general method of distributed signal processing is reformulated to

facilitate the batch processing implementation to suit to sensor network environment.

Then the Wilcoxon norm and the sign Wilcoxon norm cost function based distributed

signal processing methods are proposed to provide robust estimation performance in

presence of outliers in the desired data.
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One of the measure problems associated with the Wilcoxon norm and sign Wilcoxon

norm is low convergence speed. In order to accelerate the convergence speed a sign

regressor Wilcoxon norm and sign sign Wilcoxon norm have been proposed. Simula-

tion studies exhibit that the proposed methods are not only robust against outliers

in the desired data but also offers improved convergence speed compared to the other

available robust two norms.

However, when the input data is biased, its mean value is not zero, the convergence

speed of proposed methods, i.e. sign regressor Wilcoxon and sign sign Wilcoxon,

decrease. Moreover when the input data is either positive or negative, the proposed

methods do not converge. In order to alleviate the stated shortcomings, a novel cost

function is proposed. Mathematically the proposed norm is shown to be convex and

also its sign sign and sign regressor counter part are proposed. By simulation it is

shown that the proposed norm is robust against outliers in the desired data and its

convergence speed is faster than the previous norm for both bias and unbias input

data.

Chapter 3

Robust Incremental Distributed Strategy to Handle

Outliers both in Input and Desired Data

The methods proposed in the previous chapter are only robust against outliers present

in the desired data. In this chapter a new method is proposed which provides robust-

ness against outliers in both input and desired data. An indicator function based a

newly proposed approach is used for the mathematical analysis. Being motivated by

the tap delay structure of the input, a novel median based approach is incorporated,

that requires less number of computation. Simulation studies illustrate that the pro-

posed norm is robust against outliers both in the desired and input data. In addition

a sign regressor norm is proposed which not only provides robust performance in the

presence of outliers in the input and desired data but also offers improved convergence

speed compared to that of the previous norm.
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Chapter 4

QR based Incremental Adaptive Strategies to Han-

dle Outliers in the Desired Data as well as in both

Input and Desired Data

Some novel approaches based on QR decomposition, are proposed in this chapter

which provide faster convergence speed as well as better performance compared to the

methods suggested in chapter II and III. However, these require more computation

and communication complexities. Due to development of low power VLSI and efficient

VLSI architectures these algorithms can be implemented efficiently in wireless sensor

nodes. Using simulation based experiments it is demonstrated that the proposed

methods are robust against outliers in the desired data, provide better convergence

speed and also yield improved performance.

In order to decrease the communication complexity, a low communication QR

decomposition based approach is proposed which also provides robust performance.

Chapter 5

Robust Incremental Pseudo Affine Projection Algo-

rithm to Handle Outliers in the Desired Data

The incremental minimum-Wilcoxon-norm(IMWN) proposed in Chapter-II provides

very less convergence speed in presence of correlated input data and QR decomposi-

tion based approach given in Chapter-IV requires large number of computation. This

chapter deals with the development of a pseudo affine projection algorithm which is

robust and also provides better convergence speed than the IMWN and less com-

putation than QR-IMWN. In presence of highly correlated input data it provides

better convergence speed and estimation performance compared to IMWN. Thus it

acts as a compromise between IMWN and QR-IMWN in terms of computation and

convergence speed. In order to design this algorithm the Wilcoxon norm is changed

to a pseudo least square cost function, which further changed to the pseudo affine

projection algorithm by considering the block approximation of the gradient.
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Chapter 6

Energy Efficient Environment Monitoring using Min-

imum Volume Ellipsoid

In this chapter a novel method is proposed for energy efficient environment monitor-

ing using incremental distributed strategy. This strategy requires a predefined path

connecting every sensor node present in the network. A simple method is proposed for

this. Further, it is proved that by the method of induction that by the local decision

of the sensor node, the global incremental path can be found out.

By mathematical analysis it is shown that the proposed method increases the life-

time of the entire sensor network. In order to decrease the computational complexity,

the core set is designed and the Langrage multiplier based approach is used.

The above proposed method exhibits less error when the area in the environment

can be approximated by a convex shape. But for non convex area a search, make and

break approach is used which increases the life time of the entire network.

In order to decrease the quantization effect and further to increase the lifetime of

a sensor network, a robust approach is also suggested, which decreases the communi-

cation complexity but its performance error increases.

Chapter 7

Conclusion and Future Work

In this chapter the overall contribution of the thesis is reported. Different distributed

strategies have been proposed for wireless sensor network to handle outliers only in

desired or in both input and desired. Some of the algorithms require less commu-

nication and computation complexity but provide poor convergence speed as well as

poor performance, where as other algorithms need more computation and commu-

nication overheads but provide improved performance and convergence speed. Some

novel methods are proposed for energy efficient environment monitoring for a different

scenario.

In this chapter future research problems are also outlined for further investigation

on the same/related topics. Computation complexity and communication complexity
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of the algorithms based upon the different type of implementation can be calculated

and compared. In this thesis all the algorithms are applied by using incremental strat-

egy, different other distributed strategies,such as diffusion strategy, adaptive diffusion

strategy and probabilistic diffusion strategy can also be applied with an an objective

to obtain better performance. Convergence analysis such as steady state and tran-

sient analyses can be done using asymptotic linearity of the rank test. In case of the

energy efficient environment monitoring the problem can be extended considering the

presence of additive white Gaussian noise and impulse noise in the environment.
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Chapter 2

Development of Robust Distributed Strategies for

Wireless Sensor Networks.

Distributed signal processing is an important area of research in wireless sen-

sor networks (WSNs) which aims to increase the life time of the entire network.

In WSNs the data collected by nodes are affected by both additive white Gaussian

noise(AWGN) and impulsive noise. The classical square error based distributed tech-

niques used for parameter estimation are sensitive to impulse noise and provide inferior

estimation performance. In this chapter, novel robust distributed learning strategies

are proposed based on the Wilcoxon norm and its variants. The Wilcoxon norm based

learning strategy provides very slow convergence speed. In order to circumvent this,

improved distributed learning strategies based on the notion of the Wilcoxon norm are

proposed for the different type of environmental data. Simulation based experiments

demonstrate that the proposed techniques provide faster convergence speed than the

previously reported techniques.

2.1 Introduction

WSNs consisting of large number of sensor nodes are envisioned to solve a large

number of modern day problems like environment monitoring, precision agriculture,

designing smart house etc [1]. These applications require processing of the data

acquired by the sensor nodes. In classical methods the entire data set is sent to

the FC where the decision is taken after required processing. This type of solution to

the problems requires a large number of communication overheads and leads to the

fast decay of energy at the sensor node. Distributed signal processing based upon the

processing of data at the individual node and cooperation among the sensors to get the

global objective has recently been proposed in the literature [5,7,10,11]. Mostly two

types of strategies have been reported in the literature: incremental and diffusion. The

incremental strategy requires a predefined cyclic path connecting every sensor nodes

present in the environment. This strategy requires less communication overheads and

is most suitable for a small number of sensor nodes. The advantage with the diffusion

strategy is that it does not require a cyclic path connecting each sensor node, thus

suitable for a large number of sensor nodes based WSNs. Using these strategies

incremental and diffusion LMS have been proposed [5, 7], for distributed training of

16



Chapter 2

Development of Robust Distributed Strategies for

Wireless Sensor Networks.

adaptive system which require less computation and attain the global solution. For

wireless sensor nodes equipped with low power very-large-scale-integration(VLSI) and

efficient VLSI architecture, distributed strategies based on sophisticated algorithms

have recently been proposed [21, 23, 30]. However, all these methods are based on

least squares error cost function and are very sensitive to the outliers present in the

data. In addition to the additive white Gaussian noise(AWGN), impulsive noise is

also present in the environment [28]. This impulsive noise is also captured by the

measuring instruments during the collection of data. Such type of noise may be

viewed as outliers in the data.

Generally the robust cost functions based approach is being used for analysis of

data in the presence of outliers. These are broadly classified into three groups, i.e.

M-type, L-type and R-type [12, 13, 15]. Since the sensor nodes are operated by finite

battery power, the cost functions which require less computation are more suitable.

Keeping this in view there is a need to choose appropriate cost functions among all

type of robust cost functions.

The M-type estimators are called as maximum likelihood type estimators in which

the likelihood function of some function of error values are often used. More discussion

about the M-type estimators is given in Section 1.4.1. The important drawbacks

associated with these estimators are:

1. the functions associated with these estimators depend on some predefined pa-

rameters, which need to be fine tuned in order to get good performance. The

predefined parameters depend upon the deviation of the noise distribution from

Gaussianity. Since data is spread through out the environment, the estima-

tion of the predefined parameters requires a large number of communication

overheads;

2. these estimators in simple form are not scale equivariant [13]. In order to make

it scale equivariant, a scale parameter needs to be introduced. Hence, along

with the estimation of parameters, the scale factor needs to estimated, which

requires large computation and memory space.

The L-type estimators are called as a linear combination of order statistics based
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estimator. These estimators are scale equivariant. However the main drawback is

that these estimators provide poor performance compared to the M- and R-type

estimators [13,15].

The remaining one is R-type estimators,i.e. rank based estimators. The major

advantages of rank based estimators: are simple to implement; are scale equivarint;

do not depend upon any predefined parameter; and provide good estimation accuracy.

Due to obvious advantages, the R-type estimators are chosen for distributed im-

plementation to handle outliers in the desired data. The Wilcoxon norm is one of the

R-based estimators. Recently it has drawn the attention of the signal processing com-

munity for designing robust learning algorithms and robust identification of system

parameters [31,32].

The main contributions made in the chapter are:

1. Two distributed norms: the incremental minimum Wilcoxon norm (IMWN) and

incremental minimum sign Wilcoxon norm (IMSWN) are developed based upon

the notion in [31,32];

2. The sign regressor incremental minimum Wilcoxon norm (SR-IMWN) and sign

sign incremental minimum Wilcoxon norm (SS-IMWN) are proposed using the

notion in [33] and are implemented in distributed sensor networks. These

methods provide better convergence speed than the previous methods with the

slightly inferior performance compared to that of IMWN and IMSWN.

3. A robust cost function is suggested based on the notion of the Wilcoxon norm

to handle outliers in the desired data in the presence of biased input data and

offers faster convergence compared to the conventional ones.

2.2 Problem Formulation

Suppose N number of sensor nodes are deployed in a locality of interest. Each sensor

takes its measurement after fixed time intervals. Let the spreading time be t0 and the

measurement starts at time t0 and continues up to time t1 with interval of T . Thus,

the total number of measurements obtained by one sensor within the time t0 and t1
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is (t1 − t0) /T + 1 = n. Let us consider one measuring time as one time instant so

that there are n number of time instants. The measured training and input data at

the kth node at time instant i are denoted by yk,i and xk,i, respectively. Let the input

and desired data of the physical system be related by a linear model [34,35] as

yk,i = xT
k,iw + vk,i (2.1)

where xk,i ∈ ℜp, p is the order of the system and vk,i is the AWGN and impulsive

noise present at the environment during the ith time instant.

The entire spatial desired and input data from the first node to theN th node during

the ith time instant are denoted by yi and Xi respectively, which is represented by

yi =
[

y1,i y2,i · · · yN,i

]T

Xi =
[

x1,i x2,i · · · xN,i

]

(2.2)

.

Further the spatio-temporal desired and input data upto nth time instant are

denoted by y(n) and X(n) respectively and are given by

y(n) =
[

yT
1 yT

2 · · · yT
n

]T

X(n) =
[

X1 X2 · · · Xn

]

(2.3)

.

The objective is to estimate the parameter w from the desired data y(n) and the

input data X(n). The objective can be formulated an optimization problem given in

(2.4)

w = arg min
w

∥

∥y(n)−XT (n)w
∥

∥

∗ (2.4)

When the noise v is Gaussian, the optimization problem is changed to
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w = arg min
w

∥

∥y(n)−XT (n)w
∥

∥

2

2
(2.5)

2.2.1 Wilcoxon Norm

The Wilcoxon norm is a pseudo norm [16] which is defined on a vector v ∈ ℜl

v =
[

v1 v2 · · · vl

]

(2.6)

.

The Wilcoxon norm of the vector (2.6) is given by

‖v‖w =
L
∑

i=1

[ϕ (vi) vi] =
L
∑

i=1

[√
12 (R (vi)/(L+ 1)− 0.5) vi

]

(2.7)

where ϕ(vi) is the score function associated with the element vi present in the

vector v. The score function exhibits the following properties

1. ϕ :
[

0 1
]

→ ℜ

2. It is bounded as
∫

ϕ2 (u) d (u) <∞

3. It is a pseudo norm and hence

1
∫

0

ϕ (u) d (u) = 0.

For the Wilcoxon norm the score value is defined as

ϕ (u) =
√

12 (u− 0.5) (2.8)

The score value corresponds to the element vk of the vector v is
√

12
(

R(vk)
l+1
− 0.5

)

,

where R (vk) is the rank order of the element vk among all the elements present in

the vector. The rank order defines the position of an element when all the elements

are arranged in ascending order.
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2.2.2 Block Formulation of the Problem

Since the Wilcoxon norm requires a block of data for implementation hence block

processing is necessary for distributed implementation of the Wilcoxon norm. This is

achieved by introducing the notion of block time. Thus, n number of time instants can

be divided into ⌈n/l⌉ number of block times. Without loss of generality we can assume

n is an integer multiple of l. Therefore ith block time is the time from ((i− 1)l+ 1)th

time instant to (il)th time instant. The input and desired data in block form length l

at ith block time of kth node are given as

Xk,i =
[

xk,(i−1)l+1 xk,(i−1)l+2 · · · xk,il

]

yk,i =
[

yk,(i−1)l+1 yk,(i−1)l+2 · · · yk,il

]T (2.9)

. The spatial input data and corresponding desired data at ith block time are denoted

by

Xi =
[

X1,i X1,i · · · X1,i

]

yi =
[

yT
1,i yT

1,i · · · yT
1,i

]T

(2.10)

.

Moreover, the entire spatial input and desired data from the first block time to

nth block time are denoted as

X(n) =
[

X1 X2 · · · Xn

]

y(n) =
[

yT
1 yT

2 · · · yT
n

]

(2.11)

.

Similar to (2.4) the objective is to estimate w from the input and desired data

shown in (2.11) using block optimization form as

w = arg min
w

∥

∥y −XTw
∥

∥

wil
= arg min

w

χ(w) (2.12)

The Wilcoxon norm (2.12) is a nonlinear function, which depends on the number
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of data present in the residual error vector corresponding to the desired and input

vectors shown in (2.11). The distributed implementation requires χ (w) =
N
∑

k=1

χk (w).

However, it is not true for the Wilcoxon norm and hence the objective (2.12) can not

be achieved by distributed strategies.

To facilitate the distributed implementation of the MWN, define the local cost

function for node k as

min
w

∥

∥

∥
yk −

(

Xk
)T

w
∥

∥

∥

wil
(2.13)

where

yk =
[

yT
1,1 yT

1,2 · · · yT
1,n/l

]T

and Xk =
[

XT
1,1 XT

1,2 · · · XT
1,n/l

]T

(2.14)

The local objective depends upon the data collected by the kth sensor node during

the measurement process. Based upon the local objective (2.13), the global objective

is defined as

min
w

N
∑

i=1

χk(w) = min
w

N
∑

i=1

∥

∥

∥yi −
(

Xi
)T

w
∥

∥

∥

wil
(2.15)

Since (2.15) is an affine combination of the local Wilcoxon norm, which is a pseudo

norm, the global objective (2.15) is also a pseudo norm [16]. However, the objective

(2.15) provides less performance than the former objective function defined in (2.4).

This can be verified by using the theory of rank statistics [16]. The estimation effi-

ciency of a norm depends upon the variance of the estimation error. In case of the

Wilcoxon norm it directly depends on the number of data present in the residual er-

rors vector. However, by adding the number of cost functions, the variance decreases

linearly where as by adding a number of data in the vector variance decreases by the

power of two. Further, the drawback of the cost function(2.15) is that it depends upon

the entire data acquired during the measurement process. Thus, the estimation is to

be initiated after the end of the measurement process. It requires more number of
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computations and a large memory, which increases with the increase of measurement

data. Thus, there is need of recursive implementation of the (2.15) at the node. This

is not possible because of the dependence of (2.15) on the rank of each data.

In order to achieve recursive implementation, the local objective is modified to

χk =
L
∑

i=1

∥

∥yk,iL −XT
k,iLw

∥

∥

wil
(2.16)

It is termed as temporal local objective. From the performance point of view

the temporal local objective differs from the local objective (2.12) in a similar way

the objective function (2.15) differs from that of (2.4). Similar to (2.15) the global

objective function is given by

∥

∥y −XTw
∥

∥

wl
=

N
∑

j=1

n/l
∑

i=1

∥

∥yj,((i−1)l+1):(il) −XT
j,((i−1)l+1):(il)w

∥

∥

wl
(2.17)

The efficiency may further deteriorate in such formulation but it can be imple-

mented recursively by using distributed strategies.

2.3 Incremental Minimum-Wilcoxon-Norm (IMWN)

Incremental Minimum-Sign-Wilcoxon-Norm (IM-

SWN)

As discussed in the previous section the objective function to be minimized is given

in (2.17). In order to achieve this the gradient based method is used. Hence, the

parameter is updated in the direction of negative gradient [34,35] of the cost function

and the corresponding update equation may be written as

wi = wi−1 − µ∇ (χ (w)) (2.18)

Equation (2.18) requires all the data collected from the environment at the block

time i. Hence, the incremental strategy is used to employ the data from first to last
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node to estimate the parameters. In this strategy during ith time instant a node

receives the update parameters from previous node and uses its own data to further

update the parameters. Subsequently these parameters are sent to the next node. Let

the estimated parameter at node k during the spatial recursion in the ith block time

be represented as ψk,i. In this case the wi is obtained from wi−1 as

wi ≡ ψN,i ← · · ·ψ2,i ← ψ1,i ≡ wi−1 (2.19)

Further taking the gradient and using it in (2.18), we obtain

wi = wi−1 − µ
N
∑

i=1

l
∑

j=1

ϕ (ei,j)Xj (2.20)

Thus the distributed incremental algorithm is outlined as

ψ0,i ← wi−1

For k = 1 : N

ψk,i ← ψk−1,i + µ

×
[

l
∑

k=1

√
12

(

R(yj,(i−1)l+k−xT
j,(i−1)l+k

ψk−1,i)
l+1

− 0.5

)

×
(

xj,(i−1)l+k

)]

end

wi ← ψN,i

(2.21)

In case of sign Wilcoxon norm the score value in (2.21) is changed to

ϕ (u) = Sign(u− 0.5) (2.22)
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2.4 Proposed Sign-Regressor Incremental Minimum-

Wicoxon-Norm (SR-IMWN) and Sign-Sign In-

cremental Minimum Wilcoxon Norm (SS-IMWN)

It is known that the sign-regressor LMS and the sign-sign LMS provide better con-

vergence speed compared to the LMS [36] where it is demonstrated that the sign

regressor Wilcoxon and sign-sign Wilcoxon are robust against outliers and converges

faster than the Wilcoxon norm. Motivated by these findings two algorithms, SR-

IMWN and SS-IMWN(Which are variants of the incremental minimum Wilcoxon

norm ) are proposed to achieve better convergence speed than the IMWN as well as

robust performance against outliers in the desired data. The derivation proceeds as

follows. The incremental LMS algorithm [5] is given as











































ψo,i ← wi−1

For k = 1 : N

ψk,i ← ψk−1,i + µ
(

yk,i − xT
k,iψk−1,i

)

xk,i

end

wi ← ψN,i

(2.23)

The IMWN in (2.21) can be changed to matrix-vector multiplication form as











































ψo,i ← wi−1

For k = 1 : N

ψk,i ← ψk−1,i + µScore (e)X((i−1)L+1):L

end

wi ← ψN,i

(2.24)

where Score (e) =
√

12
[

R(e(i−1)l+1)
l+1

− 0.5
R(e(i−1)l+2)

l+1
− 0.5 · · · R(eil)

l+1
− 0.5

]

and

Xk,(k−1)l:k =
[

xk,(k−1)l+1 xk,(k−1)l+2 · · · xk,kl

]

Comparing (2.23) and (2.24), it is observed that the Score(e) and xil+1 in IMWN

act like e and x in the ILMS algorithm. For the case of the sign-regressor ILMS and
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the sign-sign ILMS the parameters update equations are

ψk,i = ψk−1,i + µ
(

yk,i − xT
k,iψk−1,i

)

Sign (xk,i) (2.25)

and

ψk,i = ψk−1,i + µSign
(

yk,i − xT
k,iψk−1,i

)

Sign (xk,i) (2.26)

respectively.

Comparing (2.23),(2.24)and (2.25), the algorithm for SR-IMWN may be outlined

as











































ψ0,i ← wi−1

For k = 1 : N

ψk,i ← ψk−1,i + µ× Score
(

e((i−1)L+1):L

)

Sign
(

X((i−1)L+1):L

)

end

wi ← ψN,i

(2.27)

Further, comparing (2.23),(2.24) and (2.26), the update operation for SS-IMWN

is obtained as











































ψ0,i ← wi−1

For k = 1 : N

ψk,i ← ψk−1,i + µ× Sign
(

Score
(

e((i−1)L+1):L

))

Sign
(

X((i−1)L+1):L

)

end

wi ← ψN,i

(2.28)

Changing the matrix vector multiplication term in (2.27) and (2.28) to summation

of scalar vector multiplication term we get
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ψ0,i ← wi−1

For k = 1 : N

ψk,i ← ψk−1,i + µ

×
[

l
∑

k=1

√
12

(

R(yj,(i−1)l+k−xT
j,(i−1)l+k

ψk−1,i)
l+1

− 0.5

)

×Sign
(

xj,(i−1)l+k

)]

end

wi ← ψN,i

(2.29)

and

ψ0,i ← wi−1

For k = 1 : N

ψk,i ← ψk−1,i + µ

×
[

l
∑

k=1

√
12Sign

(

R(yj,(i−1)l+k−xT
j,(i−1)l+k

ψk−1,i)
l+1

− 0.5

)

×Sign
(

xj,(i−1)l+k

)]

end

wi ← ψN,i

(2.30)

2.5 Simulation Results and Discussions

This section deals with simulation based experiments to assess the robust estimation

performance of the proposed norms based distributed strategies. For simulation pur-

pose five sensor nodes are taken into consideration. Total 4000 number of random

input data is generated with the magnitude between (−0.5, 0.5). The parameters w

of model (2.1) is
[

1
/√

5
1
/√

5
1
/√

5
1
/√

5
1
/√

5

]

. In order to obtain the desired

value, the input data is passed to the model and the output is mixed with white Gaus-

sian noise of 30dB SNR as well as outliers. In order to mix outliers in the desired

data, random positions are chosen depending upon the percentage of outliers. Then

random magnitudes are generated depending upon the strength of the outliers and

then these are added with the selected samples. For example to generate training
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samples having 30% outliers of strength 10, firstly, 30 number of desired data points

are chosen in every 100 measured samples and random values between (−10, 10) are

added with them. Results are obtained for different percentage and strength of out-

liers. But in this chapter the simulation results corresponding to 10% and 50% of

outliers having magnitudes between (−10, 10) are presented. The step size used is

0.001. The block length considered during simulation is 40. The simulation results

shown are averaged over 20 independent experiments.

The convergence characteristics are obtained for each of the ILMS,IMWN,IMSWN,SS-

IMWN and SR-IMWN based algorithms and are presented in Figures 2.1-2.2 for 10%

and 50% outliers respectively. It is observed that the IMWN, IMSWN, SS-IMWN and

SR-IMWN based algorithms exhibit robust performance against outliers in the desired

data, where as ILMS offers the worst convergence in presence of outliers. Further, the

SS-IMWN and SR-IMWN norm based algorithms provide better convergence speed

but the inferior performance compared to the IMWN and IMSWN based algorithms.

As the percentage of outliers increases, both the convergence speed and performance

of all the algorithms deteriorate.
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Figure 2.1: Overall convergence performance with 10% outliers in the desired data
with magnitude between (-10,10)
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Figure 2.2: Overall convergence performance with 50% outliers in the desired data
with magnitude between (-10,10)

2.5.1 Drawbacks of SR-IMWN and SS-IMWN

The simulation results shown in Figures 2.1-2.2 correspond to the unbiased input data

i.e. the mean of the input data is zero. The convergence characteristics obtained from

the simulation results for biased input data lying between (−0.1, 0.9) and (0, 1) are

presented in Figures 2.3-2.4 respectively. The observations made from these plots are:

1. The convergence speed of proposed SR-IMWN and SS-IMWN based algorithms

decrease when the biased input data is used;

2. The SR-IMWN and SS-IMWN based algorithms do not converge if the input

data is either positive or negative.

The theoretical explanation is as follows. The update equation for sign-regressor

GR norm is given as

ψk,i ← ψk−1,i+µ





l
∑

j=1

√
12Sign





R
(

yk,(i−1)l+j − xT
k,(i−1)l+jψk−1,i

)

l + 1
− 0.5



Sign
(

x(k,i−1)l+j

)





(2.31)
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Figure 2.3: Overall convergence performance with 50% outliers in the desired data
with magnitude between (-10,10) for input data between (-0.1,0.9)

Without loss of generality we can assume that the input data in a block is in the

same order as the rank of the error. It means that if x(i−1)l+1 < x(i−1)l+2 < · · · < xil

then R
(

ek,(i−1)l+1

)

< R
(

ek,(i−1)l+2

)

< · · · < R (ek,il). It is observed that the score

value R
(

ek,(i−1)l+1

)

/(l + 1) − 0.5 is negative for j = 1, ..., l/2 and positive for j =

l/2 + 1, ..., l. In addition

(

R
(

ek,(i−1)l+j

)

/

(l + 1)− 0.5
)

= −
(

R (ek,il−j+1)/(l + 1)− 0.5
)

(2.32)

The input data is generated uniformly between (−0.5, 0.5). So the input data

corresponding to the lower and upper halves of the error are negative and positive

respectively. Thus the negative and positive inputs are multiplied with the negative

and positive score values respectively. Hence the gradient value is maximum and

convergence speed becomes fast.

Consider for the case of bias input data. Suppose the input data is random and lies

between (−0.1, 0.9). According to the assumption the input data in a block is in the

same order as that of the rank of the error. The gradient in this case is less than the

gradient for the data between (−0.5, 0.5). This is due to the following factors: (i) In

this scenario input data between (-0.1, 0.4) and (0.4, 0.8) have negative and positive
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Figure 2.4: Overall convergence performance with 50% outliers in the desired data
with magnitude between (-10,10)for input data between (0,1)

sores respectively. Using (2.32) it is observed that for every score corresponding to the

input value between (0.4, 0.8) there will be a score of same magnitude with opposite

sign for the input data between (0, 0.4). Since the score is multiplied with the sign

of the input data and the sign is same for both the cases these two scores canceled

each other during addition in the update equation. (ii) Both score and sign for the

data between (-0.1, 0) and (0.8, 0.9) are negative and positive respectively. Thus the

multiplication of score with the sign of the input data for this case is positive. Hence

only these data are responsible for the gradient factor. Thus it is less than for the

data between (-0.5, 0.5).

As bias magnitude increases the data corresponding to factor (i) increases and

factor (ii) decreases. Thus gradient decreases. When all the input data are either

positive or negative at that time all data belong to factor (i). Hence the gradient

value is zero and the algorithm does not converge to the optimum value.

In order to alleviate these drawbacks a new norm is proposed in the next sec-

tion. Its computational complexity is more than the previous norm but provide faster

convergence speed.
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2.6 Proposed Robust Modified Wilcoxon Norm Based

Learning Strategy

In this section a modified Wilcoxon norm is proposed to overcome the problem men-

tioned in the previous section. The new norm is studied in details and a distributed

strategy is proposed. Similar to the Wilcoxon norm the modified Wilcoxon norm is

also applied to a set of data. In the present case the error difference instead of error is

used so that the score value of the modified Wilcoxon norm changes more compared

to the score value of the Wilcoxon norm with change of some elements present in the

set. The proposed modified Wilcoxon norm of the vector (2.6) defined by

‖v‖mwil =
l−1
∑

i=1

l
∑

j=i+1

ϕ (R (vi − vj)) (vi − vj) (2.33)

where ϕ is the score function defined in (2.8). The score function is applied over

the difference of two vector elements. The function (2.33) is shown in Section A.1 as

a pseudo-norm. By taking the difference of error terms the sensitivity of the norm

is increased compared to the Wilcoxon norm. Similar to the SR-IMWN and SS-

IMWN, the modified minimum Wilcoxon norm is used to propose SS-IMMWN and

SR-IMMWN to design other fast distributed algorithms. The score function is defined

as

‖v‖mwn =
l−1
∑

i=1

l
∑

j=i+1

√
12

(

R (vi − vj)

0.5× l(l − 1)
− 0.5

)

(vi − vj) (2.34)

The sign-modified-Wilcoxon-norm is given by

‖v‖mwn =
l−1
∑

i=1

l
∑

j=i+1

Sign

(

R (vi − vj)

0.5× l(l − 1)
− 0.5

)

(vi − vj) (2.35)

The estimation of the required parameters is based on the gradient of the modified

Wilcoxon norm of the residual errors defined as
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‖e‖mwn =
∥

∥y −XTw
∥

∥

mwn
(2.36)

In case of incremental strategy the parameters are estimated at the individual

node taking the parameters from the previous node as a priori information and this is

updated at the node using its own data. For updation the gradient based technique

is used. Hence similar to (2.18), the time update of the parameters is given by

wi = wi−1 − µ∇‖e‖mwn (2.37)

Equation (2.37) is divided to N spatial updates as in (2.20) and the corresponding

update at the kth node is given by

ψk,i = ψk−1,i −∇‖ek,i‖mmwn (2.38)

Using the gradient of proposed norm, the spatial update equation is obtained as

ψk,i = ψk−1,i − µ
l−1
∑

i=1

l
∑

j=i+1

√
12

(

R (ei − ej)

0.5× l(l − 1) + 1
− 0.5

)

(xj − xi) (2.39)

where the second term in the right hand side of (2.39) is the instant gradient

computed using the data present at the node k. The error term is given by

ei = yi − xT
i w (2.40)

2.6.1 Sign Regressor Modified Wilcoxon Norm and Sign Sign
Modified Wilcoxon Norm

Similar to that of (2.27-2.30), the update equation for SR-IMMWN and SS-IMMWN

are obtained from (2.39) as
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ψk,i = ψk,i−1 − µ
l−1
∑

i=1

l
∑

j=i+1

(√
12
(

R(ei−ej)

0.5×l(l−1)+1
− 0.5

)

×Sign (xi − xj))

(2.41)

and

ψk,i = ψk,i−1 − µ
l−1
∑

i=1

l
∑

j=i+1

(√
12Sign

(

R(ei−ej)

0.5×l(l−1)+1
− 0.5

)

×Sign (xi − xj))

(2.42)

respectively.
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Figure 2.5: Overall convergence performance with 10% outliers in the desired data
with magnitude between (-10,10)

2.7 Learning Behavior of IMMWN

This section deals with simulation based experiments to assess the robust estima-

tion performance of the IMMWN. For simulation purpose number of sensor nodes,

a number of random input data, parameters, output generation are similar to the

Section-2.5. Simulations are carried out for different percentage and strength of out-

liers. But only the simulation results for 10% and 50% of outliers having magnitude

10 are shown. The block length considered during simulation is 40. The simulation
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Figure 2.6: Overall convergence performance with 50% outliers in the desired data
with magnitude between (-10,10)

results shown are averaged over 20 independent experiments. The step size is 0.0002.

Comparative convergence performance among the ILMS,IMWN,IMSWN,SSIMWN,

SRIMWN, IMMWN,IMMSWN, SR-IMMWN and SS-IMMWN are plotted in Figures

2.5-2.8. From these plots it is evident that the IMMWN,IMMSWN, SS-IMMWN

and SR-IMMWN are robust against outliers in the desired data in the presence of

both biased and unbiased input data. The IMMWN and its variants provide better

convergence speed compared to the IMWN and its variants, even though the step

size of IMMWN is less than the step size of IMWN. As the percentage of outliers

increases, both the convergence speed and the steady state performance of all the

methods decreases. In Table-2.1 the steady state performance for all the proposed

methods are given for different block sizes. For this steady state performance compar-

ison, the parameter of the environment is
[

1
/√

5
1
/√

3
1
/√

5
1
/√

3
1
/√

5

]

. For

the same parameters the steady state performance between 5, 10 and 15 number of

sensor nodes based wireless sensor network are given in Table-2.2. In this case some

parameters are different from the other parameters. Centralized performance of the

proposed algorithm is given in the Figures 2.9, 2.10. Comparing simulation results of

the centralized method with the distributed method it is found that the performance

of both the algorithms is same. Because the centralized cost function is the sum of
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Figure 2.7: Overall convergence performance with 50% outliers in the desired data
with magnitude between (-10,10)for input data between (-0.1,0.9)

Algorithms 5 10 15 20 25 30 35 40
ILMS -20.2801 -22.3251 -24.0092 -21.6554 -26.4973 -21.1574 -17.5870 -21.9188
IMWN -40.1491 -39.7431 -41.9459 -41.0735 -39.8789 -38.8731 -39.5113 -39.6202
IMSWN -38.1951 -39.1210 -40.3224 -40.0848 -38.9507 -39.4155 -39.5456 -39.3503

SRIMWN -34.1768 -33.8340 -33.6544 -33.5863 -32.2761 -33.5502 -32.7823 -33.2312
SSIMWN -32.5545 -33.2619 -34.3665 -33.8093 -31.6090 -32.7876 -33.0385 -32.8978
IMMWN -42.4013 -36.8849 -36.8167 -34.3093 -33.4830 -32.4537 -30.7164 -30.8123
IMMSWN -42.8775 -39.5286 -38.3377 -35.1569 -34.5851 -33.6229 -32.3705 -31.9942

SR-IMMWN -36.8815 -34.0472 -32.9454 -30.6145 -29.5798 -28.8233 -26.9214 -26.3592
SS-IMMWN -38.3421 -35.6921 -34.7523 -31.5365 -30.5074 -29.9765 -28.6574 -27.6969

Table 2.1: Comparison of steady state performance for different block sizes

all the local cost function present in the every sensor node.

2.8 Computational Complexity

The Wilcoxon norm depends on the rank of the element. The rank of an element in a

group of data can be calculated using the indicator function. Let R(vi), i = 1, · · · , L
be the rank of the element vi in the vector v defined in (2.6). The rank of the element

can be calculated using the indicator function as

R (vi) =
L
∑

j=1

I(vi−vj) (2.43)
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Figure 2.8: Overall convergence performance with 50% outliers in the desired data
with magnitude between (-10,10)for input data between (0,1)

Algorithms 5 10 15
ILMS -6.0360 -12.0854 -21.5233
IMWN -40.8821 -41.1476 -41.4604
IMSWN -40.5875 -41.5194 -40.4329

SS-IMWN -34.2807 -34.5988 -33.2432
IMMWN -31.6626 -32.0614 -32.2958
IMMSWN -33.1592 -33.5503 -33.6202
SR-IMWN -27.3415 -27.9644 -27.6364
SS-IMWN -28.7503 -29.3808 -29.1598

Table 2.2: Comparison of steady state performance for different block sizes

where Ip is the indicator function given as

Ip =







1 p ≥ 0

0 p < 0
(2.44)

The number of operations required to compute the norm in (2.44) is to computed.

‖v‖w =
L
∑

i=1

√
12

(

R (vi)

L+ 1
− 0.5

)

vi (2.45)

Since the rank of one element requires l−1 number of comparisons then to calculate

the rank of all elements 0.5 × l(l − 1) number of comparisons are required. In order
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Figure 2.9: Overall convergence performance with 10% outliers in the desired data
with magnitude between (-10,10)for input data between (0,1)

to calculate the score value l number of divisions and l number of subtractions are

to be performed. However, this score needs to be calculated once in one block. Since

the score value is same for other blocks, depending upon the rank of the data the

corresponding score value is to be assigned. Thus for other blocks the score can be

calculated using only 0.5× l(l− 1) number of comparisons. In order to calculate one

error element in a block p number of multiplications and p−1 number of additions are

required. Hence for a block of error terms lp number of additions or subtractions and

lp number of multiplications are required. During the update operation 2lp number

of multiplications and lp number of additions are needed. Thus the total operations

required to compute (2.45) are: 0.5× l(l − 1) number of comparisons; 3lp number of

multiplications; and 2lp number additions.

In a similar way computation of (2.34) requires (l2 − 1)2 number of comparisons,

3l(l−1) number of multiplications and 2l(l−1)p number of additions. The comparisons

between the two algorithms are given in Table 2.3.

2.9 Conclusion

The chapter proposes different robust distributed gradient descent algorithms which

are essentially based on the Wilcoxon norm. The Wilcoxon norm and sign Wilcoxon

38



Chapter 2

Development of Robust Distributed Strategies for

Wireless Sensor Networks.

0 100 200 300 400 500 600
−40

−35

−30

−25

−20

−15

−10

−5

0

Block no

M
S

D
 i
n

 d
B

 

 
ILMS
IMWN
SS−IMWN
IMSWN
SR−IMWN
IMMWN
SS−IMMWN
SR−IMMWN
IMSWN

Figure 2.10: Overall convergence performance with 10% outliers in the desired data
with magnitude between (-10,10)for input data between (0,1)

Table 2.3: Comparison of Computational Complexity

Operation IMWN IMMWN
Comparisons l2 (l2 − l)2

Additions 2lp 2l(l − 1)p
Multiplications 3lp 3l(l − 1)p

l = length of the bock
p = order of the system

norm are minimized in a distributed manner to handle outliers in the desired data. It

is observed to provide slow convergence speed. In order to increase the convergence

speed during training sign regressor and sign sign Wilcoxon norms based algorithms

have been proposed. However, these algorithms yield poor performance in the pres-

ence of biased input data. In order to circumvent this, a novel modified Wilcoxon

norm is also proposed in the distributed algorithms. Simulation results demonstrate

that the proposed methods are robust against outliers in the desired data. The com-

putation complexity of the various algorithms have been assessed and compared. It is

observed that the IMWN and IMMWN require less number of computations compared

to the QR-IMWN.

The proposed algorithms can easily be extended to diffusion based distributed

implementation. Interested readers can also extend the study for finding out the con-

vergence and steady state analyses based upon the theory of the rank test. More
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sophisticated robust algorithms can also be designed by examining the analogy be-

tween the IMWN with other LMS variant algorithms such as normalized LMS and

variable step size LMS.
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In previous chapter some novel distributed algorithms are proposed to handle

outliers in the desired data. In some cases the input data is also affected by outliers.

This chapter employs the generalized-rank (GR) technique is as cost function instead

of least square error cost function to control the effects of outliers present in both

input and desired data. A novel indicator function and median based approach are

proposed to decrease the computational complexity requirement at the sensor nodes.

Further, to increase the convergence speed a sign regressor GR norm is also proposed

and used. Simulation based experiments show that the performance obtained using

proposed methods are robust against outliers in the desired and input data. In order

to enhance both the performance and convergence speed, high breakdown estimator

is also proposed and improved performance is demonstrated.

3.1 Introduction

Robust methods developed in the previous chapter are robust against outliers in the

desired data. However, the input data along with the desired data is also affected by

the outliers. The data is affected by outliers due to the following reasons:

1. In addition to the additive white Gaussian noise(AWGN), impulsive noise, whose

source is atmospheric noise [28], is also present in the input and/or desired data;

2. Since the input and desired data are collected using transducers, the measured

data may also be affected by outliers due to temporal instrumental error, which

may occur at the time of measurement;

3. In general, data is processed using finite length registers that leads to quantiza-

tion errors.

This type problem has been addressed in the literature [26], where total least

square is used. However, it is assumed that the strength of the data uncertainty is

bounded, which may not occur in the real environment due to the presence of impulsive

noise [28]. Therefore, it seems natural to use robust cost functions based methods

for distributed estimation of environmental parameters. Robust cost functions are
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broadly classified into three major groups such as M-type, L-type and R-type [12,

13, 15]. Among the M-estimators, the GM and MM estimators [13] are often used

by statisticians to handle outliers in both desired and input data. The former is a

generalized method of M-estimators which depends upon some predefined parameters

that affect its performance. The predefined parameters depend on the deviation of

the noise distribution from the Gaussian assumption. Since the data is distributed

among the nodes, estimation of these parameters requires more communication and

computation energy. In simple form the estimator is not scale equivariant. In order

to make it scale equivariant a robust scale factor needs to be used. Hence the scale

equivariant method requires estimation of the robust scale factor and then estimation

of the parameters using this robust scale, which needs more computation at the sensor

node. In addition to higher computational and communication overheads, the GM

estimator provides inferior performance in the presence of heavy tailed noise. The MM

estimator is more suitable for a heavy tailed noise scenario. In addition it employs a

redescending function [13], which may trap the soution to a local minima. In order

to avoid this problem, the scale based estimators such as median absolute deviation

(MAD) or the least median squares (LMS) estimators may be used at the beginning

of the estimation to get a parameter near to the global minima and then switch to

the MM estimator to achieve an improved estimation performance. Although this

method gives good estimation accuracy in the presence of heavy tailed noise, it also

suffers from the problem of fine tuning of predefined parameters and estimation of

scaling factor similar to the GM estimator. Thus these M-estimators are not suitable

for implementation in distributed sensor network scenario.

The L-estimators are themselves scale equivariant and do not depend upon any

predefined parameters but suffer from poor estimation performance [12, 15]. On the

other hand, the R-based methods are scale equivariant, independent of any prede-

fined parameters and offer good estimation capability. Hence these type of estimator

have drawn the attention of the signal processing community. The Wilcoxon norm

which belongs to the R-estimators has been introduced in designing robust learning

machines [37] and in designing robust system identification [32]. However, this is only
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robust against outliers in the desired data. The GR estimator which comes under R

estimators is a good technique to estimate the regression parameters in the presence

of outliers both in the desired and input data [16]. It does not depend upon any pre-

defined parameters and also provides better estimation accuracy. Therefore the GR

estimator is chosen in this chapter and appropriately used for distributed intended

parameters.

In this chapter we have developed two new algorithms using the GR technique

for distributed estimation of the parameters in presence of outliers in the input as

well as in the desired data. All these techniques are implemented using incremental

distributed strategy. The first technique is a direct block implementation of the GR

estimator in the incremental distributed strategy using a gradient based method. A

novel median based approach is used here which takes less computational energy of

the sensor nodes. The second one is a sign regressor GR estimator which yields better

convergence speed but its performance is slightly inferior to the previous one. Fur-

thermore to increase the performance and convergence of these two proposed methods

a median based high breakdown estimator is also proposed. However, this new tech-

nique requires relatively more computation than the previous methods.

The bold capital and small letters are meant for matrices and vectors, respectively

and realization of elements in a matrix or vector are denoted by small letters. The

input data at node k and time instant i is represented by xk,i, whereas the entire

spatial input data in the environment at same time instant i is Xi. The entire spatio-

temporal data from the first iteration to nth iteration is represented by X (n). The

notation for desired data is similar to the input but with a letter y.

3.2 Problem Formulation

As described in Section 2.2 the entire spatio-temporal input and desired data can be

related as

y (n) = XT (n)w + v (n) (3.1)
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Due to the presence of outliers, the available input is a corrupted version of the

original input. The corrupted version of input is given by Xc(n). When outliers are

presented in the input data the matrix version of the measured input is given as

Xc (n) = XT (n) + D (n) (3.2)

where D(n) is the outliers present in the input data. The objective is to estimate

w from y(n) and Xc(n). In the presence of outliers, the estimation problem can be

formulated as

w∗ = arg min
w

∥

∥

∥
y − (Xc)T w

∥

∥

∥

norm
(3.3)

In terms of geometry, (3.3) can be viewed as to estimate w∗ so that norm distance

between the estimated output (Xc)Tw∗ and the desired output is minimized.

3.3 Generalized Rank (GR) Norm

In order to obtain the estimate w present in the problem (3.3), an incremental mini-

mum generalize rank norm is proposed. To achieve this objective let us first discuss

the Wilcoxon norm [16]. This section deals with the sensitivity and robustness be-

havior of rank based methods taking one example, i.e. the Wilcoxon norm which

is demonstrated in Section 2.2.1. This is a very simple norm based upon the rank

order statistics. Though this norm is merely robust against outliers in the desired

data [16, 37], using the idea behind this robustness property, it is possible to devise

an improved rank based norm to handle outliers both in the input and desired data.

The Wilcoxon norm of the vector v is shown in (2.7). The Wilcoxon norm is

robust against outliers in the desired data. In order to understand the logic behind

the robustness, its sensitive analysis is required [16]. Sensitivity of a norm defines

the rate of change in norm value with respect to change in the error value. If the

sensitivity of a norm is a bounded function of the error then the norm is robust. As

the Wilcoxon norm in (2.7) depends upon the magnitude and the rank order of the
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error, a small change in error changes its magnitude part but not the rank. Thus its

sensitivity is less and the norm is robust. However in the case of the l2 norm, which is

used in [5,7,10,11], the square of the errors is to be minimized. Therefore, the change

in norm value is the square times the change in error value. Thus the norm is very

sensitive to the error. Therefore, the solution is biased towards the data yielding a

large error which is essentially due to the outliers in the desired data.

However, both the Wilcoxon and l2 norms are not robust against outliers present

in the input data. This is explained as follows. Consider a system with its output

as the convolution of the input and system parameter vectors [34, 35]. In this case

the vectors of X(n) in the model (3.1), is the tap delay version of the input samples.

Hence, if one sample is affected by an outlier it affects at total p estimated outputs.

This is similar to the occurance of a burst error in the desired output. Moreover, if

two or more consecutive input samples are affected by outliers, then the estimated

output value is due to the additive effect of such input outliers. Hence under such

condition it is difficult to estimate the parameters in(3.3) using either l2 or Wilcoxon

norm. However this effect can be mitigated by studying absolute magnitude of the

error difference. The Wilcoxon norm (3.2) for the vector v in (2.7) can be expressed

in an alternative form as

‖v‖w =

√
3

L+ 1

∑

i<j

|vi − vi| (3.4)

The proof of representation as in (3.4) is given in the Section B.1. An indicator

function based approach is used in this derivation. It may be noted that this indicator

function is the basis of deriving our proposed algorithms.

It can be observed from (3.4) that in case of the Wilcoxon norm, the weightage for

different absolute error deviation is same ,i.e.
√

3
L+1

. This indicates that the Wilcoxon

norm gives equal importance to every absolute error difference. Since the error is

related to the desired and input in affine manner, the notion that the contribution of

the Wilcoxon norm is the same for every absolute error difference, can also be extended

to both input and desired signals. In other words the Wilcoxon norm provides the
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same importance to every absolute input and desired differences. Therefore, the

corruption of the input data leads to a new absolute input difference which is more

than the previous input difference. The aforesaid explanation indicates that outliers

in the input lead to change in the absolute error difference. On the other hand, taking

different coefficients in (3.4) for different absolute error deviation, the effect of outliers

in input data can be decreased [16]. Using this important concept robust distributed

algorithms are designed to handle outliers both in the input and desired data.

The function defined in (3.4) with different coefficients, is called generalized rank

norm. The GR norm of the vector v is

‖v‖GR =
∑

i<j

(wij |vi − vj|) (3.5)

This can be proved to be a pseudo norm for wij > 0 and wij = wji [16]. Considering

the structure of the input data, i.e. tap delay structure, a median based approach

is used to calculate wij. The median based approach and indicator function are

the novelty of the proposed robust design. For distributed implementation of the

generalized R norm for WSNs the block formulation of the problem is needed.

3.4 Proposed Method of Distributed Parameter

Estimation using Generalized R Norm

In order to estimate the parameter w the GR norm defined in (3.5) is used. In the

present case the objective is

w∗ = arg min
w

∥

∥

∥
y − (Xc)T w

∥

∥

∥

GR
(3.6)

Since XC(n) and y(n) contain the entire spatio-temporal data up to time n, the

solution of (3.6) can only be achieved by assessing the entire data to one node. This

requires a large number of communication overheads similar to that which occurs in

classical methods. But the incremental method of distributed approach requires that
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∥

∥y −XCw
∥

∥

GR
=

N
∑

i=1

∥

∥yi − (Xi,C)Tw
∥

∥

GR
(3.7)

where, yi and Xci are the desired and input data sets at the ith node. Since

GR norm is a nonlinear function of errors, it is impossible to achieve the global

optimum solution (3.6) by incremental distributed strategy. On the other hand to

design a global cost function, which (i) should use global information, (ii) should be

implemented by incremental method and (iii) should be robust against outliers in

desired and input signal the local minimum generalized R cost function is defined. It

is given by

min
w

∥

∥yi − (Xi,C)Tw
∥

∥

GR
(3.8)

Based on the local cost function(3.8), the global cost function is defined as

min
w

N
∑

j=1

∥

∥yj − (Xj)Tw
∥

∥

GR
(3.9)

The solutions of (3.6) and (3.9) are not the same. The new cost function is

the sum of all the generalized R cost functions at individual nodes. Since the cost

function at every node is a norm then sum of all cost functions in(3.9), which is

an affine function of each cost function, can also be shown as a pseudo norm by

using convexity properties [38]. Solution of this cost function can be obtained by an

incremental strategy [5]. In order to achieve this, each node is to find the minimum

generalized R solution for the parameter w and then transmit this estimation to the

next node. The present node employs the estimated values of the previous node

as priori information and then uses its own data to further refine the estimation.

However to calculate the local cost function(3.8) it is required to wait until the end

of the measurement process. This requires more computation and also the process

is very slow. In order to circumvent this problem, the local cost function is again

modified to a block sum of cost function whose optimal solution can be calculated
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using block processing of the data.

To facilitate such processing the local cost function is defined as

min
w

n/L
∑

k=1

∥

∥yi,k − (Xi,k,c)
Tw
∥

∥

GR
(3.10)

This cost function is not equal to the cost function defined as(3.8). The difference

between (3.8) and (3.10) is similar to the difference between the global cost functions

defined in (3.6) and (3.9). Taking the sum of all local cost functions defined as in

(3.10), the global cost function is obtained as

min
w

n/L
∑

k=1

N
∑

j=1

∥

∥yk,j −XT
k,jw

∥

∥

GR
(3.11)

The present objective is to get the optimal solution for (3.11) using incremental

distributed strategy. Here the block formulation of the problem is used which is given

in Section 2.2.2. Collecting all the spatial data from the first block measurement time

to the pth block measurement time into a matrix, we get

X (p) =
[

X1 X2 · · · Xp

]

(3.12)

and the corresponding measured data which acts as desired vector as

y (p) =
[

yT
1 yT

2 · · · yT
p

]T

(3.13)

Let the estimated parameters using (3.12)and (3.13) be wp. Similarly wp+1 is

obtained using X (p+ 1) and y (p+ 1). However, with time the size of input and

desired data increases. Hence large number of memory space and computation unit

is required to estimate the optimum parameters. In order to avoid this an iterative

estimation method is introduced by which wp+1 is estimated from the previous esti-

mate wp and the new data set at the (p + 1)th block measurement time. Since the
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data collected during (p+1)th block measurement time is present in every sensor node

throughout the environment, the incremental method is used to achieve the iterative

estimation of the parameters. Similar to the incremental method given in Section 2.3,

every sensor uses its previous estimate which is received from the previous node and

its own data. Further to investigate this spatial iterative formulation, let the spatial

estimated parameters at node k during (p+ 1) iteration be represented as ψk,p+1.

Therefore in an incremental distributed strategy during the (p + 1)th spatial re-

cursion, the (k)th node transmits the data ψk,p+1 to the (k + 1)th node. Using ψk,p+1

and the (p+ 1)th measured data, the (k+ 1)th sensor node calculates ψk+1,p+1. Using

the gradient descent technique the iterative estimation is given by

ψj+1,k+1 = ψj+1,k − µ∇J
(

ψj+1,k

)

(3.14)

The GR norm is used in (3.14) to update the parameters. Applying the generalize

R norm for vector of errors in (k + 1)th node we get

Jj+1,k

(

ψj+1,k

)

=
∑

l<m

wlm |ej+1,k+1,l − ej+1,k+1,m| (3.15)

where

ej+1,k+1,l = yj+1,k+1,l − xT
j+1,k+1,lψj+1,k (3.16)

.

and

wlm is the weighting factor,(the procedure for finding this is given in the subsequent

subsections) which depends upon the input xc
j+1,p+1. This factor helps to decrease

the sensitivity of the outliers in the input data.

Taking the gradient of the cost function with respect to the parameter wp and then

using this gradient to update the parameter, the final update equation is obtained as
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ψj+1,k = ψj+1,k + µ
∑

i<j

wijsign
((

yk+1,j − xT
k+1,jψk,j

)

−
(

yk+1,j − xT
k+1,jψk,j

)

(xk+1,j − xk+1,j)
)

(3.17)

Following the above procedure for all the sensor node starting from node 1 to node

N during (p+ 1) block measurement time, wp+1 is calculated from wp as

wp+1 ≡ ψN,p+1 ← · · ·ψ2,p ← ψ1,p ≡ wp (3.18)

3.4.1 Calculation of wij in GR Norm

Figure 3.1: Input data in multidimensional space with and without outliers

This subsection describes the method for finding of the weighting factor wij present

in (3.18). This is responsible for the stability of the algorithm against outliers in the

input space [16]. Since the input data contributing to the output error is a vector

of dimension p the investigation of wlm requires multivariate outliers analysis of di-

mension p. Multivariate outliers analysis is based on the multivariate distribution

of the random vector variable of interest. In the present case the multivariate ran-

dom variable is a vector random variable of input data. It may be denoted that

the multivariable distribution is the position distribution of time realization vectors

corresponding to the multivariable of interest in multidimensional space. The input
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data free from outliers remains close to each other in multidimensional space, where

as data affected by outliers remains away from the correct data as well as from each

other depending upon the strength of the outliers. Parametrically a vector is judged

whether it is affected by outliers by threshold value which depends on some norm

distance from the center of points having no outliers to the point of interest. In order

to achieve this the first step is to identify the input vectors not affected by outliers.

Since the points not affected by outliers remain close to each other, a shape defined

by some parameters can be formed enclosing these points. In other words the shape

should enclose the convex hull of the points not affected by outliers. For this purpose,

an ellipsoid is a suitable geometry because (i) it is being used for clustering, (ii) it

gives less error to enclose a random structure and (iii) it can be implemented using the

Khachiyan algorithm [39]. Hence if a minimum volume ellipsoid is formed enclosing

the points not affected by outliers then using the parameters of the ellipsoid we can

differentiate the points affected by outliers. Furthermore, the strength of the outliers

from the distance of the point of interest from the center of the ellipsoid can also be

measured. This distance information is a key parameter in designing the weighting

factor.

An ellipsoid is defined by a matrix, say Q, that describes the spread and orientation

of the ellipsoid in different direction, and a vector, say c, that represents the center

of the ellipsoid. With these parameters an ellipsoid is defined as

χ =
{

x
∣

∣

∣
(x− c)T Q−1 (x− c) ≤ 1

}

where, c ∈ ℜp and Q ∈ ℜp×p.

For a vector of x of dimension p, (x − c)TQ−1(x − c) is called the Mahalanobis

distance of the vector position from the center of the ellipsoid. Large Mahalanobis

distance indicates that the point is affected by strong outliers. Since the points not

affected by outliers remain close to each other the formation of a minimum volume

ellipsoid covering any 50% of the data(assuming 50% of data are not affected by

outliers), can differentiate outliers affected data from rest of the data. Therefore at

first a minimum volume ellipsoid covering 50% of the input data is formed. Then

Mahalanobis distance of each point using the parameters of the minimum volume

ellipsoid is caculated. Subsequently the weight factor corresponds to each point is

52



Chapter 3

Robust Incremental Adaptive Strategies to Handle Outliers in

Both Input and Desired Data

obtained.

3.4.2 Construction of MVE Algorithm Corresponding to the
Vectors Obtained From Tap Delay Filter

In most of the cases the system can be explained by a tap delay system [34,35]. Input

data obtained from these system exhibits maximum relation with the previous and

future input data. This similarity motivates to design efficient method for estimation

of MVE. In the present case a two dimensioned vector is illustrated to facilitate a

pictorial representation . However this method can easily be extended for vectors

having more dimensions. Let us define a vector u as

u(i) =
[

u1,i u2,i

]T

where u(i) refers to the ith realization of the random vector variable u. Then u1,i

and u2,i refer to the ith realization of the first and second elements of the random

vector variable, respectively. If the position of the above random vector variable u

is plotted in a space of dimension 2, then the first and second coordinate will be the

first and second element of the random variable, respectively as given in Figure 3.1.

Particularly, for a tap delay linear input system, the time realization of input random

vector variable is obtained through the shifting and, then loading operation of a single

dimension random variable, which is the input to the system. Let the input random

variable corresponds to the input vector random variable be v. Thus, the ith and

(i+ 1)th realizations of the random vector variable u are given by

u (i) =
[

v (i) v (i− 1)
]T

u (i+ 1) =
[

v (i+ 1) v (i)
]T

(3.19)

respectively. From (3.19) it can be observed that the first vector of first coordinate

is same as the second coordinate of the second vector. This observation can also be

found for input vector variable of higher dimensions, e.g. for an input vector of

dimension m, first element of the one vector is same as the second element of the

next realization and also same with the third element of the third vector and so on.

This observation indicates that for a tap delay system, the vectors take a position in

multidimensional space with equal distribution along every coordinate. Similarly, if
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an outlier affected input value v∗(i) at any realization, say i , would enter the tap

delay system then the realization of the input vector variable at the same instant and

in next instant would be

u (i) =
[

v∗ (i) v (i− 1)
]T

u (i+ 1) =
[

v (i+ 1) v∗ (i)
]T

(3.20)

respectively. Therefore an outlier affects every coordinate with the same magni-

tude until it comes out of the system. Thus if the position of all these vectors would

be plotted it looks symmetrical along every coordinate. Similar situation can also be

explained for more than two dimensioned case. As a result affected and not affected

data lie symmetrically with respect to the overall mean. Hence for this case the MVE

enclosing the data not affected by outliers becomes a circle. The circle is one particu-

lar case of an ellipsoid in which all the off diagonal elements of the matrix Q are zero

and diagonal elements are same. Hence, for such a tap delay system the objective is

to find the center and radius of the circle covering 50% of the input vector data which

may occur in extreme bad situation.

Median based technique differentiates the lower half elements of a data set from

the upper half. This notion helps to use median based technique to find a circle

enclosing 50% of the input data. For further explanation about the proposed method

of finding data not affected by outliers, consider a vector v ∈ ℜn.

v =
[

v1 v2 · · · vn

]

(3.21)

Take the median of the vector v to get the middle value element when the per-

centage of outliers is less than 50%. In this case the probability that the median value

is not affected by outliers is maximum. In order to collect the points not affected by

outliers take the median of the absolute difference between the median value and the

elements. This median value gives the threshold value to decide whether an element

is affected by outlier or not.

For vector of data this process can be carried out by relating the median value
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of an individual vector with the median of the median of all vectors. Subsequently

the radius and center of the circle is calculated using a median based procedure

detailed below. Let n number of points say u1,u2,...,un be arranged in one ma-

trix as u =
[

uT
1 uT

2 · · · uT
n

]T

Let ηu1 and ηηu
represented as median(u1) and

median(ηu) respectively, where ηu =
[

ηu1 ηu2 · · · ηun

]

Let the difference of

the median is given as χu1 =
∣

∣ηηu
− ηu1

∣

∣. Similarly let ηχu
= median (χu), where

χu =
[

χu1 χu2 · · · χun

]

. All the input data whose χu1 is less than equal to

ηχu
are collected into a vector u new. Then the following two extreme values are

computed umax
new = Maximum(unew)&umin

new = Minimum(unew) Subsequently the center

and radious of the circle is obtained as c = (umax
new + umin

new) /2, (umax
new + umin

new) /2 and

r = (umax
new − umin

new) /2. Let Q = Diag {11,N × r}. Using Q, wi is computed as [16]

wi = min







1,
χp,n−1

√

(ui − ci)
T Q−1 (ui − ci)







(3.22)

Subsequently wj is computed from (3.22) by replacing i by j. Finally wij is

evaluated as

wij = wi × wj (3.23)

3.4.3 Stepwise Description of the Update Equation

Step1:Transmission of data from k − 1th node is ψk−1,i. Data from kth node is uk,i

and dk,i.

Step2:Calculation of wi,j from the input data.

Step3:
ψk+1,i = ψk,i + µ

∑

i<j

wijsign
((

yk+1,i − xT
k+1,iψk,i

)

−
(

yk+1,i − xT
k+1,iψk,i

)

(xk+1,i − xk+1,j)
)

Step4:Transmission to k + 1th node is ψk+1,i
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3.5 Sign Regressor GR Estimator

The (3.5) can also be rewritten using an indicator function as shown below, whose

derivation is established in Section B.2.

‖v‖GR =
L
∑

i=1

L
∑

j=1,j 6=i

(

wijI(ei−ej) − wijI(ej−ei)

)

ei (3.24)

The gradient of the GR norm in the above stated form is

L
∑

i=1

L
∑

j=1,j 6=i

(

wijI(ei−ej) − wijI(ej−ei)

)

xi (3.25)

This leads to the update equation as

ψk+1,i = ψk,i + µ
L
∑

i=1

L
∑

j=1,j 6=i

(

wijI(ek+1,i−ek+1,j) − wijI(ek+1,j−ek+1,i)

)

xk+1,i (3.26)

Changing the sum of vector scalar multiplication form that is in right rand side of

(3.26) to a matrix vector multiplication form, it yields

ψk+1,i = ψk,i + µWk+1,iXk+1,i (3.27)

As shown in [5], the incremental LMS update equation is

ψk+1,i = ψk,i + µek+1,ixk+1,i (3.28)

Comparing (3.27) with (3.28), it is observed that the gradient term in both equa-

tions contain an input term multiplied with another term, i.e. a score function in case

of GR norm and error value in case of incremental LMS. This observation concludes

that the work of the score term in the case of the generalized R norm is similar to

error term in the case of ILMS. This analogy motivates the use of other LMS vari-

ants in the GR norm with an objective to achieve good convergence speed or good
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estimation performance. For example, it is known that sign regressor LMS is faster

than the LMS with less estimation performance. Thus the question arises whether the

notion of sign regressor LMS in the GR norm can be incorporated to get an algorithm

that would provide faster convergence speed than the previous one and also would be

robust against outliers in both input and desired data.

This has been investigated here. The update equation for the sign regressor LMS

is

ψk+1,i = ψk,i + µek+1,isign (xk+1,i) (3.29)

Comparing (3.28) and (3.29), it is observed that the update equation for sign

regressor LMS is same as the LMS except with sign of the input data. Since input

data term is also there in GR norm, sign regressor GR norm is proposed by taking

the sign of the input data in the update equation. Hence by taking the sign of the

input data in (3.27), we get

ψk+1,i = ψk,i + µWk+1,isign (Xk+1,i) (3.30)

Subsequently changing the sum of vector matrix multiplication term in (3.30) to

sum of scalar vector multiplication term the desired form is obtained as

ψk+1,i = ψk,i + µ
∑

i<j

sign (ek+1,i − ek+1,j) (sign (xk+1,i)− sign (xk+1,j)) (3.31)

3.6 Simulation Results and Discussions

This section deals with simulation based experiments to assess the robust estima-

tion performance of the proposed methods. The number of nodes taken in the en-

vironment is 5. The model parameters to be estimated from the environment is
[

1
/√

5 1
/√

5 1
/√

5 1
/√

5 1
/√

5
]

. The input data generated is a zero mean

uniformly distributed random number lying between (−0.5, 0.5). The output data is
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generated by passing the white input data through the model having feed forward

parameters given above. The output data is added with additive white Gaussian

noise having an SNR 30dB. Then the desired data is contaminated with outliers at

random positions having magnitude randomly varying between (−10, 10). Further

the input data is also mixed with outliers continuously with a random magnitude be-

tween (−3, 3). The block size is taken to be 40. The number of input samples used are

8000. Simulations have been carried out for separately with 10%, 20%, 30%, 40%, 50%

outliers in both input and desired data. However only the simulation results for 10%

and 50% are shown in the chapter. The results presented are the average result over

50 independent experiments.

The overall convergence performance results at node 1 are shown in Figures 3.2-

3.5. The step size chosen is 0.001. From the simulation results it is observed that

incremental LMS and incremental minimum-Wilcoxon-norm do not lead to optimum

convergence while incremental minimum GR norm and incremental minimum sign

GR norm have the potentiality to achieve improved convergence in presence of out-

liers both in desired and input data. It can be observed that the convergence speed

for incremental sign regressor minimum GR norm is faster than the incremental min-

imum GR norm but residual MSD is high. These comparative results are identical

to convergence behavior between LMS and sign regressor LMS. As percentage of out-

liers increases both convergence speed and steady state performance of the proposed

algorithms correspondingly decreases. However in presence of constant outliers in

input data if the outliers is increased in the desired data the the performance de-

creases but convergence speed increases. This happens due to the masking effect of

the desired outliers with these at input. Steady state performance between 5, 10 and

15 number of sensor nodes based wireless sensor network is given in the Table-5.1

. For this steady state performance comparison the parameter of the environment

is
[

1
/√

5 1
/√

3 1
/√

5 1
/√

3 1
/√

5
]

. Here some parameters are different from

the other parameters. Centralized performance of the proposed algorithm is given

in the Figures 3.6, 3.7, 3.8 and 3.9. Comparing simulation results of the centralized

method with the distributed method it is found that the performance of both the
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Algorithms 5 10 15
ILMS -4.6947 -7.9699 -10.8031
IMWN -0.8861 -1.9555 -3.1579
IMGRN -25.8303 -24.8967 -24.4575
IMHBR -33.6345 -33.1457 -32.4596

Table 3.1: Comparison of steady state performance for different block sizes

algorithms are same. Because the centralized cost function is the sum of all the local

cost function present in the every sensor node.
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Figure 3.2: Convergence performance at node 1 with 10% outliers in input data with
magnitude between (−3, 3), and 10% outliers in desired with magnitude between
(−10, 10)

The conventional GR suffers from slow convergence particularly when outliers are

present in both the input and output data. Hence sign-regressor has been proposed

as an extension of GR. This new algorithm offers faster convergence. However its

performance slightly less than the GR. In case of sign regressor GR norm sign of the

input data is considered in pace of the original data. As a result the variance of the

gradient term increases. Hence for the same step size the convergence speed of sign

regressor GR norm increases but the optimum MSD performance decreases.
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Figure 3.3: Convergence performance at node 1 with 10% outliers in input data with
magnitude between (−3, 3), and 40% outliers in desired with magnitude between
(−10, 10)

3.7 High Breakdown Estimator & Adaptive Gen-

eralized R Estimator

3.7.1 High Breakdown (HBR) Estimator

In the previous case the weights in (3.23), are designed using only the information

from the input data and hence the performance is dependent on the input data only.

Therefore to design an improved algorithm which is superior to the previous method

both in convergence and performance, the concept of HBR estimator [16] is incorpo-

rated. The HBR estimator is function of both the input and desired data. Here the

same proposed median based approach given in Section 3.4.2 is used in finding the

parameters of the HBR function. In order to employ the HBR estimator let us define

ψ (t) =



















1 t ≥ 1

t − 1 < t < 1

−1 t ≤ 1

(3.32)

Further let mi = ψ

[

b
/

(

(

xc
k,(i−1)l+j − c

)T

Q−1
(

xc
k,(i−1)l+j − c

)

)]

. Here c and

Q are robust estimates of location and scatter in input space using the same tech-
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Figure 3.4: Convergence performance at node 1 with 40% outliers in input data with
magnitude between (−3, 3), and 10% outliers in desired with magnitude between
(−10, 10)

nique like as shown in Section 3.4.2, b is the tuning constant. If ψk−1,i is the es-

timate of the optimum parameter then the initial residual ek−1,k,i(j) = yk,(i−1)l+j −
(xc

k,(i−1)l+j)
Tψk−1,i. Considering the weights as

wlm = ψ





∣

∣

∣

∣

∣

∣

tmlmm
(

ek−1,k,i (l)/σk,i

)(

ek−1,k,i (m)/σk,i

)

∣

∣

∣

∣

∣

∣



 (3.33)

where t is the tuning constants and σk,i is the MAD of the error which is given by

MAD = 1.483meds |ek−1,k,i(s)−medt {ek−1,k,i(t)}| (3.34)

Taking qm =
(

xc
k,(i−1)l+m − c

)T

Q−1
(

xc
k,(i−1)l+m − c

)

, we can write

ml = ψ

(

b

ql

)

= min

{

1,
b

ql

}

(3.35)

Hence the weights can be estimated as
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Figure 3.5: Convergence performance at node 1 with 40% outliers in input data with
magnitude between (−3, 3), and 40% outliers in desired with magnitude between
(−10, 10)

wlm = min

{

1,
cσk,i

|ek−1,k,i(l)|
σk,i

|ek−1,k,i(m)| min

{

1,
b

ql

}

min

{

1,
b

qm

}}

(3.36)

This technique is applied to both incremental minimum GR and incremental min-

imum sign GR norms. The results obtained are depicted in Figures 3.10-3.13. These

figures illustrate the comparisons among all four estimators. In this case the number

of data used is 12000 with block size of 40. The simulation results shown are the

average over 50 independent experiments. The step size is 0.005 for GR norm case

and 0.001 for HBR norm case. As expected it is observed that the convergence and

performance of the HBR estimator is improved.

3.7.2 Adaptive Generalize R Estimator

The derivation for the circle in Section 3.4.2 is based on the assumption that 50%

of the input data are affected by outliers. However in some cases if the percentage

of outliers is less then some information bearing data would be treated as outliers.

In that case the convergence speed and performance of the algorithm deteoriate. In

order to avoid this, an adaptive threshold can be obtained by which the parameters of

the circle can be adaptively chosen. The simuation results for adaptive GR and HBR
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Figure 3.6: Overall convergence performance with 10% outliers in input data with
magnitude between (−3, 3), and 10% outliers in desired with magnitude between
(−10, 10)

Algorithm Computation Performance Convergence
IMGRN Less Medium Less

SR-IMGRN Less Less Medium
IMHBRN More Good Medium

SR-IMHBRN More Good Fast
AdIMGRN Less Medium Fast

SR-AdIMGRN Less Less Fast
AdIMHBRN More Good Fast

SR-AdIMHBRN More Medium Fast

Table 3.2: Overall comparison among all the adaptive strategies to handle outliers
both in the input and the desired data

estimators are given in Figure 3.15. In this case 10% input data is contaminated by

outliers. The estimators are designed for adaptive case and general case by considering

25% and 50% input data is affected by outliers. From simulation results it is found

that the adaptive estimators show faster convergence speed than the general case.

3.8 Conclusions

From the investigation and simulation results it is shown that the proposed techniques

are robust against outliers in both desired and input data. Hence these approaches can

successfully applied in impulse noise environment. Since the median based approach
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Figure 3.7: Overall convergence performance with 40% outliers in input data with
magnitude between (−3, 3), and 10% outliers in desired with magnitude between
(−10, 10)

requires less computational complexity it can easily be applied at a wireless sensor

network node. The HBR estimator can further increase estimator performance as it

employs the information of both input and desired data.

In this chapter the technique is applied only using incremental strategy. This work

can easily be extended to the problem of robust estimation by using diffusion strategy

in which there is no need of a cyclic path connecting each sensor node present in the

environment. In the present case the model is a lumped linear parameter model. The

same approach can also be extended for nonlinear and distributed parameter based

plants or systems. The convergence analysis of the proposed methods can be carried

out as a future work using the sophisticated mathematical analysis based upon rank

statistics [16].

64



Chapter 3

Robust Incremental Adaptive Strategies to Handle Outliers in

Both Input and Desired Data

0 200 400 600 800 1000
−35

−30

−25

−20

−15

−10

−5

0

5
Overall performance

Block no

N
or

m
al

iz
ed

 M
S

D
 in

 d
B

 

 

Incremental minimum GR norm
incremental LMS
incremental minimum wilcoxon norm
Incremental minimum sign regressor GR norm
Incremental minimum  HBR norm
Incremental minimum sign regressor HBR norm

Figure 3.8: Overall convergence performance with 10% outliers in input data with
magnitude between (−3, 3), and 40% outliers in desired with magnitude between
(−10, 10)
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Figure 3.9: Convergence performance with 40% outliers in input data with magnitude
between (−3, 3), and 40% outliers in desired with magnitude between (−10, 10)
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Figure 3.10: Convergence performance at node 1 with 10% outliers in input data
with magnitude between (−3, 3), and 10% outliers in desired with magnitude between
(−10, 10)
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Figure 3.11: Convergence performance at node 1 with 10% outliers in input data
with magnitude between (−3, 3), and 50% outliers in desired with magnitude between
(−10, 10)
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Figure 3.12: Convergence performance at node 1 with 50% outliers in input data
with magnitude between (−3, 3), and 10% outliers in desired with magnitude between
(−10, 10)
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Figure 3.13: Convergence performance at node 1 with 50% outliers in input data
with magnitude between (−3, 3), and 50% outliers in desired with magnitude between
(−10, 10)
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Figure 3.14: Simulation for adaptive estimator(10% outliers with magnitude (-3,3)
and 10% outliers in the desired data with magnitude(-10,10))
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Figure 3.15: Simulation for adaptive estimator(10% outliers with magnitude (-3,3)
and 50% outliers in the desired data with magnitude(-10,10))
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The previous chapters deal with the development of some novel algorithms to han-

dle outliers in the desired or in both the input and the desired data. The previous

problems shown in Chapters 2 and 3 are reformulated in this chapter as a pseudo least

squares(PLS) problem. The solution to the problem is obtained by using QR decom-

position. Through this formulation both the convergence speed and performance of

the algorithms increase. To demonstrate the potential of this algorithm simulation

study is carried out for the distributed estimation of parameters in the presence of

weak to strong outliers in the data. The simulation results show that the performance

of the new algorithm is robust against outliers and provides better convergence com-

pared to the previous algorithms. Further to achieve low communication overhead, a

new scheme is introduced and its performance has been assessed through simulation

study. It is observed that the proposed scheme even though exhibits slightly inferior

performance but offers the substantial reduction in terms of communication overhead.

4.1 Introduction

Wireless sensor nodes comprising the sensing unit, the processing unit, the memory

unit, transmission unit and power supply unit are envisioned to solve many real

life problems. In many interesting applications the spatio-temporal data present in

the environment is required for the estimation of some parameters of interest. The

classical method based on the FC requires more power to fulfill the objectives. For

this problem the in-network processing capability of the sensor nodes should be used

as described in the previous chapters.

This chapter deals with the development of two novel algorithms to handle out-

liers in the data using the Wilcoxon norm and the generalize R(GR) norm techniques

by formulating these cost functions as PLS cost functions. Then these are used for

distributed estimation of the parameters in presence of outliers in the desired as well

as in both the input and the desired data. However, the main drawback associated

with this type of formulation is that it requires large computations compared to that

of the previous methods. Due to the development of low power VLSI and powerful

processors this can be easily implemented in WSNs. The techniques are called QR-
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based incremental minimum-Wilcoxon-norm (QR-IMWN) and QR-based incremen-

tal minimum-GR-norm (QR-IMGRN). For QR-IMGRN the median based approach,

which is already employed in Chapter 3, is used to design a computationally efficient

algorithm. Further, to decrease the communication overheads a QR decomposition

based low communication incremental minimum Wilcoxon norm (QR-LCIMWN) and

QR based low communication incremental minimum GR norm (QR-LCIMGRN) are

also proposed. From exhaustive simulation studies it is found that the proposed

methods provide superior convergence and performance compared to the previous

methods.

4.2 Problem Formulation

As given in Chapters 2 and 3, the entire spatio-temporal data of an environment can

be related by

y(n) = (Xu)T (n)w + v(n) (4.1)

When there is the presence of outliers in the input data the available input X(n)

is a corrupted version of the original input data Xu(n). Recall from (3.3) that the

objective is to estimate the parameters w from y(n) and X(n). This can be formulated

as an optimization problem based on weighted LS formulation as

w∗ = arg min
w

∥

∥y(n)−XT (n)w
∥

∥

2

Λ(n)
(4.2)

where X (n) =







Xu (n)

Xu (n) + D (n)

if input is not affected by outliers

if input is affected by outliers

In terms of geometry (4.2) can be viewed as to estimate w∗ so that the norm

distance between XT (n)w∗ and the desired space is minimum.
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4.3 Pseudo-Least-Squares(PLS) Formulation

In this section the Wilcoxon norm and the generalize rank norm are formulated as PLS

cost functions. Further this cost function is used for the estimation of the unknown

parameters w present in (4.1).

4.3.1 PLS Formulation of the Wilocoxon Norm

The Wilcoxon norm, which is explained in Section 2.2.1 is usually applied over a

vector. The Wilcoxon and the sign Wilcoxon norms of the vector v shown in (2.7)

are ‖v‖w =
l
∑

i=1

(√
12
(

R(vi)
l+1
− 0.5

)

vi

)

and ‖v‖sw =
l
∑

i=1

(√
12sign

(

R(vi)
l+1
− 0.5

)

vi

)

This functions can be represented as a PLS cost function as shown below

‖v‖∗ =
l
∑

i=1

ε∗i (vi)
2 (4.3)

Here the symbol ∗ is used to indicate that this method can be applied both for

the Wilcoxon norm and sign Wilcoxon norm. For the Wilcoxon norm the ε∗i is

εw
i =







a(R(vi))
vi

for vi 6= 0

a
′

(R (0)) for vi = 0
(4.4)

where a
′

(R (0)) is defined by |∂a (R (vi))/∂vi|vi=0, which is obtained by applying

the L-Hospital rule to the weighting factor associated with the nonzero element case

and then limiting the value for zero element. Since the rank order of the element is

discrete hence derivative needs to be replaced by the finite difference. Then performing

finite difference for a
′

R(0), we find it is the difference of score values corresponding

to two consecutive elements in ordered vector where one is of magnitude zero. Then

using (2.6) for a
′

(R(0)), it yields a
′

(R (0)) =
√

12/(l+1)

v(i+1)

For the sign Wilcoxon norm the ε∗i is

εsw
i =







sign(a(R(vi)))
vi

for vi 6= 0

a
′

(sign((R (0)))) for vi = 0
(4.5)
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where, a
′

(sign((R (0)))) is defined by |∂sign(a (R (vi)))/∂vi|vi=0, that is obtained

by applying the L-Hospital rule to the weighting factor associated with the nonzero

element case and then limiting the value for zero element. In case of Sign Wilcoxon

norm the score value is either 1 or −1. Hence, the finite difference of score values

corresponding to two consecutive elements, where one element having zero magnitude,

is 2, since 1−(−1) = 2. Therefore, the weighting factor corresponding to zero element

is a
′

(sign(R(0))) = 2
v(i+1)

4.3.2 PLS Formulation of the GR Norm

The generalized-rank(GR) norm is also applied over a vector. The GR norm of the

vector (2.6) is given by

‖v‖GR =
L
∑

i=1

L
∑

j=1,j 6=i

(

wijI(vi−vj) − wijI(vj−vi)

)

vi (4.6)

.

The GR norm in (4.6) is shown as the summation of the multiplication of the

element of the vector with a weighting factor. This weighting factor can be considered

as score value associated with the element vi. The expression of GR norm can be

expressed in PLS form as

‖v‖GR =
L
∑

i=1

ǫiv
2
i (4.7)

where

εi =



















l
∑

j=1,j 6=i

wij

(

I
(vi−vj)

−I
(vj−vi)

)

vi
vi 6= 0

χi vi = 0

(4.8)

In order to find χi present in (4.8) the L-Hospital rule is applied with the εi for

vi 6= 0. Then the value is limited to vi = 0. The denominator is a continuous function

of vi, where as the numerator is a discrete function of vi. Thus the derivative of the

73



Chapter 4

QR-Based Incremental Adaptive Strategies to Handle Outliers

in the Desired Data as well as in Both Input and Desired Data

denominator is taken with respect to vi where as the finite difference of the numerator

is taken with respect to vi. Then the value is limited for vi = 0. The denominator is

1 and the numerator is the difference between two score values associated with two

consecutive elements among which one element is of magnitude 0. The χi can be

found out to be

χi =

l
∑

j=1,j 6=i

wij

(

I(vi−vj) − I(vj−vi)

)

−
l
∑

j=1,j 6=i+1

wij

(

I(vi+1−vj) − I(vj−vi+1)

)

vi+1

(4.9)

It is known that the algorithm based on recursive estimation of autocorrelation of

the input data and cross correlation between the input and the desired value provides

better convergence speed and performance than instant gradient based estimation per-

formance. For an example recursive least squares(RLS) provides better convergence

and performance compared to least mean squares (LMS) method. However, due to

quantization error the recursive algorithm suffers from the problem of instability. For

such case the QR decomposition based method is the best alternative which decreases

the dynamic range of the data thus increases the stability of the algorithm [34, 35].

Hence in the present case a QR decomposition based incremental minimum Wilcoxon

norm (QR-IMWN) and a QR decomposition based incremental minimum general-

ized R norm(QR-IMGRN) is proposed. The weighting factor εi shown in (4.4) and

(4.8) are used to change the forgetting factor Λ(n) to achieve the QR-IMWN and

QR-IMGRN.

4.4 Block Incremental RLS Strategies using Block

Householder Transformation(BHT)

The proposed method requires a block of data for calculation of the cost function

therefore block processing is needed for distributed implementation. This section pro-

vides a mathematical framework for the proposed method. The formulation proceeds

as follows. The entire time period is divided into different block time constituting

a number of consecutive time instant. Suppose there are n number of time instants
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for each node and l number of time instants are grouped together to make one block

time. Thus, there are n/l number of block times corresponding to n number of time

instants. The ith block time constitutes the (i − 1)l + 1 to il time instants. Let the

input and the measured data over the entire network at jth block be given as

X1:N,j =
[

X1,j X2,j · · · XN,j

]

y1:N,j =
[

y1,j y2,j · · · yN,j

]T

(4.10)

Collecting all the input data up to nth block gives

X (n) =
[

X1:N,1 X1:N,2 · · · X1:N,n

]T

(4.11)

.

and similarly the measured data upto nth block is given by

y (n) =
[

yT
1:N,1 yT

1:N,2 · · · yT
1:N,n

]T

(4.12)

the problem is to estimate the parameter vector w of the model using X (n) and

y(n). The least squares estimate is

min
w
‖y (n)−X (n)w‖2Λ(n) (4.13)

where Λ (n) is the block forgetting factor for the data. Here the norm of a column

vector x is defined in terms of a suitably dimensioned square matrix A, i.e. ‖x‖2A =

xTAx and

Λ (n) = Diag
{

λn−1DNL, λ
n−2DNL, · · · , λ1DNL,DNL

}

(4.14)

where λ is the block forgetting factor for the data from all nodes in one block, DNL =

1NL. Assuming X(n) as a full column rank matrix, the QR decomposition of the

input and desired gives rise to
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√

Λ (n)
[

X (n) y (n)
]

=

[

QT
1 (n) QT

2
(n)
]





R (n) u (n)

0 v (n)





(4.15)

where QT
1 (n) ∈ ℜn×n and QT

2 (n) ∈ ℜ((n)k−n)×n are the orthogonal basis matrices

for the range and null space of the input data respectively. The optimum parameter

wn can be calculated from (4.15) as [40]

wn = R−1 (n)u (n) (4.16)

Since, the estimation 4.16 requires the data available up to nth block, it needs

more computation to solve the problem (4.16) in one step. Hence a recursive method

must be used to get the optimum parameter wn using the estimated parameter wn−1

and the data available during nth block. But the problem is that the data at nth block

is present among the sensor nodes dispersed throughout the environment. Hence the

spatial recursive method is used using the incremental strategy [5].

4.4.1 Exact Block Incremental RLS Strategies using Block
Householder Transformation

The aim is to estimate the parameter wn using wn−1 and the data available from

each node at the nth block in turn. To this end, define a matrix Xk−1(n) which

contains all the available input data in all the nodes up to the (n − 1)th block plus

the corresponding data at the nth block for nodes 1 to k − 1

Xk−1 (n) =
[

XT (n− 1) X1,n X2,n · · · Xk−1,n

]T

(4.17)

where Xk−1(n) ∈ ℜ((n−1)NL+(k−1)L)×p and p=order of the system vector. In a

similar manner the measurement data is represented as
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yk−1 (n) =
[

yT (n− 1) yT
1,n yT

2,n · · · yT
k−1,n

]T

(4.18)

where yk−1(n) ∈ ℜ((n−1)NL+(k−1)L).

Defining the estimated weight vector at (k − 1)th node during the incremental

strategy at nth iteration, we have

ψk−1,n = min
w

∥

∥yk−1 (n)−Xk−1 (n)w
∥

∥

2

Λk−1(n)
(4.19)

The forgetting factor, i.e. Λk−1 (n), is given by

Λk−1 (n) = Diag
{

λn−2DNL, · · · , λ1DNL,D(k−1)L

}

(4.20)

The present problem is to solve

ψk−1,n = min
w

∥

∥yk−1 (n)−Xk−1 (n)w
∥

∥

2

Λk−1(n)
(4.21)

given ψk−2,n and the data at node k at block n, i.e. Xk,n and yk,n. Since Xk−1(n) is

a full column rank matrix and hence the QR decomposition of the input and measured

data can be written as

√

Λk−1 (n)
[

Xk−1 (n) yk−1 (n)
]

=
[

QT
1,k−1 QT

2,k−1

]





Rk−1 (n) uk−1 (n)

0 vk−1 (n)





(4.22)

where Q1,k−1 (n)
√

Λk−1 (n)Xk−1 (n) = Rk−1 (n) (4.23)

Using the matrix Rk−1(n) and vector uk−1(n) from (4.22), the optimal weight

vector is computed as ψk−1,n = R−1
k−1(n)uk−1(n). Incremental estimation of the pa-
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rameter vector can be achieved as follows. Define Q1,k(n) as

Q1,k(n) =





Q1,k−1(n) 0

0 IL



 (4.24)

Multiplying (4.24) with
√

Λk (n)Xk (n) gives

Q1,k (n)
√

Λk (n)Xk (n) =





Rk−1 (n)

xT
k,n



 (4.25)

and applying the BHT to (4.25) leads to

Hk (n)Q1,k (n)
√

Λk (n)Xk (n) =





Rk (n)

0



 (4.26)

The operator Hk(n) represents the block Householder transformation (BHT). The

dimension of the BHT matrix is (p + L)× (p + L). The expression Hk(n) is derived

in Section C.1.

In preparation for processing the next data block Q1,k is required as in (4.24).

Defining T =
[

Ip 0p×l

]

and multiplying it by (4.26) gives

THk(n)Q(n)
√

Λk(n)Xk(n) = Rk(n) (4.27)

and Q1,k(n) = THk(n)Q1,k(n). Performing similar operation as in (4.25) with the

desired data, we have

THk (n)Q1,k (n)
√

Λk (n)yk (n) = uk (n) (4.28)

A combination of (4.27) and (4.28) gives
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THk (n)





Rk−1 (n) uk−1 (n)

XT
k,n yk,n



 =
[

Rk (n) uk (n)
]

(4.29)

We can get ψk,n using Rk(n) and uk(n). In the distributed scenario the informa-

tion to be transmitted from node k to k + 1 are Rk(n) and uk(n).

Thus the distributed algorithm is outlined as


























































































ψ0,n ← wn−1

R0 (n)←
√
λR (n− 1)

u0 (n)←
√
λu (n− 1)

For k = 1 : N

[

Rk (n) uk (n)
]

← THk (n)





Rk−1 (n) uk−1 (n)

XT
k,n yk,n





ψk,n ← R−1
k (n)uk (n)

end

wn ← ψN,n

4.4.2 Derivation of QR-IMWN and QR-IMGRN Algorithms

This subsection deals with the development of QR-IMWN and QR-IMGRN algorithms

using the PLS formulation of the Wilcoxon and GR norms. This is obtained as follows.

The objective is to estimate

w = arg min
w

∥

∥y (n)−XT (n)w
∥

∥

N
(4.30)

where N may be the GR norm or the Wilcoxon norm depending upon the presence

of outliers in the input data or not. This can be represented as

N =







The Wilcoxon Norm

The GR Norm

for D = 0

for D 6= 0
(4.31)

By changing the term
∥

∥y (n)−XT (n)w
∥

∥

N
to a form as in (4.19), (4.30) can be
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shown as w = arg min
w

∥

∥y (n)−XT (n)w
∥

∥

2

ΛN(n)
The weighting factor ΛN (n) depends

upon the total spatial data up to nth time. Thus

∥

∥y (n)−XT (n)w
∥

∥

2

ΛN(n)
6=

N
∑

i=1

∥

∥

∥yi (n)−
(

Xi (n)
)T

w
∥

∥

∥

2

Λ(i)N(n)
. (4.32)

where
∥

∥y (n)−XT (n)w
∥

∥

2

ΛN(n)
is the global cost function and

∥

∥

∥yi (n)− (Xi (n))
T
w
∥

∥

∥

2

Λ(i)N(n)

is the local cost function at node i. Hence it is not amenable for distributed imple-

mentation in WSNs [5].

In order to design a cost function which will be robust against outliers as well as

can be implemented using the incremental strategy define the local cost function as

w = arg min
w

∥

∥yi (n)− (Xi)T (n)w
∥

∥

2

Λ(i)N(n)
(4.33)

where, yi (n) and Xi (n) are the entire desired and input data at node i. Based

on the local cost function (4.33), the global cost function is defined as

min
w

N
∑

i=1

∥

∥yi (n)−Xi (n)
∥

∥

2

Λ(i)N(n)
(4.34)

In order to estimate this cost function the measurement process need to be com-

pleted. In order to circumvent this and to estimate the process block by block manner

the local cost function is redefined as

min
w

n/L
∑

i=1

∥

∥yk,(iL+1):(i+1)L −XT
k,(iL+1):(i+1)Lw

∥

∥

2

Λ(i)b−N(n)
(4.35)

Similar to (4.34), define the global cost function for the local cost function given

in (4.35) as

min
w

N
∑

k=1

n/L
∑

i=1

∥

∥yk,(iL+1):(i+1)L −XT
k,(iL+1):(i+1)Lw

∥

∥

2

Λ(i)b−N(n)
(4.36)
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Equation (4.36) can be simplified as

w∗
L,i = arg min

w

n/L
∑

j=1

(

λ(n/L−j)

N
∑

j=1

∥

∥

∥

√

εN
k−1,k,nyk,j −

√

εN
k−1,k,nX

T
k,jw

∥

∥

∥

2
)

(4.37)

-

which can be expressed as

w∗
L,i = arg min

w

n/L
∑

j=1

(

N
∑

j=1

∥

∥

∥

√

λ(n/L−j)εN
k−1,k,nyk,j −

√

λ(n/L−j)εN
k−1,k,nX

T
k,jw

∥

∥

∥

2
)

(4.38)

Further, it can be modified to a similar form like (4.13) with a different weighting

factor, which is given by

w∗
L,i = arg min

w

∥

∥y (n)−XT (n)w
∥

∥

2

Λb,N(n)
(4.39)

4.4.3 Calculation of Forgetting Factor for the PLS Method

This subsection deals with the calculation of the weighting factor Λb,N (n) of the cost

function (4.39). For this consider the nth block at the kth node, the Wilcoxon or

generalize R norm of the error vector is

‖ek−1,k,n‖N =
L
∑

i=1

a(ek−1,k,n) (i) ek−1,k,n (i) (4.40)

where ek−1,k,n(i) = yk,(n−1)L+i−xT
k,(n−1)L+iψk−1,n. Following (4.3) and (4.7),(4.40)

can be rewritten as a PSL problem as

‖ek−1,k,n‖N =
L
∑

i

εN
k−1,k,n (i) e2k−1,k,n (i) (4.41)

.

Here ǫNk−1,k,n(i) is interpreted as the weighting factor for the ith error of nth block.

This weighting factor depends upon the norm being used. Multiplying the input
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and desired data by this weighting factor decreases the effect of outliers. The block

weighting factor for the block of errors at the nth iteration in the kth node is

εN
k−1,k,n = Diag

[

εN
k−1,k,n (1) εN

k−1,k,n (2) · · · εN
k−1,k,n

(l)
]

(4.42)

The weighting factor matrix for the entire spatial data set available up to kth node

at nth iteration is

ΛN
k−1 (n) = Diag

[

λn−1εN
N,··· ,N,n λn−2εN

N,··· ,N,n−1 · · · εN
N,··· ,k−1,1

]

(4.43)

where

εN
N,··· ,N,n = Diag

{

εN
N,1,n, ε

N
1,2,n, · · · , εN

N−1,N,n

}

(4.44)

4.4.4 Formulation of QR-IMWN or QR-IMGRN Problem

The proposed method is obtained by multiplying the weighting factor (4.43)with the

forgetting factor (4.14). The superscript N is used to signify that this mathematical

technique can be used for both weighting factor made from Wilcoxon and general-

ize rank scores. Hence the block modified forgetting factor with superscript N is

represented as

ΛN
k−1 (n) = Diag

[

λn−1εN
N,··· ,N,n λn−2εN

N,··· ,N,n−1 · · · εN
N,··· ,k−1,1

]

(4.45)

Let ΛN
k (n) represents the forgetting factors for the proposed method. It is given

by

ΛN
k (n) = Diag

[

λn−1εN
N,··· ,N,1 · · · λ1εN

N,··· ,N,n−1 εN
N,··· ,k,n

]

(4.46)

The forgetting factor ΛN
k (n) is used instead of Λk (n), to design the proposed

method. The weight vector is given by
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ψN
k−1,n = arg min

w

‖yk−1 (n)−Xk−1 (n)w‖2ΛN
k−1,n

= arg min
w

‖ek−1 (n)‖2ΛN
k−1,n

(4.47)

Thus the proposed technique is

√

ΛN
k−1 (n)

[

Xk−1 (n) yk−1 (n)
]

=

[

(

QN
1,k−1 (n)

)T (

QN
2,k−1 (n)

)T
]





RN
k−1 (n) uN

k−1 (n)

0 vN
k−1 (n)





(4.48)

The weight vector is

ψN
k−1,n =

(

RN
k−1(n)

)−1
uN

k−1(n) (4.49)

where QN
1,k−1(n) ∈ ℜp×(n−1)NL+(k−1)L and QN

2,k−1(n) ∈ ℜ((n−1)NL+(k−1)L−p)×(n−1)NL+(k−1)L

constitute an orthogonal transformation. Here RN
k−1(n) ∈ ℜp×p is an upper triangular

matrix, uN
k−1(n) ∈ ℜp×1 and vN

k−1(n) ∈ ℜ(n−1)NL+(k−1)L×1. Then to make the algo-

rithm incremental, operations similar to (4.24)-(4.28) are used with RN
k−1(n), uN

k−1(n)

and further using BHT matrix HN
k (n) to get RN

k (n) and uN
k (n). A procedure for find-

ing HN
k (n) is derived in Section C.2. To get the optimum parameter iteratively the

following procedure is carried out

THN
k (n)





RN
k−1 (n) uN

k−1 (n)
√

εN
k−1,k,nX

T
k,n

√

εN
k−1,k,nyk,n



 =
[

RN
k (n) uN

k (n)
]

(4.50)

The updated weight vector is given as

ψN
k,n =

(

RN
k (n)

)−1
uN

k (n) (4.51)

4.4.5 Communication Complexity

In the proposed method, one node sends RN
k (n) and uN

k (n) to the next node. RN
k (n)

is an upper triangular matrix of order ℜp×p. Therefore the number of data values
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transfered to the next node is (0.5)p(p+1). For transmitting uN
k (n), p data values are

required. The amount of data to communicate after every block of L time samples

is ((0.5)p(p + 1) + p)/L. In case of incremental RLS strategy the ensemble average

which is order of ℜp×p and estimated parameter which order of p are to be sent to

the next node. Hence the communication complexity is p2 + p. The communication

complexity of the proposed technique is rewritten as (p2+p)/(2L)+(p/L). Comparing

the communication complexity of the proposed technique with conventional technique,

it is observed that the proposed technique requires much less communication between

nodes.

4.4.6 Stepwise Description of the Algorithm

Operation at kth node in nth iteration the steps are

(i) Transfer the compute data matrix RN
k−1 (n) and uN

k−1 (n) from (k − 1)th node

to kth node

(ii) Process the data at kth node

step-1: Compute ψN
k−1,n =

(

RN
k−1 (n)

)−1
uN

k−1 (n)

step-2: If the norm is GR norm then calculate of wij from the input.

step-3: Calculation of error ek−1,k,n(i) = yk,(n−1)L+i − xT
k,(n−1)L+iψ

N
k−1,n

step-4: Calculate the weighting factor.

εN
k−1,k,n = Diag

{

εN
k−1,k,n(1), εN

k−1,k,n(2), · · · , εN
k−1,k,n(L)

}

step-5:

compute

R
N

k (n) =





RN
k−1 (n)

√

εN
k−1,k,nX

T
k,n





uN
k (n) =





uN
k−1(n)
√

εN
k−1,k,nyk,n





step:6

Calculation of BHT matrix HN
k (n).

step:7

Multiply BHT matrix HN
k (n) to (4.31) to make the column zero and multiply T

to erase the zero rows
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THN
k (n)R

N

k (n) = RN
k (n)

Similarly

THN
k (n)uN

k (n) = uN
k (n)

step-8: Obtain optimum weight vector

ψN
k,n =

(

RN
k (n)

)−1
uN

k (n)

(iii) Transmit data RN
k (n) and uN

k (n) to the (k + 1)th node

4.4.7 Simulation Results and Discussion

For QR-IMWN

For the simulation studies five nodes are considered. At each node the model parame-

ter considered is
[

1
/√

5 1
/√

5 1
/√

5 1
/√

5 1
/√

5
]

. Uniformly distributed ran-

dom data between (−0.5, 0.5) is used as input to the model to give the output data.

White Gaussian noise is added to the output data having a signal to noise ratio(SNR)

of 30dB at each of the five nodes. Further, outliers ranging between (-10,10) are added

to the desired data at random positions to simulate the effect of data corruption in a

real world environment. The percentage of outliers used in the study ranged between

10% and 50% of the desired data. However, in this chapter results for 10% and 50%

outliers are shown. The block size chosen is L = 40. In case of overall performance

the mean square deviation(MSD) of the updated parameter is taken from first node

to N th node starting from first block to last block. A total of 8000 data samples at

every sensor node were used. The forgetting factor for QR-IMWN, QR-IMSWN and

QR based block incremental RLS strategies are 0.71, 0.84 and 1 respectively. These

forgetting factors are chosen empirically to get the best performance for each algo-

rithm. The simulation results are obtained by taking the average of 50 independent

experiments.

The overall performance is shown in Figures 4.1-4.2. Here the performance of

QR based block incremental RLS, QR-IMWN, QR-IMSWN and IMWN are plotted

for comparison purpose. From these figures it is observed that the QR-IMWN, QR-

IMSWN and previous proposed method are robust against outliers in the desired

signal but QR-IMWN outperforms the previously proposed method in terms of con-

vergence speed and the steady state performance. The QR based block incremental
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Algorithms 5 10 15
IMWN -41.4296 -42.2643 -42.7238

QR-IMWN -50.4048 -51.2527 -51.6486
QR-IMSWN -49.7641 -53.1692 -55.9304

Table 4.1: Comparison of steady state performances for different block sizes

RLS provides poor performance and with increase in outliers the performance further

degrades. The convergence of QR-IMSWN is good in the first few iterations then

it slowly tends to the steady state. Since this algorithm uses the sign of the score

value,it is more computationally efficient than the other algorithms. It is clear from

the results that the proposed method is good both in convergence and performance

when compared with previous methods. Here we have simulated the algorithm with

different forgetting factors and found out satisfactory performance in the range 0.50.9.

This range depends on the magnitude and percentage of the outliers. Sophisticated

mathematical analysis based on the asymptotic linearity of rank test [11] can be used

to find out the range of the forgetting factor. If the forgetting factor is nearer to 1 then

the effect of outliers remain in the estimation process until the last iteration and hence

its performance degrades. If this factor is low then the effect of outliers as well as

the information about the parameter decreases with iteration,hence the performance

also degrades. Performance comparison between different sensor nodes are given in

the Table 4.1. For this steady state performance comparison the parameter of the

environment is
[

1
/√

5 1
/√

3 1
/√

5 1
/√

3 1
/√

5
]

, where some parameters are

different from the other. Centralized performance of the proposed algorithm is given

in the Figures 4.7 and 4.8. Comparing simulation results of the centralized method

with the distributed method it is found that the performance of both the algorithms

is same. Because the centralized cost function is the sum of all the local cost function

present in the every sensor node.

For QR-IMGRN

In case of this the input data, model parameter, number of sensor nodes, noise and

desired outliers strength are same as in the Section 4.4.7. A total of 4000 data samples

at every sensor node were used. Further the input data is also added with outliers
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continuously with a random magnitude between (−3, 3). The block size is taken to be

40. Simulations have been carried out for separately with 10%, 20%, 30%, 40%, 50%

outliers in both input and desired data. However only the simulation results for 10%

and 50% are shown in this chapter. The results presented are the average result over

50 independent experiments. Here the block forgetting factor is chosen to be 0.7.

The simulation results are given in Figures 4.3 − 4.6. In the simulation results the

comparisons are done among incremental RLS, QR-IMWN, IMGRN and QR-IMGRN.

From simulation results it is found that the IMGRN and QR-IMGRN are robust

against outliers both in desired and input space. It can also be found from simulation

results that the convergence speed of QR-IMGRN is faster than the IMGRN. From

figures it can be observed that with fixed input outliers as the percentage of outliers

in desired increases the convergence speed of QR-IMGRN decreases but QR-IMWN

is performing well because of the masking effect of the desired outliers with input

outliers. Therefore some input outliers are canceled by the desired outliers. As the

outliers in the input data increases the QR-IMGRN remains robust against outliers in

the input and desired data whereas QR-IMWN and IRLS fail to estimate the optimum

parameters. Thus from performance and convergence point of view it is concluded

that the QR-IMGRN is a superior method compared to IMGRN.
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Figure 4.1: 10% outliers in output with random magnitude between (−10, 10)
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Figure 4.2: 50% outliers in output with random magnitude between (−10, 10)

4.5 QR based Low Communication Incremental Strat-

egy for WSNs

4.5.1 Problem Formulation

This subsection deals with a QR based low communication incremental strategy

method. To reduce the communication overheads and to exploit the PLS formu-

lation proposed in Section 4.4.2, the weight vector itself is communicated rather than

the matrices RN
k and uN

k . At each node the weight vector from the neighboring node

is used to calculate the error sequence and hence the forgetting factor. Local data

is used to update the weights using the resultant forgetting factor. To achieve this

objective the data matrix is changed to

Xk(n− 1) =

















XT
k,1

XT
k,2

...

XT
k,n−1

















=





Xk(n− 2)

XT
k,n−1



 (4.52)

where Xk (n− 1) ∈ ℜ(n−1)L×p. Similarly the desired data vector is represented as
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Figure 4.3: 10% outlier in input with random magnitude between (−3, 3) and 10%
outlier in output with random magnitude between (−10, 10)

yk(n− 1) =

















yk,1

yk,2

...

yk,n−1

















=





yk(n− 2)

yk,n−1



 (4.53)

where yk (n− 1) ∈ ℜ(n−1)L

Following the operation in (4.48) the representations of data in (4.52) and (4.53)

for QR based low communication strategy can be expressed in the form

ΛN
k (n− 1)

[

Xk (n− 1) yk (n− 1)
]

=

[

(

QN
1,k (n− 1)

)T (

QN
2,k (n− 1)

)T
]

×





RN
k (n− 1) uN

k (n− 1)

0 vN
k (n− 1)





(4.54)

The weight vector is given as ψN
k,n−1 =

(

RN
k (n− 1)

)−1
uN

k (n− 1).

Operations similar to (4.24-4.27) are performed with RN
k (n) and uN

k (n) to get the

forgetting factor εN
N,··· ,N,1. Then the following matrix is obtained performing similar

operation like (4.28) with RN
k (n), uN

k (n), Xk,n and yk,n, which is given by
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Figure 4.4: 50% outlier in input with random magnitude between (−3, 3) and 10%
outlier in output with random magnitude between (−10, 10)

[

R
N

k (n) uN
k (n)

]

=





√
λR

N(n)
k

√
λu

N(n)
k

√

εN
k−1,k,nX

T
k,n

√

εN
k−1,k,nyk,n



 (4.55)

Then simultaneously multiplying HN
k (n), which is the Householder transformation

matrix for R
N

k (n), and and T to obtain RN
k (n) and uN

k (n). Mathematically it is given

by

THN
k (n)





√
λRN

k (n− 1)
√
λuN

k (n− 1)
√

εN
k−1,k,nX

T
k,n

√

εN
k−1,k,nyk,n



 =
[

RN
k (n) uN

k (n)
]

(4.56)

Calculation of block Householder transformation matrix, i.e. HA
k (n) is dealt in Sec-

tion C.3. The updated weight vector is obtained from (4.56) asψN
k,n =

(

RN
k (n)

)−1
uN

k (n)

The distributed algorithm is outlined as
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Figure 4.5: 10% outlier in input with random magnitude between (−3, 3) and 50%
outlier in output with random magnitude between (−10, 10)























































ψN
0,n ← wN

n−1

For k = 1 : N

[

RN
k (n) uN

k (n)
]

← THN
k (n)





√
λRN

k−1 (n)
√
λuN

k−1 (n)
√

εN
k−1,k,nX

T
k,n

√

εN
k−1,k,nyk,n





end

wN
n ← ψN

N,n

4.5.2 Stepwise Representation of QR based Low Communi-
cation Incremental Minimum Generalized R Norm

For nth iteration at kth node

(i) Transfer of the estimated parameter vector ψN
k−1,n from node k − 1 to node k

(ii) Process the data at kth node

step-1: compute ψN
k−1,n =

(

RN
k−1 (n)

)−1
uN

k−1 (n)

step-2: If the norm is GR norm then calculate of wij from the input.

step-3: Calculation of error ek−1,k,n(i) = yk,(n−1)L+i − xT
k,(n−1)L+iψ

N
k−1,n

step-4: Calculation of forgetting factor based upon the indicator function

λk−2,k−1,n (i) =

L
∑

j=1,j 6=i
wijI

(tij)
I
(tji)

ek−2,k−1,n(i)

tij = ek−2,k−1,n (i)− ek−2,k−1,n (j)
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Figure 4.6: 50% outlier in input with random magnitude between (−3, 3) and 50%
outlier in output with random magnitude between (−10, 10)

εN
k−1,k,n = diag

{

εN
k−1,k,n(1), εN

k−1,k,n(2), · · · , εN
k−1,k,n(L)

}

step-5: Compute

R
N

k (n) =





√
λRN

k (n− 1)
√

εN
k−1,k,nX

T
k,n





uN
k (n) =





√
λuN

k (n− 1)
√

εN
k−1,k,nyk,n





step:6

Multiplying block Householder transformation matrix HN
k (n) to the (4.37) and

(4.38) to update and then T to erase the zero rows to obtain RN
k (n) and uN

k (n)

THN
k (n)R

N

k (n) = RN
k (n)

Similarly

THN
k (n)uN

k (n) = uN
k (n)

step-7:Compute

ψN
k,n =

(

RN
k (n)

)−1
uN

k (n)

(iii) Transmit the processed data to the (k + 1)th node

RN
k (n) and uN

k (n)
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Figure 4.7: 10% outliers in output with random magnitude between (−10, 10)

4.5.3 Communication Complexity

In this low communication scheme, the kth node transfers the estimated parame-

ter vector ψA
k,n to the (k + 1)th node after every block. The number of data sam-

ples to communicate in one communication is p, which is the order of the model.

Therefore the communication complexity on average, after one time interval, is p/L.

It is shown in Section 4.4.5, that the communication complexity of QR-IMWN is

((0.5)p(p+ 1) + p)/L, which is higher by (0.5)p(p+ 1)/L than the amount in the low

communication strategy. Hence a reduced communication over head is obtained with

the low communication scheme compared to general scheme.

4.5.4 Simulation Results and Discussion

In this simulation the number of sensor nodes, input data, model parameters, block

size and number of input data are same as given in previous simulation. The block

forgetting factor is chosen to be 0.8.

For QR-LCIMWN

In the present case the model parameter, the number of nodes and the noise power

are same as used in the simulation study for QR-IMWN. The generation of input and

desired data are also identical. The results of this scheme obtained through simulation
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Figure 4.8: 50% outliers in output with random magnitude between (−10, 10)

are compared with the QR-IMWN. The density of outliers considered in this case

are 10% and 50% of the desired data having magnitude randomly varying between

(−10, 10). The block forgetting factor is set at 0.71. The number of data samples

used at every node is 3000. The simulation results are shown in Figures 4.9 and 4.10,

which are obtained by averaging over 50 independent experiments. These figures

demonstrate that the proposed QR-LCIMWN algorithm is robust against outliers.

Comparing with QR-IMWN, the MSD converges faster but optimum performance is

less. In the QR-IMWN algorithm both the R and u are passed from node (k-1) to

node k during block n. These two terms effectively summarize all the available data

up to block (n-1) plus all the data at nodes 1 to (k-1) at block n. These two terms

are used: (i)to provide a weight estimate based on all this earlier data with which

to calculate the block error vector and hence the forgetting factor associated with

a Wilcoxon norm;(ii)in combination with local data available at node k at block n

to update these terms themselves. In the QR-LCIMWN algorithm only the weight

vector estimate is passed between the nodes. This allows step(i) to be implemented

at node k since the error vector can be calculated and hence the block forgetting

factor. However step(ii) is replaced with a local update of the two terms based only

on the local data available at that node. Thus in the QR-IMWN algorithm each node

benefits from its neighbors data both in terms of modifying the cost function (through
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the forgetting factor) and in updating R and u, whereas in QR-LCIMWN algorithm

only the former is possible. This accounts for the degradation in performance of the

QR-LCIMWN algorithm compared with the QR-IMWN.

The reason behind the fast convergence of the QR-LCIMWN is due to the following

facts. The outliers added to the desired data are random values between (−10, 10),

then there is a possibility of some node having weak outliers than the other nodes in

the same block. Consider the data in the first time block. As explained in Section

3, in case of QR-IMWN, the previous node, say k − 1, sends RN
k (1) and uN

k (1) to

the next node ,i.e. k. At node k, the block Householder transformation HN
k (1)

and the T are multiplied with
[

R
N

k (1) uN
k (1)

]

to get
[

RN
k (1) uN

k (1)
]

. Due

to the effect of uN
k−1 (1) (which may contain strong outliers) in the multiplication

the total information from the new data cannot be extracted. Hence convergence

speed decreases. Whereas,in case of QR-LCIMWN, the previous node sends only the

estimated parameter, hence if the data in next node contains weak outliers then from
[
√

εN
k−1,k,nR

N
k (1)

√

εN
k−1,k,nu

N
k (1)

]

we are able to extract the entire informa-

tion.

For QR-LCIMGRN

The simulation results given are the average over 50 independent experiments. For

this case the simulation is done for every 10% to 50% of outliers in the desired and

input data. But only the simulation results for the 10% and 50% are given in Figures

4.11-4.12. The comparision is done between QR-IMGRN and QR-LCIMGRN. These

figures demonstrates that the the proposed QR-LCIMGRN is robust against outliers

in the desired and input data with inferior performance compared to QR-IMWN. The

reson is similar to the reason given for QR-LCIMWN.

4.6 Conclusion and Future Work

This chapter proposes a new QR based robust distributed algorithm using the Wilcoxon

and generalize rank scores which exhibits robust performance against outliers in the

desired data. The results are compared with those obtained by the general block
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Figure 4.9: 10% outlier in output with random magnitude between (−10, 10)

distributed RLS algorithm using BHT. It is in general observed that the performance

of conventional block distributed RLS algorithm substantially degrades in the pres-

ence of outliers in the desired data. However the proposed method provides robust

performance even in the presence of strong and high density outliers. Thus the pro-

posed method is expected to perform well in real world environment. The proposed

QR based low communication scheme is attractive as it offers less communication

overhead and hence a saving in power.
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Figure 4.10: 50% outlier in output with random magnitude between (−10, 10)

0 20 40 60 80 100 120 140 160
−30

−25

−20

−15

−10

−5

0

5

10
Performance at node−1

Block no

N
or

m
al

iz
ed

 M
S

D
 in

 d
B

 

 

QR based incremental minimum GR norm
QR based low communication incremental minimum GR norm

Figure 4.11: 40% outlier in input with random magnitude between (−3, 3) and 10%
outlier in output with random magnitude between (−10, 10)
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Conventional affine projection algorithm(APA) based on the least square error cost

function is not robust against outliers in the desired data. This chapter deals with the

development of a robust affine projection algorithm(R-APA) based on the PLS for-

mulation of the Wilcoxon norm. The new algorithm is then applied to the estimation

problem using the WSNs. In this chapter the Wilcoxon norm based cost function is

used as the robust norm for minimization purpose. The proposed algorithm acts as a

compromise between the IMWN and QR-IMWN in terms of its convergence speed and

the computational complexity. It is shown that in case of colored input the R-APA

performs similarly to the QR-IMWN with less number of computations and faster

convergence whereas the performance of the IMWN and its variants deteriorate. It is

demonstrated through the simulation based experiments that the proposed method

is robust against outliers present in the desired data.

5.1 Introduction

As discussed in Section 2.1, distributed signal processing algorithm can be suitably

formulated for the efficient use of in-network processing capability of the sensor nodes

to increase the lifetime of the WSNs. In this chapter the impirements of the envi-

ronments considered are the AWGN and impulsive noise. The impulsive noise can

be modeled as outliers in the measured data. Different robust distributed strategies

have been proposed in the previous chapters to handle outliers in the desired data.

Some of the strategies provide faster convergence speed with less parameter estimation

capability whereas the others require more number iterations with good estimation

potentiality. In Chapter 4 the PLS formulation of the Wilcoxon norm has been made

to handle outliers in the desired data. This strategy provides faster convergence speed

as well as good estimation capability. However, this strategy requires a large num-

ber of computational complexity. Moreover, the gradient based robust distributed

strategies given in Chapter-2 (which requires less number of computations) provide

poor convergence speed in the presence of the colored input data. If the input data is

highly correlated then the performance of these methods deteriorate. It is well known

that the affine projection algorithm (APA) performs well in presence of colored input.
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This chapter deals with the development a novel R-APA algorithm based on the

PLS formulation of the Wilcoxon norm. This strategy requires less computational

complexity than offered by the QR-IMWN proposed in Section 4.5 and achieve sim-

ilar performance to the QR-IMWN method. In addition, this proposed method pro-

vides superior convergence and performance compared to the algorithms proposed in

Chapter-2 with more computational complexity. Thus, the new algorithm acts as a

good compromise between the QR-IMWN and the IMWN in terms of computational

complexity and convergence speed. The proposed R-APA is motivated from [41],

where a distributed affine projection algorithm is proposed.

5.2 Problem Formulation

The problem undertaken here is same as given in Section 4.2 i.e. to estimate the

parameters associated with a given environment using the environmental data mea-

sured by the sensor nodes dispersed across the environment of interest. Considering

the model to be a linear model, the entire spatio-temporal output and input data can

be related by

y (n) = XT (n)w + v (n) (5.1)

The objective is to estimate w in (5.1) from y (n) and X (n) which can be formu-

lated as an optimization problem as

w∗ = arg min
w

∥

∥y (n)−XT (n)w
∥

∥

∗ (5.2)

In terms of geometry the objective of (5.2) is to estimate w∗ so that norm distance

between the XT (n)w∗ to the desired space is minimum.
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5.3 Proposed Robust Affine Projection Algorithm(R-

APA)

For the estimation of the parameter w in (5.1) the R-IAPA algorithm based on the

Wilcoxon norm is proposed. The Wilcoxon norm as explained in Section 4.3.1 is a

pseudo norm. As given in Section 4.3.1 the Wilcoxon norm can be represented as a

PLS as shown in (5.3).

‖v‖w =
l
∑

i=1

εw
i (vi)

2 (5.3)

where,

εw
i =







a(R(vi))
vi

for vi 6= 0

a
′

(R (0)) for vi = 0
(5.4)

5.3.1 Proposed Methodology

In order to estimate the parameter w, the proposed R-APA algorithm based on the

PLS formulation of the Wilcoxon norm is used. This is achieved by using the weighting

factor obtained from the Wilcoxon norm for modification of the auto- and cross-

correlation matrices of the IAPA algorithm [41]. Using the PLS formulation (5.3) the

objective (5.2) can be changed to

w∗ = arg min
w

∥

∥y (n)−XT (n)w
∥

∥

2

ΛA(n)
(5.5)

where

ΛA (n) = Λ (n)× ε(n) (5.6)

ε(n) =
[

εa
N,··· ,N,n εa

N,··· ,N,n−1 · · · εa
N,··· ,N,1

]

(5.7)
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(which is given in (4.44))

Λ (n) = diag
[

λn−11N λn−21N · · · λ01N

]

(5.8)

The ε(n) is the weighting factor (which is present in (5.3)) corresponds to the

entire spatio-temporal error vector.

The cost function (5.5) can be written as

w∗ = arg min
w

(y (n)−X (n)w)T ΛA (n) (y (n)−X (n)w) (5.9)

The problem (5.9) can be written as

w∗ = arg min
w

(

y (n)−X (n)w
)T (

y (n)−X (n)w
)

(5.10)

where, y (n) =
√

ΛA (n)y (n) and
√

ΛA (n)X (n)

The solution to the problem (5.10) is given as [34,35]

w∗ = R
−1

p (5.11)

where, R = E
[

X
T

(n)X (n)
]

and p = E
[

X
T

(n)y (n)
]

. Thus, the solution

is based on the autocorrelation of the weighted input and cross correlation of the

weighted input and weighted desired values. However, the estimation of (5.11)(which

is a PLS cost function) requires the entire spatio-temporal data set due to the presence

of weighting factor ε (n) (which depends upon the entire spatio-temporal error vector).

Thus, it is not amenable for distributed implementation. The incremental strategy [41]

requires

J (w) =
N
∑

k=1

Jk (w) (5.12)

where, J (w) is the global cost function and Jk (w) is the local cost function at

any node say k which is given as
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Jk (w) = min
w

∥

∥yk (n)−Xk (n)
∥

∥

2

Λk,A(n)
(5.13)

Here yk (n) and Xk (n) is the entire input and desired data at node k respectively.

The forgetting factor present in (5.13) is given as

Λk,A (n) =
[

λn−1εk−1,k,n λn−2εk−1,k,n−1 · · · λ0εk−1,k,1

]

(5.14)

In order to implement the incremental strategy the global cost function can be

changed similar to (3.9). However, it requires entire data set present in the sensor

node starting from first time to nth time. Therefore, it can not be implemented in

recursive manner. In order to implement in the recursive manner the global cost

function can be changed to a similar form like (3.11), which is given as

min
w

n
∑

k=1

n/L
∑

i=1

∥

∥yk,(iL+1):(i+1)L −XT
k,(iL+1):(i+1)Lw

∥

∥

2

Λ(i)b−N(n)
(5.15)

Following (5.9-5.11) the optimum parameter corresponds to the cost function

(5.15) can be calculated as

w∗ = R
−1

p (5.16)

In order to achieve the optimum parameter (5.16) recursively, a sliding window is

used. This method helps to facilitate the implementation of R-APA which requires a

block of data for calculation of the auto correlation as well as cross correlation and

also suitable for the calculation of the weighting factor based on the Wilcoxon norm.

In order to facilitate the implementation of sliding window method let us define the

entire spatio-temporal input and desired data arranged by block manner up to pth

block as
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X (p) =
[

X1 X2 · · · Xp

]

y (p) =
[

yT
1 yT

2 · · · yT
p

]T

(5.17)

where, Xj and yj are given in (2.2).

Let the estimated parameters by IAPA using X (p) and y (p) be wp. Similarly,

wp+1 is obtained using X (p+ 1) and y (p+ 1). For this purpose, a recursive method

is introduced by which wp+1 is estimated from previous estimate wp based on the

APA [41] given as

wp+1 = wp − µ∇J (wp) (5.18)

Since the data collected during (p + 1)th block measurement time is present in

every sensor node throughout the environment the IAPA method is used to achieve

the spatial recursive estimation of the parameters. In IAPA each sensor receives the

estimated parameters from the previous node and uses its own measured data to

update it. In order to investigate this spatial recursive formulation based on IAPA,

let us denote the spatial estimated parameters at node k during (p + 1) iteration

as ψk,p+1. Therefore, in incremental distributed strategy during (p + 1)th spatial

recursion, the kth node transmits the data ψk,p+1 to (k+ 1)th node. Using ψk,p+1 and

the measured data at (p+1)th block, (k+1)th sensor node calculates ψk+1,p+1. Using

IAPA recursive estimation is given by

ψk+1,p+1 = ψk,p+1 − µ∇J
(

ψk,p+1

)

(5.19)

Following (5.18) for all the sensor nodes starting from node 1 to node N during

(p+ 1)th block, wp+1 is calculated as

wp+1 ≡ ψN,p+1 ← · · ·ψ1,p+1 ← ψ0,p+1 ≡ wp (5.20)
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5.3.2 Proposed R-IAPA Algorithm

This section deals with the development an R-IAPA based on the weighted input and

weighted desired data given in the Section 5.3.1. This algorithm is designed based on

the following approximation

wp+1 = wp −
N
∑

k=1

µk

(

δI +∇2Jk

(

ψk−1,p+1

))−1∇
[

Jk

(

ψk−1,p+1

)]

(5.21)

Further, using the approximation based upon the data in a sliding window in

(5.21), we get

wp+1 = wp − µk

N
∑

k=1

Xk,p+1

(

δI + Rx,k

)−1
ek,i (5.22)

where,

Xk,p+1 =
[

xk,pl+1 xk,pl+2 · · · xk,(p+1)l

]

×
√

λT
k,p+1 (5.23)

Rx,k =
1

T

[

Xk,i ×X
T

k,i

]

(5.24)

ek,p+1 =
√

λk,p+1 ×
[

yk,p+1 −XT
k,p+1ψk−1,p+1

]

(5.25)

Further, incorporating Xk,p+1, Rx,k and ek,p+1, we get

wp+1 = wp−
N
∑

k=1

µkX
T
k,p+1

√

λT
k,p+1

(

δI + Xk,p+1λ
T
k,p+1X

T
k,p+1

)−1
√

λT
k,p+1

[

yk,p+1 −Xk,p+1ψk−1,p+1

]

(5.26)

The spatial updation of (5.26) is given by
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ψk,p+1 = ψk−1,p+1+µkXk,p+1

(

δI + Xk,p+1X
T

k,p+1

)−1 [

yk,p+1 −X
T

k,p+1ψk,p+1

]

(5.27)

5.4 Simulation Results

This section deals with simulation based experiments to assess the robust estimation

performance of the proposed methods. The number of nodes taken in the environment

is 5. The model parameters to be estimated from the environment is

[

1
/√

5 1
/√

5 1
/√

5 1
/√

5 1
/√

5
]

(5.28)

.

For the simulation study the white and the colored input data are taken into

consideration. For the case of white input, the data generated is a zero mean uni-

formly distributed random number lying between (−0.5, 0.5). For the generation of

the colored input the white input is passed through a FIR filter [41] given as

H (z) = 0.1− 0.2z−1 − 0.3z−2 + 0.4z−3 + 0.4z−4 − 0.2z−5 − 0.1z−6 (5.29)

This model gives the colored input data having eigen value spread λmax/λmin ≈
91.85 The output data is generated by passing the input data through the model (5.28)

having feed forward parameters. The output data is added with white Gaussian noise

having an SNR 30dB. Then the desired data is contaminated with outliers at random

positions having magnitude randomly varying between (−10, 10). The outliers are

modeled as uniform random variables between the range (-10, 10). This is similar

to the situation where the variance of the desired data increases due to outliers. In

the present case the form of IMWN, QR-IMWN and R-APA does not change with

the distribution of outliers’ random variable change. The block size is taken to be

40. The number of input samples used are 8000. Simulations have been carried

out separately for colored and white inputs with outliers of 10%, 20%, 30% of the

desired data. However, only the simulation results for 10% and 30% are shown in
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this case. The results presented are the average of 50 independent experiments. In

the simulation results the comparision is done among QR-IMWN, IMWN and R-APA

based on the Wilcoxon norm. Figures 5.1 and 5.2 correspond to the case of white

input data. From these simulation results it is observed that for the white input data

the convergence speed of R-APA is in between the QR-IMWN and IMWN having

the same performance. Figures 5.3 and 5.4 correspond to the colored input data.

It is observed that in case of highly correlated input data and the little large step

size the IMWN does not converge whereas the QR-IMWN and R-APA algorithms

provide a better solution after converge. Steady state performance of the proposed

robust distributed affine projection algorithm is given in the Tabe -5.1 for different

block size. Centralized performance of the proposed algorithm is given in the Figures

5.5, 5.6. From the simulation results it is found that for small step size the IMWN

convergence to the optimal solution with less convergence speed compared to the

previous two algorithms.

In case of colored input data both the RAPA and the QR-IMWN achieve satis-

factory convergence due to the whitening term present in the update equation. In

case of QR-IMWN the whitening term i.e. the inverse of the pseudo autocorrelation

matrix depends on the previous data by some forgetting factor. Thus, the effect of

previous outliers is present in the whitening term. Therefore, performance decreases.

However, in case of RAPA the whitening term does not depend on the previous data

hence the effect of previous outliers is less in the update equation. Hence, in case of

colored input data R-APA performs better than QR-IMWN.

5.5 Calculation of Computational Complexity

This section deals with the computational complexity calculation of the IMWN, R-

APA and QR-IMWN algorithms. Firstly, the computational complexity of the IMWN

is given. Based on the indicator function, the calculation of the rank of one element

in a vector of dimension l requires l − 1 number of comparisons. Thus, to calculate

the rank of all l elements 0.5× l(l− 1) number of comparisons are required. In order

to calculate the score value, l number divisions and a same number of subtractions
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Figure 5.1: Overall convergence performance with 10% outliers in the desired data
with magnitude between (-5,5)

are required. Since, the same score value is to be used in every iteration there is no

need of the calculation of the score value always. Therefore, the score value needs

to be calculated once and then it will be continued for the next iterations. Thus, in

the other iteration only the rank is to be calculated and then the corresponding score

value is to be assigned for different rank values. Thus, for other iterations other than

the first iteration 0.5 × l(l − 1) number of comparisons are required to calculate the

score value. For calculation of the errors in one block pl number of multiplications

and pl number of additions are needed. During the update operation 2lp number of

multiplications and lp number of additions or subtractions are required. Thus, the

total number of operations are: 0.5× l(l − 1) number of comparisons; 3lp number of

multiplications; and 2lp number additions.

Secondly the computational complexity of QR-IMWN is given for the comparison

purposes. Similar to the previous explanation about the calculation of the score, the

same number of computations are also required for the calculation of the score in the

case of QR-IMWN. Further, there is a need for the calculation of the weighting factor.

In order to calculate the weighting factor corresponding to one block p divisions are

required. Then this weighting factor is to be multiplied with the data so there is need

of l(p+ 1) number of multiplications. Further, the computational complexity is to be
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Figure 5.2: Overall convergence performance with 30% outliers in the desired data
with magnitude between (-5,5)

calculated for the BHT matrix formation and multiplication of the BHT matrix with

the input and the desired data. The number of operations requires for the calculation

of the BHT matrix depends upon the column number. Consider for the case of column

number m. The number of non zero elements present in the column m is (l+1). Thus,

the number of operations required to calculate the term zzT

‖z‖2 are: (l + 1)2 + (l + 1)

number of multiplications; (2l + 1) number of additions or subtractions; and (l + 1)2

number of divisions. Further, the number of operations required to calculate the first

element of the vector are: l+ 1 number of multiplications; l+ 1 number of additions.

Hence, in total (l + 1)2 number of multiplications are required for the multiplication

of the BHT with the data matrix. For the multiplication of the entire BHT matrix

with the data matrix of size p−m + 2. Thus, the total number of multiplications is

(p−m+ 2)× (l + 1)2.

This paragraph deals with the computational complexity calculation for the R-

APA algorithm. The same score function and the forgetting factor are to be calculated

in this case whose computational complexity is already given in previous paragraphs.

There is only need to calculate the computational complexity for the update equation

shown in (5.27). To calculate the correlation matrix present in (5.27) l2p number of

multiplications and l2(p−1) number of additions are required. Then the multiplication
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Figure 5.3: Overall convergence performance with 10% outliers in the desired data
with magnitude between (-5,5)

Block size 5 10 15
Steady state performance -50.7671 -50.2746 -51.4548

Table 5.1: Steady state performance of the robust APA for different block size

of the correlation term with the left term i.e. requires a pl2 number of multiplications

and pl(l− 1) number of additions. Further, the last multiplication operation requires

a pl number of multiplications and p(l − 1) number of additions. Computational

complexity comparison for different methods is given in Table 5.2.

Operation IMWN QR-IMWN R-APA
Comparison 0.5× l(l − 1) 0.5× l(l − 1) 0.5× l(l − 1)

Addition 2lp 4l + 3 2l2p− l2 + lp− p
Multiplication 3lp

0.5p2l2 + p2l + 1.5pl2 + 2l2

+0.5p2 + 4pl + 8l + 1.5p
l2p+ pl2

3pl + l
Division 0 l2 + l + p p

Square root 0 l l
Matrix Inverse 0 1 1

Table 5.2: Comparison of computational complexity
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Figure 5.4: Overall convergence performance with 10% outliers in the desired data
with magnitude between (-5,5)

5.6 Conclusion

It is observed that the R-APA based on the minimum-Wilcoxon-norm is robust against

outliers in the desired data for both white and colored input data. Since the compu-

tational complexity of the proposed algorithm is less than the QR-LCIMWN one it is

advantageous to use this algorithm in distributed case. Based on the choice of block

length the computational complexity of the algorithm is controlled. Therefore, the

block length can be chosen based on the availability of the computation units. The

convergence analysis of the algorithm can be carried out as future work by using the

the theory of rank statistics [16,42].
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Figure 5.5: Overall central convergence performance with 10% outliers in the desired
data with magnitude between (-10,10)
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Figure 5.6: Overall central convergence performance with 10% outliers in the desired
data with magnitude between (-10,10)
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Environment monitoring is one important application of WSNs. In this chapter,

a novel way is proposed to estimate the state of the environment using distributed

signal processing. A novel distributed strategy is proposed to find the incremental

path connecting each sensor node. In order to send the data in the wireless channel,

the sensor data needs to be quantized. To decrease the effect of the quantization error,

a robust technique is also proposed. The proposed techniques have been validated

through simulation based experiments.

6.1 Introduction

The WSNs consist of large number of sensor nodes connected through wireless com-

munication and are dispersed in an environment of interest to collect some useful

environmental data [1]. This data is used to estimate some parameters of interest

that could explain the physical condition of the environment. Effective solution of

such problems finds a number of applications in real life situation. Some interesting

applications are precision agriculture, monitoring hazardous material in the environ-

ment, monitoring hazardous environments such as a fire in the forest and volcanic

eruption. This type of problem requires the estimation of the location where the en-

vironment is changing to an abnormal condition. For an example consider the case

of precision agriculture, the objective is to find the area where the humidity level has

been decreased below some threshold value. Similarly for the case of fire in the forest

the objective is to find the location where the temperature value has gone above some

threshold value. All these problems are based on the assumption that each sensor

knows its position. Since the sensors are spread randomly in a remote area, it is not

possible to find the position of each sensor node manually. For this case the position

of the sensor can be calculated by using some algorithms already reported in the

literature [43,44].

Classical estimation method requires a fusion center (FC) with high power pro-

cessing capability. In the case of environment monitoring each sensor node sends

its position and measured data to the FC. The FC processes the received data and

estimates the location where the abnormal condition has occurred. This type of so-
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lution for such problem requires a large number of communication overheads. Hence

one of the research ares in WSNs is to develop energy efficient strategy that can be

achieved using in-network processing capability of sensor nodes. This problem has

been addressed in the literature and has been dealt in previous chapters in which a

common parameters of interest are estimated in distributed manner by processing the

measured data locally and sharing their estimated parameters with neighbor nodes

to achieve the global estimation.

Figure 6.1: Sensors are spread in regular manner in the environment of interest

From the environment monitoring viewpoint, the estimation problem is explained

here. In the beginning, a large number of sensor nodes are spread in the area of

interest. Then these nodes measure the environmental data after a regular time

interval. In practice it requires all sensor positions where the temperature is above

the threshold level at the FC. Using this data the FC identifies the abnormal location.

Accordingly appropriate action is initiated by the control center to overcome this

problem. Due to large communication overheads to route position data from the

sensor to the FC, the energy of the sensors near the FC decreases fast and after some

time it becomes zero. Then the FC would not able to communicate with other sensor
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Figure 6.2: Sensors in red and blue measure event above threshold and below threshold
level respectively

nodes. This situation is called the dead condition because the objective of the WSNs

cannot be fulfilled. However, a considerable amount of energy of the sensor network

remains unused. Thus, the aim is how to use almost equal amount of energy at

every node. The solution can only be achieved by using in-network processing based

distributed strategy.

In this chapter, the incremental strategy is used for distributed estimation of

the area. Previous literature [5] indicates that the Hamiltonian cycle is required for

finding the incremental path. In this case all the sensor nodes’ positions need to

send to the FC for finding the Hamiltonian cycle. This also requires large number

of communication overheads. In order to get rid of this, a novel method is proposed

to find the incremental path based on the local information. A logical proof of the

proposed method is provided. The present distributed method to find the incremental

path is incorporated in the method of estimation to achieve the desired objective.

To further clarify the problem an example is given. Suppose the sensor nodes

are dispersed in a regular manner in an area as shown in Figure 6.1. Let the left
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bottom sensor represents the FC of the sensor network. Consider red sensors measure

temperature values above the threshold level. Classically these sensors’ positions are

required at the FC and the FC estimates the abnormal area. The sensors 3,4,5,6,7,8

near to the FC have to route all sensor nodes’ positions. Thus, the sensor near to the

FC losses substantial amount of energy during one process. Hence, within short time

after the deployment these sensors lose their energy. This leads to a situation where

the sensors near to the FC become out of energy where as sensors away from the FC

still contain appreciable amount of energy. However, these sensors can not transmit

their measured data to the FC by multihop communication. Thus, the objective of

sensor network can not be fulfilled.

In order to avoid the above multihop communication based strategy and to facili-

tate the estimation process, a distributed scheme needs to be found out. The above

problem can be solved if by distributed manner a shape is formed enclosing the area

where measured value is above the threshold level and the parameters associated with

the shape are sent to the FC. Ellipsoid is a general shape which can be used to en-

close any type of shape with less amount of error. It is often used for clustering of

data [45, 46]. In this case an MVE covering positions of the sensor nodes in the ab-

normal area is formed by distributed manner to estimate the abnormal area. Finding

the MVE covering a finite set is a convex optimization problem. In order to find

the MVE using distributed strategy a token is passed across the entire network along

the incremental path. When a sensor node receives the token, it receives also priori

information about the shape of the MVE and uses its own information to update this

and passes the token as well as the parameters of the MVE to the next node defined

by the incremental strategy. In short the chapter deals with the development of:

1. a novel method to find out the global incremental cyclic path connecting each

sensor node by using the local decision;

2. an incremental distributed strategy based MVE covering the positions where

abnormality has occurred in absence of environmental noise;

3. an incremental distributed strategy based MVE covering the position where

abnormality has occurred in presence of environmental noise;
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4. a robust distributed MVE estimation based on the quantization parameter data;

5. an incremental distributed strategy for nonconvex scenario.

The symbols used in the chapter are listed:

S Sensor position matrix;

A Area of the environment;

E− Ea The element is present in set E but not

in set Ea;

vol Volume of an ellipsoid;

0p A p× p zero matrix;

0p×q A p× q zero matrix;

Ip A p× p identity matrix;

1p A p× p matrix having elements; 1

Span Range space of the column vectors;

e A column vector whose all elements are one;

ej A zero column vector in which the jth element

is of value 1;

[.] Void matrix or vector

[.]T Transpose of a matrix or vector

diag(x) If x is a vector then it returns a matrix

whose diagonal elements are the elements of the

vector otherwise if x is matrix it returns a vector

containing only the diagonal elements of the matrix

6.2 Problem Formulation

Suppose there are N number of sensor nodes are spread through out the environment

of interest. Let the sensors be spread at the time T1 and the measurement process

starts from T1 after a regular time interval, say t0, to time T2. Thus, the sensors

measure (T2 − T1)/to + 1 = n number of measurements. The objective is to estimate

the area where the abnormality has occurred at any time instant.
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The following assumptions are used:

1. the sensors are spread in a near flat surface so that their z-coordinates are same;

2. the sensors are spread in a regular manner;

3. the sensors know their positions and also the positions of their neighboring

sensor nodes (this is defined latter).

Representing the positions of the sensors by a matrix S, we get

S =
[

s1 s2 · · · sN

]

(6.1)

where, sj ∈ ℜ2 is the position of the jth sensor in x and y coordinates. Let the area

of the environment of interest be a. The sensors are spread in such a manner that all

the sensors able to estimate condition of the entire environment. Thus, S ≡ a. The

area a is represented as a =
[

a1 a2 · · · an

]T

, where ai the area corresponds to

the sensor with position si.

The objective is to estimate the area where the sensors measure the environmental

value above the threshold level at every measured time instant. The area where the

change has occurred is denoted by ac and let it be a convex set. The total area vector

a can be denoted as a = [ac (a− ac)]. Suppose the positions of these sensor nodes

are Sc. The problem is to estimate the MVE covering the area ac using distributed

strategy. Then the parameters of the MVE are to be sent to the control center.

Using the parameters of an Ellipsoid the problem can be reformulated as given

below. An ellipsoid is defined by

E = {c + Qu| ‖u‖22 ≤ 1} (6.2)

where, c ∈ ℜ2 and Q ∈ ℜ2×2 are defined as the center and the spreading matrix

of the MVE, respectively. Any point xi in the ellipsoid must satisfy the following

‖Axi + c‖22 ≤ 1 (6.3)
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where, A = Q1/2.

So the objective is to estimate the parameters of the MVE, c and Q, covering the

area ac. This can be formulated as an optimization problem

min
A,c

{

vol (E)
∣

∣E = c + Au, ‖u‖22 ≤ 1, ‖Asi + c‖22 ≤ 1, ai ∈ ac
}

(6.4)

Since the objective (6.4) is based on the knowledge of positions of all the sensor

nodes present in the WSNs, it can be called global objective. An algorithm is called

fully distributed if a sensor only uses the data from its neighborhood nodes only.

Hence, the global objective cannot be computed in fully distributed manner. Before

formulating the problem as a distributed optimization problem, there is a requirement

of finding neighborhood sensor nodes corresponds to a particular sensor.

6.2.1 Neighborhood Sensor Nodes

It is assumed that the sensor nodes are placed in regular manner. Suppose the distance

between two nearest sensor nodes in X- or Y-directions is d. The neighborhood sensors

of any sensor node, say j, is defined by

Snj
=

{

∀sj

∣

∣

∣

∣

√

(si (1, 1)− sj (1, 1))2 + (si (2, 1)− sj (2, 1))2 ≤
√

2d

}

(6.5)

6.3 Proposed Distributed Strategy to Find the In-

cremental Path

The incremental strategy requires a predefined cyclic path connecting each sensor

node. Thus, there is a need to find out an incremental path connecting each sensor

node. In the existing literature, the problem of finding the incremental path connect-

ing each sensor node is called as the Hamiltonian path problem [5]. This is a NP hard

problem whose computational complexity increases with number of sensor nodes [5]

and this algorithm can be applied to both regular and irregular problem. However,

the main drawback of this algorithm is that, it requires all sensor node positions value

121



Chapter 6

Energy Efficient Environment Monitoring Using Minimum

Volume Ellipsoid Method

at one central processor which requires large communication overheads. It would be

better if a distributed algorithm is proposed in which local sensor position values can

be used to obtain the global incremental path which is done in this thesis. In this

thesis a simple distributed technique is proposed to find the incremental path for reg-

ular network (that is all sensors are placed in a rectangular grid). This distributed

estimation of the incremental path is attractive from a sensor network life time view

point. In distributed implementation each node takes the decision after receiving the

information from its neighbor sensors. The decision is in such a way that (i) the global

incremental path can be found out and (ii) less amount of communication energy will

be used. Two proposed strategies are given in Figure 6.3. Anyone of the strategy

leads to the formation of the incremental path. The arrows given in the figure show

the direction of transmission of data. The directions are g1, g2 and g3. If a sensor

is in position (i, j) then the sensors corresponding to g1, g2 and g3 directions are

sensors with position coordinates (i+ 1, j), (i, j + 1) and (i− 1, j), respectively. The

directions are chosen based on the following criteria:

Figure 6.3: Decision at individual sensor node to obtain incremental strategy

1. first, the sensors choose the g1 direction sensor for transmission of data, if this
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Figure 6.4: The incremental path obtained by the proposed strategy

is not possible then in g2 direction sensor, if not then finally to g3 direction

sensor. Thus, they should choose a direction in the order g1, g2 and g3;

2. the sensors should not send the data to the sensor from which it has just received

the data;

3. there is a predefined routing path from the N th sensor node to the 1st sensor

node.

The proof of this strategy is given in Section D.1, in which it is shown that the

above proposed strategy based on the local information leads to establish a global

incremental path.

6.4 Proposed Techniques for Environment Moni-

toring

This section deals with the development of environment monitoring algorithm for

simple case, i.e. for regular network. The estimation process starts after every mea-

surement time. Based on this measurement value the MVE is to be formed in a

123



Chapter 6

Energy Efficient Environment Monitoring Using Minimum

Volume Ellipsoid Method

distributed manner. Assume that the region where the changes occur in the environ-

ment is a convex shape. In the proposed strategy after every measurement time a

token passes from the first node to the N th node. Along with the token the param-

eters of the MVE also pass. After the completion of one complete cycle the token

value increases by one and it sends back to the first sensor node. Thus, the token

value indicates the number of measurement times. When a sensor node receives the

token from the neighbor sensor node at that time it does the operation. Along with

the token a sensor node receives the MVE parameters. After reception of the MVE

parameters the sensor node (i) updates the MVE parameters by using its own sensor

position if the measurement value is above the threshold value or (ii) just route the

MVE parameters along with the token to the next sensor node.

At the starting of the process the center and spreading matrix of the MVE are

c = 02×1 and A = 02, respectively. Then these values pass along with the token

through the sensor nodes. When the measurement value of any node is above the

threshold value, then the sensor updates the parameters of the ellipsoid using its

position value and passes the updated MVE parameters along with the token to the

next node. A sensor chooses the next node by using the method given in Section 6.3.

In order to formulate the problem mathematically, consider the parameters of the

estimated MVE for all the nodes present in the incremental path from the first sensor

node to the (k − 1)th sensor node as ck−1 and Qk−1 for center and spreading matrix

respectively. These parameters are sent to the kth sensor node along with the token

defined by the incremental strategy. Based on the measured data, the kth sensor

node does the operation on the parameters ck−1 and Qk−1 using the position of it to

obtain ck and Qk. The relation between the previous ellipsoid and the new ellipsoid

can be written as Qk−1 ⊆ Qk. The updation can be formulated as a constraint convex

optimization problem as [38]

Qk, ck = arg min
Qk,ck

(log Det (Qk))

s.t. Qk−1 ⊆ Qk, (sk − ck)
T Q−1

k (sk − ck) ≤ 1, tk ≥ Th

(6.6)

Here, positions of the kth sensor node and the previous information about the
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MVE are used as the constraint. If the measured temperature value by the sensor k

is not greater than the threshold level Th then it sends the information ck−1 and Qk−1

to the next sensor without any change.

If the previous MVE parameters are ck−1 = 02×1 and Qk−1 = 02, then the param-

eters of MVE at the kth node are

ck = sk, Ak = k × diag (I1×2) (6.7)
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Figure 6.5: Ellipsoid and Ellipse

On the other hand if it is greater than Th then it estimates the center and spreading

matrix based on the convex optimization problem (6.6). The optimization problem

(6.6) is meant to form an MVE enclosing the previous MVE and the kth sensor node’s

position point. If the points only on the border area of the previous ellipsoid Qk−1 are

considered then the entire ellipsoid Qk−1 becomes a subset of the new ellipsoid Qk.

Therefore to decrease the computational complexity, the outer points of the MVE are

considered in the optimization problem (6.6). As shown in Figure 6.5 the yellow area

is an ellipsoid whose mathematical explanation is given in (6.8).

χellipsoid =
{

p ∈ ℜ2
∣

∣

∣
(p− c)T Q−1 (p− c) ≤ 1

}

(6.8)
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The ellipse is the border line of the ellipsoid. The mathematical formula for the

ellipse is

χellipse =
{

p ∈ ℜ2
∣

∣

∣(p− c)T Q−1 (p− c) = 1
}

(6.9)

In order to select the 20 points in the ellipse with equal interval, the following

algorithm is employed

θ ← 0 : 2π
20

: 2π

χk−1 ← ϕ

For i = 1 : 20

xpos
i = ck−1,1,1 + Ak−1,1,1 × cos (θi) + Ak−1,1,2 × sin(θi)

ypos
i = ck−1,2,1 + Ak−1,1,1 × cos (θi) + Ak−1,1,2 × sin(θi)

χk−1 ← χk−1 ∪





xpos
i

ypos
i





end

where, ϕ is a null set, Ak−1 = Q
1
2
k−1 and the Ak−1,i,j is the element present in ith

row and jth column of the matrix Ak−1.

With all these, the objective is to find the MVE covering the 20 points of the

previous ellipsoid , i.e. χk−1 and the new sensor position. Thus, the problem is

Qk, ck = arg min
Qk,ck

log Det (Qk)

s.t. (xi − ck)
T Q−1

k (xi − ck) ≤ 1

xi ∈ χk, tk ≥ Th

(6.10)

where, χk = χk−1 ∪ sk.

6.4.1 Core Sets

The computational complexity of the problem (6.10) depends on 21 constraints present

in it. Further to reduce the number of constraints a core-set of the 21 points is

calculated and then the MVE is obtained for the core-set points. It is known that

an ellipse is uniquely defined by the at most 2d number of points [39, 47], where d is
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the dimension of each point. Since for our case d = 2, 2d = 4 points are sufficient to

uniquely construct the MVE. The core-set algorithm [39] is given by

For i = 1 : 2d

If n ≤ 2d

χ0 ← χk

else

χ0 ← ∅
While

ℜd
/

Ψ 6= ∅
Pick an arbitrary directionbi ∈ ℜd

orthogonal complement of Ψ

α← arg max
k=1,··· ,n

(bi)
T
χk

i , χ0 ←
{

χ0 ∪
{

χk
α

}}

β ← arg min
k=1,··· ,n

(bi)
T
χk

i , χ0 ←
{

χ0 ∪
{

χk
β

}}

Ψ← Span
(

Ψ,
{

χk
β − χk

α

})

.

end

end

end

(6.11)

6.4.2 Development of the MVE Formation Algorithm Using
The Khachiyan Algorithm

The design of all these algorithms, i.e. calculation of 20 points from the ellipsoid

and further selection of 4 points, are only meant to design a computationally efficient

algorithm which may be suitable for WSNs. This subsection deals with an algorithm

to find out the MVE for the 4 points, i.e. χ0. The MVE can be obtained by using

the interior point method [38, 48, 49]. However, this requires a large number of com-

putations and the process is slow. Further, to reduce the number of computational

complexity the Khachiyan algorithm which is based on Lagrange multipliers [39] is

introduced. The procedure of finding the Khachiyan algorithm is given in Section

D.2.
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The Khachiyan algorithm estimates the parameters of the MVE (covering the core-

set data) by maximizing the Lagrange multipliers of the problem defined in (6.10).

The optimization problem (6.10) is called as the primary problem and the optimization

problem based on the Lagrange multiplier is called as the secondary problem. The

secondary problem based on the Khachiyan algorithm corresponding to the primary

problem (6.10) is given as

max
v∈ℜn

n
∑

k=1

vk (yk)
T ∏ (ui)

−1
yk

s.t. eTv = 1, v > 0n×1.

(6.12)

where, v =
[

v1 v2 · · · vn

]T

, Π (uj) =
n
∑

k=1

uj
kyky

T
k , and

y =



±





χ0,1

1



 ±





χ0,2

1



 ±





χ0,3

1



 ±





χ0,4

1









This formulation is given in Section D.2.

In order to achieve the objective (6.12) the following recursive method can be

used.

1. i← 0, u0 ←
(

1/8

)

e

2. While not converged

3. loop

4. j := arg max
k=1,...,8

yT
k

∏

(ui)
−1

yk

5. kj := max
k=1,...,8

yT
k

∏

(ui)
−1

yk

6. Taking the convex combination of ui and ej we get ui+1 := (1− βi)ui + βiej

7. The parameter β is updated as
β

i
:= arg max

β∈[0,1]
log det

∏

((1− β)ui + βej)

= [ki − (d+ 1)]/[(d+ 1) (kj − 1)]

8. i← i+ 1

9. end loop
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6.4.3 Stepwise Description of the Distributed Algorithm

Operations at the node k + 1

Step1: Input from the previous node → token, ck,Qk

Step2: Calculation of the 20 points using the algorithm in Section 6.4

Step3: Find the four number of points from the 21 points.

Step4: Then find out ck+1 and Qk+1 Step5: Transmit ck+1, Qk+1 and the token to

the node k + 2

6.5 Simulation Results for the Propose Strategy-I

For the simulation based experiments 121 number of sensor nodes are spread in an

environment of 120×120 square area. The distance between two nearest sensor nodes

is 8 in both X- and Y-directions. The left bottom sensor node is considered as the first

sensor node. The red color sensors are supposed to have measurement values above

the threshold value and the green color sensor nodes have measurement value below

the threshold value. The strategy I is used for finding the incremental path. Figure

6.6 shows the estimated MVE at the third red sensor node. Figure 6.7 shows the MVE

formed after the completion of the estimation process. From the simulation result it

is found that the proposed distributed method is able to form the MVE covering the

sensor nodes having the measurement value above the threshold level.

6.6 Proposed Strategy II

The previous strategy given in Section 6.4 is based merely on the measured data value

to form the MVE. The assumption for the previous technique is that the region where

an abnormal condition has occurred is a convex shape. Though this strategy requires

less number of communication overheads, however, it suffers from a drawback. As

illustrated in Figure 6.10, when the change areas of some groups remain far away

from each other at that time the estimated MVE provides more error. In order to

avoid this type of error, another novel strategy is proposed. This strategy helps to form
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Figure 6.6: Ellipse formed by three sensors position

two or more MVEs by distributed manner. This strategy requires more information

to be exchanged among the sensor nodes. The assumptions of this new strategy are:

(i) each sensor knows the position of the neighbor sensor nodes,(ii) each sensor knows

the shortest routing path from it to the FC and (iii) the sensors are dispersed in

regular manner. This strategy is based upon three operation phases: (i) searching

phase; (ii) formation phase; and (iii) breaking phase. Similar to the token passing

method in the previous strategy given in Section 6.4 it also requires a method of token

passing. These proposed methods start with the token at the first node. The token

is embedded with an operation phase. In this strategy two another parameters are

taken into account: (i) a counter value and (ii) a cluster number. In the starting of the

WSN, the counter value is zero at every sensor nodes. When a sensor node receives

the token, the counter value increases by one. Thus, the value of the counter at a

specific node indicates the number of times the sensor node has received the token.

The cluster value indicates to which cluster group the sensor node belongs.

This strategy requires, a sensor should take an action after receiving the following

information from the neighbor sensor nodes:
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Figure 6.7: Ellipse formed by all the sensor

1. The information from the previous node are the token, the cluster number, the

operation phase and prior information about the MVE;

2. The information from the other neighbor sensor nodes are the counter value and

the measurement values.

The sensor node uses this information and perform some or all of the following oper-

ations:

1. The sensor updates the MVE;

2. The sensor chooses the next neighbor sensor node to which the token is to be

passed;

3. The operation phase change may occur.

Corresponding to one particular set of received information a sensor node does

some of the particular operations. Thus, one set of operations is associated with one

particular set of received information. This strategy depends upon the relative posi-

tion of the information. In order to consider the relative position of the information,
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Figure 6.8: A sensor node with its neighbor sensors

the neighbor sensor nodes are divided of any sensor node k as a,b,c,d,e,f ,g and h as

shown in the Figure 6.8. For node k, the sensor node a is neighbor present in north-

west(NW) direction. Similarly b,c,d,e,f ,g and h sensor nodes are respectively present

in north(NO), north-east(NE), east(EA), south-east(SE), south(SO), south-west(SW)

and west(WE) directions of kth sensor node. Thus, the information matrix can be

denoted by

Dinf
k =





Ca Cb · · · Ch

Ta Tb · · · Th



 (6.13)

The rows one and two correspond to the counter and temperature values of the

sensor nodes respectively. Based on the counter values and the measured temper-

ature values whether the temperature is above the threshold or less, 216 number of

different information matrices can be formed. The entire information or a portion of

information in the matrix can be used to design a strategy. In order to achieve almost

same performance that is available if entire information matrix is used as well as to

decrease the communication overheads the strategy I and cluster number informa-

tion are incorporated in the new strategy. By this way a portion of the information

matrix is required, thus decreases the communication overheads. The cluster num-

ber parameter will help to assign each sensor node into one cluster group. Suppose
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the token is carrying the searching phase and the temperature value is less than the

threshold value then just transmit the information without any change. Otherwise

if the measured value is above the threshold value then the sensor node updates the

MVE corresponding to the cluster group and then sends the cluster group value to all

the neighborhood sensors. If there is no cluster group value in the sensor node then it

is for a new MVE and the cluster value is increased and thus a new cluster is made.

The proposed operations are given for different phases. Firstly the operations for the

token of searching phase are given for different information.

1. Suppose the measurement at the sensor node is above the threshold level.

(a) A new MVE is formed and a cluster value is assigned and the counter value

is increased by one.

(b) Then the cluster value is sent to all the neighbor sensor nodes whose mea-

surement is above the threshold level and the counter value is less than the

counter value of it.

(c) If the measurement value of no neighbor sensor node is greater than the

threshold level then split the searching phase token into a searching phase

token and another to a breaking phase token.

(d) Attach the MVE parameters to the breaking phase token and transmit it

through a multihop communication to the FC.

(e) Pass the searching phase token using the strategy given in Section 6.3

2. If the measurement at the sensor node is below the threshold level, then pass

the token by the same strategy given in Section 6.3.

Now the operations at a sensor node which receives a token carrying the formation

phase are given.

1. Suppose the temperature value at the sensor node is above the threshold level

(a) Then update the MVE and increase its counter value by one.
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(b) Transmit the cluster value to all the neighbor sensor nodes whose temper-

ature value is above the threshold level and the counter value is less than

its counter value.

(c) If there is no neighbor sensor node whose temperature value is greater

than the threshold value and the counter value is less than it then split

the formation phase token into the searching phase and the breaking phase

tokens.

(d) The searching phase token will be transmitted in the direction according

to the incremental strategy and the breaking phase token is passed towards

the direction of the FC.

2. Suppose the temperature value at the sensor node is below the threshold level.

Then just pass the token without any change in the parameters of MVEs.

Suppose a node receives a token carrying a breaking phase then just route the MVE

parameter to the next sensor which can forward it through multihop communication

to the FC. By this way the number of MVEs increases as a trade off to the decrease

of the error value. The lifetime of the network is calculated in Section 6.8. In this

case the computation energy and communication energy loss increases and thus the

lifetime decreases.

6.6.1 Simulation Results for Proposed Strategy-II

For the simulation based assessment of the proposed strategy 400 sensor nodes are

considered in the environment of interest. These sensor nodes are placed in a regular

manner. The distance between two nearest sensor node in one row or column is 10

units. As illustrated in Figure 6.9, suppose the red sensors measure the event. Thus,

the objective is to cover these points by ellipsoids. As shown in Figure 6.9, the first

proposed strategy leads to form the ellipsoid which covers the entire area of interest,

however, it provides a large amount of error. As shown in Figure 6.10 the second

proposed method leads to form 4 MVEs corresponding the 4 distinct areas so that

the error value decreases substantially.
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Figure 6.9: Estimated MVE obtained by using the proposed strategy-I

6.7 Incremental Distributed Strategy in Presence

of Additive White Gaussian Noise

The previous sections dealt with the scenario when there is no environmental noise.

However, in practice noise is present and hence the algorithm should work in the

presence of environmental noise in the measured data. The proposed method for this

type of scenario is the detection followed by the formation of the MVE. Therefore, the

detection is to be carried out before estimation of the MVE to ascertain that the signal

is present in the measured data. For the detection of the signal the likelihood ratio

test(LRT) based on the Neyman-Pearson [50, 51] lemma is employed. For the design

of the Neyman-Pearson lemma for the spatio-temporal data the following assumptions

are considered.

1. The sensors are present in regular manner throughout the environment.

2. The noise present in the environment is the AWGN.

3. Each sensor knows the position of its neighborhood sensor nodes.
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Figure 6.10: Estimated MVE obtained by using the proposed strategy-II

4. Noise present in different sensor nodes are independent of each other.

The investigation considers that the incremental path is established by the use

of strategy I(the strategy I is explained in Section 6.4). Since the noise at different

sensor nodes is independent of each other, the detection criteria at different nodes are

independent of each other. The Neyman-Pearson lemma relies on two hypotheses:

(a) null hypothesis, (b) alternative hypothesis. Null hypothesis corresponds to the

situation when the measured data contains only noise (this occurs when there is no

abnormality i.e. event and only the noise is present in the sensor node) where as

alternative hypothesis corresponds to the situation when the measured data contains

both the noise and abnormal signal. Since the required signal which is the cause of

abnormality and the noise in the environmental change with time, it is appropriate

to model both the signal and noise as random variables. The following assumptions

are introduced for designing the detection criteria.

1. The noise present in the environment is a Gaussian random variable with mean

zero and independent of the signal.

136



Chapter 6

Energy Efficient Environment Monitoring Using Minimum

Volume Ellipsoid Method

2. The signal is a Gaussian random variable with a finite mean value.

3. The signal at different sensor nodes are independent of each other.

4. The variance values of the noise and the signal are known.

5. The region where an abnormality has occurred is convex in shape.

Based on these assumptions the analysis at every sensor node is similar. The null

and alternative hypotheses for any sensor node k are represented as

H0,k = wk ∈ ℜn

H1,k = sk ∈ ℜn + wk ∈ ℜn
(6.14)

where, H0,k and H1,k are the null and the alternative hypotheses.

The probability density function(PDF) for n number of measurements at any node

k under the null hypothesis is

p (xk |H0,k ) =
1

(

2πσ2
wk

)n/2
e

n
∑

i=1
(xk,i)

2

2σ2
wk (6.15)

Let the PDF of the signal at the node k be

p (sk |H0,k ) =
1

(

2πσ2
sk

)n/2
e

n
∑

i=1
(sk,i−µ

s,k)
2

2σ2
sk (6.16)

Hence, the PDF of measured data under H1,k is

p (xk |H1,k ) =
1

(

2π
(

σ2
wk

+ σ2
sk

))n/2
e

n
∑

i=1
(xk,i−µsk)

2

2(σ2
wk

+σ2
sk) (6.17)

According to the Neyman-Pearson lemma if the LRT is greater than some thresh-

old value then there is probability of signal. The constant term depends upon a fixed

value of false alarm (FA) rate. The Neyman-Pearson lemma for node k having a

constant FA rate αk is represented as
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lk =
p (xk |H1,k )

p (xk |H0,k )
> γk (6.18)

∫

(xk,lk>γk)

p (xk, H0,k) = αk (6.19)

Here the number of sensor nodes in the environment is N . The state of the

environment can be denoted by an indicator function by taking the comparison with

the threshold value at the sensor node. This is given by

senv =
[

1T1−Th
1T2−Th

· · · 1TN−Th

]

(6.20)

Hence the number of possible states will be 2N . According to one state there

is a corresponding region. Thus si = Ai, i = 1 · · · 2N . Therefore, there will be a

2N number of regions can be detected. Suppose the variance is same in every node.

Since, all the data present in the different sensor nodes are independent of each other

then the local detection criteria do not affect the other sensor node. Accordingly the

global detection criteria is defined. Collecting all the local LRT into a vector we get

lG =

















p (x1/H1,1)/p (x1/H0,1)
p (x2/H1,2)/p (x2/H0,2)

...

p (xN/H1,N)/p (xN/H0,N)

















(6.21)

Similarly collecting all the threshold values into a vector, we get

γG =
[

γ1 γ2 · · · γN

]T

(6.22)

The global Neyman-Person lemma can be defined as
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lG > γG
∫

(x,lG>γG)

p (x, H0) = α
(6.23)

Using the assumptions, it can be shown that

α =
N
∑

i=1

αi (6.24)

Thus the investigation based on LRT for one node is sufficient. Let us investigate

on the LRT for any node say k. Using the PDF of the measured data at node k under

the null and alternative hypotheses, the LRT for node k is

1

(2π)n/2(σ2
wk

+σ2
sk

)
n/2 exp

[

−1
2

n
∑

i=1

(xk,i−µsk)
2

(σ2
wk

+σ2
sk

)

]

1

(2π)n/2(σ2
wk

)
n/2 exp

[

−1
2

n
∑

i=1

x2
k,i

σ2
sk

] > γk (6.25)

Simplification of (6.25) leads to

(

σ2
wk

σ2
wk

+ σ2
sk

)n/2

exp

[

−1

2

(

n
∑

i=1

(xk,i − µsk
)2

σ2
wk

+ σ2
sk

−
n
∑

i=1

x2
k,i

σ2
wk

)]

> γk (6.26)

Taking the logarithm on both sides of (6.26) and further manipulating, we get

n
∑

i=1

(

x2
k,i

σ2
wk

− (xk,i − µsk
)2

σ2
wk

+ σ2
sk

)

> 2 ln

(

σ2
wk

+ σ2
sk

σ2
wk

)n/2

γk (6.27)

Simplification of (6.27) leads to

n
∑

i=1

(

x2
k,i −

(

1 +
σ2

sk

σ2
wk

)−1
(

x2
k,i + µ2

sk
− 2xk,iµsk

)

)

> 2σ2
wk

ln

(

σ2
wk

+ σ2
sk

σ2
wk

)n/2

γk

(6.28)
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In order to further manipulate (6.28), the matrix inverse lemma is introduced.

The matrix inverse lemma is given as

(A+BCD)−1 = A−1 − A−1B
(

DA−1B + C−1
)

DA−1 (6.29)

Taking A = 1, B = 1, C = σ2
s/σ

2
n and D = 1 in (6.28) and applying the matrix

inverse lemma we get

n
∑

i=1

(

2xk,iµsk
+
(

1 +
σ2
wk

σ2
sk

)−1
(

x2
k,i − 2xk,iµsk

)

)

>

2σ2
wk

ln
(

σ2
wk

+σ2
sk

σ2
wk

)n/2

γ + nµ2
sk
− n

(

1 +
σ2
wk

σ2
sk

)−1

µ2
sk

(6.30)

Further simplification of (6.30) leads to

n
∑

i=1

(

2
(

1 +
σ2
wk

σ2
sk

)

xk,iµsk
+
(

1 +
σ2
wk

σ2
sk

)−1

x2
k,i

)

>

2σ2
wk

ln
(

σ2
wk

+σ2
sk

σ2
wk

)n/2

γk + nµ2
sk
− n

(

1 +
σ2
wk

σ2
sk

)−1

µ2
sk

(6.31)

In the proposed method the measured values are used to find the left portion of

(6.31) and it is compared with the right portion of it, if it satisfies (6.31) then the

MVE will be formed. Thus, in the proposed method when a node receives the token

from the previous node it uses the measured data to find the condition (6.31). Based

on the condition it updates the prior MVE or it transmits as it is.

6.7.1 Simulation Results for Noisy Measured Data

This subsection deals with the simulation based experiment to verify the proposed

method. In this case the same number of sensor nodes and the same type of environ-

ment are taken into consideration. The noise at the individual node is AWGN with

a zero mean and unity variance. The signal variable is white Gaussian having mean

of a random value between (10, 13). Total 10 number of data is used for detection

whether the signal is present or not. The simulation results are given in Figures 6.11

and 6.12. Figure 6.11 corresponds to the MVE estimation based upon the detection
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and the strategy-I, where as Figure 6.12 corresponds to the MVE estimation based

upon the detection and the strategy-II.
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Figure 6.11: Estimation of MVE in presence of AWGN using strategy-I

6.8 Sensor Network Lifetime

The sensor network life time is defined by the duration of the deployment of the

sensor nodes to the time when it would not able to solve the objective for which it

was deployed. This time can be calculated by the state space approach. Suppose the

energy of the ith sensor node is ǫi and transmitting energy loss in one transmission is

ei. Let the initial energy and transmission energy be same for all the sensor nodes.

The lifetime of a sensor network depends upon three factors [52–54].

1. The architecture of the network. In this chapter the flat and fixed architecture

is considered. In case of classical technique and proposed technique the routing

path is to the FC and the next neighbor node defined by the incremental path

given in 6.3, respectively.
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Figure 6.12: Estimation of MVE in presence of AWGN using strategy-II

2. Data collection initiation of the sensor network. There are several types of data

collection modes. In this chapter the sensors are measuring the environment

data at regular time interval.

3. The energy consumption model of the sensor network. There are two types en-

ergy consumption in WSNs. One is continuous energy consumption and another

one is reporting energy consumption.

Let the continuous energy consumption be same for every sensor nodes and it be

ǫc. Suppose the sensing energy is very less and hence can be neglected. Let minimum

e amount of energy be required at the sensor node for transmission of one bit data in

one time. Thus, if the energy of one sensor node decreases less than e then it will not

be able to transmit its data. Under such situation the sensor node can be considered

as dead. Similarly, the WSNs can be consider as dead when a considerable number

of sensor nodes will become dead. For the mathematical formulation of the lifetime

of the WSN let the energy state of the WSNs is defined by a vector

142



Chapter 6

Energy Efficient Environment Monitoring Using Minimum

Volume Ellipsoid Method

ε =
[

ε1 ε2 · · · εN

]

(6.32)

As time passes the energy state of the WSN changes. Energy of each sensor node

decreases in every time interval by reporting energy and constantly by continuous

energy. Let the reporting interval be λ. Thus, after n reporting times the energy of

any sensor node say k decreases to

εk
i = ε− λnεc − nbe (6.33)

Therefore, the energy of any sensor node is one of the values belonging to the set.

ǫp,i =
[

ǫi ǫi − 1× ei − λ1εc ǫi − 2× ei − λ2εc · · · ǫi − (L− 1)× ei − λ(L− 1)εc er

]

(6.34)

where, er is the residual energy of the sensor node. Thus, the entire energy space

is a discrete space point of N dimensions with points corresponding to the energy

state of the network. The state moves from one state to the other state with time.

There are some areas in which if the state would fall then the network is of no use.

But some residual energy remains unused. This is known as the dead condition of

a WSN. A reward is given for every change of the state until it will fall in the dead

state region. The total reward times of the interval time is the life time of the WSNs.

The generalize description about the lifetime of the WSNs can be made simpler for a

particular strategy.

6.8.1 For Classical Technique

In classical case every sensor transmit their measured data and positions to the FC

through multihop communication. In this strategy the sensors nearer to the FC

generally route all the data of the WSNs to the FC. Thus, there is a maximum

probability that these sensors will lose their energy very quickly and will become

dead within less time after the deployment. Further, when these sensors become dead
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then the rest of the sensors cannot able to transmit their data to the FC. Now the

entire WSNs is dead. By this way the life time of WSNs based on classical technique

can be defined as the time duration from the deployment of the sensor nodes to the

time when all sensor nodes near to the FC would become dead. This can be explained

by the notion of energy state-space as follows. For classical technique the energy state

vector can be rearranged as

εcl =
[

εfn εnfn

]

(6.35)

where, εfn and εnfn are the energy state vector corresponding to the sensor nodes

near to the FC and the rest of the sensor nodes. Further, consider the energy value

etotal
fne =

{

∑

ei |i ∈ εfn

}

and etotal
nfne =

{

∑

ei |i ∈ (εfn)
}

(6.36)

Using the parameters in (6.36) a two dimensional state vector is defined by

e =
[

etotal
fne etotal

nfne

]

(6.37)

The lifetime of the WSN based on the classical strategy can be explained in the

following way. Thus, the lifetime of the WSN can be described by the time duration

from the deployment of the sensor network to the time when the energy value etotal
fne

would become e. It can be formulated mathematically as

Lclassical
time =

enf

enf
c + λenf

r

(6.38)

Suppose for transmission of the data each sensor uses b number of quantization

bits. In one time frame the number of data required for transmission to the FC is

3Nb. Thus, the total energy loss per unit time is continuous energy loss which is enf
c

and the reporting energy loss is 3Nbe.

Hence, the lifetime of the sensor network based on the classical method is
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Lclassical
time =

enf

enf
c + 3Nbe

(6.39)

Suppose the number of neighbor sensor nodes of the FC is Nc. Equation (6.39)

can be changed to

Lclassical
time =

Ncei

Nce
nf
i + 3Nbe

(6.40)

Equation (6.40) can be written as

Lclassical
time =

ei

enf
i + 3(N/Nc)be

(6.41)

6.8.2 For Proposed Technique I

In the incremental strategy based on the proposed technique-I each sensor sends the

parameter of the MVE to the next sensor node defined by the incremental path. Thus

if one sensor node loses all of its energy then an incremental path cannot be established

and the WSNs fails to achieve the objective. Thus, the lifetime of the WSN based

on the incremental strategy is defined by the time duration of the deployment of the

sensor node to the time when one sensor node loses all of its energy. The sensor

node before the last sensor node transmits a large amount of data. Therefore, there

is much probability of this sensor to become dead first. In this strategy-I each sensor

only transmits the updated MVE parameters to next node defined by the incremental

path. Thus, each sensor transmits six parameters to the next sensor node. Consider

b number of quantization bits are used to transmit the data. Hence, in one interval

each sensor sends 6b number of bits. Hence, the lifetime of the sensor network can be

calculated as

LT =
ei

ei
c + λei

r

(6.42)
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Equation (6.42) can be written as

LT =
ei

εi
c + 6be/L

(6.43)

6.8.3 For Proposed Technique II

This subsection deals with the calculation of the lifetime of the WSNs equipped with

the proposed technique II given in Section 6.6. For this the worst case scenario is

considered. This scenario can also be considered as the lower bound of the lifetime

of the sensor network. The worst case scenario corresponds to the situation when a

sensor node transmits the cluster number, counter value and the measurement value to

every neighbor sensor nodes. Further, analyzing the Figure 6.9 and the strategy-II, it

can be found that a sensor node needs to transmit the cluster value to the sensor nodes

b, c, d, e. A sensor node needs to transmit the measurement and the counter values

to the sensors a, f, g, h. In addition consider that the same sensor node transmits all

the MVEs parameters to the FC. Let there be p number of MVEs are formed. Thus

there are 12+6×p number of communications during each iteration in the worst case

for one sensor node. Thus, following (6.42) it can be found that the lifetime of the

WSNs is

LT =
εi

εi
c + λεi

r

(6.44)

Equation (D.2) can be written as

LT =
εi

εi
c + λ12 + 6× p (6.45)

6.9 Robust Technique

In case real scenario before transmission to the next node the MVE parameters needs

to be quantized and encode. Due to the quantization process the MVE parameters

subject to quantization error that leads to the shifting of the mean value as well as a
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change in the spreading factor and the orientation of the MVE. As shown in Figure

6.13 the sensor nodes 2, 3, 5, 9 have detected the event. Thus, the objective is to form

the MVE covering the positions of these four points. However, due to quantization of

the X- and Y-coordinates, the received position values of these four points are shifted

by the quantization error value from the original positions. The original positions are

marked by blue color and the quantized positions are indicated by the gray color in the

Figure 6.13. Therefore, the general method which are explained in Section 6.3 leads

to form the MVE covering the gray color points which is given by black color ellipsoid

let it be χQ. However, it does not cover the actual positions. The MVE formed by

covering the actual positions is given by the red color and is denoted by χR. Since

χR 6⊂ χQ so some event places are missed. If due to quantization error some event

places, for the problem like monitoring of volcanic eruption or fire in the forest, some

portion of the environment remains unnoticed then that small error may create more

problems. Hence, there is need to design robust algorithm which will be helpful for

such special scenarios. On the other hand, the objective should be to form the MVE

χQ such that it should satisfy χR ⊂ χQ. In order to achieve this, the possible region of

the actual position of the sensor node corresponding to the quantized position value

needs to be found out. This can be obtained by using the step size value of the

quantization process. If the position of the sensor node after quantization is (x, y)

and the step size is µ then the possibility of the actual sensor node position may be

any of the point in a square whose corner points are (x − µ, y − µ), (x + µ, y − µ),

(x− µ, y + µ) and (x + µ, y + µ). However, for the case of the MVE formation from

one priori MVE and a point the following procedure can be followed.

Suppose the previous sensor node sends the parameters Qd and cd which is quan-

tized data of the priori MVE parameters Q and c. However, it is not possible to find

the possible region of the MVE from the quantized data of the mean and spreading

matrix because the quantization of the spreading matrix may lead to another spread-

ing matrix from which it is very difficult to find the original spreading matrix. In

order to avoid this problem a different approach is proposed. In this case instead of

transmitting the direct quantized MVE values the quantized value of the coreset data
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Figure 6.13: Robust method for MVE calculation

corresponding to the priori MVE is transmitted. After receiving the quantized points

the sensor nodes calculate the possible region for every quantized data. Then the core

set is calculated and the MVE is formed.
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Figure 6.14: MVE Formation based on Proposed strategy-I

6.9.1 Simulation Results for Robust Method

This subsection deals with the simulation based experiment to verify the proposed

method of robust MVE estimation. In this case the same number of sensor nodes

and the same type of environment are taken into consideration. As illustrated in
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Figure 6.15: MVE formation based on robust method

Figure 6.14 the general method based MVE estimation does not cover one red point.

However, as shown in Figure 6.15 the proposed robust method covers the every point

with large error values.

6.10 Conclusion

The technique shown is very good for the environment where the environment change

sets is very near to the convex sets. It increases the lifetime of the sensor network

with large scale. A novel distributed strategy is proposed to find the incremental path.

The lifetime of both the proposed methods are given and it is found that the lifetime

of the proposed method is more than the case of classical method. A robust method

is proposed to find the MVE in case of quantization errors. When the spreading

of the sensor nodes is not regular then the problem and formulation becomes very

interesting. Designing new energy efficient protocol to increase the lifetime of the

sensor network can be regarded as the future extension of the present case.
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This chapter deals with the overall contributions of the thesis. For further inves-

tigation on the same or related topics future research directions are also given.

7.1 Conclusions

In this thesis, the robust distributed adaptive estimation algorithms are proposed.

These estimation algorithms are based on the Wilcoxon norm and the generalized

rank norm to handle impulsive noise in the desired and/or input data. Some of

these algorithms provide better estimation performance at the expense of poor con-

vergence speed. A number of novel robust algorithms are proposed to handle outliers

in the desired data. These algorithms exhibit faster convergence speed than previous

existing algorithm at the expense of poor estimation accuracy. In order to handle

outliers in both input and desired data a novel distributed algorithm based on GR

norm is proposed. In addition a novel QR decomposition based approach is proposed

which provides faster convergence speed and also exhibits better estimation accuracy.

However, this algorithm requires large computational and communication complex-

ities. Due to the development of efficient VLSI architecture and low power VLSI,

this distributed algorithm can easily be implemented in WSNs. A novel environment

monitoring algorithm based on distributed incremental strategy is proposed. This can

be suitable for a large number of applications like precision agriculture, monitoring

the fire in the forest, study of an active volcano etc. Different computational efficient

methods are introduced in this environment monitoring proposed method which can

be suitable for WSNs. This can be treated as a very good application of distributed

strategy.

In Chapter 2, some novel robust algorithms are proposed based on the notion

of the Wilcoxon norm. In addition to this a novel modified Wilcoxon norm is also

proposed. Sign sign and sign regressor Wilcoxon norm and Sign sign, sign regressor

modified Wilcoxon norm are also proposed. Exhaustive simulation studies have been

carried out of all these algorithms and it is found that these algorithms are robust

against outliers in the desired data. These algorithms provide faster convergence

speed compared to the existing techniques with less performance. These algorithms
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offer lesser computational complexity.

We have proposed the distributed implementation of the generalized rank norm

to handle outliers in both the input and the desired data in Chapter 3. An indi-

cator function based approach is used to analyze the norm. A novel median based

approach is proposed which requires less number of computations. In addition to

incremental generalized rank norm, incremental high breakdown estimator is also

proposed. Similar to Chapter 2 sign regressor generalized rank estimator and sign

regressor highbreak down estimator are also proposed. The new scheme is suitable

for distributed implementation in WSNs. From the simulation studies it is found that

the proposed techniques are robust against outliers in the desired and input data. One

of the variant of this algorithm is proposed which provide faster convergence speed

thus suitable for fast changing environment.

A novel QR based robust distributed strategy is proposed in Chapter 4 which

exhibits faster convergence speed and provide better performance than all the other

previous algorithms. These algorithms are meant to handle outliers in the desired data

as well as in both the input and the desired data. A low communication complexity

based QR decomposition algorithm is also proposed which is more suitable for WSNs.

Exhaustive simulation studies for weak to strong outliers in both the input and desired

data are done and it is found that these algorithms are robust up to 50% outliers both

in input and desired data. The main drawback of this algorithm is that it requires

more number of computations.

In Chapter 5 a R-APA algorithm is proposed which is suitable for colored data and

it acts as a compromise between the general gradient based algorithm which is given

in Chapter 2 and the QR-IMWN algorithm which is given in Chapter 4 in terms of

computations and convergence. Thus this is suitable for real environment application

where most of the spatial data are correlated to each other.

The novel environment monitoring method given in Chapter 6 is of great impor-

tance, since it is suitable for many real world applications. For this application we

have used minimum volume ellipsoid method. A novel incremental strategy is also

proposed. Some modifications are done in the algorithm for low computation. A
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robust method is also proposed in order to handle quantization noise. The lifetime

of the proposed method is also calculated and it is found that the proposed method

requires less energy of the sensor network.

7.2 Suggestions for Future Work

Distributed signal processing for WSNs still in the infant stage. This work can be ex-

tended in different directions taking different aspects such as networking, the lifetime

of the WSNs, coding, cooperative communication etc. Some of the future research

directions are given here.

• All the methods given in the thesis are based only on the incremental distributed

strategy of the WSNs, which requires a predefined cyclic path connecting each

sensor network present in the environment. This is not possible for WSNs having

large number of sensor nodes. In this scenario robust signal processing based

on diffusion [11,20,22] and adaptive diffusion strategies are more suitable.

• In this thesis the model is a linear and lumped parameter whose value is same

for every node. This work can be extended to an environment having distributed

parameter system [55] with nonlinearity which frequently occur in real environ-

ment scenario where the data is spatiotemporal.

• This thesis dealt only with the signal processing part of the WSNs. This work

can also be extended to study how the different layers of the wireless network-

ing can be incorporated in the distributed estimation problem for a particular

application [56].

• This thesis only covers the design of the robust algorithms to handle outliers

in the measured data. Still there is more work to be done on the convergence

analysis of the algorithm, finding the break down point and influence function

of the algorithm. All these characteristics of an adaptive algorithm are very

important to study. For these the sophisticated mathematical analysis based on

the theory of rank tests [16,42] can be considered.
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• The algorithms reported in the thesis based on the assumption that the connec-

tive links between the sensor nodes are perfect and noise free. Thus this can be

extended to the environment where the link is corrupted by the noise and data

is non stationary [57].
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A.1 Proof of the Function (2.33) As a Pseudo Norm

If a function satisfies three properties then it is called as a pseudo-norm [16]. These

are

‖v1‖mwn ≥ 0

‖av‖mwn = a ‖v‖mwn

‖v1 + v2‖mwn ≤ ‖v1‖mwn + ‖v2‖mwn

(A.1)

Proof of the property 1: The function is given by

‖v‖mwn =
l−1
∑

i=1

l
∑

j=i+1

√
12

(

R (vi − vj)

0.5× l(l − 1) + 1
− 0.5

)

(vi − vj) (A.2)

Taking the difference value as one element and substituting it in (A.2), we obtain

‖v‖mwn =

0.5×l(l−1)
∑

k=1

√
12

(

R (tk)

0.5× l(l − 1) + 1
− 0.5

)

tk (A.3)

Without loss of generality, we can assume t1 ≤ t2 ≤ · · · ≤ t0.5×l(l−1). Then (A.3)

is modified to

‖v‖mwn =

0.5×l(l−1)
∑

k=1

√
12

(

k

0.5× l(l − 1) + 1
− 0.5

)

tk (A.4)

Manipulating (A.4) using the median value, we get
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‖v‖mwn =
0.5×l(l−1)
∑

k=1

√
12
(

k
0.5×l(l−1)+1

− 0.5
)

(tk −Med (tk))

+
0.5×l(l−1)
∑

k=1

√
12
(

k
0.5×l(l−1)+1

− 0.5
)

Med (tk)

(A.5)

The second term can be easily shown as 0. The first term contains half of the term

negative and half of the term positive. From (A.5) it is found that the coefficients

of the negative term is negative and the coefficients of the positive term is positive.

Hence the function (A.5) is always positive. When all the elements are equal at that

time the norm is of value zero. Thus the first property is proved.

Proof of the property 2:

In order to proof the second property, (A.2) is rewritten with multiplication with

any positive constant, say a, as

‖av‖mwn =
l−1
∑

i=1

l
∑

j=i+1

√
12
(

R(avi−avj)

0.5×l(l−1)+1
− 0.5

)

(avi − avj)

(i)
= a

l−1
∑

i=1

l
∑

j=i+1

√
12
(

R(avi−avj)

0.5×l(l−1)+1
− 0.5

)

(vi − vj)

(ii)
= a

l−1
∑

i=1

l
∑

j=i+1

√
12
(

R(avi−avj)

0.5×l(l−1)+1
− 0.5

)

(vi − vj)

= a ‖v‖mwn

(A.6)

By taking the constant value a common, we get (i) equal. Since R(a(vi − vj))

among the elements av is equal to the R(vi− vj) among the elements of v. Therefore

we get the (ii) equal. Which is nothing but a ‖v‖mwn. Thus the second property is

proved.

Proof of the property 3:

In order to prove the third property, the notion of Cauchy-Schwartz inequality is

used. Therefore first objective is to show that the the function (2.34) is a convex

function. A function is convex if it satisfies the following property

f (λx + (1− λ)y) ≤ λf (x) + (1− λ) f (y) (A.7)
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To prove the function (2.34) as a convex function the following steps are used, in

the first step the elements present in the vector v given as

v = vec ([vi − vj] ,∀i < j, vi ∈ v, vj ∈ v) (A.8)

are shown as a convex function. The elements are

vi − vj = yi − yj + (xT
j − xT

i )w (A.9)

Since it is an affine function of the parameter w. Then by [38], (A.9) can be shown

as a convex function. In the second step it is shown that the function which takes the

maximum value of some number of convex functions is also a convex function. For

this vmax is defined by

vmax = Max
[

v1 v2 · · · v0.5×l(l−1)

]

(A.10)

where vi is the element of the random vector v (which is also a convex function),

then by [19,p.73] (A.10) can also be proved as a convex function. In third step a

permutation function is used. Consider the the following permutation function.

Perm(v1 × v2) = vec
([

v1
i × v2

j

]

,∀i,∀j, v1
i ∈ v1, v2

j ∈ v2
)

(A.11)

where v1 =
[

v1
1 v1

2 · · · v1
l

]

and v2 =
[

v2
1 v2

2 · · · v2
l

]

The permutation vector contains the elements which is obtained by summation of

every one by one multiplication of the elements in the vector v1 with the elements

in v2. The maximum value element corresponds when the elements are in order [42].

That means R(v1
i ) = R(v2

i ), where R(v1
i ) and R(v2

j ) are the rank order of v1
i in v1 and

rank order of v2
j in v2 respectively. Therefore the function

y = Max
(

Perm
(

v1v2
))

(A.12)
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is a convex function. Thus we have

∥

∥λv1 + (1− λ)v2
∥

∥

mwn
≤ λ

∥

∥v1
∥

∥

mwn
+ (1− λ)

∥

∥v2
∥

∥

mwn
(A.13)

Taking the value of λ as 1/2 and then applying the second property to the first

term of (A.13), we get

∥

∥v1 + v2
∥

∥

mwn
≤
∥

∥v1
∥

∥

mwn
+
∥

∥v2
∥

∥

mwn
(A.14)

Hence the third property is proved. Thus it is proved that the function (2.33) is

a pseudo norm.
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B.1 Proof of Equation (3.4)

The Wilcoxon norm of a vector v, as given in Section-II, is given by

‖v‖w =
L
∑

i=1

(√
12

(

R (vi)

L+ 1
− 0.5

)

vi

)

(B.1)

Here, R (vi) is rank order of the error vi among all elements in the vector. This

implies that if all the elements in the vector are arranged in increasing order then

rank order of an element is the position of the element. Without sorting operation

this rank order value can also be calculated using indicator function, which is given

by

Ix =







1, x ≥ 0

0, x < 0
(B.2)

Therefore by simple mathematical manipulation, R (vi) can be described by using

the indicator function given in (B.3) as

R (vi) =
L
∑

j=1

I(vi−vj) (B.3)

Incorporating the above indicator function based rank order value in (B.2), we get
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‖v‖w =
L
∑

i=1











√
12











L
∑

j=1

I(vi−vj)

L+ 1
− 1

2











vi











(B.4)

Modifying (B.4), we find

‖v‖w =
L
∑

i=1











√
12











2
L
∑

j=1

I(vi−vj) − L− 1

2 (L+ 1)











vi











(B.5)

Taking the common term
√

12/ (L+ 1) to outside, (B.5) is changed to

‖v‖w =

( √
12

2 (L+ 1)

)

L
∑

i=1

(

2
L
∑

j=1

I(vi−vj) − L− 1

)

vi (B.6)

Since Io = 1 in (B.3), then Ivi−vi
is 1 and Ivi−vj

+ Ivj−vi
is also equal to 1 except

vj = vi, in which it is 2. Using these values in (B.6) at l + 1 term, we get

‖v‖w =

( √
12

2 (L+ 1)

)

L
∑

i=1

(

2
L
∑

j=1

I(vi−vj) −
(

L
∑

j=1

(

I(vi−vj) + I(vj−vi)

)

)

− 2I(vi−vi)

)

vi

(B.7)

Simplification of (B.7) leads to

‖v‖w =

( √
12

2 (L+ 1)

)

L
∑

i=1

(

L
∑

j=1

I(vi−vj) −
L
∑

j=1

I(vj−vi) − 2I(vi−vj)

)

vi (B.8)

Finally (B.8) is solved as

‖v‖w =

( √
12

2 (L+ 1)

)

L
∑

i=1

L
∑

j=1,j 6=i

(

I(vi−vj) − I(vj−vi)

)

ei (B.9)
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Splitting the two summation terms ,
L
∑

i=1

L
∑

j=1,j 6=i

(

I(vi−vj) + I(vj−vi)

)

ei , in (B.9) to

two two summation terms, one for i < j and the other for i > j, we obtain

‖v‖w =

( √
12

2 (L+ 1)

)(

L
∑

i=2

i−1
∑

j=1

(

I(vi−vj) − I(vj−vi)

)

vi +
L
∑

j=2

j−1
∑

i=1

(

I(vi−vj) − I(vj−vi)

)

vi

)

(B.10)

Then, interchanging the jth and ith index in the second summation term that is

after the plus sign in (B.10), we get

‖v‖w =

( √
12

2 (L+ 1)

)(

L
∑

i=2

i−1
∑

j=1

(

I(vi−vj) − I(vj−vi)

)

ei +
L
∑

i=2

j−1
∑

j=1

(

I(vj−vi) − I(vi−vj)

)

vj

)

(B.11)

Further merging the two summations in (B.11) into one summation, we obtain

‖v‖w =

( √
12

2 (L+ 1)

)(

L
∑

i=2

i−1
∑

j=1

((

I(vi−vj) − I(vj−vi)

)

(vi − vj)
)

)

(B.12)

Further simplification of (B.12) leads to

‖v‖w =

( √
12

2 (L+ 1)

)(

L
∑

i=2

i−1
∑

j=1

(

I(vi−vj) (vi − vj)− I(vj−vi) (vi − vj)
)

)

(B.13)

Equation (B.13) can be written as

‖v‖w =

( √
12

2 (L+ 1)

)(

L
∑

i=2

i−1
∑

j=1

|vi − vj|
)

(B.14)

which is equivalent to

‖v‖w =

( √
12

2 (L+ 1)

)(

∑

j<i

|vi − vj|
)

(B.15)
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which is the desired form given in (3.4).

B.2 Generalize R Norm Using Indicator Function

As given in (3.5), the GR norm is

‖v‖GR =
∑

i<j

wij |vi − vj| (B.16)

Manipulation of the absolute error difference term in (B.16) using indicator func-

tion leads to

‖v‖GR =
∑

i<j

(

wijI(vi−vj) (vi − vj) + wijI(vj−vi) (vj − vi)
)

(B.17)

Now replacing one summation term with condition i < j with two summation

terms, we obtain

‖v‖GR =
L−1
∑

i=1

L
∑

j=i+1

(

wijI(vi−vj) (vi − vj) + wijI(vj−vi) (vj − vi)
)

(B.18)

Further solving (B.18), we get

‖v‖GR =
L−1
∑

i=1

L
∑

j=i+1

(

wijI(vi−vj) − wijI(vj−vi)

)

vi+
L−1
∑

i=1

L
∑

j=i+1

(

wijI(vj−vi) − wijI(vi−vj)

)

vj

(B.19)

Interchanging the ith and jth index in the second summation term, which is after

the plus sign, we get

‖v‖GR =
L−1
∑

i=1

L
∑

j=i+1

(

wijI(vi−vj) − wijI(vj−vi)

)

vi+
L−1
∑

j=1

L
∑

i=j+1

(

wijI(vi−vj) − wijI(vj−vi)

)

vi

(B.20)
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Then merging the two summation terms, one before the plus sign and the other

one after the plus sign, into one summation term, we get

‖v‖GR =
L
∑

i=1

L
∑

j=1,j 6=i

(

wijI(vi−vj) − wijI(vj−vi)

)

vi (B.21)

Equation (B.21) represents the desired form.
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C.1 Calculation of Block Householder Transforma-

tion Matrix

Suppose z ∈ ℜq is a vector and

T(n) = Iq×q −
2zzT

‖z‖2
(C.1)

When the matrix T is multiplied with another vector x, the vector Tx is reflected

on to the vector z. If the values z is suitably chosen to be x + ‖x‖2 e1 where e1 =
[

1 0 · · · 0
]

∈ ℜn then x reflected onto e1 as TX = ±‖X‖2 e1. In this case

all the energy of the vector X is reflected onto the unit vector e1. By changing the

position of 1 in e1 different columns of the matrix XT
k,n will be made zero.

For the case of block incremental RLS is reproduced as

Rk(n) =





Rk−1(n)

XT
k,n



 (C.2)

Let the block Householder transformation matrix for (C.2) be Hk(n). So that

Hk (n)Rk (n) =





Rk−1(n)

0



 (C.3)

The above operation in (C.3) is split into p different operations as
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H
(i)
k (n)





R
(i−1)
k (n)

0 · · · x
(i−1)
k,i · · · x

(i−1)
k,p



 =





R
(i)
k (n)

0 · · · x
(i)
k,i+1 · · · x

(i)
k,p



 (C.4)

where x
(0)
k,j = xk,j,R

(0)
k−1(n − 1) = Rk−1(n). and the resultant Householder trans-

formation matrix is Hk (n) = H
(p)
k (n)H

(p−1)
k (n) · · ·H(1)

k (n). In this case each H
(i)
k (n)

represents the Householder transformation which reflects the ith column of updated

XT
k,n i.e. x

(i−1)
n,i to zero. The structure of H

(i)
k (n) is then given by

H
(i)
k (n) =





H
(i)
k,11 (n) H

(i)
k,12 (n)

H
(i)
k,21 (n) H

(i)
k,22 (n)



 (C.5)

where H
(i)
k,11 (n) ∈ ℜp×p represents an identity matrix except for the ith diago-

nal entry. In this case H
(i)
k,11 (n) ∈ ℜp×k is a zero matrix except for the ith row,

H
(i)
k,12 (n) =

(

H
(i)
k,21 (n)

)T

and H
(i)
k,22 (n) = I−

(

2x
(i−1)
n,i

(

x
(i−1)
n,i

)T
/

σ2

x
(i−1)
n,i

)

is symmet-

ric and σ2

x
(i−1)
n,i

=
∥

∥

∥x
(i−1)
n,i

∥

∥

∥

2

. The reflection vector to calculate Hi
k(n) is given by

(

zi
)T

=
[

01,i−1 pi 01,p−i

(

xi−1
k,i

)T
]

(C.6)

where p = Ri−1
k,i,i (n)−

√

(

Ri−1
k,i,i (n)

)2
+
(

xi−1
k,i

)T
xi−1

k,i .

Here H
(i)
k (n) is obtained as

H
(i)
k (n) = Ip+l − 2

zi (zi)
T

(zi)T zi
(C.7)

The original BHT matrix Hk(n) is then obtained as

Hk (n) = H
(p)
k (n)H

(p)
k (n) · · ·H(p)

k (n).
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C.2 Calculation of Block Householder Transforma-

tion Matrix for QR Based Robust Incremental

Strategy

For QR based incremental proposed method the updated matrix at kth node in time

n is given by

R
N

k (n) =





RN
k−1(n)

√

εN
k−1,k,nX

T
k,n



 (C.8)

The Householder transformation matrix HN
k (n) is such that

HN
k (n)R

N

k (n) =





RN
k−1(n)

√

εN
k−1,k,nX

T
k,n



 =





RN
k (n)

0





the above operation can be decomposed as in (C.4) to

H
N,(i)
k (n)





R
N,(i−1)
k (n)

0 · · · x
N,(i−1)
k,i · · · x

N,(i−1)
k,p





=





R
N,(i)
k (n)

0 · · · x
N,(i)
k,i+1 · · · x

N,(i)
k,p





(C.9)

where x
(0)
k,j =

√

εN
k−1,k,nxk,j,R

N,(0)
k (n) = RN

k−1(n) and the resultant Householder

transformation matrix is HN
k (n) = H

N,(p)
k (n)H

N,(p−1)
k (n) · · ·HN,(1)

k (n). Similar steps as

in (C.5)-(C.7) are carried out to get HN
k (n).

C.3 Calculation of Block Householder Transforma-

tion for QR Based Low Communication Ro-

bust Incremental Strategy

For QR based low communication scheme the updated input matrix at kth node in

time n is given by
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R
N

k (n) =





√
λRN

k (n− 1)
√

εN
k−1,k,nX

T
k,n



 (C.10)

The Householder transformation matrix HN
k (n) is such that

HN
k (n)R

N

k (n) =





√
λRN

k (n− 1)
√

εN
k−1,k,nX

T
k,n



 =





RN
k (n)

0





The above operation can be decomposed as in (C.4) to

H
N,(i)
k (n)





R
N,(i−1)
k (n)

0 · · · x
N,(i−1)
k,i · · · x

N,(i−1)
k,p





=





R
N,(i)
k (n)

0 · · · x
N,(i)
k,i+1 · · · x

N,(i)
k,p





(C.11)

where x
(0)
k,j =

√

εN
k−1,k,nxk,j,R

N,(0)
k (n) =

√
λRN

k (n − 1) and the resultant House-

holder transformation matrix is HN
k (n) = H

N,(p)
k (n)H

N,(p−1)
k (n) · · ·HN,(1)

k (n) Proceed-

ing similarly as in (C.5)-(C.7) the expression for HN
k (n) is obtained.
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D.1 Proof of the Proposed strategy

Figure D.1: Positions of the sensors present in the environment

Assumption: The sensor nodes are in regular manner. Suppose the arrangement

of the sensor nodes form m and l number of rows and columns. Therefore the total

number of sensor nodes are N = m× l. Without loss of generality it can be assumed

that the position of sensors are in unit distance apart in x−direction and y−direction.

In order to analyze the routing strategy the position of the sensor node and its number

is to be related. Suppose the first sensor is at (1, 1) coordinate. Let for any sensor

node the number of the sensor node be k and position of the sensor be (p, q). So the
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number and positions of the sensor node can be related as

knumber =







(p− 1) l + (l − q) if p is even

(p− 1) l + q if p is odd
(D.1)

The relation between the position coordinates and the number of the sensor nodes

depends upon the path of the incremental strategy. The relation between the sensor

node position and number of the sensor node is shown in FigureD.1. By the strategy-

1, -2 and -3 a sensor node in the position (l,m) can able to transmit the data to

the sensor node in the positions (l + 1,m), (l − 1,m) and (l,m+ 1), respectively. In

order to prove that the incremental strategy shown in the Figure D.1 leads to find the

global incremental path, the method of induction is used. The method of induction

is based on the following three steps:

1. First, it requires to show that the proposed incremental strategy passes through

the first node once in each iteration;

2. Assume that for any sensor node k the strategy is similar to the way it is defined;

3. It requires to prove that the strategy for the (k+1)th sensor node is the strategy

for the kth node with an additional strategy as defined by the proposed method.

In order to verify all these three above steps, some additional notations are intro-

duced. Let ψ be the set which contains the number of the sensor nodes. The symbol

ψk is set of the sensor node numbers from the first sensor node to the kth sensor node.

Thus ψN is the set which contains the entire number values corresponding to the en-

tire WSNs. Obviously ψ0 is the null set. Let ψ/ψk is the set of number corresponding

to the sensors out of the set ψk.

Proof of Step 1: As explained in Section 6.3 by the proposed strategy the token

is passed to the first node only from the N th node through a predefined path. In order

to prove that the first node updates the parameter once in one iteration it needs to

show: (i) the first sensor receives the token only from the N th node by a predefined

path and (ii) it does not receive the token from any other sensor except N th sensor.
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Except the predefined path all other strategies passes the token to its neighbor sensor

nodes. Thus if there is possibility of reception of the token by the first sensor node

then it is only from its neighbor sensor nodes. The positions of neighbor sensor nodes

of the first sensor are sensors present in the positions (0, 1), (0, 0), (1, 0), (1, 2), (2, 1)

and (2, 2). The sensors at (0, 1), (0, 0), (1, 0) do not belong to the set ψ. Since there is

no direction in the strategy to transmit the token from the sensor at position (1, 2) to

the first sensor so there is no possibility of reception of token from it. Similarly there

is no direction in the strategy to receive the token from the sensor at (2, 2). There

is one strategy in the proposed method for the sensor at position (2, 1) to transmit

the token to the first sensor. However this strategy is the third option to transmit.

In the first option it may transmit to the sensor at position (3, 1) if not possible (in

the case it has received the token from the node at (3, 1)). Thus once the first sensor

node has received the token from the N th sensor node then the first sensor will not

again receive the token until the token reaches the N th sensor. That means in one

iteration the first sensor node receives the token once in one iteration.

Let us consider for any sensor node t, the incremental path from the first sensor

node to tth sensor node is through the way 1, 2, · · · , t in every iterations. In order to

complete the proof of the proposed method by method of induction the objective is to

find the incremental path of the WSN from the first node to the (t+1)th sensor node.

The token passing starts from the sensor 1 with the strategy-2 since the sensor position

in the direction of strategy-1 is (0, 1) which does not belong to ψ. Since the position

of the first sensor is (1, 1) thus by the strategy-2 the first sensor chooses the sensor at

the position (2, 1), whose number is 2, for transmission of the token. The direction of

strategy-2 will be chosen by all the sensor node from position (2, 1) having number 2

to the sensor node at position (m−1, 1) having numberm−1 because the sensor in the

direction of the strategy-1 is the transmitted sensor. Sensor m chooses the strategy-

3 for transmission of the token because the sensor in the direction of strategy-1 is

the transmitted sensor and the sensor position in the direction of strategy-2 does

not belong to ψ. For this strategy the receiving sensor is at position (m, 2) whose

number is m + 1. Sensors at the position (m, 2) whose number is (m + 1) to (2, 2)
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whose number is (2m− 1) choose the strategy-1 because the sensor in this direction

is neither the transmitted sensor nor belongs to ψ. Thus the sensor at (1, 2) will

choose the third strategy to send the data to 2m + 1 sensor. Thus the incremental

path obtained by the proposed incremental strategy is 1, 2, ..., 2m + 1. Similarly the

incremental path could be established for the sensor nodes having number greater

than 2m + 1. Thus the incremental path for the sensor t+ 1 is 1, 2, ..., t, t + 1. That

means it is the incremental path from the first sensor node to tth sensor node with an

additional strategy from t to t+1. Thus by method of induction it is proved that the

proposed method helps to establish an incremental path from 1st sensor node to N th

sensor node having one hop communication between two consecutive sensor node.

D.2 Khachiyan algorithm for the MVE formation

The Khachiyan algorithm is based on solution of the Langrage dual of the primary

problem for the MVE formation. In order to make the problem simpler first the the

center of the MVE to be formed is changed to origin. Then its Langrage dual is

formed. In order to achieve it the following procedure is adopted.

1. The dimension of the position vector increases by one. The new position vectors

and the negative of this position vectors are collected into one set. Let it be S
′

which is given by

S
′

= y (D.2)

The original MVEE(S) can be obtained from the MVEES
′

by

MVEE (S) = MVEE
(

S
′
)

∩H (D.3)

where H =
{

x ∈ ℜd+1 : xd+1 = 1
}

MVEE(S
′

) can be formed by achieving the solution of the following optimization

problem.
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Qp = arg min
Qp

− log Det (Qp)

s.t. yT
i Qpyi ≤ 1, i = 1, · · · , n

(D.4)

2. The objective is to change the primary problem to secondary problem by using

the Langrage dual. The dual form of the primary problem (D.4) is given by

max
u

log det
∏

(u) , s.t. eTu = 1,u ≥ 0 (D.5)

Thus the objective is to find the optimum solution for (D.5).

3. In order to achieve the solution of (D.5) with less computation, the first order

approximation of the algorithm (D.5) is used. This is given by

MVEE (S) =







x ∈ ℜd : [1/(d+ 1)]
[

xT 1
]

∏

(u∗)−1





x

1



 ≥ 1







(D.6)

This can be obtained directly from the factorization of the
∏

(u∗). This is done

as follows

∏

(u∗) =





PU∗PT Pu∗

(Pu∗)T 1





=





1 Pu∗

0 1









PU∗P−Pu∗ (Pu∗)T 0

0 1









1 0

(Pu∗)T 1





(D.7)

Taking the inverse of
∏

(u∗) we get

∏

(u∗)−1

=





1 0

− (Pu∗)T 1









(

PU∗P−Pu∗ (Pu∗)T
)−1

0

0 1









1 −Pu∗

0 1





(D.8)
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Using (D.8) the desired parameters of the center and spreading matrix are ob-

tained as

Q∗ := (1/d)
(

PU∗PT −Pu∗ (Pu∗)T
)−1

, c∗ = Pu∗ (D.9)
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