
Software fault prediction and
test data generation using

arti�cial intelligent techniques

Ph.D. Thesis

by

Yeresime Suresh

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela - 769008, India

August 2015

Software fault prediction and
test data generation using

arti�cial intelligent techniques

A dissertation submitted to the department of

Computer Science and Engineering

of

National Institute of Technology Rourkela

in partial ful�lment of the requirements

for the degree of

Doctor of Philosophy

by

Yeresime Suresh

(Roll No- 510CS102)

under the supervision of

Prof. Santanu Kumar Rath

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela - 769008, India

August 2015

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela - 769 008, India. www.nitrkl.ac.in

Dr. Santanu Kumar Rath
Professor & Head

August 7, 2015

Certi�cate

This is to certify that the work in the thesis entitled �Software fault predic-

tion and test data generation using arti�cial intelligent techniques"

by Yeresime Suresh , bearing Roll No: 510CS102, is a record of an orig-

inal research work carried out by him under my supervision and guidance in

partial ful�llment of the requirements for the award of the degree of Doctor of

Philosophy in Computer Science and Engineering. Neither this thesis nor any

part of it has been submitted for any degree or academic award elsewhere.

(Santanu Kumar Rath)

Acknowledgment

No work goes un�nished without thanksgiving to our beloved Teachers.

I take this opportunity to thank all those who have contributed in this

journey.

I would like to express my sincere thanks to my supervisor Prof. Santanu

Kumar Rath, for his valuable guidance, and encouragement during the course

of this thesis. His eagerness and constant encouragement have instilled in

me the con�dence to complete this thesis. I am greatly indebted for his help

throughout the thesis work.

I am very much indebted to Prof. Bansidhar Majhi, Chairman Doctoral

Scrutiny Committee (DSC). I am also thankful to Prof. Durga Prasad Moha-

patra, and all the DSC members, and faculty members of the department for

their in time support, advise and encouragement.

I owe the heartfelt thanks to my parents Shri. Yeresime Komarappa and

Smt. Yeresime Pushpavathi for their unconditional love, patience and cooper-

ation during my research work. Also I would like to thank my younger sister

Dr. Yeresime Surekha, who has been the constant source of inspiration to me.

Yeresime Suresh

Abstract

The complexity in requirements of the present-day software, which are of-
ten very large in nature has lead to increase in more number of lines of code,
resulting in more number of modules. There is every possibility that some of
the modules may give rise to varieties of defects, if testing is not done metic-
ulously. In practice, it is not possible to carry out white box testing of every
module of any software. Thus, software testing needs to be done selectively for
the modules, which are prone to faults. Identifying the probable fault-prone
modules is a critical task, carried out for any software. This dissertation,
emphasizes on design of prediction and classi�cation models to detect fault
prone classes for object-oriented programs. Then, test data are generated for
a particular task to check the functionality of the software product.

In the �eld of object-oriented software engineering, it is observed that Chi-
damber and Kemerer (CK) software metrics suite is more frequently used for
fault prediction analysis, as it covers the unique aspects of object - oriented
programming such as the complexity, data abstraction, and inheritance. It is
observed that one of the most important goals of fault prediction is to detect
fault prone modules as early as possible in the software development life cycle
(SDLC). Numerous authors have used design and code metrics for predicting
fault-prone modules. In this work, design metrics are used for fault prediction.
In order to carry out fault prediction analysis, prediction models are designed
using machine learning methods. Machine learning methods such as Statistical
methods, Arti�cial neural network, Radial basis function network, Functional
link arti�cial neural network, and Probabilistic neural network are deployed
for fault prediction analysis. In the �rst phase, fault prediction is performed
using the CK metrics suite. In the next phase, the reduced feature sets of CK
metrics suite obtained by applying principal component analysis and rough set
theory are used to perform fault prediction. A comparative approach is drawn
to �nd a suitable prediction model among the set of designed models for fault
prediction.

Prediction models designed for fault proneness, need to be validated for
their e�ciency. To achieve this, a cost-based evaluation framework is designed
to evaluate the e�ectiveness of the designed fault prediction models. This
framework, is based on the classi�cation of classes as faulty or not-faulty. In
this cost-based analysis, it is observed that fault prediction is found to be
suitable where normalized estimated fault removal cost (NEcost) is less than
certain threshold value. Also this indicated that any prediction model having
NEcost greater than the threshold value are not suitable for fault prediction,
and then further these classes are unit tested. All the prediction and classi�er
models used in the fault prediction analysis are applied on a case study viz.,

Apache Integration Framework (AIF). The metric data values are obtained
from PROMISE repository and are mined using Chidamber and Kemerer Java
Metrics (CKJM) tool.

Test data are generated for object-oriented program for withdrawal task
in Bank ATM using three meta-heuristic search algorithms such as Clonal
selection algorithm, Binary particle swarm optimization, and Arti�cial bee
colony algorithm. It is observed that Arti�cial bee colony algorithm is able
to obtain near optimal test data when compared to the other two algorithms.
The test data are generated for withdrawal task based on the �tness function
derived by using the branch distance proposed by Bogdan Korel. The generated
test data ensure the proper functionality or the correctness of the programmed
module in a software.

Keywords: branch distance, extended control �ow graph, chidamber and
kemerer metrics, fault prediction, �tness function, meta-heuristic, neural net-
work, principal components, rough set, test data.

Contents

Certi�cate iii

Acknowledgment iv

Abstract v

List of Acronyms / Abbreviations x

List of Figures xiii

List of Tables xv

List of Symbols xviii

1 Introduction 1

1.1 Motivation . 4
1.2 Research Objectives . 5
1.3 Summary of Contributions . 5
1.4 Outline of the Thesis . 6

2 Literature Review 8

2.1 Fault prediction . 9
2.1.1 Observations . 15

2.2 Test data generation for traditional methods 16
2.2.1 Results and analysis . 26

2.3 Summary . 27

3 E�ectiveness of Machine Learning Methods in Fault Predic-

tion Analysis 29

3.1 Introduction . 30
3.2 Research Background . 31

3.2.1 Empirical Data Collection 31
3.2.2 Data Normalization . 33

vii

3.2.3 Dependent and Independent Variables 33
3.3 Machine Learning Methods . 33

3.3.1 Statistical Methods . 34
3.3.2 Arti�cial Neural Network 36
3.3.3 Radial Basis Function Network 39
3.3.4 Functional Link Arti�cial Neural Network 42
3.3.5 Probabilistic Neural Network 43

3.4 Fault Prediction using Feature Reduction Techniques 44
3.4.1 Application of Principal Component Analysis 45
3.4.2 Application of Rough Set Theory 46

3.5 Performance Evaluation Parameters 46
3.6 Results and Analysis . 49

3.6.1 Fault Data . 49
3.6.2 Metrics Data . 51
3.6.3 Descriptive Statistics and Correlation Analysis 52
3.6.4 Attribute Reduction . 54
3.6.5 Machine Learning Methods 58
3.6.6 Comparison of Fault Prediction Models 75
3.6.7 Comparison with existing methods 78

3.7 Complexity analysis of prediction models 79
3.8 Threats to validity . 81
3.9 Relation between fault prediction and test data generation . . . 82
3.10 Summary . 83

4 Cost-Based Evaluation Framework for Software Fault Classi-

�cation 84

4.1 Introduction . 85
4.2 Cost-Based Evaluation Framework 86

4.2.1 Estimated fault removal cost (Ecost) 87
4.2.2 Estimated testing cost (Tcost) 89
4.2.3 Normalized fault removal cost (NEcost) 90

4.3 Performance Evaluation Parameters 92
4.4 Results and Analysis . 93

4.4.1 Neural network as a classi�er 93
4.5 Summary . 99

5 Test Data Generation for Object-Oriented Program using Meta-

heuristic Search Algorithms 100

5.1 Introduction . 101
5.2 Meta-heuristic Search Algorithms 101

5.2.1 Role of meta-heuristic search based algorithms in soft-
ware testing . 102

5.2.2 Need for automated test data generation 103
5.3 Extended Control Flow Graph (ECFG) 103

5.3.1 ECFG features . 104
5.3.2 Cyclomatic complexity computation for ECFG 105

5.4 Fitness Function based on Korel's Branch Distance Function . . 110
5.4.1 Case study: Bank Automatic Teller Machine (ATM) . . 112

5.5 Test Data Generation for Bank ATM 114
5.5.1 Construction of CFG for an individual method 115
5.5.2 Construction of ECFG 116
5.5.3 Test data generation using meta-heuristic search algo-

rithms . 117
5.6 Results . 121

5.6.1 Case study: Bank ATM 122
5.6.2 Experimental settings . 123
5.6.3 Interpretation of results 124
5.6.4 Code coverage analysis 126

5.7 Summary . 127

6 Conclusions and future scope of work 128

6.1 Future scope of work . 132

Bibliography 133

Dissemination 149

A Bank ATM pseudocode 151

B Code Coverage Analysis 154

List of Acronyms/Abbreviations

ABC Arti�cial Bee Colony Optimization
ACO Ant Colony Optimization
AE Arti�cial Evolution
AIF Apache Integration Framework
ANN Arti�cial Neural Network
AI Arti�cial Intelligence
ATM Automatic Teller Machine
AMC Average Method Complexity
AUC Area Under the receiver operating characteristics Curve
BFA Bacterial Foraging Algorithm
BPSO Binary Particle Swarm Optimization
Ca A�erent Coupling
CAE Coupling on Advice Execution
CAM Cohesion Among Methods of Class
CBM Coupling Between Modules
CBO Coupling Between Objects
CC Cyclomatic Complexity
Ce E�erent Coupling
CFG Control Flow Graph
CK Chidamber and Kemerer
CKJM Chidamber and Kemerer Java Metrics Tool
CSA Clonal Selection Algorithm
DAM Data Access Metric
DFCT Count of Defects per Class
DIT Depth of Inheritance
EA Evolutionary Algorithm
ECFG Extended Control Flow Graph
E-CC Extended Cyclomatic Complexity
Ecost Estimated fault removal cost using fault prediction
EVNT Count of Events per class in the state model
FFNN Feed Forward Neural Network

x

FLANN Functional Link Arti�cial Neural Network
FN False Negative
FOUT Number of Method Calls
FP False Positive
GA Genetic Algorithm
GSAA Genetic Simulated Annealing Algorithm
IC Inheritance Coupling
LCOM Lack of Cohesion among Methods
LCOM3 Lack of Cohesion in Methods (Henderson-Sellers version)
LM Levenberg Marquardt
LMS Least Mean Square Algorithm
LMSE Least Mean Square Error
LOC Lines of Code
MAE Mean Absolute Error
MARE Mean Absolute Relative Error
Max Maximum
MFA Measure of Functional Abstraction
Min Minimum
MLOC Method Lines of Code
MOA Measure of Aggregation
MOOD Metrics for Object Oriented Design
MSE Mean Square Error
NCM Number of Class Methods
NEcost Normalized Estimated fault removal cost
NIM Number of Instance Methods
NLM Number of Local Methods
NOC Number of Children
NPM Number of Public Methods
NTM Number of Trivial Methods
PCA Principal Component Analysis
PCs Principal Components
PNN Probabilistic Neural Network
PSO Particle Swarm Optimization
QMOOD Quality Model for Object Oriented Design
RBFN Radial Basis Function Network
RFC Response For Class
ROC Receiver Operating Characteristic
RMSE Root Mean Square Error
RST Rough Set Theory
RWD Read/Write/Deletes
SA Simulated Annealing

SD Standard Deviation
SDLC Software Development Life Cycle
SDMC Standard Deviation Method Complexity
SLOC Source Lines of Code
SEM Standard Error of the Mean
SVM Support Vector Machine
Tcost Estimated fault removal cost without using fault prediction
TN True Negative
TP True Positive
TS Tabu Search
UML Uni�ed Modeling Language
WMC Weighted Method per Class

List of Figures

2.1 CFG for ATM Withdrawal task 26
2.2 Fitness variation for test data 27

3.1 A typical FFNN . 37
3.2 Architecture of RBF Network 40
3.3 Flat net structure of FLANN 42
3.4 Basic architecture of PNN . 44
3.5 Histogram for WMC . 51
3.6 Histogram for DIT . 51
3.7 Histogram for NOC . 51
3.8 Histogram for CBO . 51
3.9 Histogram for RFC . 51
3.10 Histogram for LCOM . 51
3.11 Logistic graph . 60
3.12 Convergence characteristics for Gradient Descent 66
3.13 Convergence characteristics for PCA based Gradient Descent . . 67
3.14 Convergence characteristics for RST based Gradient Descent . . 67
3.15 Convergence characteristics for Levenberg-Marquardt 68
3.16 Convergence characteristics for PCA based Levenberg Marquardt 68
3.17 Convergence characteristics for RST based Levenberg Marquardt 68
3.18 Convergence characteristics for FLANN 69
3.19 Convergence characteristics for PCA based FLANN 70
3.20 Convergence characteristics for RST based FLANN 70
3.21 Convergence characteristics for Gradient RBFN 72
3.22 Convergence characteristics for PCA based Gradient RBFN . . 72
3.23 Convergence characteristics for RST based Gradient RBFN . . . 72
3.24 Convergence characteristics for Hybrid RBFN 73
3.25 Convergence characteristics for PCA based Hybrid RBFN . . . 74
3.26 Convergence characteristics for RST based Hybrid RBFN 74
3.27 Varying accuracy rate for smoothing parameter in PNN 74
3.28 Varying accuracy rate for smoothing parameter in PCA based

PNN . 75

xiii

3.29 Varying accuracy rate for smoothing parameter in RST based
PNN . 75

3.30 A typical feed forward neural network 80

4.1 Cost-based evaluation framework for software fault classi�cation 91

5.1 Basic ECFG . 105
5.2 Methods association in ECFG 106
5.3 Sequence diagram for ATM withdrawal task 112
5.4 Basic CFG . 113
5.5 ECFG for Bank ATM . 122
5.6 ECFG for Bank ATM withdraw task 122
5.7 Fitness variation for test data 126

List of Tables

2.1 Literature survey for fault prediction 10
2.2 Literature survey for test data generation using meta-heuristic

search algorithms . 21
2.3 Alphabetical representation of nodes in control �ow graph for

Figure 2.1. 25
2.4 Percentage of class of test data having maximum �tness values

in GA, PSO, CSA, BPSO, GSAA, ABC and BFA respectively. . 26

3.1 CK metrics suite . 32
3.2 Radial functions available in literature 40
3.3 Confusion matrix to classify a class as faulty or not-faulty . . . 46
3.4 Distribution of bugs for AIF version 1.6 50
3.5 Descriptive statistics of classes 52
3.6 Correlations between metrics . 53
3.7 Principal components . 56
3.8 Linear regression analysis . 58
3.9 Coe�cients of features for PCA based Linear regression analysis 59
3.10 Linear regression analysis for AIF Version 1.6 after applying PCA 59
3.11 Coe�cients for Linear regression analysis after applying RST . . 59
3.12 Linear regression analysis for AIF Version 1.6 after applying RST 60
3.13 Analysis of univariate regression for AIF Version 1.6 61
3.14 Multivariate logistic regression analysis for AIF Version 1.6 . . . 61
3.15 Before applying regression . 61
3.16 After applying regression . 61
3.17 Precision, Correctness, Completeness, and Accuracy for AIF

version 1.6 . 62
3.18 Result of multivariate logistic regression 63
3.19 Confusion matrix for PCA based regression 63
3.20 Precision, Correctness, Completeness, Accuracy for AIF Version

1.6 after applying PCA (in terms of %) 63
3.21 Analysis of univariate regression for AIF Version 1.6 after ap-

plying reduct data of RST . 64

xv

3.22 Result of multivariate logistic regression after applying RST . . 64
3.23 Confusion matrix for RST based regression 64
3.24 Precision, Correctness, Completeness, Accuracy for AIF Version

1.6 after applying RST (in terms of %) 65
3.25 Accuracy prediction for Gradient Descent using full feature set . 65
3.26 Accuracy prediction for PCA and RST based Gradient Descent 66
3.27 Accuracy prediction for LM method using full feature set 67
3.28 Accuracy prediction for PCA and RST based LM method 68
3.29 Accuracy prediction for FLANN using full feature set 69
3.30 Accuracy prediction for PCA and RST based FLANN 69
3.31 Accuracy prediction for Basic RBFN using full feature set . . . 70
3.32 Accuracy prediction for PCA and RST based Basic RBFN . . . 71
3.33 Accuracy prediction for Gradient RBFN using full feature set . . 71
3.34 Accuracy prediction for PCA and RST based Gradient RBFN . 72
3.35 Accuracy prediction for Hybrid RBFN using full feature set . . . 73
3.36 Accuracy prediction for PCA and RST based Hybrid RBFN . . 73
3.37 Performance parameters for fault prediction models 76
3.38 Performance parameters for PCA based fault prediction models 77
3.39 Performance parameters for RST based fault prediction models . 77
3.40 Comparison of fault prediction accuracy for three data sets . . . 78
3.41 Accuracy comparison: Implemented models vs Existing models 79
3.42 Complexity expression for prediction models 81

4.1 Cost evaluation framework for fault classi�cation 85
4.2 Removal costs of test techniques (in sta� hour per defect) 87
4.3 Fault identi�cation e�ciencies of di�erent test phases 87
4.4 Confusion matrix . 94
4.5 Confusion matrix for Logistic classi�er 94
4.6 Confusion matrix for Gradient Descent 95
4.7 Confusion matrix for Levenberg Marquardt 95
4.8 Confusion matrix for Basic RBFN 96
4.9 Confusion matrix for Gradient RBFN 96
4.10 Confusion matrix for Hybrid RBFN 97
4.11 Confusion matrix for FLANN 97
4.12 Confusion matrix for PNN . 97
4.13 Fault removal cost for AIF 1.6 using various classi�er models . . 98

5.1 Equivalent predicate of branch function 111
5.2 Parameters used in CSA for test data generation. 123
5.3 Parameters used in BPSO, and ABC for test data generation. . 123

5.4 Percentage of class of test data having maximum �tness values
in CSA, BPSO, and ABC respectively. 124

5.5 A�nity and the respective test data generated for meta-heuristic
techniques . 125

5.6 Code coverage analysis for proposed methodology 126
5.7 Code coverage analysis for existing methodology 127

List of Symbols

α Learning Parameter
β Multiplying Factor
β0 Constant
β1 Co-e�cient value of a variable
Pc Probability of Crossover
Pm Probability of Mutation
µ Combination coe�cient
R2 Coe�cient of multiple determination
φ Radial Function
σ Smoothing Parameter
Ci Initial setup cost of used fault-prediction technique
Cu Normalized fault removal cost in unit testing
Cs Normalized fault removal cost in system testing
Cf Normalized fault removal cost in �eld testing
Mp Percentage of classes unit tested
δu Fault identi�cation e�ciency of unit testing
δs Fault identi�cation e�ciency of system testing
Nr Renewed antibodies
Ns Worst antibodies

xviii

Chapter 1

Introduction

Improving reliability of the desired software is one of the most sought out

research areas in software engineering. Software developers lay emphasis on

designing a reliable software, so that poorly designed softwares can be de-

tected in the preliminary stages of the software development life cycle (SDLC)

to avoid delivering low quality software product to the stakeholder. Thus,

software quality acts as a crucial factor in determining the reliability of a soft-

ware. So, there is a need for design of prediction models to predict fault prone

modules or classes in software developed based on object-oriented development

methodology.

In literature it is observed that, several quality models have been proposed

and studied such as McCall's quality model [1], Boehm's quality model [2],

Dromey's quality model [3], etc. to evaluate the quality of a software product.

It is a fact that, a large software consists of large number of lines of code in

turn leading to the presence of a huge number of modules. It is quite di�cult

to carry out unit testing of each and every module. In order to check the

functionality and to ensure reliability of the software, a limited number of

important logical paths in a module should be selected and testing should be

exercised on those modules, where probability of faults are high [4]. Thus there

1

Introduction

is a need for identifying fault prone modules, which needs to be carried out

prior to the testing phase. By doing so, it becomes convenient for testers to

perform e�ective program testing.

Software metrics play a crucial role in predicting the quality of the software.

They provide a quantitative basis, and a process for validating the models dur-

ing SDLC [5]. The usefulness of these metrics lies in their ability to predict the

reliability of the developed software. In practice, software quality of a software

system can be best determined based on the FURPS model, which character-

izes parameters such as Functionality, Usability, Reliability, Performance and

Supportability [6]. Quality of any product is mostly decided on the basis of an

important parameter like reliability. Reliability is generally measured by the

number of faults identi�ed in the developed software during a time span. De-

velopers intend to predict faults in modules apriori so as to deliver a software

with minimum number of faults. A number of models have been developed for

fault prediction as available in literature. Still, fault prediction remains as a

challenging task in software engineering. There is a need for designing e�cient

models to predict software prone modules more accurately.

Arti�cial intelligence

Arti�cial intelligent (AI) techniques are the science, and engineering of

making intelligent machines, especially intelligent computer programs. These

techniques have the ability of computer, software and �rmware to do those

things that we, as humans, recognize as intelligent behavior [7].

Techniques based on arti�cial intelligence (AI) have proved to be ideal for

prediction models as observed in literature. AI techniques cover wide range

of topics such as Arti�cial neural networks (ANN), Evolutionary computation,

Swarm intelligence (Particle swarm optimization, Ant colony optimization,

Bacterial foraging algorithm), Fuzzy systems, and Arti�cial immune systems

(AIS).

2

Introduction

Arti�cial Neural Networks

This technique involves learning strategies inspired by modeling neurons

in the brain [8]. The learning strategy is categorized into supervised and

unsupervised learning, which manage feedback. Hence, the learning process

is considered as adaptive learning and are applied to function approximation,

prediction/estimation and pattern recognition domains.

Meta-heuristic methods

Meta-heuristics are strategies that â��guideâ�� the search process, are

approximate, and usually non-deterministic. In general `heuristic' methods are

trade-o� concerns such as precision, quality, and accuracy. The correctness

or optimality of the solution is not a matter of concern for heuristics while

�nding the solutions. Similarly, meta-heuristics are also the generic algorithmic

frameworks which can be applied to numerous optimization problems [9]. This

involves less changes to be made for a speci�c problem. One or more heuristics

are coupled to form meta-heuristic approaches to enhance their capabilities.

Evolutionary Computation Process

Evolutionary computation process is inspired by the �Theory of Natural

Evolution". More often Evolutionary Algorithms include Genetic Algorithm,

Evolution Strategy, Genetic and Evolutionary Programming, and Di�erential

Evolution [10]. The evolutionary computation is considered as an adaptive

strategy, and is typically applied to search and optimization problems.

Swarm Intelligence

This paradigm consists of two dominant sub-sets [11]:

1. Ant Colony Optimization (ACO): investigates probabilistic algorithms

inspired by the foraging behavior of ants, and

2. Particle Swarm Optimization (PSO): investigates probabilistic algorithms

inspired by the �ocking and foraging behavior of birds and �sh.

3

Chapter 1 Introduction

Similar to evolutionary computation, swarm intelligence based techniques

are considered as adaptive strategies and are typically applied to search and

optimization problems. Hence these algorithms are used for optimal test data

generation.

Arti�cial Immune Systems

This technique has evolved from the structure and function of the immune

system of vertebrates. Some of the popular approaches of Arti�cial Immune

Systems (AIS) include: clonal selection algorithm (CSA) [12], negative selec-

tion [13] and the immune network algorithms [14]. The AIS algorithms show

similarity between Evolutionary computation and Arti�cial neural networks,

and are typically used in solving optimization and pattern recognition prob-

lems.

1.1 Motivation

In the present day, it is observed that in many software organizations em-

phasis is laid on reducing the development cost, e�ort, time consumed for

development, and produce reliable software by increasing the software quality.

Due to the presence of large lines of code constituting to a huge number of

modules in a program, has lead to increase in complexity. This lead to the

di�culty in producing reliable software without faults. The other obvious rea-

son for failing to produce reliable software is due to the lack of proper testing

activities and time.

This sort of problem can be better handled by predicting certain quality

attributes such as fault proneness, maintenance e�ort, and the testing e�ort

during the early stages of software design. To achieve these objectives, su�-

cient testing of the software product needs to be carried out. Also exhaustive

testing is not possible because it leads to more testing cost to be incurred, and

will be very time consuming due to the large size of the product. Thus, it is

4

Chapter 1 Introduction

very much essential to recognize the classes which are often quite fault prone.

There are many approaches to identify such fault prone classes and software

metrics are one such indicators. The fault prone models predicted using these

software metrics can be used in early stages of SDLC. This will bene�t the

developers to emphasize on reducing the utilization of testing resources on the

predicted faulty classes only. Hence, this will signi�cantly bene�t in saving

time and resources during the development of a software.

1.2 Research Objectives

The research objectives outlined in this thesis are as follows:

1. To �nd whether design metrics are good enough for fault prediction mod-

els by establishing the relationship between object-oriented metrics and

fault proneness.

2. To �nd the suitable model for fault prediction among the predictor mod-

els used based on certain performance parameters.

3. To evaluate the e�ectiveness of fault prediction based on fault removal

cost (cost based evaluation framework).

4. To generate e�ective test data for object-oriented program by using var-

ious meta-heuristic search techniques.

1.3 Summary of Contributions

This thesis, investigates the design of various models for fault prediction

analysis, and the application of meta-heuristic search algorithms to automat-

ically generate test data for both traditional and object-oriented programs.

Five models for fault prediction analysis along with the study of e�ectiveness

of features reduction techniques are presented. Contributions of this thesis are

summarized as follows:

5

Chapter 1 Introduction

� Designing fault prediction models using full feature set and reduced fea-

ture set by considering Chidamber and Kemerer metric suite as input.

� Evaluating the e�ectiveness fault prediction models using the proposed

cost based evaluation framework.

� Generating e�ective test data by extending the concept of control �ow

graph for object-oriented program. Optimal test data are generated by

application of the meta-heuristic search techniques.

1.4 Outline of the Thesis

This thesis is organized into six di�erent chapters including introduction.

Each chapter is discussed below in a nutshell.

Chapter 2: Literature Review

This chapter focuses on the state-of-art of various models (predictors, and

classi�ers) for fault prediction analysis and meta-heuristic search techniques for

test data generation. A tabular representation of various arti�cial intelligence

based schemes along with their application are presented for fault prediction

and test data generation.

Chapter 3: E�ectiveness of Machine Learning Methods in Fault Pre-

diction Analysis

This chapter focuses on designing fault prediction models using various sta-

tistical and machine learning methods. Fault prediction analysis is performed

by using full feature set and reduced feature set of Chidamber and Kemerer

metric suite. Later, the chapter draws a comparative analysis for the fault

prediction accuracy obtained by using the full feature and reduced feature

datasets, has been carried out for critical assessment.

6

Chapter 1 Introduction

Chapter 4: Cost Based Evaluation Framework for Software Fault

Classi�cation

This chapter focuses on inspecting the usability of fault prediction. A cost

based evaluation framework is proposed to assess the usability. This chapter

highlights on the accuracy for classi�cation of faults using logistic regression

and various neural network models as classi�ers.

Chapter 5: Test Data Generation for Object-Oriented Program us-

ing Meta-heuristic Search Algorithms

In this chapter, an automated approach in generating test data for Object-

Oriented program using meta-heuristic search algorithms is presented. Control

�ow graph for Object-Oriented programs named as Extended Control Flow

Graph (ECFG) is automatically generated. From the generated ECFG, test

data are generated for a case study on Bank ATM withdrawal task [15] using

three meta-heuristic search techniques.

Chapter 6: Conclusions

This chapter presents the conclusions drawn from the proposed work with

much emphasis on the work done. The scope for further research work has

been discussed at the end.

7

Chapter 2

Literature Review

This chapter focuses on the state-of-the-art of various models (predictors,

classi�ers) and optimization algorithms. The review has been performed in

two broad aspects of software engineering with respect to objectives of the

thesis.

This chapter highlights on the research work carried out by various authors

on fault prediction. The survey includes various criteria chosen by the authors

such as the metric set used, the methods employed, and the data set used

for fault prediction analysis. The results on the survey work done for fault

prediction conclude that a good number of researchers and practitioners have

employed Chidamber and Kemerer metrics suite for fault prediction.

The later part of the chapter highlights on the use of meta-heuristic op-

timization techniques as available in literature for test data generation. In

this thesis, seven meta-heuristic search techniques such as Genetic Algorithm

(GA), Particle Swarm Optimization (PSO), Clonal Selection Algorithm (CSA),

Binary Particle Swarm Optimization (BPSO), Genetic Simulated Annealing

Algorithm (GSAA), Arti�cial Bee Colony (ABC), and Bacterial Foraging Al-

gorithm (BFA) are applied to traditional methods for test data generation.

8

Chapter 2 Literature Review

2.1 Fault prediction

A good number of software metrics have been proposed by di�erent re-

searchers, e.g. McCabe [16], Halstead [17], Li and Henry [18], Chidamber and

Kemerer metric suite [19], Abreu MOOD metric suite [20], Lorenz and Kidd

[21], Robert C. Martin's metric suite [22], Tegarden et al. [23], Melo et al.[24],

Briand et al. [25], Etzkorn et al. [26] etc. to study the quality of traditional

and object-oriented systems.

Numerous empirical studies have used di�erent combination and subsets of

these metrics, and have analyzed the relationship between the object-oriented

metrics and the fault proneness. In this thesis, literature review has been

provided for all such previous studies. In this review, emphasis is laid on the

metrics, dataset, and the evaluation techniques used to carry out the fault

prediction analysis. In all the studies, independent variables are the subset of

the object-oriented metrics and the dependent variable is the fault proneness.

There have been various empirical studies done in the �eld of fault pre-

diction [27, 28, 29, 30, 31, 32, 33, 34]. In this work, a study on the in�uence

of object-oriented metrics on quality attributes, and design of relevant models

which help to predict these quality attributes are considered. These metrics

are widely used in most of the studies as independent variables. Some of the

studies have also de�ned their own software metrics and have carried out the

fault prediction analysis based on them. Also, it is noticed that the statisti-

cal method, i.e.,the logistic regression has been often used by good number of

authors. Machine learning methods have also been used in some of the studies.

To obtain the results, i.e., to �nd the relationship between the software

metrics and the fault proneness, there are various machine learning methods

such as arti�cial neural network, decision tree, genetic programming, logistic

regression, naive bayes network, random forest, support vector machine, etc.

Each study makes use of di�erent evaluation methods which have been listed

in our review.

9

Chapter 2 Literature Review

In Table 2.1, the �rst column indicates the name of the author, and the

year in which the work was carried out. The second column indicate the

metrics set, and the third column represents the methods employed for fault

prediction. Last column of the table represents the dataset used, in which

di�erent methods were applied to obtain the results. From Table 2.1, it can

be observed that Chidamber and Kemerer [19] metrics suite is widely used in

most of the studies.

Table 2.1: Literature survey for fault prediction

Author Metric used Method

used

Data set

Briand

(2000)

28 coupling, 10

cohesion and 11

inheritance met-

rics

Logistic re-

gression,

Principal

component

analysis

Hypothetical video

rental business [35].

Cartwright

(2000)

ATTRIB,

STATES,

EVNT, READS,

WRITES, DELS,

RWD. DIT, NOC,

LOC, DFCT

Spearmans

rank correla-

tion

Large European

telecommunication

industry, which

consists of 32 classes

and 133KLOC [27].

Emam

(2001)

CK and Briand

metrics

Logistic

regression

Java application

which implements

a word processor.

Used two versions:

Ver 0.5 and Ver

0.6 consisting of

69 and 42 classes

respectively [36].

10

Chapter 2 Literature Review

Gyimothy

(2005)

CK metrics suite,

LCOM, and LOC

Linear and

Logistic re-

gression,

Decision tree,

and Neural

network

Source code of

Mozilla with the

use of Columbus

framework [37].

Nachiappan

(2005)

STREW-J metric

suite (Number of

Assertions, Num-

ber of Test cases)

Multiple

linear re-

gression,

Principal

component

analysis

Open source eclipse

plugin developed

at North Carolina

State University

(NCSU) [38].

Zhou (2006) CK metrics suite

and SLOC

Logistic re-

gression,

Naive Bayes,

Random

forest

NASA, consisting of

145 classes, 2107

methods and 40K

LOC [31].

Olague H. M

(2007)

CK metrics,

MOOD and

QMOOD metrics

Logistic

regression

Mozilla - Rhino

project [30].

Kanmani

(2007)

10 cohesion, 18 in-

heritance, 29 cou-

pling and 7 size

measures (total 64

metrics)

Logistic re-

gression,

Neural net-

work, Proba-

bilistic neural

network

Library manage-

ment system, which

consists of 1185

classes [39].

11

Chapter 2 Literature Review

Pai (2007) CK metric suite

and SLOC

Multiple

regression,

Ordinary

least square,

Bayesian

linear re-

gression,

Bayesian

poisson re-

gression

Public domain

dataset of KCI

(implemented in

C++), consisting

of 2107 methods,

145 classes and 43

KLOC [33].

Tomaszewksi

(2007)

Used CK metrics

suite at both class

and component

level

Linear regres-

sion, Expert

estimation

Two telecommuni-

cation project de-

veloped by Ericsson,

consisting of 800

classes (500KLOC)

and 1000

classes(600KLOC)

respectively [40].

Tomaszewksi

(2007)

Coupling, WMC,

DIT, NOC, RFC,

Cyclomatic com-

plexity, comment

ratio, number of

executable state-

ments, number of

comment lines

Linear regres-

sion, Stepwise

linear regres-

sion

Used two telecom-

munication projects

developed by Er-

icsson, consisting

of 800 classes (500

KLOC) and 1000

classes (600 KLOC)

respectively [41].

Shatnawi

(2008)

CK metrics suite,

Lorenz and Kidd

Logistic

regression

Eclipse project:

Bugzilla database

and Change log [42].

12

Chapter 2 Literature Review

Aggarwal

(2009)

Coupling, Cohe-

sion, Inheritance

and Size metrics

Statistical re-

gression anal-

ysis and Prin-

cipal compo-

nent analysis

Student projects at

University School

of Information

Technology (USIT)

[29]

Singh (2009) CK metrics suite

and SLOC

Support vec-

tor machine

NASA, consisting of

145 classes, 2107

methods and 40K

LOC [43].

Cruz (2009) RFC, CBO, and

WMC

Logistic

regression

638 classes of Mylyn

software [44].

Burrows

(2010)

Baseline metrics

such as CAE,

CBM, DIT and

coupling metrics

Logistic

regression

iBATIS, Health

watcher, Mobile

media [28].

Singh (2010) CK metric suite

and SLOC

Logistic re-

gression,

ANN and

Decision tree

NASA, consisting of

145 classes, 2107

methods and 40K

LOC [34].

Zhou (2010) AMC, aVGloc,

CCMax, LOC,

NIM, NCM,

NTM, NLM,

SDMC, WMC,

Logistic

regression

Three releases of

Eclipse, consisting

of 6751, 7909, 10635

java �les and 796,

988, 1306 KLOC

respectively [45].

Fangjun

(2011)

WMC, NOC,

LCOM, CBO

Decision tree

analysis

NASA data set [32].

13

Chapter 2 Literature Review

Malhotra

(2011)

CK metrics suite,

Ca, Ce, NPM,

LCOM3, LOC,

DAM, MOA,

MFA, CAM, IC,

CBM, Maxcc and

Avgcc

ANN, Bag-

ging, Random

forest, Boost-

ing, Naive

Bayes and

KStar

Open source soft-

ware [46].

Mishra

(2012)

Complexity met-

rics (FOUT,

MLOC) and Ab-

stract syntax tress

based metrics

SVM, Fuzzy,

and Naive

Bayes

Eclipse and Equinox

data sets [47].

Malhotra

(2012)

CK metrics suite,

Ca, Ce, NPM,

LCOM3, LOC,

DAM, MOA,

MFA, CAM, IC,

CBM, Max cc

and Avgcc

Logistic re-

gression, ran-

dom forest,

Adaboost,

Bagging,

Multilayer

percep-

tron, SVM,

Genetic

programming

Apache POI [48].

Heena

(2013)

CBO and NOC Bayesian in-

ference

Open Source Eclipse

System [49].

14

Chapter 2 Literature Review

2.1.1 Observations

The survey with respect to fault prediction can be summarized in the form

of following results:

i. Metric suites:

Numerous metric suites have been proposed in the literature such as CK

metric suite, MOOD, QMOOD, Lorenz and Kidd, etc. But it is observed

that the CK metrics suite is more widely used than other metric suites.

Also some researchers have de�ned their own new metrics and have used

them in fault prediction. Some researchers have used large number of

metrics, e.g. Kanmani et al. have used 64 metrics for fault prediction

analysis [39].

ii. Category:

Di�erent approaches for fault, are mainly categorized into statistical and

machine learning methods. It is observed that researchers explored the

potential features of machine learning methods to predict fault prone

classes. The results obtained, indicate the e�ectiveness of machine learn-

ing systems. Thus, machine learning methods such as arti�cial neural

network, bagging, decision tree, random forest etc. should be widely used

for further studies. Among the statistical methods, linear and logistic re-

gression techniques are also widely used by the researchers. It is further

observed that most of the studies have used both, the machine learn-

ing methods and the statistical methods to obtain the fault prediction

results.

iii. Data set:

Many researchers have used di�erent types of datasets which are mostly

public datasets, commercial datasets, open source or students/university

datasets. It is observed from the literature survey that the data sets

15

Chapter 2 Literature Review

from PROMISE and NASA repositories (public datasets) are the most

commonly used datasets in the study of fault prediction.

These are the main areas on which the literature review is summarized.

There are various other details in most of the articles such as the validation

method used to evaluate the model (e.g., the holdout method, K-cross val-

idation, leave-one-out method etc.), the evaluation criteria used etc. There

are other various evaluation criteria used by di�erent studies such as Receiver

Operating Characteristic (ROC) curve, statistical parameters, Mean Absolute

Error, Mean Absolute Relative Error, Root Mean Square Error and Standard

Error of the Mean etc. in fault prediction analysis.

2.2 Test data generation for traditional methods

In this section, the role of meta-heuristic search techniques are analyzed in

generating test data. Test data are generated for traditional methods using

various meta-heuristic techniques such as Genetic algorithm (GA), Particle

swarm optimization (PSO), Clonal selection algorithm (CSA), Binary particle

swarm optimization (BPSO), Genetic simulated annealing algorithm (GSAA),

Arti�cial bee colony (ABC), and Bacterial foraging algorithm (BFA). These

techniques are applied on a case study i.e., withdrawal task in Bank ATM [15],

and it is observed that clonal selection algorithm is able to generate suitable

test data in a more e�cient manner. This section further, gives the brief details

about the meta-heuristic techniques used for automatic test data generation.

Genetic Algorithm

Genetic algorithm (GA) is a population-based search method and was in-

troduced by Holland [50]. GA are a family of computational models inspired

by evolution.

16

Chapter 2 Literature Review

Candidate solutions are represented as chromosomes, with the solution rep-

resented as genes in the chromosomes. The possible chromosomes form a search

space, and are associated with a �tness function representing the value of so-

lutions encoded in the chromosome. The search proceeds by evaluating the

�tness of each of the chromosome in the population, and then performing

point mutations and recombination of the successful chromosomes. GA can

defeat random search in �nding solutions to complex problems. GA has been

successfully used to automate the generation of test data. Table 2.2 gives the

literature survey on the use of GA in test data generation.

Particle Swarm Optimization

Particle Swarm Optimization (PSO) technique was introduced in 1995 by

Kennedy et al. [51]. In comparison with GA search, the PSO is a relatively

recent optimization technique of the swarm-intelligence paradigm. Inspired by

social metaphors of behavior and swarm theory, simple methods were devel-

oped for e�ciently optimizing non-linear mathematical functions.

Similar to GA search, the system is initialized with a population of random

solutions, called particles. Each particle maintains its own current position,

its present velocity and its personal best position explored so far. The swarm

is also aware of the global best position achieved by all its members. Swarm

updates it's personal and global best in each time stamp, by moving to a new

position. Table 2.2 gives the literature survey on the use of PSO in test data

generation.

Clonal Selection Algorithm

Clonal Selection Algorithm (CSA) is an optimization algorithm based on

biological immune system, in which the antigen corresponds to the problem

under-solved and the antibody is referred to as a solution to the problem [12].

CSA is a branch of arti�cial immune system algorithms with unique inherent

17

Chapter 2 Literature Review

property (hyper mutation) that makes it an e�cient optimization technique.

In basis path testing, the aim of the tester is to �nd suitable test data that

will satisfy the given target path. To achieve this, the random test data (input

values) are encoded as antibodies and the antigens as the ones satisfying the

test data requirements. The CSA begins with a randomly generated initial

population. The test data are evaluated based on the a�nity function. This

a�nity function is a description of how best the individual test data perform

in code coverage. Table 2.2 gives a brief overview of the literature survey for

test data generation using CSA.

Binary Particle Swarm Optimization

Binary Particle Swarm Optimization (BPSO) was introduced by Kennedy

and Eberhart in 1997 [52]. When compared to PSO, in the binary version of

PSO (BPSO), every particle is represented as a bit. Each bit of a particle in

BPSO is associated with a velocity, which is the probability of changing the

bit to 1. Particles are updated bit by bit and velocity is restricted within the

range [0,1].

Consider P to be the probability of changing a bit from 0 to 1, then 1−P

will be the probability of not changing the bit to 1. This probability can be

given as:

P (xid(t) = 1) = f(xid(t), vid(t− 1), pid, pgd) (2.1)

The possibility that an individual particle i for the dth site in the bit string

will choose a bit 1 is represented by P (xid(t) = 1). The current state of the

ith particle at bit d is determined by xid(t). The current probability that a

particle in the string will choose 1 is measured by Vid(t − 1). A pid value of

1 or 0 determines the best state found so far for bit d of individual i. The

value pgd may be 1 or 0 depending on what value does the bit d possess in

the global best particle. The commonly used measure for ‘f ′ is the sigmoid

18

Chapter 2 Literature Review

function, which is de�ned as:

f(Vid(t)) =
1

1 + e−vid(t)
(2.2)

where,

Vid(t) = wvid(t− 1) + (φ1)(pid − xid(t− 1) + (φ2)(pgd − xid(t− 1))) (2.3)

Equation 2.3 gives the update rule for the velocity of each bit, where φ1 and φ2

are random numbers drawn from the uniform distributions, and [Vmin, Vmax]

are the constant parameters. Table 2.2 gives the literature survey with respect

to test data generation using BPSO.

Genetic Simulated Annealing Algorithm

Cerny proposed the use of SA in �nding global minimum of a cost func-

tion which posses several local minima values [53]. In this work, the hybrid

approach involving both genetic algorithm and simulated annealing (GASA)

are used for test data generation. These two algorithms are the most promis-

ing heuristic search methods for their data type independence i.e., they have

the ability to handle complex data types and generate qualitative test data.

This helps in detecting undetected (unravel) unknown bugs/defects, which is

not possible by typical test data generation techniques such as boundary value

analysis and equivalence partitioning.

Also GA is less susceptible to local minima, which can cause a test data

generation technique to halt without �nding adequate input [54]. Even though

GA and SA can produce test data with appropriate fault-prone ability [55, 56],

they fail to produce test data fast due to their slow convergence speed. Table

2.2 gives a brief overview of various methods followed by researchers to generate

test data using hybrid GA - SA approach.

19

Chapter 2 Literature Review

Arti�cial Bee Colony

The Arti�cial Bee Colony (ABC) algorithm like GA and PSO, is biologically

inspired technique of swarm intelligence. Seeley investigated the behavior of

bees in distributing their work to optimize the collection of nectar and reported

the working of bee colony to be robust and adaptive [57]. Table 2.2 shows the

criteria used by researchers in generating test data using ABC technique.

Bacterial Foraging Algorithm

Bacterial Foraging Algorithm (BFA) is an optimization technique which

mimics the behavior of bacteria forage, i.e., how the bacteria search for food

over a landscape of nutrients to perform parallel non-gradient optimization[58].

Bacterial foraging optimization technique tends to eliminate poor foraging

strategies and improve successful foraging strategies. After meeting the stop-

ping criterion a foraging animal takes actions to maximize the energy obtained

per unit time spent in foraging [59]. This phenomenon of foraging led to the

use of this optimization technique by many researchers.

Each of the meta-heuristic techniques have their respective unique features

which can be attributed as follows:

i. Genetic algorithm (GA): helps to solve a good number of real time

problems which cannot be solved in polynomial amount of time using

deterministic algorithms. GA can obtain near optimal solution that can

be generated quickly which is more desirable than optimal solution which

requires huge amount of time.

ii. Particle swarm optimization (PSO): provides solution to multi-

modal problems like local optima problem. Good �tness function is

available because every particle in the swarm updates its personal best

by comparing with the global best particle in the swarm.

20

Chapter 2 Literature Review

iii. Clonal selection algorithm (CSA): helps in achieving diversi�ed test

data by performing hyper-mutation operation.

iv. Binary particle swarm optimization (BPSO): involves exchange of

information between individuals (particles) of the population (swarm).

v. Genetic simulated annealing algorithm (GSAA): combines both

the local search ability of SA and global search ability of GA to obtain

optimal solution.

vi. Arti�cial bee colony algorithm (ABC): algorithm involves less com-

putational overhead as it uses only three control parameters.

vii. Bacterial foraging algorithm (BFA): this probabilistic technique

is helpful for problems such as numeric maximization or minimization,

where it is extremely di�cult to �nd approximate solutions.

The following table shows the list of various testing criteria used by re-

searchers and practitioners for test data generation using meta-heuristic search

techniques.

Table 2.2: Literature survey for test data generation using meta-heuristic

search algorithms

Author Criteria for testing

GA

Pargas et al.

(1999)

Generated test data and performed branch cover-

age [60].

Lin et al.

(2001)

Used `similarity' �tness function to generate test

data [61].

Michael et

al. (2001)

Automated test data generation using branch cov-

erage [54].

Mansour et

al. (2004)

Used hamming distance as a �tness function for

path coverage [62].

21

Chapter 2 Literature Review

Ahmed et

al. (2008)

Generated test data for path coverage [63].

Ciyong et al.

(2009)

Generated test data for branch coverage [64].

Srivastava et

al. (2009)

Generated test cases for path coverage [65].

Alsmadi et

al. (2010)

E�ective generation of test data [66].

Rauf et al.

(2010)

The ratio of number of paths followed out of the

total number of paths were used as a �tness func-

tion [67].

Hitesh et al.

(2010)

Generated test data using heuristic approach [68].

Sharma et

al. (2013)

Presented survey on test data generation using GA

[69].

Swagatika et

al. (2013)

Generated test data using GA [70].

Alberto et

al. (2013)

Generated test sequences for complex time systems

using GA [71].

PSO

Andreas et

al. (2007)

Generated test data and showed that PSO outper-

forms GA for complex programs [72].

Aiguo et al.

(2009)

All path test data generation [73].

Huanhuan

et al. (2010)

E�cient automated test data generation method

[74].

Sheng et al.

(2010)

Hybrid approach using GA and PSO for automatic

test data generation [75].

Chengying

et al. (2012)

Test data generation for structural program using

swarm intelligence [76].

22

Chapter 2 Literature Review

Rui et al.

(2012)

Automatic test data generation based on hybrid

particle swarm genetic algorithm [77].

Shaukat et

al. (2014)

Test data generation by coupling integration test-

ing with PSO [78].

CSA

Xiaofeng et

al. (2008)

Clonal selection algorithm for test data generation

based on basis paths [79].

Konstantinos

et al. (2008)

Generated test data for data-�ow coverage [80].

Ankur et al.

(2012)

Test data generation based on branch distance us-

ing clonal selection algorithm [81].

BPSO

Khushboo et

al. (2008)

Generated test data and compared the perfor-

mance with GA [82].

Gursaran et

al. (2012)

Generated test data using BPSO and GA [83].

GASA

Haichang et

al. (2005)

Test data were generated for benchmark programs

with combination of GA and SA approach [84].

Bao-Lin et

al. (2007)

Automatic test data generation based on Length-

N coverage criterion [85].

Tan et al.

(2009)

Analyzed the drawbacks in usage of GA and SA

for test data generation [86].

Bo Zhang et

al. (2011)

Combined adaptive GA and SA to generate test

data [87].

Gentiana et

al. (2012)

Generated test data using PSO, SA and compared

with GA[88].

ABC

Jeyamala et

al. (2009)

Demonstrated the superiority of the proposed ap-

proach over the existing GA approach [89].

Surender et

al. (2010)

Generated test data for structural programs using

branch distance as �tness function [90].

Arivnder et

al. (2011)

Test data optimization for code coverage [91].

23

Chapter 2 Literature Review

Srikanth et

al. (2011)

Generated test data for test case optimization [92].

Shekar et al.

(2012)

Generated test data for feasible independent test

paths and compared the e�ciency of ABC ap-

proach with other optimization techniques [93].

Ranjeet et

al. (2012)

Showed that ABC obtained near global optimal

solution [94].

Sandeep et

al. (2013)

Generated test data using ABC [95].

The scenario considered here for design of �tness function is that the cus-

tomer tries to withdraw certain amount from the ATM machine (this with-

drawal amount is the initial test data generated randomly, with an assumption

that the withdrawal amount entered by the customer is random).

The ATM system sends a message with the details of the amount and the

account number to the bank system. The bank system retrieves the current

balance of the corresponding account and compares it with the entered amount.

If the balance amount is found to be greater than the entered withdrawal

amount then the amount can be withdrawn and the bank system returns true,

after which the customer can withdraw the money, otherwise it checks for

balance. If the entered amount is less than the total amount (current balance)

then the message is intimated as `false'. Depending on the return value, the

ATM machine dispenses the cash and prints the receipt or displays the failure

message.

In this thesis, for automated test data generation using meta-heuristic

search techniques, a small segment of code for ATM withdrawal scenario is

considered.

24

Chapter 2 Literature Review

1. net_amt = 25000, min_bal = 1000;

2. bal(1, i) = net_amt− wd_amt(1, i);

3. if wd_amt(1, i) < net_amt

4. if bal(1, i) < min_bal

5. fail_bal(1, k) = bal(1, i);

else

6. suc_bal(1, p) = bal(1, i);

7. test_data(1, p) = wd_amt(1, i);

Table 2.3: Alphabetical representation

of nodes in control �ow graph for

Figure 2.1.

Nodes Alphabetical

in CFG Notation

wd_amt A

net_amt X

bal B

min_bal C

fail_bal D

suc_bal E

test_data F

The variables in the code such as net_amt represents the total amount as

balance in a customers account, wd_amt represents the withdrawal amount

entered by the customer during withdrawal task, min_bal corresponds to the

least possible balance to be left over in a customers account after withdrawal,

test_data is the set of all successful transactions done by the customer, suc_bal

and fail_bal variables contain the successful and failed transactions test data

respectively.

Figure 2.1 shows the generated CFG for Bank ATM withdrawal task and

Table 2.3 shows the alphabetical representation of predicate nodes for Figure

2.1. Test data are generated by using Equation 2.4 (�tness function). The

�tness function for Bank ATM withdrawal task is given as:

F = 1/((abs(suc_bal(i)−min_bal) + 0.05)2) (2.4)

25

Chapter 2 Literature Review

Figure 2.1: CFG for ATM Withdrawal task

2.2.1 Results and analysis

In this section, the results obtained for automatic test data generation are

presented. The obtained test data are tabulated in Table 2.4. This table

presents the comparison of percentage of test data having maximum �tness

values (search space) for the the applied meta-heuristic technique.

Table 2.4: Percentage of class of test data having maximum �tness values in

GA, PSO, CSA, BPSO, GSAA, ABC and BFA respectively.

Fitness value range % of test data

f(x)(Search space) GA PSO CSA BPSO GSAA ABC BFA

0 ≤ f(x) < 0.3 61 50 13 48 61 49 42
0.3 ≤ f(x) < 0.7 01 07 17 05 02 01 07
0.7 ≤ f(x) < 1.0 38 43 70 47 37 50 51

Table 2.4 gives a clear indication that the individuals having higher �tness

(a�nity) value, lie in the range 0.7 ≤ f(x) < 1.0. These �tness values are

an indication of optimal test data obtained. Table 2.4 depicts that highest

percentage of test data having maximum �tness value is achieved by CSA.

Out of the 100 individuals in the population, test data having maximum �tness

26

Chapter 2 Literature Review

value found in search space 0.7 ≤ f(x) < 1.0 can be chosen for testing purpose.

This inference helps a tester to choose suitable solution (test data) based

on the a�nity values out of the total population size (N) i.e., tester can choose

test data from the categorized search space (based on a�nity value).

Figure 2.2: Fitness variation for test data

Figure 2.2 depicts the variation of �tness values of unique test data gen-

erated when the seven meta-heuristic techniques are applied. The techniques

are run for 1000 generations. The graph shows that CSA has better �tness

values for the generated test data when compared with other six meta-heuristic

techniques.

2.3 Summary

In fault prediction analysis, it can be summarized that CK metrics suite has

been used by a number of researchers as input in design of prediction models.

Also out of these, a good number of authors have used statistical methods

for design of these respective prediction models. It is noticed that the public

datasets are also most commonly used in fault prediction analysis.

27

Chapter 2 Literature Review

In the study related to test data generation, the behavior of seven meta-

heuristic search techniques such as GA, PSO, CSA, BPSO, GSAA, ABC and

BFA were applied for automated test data generation. As part of this work,

the performance of each of the seven techniques was presented. It is observed

from the obtained results, that CSA helps to generate suitable test data more

e�ciently. Even the maximum number of unique test data had higher �tness

values in CSA when compared with other six techniques as shown in Figure

2.2.

28

Chapter 3

E�ectiveness of Machine Learning

Methods in Fault Prediction

Analysis

Fault prediction models designed using various machine learning methods,

use CK metrics suite as requisite input. In the �rst phase, full feature set of

CK metric suite is used to compute the fault prediction accuracy. In the second

phase, the proposed work for fault prediction is extended by applying feature

reduction techniques such as Principal Component Analysis (PCA) and Rough

Set Theory (RST). These attribute reduction techniques are applied to study

the e�ectiveness of reduced attribute set. At the end, the chapter draws a

comparative analysis of the fault prediction accuracy obtained by full feature

set and reduct feature set of PCA and RST.

29

Chapter 3 E�ectiveness of machine learning methods for fault prediction

3.1 Introduction

Present day software development is mostly based on Object-Oriented

paradigm. The quality of Object-Oriented software can be best assessed by

the use of software metrics. Since decades, many software metrics have been

proposed to evaluate the quality of software. These metrics help the practi-

tioners as well as researchers to verify the quality attributes of a software such

as e�ort, maintainability and fault proneness.

The usefulness of these metrics lies in their ability to predict the reliabil-

ity of the developed software. In practice, software quality mainly refers to

reliability, maintainability and understandability. Reliability is de�ned as the

probability that software will not cause the failure of a system for a speci�ed

time under speci�ed conditions (IEEE Std 982.2-1988) [96], and is generally

measured by the number of faults found in the developed software. The faults

occur mainly due to the presence of large number of lines of code which consti-

tute a very huge number of modules in the developed software. Software fault

prediction is a challenging task for researchers before the software is released.

Prediction of fault-prone modules is one of the major goals so as to make a

software fault free before its delivery to the client.

Several researchers have worked on building prediction models for software

fault prediction. This chapter aims to assess the in�uence of CK metrics, keep-

ing in view of predicting faults for an open-source software product. Machine

learning methods such as statistical methods (linear regression, logistic regres-

sion) are very often used for classi�cation of faulty classes, and methods such

as Arti�cial neural network (ANN), Functional link arti�cial neural network

(FLANN), Radial basis function network (RBFN), Probabilistic neural net-

work (PNN) are applied for prediction of fault rate. It is observed in literature

that metric suites have been validated for small data sets [97]. In this work, the

results achieved for an input data set of 965 classes are validated by comparing

with the results obtained by Basili et al. [97] for statistical analysis.

30

Chapter 3 E�ectiveness of machine learning methods for fault prediction

In this chapter, the following queries are investigated:

� Q1: Are design metrics good enough to be considered for fault prediction

models.

� Q2: Which independent variable should be included in fault prediction

models.

� Q3: Which modeling technique performs best when used in fault predic-

tion.

� Q4: Does feature reduction techniques such as PCA and RST in�u-

ence/increase the accuracy rate of fault prediction for the implemented

techniques.

3.2 Research Background

The following sub-sections highlight on the data set used for fault predic-

tion. Data are normalized to obtain better accuracy and then dependent as

well as independent variables are chosen for fault prediction.

3.2.1 Empirical Data Collection

Metric suites are applied for di�erent goals such as fault prediction, e�ort

estimation, re-usability and maintainability. In this study, CK metrics suite is

used for fault prediction [19].

The CK metrics suite consists of six metrics viz., Weighted Method per

Class (WMC), Depth of Inheritance Tree (DIT), Number of Children (NOC),

Coupling Between Objects (CBO), Response For Class (RFC) and Lack of

Cohesion (LCOM) [19]. In this suite, WMC, DIT and NOC indicate the class

hierarchy, CBO and RFC indicate the class coupling whereas LCOM represents

cohesion. Table 3.1 gives a short note on the six CK metrics and the threshold

for each of the six metrics.

31

Chapter 3 E�ectiveness of machine learning methods for fault prediction

Table 3.1: CK metrics suite

CK Metric Description Value

WMC Sum of the complexities of all class methods. Low

DIT Maximum length from the node to the root

of the tree.

< six

NOC Number of immediate sub-classes subordi-

nate to a class in the class hierarchy.

Low

CBO Count of the number of other classes to which

it is coupled.

Low

RFC A set of methods that can potentially be ex-

ecuted in response to a message received by

an object of that class.

Low

LCOM Measures the dissimilarity of methods in a

class via instanced variables.

Low

The metric values of the suite are extracted using Chidamber and Kemerer

Java Metrics (CKJM) tool. It follows the Unix tradition, i.e., it does not o�er

any GUI interface to the user.

CKJM tools extracts Object-Oriented metrics by processing the byte code

of compiled Java classes. The programs are executed by specifying the class

�les (or pairs of jar/class �les) on its command line. The CKJM tool, on

its standard output line displays a line for each class containing the complete

name of the class and the values of its metrics.

This tool is used to extract metric values for AIF (an open source frame-

work) version 1.6 available in the Promise data repository [98]. The versions

of the AIF used from the repository were developed in Java language. The CK

metrics values of the AIF are used for fault prediction analysis.

32

Chapter 3 E�ectiveness of machine learning methods for fault prediction

3.2.2 Data Normalization

Normalization of the data set is necessary in order to apply ANN models,

which accept normalized data which lie in the range: 0 to 1. In literature,

techniques such as Min-Max normalization, Z-Score normalization and Dec-

imal scaling are available for normalizing the data. In this thesis, Min-Max

normalization technique is used to normalize the data [99]. Min-Max normal-

ization performs a linear transformation on the original data. Each of the

actual data d of attribute p is mapped to a normalized value d′ which lies in

the range of 0 to 1. The Min-Max normalization is calculated by using the

following equation:

Normalized(d) = d′ =
d−min(P)

max(p)−min(p)
(3.1)

where min(p) and max (p) represent the minimum and maximum value of

the attribute respectively.

3.2.3 Dependent and Independent Variables

The goal of this study is to explore the relationship between Object-Oriented

metrics and fault proneness at the class level. In this thesis, a fault in a class

is considered as a dependent variable and each of the CK metric as an inde-

pendent variable. It is intended to develop a function between fault of a class

and CK metrics (WMC, DIT, NOC, CBO, RFC, LCOM). Fault is a function

of WMC, DIT, NOC, CBO, RFC and LCOM and can be represented as shown

in the following equation:

Faults = f(WMC,DIT,NOC,CBO,RFC,LCOM) (3.2)

3.3 Machine Learning Methods

In this section, machine learning methods such as statistical methods, ar-

ti�cial neural network, radial basis function, functional neural network, prob-

33

Chapter 3 E�ectiveness of machine learning methods for fault prediction

abilistic neural network models are applied for fault prediction analysis using

CK metrics as requisite input data.

3.3.1 Statistical Methods

This section describes the application of statistical methods for fault pre-

diction. Regression analysis methods such as linear regression and logistic

regression analysis are applied. In regression analysis, the value of unknown

variable is predicted based on the value of one or more known variables.

3.3.1.1 Linear Regression Analysis

Linear regression is the commonly used statistical technique. It is the study

of linear relationship between variables. This analysis technique is used when

faults are distributed over a wide range of classes.

Linear regression analysis is of two types:

a. Univariate linear regression, and

b. Multivariate linear regression.

Univariate linear regression is based on:

Y = β0 + β1X (3.3)

where Y is the dependent variable (accuracy rate) and X is the independent

variables (CK metrics).

In case of multivariate linear regression, the linear regression is based on:

Y = β0 + β1X1 + β2X2 + β3X3 ++ βpXp (3.4)

where Xi is the independent variable, β0 is a constant and y is the dependent

variable. Table 3.8 shows the result of linear regression analysis for AIF version

1.6.

34

Chapter 3 E�ectiveness of machine learning methods for fault prediction

3.3.1.2 Logistic Regression Analysis

Logistic regression analysis is used when the data set is not linear in nature.

Here logistic regression analysis is used for predicting the outcome of dependent

variable based on one or more independent variable(s). A dependent variable

can take only two values. So the dependent variable of a class containing bugs

is divided into two groups, one group containing zero bugs and the other having

at least one bug.

Logistic regression analysis can be divided into two groups:

a. Univariate logistic regression, and

b. Multivariate logistic regression.

a. Univariate logistic regression analysis

Univariate logistic regression is carried out to �nd the impact of an indi-

vidual metric in predicting the faults of a class. It is based on the following

formula:

π(x) =
eβ0+β1X1

1 + eβ0+β1X1
(3.5)

where x is an independent variable and β0, β1 represent the constant and

coe�cient values respectively. Taking logarithm of the function, it can be

expressed as:

logit[π(x)] = β0 + β1X (3.6)

where π represents the probability of a fault found in the class during validation

phase.

The results of univariate logistic regression for AIF version 1.6 are tabulated

in Table 3.13. The values of obtained coe�cient are the estimated regression

coe�cients. The probability of faults being detected for a class is dependent

on the coe�cient value (positive or negative). Higher coe�cient value means

greater is the probability of a fault being detected. The signi�cance of coe�-

cient value is determined by the p-value. The p-value is assessed based on the

35

Chapter 3 E�ectiveness of machine learning methods for fault prediction

signi�cance level (α). `R' coe�cient is the proportion of the total variation in

the dependent variable explained in the regression model. High value of R is

an indication of greater correlation between faults and the CK metrics.

b. Multivariate logistic regression analysis

Multivariate logistic regression is used to construct a prediction model for

the fault proneness of classes. In this method, metrics are used in combination.

The multivariate logistic regression model is based on the following equation:

π(x) =
eβ0+β1X1+β2X2+β3X3+......+βpXp

1 + eβ0+β1X1+β2X2+β3X3+......+βpXp
(3.7)

where xi is the independent variable, π represents the probability of a fault

found in the class during validation phase and p represents the number of

independent variables. Taking logarithm of the function, it yields:

logit[π(x)] = β0 + β1X1 + β2X2 + β3X3 ++ βpXp (3.8)

Equation 3.8 shows that logistic regression is just a standard linear regression

model, where the Dichotomous outcome of the result is transformed by the

logit transform. The value of π(x) lies in the range: −∞ < π(x) < +∞. After

the logit transform the value of π(x) lies in the range: 0 < π(x) < 1.

3.3.2 Arti�cial Neural Network

Arti�cial Neural Network (ANN) is a network of simulated neurons. ANN is

inspired by the examination of central nervous systems. Warren et al. in 1943

created a computational model for neural networks based on mathematics and

algorithms [8]. ANN is one of the arti�cial intelligence (AI) techniques, most

commonly used for prediction and classi�cation. This computational features

involved in ANN architecture can be very well applied for fault prediction.

Figure 3.30 shows the architecture of ANN model, which contains three

layers viz., input layer, hidden layer and output layer. Computational features

involved in ANN architecture can be very well applied for fault prediction.

36

Chapter 3 E�ectiveness of machine learning methods for fault prediction

Input layer Hidden layer

Output layer

Wih

Woh

Figure 3.1: A typical FFNN

In this network, for input layer the linear activation function is used i.e.,

the output of the input layer `Oi' is input of the input layer `Ii', which is

represented as :

Oi = Ii (3.9)

For hidden layer and output layer, sigmoidal (squashed-S) function is used.

The output of hidden layer Oh for input of hidden layer Ih is represented as:

Oh =
1

1 + e−Ih
(3.10)

Output of the output layer `Oo' for the input of the output layer `Oi' is repre-

sented as:

Oo =
1

1 + e−Oi
(3.11)

A neural network can be represented as:

Y ′ = f(W,X) (3.12)

where X is the input vector, Y
′
is the output vector, and W is the weight

vector. The weight vector W is updated in every iteration so as to reduce the

Mean Square Error (MSE) value. MSE is formulated as:

MSE =
1

n

n∑
i=1

(y′i − yi)2 (3.13)

where y is the actual output and y
′
is the expected output.

37

Chapter 3 E�ectiveness of machine learning methods for fault prediction

In literature, di�erent methods are available to update weight vector (`W')

such as Gradient Descent, Newton's method, Quasi-Newton method, Gauss

Newton Conjugate-Gradient method, and Levenberg Marquardt method. In

this chapter, Gradient Descent and Levenberg Marquardt methods are used

for updating the weight vector W .

3.3.2.1 Gradient Descent learning method

Gradient Descent (GD) method is used for updating the weight during

learning phase [100]. GD method uses �rst-order derivative of total error to

�nd the minima in error space. Normally, Gradient vector G is de�ned as the

�rst order derivative of error function. The error function is represented as:

Ek =
1

2
(Tk −Ok)

2 (3.14)

and G is given as:

G =
∂

∂W

(
Ek
)

=
∂

∂W

(1

2
(Tk −Ok)

2
)

(3.15)

After computing the value of Gradient vector G in each iteration, weighted

vector W is updated as:

Wk+1 = Wk − αGk (3.16)

where Wk+1 is the updated weight, Wk is the current weight, Gk is a Gra-

dient vector, and α is the learning parameter.

3.3.2.2 Levenberg - Marquardt method

Levenberg - Marquardt (LM) method locates the minimum of multivariate

function in a iterative manner. It is expressed as the sum of squares of non-

linear real-valued functions [101, 102]. This method is used for updating the

weights during learning phase. LM method is fast and stable in terms of its

execution when compared with Gradient Descent method (LM is a combination

38

Chapter 3 E�ectiveness of machine learning methods for fault prediction

of Steepest Descent and Gauss Newton methods). In LM method, weight

vector W is updated as:

Wk+1 = Wk − (JTk Jk + µI)−1Jkek (3.17)

where Wk+1 is the updated weight, Wk is the current weight, J is Jacobian

matrix and µ is the combination coe�cient i.e., when µ is very small it acts

as Gauss Newton method, and if µ is very large, it acts as Gradient Descent

method. Jacobian matrix is calculated as:

J =



∂
∂W1

(
E1,1

)
∂

∂W2

(
E1,1

)
· · · ∂

∂WN

(
E1,1

)
∂

∂W1

(
E1,2

)
∂

∂W2

(
E1,2

)
· · · ∂

∂WN

(
E1,2

)
...

...
...

...
∂

∂W1

(
EP,M

)
∂

∂W2

(
EP,M

)
· · · ∂

∂WN

(
EP,M

)


(3.18)

where `N' is the number of weights, `P' is the number of input patterns and

`M' is the number of output patterns.

3.3.3 Radial Basis Function Network

Radial Basis Function Network (RBFN) was �rst formulated by Broomhead

et al. [103], and subsequently extended by Moody et al. [104]. RBFN is a feed

forward neural network (FFNN), trained using supervised training algorithm.

RBFN is generally con�gured by a single hidden layer, where the activation

function is chosen from a class of functions called as basis functions.

Figure 3.2 shows the structure of a typical RBFN in its basic form involv-

ing three entirely di�erent layers. RBFN is a form of ANN technique which

contains three layers viz., input, hidden and output layer. RBFN contains h

number of hidden centers represented as C1, C2, C3,, Ch.

39

Chapter 3 E�ectiveness of machine learning methods for fault prediction

C1 φ1

w1

C2
φ2

w2

Ch
φh

wn
Output layer

y
′

Input layer

Hidden layer of

Radial basis function

x1

x2

x3

x4

xp

Figure 3.2: Architecture of RBF Network

The target output is computed as:

y′ =
n∑
i=1

φiWi (3.19)

where Wi is the weight of the ith center, φ is the radial function and y′ is

the target output. Table 3.2 shows the various radial functions available in

literature.

Table 3.2: Radial functions available in literature

Radial function Mathematical expression

Gaussian radial function φ(z) = e−(z
2/2σ2)

Thin plate spline φ(z) = z2logz

Quadratic φ(z) = (z2 + r2)1/2

Inverse quadratic φ(z) =
1

(z2 + r2)1/2

40

Chapter 3 E�ectiveness of machine learning methods for fault prediction

In this analysis, Gaussian function is used as a radial function, and the

distance vector z is calculated as:

z = ||xj − cj|| (3.20)

where xj is input vector that lies in the receptive �eld for center cj. In this

study, gradient descent learning and hybrid learning techniques are used for

updating weight and center respectively.

The advantage of using RBFN technique lies in its training rate which is

faster when compared with other propagation networks and is less susceptible

to problem with non-stationary inputs.

3.3.3.1 Gradient RBFN method

Gradient Descent learning is a method used for updating the weightW and

center C. The center C in Gradient learning is updated as:

Cij(k + 1) = Cij(k)− η1
∂

∂Cij

(
Ek
)

(3.21)

and weight W is updated as:

Wi(k + 1) = Wi(k)− η2
∂

∂Wi

(
Ek
)

(3.22)

where η1 and η2 are the learning coe�cients for updating center and weight

respectively.

3.3.3.2 Hybrid RBFN method

In Hybrid learning method, radial function relocates its center in a self

organized manner, while the weights are updated using learning algorithm.

In this analysis, Least Mean Square (LMS) algorithm is used for updating

the weights while the center is updated only when it satis�es the following

conditions:

a. Euclidean distance between the input pattern and the nearest center is

greater than the threshold value, and

41

Chapter 3 E�ectiveness of machine learning methods for fault prediction

b. Mean Square Error (MSE) is greater than the desired accuracy.

After satisfying the above conditions, the Euclidean distance is used to �nd

the centers close to x and then the centers are updated as:

Ci(k + 1) = Ci(k) + α(x− Ci(k)) (3.23)

After every update, the center moves closer to the training sample.

3.3.4 Functional Link Arti�cial Neural Network

Functional Link Arti�cial Neural Network (FLANN) was initially proposed

by Pao [105]. It is a �at network having a single layer i.e., the hidden layers are

omitted. Input variables generated by linear links of neural network are linearly

weighed. Functional links act on elements of input variables by generating a set

of linearly independent functions. These links are evaluated as functions with

the variables as the arguments. Figure 3.3 shows the single layered architecture

of FLANN. FLANN architecture o�ers less computational overhead and higher

convergence speed when compared with other ANN techniques.

X1

X2

∑

∑Adaptive

algorithm

ρ

Error

ŷ

ŷS

-

+y

w+1

w0

w1

w2

x0

x1

Cos(πx1)

Sin(πx1)

.

.

.

x2

Cos(πx2)

Sin(πx2)

x1 . x2

F
u
n
c
t
i
o
n
a

l

e
x
p
a
n
s

i
o
n

Figure 3.3: Flat net structure of FLANN

42

Chapter 3 E�ectiveness of machine learning methods for fault prediction

Using FLANN, output is calculated as:

ŷ =
n∑
i=1

WiXi (3.24)

where ŷ is the predicted value, W is the weight vector and X is the func-

tional block which is de�ned as:

X = [1, x1, sin(πx1), cos(πx1), x2, sin(πx2) , cos(πx2), ...] (3.25)

and weight is updated as:

Wi(k + 1) = Wi(k) + α ei(k) xi (k) (3.26)

having `α' as the learning rate and ei as the error value, formulated as:

ei = yi − ŷi (3.27)

here y and ŷ represent actual and the obtained (predicted) value respec-

tively.

3.3.5 Probabilistic Neural Network

Probabilistic Neural Network (PNN) was introduced by Donald F Specht

[106]. It is a feedforward neural network, basically derived from Bayesian

network and Statistical algorithm. Figure 3.4 shows the basic architecture of

PNN.

In PNN, the network is organized as multilayered feedforward network with

four layers: input, hidden, summation and output layer. The input layer �rst

computes the distance from input vector to the training input vectors. The

second layer consists of a Gaussian function which is formed using the given

set of data points as centers. The summation layers sums contribution of each

class of input and produces a net output which is vector of probabilities. The

fourth layers determines the fault prediction rate.

PNN works more faster when compared to multilayer perceptron networks

and also is more accurate. The major concern lies in �nding an accurate

43

Chapter 3 E�ectiveness of machine learning methods for fault prediction

X1

X2

X3

X11

X12

X21

X22

X31

X32

1

2

3

Input layer

Pattern layer
(Training set)

Summation
layer

Output class:
Max(g1, g2, g3)

Output

layer

g1(X)

g2(X)

g3(X)

y11

y12

y21

y22

y31

y32

X

Figure 3.4: Basic architecture of PNN

smoothing parameter `σ' to obtain better classi�cation. The following function

is used in hidden layer:

φ(z) = e−(z
2/σ2) (3.28)

where z = ||x−c||, x is the input, c is the center, and z is the euclidean distance

between the center and the input vector.

3.4 Fault Prediction using Feature Reduction Tech-

niques

In this fault prediction analysis, two feature reduction techniques such as

Principal component analysis (PCA) and Rough set theory (RST) have been

applied. PCA and RST attribute reduction techniques are applied on full

feature set. This reduct set obtained is used in fault prediction by applying

44

Chapter 3 E�ectiveness of machine learning methods for fault prediction

various statistical and neural network techniques.

3.4.1 Application of Principal Component Analysis

Principal Component Analysis (PCA) is a statistical technique used to

transform a data space of high dimension into a feature space of lower dimen-

sion having the most signi�cant features. Features (or inputs) that have little

variance are thereby removed. It is a standard technique to identify the un-

derlying, orthogonal dimensions that explain relations between the variables

in a data set. The concept of PCA was developed by Karl Pearson [107].

PCA is an orthogonal transformation of the coordinate system in which

the data are represented. The new transformed coordinate values by which

data are represented are referred to as principal components. A small number

of principal components (PCs) are su�cient enough to represent most of the

signi�cant patterns in the data. These are also referred as factors or latent

variables of the data. PCA rigidly rotates the axes of the p-dimensional space

to new positions (principal axes) such that the highest variance is possessed

by `axis 1', and the second axis has the next highest variance and so on. The

covariance among each pair of the principal axes is zero, and hence the principal

axes are uncorrelated.

First, the covariance matrix `S' is computed and the eigen values are found.

The eigen values are then sorted in decreasing order, and denoted as: λ1 ≥ λ2

≥... λM . The corresponding eigen vectors are denoted as a1, a2, aM . The

�rst `d' eigen vectors are chosen from `M' vectors such that d << M. Finally,

the data set is projected into lower dimension, and is given as:

G← [a1, a2, a3, ...ad] where d << M (3.29)

if x is a test point

x ∈ RM → GTx ∈ Rd (3.30)

where, G represents a set of eigen vectors and R represents lower dimension

data set.

45

Chapter 3 E�ectiveness of machine learning methods for fault prediction

3.4.2 Application of Rough Set Theory

Rough Set Theory (RST) is a formal approximation method of a conven-

tional (CRISP) set [108]. This formal approximation, represents the lower and

upper bound of the original set. Rough set helps in adequate analysis of var-

ious types of data, especially when dealing with inexact, vague and uncertain

data. Rough set captures two unique features of imperfection in knowledge

i.e., indiscernibility and vagueness.

Rough set execution is based on the concept that lowering the `degree of

precision' in the data set makes data pattern more visible [109]. In general,

rough set approach can be viewed as a formal framework for mining facts from

imperfect data. The results achieved by application of rough set concept can

be represented in the form of classi�cation, decision rules or inform of reduced

data set. In this analysis of fault prediction, RST is used to obtain reduced

data set.

3.5 Performance Evaluation Parameters

The following sub-sections give the basic de�nitions of the performance pa-

rameters used in statistical and machine learning methods for fault prediction.

The performance parameters for statistical analysis can be determined

based on the confusion matrix [110] as shown in Table 3.3. The confusion

matrix contains information about actual and predicted classi�cations done

by a fault-prediction model.

Table 3.3: Confusion matrix to classify a class as faulty or not-faulty

NO (Prediction) YES (Prediction)

NO (Actual) True Negative (TN) False Positive (FP)

YES (Actual) False Negative (FN) True Positive (TP)

46

Chapter 3 E�ectiveness of machine learning methods for fault prediction

The confusion matrix has four categories:

1. True Positive (TP): refers to whether modules are correctly classi�ed as

faulty modules.

2. False Positive (FP): refers to not-faulty modules incorrectly labeled as

faulty modules.

3. True Negative (TN): corresponds to not-faulty modules correctly classi-

�ed as such.

4. False Negative (FN): refers to faulty modules incorrectly classi�ed as

not-faulty modules.

The following are the performance measures used in statistical analysis.

� Precision

Is the degree to which the repeated measurements under unchanged con-

ditions show the same results [110].

Precision =
TP

FP + TP
(3.31)

� Correctness

Correctness as de�ned by Briand et al. is the ratio of the number of

modules correctly classi�ed as fault prone to the total number of modules

classi�ed as fault prone [35].

Correctness =
TP

FP + TP
(3.32)

� Completeness

According to Briand et al., completeness is the ratio of number of faults

in classes classi�ed as fault prone to the total number of faults in the

system [35].

Completeness =
TP

FN + TP
(3.33)

47

Chapter 3 E�ectiveness of machine learning methods for fault prediction

� Accuracy

Accuracy as de�ned by Yuan et al. is the proportion of predicted fault

prone modules that are inspected out of all modules [111].

Accuracy =
TN + TP

TN + FP + FN + TP
(3.34)

� R2 statistic

R2, known as coe�cient of multiple determination, is a measure of power

of correlation between predicted and actual number of faults [110]. Higher

the value of this statistic, more is the accuracy of the predicted model.

R2 = 1−
∑n

i=1(yi−ŷi)2∑n
i=1(yi−y)2

where yi is the actual number of faults, ŷi is the predicted number of

faults, and y is the average number of faults.

All these performance parameters are computed in order to evaluate the

result of goodness of regression models.

Fault prediction accuracy for four ANN models is determined by using per-

formance evaluation parameters such as Mean Absolute Error (MAE), Mean

Absolute Relative Error (MARE), Root Mean Square Error (RMSE) and Stan-

dard Error of the Mean (SEM).

� Mean Absolute Error (MAE)

This performance parameter determines how close the values of predicted

and actual fault (accuracy) rate di�er.

MAE =
1

n

n∑
i=1

|yi − y′i| (3.35)

� Mean Absolute Relative Error (MARE)

MARE =
1

n

n∑
i=1

|yi − y′i|
yi

(3.36)

48

Chapter 3 E�ectiveness of machine learning methods for fault prediction

In Equation 3.36, a numerical value of 0.05 is added in the denominator

in order to avoid numerical over�ow (division by zero). The modi�ed

MARE is formulated as:

MARE =
1

n

n∑
i=1

|yi − y′i|
yi + 0.05

(3.37)

� Root Mean Square Error (RMSE)

This performance parameter determines the di�erences in the values of

predicted and actual fault (accuracy) rate di�er.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − y′i)2 (3.38)

In Equation 3.36, 3.37 and 3.38; yi is the actual value, and y′i is the

expected value.

� Standard Error of the Mean (SEM)

It is the deviation of the predicted value from the actual fault (accuracy)

rate.

SEM =
SD√
n

(3.39)

where SD is sample standard deviation and `n' is the number of samples.

3.6 Results and Analysis

In this section, the relationship between value of metrics and the fault found

in a class is determined. In this approach, the six CK metrics are used as input

nodes, and the output is the achieved fault prediction rate for AIF version 1.6.

3.6.1 Fault Data

To perform statistical analysis, the values of the bugs are collected from

Promise data repository [98]. Table 3.4 shows the distribution of bugs based on

49

Chapter 3 E�ectiveness of machine learning methods for fault prediction

the number of occurrences (in terms of percentage of class containing number

of bugs) for Apache Integration Framework (version 1.6), considered here as a

case study.

Table 3.4: Distribution of bugs for AIF version 1.6

Classes % of bugs # of associated bugs

777 80.5181 0

101 10.4663 1

32 3.3161 2

16 1.6580 3

14 1.4508 4

6 0.6218 5

2 0.2073 6

3 0.3109 7

5 0.5181 8

1 0.1036 9

1 0.1036 10

3 0.3109 11

1 0.1036 13

1 0.1036 17

1 0.1036 18

1 0.1036 28

965 100.00 142

AIF version 1.6 contains 965 number of classes, in which 777 classes contain

zero bugs (80.5181%), 10.4663% of classes contain at least one bug, 3.3161%

of classes contain a minimum of two bugs, 1.6580% of classes contain three

bugs, 1.4508% classes contain four bugs, 0.6218% of classes contain �ve bugs,

0.2073% of the classes contain six bugs, 0.3109% classes contain seven and

eleven bugs, 0.5181% of classes contain eight bugs, 0.1036% of the class contain

nine, thirteen, seventeen, eighteen and twenty eight bugs.

50

Chapter 3 E�ectiveness of machine learning methods for fault prediction

3.6.2 Metrics Data

CK metric values for WMC, DIT, NOC, CBO, RFC and LCOM respec-

tively for AIF version 1.6 are graphically represented in Figure 3.5 to Figure

3.10.

Figure 3.5: Histogram for WMC Figure 3.6: Histogram for DIT

Figure 3.7: Histogram for NOC Figure 3.8: Histogram for CBO

Figure 3.9: Histogram for RFC Figure 3.10: Histogram for LCOM

51

Chapter 3 E�ectiveness of machine learning methods for fault prediction

3.6.3 Descriptive Statistics and Correlation Analysis

This subsection presents the comparative analysis of the fault data, de-

scriptive statistics of classes and the correlation among the six metrics with

the results obtained by Basili et al. [97].

Basili et al. carried out an experiment for Object-Oriented systems written

in C/C++, consisting of eight project groups each consisting of three students.

Each group had the same task of developing small/medium-sized software sys-

tem. Since all the necessary documentation (for instance, reports about faults

and their �xes) were available, they could search for relationships between fault

density and metrics. They used the same CK metric suite. Logistic regression

is employed to analyze the relationship between metrics and the fault prone-

ness of classes. Table 3.5 shows the comparative statistical analysis results

obtained for Basili et al. and AIF version 1.6 for CK metrics indicating Max,

Min, Median and Standard deviation.

Table 3.5: Descriptive statistics of classes

Basili et al. [97] WMC DIT NOC CBO RFC LCOM

Max. 99.00 9.00 105.00 13.00 30.00 426.00

Min. 1.00 0.00 0.00 0.00 0.00 0.00

Median 9.50 0.00 19.50 0.00 5.00 0.00

Mean 13.40 1.32 33.91 0.23 6.80 9.70

Std Dev. 14.90 1.99 33.37 1.54 7.56 63.77

AIF Version 1.6 WMC DIT NOC CBO RFC LCOM

Max. 166.00 6.00 39.00 448.00 322.00 13617

Min. 0.00 0.00 0.00 0.00 0.00 0.00

Median 5.00 1.00 0.00 7.00 14.00 4.00

Mean 8.57 1.95 0.052 11.10 21.42 79.33

Std Dev. 11.20 1.27 2.63 22.52 25.00 523.75

52

Chapter 3 E�ectiveness of machine learning methods for fault prediction

The obtained CK metric values of AIF version 1.6 are compared with the

results of Basili et al. [97]. In comparison to the work done by Basili et al, the

total number of classes considered is much greater i.e., in this study 965 classes

are considered as compared to 180 classes used by Basili et al [97]. Table 3.6

shows the Pearson's correlation for the data set used by Basili et al. [97] and

the correlation metrics of AIF version 1.6.

Table 3.6: Correlations between metrics

Basili et al. [97] WMC DIT NOC CBO RFC LCOM

WMC 1.00 0.02 0.24 0.00 0.13 0.38

DIT 1.00 0.00 0.00 0.00 0.01

NOC 1.00 0.00 0.00 0.00

CBO 1.00 0.31 0.01

RFC 1.00 0.09

LCOM 1.00

AIF version 1.6 WMC DIT NOC CBO RFC LCOM

WMC 1.00 0.00 0.03 0.10 0.77 0.60

DIT 1.00 0.00 0.00 0.00 0.01

NOC 1.00 0.024 0.025 0.027

CBO 1.00 0.08 0.05

RFC 1.00 0.42

LCOM 1.00

The dependency between CK metrics is computed using Coe�cient of de-

termination (R2) and compared with Basili et al. [97] for AIF version 1.6. The

coe�cient of determination i.e., R2, is useful because it gives the proportion

of the variance (�uctuation) of one variable that is predictable from the other

variable. It is a measure that allows a researcher to determine how certain one

can be in making predictions from a certain model/graph.

53

Chapter 3 E�ectiveness of machine learning methods for fault prediction

From Table 3.6, for AIF version 1.6, it is observed that the correlation be-

tween WMC and RFC is 0.77 which indicates that they are highly correlated

i.e., these two metrics are very much linearly dependent on each other. Sim-

ilarly, correlation between WMC and DIT is 0 which indicates that they are

loosely correlated i.e., there is no dependency between these two metrics.

3.6.4 Attribute Reduction

In this subsection, the procedure followed to obtain reduct data set by

applying PCA and RST approaches are discussed.

3.6.4.1 Principal Component Analysis

Attribute reduction through Principal Component Analysis (PCA) is achieved

by ignoring the directions in which the covariance is small. The following steps

give the procedure followed in application of PCA to the data set. Algorithm

1 shows the steps followed to obtain the reduct data set using PCA.

Table 3.7 shows the obtained principal components for the CK metrics suite

i.e., the relationship between the original object-oriented metrics and the PCA

domain metrics. The initial size of the data set was 965 × 6 i.e., it represents

965 classes of AIF version 1.6 with their respective metric values of the CK

metrics suite. After applying PCA, a transformed data values of size 965 ×

3 was obtained. This implies that PCA data set contained 965 classes of CK

metric values along with three principal component values of the PCA.

54

Chapter 3 E�ectiveness of machine learning methods for fault prediction

Algorithm 1 PCA()

Input: `n × m' feature matrix X where `n' represents number of samples and

`m' represents the number of features.

Output: `n ×k' reduced feature matrix (k << m).

Step 1: Matrix `X' is normalized.

Let training set= x1, x2 · · ·xm.

Evaluate µj = 1
n

∑n
i=1 x

j
i vary j for all feature values i.e., 1 to m.

Replace xj with (xj − µj) vary xj for all samples i.e., from 1 to n.

Step 2: Compute covariance matrix of the normalized matrix.∑
(sigma) = 1

m
(XTX)

Step 3: Compute the eigen vectors of matrix using MATLAB command as:

eign = eig(sigma)

Step 4: Choose the �rst `k' number of principal components from the

covariance matrix using the following criteria:

for (every eigen vector i=1 to m) do

Evaluate cumvar =
∑k

i=1 λii∑m
i=1 λii

{cumvar (denotes cumulative

variance) and (λ) is eigen values in descending order}

if (cumvar ≥ 0.99)or(1− cumvar ≤ 0.01)

return k {99% of variance is retained}

end if

end for

Step 5: Reduce the matrix dimension, taking the �rst k columns (1 to k)

of eign matrix as eign(:,1:k) and assign to eignred.

Step 6: Evaluate Z = X ∗ eignred.

where Z is the new matrix with reduced feature dimension

retaining 99% of the variance.

Step 7: Stop.

55

Chapter 3 E�ectiveness of machine learning methods for fault prediction

Table 3.7: Principal components

pc1 pc2 pc3

WMC 0.2110 -0.5837 0.1756

DIT 0.2990 -0.3665 -0.2419

NOC 0.0481 -0.0243 0.4084

CBO 0.0353 0.0609 -0.8560

RFC -0.9210 -0.0137 0.0054

LCOM 0.2530 0.7215 0.1053

Eigen value 0.0490 0.0018 0.0058

Variance (%) 19.8985 19.8588 19.4579

Cumulative (%) 19.89 39.75 59.21

The values above 0.2 (shown bold in Table 3.7) are the metrics that are

used to interpret the PCs. For each PC, the eigenvalue, variance percent,

and cumulative percent is presented. Eigenvalue is associated with a principal

component. When the sum of squared values of loadings relating to dimension

is considered, then the sum is referred to as eigenvalue. Eigenvalue indicates

the relative importance of each dimension for the particular set of variables

analyzed. The interpretations of pc's are given as follows:

pc1: WMC, DIT and LCOM are size, inheritance and cohesion metrics of

CK metric suite. The values indicate that classes exist in the module

with high internal (methods de�ned in the class) and external methods

(methods called by the class). The cohesion and coupling metrics are

related to number of methods and attributes in the class.

pc2: LCOM, a cohesion metric which measures the dissimilarity in classes

based on instanced variables.

pc3: NOC and DIT are inheritance metrics that count number of children and

depth of inheritance tree in a class.

56

Chapter 3 E�ectiveness of machine learning methods for fault prediction

3.6.4.2 Rough Set Theory

In this analysis of fault prediction, the reduced feature set of the CK metrics

suite is used. In order to apply rough set, the data extracted from a particular

class requires the data to be classi�ed. This classi�cation of data is achieved by

applying K-means clustering algorithm, where the data available in particular

cluster are grouped under a single class. After obtaining this clustered data

for the CK metrics suite, RST is applied.

Following are the steps followed to obtain reduced feature set using RST.

Step 1. Collection of data.

Data is extracted from Promise data repository [98].

Step 2. Discretization of data.

The data extracted from the repository is discretized by using K-means

clustering algorithm.

Step 3. Lower and upper approximation of all possible set is calculated.

Lower approximation is de�ned as the union of all these elementary sets

which are contained in X.

BX = {xi ∈ U | [xi]Ind(B) ⊂ X} (3.40)

Upper approximation is the union of these elementary sets, which have

a non-empty intersection with X.

B̄X = {xi ∈ U | [xi]Ind(B) ∩X 6= 0} (3.41)

Step 4. Accuracy of all possible sets is calculated.

An accuracy measure of the set X in B ⊆ A is de�ned as:

µB =
Card(BX)

Card(B̄X)
(3.42)

The cardinality of a set is the number of objects contained in the lower/

upper approximation of the set X.

57

Chapter 3 E�ectiveness of machine learning methods for fault prediction

Step 5. All possible sets are selected on the basis such that, their accuracy is

equal to the accuracy of universal set.

Step 6. The set with least possible value of cardinality is chosen as reduct set

from all possible selected set.

Rough set obtained a reduced feature set of four metrics out of the six

metrics initially proposed in CK metric suite. The metrics such as DIT and

NOC are omitted from the CK metric suite. Now, the prediction model to be

designed for computing the required fault rate uses the reduced feature set of

CK metrics suite (i.e., WMC, CBO, RFC, LCOM) obtained by applying RST.

3.6.5 Machine Learning Methods

Following machine learning methods are applied on three data sets viz., full

feature set, and reduct data set of PCA and RST.

3.6.5.1 Statistical Methods

A. Linear Regression Analysis

In linear regression analysis, a fault is considered as a dependent variable

and the CK metrics are taken as independent variables. Table 3.8 shows the

results obtained for linear regression analysis using full feature data set.

Table 3.8: Linear regression analysis

r-value p-value Std. Error

0.5154 0.000 0.0834

In Table 3.8, `r-value' represents the coe�cient of correlation; `p-value'

refers to the signi�cance of the metric value. If p < 0.001, then the metrics

are of very great signi�cance in fault prediction.

58

Chapter 3 E�ectiveness of machine learning methods for fault prediction

i. Results of Linear Regression Analysis using PCA

Table 3.9 and Table 3.10 show the coe�cients of the features and per-

formance parameters such as r-value, p-value and standard error respectively

after applying PCA. From Table 3.10 it is evident that the `p' value is less

than 0.001, which highlights that six CK metrics are of very great signi�cance

in fault prediction.

Table 3.9: Coe�cients of features for PCA based Linear regression analysis

Feature-1 Feature-2 Feature-3 Constant

Coe�cient 0.0271 0.0864 -0.0014 0.0205

Table 3.10: Linear regression analysis for AIF Version 1.6 after applying PCA

r-value p-value Std. Error

0.1094 6.6483e-04 2.3274e-04

ii. Results of Linear Regression Analysis using RST

When RST feature reduction technique is applied, two metrics viz., DIT

and NOC are omitted from the CK metrics suite. The coe�cients of the

reduced metric suite consisting of WMC, CBO, RFC and LCOM are shown in

Table 3.11. Table 3.12 shows the r-value, p-value and standard error for linear

regression analysis after applying RST.

Table 3.11: Coe�cients for Linear regression analysis after applying RST

WMC CBO RFC LCOM Constant

Coe�cient 0.0590 0.0323 7.9869e-04 -8.0090e-04 -0.2648

59

Chapter 3 E�ectiveness of machine learning methods for fault prediction

Table 3.12: Linear regression analysis for AIF Version 1.6 after applying RST

r-value p-value Std. Error

0.5124 1.0577e-65 0.1132

B. Logistic regression analysis

The logistic regression method helps to indicate whether a class is faulty or

not, but does not convey anything about the possible number of faults in the

class. Univariate and multivariate logistic regression techniques are applied to

predict whether the class is faulty or not. Univariate regression analysis is used

to examine the e�ect of each metric on on the faulty class while multivariate

regression analysis is used to examine the common e�ectiveness of metrics on

faulty classes. The results of AIF version 1.6 are compared considering these

two statistical techniques. Figure 3.11 shows the typical `S' curve obtained

(similar to sigmoid function (f)) for the AIF version 1.6 using multivariate

logistic regression.

Figure 3.11: Logistic graph

Table 3.13 and Table 3.14 contain the tabulated values for the results ob-

tained by applying univariate and multivariate regression analysis respectively.

From Table 3.13, it can be observed that all metrics of CK suite are highly sig-

ni�cant except for DIT. The p-value for AIF version 1.6 (w.r.t DIT) is 0.3527

respectively. Higher values of `p' is an indication of less signi�cance.

60

Chapter 3 E�ectiveness of machine learning methods for fault prediction

Table 3.13: Analysis of univariate regression for AIF Version 1.6

Coe�cient Constant p - value r - value

WMC 0.03 -1.77 0.00 0.18

DIT 0.05 -1.53 0.3257 0.02

NOC 0.13 -1.50 0.00 0.16

CBO 0.02 -1.66 0.00 0.17

RFC 0.01 -1.79 0.00 0.17

LCOM 0.007 -1.48 0.0007 0.11

Table 3.14: Multivariate logistic regression analysis for AIF Version 1.6

WMC DIT NOC CBO RFC LCOM CONSTANT

Coe�cient 0.0320 0.00 0.00 0.001 0.0109 0.00 -2.1570

Univariate and multivariate logistic regression statistical methods are used

for classifying a class as faulty or not faulty. Logistic regression applied with

a threshold value 0.5 i.e., π > 0.5 indicates that a class is classi�ed as `faulty',

otherwise it is categorized as `not faulty' class.

Table 3.15 and Table 3.16 represent the confusion matrix for `before' and

`after' applying regression respectively for AIF version 1.6. From Table 3.15

it is clear that before applying the logistic regression, a total number of 777

classes contain zero bugs and 188 classes contained at least one bug. After

applying logistic regression (Table 3.16), a total of 783 (767+16) classes are

correctly classi�ed as not-faulty with a accuracy of 81.13%.

Table 3.15: Before applying regression

Not-Faulty Faulty

Not-Faulty 777 0

Faulty 188 0

Table 3.16: After applying regression

Not-Faulty Faulty

Not-Faulty 767 10

Faulty 172 16

61

Chapter 3 E�ectiveness of machine learning methods for fault prediction

The performance parameters for AIF version 1.6 are shown in Table 3.17,

obtained by applying univariate and multivariate logistic regression. Here Pre-

cision, Correctness, Completeness and Accuracy [35], [37], [97], [112] are taken

as performance parameters. By using multivariate logistic regression, accuracy

of AIF version 1.6 is found to be 81.13%.

Table 3.17: Precision, Correctness, Completeness, and Accuracy for AIF ver-

sion 1.6

Precision (%) Correctness (%) Completeness (%) Accuracy (%)

WMC 57.14 57.14 4.25 81.71

DIT - - 0 80.51

NOC 66.66 66.66 5.31 81.03

CBO 77.77 77.77 3.72 81.03

RFC 50 50 2.12 80.51

LCOM 60 0.6 1.59 80.62

MULTI 61.53 61.53 8.51 81.13

From the results obtained by applying linear and logistic regression analysis,

it is found that out of the six metrics WMC appears to have more impact in

predicting faults.

Now the e�ectiveness of the logistic regression analysis is compared with

the use of reduced data set by applying two reduction techniques such as PCA

and RST.

i. Results of logistic regression analysis using PCA

The results achieved by applying PCA for logistic regression analysis are

as follows:

Table 3.18 shows the coe�cients of features obtained through PCA for

multivariate logistic regression analysis.

62

Chapter 3 E�ectiveness of machine learning methods for fault prediction

Table 3.18: Result of multivariate logistic regression

Feature-1 Feature-2 Feature-3 Constant

Co-e�cient 0.3781 1.2241 -2.8299 -1.4133

Table 3.19 shows the confusion matrix obtained after applying PCA. In

comparison with Table 3.15, PCA is able to classify 779 (776+3) classes as

not-faulty with an accuracy rate of 80.72 % (Table 3.19).

Table 3.19: Confusion matrix for PCA based regression

Not-Faulty Faulty

Not-Faulty 776 1

Faulty 185 3

The performance parameters of AIF version 1.6 obtained by applying PCA

for logistic regression analysis is shown in Table 3.20.

Table 3.20: Precision, Correctness, Completeness, Accuracy for AIF Version

1.6 after applying PCA (in terms of %)

Precision Correctness Completeness Accuracy

Feature - 1 - - 0 80.5181

Feature - 2 - - 0 80.5181

Feature - 3 75 75 1.5957 80.7254

MULTI 75 75 1.5957 80.7254

Now the classi�cation of faults in logistic regression analysis by applying

RST is discussed as follows:

ii. Results of Logistic Regression using RST

Table 3.21 and Table 3.22 contain the tabulated values for results obtained

63

Chapter 3 E�ectiveness of machine learning methods for fault prediction

by applying univariate and multivariate logistic regression analysis respectively

using RST reduced data set.

Table 3.21: Analysis of univariate regression for AIF Version 1.6 after applying

reduct data of RST

Coe�cient Constant p - value r - value

WMC 0.0350 -1.77 4.05e-04 0.03

CBO 0.02 -1.66 6.11e-08 0.17

RFC 0.01 -1.79 1.90e-08 0.0291

LCOM 0.007 -1.48 7.03e-04 0.0161

From Table 3.21, it can be observed that out of the four metrics set are

highly signi�cant except for LCOM. The p-value for the AIF versions 1.6 in case

of LCOM is 7.03e-04. Higher values of `p' is an indication of less signi�cance.

Table 3.22: Result of multivariate logistic regression after applying RST

WMC DIT NOC CBO RFC LCOM CONSTANT

Coe�cient 0.0343 0.0128 0.0044 -4.3622e-04 0 0 -1.9702

Table 3.23 shows that after applying logistic regression analysis using the

reduced data set of RST, a total of 781 (771+10) classes are correctly classi�ed

as not-faulty with a accuracy rate of 80.92 % when compared with that of 80.72

% of accuracy obtained with logistic regression of PCA data set and 81.13 %

for full feature set. Table 3.24 shows the performance parameters for logistic

regression by applying the reduct data set of RST.

Table 3.23: Confusion matrix for RST based regression

Not-Faulty Faulty

Not-Faulty 771 6

Faulty 178 10

64

Chapter 3 E�ectiveness of machine learning methods for fault prediction

Table 3.24: Precision, Correctness, Completeness, Accuracy for AIF Version

1.6 after applying RST (in terms of %)

Precision Correctness Completeness Accuracy

MULTI 62.50 62.50 5.31 80.93

3.6.5.2 Arti�cial Neural Network

Arti�cial Neural Network (ANN) is an interconnected group of nodes. In

this work, three layers of ANN are considered, in which six nodes act as input

nodes, nine nodes represent the nodes of hidden layer and one node acts as

output node.

ANN is a three phase network; the phases are learning, validation and

testing. In this analysis, 70% of total input pattern is considered for learning

phase, 15% for validation and the rest 15% for testing.

In this experiment, six CK metrics are taken as input, and output is the

fault prediction accuracy rate. The network is trained using Gradient Descent

method and Levenberg Marquardt method.

A. Gradient Descent method

Gradient Descent (GD) method is used for updating the weights using

Equation 3.15 and Equation 3.16 . Table 3.25 shows the performance metrics of

AIF version 1.6. Figure 3.12 shows the convergence characteristics for gradient

descent method the AIF version 1.6 case study.

Table 3.25: Accuracy prediction for Gradient Descent using full feature set

MAE MARE RMSE r-value p-value Std. Error Accuracy (%)

0.0594 1.093 0.0617 -0.2038 0.0044 0.0048 94.04

65

Chapter 3 E�ectiveness of machine learning methods for fault prediction

Figure 3.12: Convergence characteristics for Gradient Descent

Now, feature reduction techniques such as PCA and RST are applied on

the six set metric suite, where PCA obtained three principal components, and

RST obtained a reduct data set of four metrics (out of the six) in which DIT

and NOC are omitted.

Table 3.26 shows the various performance parameters obtained for fault

prediction for Gradient Descent using the reduced feature set obtained from

PCA and RST respectively.

Table 3.26: Accuracy prediction for PCA and RST based Gradient Descent

Gradient Descent MAE MARE RMSE r-value p-value Std. Error Accuracy (%)

PCA 0.0245 0.2078 0.0324 0.1371 0.0567 6.1920e-04 97.55

RST 0.0254 0.2128 0.0450 0.2349 4.0879e-04 0.0059 97.43

Figure 3.13 and Figure 3.14 show the convergence characteristics for PCA

and RST based Gradient Descent.

66

Chapter 3 E�ectiveness of machine learning methods for fault prediction

Figure 3.13: Convergence

characteristics for PCA based

Gradient Descent

Figure 3.14: Convergence

characteristics for RST based Gradient

Descent

B. Levenberg Marquardt method

Levenberg Marquardt (LM) method is a technique for updating weights

[101, 102]. In case of Gradient Descent method, learning rate α is constant

but in Levenberg Marquardt method, learning rate α varies in every iteration.

So this method consumes less number of iterations to train the network. Table

3.27 shows the performance metrics for AIF version 1.6 using LM method.

Table 3.27: Accuracy prediction for LM method using full feature set

MAE MARE RMSE r-value p-value Std. Error Accuracy (%)

0.0023 1.1203 0.0308 -0.2189 0.0022 0.0041 90.49

Table 3.28 shows the various performance parameters obtained for fault

prediction for Levenberg Marquardt NN using the reduced attribute set ob-

tained from PCA and RST respectively. Figure 3.16 and Figure 3.17 show

the convergence characteristics for PCA and RST based Levenberg Marquardt

method respectively. Figure 3.15 shows the convergence characteristics of Lev-

enberg Marquardt method for the AIF version 1.6 case study.

67

Chapter 3 E�ectiveness of machine learning methods for fault prediction

Figure 3.15: Convergence characteristics for Levenberg-Marquardt

Table 3.28: Accuracy prediction for PCA and RST based LM method

LM MAE MARE RMSE r-value p-value Std. Error Accuracy (%)

PCA 0.0114 0.0640 0.0328 0.1802 0.0119 8.3248e-06 98.85

RST 0.0145 0.1021 0.0301 -0.2191 0.0021 9.7489e-04 90.46

Figure 3.16: Convergence

characteristics for PCA

based Levenberg Marquardt

Figure 3.17: Convergence

characteristics for RST

based Levenberg Marquardt

68

Chapter 3 E�ectiveness of machine learning methods for fault prediction

3.6.5.3 Functional Link Arti�cial Neural Network

Functional Link Arti�cial Neural Network (FLANN) is a single-layer feed

forward neural network consisting of an input and output layer. FLANN

doesn't incorporate any hidden layer and hence has less computational cost.

In this analysis, adaptive algorithm has been used for updating the weights as

shown in Equation 3.26. Table 3.29 shows the performance metrics of FLANN

and Figure 3.18 shows the convergence characteristics for FLANN.

Table 3.29: Accuracy prediction for FLANN using full feature set

MAE MARE RMSE r-value p-value Std. Error Accuracy (%)

0.0304 0.7097 0.0390 0.3308 2.4601e-06 0.0050 96.37

Figure 3.18: Convergence characteristics for FLANN

Table 3.30 shows the performance parameters for FLANN obtained using

PCA and RST reduct data set.

Table 3.30: Accuracy prediction for PCA and RST based FLANN

FLANN MAE MARE RMSE r-value p-value Std. Error Accuracy (%)

PCA 0.0308 0.2708 0.0420 0.1830 0.0107 0.0040 94.48

RST 0.0325 0.2947 0.0393 0.1881 0.0086 0.0024 96.75

69

Chapter 3 E�ectiveness of machine learning methods for fault prediction

Figure 3.19 and Figure 3.20 show the convergence characteristics for PCA

and RST based FLANN respectively.

Figure 3.19: Convergence

characteristics for PCA

based FLANN

Figure 3.20: Convergence

characteristics for RST

based FLANN

3.6.5.4 Radial Basis Function Network

In Radial Basis Function Network (RBFN), Gaussian radial function is used

as radial function. Gradient Descent learning and Hybrid learning methods are

used for updating the centers and weights respectively.

A three layered RBFN is considered, in which six CK metrics are taken

as input nodes, nine hidden centers are taken as hidden nodes and output is

the fault prediction rate. Table 3.31 shows the performance metrics for AIF

version 1.6.

Table 3.31: Accuracy prediction for Basic RBFN using full feature set

MAE MARE RMSE r-value p-value Std. Error Accuracy (%)

0.0279 0.3875 0.0573 0.1969 0.059 0.006 97.27

70

Chapter 3 E�ectiveness of machine learning methods for fault prediction

Table 3.32 shows the performance metrics for AIF version 1.6 in case of

Basic RBFN for the reduced feature set obtained by using PCA and RST.

Table 3.32: Accuracy prediction for PCA and RST based Basic RBFN

RBFN MAE MARE RMSE r-value p-value Std. Error Accuracy (%)

PCA 0.0269 0.2266 0.0377 -0.1736 0.0567 0.0013 97.30

RST 0.0262 0.2261 0.0475 0.2170 0.0024 0.0043 97.74

A. Gradient Descent Learning

Equation 3.21 and 3.22 are used for updating center and weight during

training phase. After simplifying Equation 3.21, it is represented as:

Cij(k + 1) = Cij(k)− η1(y′ − y)Wi
φi
σ2

(xj − Cij(k)) (3.43)

and the modi�ed Equation 3.22 is formulated as:

Wi(k + 1) = Wi(k) + η2(y
′ − y)φi (3.44)

where σ is the width of the center and k is the current iteration number.

Table 3.33 shows the performance metrics for AIF version 1.6 and Figure 3.21

shows the convergence characteristics for Gradient RBFN.

Table 3.33: Accuracy prediction for Gradient RBFN using full feature set

MAE MARE RMSE r-value p-value Std. Error Accuracy (%)

0.0207 0.2316 0.0323 0.3041 1.6302e-05 0.0041 97.24

71

Chapter 3 E�ectiveness of machine learning methods for fault prediction

Figure 3.21: Convergence characteristics for Gradient RBFN

Table 3.34 shows the obtained performance metrics for Gradient RBFN

using the reduced feature set of PCA and RST.

Table 3.34: Accuracy prediction for PCA and RST based Gradient RBFN

RBFN MAE MARE RMSE r-value p-value Std. Error Accuracy (%)

PCA 0.0229 0.1887 0.0340 0.1190 0.0983 0.0023 97.71

RST 0.0271 0.2266 0.0595 0.1503 0.0364 0.0054 97.29

Figure 3.22 and Figure 3.23 show the convergence characteristics for PCA

and RST based Gradient RBFN respectively.

Figure 3.22: Convergence

characteristics for PCA based

Gradient RBFN

Figure 3.23: Convergence

characteristics for RST based

Gradient RBFN

72

Chapter 3 E�ectiveness of machine learning methods for fault prediction

B. Hybrid Learning

In Hybrid learning method, centers are updated using Equation 3.23 while

weights are updated using supervised learning methods. In this analysis, Least

Mean Square Error (LMSE) algorithm is used for updating the weights. Table

3.35 shows the performance matrix for AIF version 1.6. Figure 3.24 shows the

convergence characteristics for Hybrid RBFN.

Table 3.35: Accuracy prediction for Hybrid RBFN using full feature set

MAE MARE RMSE r-value p-value Std. Error Accuracy (%)

0.0614 0.1032 0.0316 0.9184 3.1834e-79 0.0013 98.47

Figure 3.24: Convergence characteristics for Hybrid RBFN

Table 3.36 shows the obtained performance metrics for Hybrid RBFN using

the reduced attribute set of PCA and RST.

Table 3.36: Accuracy prediction for PCA and RST based Hybrid RBFN

Hybrid RBFN MAE MARE RMSE r-value p-value Std. Error Accuracy (%)

PCA 0.0150 0.1016 0.0329 -0.1572 0.0286 3.9944e-04 98.49

RST 0.0145 0.1021 0.0301 0.2905 3.9610e-05 9.7489e-04 98.54

Figure 3.25 and Figure 3.26 show the convergence characteristics for PCA

and RST based Hybrid RBFN respectively.

73

Chapter 3 E�ectiveness of machine learning methods for fault prediction

Figure 3.25: Convergence

characteristics for PCA based

Hybrid RBFN

Figure 3.26: Convergence characteris-

tics for RST based Hybrid RBFN

3.6.5.5 Probabilistic Neural Network (PNN)

As mentioned in section 3.3.5, PNN is multi-layered feed forward network

with four layers such as input, hidden, summation and output layer.

Figure 3.27: Varying accuracy rate for smoothing parameter in PNN

Figure 3.27 shows the variation of accuracy for di�erent values of smoothing

parameter for full feature set. In PNN, 50% of faulty and non-faulty classes

are taken as input for hidden layers. Guassian elimination (Equation 3.28) is

used as an hidden node function. The summation layers sums contribution

74

Chapter 3 E�ectiveness of machine learning methods for fault prediction

of each class of input patterns and produces a net output which is vector

of probabilities. The output pattern having maximum summation value is

classi�ed into respective class.

Figure 3.28 and Figure 3.29 show the variation of accuracy for change in

smoothing value parameters for the data set used by applying PCA and RST.

Figure 3.28: Varying accuracy rate

for smoothing parameter in PCA

based PNN

Figure 3.29: Varying accuracy rate for

smoothing parameter in RST based

PNN

3.6.6 Comparison of Fault Prediction Models

Table 3.37 shows the tabulated results for the obtained performance pa-

rameter values, number of epochs and accuracy rate by applying four neural

network techniques for full feature set. This performance table is an indication

of better fault prediction model.

In this comparative analysis, the performance parameter Mean Square Er-

ror (MSE) is considered as a criterion to compare the fault prediction accuracy

rate of the models (based on MARE, MSE, number of epochs and accuracy

rate) when four neural network models are applied. During this process the

MSE value of 0.002 is set as a threshold for evaluation. Based on the number

of iterations and the accuracy rate obtained by the respective NN model, best

prediction model is determined.

75

Chapter 3 E�ectiveness of machine learning methods for fault prediction

Table 3.37: Performance parameters for fault prediction models

Prediction Model Epoch MAE MARE RMSE Std. Error Accuracy

Gradient Descent 162 0.0594 1.0930 0.0617 0.0048 94.04

LM 13 0.0023 1.1203 0.0308 0.0041 90.49

RBFN Basic - 0.0279 0.3875 0.0573 0.0600 97.27

RBFN Gradient 41 0.0207 0.2316 0.0323 0.0041 97.24

RBFN Hybrid 14 0.0614 0.1032 0.0316 0.0013 98.47

FLANN 66 0.0304 0.7097 0.0390 0.0050 96.37

From Table 3.37 it is evident that, Gradient NN obtained an accuracy rate

of 94.04% in 162 epochs (iterations). LM technique, which is an improvised

model of ANN obtained 90.4% accuracy rate. This accuracy rate is less than

Gradient NN but this approach (LM method) consumed only 13 epochs.

The three types of RBFN viz., Basic RBFN, Gradient and Hybrid methods

obtained a prediction rate of 97.27%, 97.24% and 98.47% respectively. Consid-

ering the number of epochs, RBFN Hybrid method obtained better prediction

rate of 98.47% in only 14 epochs when compared with Gradient (41 epochs)

and Basic RBFN approaches.

FLANN architecture obtained 96.37% accuracy rate with less computa-

tional cost involved. FLANN obtained accuracy rate in 66 epochs as it has no

hidden layer involved in its architecture.

The performance of PNN is shown in Figure 3.27 for full feature set. Highest

accuracy in prediction is obtained for a smoothing parameter value of 1.7. PNN

obtained a classi�cation rate of 86.41%.

RBFN using hybrid learning model gives the least values for MAE, MARE,

RMSE and high accuracy rate. Hence from the ANN analysis it can be con-

cluded that RBFN Hybrid approach obtained the best fault prediction rate in

less number of epochs when compared with the other three ANN techniques.

76

Chapter 3 E�ectiveness of machine learning methods for fault prediction

3.6.6.1 Comparison with PCA and RST

The criteria followed in comparing the fault prediction models in case of

PCA and RST is the same as that followed in analyzing fault prediction model

designed using full feature data set i.e., MSE value of 0.002 is set as a thresh-

old for evaluation. Based on the number of iterations and the accuracy rate

obtained by the respective NN model, best prediction model is determined.

Table 3.38 and Table 3.39 show the tabulated results for obtained perfor-

mance parameter values, number of epochs and accuracy rate in case of PCA

and RST reduct set respectively for the various machine learning methods used

in this comparative analysis.

Table 3.38: Performance parameters for PCA based fault prediction models

Prediction Model Epoch MAE MARE RMSE Std. Error Accuracy

Gradient Descent 500 0.0245 0.2078 0.0324 6.1920e-04 97.55

LM 06 0.0114 0.0640 0.0328 8.3248e-06 98.85

RBFN Basic - 0.0269 0.2266 0.0377 0.0013 97.30

RBFN Gradient 300 0.0229 0.1887 0.0340 0.0023 97.71

RBFN Hybrid 11 0.0150 0.1016 0.0329 3.9944e-04 98.49

FLANN 200 0.0308 0.2708 0.0420 0.0040 94.48

Table 3.39: Performance parameters for RST based fault prediction models

Prediction Model Epoch MAE MARE RMSE Std. Error Accuracy

Gradient Descent 500 0.0254 0.2128 0.0450 0.0059 97.43

LM 30 0.0145 0.1021 0.0301 9.7489e-06 90.46

RBFN Basic - 0.0262 0.2261 0.0475 0.0043 97.74

RBFN Gradient 20 0.0271 0.2266 0.0595 0.0054 97.29

RBFN Hybrid 29 0.0145 0.1021 0.0301 9.7489-04 98.54

FLANN 122 0.0325 0.2947 0.0393 0.0024 96.75

77

Chapter 3 E�ectiveness of machine learning methods for fault prediction

Table 3.40 shows the tabulated fault prediction accuracy rate obtained for

three data sets viz., full feature data set, PCA reduct data set and RST reduct

data set respectively. The CK metrics suite with full feature data set and

reduct data set (of PCA and RST) are used as requisite input for di�erent

machine learning methods.

Table 3.40: Comparison of fault prediction accuracy for three data sets

NN Model Full feature set PCA RST

Gradient Descent 94.04 97.55 97.43

LM 90.49 98.85 90.46

RBFN Basic 97.27 97.30 97.74

RBFN Gradient 97.24 97.71 97.29

RBFN Hybrid 98.47 98.49 98.54

FLANN 96.37 94.48 96.75

PNN 86.41 88.12 89.12

From Table 3.40, it is evident in all the three cases i.e., use of full feature

data set, PCA reduct data set and RST reduct data set, the Hybrid approach

of RBFN obtained better fault prediction rate of 98.47, 98.49 and 98.54 in less

number of epochs.

3.6.7 Comparison with existing methods

This section compares the obtained results of the proposed software fault

prediction analysis with the existing models in literature [113].

78

Chapter 3 E�ectiveness of machine learning methods for fault prediction

Table 3.41: Accuracy comparison: Implemented models vs Existing models

Modeling Technique Accuracy

SVM 86.9

Logistic Regression 86.7

C4.5 + PART 93.4

Neural network 91.6

Decorate C4.5 91.5

C4.5 91.2

Boost C4.5 90.3

PART 90.1

From Table 3.41 (in comparison with Table 3.40), it can be inferred that

the proposed Gradient based ANN approach obtained better accuracy rate

when compared to other models existing in literature such as support vector

machine (SVM), Boost C4.5, PART etc. Where as in case of logistic regression

the proposed methods obtained a bit lesser accuracy rate.

3.7 Complexity analysis of prediction models

This section provides the complexity analysis for the prediction models such

as:

� Arti�cial Neural Network (ANN)

� Radial Basis Function Network (RBFN)

� Functional Link Arti�cial Neural Network (FLANN)

� Probabilistic Neural Network (PNN)

� Principal Component Analysis (PCA)

79

Chapter 3 E�ectiveness of machine learning methods for fault prediction

Figure 3.30 shows the architecture of Arti�cial Neural Network (ANN)

model, which contains three layers viz., input layer (n1), hidden layer (n2) and

output layer (n3).

Input layer (n1) Hidden layer (n2)

Output layer (n3)

Wih

Woh

Figure 3.30: A typical feed forward neural network

The complexity analysis for these prediction models is discussed as follows:

Consider a neural network predictor with an architecture of three layers

(n1 − n2 − n3). While computing the complexity of the given model, it is

necessary to know about the number of layers in it. In this work, a network

with three layers was considered (except for PNN which contains four layers).

Given that the last layer only contains one neuron (output node) which is

used to output the prediction of the input, only two 2 layers will be left out to

distribute the remaining n-1 neurons (out of `n' - total number of neurons). So,

the number of multiplications needed to compute the activation of all neurons

(vector product) in the i-th layer of the net equals: number of nodes in layer

(n)* number of nodes in layer (n-1). The worst case would be that, if the nodes

will be equally distributed, then complexity will be equal to:

= (n−1
2

) ∗ (n−1
2

)

= (n−1
2

)2

= O(n2)

80

Chapter 3 E�ectiveness of machine learning methods for fault prediction

As the output functions of neurons are in general very simple to compute,

it is assumed those costs to be a constant for every neuron. Given a network

with n neurons, this step would be in O(n). Table 3.42 shows the complexity

analysis expressions for various prediction models implemented in this thesis.

Table 3.42: Complexity expression for prediction models

Prediction Model Complexity expression

Gradient ANN & Gradient RBFN O(epoch ∗ iterations ∗ (n1n2 + n2n3))

LM ANN & Hybrid RBFN O(epochs(n1n2 +m3))

FLANN O(epochs ∗ iterations ∗ n1n2)

PNN O(epochs ∗ iterations ∗ (n1n2 + n2n3))

PCA O(mn2 + f 3)

In Table 3.42, `m' denotes number of classes (samples) and `f' denotes

number of features.

3.8 Threats to validity

This chapter has some limitations, which are not unique to our literature

study but are common with most of the empirical studies in the literature.

Some of the threats to validity are:

� In this study, the results obtained are based on the historical data of one

open source software, i.e., Apache Integration Framework (AIF, version

1.6), which has speci�c set of metrics (CK metric suite), and could not

be generalized.

� AIF is designed in Java language. The models designed in this study are

likely to be valid for other object-oriented programing language. Fur-

ther, work can be extended in designing a based on other development

paradigms.

81

Chapter 3 E�ectiveness of machine learning methods for fault prediction

� In this study, only CK metrics suite is used to design a model as it cov-

ers the basic principles of object-oriented paradigm such as complexity,

inheritance and data abstraction. Some of the metrics which are widely

used for object-oriented software can be further considered for fault pre-

diction analysis.

� Softwares developed, depend on several psychological factors such as the

expertise the developers have, the standard in which the software is de-

veloped, what kind of developers etc. In this study, these factors are not

taken into account.

� In this study, the severity of faults is not taken into account (non-

availability of data set w.r.t severity of faults). Severity of faults can

vary from Mild to Infectious (on a scale of 1 to 10)

3.9 Relation between fault prediction and test

data generation

The relationship between software fault prediction and test data generation

approaches presented in the dissertation are as follows:

� Software fault prediction helps us to estimate the cost involved in remov-

ing the defects or to detect the number of fault prone components of a

software. Further, this will help in e�ective utilization of resources to

those defective components which are most likely to contain defects in

testing and maintenance phases.

� This implies �greater the impact of fault prediction analysis, lesser is the

e�ort & cost involved in testing". This enhances the software quality.

� �Fault-prone modules can be automatically identi�ed before testing phase

by using the software fault prediction models. Generally, these models

82

Chapter 3 E�ectiveness of machine learning methods for fault prediction

mostly use software metrics of earlier software releases and previous fault

data collected during the testing phase".

� In this thesis, fault prediction was carried AIF with respect to both

full feature set and reduced feature set. In the next phase, test data is

generated for Bank ATM withdrawal task.

3.10 Summary

Prediction models are used to classify fault prone classes as faulty or not

faulty, which is the needed for improving the whole testing process. In this

chapter, machine learning techniques were applied for fault prediction. The ap-

plication of machine learning methods in fault prediction used a good amount

of data as input. A case study of AIF version 1.6 was considered for fault

prediction analysis.

Machine learning methods such as Statistical methods (linear regression,

logistic regression), and neural network methods such as ANN, FLANN, RBFN

(RBFN Basic, RBFN Gradient, RBFN Hybrid), PNN techniques were applied

for fault prediction analysis. Here, both full feature data set of CK metrics

suite and reduct data set obtained by using feature reduction techniques such

as PCA and RST were used as requisite inputs to the prediction models.

It can be concluded from the statistical regression analysis that out of six

CK metrics, WMC appears to be more useful in predicting faults. When the

reduct data set of PCA and RST were used, LCOM appears to have more

impact in predicting faults. Table 3.37 shows that Hybrid approach of RBFN

obtained better fault prediction in less number of epochs (14 iterations) when

compared with the other three neural network models (ANN, FLANN, and

PNN). Also the e�ectiveness of feature reduction techniques such as PCA and

RST can be noticed from Table 3.40. The reduct data set obtained by using

RST in case of Hybrid RBFN, obtained better fault prediction accuracy rate

(98.54%) when compared with other data sets (full feature set as well as PCA).

83

Chapter 4

Cost-Based Evaluation Framework

for Software Fault Classi�cation

Cost-based evaluation framework is necessary to assess the usability of designed

fault prediction models. In this chapter, classi�cation of faults using logistic

regression and various neural network models as classi�ers is discussed in detail.

Data classi�cation techniques help in enhancing not only the e�ciency of the

training process, but also the performance of the predictive model in terms

of precision. The proposed approach is applied on a case study discussed

in previous chapter viz., Apache Integration Framework version 1.6. Fault

prediction is found to be useful where normalized estimated fault removal cost

(NEcost) is less than certain threshold value.

84

Chapter 4 Cost-Based Evaluation Framework

4.1 Introduction

E�ectiveness of fault-prediction is studied by applying a part of previously

known data related to faults and predicting its performance against other part

of the fault data.

Several researchers have worked on building prediction models for software

fault prediction. But, it was noticed that proving the e�ectiveness of a fault

prediction model needs further study. Table 4.1 lists the proposed criteria

considered by various authors in the design of their respective cost evaluation

framework.

Table 4.1: Cost evaluation framework for fault classi�cation

Author Cost evaluation criteria

Ostrand (2005) Performed prediction using defect densities and concluded that this will

be able to �nd more defects in a �xed percentage of code [114].

Jiang (2008) Introduced cost curve based on Receiver Operating Characteristic [115].

Lessmann (2008) Identi�ed a common evaluation framework based on ROC Curve (AUC)

[116] and used the proposed concept of Demsar [117] to compare the

performance of models.

Mende (2009) Introduced a performance measure (Popt) and compared prediction

model with an optimal model. Popt accounted module size to evalu-

ate the performance of a fault-prediction model [118].

Mende (2010) Proposed two strategies namely AD (e�ort-aware binary prediction)

and DD (e�ort-aware prediction based on defect density) to include the

notion of e�ort awareness into fault-prediction model [119].

Arisholm (2010) Proposed a cost performance measure - Cost E�ectiveness (CE), a vari-

ation of lift charts where the x-axis contains the ratio of lines of code

instead of modules [113].

The table emphasizes on the studies carried out by di�erent authors to

compare the techniques, and the evaluation criterion considered in choosing an

e�ective fault classi�cation model. This chapter aims to assess the in�uence

of classi�er models in predicting faults by using CK metrics as requisite input

to the prediction models, to put the results of a fault-prediction technique in

85

Chapter 4 Cost-Based Evaluation Framework

proper perspective. Also an attempt has been made to assess the in�uence

of fault removal cost to know whether performing fault prediction analysis is

useful or not.

4.2 Cost-Based Evaluation Framework

In literature it is observed that, the work done on classifying the object-

oriented classes as a faulty or not-faulty one has been carried out by numerous

authors. This can be viewed as a �two class" classi�cation problem. The

objective of this problem is to identify the dependent variable (accuracy) using

various classi�er models based on several independent variables. Independent

variables can be considered as some sort of metrics or combination of di�erent

metrics.

This section describes the construction of a cost evaluation framework,

which accounts for realistic cost required to remove a fault and computes the

estimated fault removal cost of a speci�c fault prediction model based on the

concept proposed by Wagner [120]. Wagner has designed the cost-based eval-

uation framework based on certain constraints, as mentioned below:

i. Di�erent phases of testing account for varying fault removal cost.

ii. No testing phase can detect 100 % faults.

iii. It is not practically possible to perform unit testing on all modules, so a

limited number of important logical paths should be selected, and testing

should be exercised to selectively ensure proper working of the software

to be delivered [4].

Fault removal cost approach suggested by Wagner et al., [120] is used to

formulate the proposed cost evaluation framework. Since di�erent projects are

developed on varying platforms and in varying organization standards, the cost

varies. The fault removal costs summarized by Wagner are shown in Table 4.2.

86

Chapter 4 Cost-Based Evaluation Framework

Table 4.2: Removal costs of test techniques (in sta� hour per defect)

Type Min Max Mean Median

Unit 1.5 6 3.46 2.5

System 2.82 20 8.37 6.2

Field 3.9 66.6 27.24 27

The fault identi�cation e�ciencies for di�erent testing phases are taken

from the study of Jones [121]. The e�ciencies of testing phases are summarized

in Table 4.3. Wilde et al stated that more than �fty percent of modules are

usually very small in size, hence performing unit testing on these modules is

not fruitful [122].

Table 4.3: Fault identi�cation e�ciencies of di�erent test phases

Type Min Max Median

Unit 0.1 0.5 0.25

System 0.25 0.5 0.65

The formulation of Ecost, Tcost and the NEcost of the proposed cost based

evaluation framework is described in the following subsections:

4.2.1 Estimated fault removal cost (Ecost)

The detailed analysis to compute Ecost of the framework is as follows:

� The total number of faulty classes identi�ed by the predictor is equal

to the summation of true positive (TP) and false positive (FP) values.

Hence, it is necessary to compute testing and veri�cation cost at class

level which imply that this cost is equal to the cost of unit testing (Cu).

Total unit testing cost of software system is de�ned using Equation 4.1.

Costunit = (TP + FP) ∗ Cu (4.1)

87

Chapter 4 Cost-Based Evaluation Framework

� As it is not possible to identify 100% faults in a speci�c testing phase, so

there is a possibility that some of the correctly predicted faulty classes

remain undetected in unit testing. Further, there is a scope that these

faulty classes and the faulty classes which were predicted as non-faulty

classes (count of false negative (FN)) can be identi�ed by the predictor

in later phases of testing such as system testing (Cs) and �eld testing.

The fault removal cost in system testing is computed using Equation 4.2.

Costsystem = δs ∗ Cs ∗ (FN + (1− δu) ∗ TP) (4.2)

where, δu and δs represent fault identi�cation e�ciency of unit testing

and fault identi�cation e�ciency of system testing respectively.

� Remaining faulty classes which were not identi�ed in system testing will

be further identi�ed in �eld testing. The fault removal cost in case of

�eld testing (Cf) is computed using Equation 4.3.

Costfield = (1− δs) ∗ Cf ∗ (FN + (1− δu) ∗ TP) (4.3)

� The estimated overall fault removal cost can be determined by using

Equation 4.4.

ie., Ecost = Costunit + Costsystem + Costfield

Ecost = Ci + Cu ∗ (FP + TP)

+ δs ∗ Cs ∗ (FN + (1− δu) ∗ TP)

+ (1− δs) ∗ Cf ∗ (FN + (1− δu) ∗ TP) (4.4)

88

Chapter 4 Cost-Based Evaluation Framework

4.2.2 Estimated testing cost (Tcost)

The detailed steps to compute Tcost of the framework are as follows:

� In testing, if fault prediction analysis is not carried out, then the tester

will perform unit testing on all the classes. So the total cost of unit

testing will be computed using Equation 4.5.

Costunit = Mp ∗ Cu ∗ TC (4.5)

where, Mp represents the percentage of classes unit tested.

� Further, there is a possibility that some of the faulty classes that re-

mained undetected in unit testing may be identi�ed in system testing.

The total system testing cost is computed using Equation 4.6.

Costsystem = δs ∗ Cs ∗ (1− δu) ∗ FC (4.6)

� Remaining faulty classes which were not identi�ed in system testing will

be further identi�ed in �eld testing. The fault removal cost in case of

�eld testing is computed using Equation 4.7.

Costsystem = δs ∗ Cs ∗ (1− δu) ∗ FC (4.7)

� The estimated overall fault removal cost without the use of fault predic-

tion can be determined by using Equation 4.8.

Tcost = Mp ∗ Cu ∗ TC

+ δs ∗ Cs ∗ (1− δu) ∗ FC

+ (1− δs) ∗ Cf ∗ (1− δu) ∗ FC (4.8)

89

Chapter 4 Cost-Based Evaluation Framework

4.2.3 Normalized fault removal cost (NEcost)

Normalized fault removal cost and its interpretation is shown in Equation

4.9.

NEcost =
Ecost

Tcost
=



< 1, Fault Prediction

is useful

=> 1, P erform

Testing

(4.9)

where, Tcost is the Estimated fault removal cost of the software without

using fault prediction. Ecost represents the Estimated fault removal cost of the

software when fault prediction is performed. NEcost represents the Normalized

Estimated fault removal cost of the software when fault prediction is utilized.

The other notations in this cost evaluation framework are as follows:

i. Ci: Initial setup cost of used fault-prediction technique, Cu: Normalized

fault removal cost in unit testing, Cs: Normalized fault removal cost in

system testing, Cf : Normalized fault removal cost in �eld testing.

ii. Mp: percentage of classes unit tested.

iii. FP : Number of false positive, FN : Number of false negative, TP : Num-

ber of true positive, TN : Number of true negative, TC: Total number

of classes, FC: Total number of faulty classes.

iv. δu: Fault identi�cation e�ciency of unit testing, δs: Fault identi�cation

e�ciency of system testing.

In this experiment, the values tabulated in Table 4.2 are used in designing

cost evaluation framework. δu and δs show the fault identi�cation e�ciency

of unit testing and system testing respectively. The values of δu, and δs are

collected from the survey report �Software Quality in 2010" of Caper Jones

[121]. Mp shows the fraction of modules unit tested, obtained from the paper

90

Chapter 4 Cost-Based Evaluation Framework

of Wilde [122]. Median values have been chosen in this cost-based analysis.

The objective is to provide the benchmarks to approximate the overall fault

removal cost. Figure 4.1 shows the �ow chart opted for the proposed cost-based

evaluation framework for software fault classi�cation.

Start

Select fault

prediction technique

Construct confusion

matrix

Select cost

parameters

Compute

NEcost

NEcost ≥ 1

Fault prediction is useful Perform unit testing

End

YesNo

Figure 4.1: Cost-based evaluation framework for software fault classi�cation

The proposed framework clearly states that if a technique accounts for hav-

ing high false negative and/or high false positive rates, then it results in higher

fault removal cost. When this approximated cost exceeds the unit testing cost

(Tcost), it is better to test all the modules at unit level instead of using fault

prediction technique.

91

Chapter 4 Cost-Based Evaluation Framework

4.3 Performance Evaluation Parameters

This sub-section gives the basic de�nitions of the performance parameters

used in statistical and machine learning methods for fault prediction.

The performance parameters for statistical analysis can be determined

based on the confusion matrix [110] as shown in Table 3.3. The confusion

matrix contains information about actual and predicted classi�cations done

by a fault-prediction technique.

The following are the performance measures used in classi�cation.

i. False Positive Rate (FPR)

It is measured as the ratio of modules incorrectly classi�ed as faulty class

to the entire non-faulty classes.

FPR =
FP

TN + FP
(4.10)

ii. False Negative Rate (FNR)

It is measured as the ratio of classes incorrectly classi�ed as non-faulty

class to the entire faulty classes.

FNR =
FN

TP + FN
(4.11)

ii. True Positive Rate (TPR) or Recall

It is measured as the ratio of classes correctly classi�ed as faulty to the

entire faulty classes.

TPR =
TP

TP + FN
(4.12)

iv. True Negative Rate (TNR) or Speci�city

It measures the ratio of non-faulty modules which are correctly identi�ed

TNR =
TN

TN + FP
(4.13)

92

Chapter 4 Cost-Based Evaluation Framework

v. Precision

Precision is de�ned as the degree to which the repeated measurements

under unchanged conditions show the same results [110].

Precision =
TP

FP + TP
(4.14)

vi. Accuracy

Accuracy as de�ned by Yuan et al. [111] is the proportion of predicted

fault prone modules that are inspected out of all modules.

Accuracy =
TN + TP

TN + FP + FN + TP
(4.15)

4.4 Results and Analysis

In this section, the relationship between value of metrics and the fault found

in a class is determined. In this approach, the comparative study involves using

six CK metrics as input nodes and the output is the achieved fault classi�cation

rate for AIF version 1.6.

This section highlights on the design and use of neural network as a classi�er

and also presents the obtained cost-based analysis results for classi�cation of

faults obtained by applying Logistic regression, ANN, RBFN, FLANN and

PNN techniques.

4.4.1 Neural network as a classi�er

In the design of neural network as a classi�er, the target output y′ deter-

mines the type of classi�cation result of a class as faulty or not faulty. The

following conditions are taken into account to predict the accuracy of classi-

�cation which are mentioned below for four neural network approaches as a

93

Chapter 4 Cost-Based Evaluation Framework

classi�er:

Classifier = y′ =⇒


> 0, Class is Faulty

< 0, Not Faulty

(4.16)

From Equation 4.16, it can be noticed that �if the target output of the

neural network y′ is greater than `zero', then a class is classi�ed as faulty,

else it is classi�ed as not-faulty class". Table 4.4 shows the confusion matrix

constructed before any neural network model is used as a classi�er. This table

contains a total number of 965 classes, among which 777 classes have zero bugs

and the remaining 188 classes have at least one bug.

Table 4.4: Confusion matrix

Not-Faulty Faulty

Not-Faulty 777 0

Faulty 188 0

4.4.1.1 Logistic classi�er

The logistic regression method helps to indicate whether a class is faulty

or not, but does not convey anything about the possible number of faults in

the class.

Table 4.5: Confusion matrix for Logistic classi�er

Not-Faulty Faulty

Not-Faulty 767 10

Faulty 172 16

In comparison with Table 4.4, after applying logistic regression as a clas-

si�er (Table 4.5), a total of 783 (767 + 16) classes are correctly classi�ed as

not-faulty with an accuracy of 81.13%.

94

Chapter 4 Cost-Based Evaluation Framework

4.4.1.2 ANN as a classi�er

Table 4.6 and Table 4.7 show the classi�cation matrix for Gradient Decent

and Levenberg Marquardt learning techniques of ANN.

Table 4.6: Confusion matrix for Gradient Descent

Not-Faulty Faulty

Not-Faulty 761 16

Faulty 157 31

In comparison with Table 4.4, Gradient Descent ANN (Table 4.6) is able to

classify a total of 792 (761+31) classes as not-faulty with a accuracy of 82.07%.

Table 4.7: Confusion matrix for Levenberg Marquardt

Not-Faulty Faulty

Not-Faulty 756 21

Faulty 171 17

In comparison with Table 4.4, LM model (Table 4.7) is able to classify a

total of 773 (756+17) classes as not-faulty with an accuracy of 80.10%.

4.4.1.3 RBFN as a classi�er

Three layered RBFN is considered, in which six CK metrics are taken as

input nodes, nine hidden centers are taken as hidden nodes and output is the

fault classi�cation rate. Table 4.8 shows the classi�cation matrix when Basic

RBFN is used as a classi�er.

From Table 4.4 it is clear that before applying Basic RBFN as classi�er,

a total number of 777 classes contained zero bugs and 188 classes contained

at least one bug. After applying Basic RBFN classi�er (Table 4.8), a total of

607 (517 + 90) classes are correctly classi�ed as not-faulty with an accuracy

of 62.9%.

95

Chapter 4 Cost-Based Evaluation Framework

Table 4.8: Confusion matrix for Basic RBFN

Not-Faulty Faulty

Not-Faulty 517 260

Faulty 98 90

a. Gradient Descent learning method

Equation 3.21 and 3.22 are used for updating center and weight during

training phase. After simplifying Equation 3.21, the equation is represented

as:

Cij(k + 1) = Cij(k)− η1(y′ − y)Wi
φi
σ2

(xj − Cij(k)) (4.17)

and the modi�ed Equation 3.22 can be framed as:

Wi(k + 1) = Wi(k) + η2(y
′ − y)φi (4.18)

where σ is the width of the center and k is the current iteration number.

Table 4.9 shows the classi�cation matrix for Gradient RBFN. Gradient

RBFN classi�ed totally 898 classes (776 + 122) as not-faulty with an accuracy

rate of 93.05 %.

Table 4.9: Confusion matrix for Gradient RBFN

Not-Faulty Faulty

Not-Faulty 776 1

Faulty 66 122

b. Hybrid learning method

In Hybrid learning method, centers are updated using Equation 3.23, while

weights are updated using supervised learning methods. In this work, Least

Mean Square Error (LMSE) algorithm is used for updating the weights.

Table 4.10 shows the classi�cation matrix for Hybrid RBFN. Hybrid RBFN

classi�ed totally 767 classes (747 + 20) as not-faulty with an accuracy of 79.4%.

96

Chapter 4 Cost-Based Evaluation Framework

Table 4.10: Confusion matrix for Hybrid RBFN

Not-Faulty Faulty

Not-Faulty 747 30

Faulty 168 20

4.4.1.4 FLANN as a classi�er

Table 4.11 shows the obtained classi�cation matrix when FLANN technique

is used as a classi�er.

Table 4.11: Confusion matrix for FLANN

Not-Faulty Faulty

Not-Faulty 742 35

Faulty 160 28

After applying FLANN classi�er (Table 4.11), a total of 770 (742+28)

classes are correctly classi�ed as not-faulty with an accuracy of 79.79%.

4.4.1.5 PNN as a classi�er

Table 4.12 shows the classi�cation matrix obtained by applying PNN tech-

nique as a classi�er.

Table 4.12: Confusion matrix for PNN

Not-Faulty Faulty

Not-Faulty 775 2

Faulty 181 7

In comparison with Table 4.4, it is observed that, after applying PNN as a

classi�er (Table 4.12), a total of 782 (775 + 7) classes are correctly classi�ed

as not-faulty with an accuracy of 81.03%.

97

Chapter 4 Cost-Based Evaluation Framework

The fault removal cost for AIF version 1.6 obtained by applying Logistic

regression, ANN, RBFN, FLANN and PNN techniques are tabulated in Table

4.13. In this cost-based evaluation framework, the Estimated fault removal

cost of the software without using fault prediction technique `Tcost' is found

to be 3546.8 sta� hours per defect.

Table 4.13: Fault removal cost for AIF 1.6 using various classi�er models

Classi�cation model Precision TP Rate FP Rate TN Rate FN Rate Accuracy Ecost NEcost

Logistic regression 61.54 08.51 01.29 98.71 91.49 81.13 3119.4 0.8795

Gradient Descent 65.96 16.49 02.06 97.94 83.51 82.07 3109.7 0.8762

Levenberg Marquardt 44.74 09.04 02.70 97.30 90.96 80.10 3145.3 0.8868

RBFN Basic 25.71 47.87 33.46 66.54 52.13 62.90 3622.3 1.0213

RBFN Gradient 99.19 64.89 00.13 99.87 35.11 93.50 2922.0 0.8238

RBFN Hybrid 40.00 10.64 03.86 96.14 89.36 79.40 3162.8 0.8917

FLANN 44.44 14.89 04.50 95.50 85.11 79.79 3162.1 0.8915

PNN 77.78 03.72 00.26 99.74 96.28 81.03 3114.3 0.8780

4.4.1.6 Comparison of cost analysis

Data set of AIF version 1.6 from PROMISE repository is chosen to evaluate

the impact of fault prediction technique. The fault removal cost (NEcost)

computed using the proposed framework is used to evaluate the models.

To illustrate e�ectiveness of the proposed cost-based evaluation framework,

classi�er models such as Logistic regression, ANN, RBFN, FLANN and PNN

are used for computing misclassi�cation cost. The goal is to demonstrate the

cost evaluation framework and suggest whether performing fault prediction

using particular prediction model is useful or not rather than identifying the

�best" fault-prediction model.

Table 4.13 shows the various parameters related to cost evaluation frame-

work along with NEcost. NEcost is the criterion used in evaluating a classi�-

cation model to show the usefulness of fault prediction.

98

Chapter 4 Cost-Based Evaluation Framework

From Table 4.13, it can be observed that:

i. The Gradient Descent approach of RBFN classi�er obtained the best

classi�cation rate of 93.50% when compared with other four models, and

ii. Gradient Descent RBFN incurs less cost involved in testing (with a

NEcost ratio of 0.8238).

This indicates that performing fault prediction on the basis of classi�cation

cost involved using Hyrbid RBFN method is very much e�ective in comparison

with LR, GD, LM, FLANN and PNN models.

It is observed that, Normalized fault removal cost (NEcost), which is the

ratio of Ecost and Tcost (Equation 4.9) determines the fault prediction model's

e�ectiveness in a succinct manner.

The proposed cost-based evaluation framework provides:

1. A binary yes or no scale whether to perform fault prediction analysis or

not.

2. A criterion to choose a better fault prediction model based not only on

the obtained accuracy rate but also taking NEcost into consideration.

4.5 Summary

In this chapter, an attempt has been made to design a cost based evaluation

framework for �nding the e�ciency of the developed fault prediction model

using di�erent neural network models as classi�ers. Models such as LR, ANN,

RBFN FLANN and PNN were used as classi�ers. NEcost of the proposed cost

based analysis framework was used as a criterion to evaluate the e�ectiveness

of the respective models. From the obtained results, it is noticed that the

Gradient Descent approach of RBFN obtained better results in terms of fault

removal cost when compared with LR, GD, LM, Basic and Hyrbid RBFN,

FLANN and PNN classi�er models.

99

Chapter 5

Test Data Generation for

Object-Oriented Program using

Meta-heuristic Search Algorithms

An automated approach for test data generation is very crucial as

manual process is laborious and time consuming. It is observed that, test

data generation for object-oriented programs is di�cult because of inheritance,

polymorphism, and data abstraction.

Here, Control �ow graph for Object-Oriented program is automatically

generated, referred to as Extended Control Flow Graph (ECFG). From the

generated ECFG, test data are generated for a selected target path. Here test

data are generated for the case study i.e., Bank ATM withdrawal task [15]

using three meta-heuristic algorithms viz., Clonal selection algorithm, Binary

particle swarm optimization, and Arti�cial bee colony. Experimental results

show that Arti�cial bee colony algorithm generates suitable test data.

100

Chapter 5 Test Data Generation for Object-Oriented Program

5.1 Introduction

Test data generation in program testing, is the process of identifying a set of

test data which satis�es the given testing criterion [123]. A test data generator

is a tool which helps a tester in generating test data for a given program. Most

of the test data generating activities are based on the aspects of either path

wise generation [124, 125, 126] or data speci�c generation [127, 128, 129] or

random test data generation [130]. However, these techniques require complex

algebraic computations. Hence, arti�cial intelligence based approaches can be

applied for reducing testing e�orts.

In this chapter, three meta-heuristic search algorithms viz., Clonal selec-

tion algorithm, Binary particle swarm optimization and Arti�cial bee colony

optimization are used for generating test data for Object-Oriented program.

All the paths selected in a module need to be executed (at least once), and

thus generating a large set of test data (manually) for these set of paths is

quite a di�cult task. Hence, certain degree of automation may be thought of

as an alternative to minimize the use of testing resources. The meta-heuristic

search algorithms help in achieving this goal by generating test data required

to cover the paths in a module, in an near-optimal way.

5.2 Meta-heuristic Search Algorithms

Meta-heuristic search techniques are high-level frameworks, which utilize

heuristics in order to �nd solutions for combinatorial problems at a reason-

able computational cost [56]. Optimization techniques like GA, PSO, CSA,

ABC, Simulated annealing (SA), Tabu search (TS) and Ant colony optimiza-

tion (ACO) algorithms are search based meta-heuristic algorithms applied to

problems, where there is di�culty in obtaining the requisite optimal solution

within a time bound and involving less space complexity.

101

Chapter 5 Test Data Generation for Object-Oriented Program

Meta-heuristic algorithms have the ability to obtain optimal solution in

a very large search space of candidate solutions. These algorithms do not

make any assumptions about the problem being optimized. When compared

to other techniques, these algorithms can be applied irrespective of whether

the problem to be optimized is continuous or discontinuous in nature.

5.2.1 Role of meta-heuristic search based algorithms in

software testing

Test data generation is an optimization problem, that satis�es a given test

requirement. Search based test data generation helps in such a scenario, and

heuristic is applied to solve the problem of test data generation.

Test data can be generated by using either functional or structural test-

ing techniques. Functional testing involves matching the exact functionalities

as outlined during the requirements phase. Structural testing involves using

techniques such as decision coverage, branch coverage, and path coverage to

examine the execution of a software system. In this work, basis path cover-

age has been chosen for test data generation as it emphasizes the execution

of all the feasible paths in the control �ow graph. Test data are generated

in a manner to cover the selected feasible paths from the control �ow graph

for a particular program. Hence, path testing can be referred to simply as a

constraint-satisfying approach. A target path is executed by covering all the

predicate nodes included in that path by using the generated test data.

The process of generating test data to satisfy a given criterion from the large

input space of a program can be formulated as a search-based application of

an algorithm for test data generation. Hence, the application of meta-heuristic

algorithms in test data generation is helpful for obtaining e�ective solutions.

102

Chapter 5 Test Data Generation for Object-Oriented Program

5.2.2 Need for automated test data generation

The process of automatic generation of test data plays a major role in

software testing. In testing, emphasis is given on �nding speci�c input test

data that satis�es the given test criterion. In literature it is observed that,

common methods such as notion to perform and random methods for test data

generation [131]. These two methods are not suitable for large and complex

programs because of their complex algebraic computations, and also is time

consuming.

Also, manual generation of test data is time consuming, laborious, not-

exhaustive and prone to errors. This is due to the presence of large number

of predicate nodes in the module. This would lead towards NP-hard prob-

lem [132]. In reality, only human e�ort is not su�cient to generate a suitable

amount of test data, which would test the software successfully. The approach

that can minimize human e�ort is by automating the test data generation

process. Unfortunately, all the available automated test data generation tech-

niques are rarely used in generating test data because of their ine�ciency in

achieving adequate coverage by the generated test data. Therefore, some intel-

ligent search based algorithms may be applied to generate optimal test data.

5.3 Extended Control Flow Graph (ECFG)

Procedural oriented testing based on basis path testing, known as McCabe's

basis path testing approach has been implemented over the years. However

with the increase in need for building hierarchical models, the focus has shifted

towards Object-Oriented methodology. The three important concepts of the

Object-Oriented methodology i.e., encapsulation, inheritance and polymor-

phism make the approach of applying procedural testing methods to Object-

Oriented methodology a di�cult task.

One of the commonly used examples of white-box testing technique is �basis

path testing", which ensures that every path of a program needs to be executed

103

Chapter 5 Test Data Generation for Object-Oriented Program

at least once. McCabe cyclomatic complexity metric determines the number of

linearly independent paths in a control �ow graph (CFG) [133]. The cyclomatic

complexity determines the minimum number of test cases required to execute

the conditional statements at least once [134].

The CFG constructed for traditional programs is extended for Object-

Oriented methodology. The ECFG is a collection of CFG's in a layered man-

ner. The ECFG is a directed graph, where nodes refer to methods rather than

statements.

5.3.1 ECFG features

ECFG is a layered graphical model which represents a collection of CFG's

of the individual methods of the class or module. ECFG can be formally

de�ned as directed graph - G(V,E), where `V' refers to methods rather than

statements and `E' represents an edge between the methods.

Essentially, the ECFG is composed of two layers:

i. The �rst layer represents the methods of individual classes.

ii. The next layer (embedded in the topmost layer) represents the CFG of

these methods.

The following are the salient features of ECFG [133]:

i. ECFG is much similar to traditional CFG. It consists of nodes, and edges

between a pair of nodes, except that some nodes in the top level may be

disconnected.

ii. Nodes in CFG refer to statement(s), whereas in ECFG nodes refer to meth-

ods.

iii. Every method has associated graphs (CFG) and their respective cyclomatic

complexity (CC) value. Method which is not found in the required class

may be a part of its parent class.

104

Chapter 5 Test Data Generation for Object-Oriented Program

iv. Object declaration is similar to variable declaration of procedural language

but is not in a sequence (as in CFG), since it refers to constructor method.

v. Edges between nodes are formed, whenever a method calls another method.

5.3.2 Cyclomatic complexity computation for ECFG

The ECFG for Object-Oriented methodology may possibly be connected in

six di�erent ways. Figure 5.1 gives a graphical view of how the methods (say

m1, m2,...m7) are connected in a main program [133].

Figure 5.1: Basic ECFG

Case 1: An example is considered; where in two or more graphs are con-

nected in series i.e., methods are executed as a sequence one after another.

Extended Cyclomatic Complexity (E-CC) value in this scenario can be com-

puted as: E-CC = max(m1, m2), where m1 and m2 are two methods in series

with individual complexity values V(G1) and V(G2) respectively.

E − CC = V (Gx) if V (Gx) > V (G1), V (G2).....V (Gn) and 1 < x < n

Example: Let m1 and m2 be two methods in series. Figure 5.2(A), Figure

5.2(B) and Figure 5.2(C) refer to CFGs and ECFG

105

Chapter 5 Test Data Generation for Object-Oriented Program

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

4

1

2

3

5

6

4

7

8

9

5

1

2

3

6

1

2

3 4

5

6

7

1 2

3

(A)

(B)

(C)

(D)

(E)

(F)

(G)

(H)

Point of Recursion

Repeating
Unit

Figure 5.2: Methods association in ECFG

106

Chapter 5 Test Data Generation for Object-Oriented Program

m1(i n t a , i n t b)

{

1 i f (a>b) −> V(m1) =2

2 p r i n t f ("A i s g r e a t e r ") ;

3 }

m2(i n t a)

{

4 whi l e (a !=10)

5 { p r i n t f ("a= %d" , a) ;

a++;}

6 }

Referring to Figure 5.2(C), E-CC = max(2,2) = 2

Case 2: In a large and complex graph having two or more graphs embed-

ded within a graph i.e., when a method calls another method, which in turn

calls another and so on. Then E-CC value is equal to sum of V(G1), V(G2),

....V(Gn)-(n-1); where n-1 graphs (2 to n) are embedded within G1. Here

V(G1), V(G2),...V(Gn) are the individual complexities of each graph (and in

this case G1 embeds G2, G2 embeds G3 and so on).

E − CC = V (G1) + V (G2) + V (G3) +V (Gn)(n− 1)

Example: Consider the same two methods m1 and m2, connected as m2

embedding m1. The method m2 is slightly di�erent with one statement having

a call to m1 as given below. The individual CFGs are same as Figure 5.2(A)

and Figure 5.2(B). The ECFG is shown in Figure 5.2(D).

m2(i n t a)

{

4 whi l e (a!= 10)

5 { m1(2 , 5) ;

p r i n t f ("a = %d , a) ; −> V(m1) = 2

107

Chapter 5 Test Data Generation for Object-Oriented Program

a++;} −> V(m2) = 2

6 }

m2 embeds m1 in such a way that the path 4-5 in m2 is replaced by the paths

in m1 as shown in Figure 5.2(D).

E-CC = 2 + 2 - 1 =3.

Case 3: If a graph embeds another graph more than once, for example if

G1 embeds G2 thrice, then G2 is taken to be embedded only once. Composite

complexity E-CC value will be the same as in Case 2, where all the complexity

values refer to unique graphs - G1, G2,......Gn.

Case 4: If in case, many graphs are embedded in the same graph i.e., more

than one method calls the same method, then the repeated graph is considered

only once but the point of entry should be tested in every context. So the

value of E-CC = (V(G1) + V(G2)-1) + V(G3) +...+ V(Gn) + (n-2), where

V(G1): complexity of G(1) that is embedded multiple times, V(G2)...V(Gn)

are complexity values for graphs which embed G1, and n-2: number of graphs

embedding G1 except one.

E − CC = (V (G1) + V (G2)− 1) + V (G3) ++ V (Gn) + (n− 2)

Example : Let us consider a method m3, connected as m3 called from m1

and m2.

m1(i n t a , i n t b)

{

1 i f (a>b)

2 p r i n t f ("A i s g r e a t e r ") ;

m3(10) ;

3 }

108

Chapter 5 Test Data Generation for Object-Oriented Program

m2(i n t a)

{

4 whi l e (a!= 10)

5 { m3(2) ;

p r i n t f ("a = %d" , a) ;

a++;}

6 }

m3(i n t a)

{

7 i f (a = 10)

8 p r i n t f ("ok") ;

9 }

The CFGs of m1 and m2 are shown in Figure 5.2(A) and Figure 5.2(B)

earlier. The CFG of m3 and the ECFG is shown as Figure 5.2(E) and Figure

5.2(F) respectively. V(m1) = 2, V(m2) = 2 and V(m3) = 2. As per ECFG,

E-CC = (CC(M1) + CC(M3)- 1) + CC(M2) + 1 = (2 + 2 - 1) + 2 + 1 = 6.

m1 and m2 embeds m3 in such a way that the path 1-3 in m1 and 4-5 in

m2 is replaced by the paths in m3 as in Figure 5.2(G).

Case 5: Suppose a graph is recursively repeated i.e., a method is recursively

called, the value of E-CC = V(G1) + 2, where V(G1) is the complexity of the

method in recursion.

Example: Consider the following code and its ECFG in Figure 5.2H.

r ecur (i n t i)

1 {

2 i f (i /2 == 0)

3 { p r i n t f ("ok") ; }

4 e l s e

{ p r i n t f ("Not ok") ;

5 }

109

Chapter 5 Test Data Generation for Object-Oriented Program

6 i f (i !=0)

recur (−− i) ;

}

7 }

E-CC = V(recur) + 2

= 2 + 2 = 4

Case 6: If a graph involves recursive call of more than one method, then

this situation is a combination of Case 1, Case 2 and Case 3. Composite

complexity value is calculated as:

E −CC = V (G′) + 2, where G′ is more than one method connected as per

case 1 or 2.

5.4 Fitness Function based on Korel's Branch

Distance Function

This section gives the design criterion of a �tness function for a real-life

application based on Korel's branch distance function.

Fitness function is an essential parameter to solve any optimization prob-

lem. A well de�ned �tness function (objective function) not only consumes less

time and few resources to optimize a problem but also increases the a�nity in

searching a solution.

Meta-heuristic optimization techniques require a numerical formulation of

the test goal, from which a `�tness function' is formed. The purpose of the

�tness function is to guide the search into promising, unevaluated areas of a

potentially vast input domain, in order to �nd required test data.

Fitness function for test data generation in case of amount withdrawal in

an ATM of a Bank, is derived based on Bogdan Korel's branch function [123].

A path P is considered in the program execution. The goal of the test data

110

Chapter 5 Test Data Generation for Object-Oriented Program

generation problem is to �nd a program input x on which P will be traversed

without loss of generality. Korel assumed that the branch predicates are simple

relational expressions (inequalities and equalities). That is, all branch predi-

cates are of the form: E1 op E2, where E1 and E2 are the arithmetic expressions

and `op' is one of the {<, ≤, >, ≥, =, 6=} operators.

In addition, Korel assumed that predicates do not contain AND or OR

or any other Boolean operators. Each branch predicates E1 op E2 can be

transformed to the equivalent predicate of the form: F rel 0, where F and rel

are given in Table 5.1.

Table 5.1: Equivalent predicate of branch function

Branch Predicate Branch Function F rel

E1 > E2 E2 − E1 <

E1 ≥ E2 E2 − E1 ≤

E1 < E2 E1 − E2 <

E1 ≤ E2 E1 − E2 ≤

E1 = E2 abs(E1 − E2) =

E1 6= E2 abs(E1 − E2) ≤

F is a real valued function, referred to as branch function [123], which is:

i. Positive (or zero if rel is <); when a branch predicate is false or

ii. Negative (or zero if rel is = or ≤); when the branch predicate is true.

It's obvious that F is actually a function of program input x. Symbolic evalu-

ation can be used to �nd explicit representation of the F (x) values in terms of

input variable. However, this process requires a very large and complex alge-

braic manipulation. For this reason, an alternative approach is used in which

the branch function is evaluated. For example, to test a conditional statement

�if a > b then" as a branch function F, the F(x) value can be computed for a

given input program by evaluating `a− b' expression.

111

Chapter 5 Test Data Generation for Object-Oriented Program

5.4.1 Case study: Bank Automatic Teller Machine (ATM)

Figure 5.3 shows the sequence of operations performed in ATM withdrawal

task by the customer.

: Customer : ATM : Bank DB

1: insert card

2: card number

3: pin request

4: pin

5: menu

6: invalid case

(exception case)

7: withdraw request 8: balance request

9: balance

10: amount request

11: amount

12: debit amount

13: debit response
14: insu�cient amount

15: dispense cash

16: print receipt

Figure 5.3: Sequence diagram for ATM withdrawal task

Functions associated with withdrawal task in a Bank ATM [15] are tested

on the basis of di�erent techniques in order to generate its test data for a single

feasible path in ECFG. A feasible path is referred as to a path/code which can

be traversed/reached by the generated input (test data). The formal de�nition

of feasible path is as follows: �A path is feasible, if there exists some input that

will cause the path to be traversed during execution" [135].

The �tness function is developed on the basis of traversal of predicate nodes.

For instance, as shown in Figure 5.4 when the node `1' is visited, the condition

112

Chapter 5 Test Data Generation for Object-Oriented Program

1

2 3

4

A > B

C D

E

Figure 5.4: Basic CFG

of the predicate node may either be A > B or B > A or even A = B. So

taking equality condition into consideration, A = B ⇒ A−B = 0; as test data

generation being a minimization problem, the �tness function f is given as:

1/(A−B). However, this functional value tends to in�nity when A−B = 0, so

to avoid this sort of numeric over�ow, a small delta value (δ = 0.05) has been

added to the �tness function. Hence the �tness function in general is given as:

f = 1/((abs(A−B) + 0.05)2) (5.1)

where A, and B represent the desired and actual branch predicate values

respectively.

Test data are generated for a small segment of code with some realistic

constraints for Bank ATM withdrawal such as:

i. The amount the customer enters for withdrawal should be a valid input.

ii. The amount the customer enters for withdrawal should be in multiples

of 100.

iii. The amount the customer enters for withdrawal should be less than the

net available balance.

iv. An account holder must possess a minimum balance of $100 after the

completion of withdrawal task.

113

Chapter 5 Test Data Generation for Object-Oriented Program

5.5 Test Data Generation for Bank ATM

The various steps for constructing ECFG are followed and then three meta-

heuristic algorithms are applied for test data generation.

The steps followed are:

1. A process is being implemented to parse Java class and construct CFG

for a given method.

2. CFG is traversed to �nd CallNodes, to connect edges between nodes

of ECFG (in ECFG, methods are represented as nodes). E-CC value

is computed for di�erent methods based on the six possible ways as

mentioned in Section 5.3.2.

3. A target path is selected, and a�nity function derived based on the

branch distance is applied to generate test data using three meta-heuristic

search algorithms.

The following steps indicate the procedure followed to generate test data

using ECFG:

� ECFG is a layered approach, wherein modules are `overlapped' on each

other. The method to be tested is determined based on the Extended

Cyclomatic Complexity (E-CC) Value.

� In ECFG, a node refers to methods rather than statements. Hence after

selecting predicate nodes, the methods to be tested are identi�ed. Then

meta-heuristic search techniques are applied on the predicate nodes to

generate test data.

In this case study, a feasible path of `withdrawal task' in case of Bank

ATM is considered. Here, feasible path is referred to a path/code which

can be traversed/reached by the generated input.

114

Chapter 5 Test Data Generation for Object-Oriented Program

The following subsections give a brief note on how a CFG for individual

method is constructed. Subsequently, individual CFG's are used in construct-

ing ECFG. On selecting a target path, test data are generated based on the

a�nity function using CSA, BPSO and ABC algorithms.

5.5.1 Construction of CFG for an individual method

Compiled classes are used for the analysis purpose due to the following

reasons:

� If source code is used, there is a need for parsing. Error checking is not

necessary for compiled classes.

� For source �le, there can be various out going edges for a node, for

example: if (a<b && a>0). But for class �les there will be at least

two out going edges because class �le contains instruction like machine

language, where a node either evaluates to a Boolean value `true' or

`false'.

For construction of CFG for a method, ASM, a byte-code engineering li-

brary for JAVA is used to work on compiled JAVA classes. Let mainCFG be

the main method's CFG that can be constructed by supplying the class �le to

new MethodFlowGraph object.

The ASM tree API reads a class �le into hierarchically arranged objects

i.e., ClassNode containing a list of MethodNode for methods of a class and

each MethodNode containing list of InstructionNode. By using Analyzer class

from tree API, control �ow edges between instructions are determined. So, an

Analyzer stores edges into MethodFlowGraph object.

A MethodFlowGraph is the actual implementation of CFG for a method. It

contains an array of nodes corresponding to each instruction and an adjacency

matrix for the graph.

115

Chapter 5 Test Data Generation for Object-Oriented Program

5.5.2 Construction of ECFG

Construction of ECFG starts from CFG of the main method. The CFG

for invoked methods are added recursively. Algorithm 2 gives the steps for

construction of ECFG, by passing mainCFG.

Algorithm 2 : ECFG Construction

addGraphsRecursively(MethodFlowGraph: x)

for each node i in x do

if (IiscallNode) then

�nd the class of called method ;

search for classnode for calledmethods class in the list

if (notfound) then

create new Classnode for calledmethods class and put in the list;

else if (c = Called methods classnode from list) then

search for method �ow graph in method �ow graph's list;

if (notfound) then

m = create new method �ow graph for the called method;

add m to method �ow graph list and nodes of ECFG;

add edge from x to m;

else

m = method �ow graph from the list;

add edge from x to m ;

end if

end if

end if

end for

The algorithm executes as follows:

i. Algorithm traverses the passed method �ow graph sequentially, instruction

by instruction in search of call nodes.

ii. When a call node is found, it �nds the class of the called method invoked,

if it is found in the `list' the class node is taken from the list, otherwise

new class node object is formed and inserted in to the list.

116

Chapter 5 Test Data Generation for Object-Oriented Program

iii. �methodsCFG" is searched in the list, if it is previously created then it will

be found in the list. If found in the list, an edge is added from called

graph to the graph from the list, otherwise new method �ow graph is

made and inserted in to the list.

5.5.3 Test data generation using meta-heuristic search

algorithms

The following sections give a brief description of the algorithmic approach

followed for generating test data using CSA, BPSO and ABC algorithms.

5.5.3.1 Clonal selection algorithm

Clonal selection algorithm (CSA) was proposed by Castro and Zuben [12],

and is further modi�ed to suit our objective. Algorithm 3 shows the approach

followed to generate test data for the selected target path (derived from ECFG)

using CSA. A�nity function in CSA is derived based on the concept proposed

by Korel [123] as mentioned in Section 5.4. The a�nity function utilized in

test data generation for Object-Oriented methodology is as follows:

f = 1/(abs((net−bal − (wd−amt−min−bal)) + 0.05)) (5.2)

CSA execution for generating test data is as follows:

The initial execution begins by randomly generating test data (random

population). This initial test data are evaluated based on the a�nity function

(in CSA, test data are referred to as antibodies). After the evaluation, a target

path is selected. On selecting a target path, the initial test data (antibodies)

are applied to CSA in order to �nd the suitable test data that covers the

selected target path. Next, the step of cloning is applied. In cloning, two

clones of each antibody are generated based on Equation 5.3.

qi = Int(
βN

i
) (5.3)

117

Chapter 5 Test Data Generation for Object-Oriented Program

Algorithm 3 Test data generation using CSA

Initialize the number of generations (g) = 0;

Initialize the initial population randomly Ao

Evaluate a�nity function:

F = 1/(abs((net−bal − (wd−amt−min−bal)) + 0.05))

if g < 1000 then

Print results (test data);

Exit

else

Clone An to be An';

Hyper-mutate An'to An�;

Evaluate and select An�;

Destroy and renew to construct a new population An;

g++;

end if

Evaluate a�nity function.

where, β is the multiplying factor, and Int() is the function that rounds its

argument towards the closest integer.

The clone process follows the rule of superior win. Higher the a�nity

values of the antibody, the more the antibody gets cloned. Next, the clones

are hyper-mutated. Hyper-mutation is a step where the mutation process is

executed by eliminating the cross-over operation. In hyper-mutation, every

clone is mutated either with a �xed number of bits or with a �xed probability

of mutation. After hyper-mutation, 10% of the antibodies which have low

a�nity value are replaced by newly created random antibodies (Nr = N/2; Ns

= Nr/10, where Nr - Renewed antibodies and Ns - Worst antibodies). This

process of replacing and creating new antibodies helps in achieving diversi�ed

results. This entire process continues until the stopping criterion is met.

In CSA, antibodies refer to the input parameter, i.e., the initially generated

test data, and the test data satisfying the requirement (suitable test data

executing the selected target path) is referred to as Antigen.

118

Chapter 5 Test Data Generation for Object-Oriented Program

5.5.3.2 Binary particle swarm optimization

The following steps outline the format for application of BPSO for test

data generation, assuming a binary string representation. Let `P' be the path

(target path) in the program for which test data is to be generated.

Step - 1: Gen = 1000.

Step - 2: Meta-heuristic search is setup.

a. Binary string representation for the randomly generated test data (for

the target path) is selected.

b. Particles are evaluated based on the �tness function.

c. The lines of code in the selected target path are instrumented, bit rep-

resentation is changed using Equation 5.4.

P (xid(t) = 1) = f(xid(t), vid(t− 1), pid, pgd) (5.4)

d. Suitable particles for further search of test data are selected.

Step - 3: Test data are generated.

a. BPSO search is invoked using Pt (Equation 5.4) for �tness computation.

b. Suitable test data are selected based on better �tness value.

c. The test data are regenerated if necessary.

Test data generation begins by representing random input test data into

string and then identifying the suitable �tness function. The raw �tness is

evaluated using the branch distance function [123]. String �tness is developed

as shown in Equation 5.1 (Sub-section-5.4).

When the predicate node is covered by the generated test data, the node

is marked as traversed and search is re-run. After all the nodes are traversed,

the algorithm selects suitable test data satisfying the given criterion based on

�tness value.

119

Chapter 5 Test Data Generation for Object-Oriented Program

5.5.3.3 Arti�cial bee colony

Algorithm 4 gives the �ow for test data generation using ABC, and Table

5.3 gives us the tabulation of various experimental setup (parameters used) for

automatic generation of test data using ABC algorithm.

Algorithm 4 Test data generation using ABC

Initialize random population (Xij)

Gen = 0

while Gen < 1000 do

Evaluate the �tness value of each bee based on the �tness function (f)

f = 1/((abs(suc_bal(i)−min_bal) + 0.05)2)

Use elitism as the selection operator to select the individuals to enter into the mating

pool

New solutions Yij in the neighborhood of Xij for the employed bees are produced using

the following equation

yij = xij + φij ∗ (xij − xkj) (5.5)

where φij is a random number between 0 and 1 and Xkj is a randomly selected solution

Greedy selection process is applied between Yij and Xij

Probability values pi for the solutions Xi by means of their �tness value are computed

using the following equation

pi =
fitnessi∑n
j=1 fitnessj

(5.6)

Produce new solutions from the solutions Xij depending on the probability pi and

evaluate them

Apply greedy process between new and old test data

Select bee's with low �tness value, if exists, replace it with a new randomly produced

solution

Memorize the best food source position (test data) achieved so far

Gen = Gen + 1

end while

Select the colony having the best �tness value as the desired result (e�ective test data for

target path)

120

Chapter 5 Test Data Generation for Object-Oriented Program

Arti�cial bee colony (ABC) is a swarm-intelligence-based optimization ap-

proach. The behavior of the ABC optimization algorithm is employed to gener-

ate test data, by �nding the global optima in a multidimensional search space.

This algorithm combines both local and global search methods to attain global

or near-global optima.

The execution of the ABC algorithm is as follows:

1. First, the number of generations are initialized and the �tness value of

each bee is computed using the �tness function.

2. Elitism approach is applied to choose the most �t individual among the

population. A new population is produced using Equation 5.5.

3. On obtaining the new population, individuals from both the new and

the old population are selected based on the greedy selection process.

Then the probability value of the newly found solution is computed using

Equation 5.6.

4. The greedy selection process is applied again to choose the best �t. The

individuals with lower �tness values are discarded and a new population

is generated if necessary, otherwise the e�ective test data is memorized as

the solution to the problem. The execution of the algorithm terminates

when the stopping criterion is met.

5.6 Results

The following subsections highlight on the results achieved and the inter-

pretations drawn by applying the experimental settings used in CSA, BPSO,

and ABC algorithms.

121

Chapter 5 Test Data Generation for Object-Oriented Program

5.6.1 Case study: Bank ATM

ECFG Output

Figure 5.5: ECFG for Bank ATM

Figure 5.5 shows the generated ECFG for Bank ATM case study [15] using

Algorithm 2. Figure 5.6 shows the ECFG for ATM withdrawal task and also

the E-CC value is found to be 3.

Figure 5.6: ECFG for Bank ATM withdraw task

122

Chapter 5 Test Data Generation for Object-Oriented Program

5.6.2 Experimental settings

Table 5.2 and Table 5.3 show the various parameters and their respective

values used in test data generation using CSA, BPSO, and ABC algorithms.

Table 5.2: Parameters used in CSA for test data generation.

Parameter Value

A�nity function f = 1/(abs((net−bal − (wd−amt −

min−bal)) + 0.05))

Coding format Binary

Antigen length 8 bits

Population size 100

Selection Elitism method

Probability of mutation 0.15

Destroy and renew Nr = N/2; Ns = Nr/10

Stopping criterion 1000 generations

Table 5.3: Parameters used in BPSO, and ABC for test data generation.

Technique Parameters

BPSO φ1, φ2: Random numbers from the uniform distribution

(0,4) such that φ1 + φ2 ≤ 4.

w = [0.5+(rnd/2.0)], rnd is random number drawn from

uniform distribution (0,1).

ABC Producing new solutions Yij from Xij using the Equa-

tion 5.5. Probability (pi) for solutions Xi based on their

�tness using Equation 5.6.

123

Chapter 5 Test Data Generation for Object-Oriented Program

5.6.3 Interpretation of results

The approach followed for test data generation for path testing using meta-

heuristic search algorithms, consists of four basic steps viz., control �ow graph

construction, target path selection, test data generation and execution. This

subsection highlights on evaluation of the achieved test results.

This section highlights the results achieved using the CSA, BPSO, and ABC

optimization algorithms with the experimental settings listed in Table 5.2 and

Table 5.3. Test data are generated for a single feasible path in the ECFG for an

ATMwithdrawal task. The implementation part is hand-coded in MATLAB. A

single target path is selected (a bank ATM withdrawal task), since evolutionary

meta-heuristic algorithms act on a single characteristic during their execution.

To ensure the execution e�ciency of the applied algorithm, the generated

output (suitable test data) is divided into three classes of search space. This

search space is categorized based on their a�nity values.

Table 5.4 shows the a�nity value range of test data and the classi�cation

of individual chromosome/particle/bee into their respective classes based on

a�nity value in terms of percentage.

Table 5.4: Percentage of class of test data having maximum �tness values in

CSA, BPSO, and ABC respectively.

Fitness value range % of test data

f(x)(Search space) CSA BPSO ABC

0 ≤ f(x) < 0.3 13 48 24

0.3 ≤ f(x) < 0.7 17 05 02

0.7 ≤ f(x) < 1.0 70 47 74

Table 5.4 shows that more number of chromosomes having higher a�nity

value `f(x)', lie in the range between 0.7 ≤ f(x) < 1.0. These a�nity values

are an indication of optimal test data obtained. The table also shows that the

highest percentage of test data with the maximum �tness values is achieved by

124

Chapter 5 Test Data Generation for Object-Oriented Program

the ABC algorithm. Out of the 100 individuals in the population, the test data

with the maximum �tness values found in the search space 0.7 ≤ f(x) < 1.0

are chosen to check the execution of decision nodes during the testing phase.

This also helps a tester to choose suitable solution (test data) based on the

a�nity values out of the total population size (N) i.e., tester can choose test

data from the categorized search space (based on a�nity value).

Table 5.5 shows the generated test data for the selected test case (Bank

ATM withdrawal task) along with their a�nity values for CSA, BPSO and

ABC algorithms. From Table 5.5, it can be noticed that ABC generated better

test data as it has high a�nity values of its population.

Table 5.5: A�nity and the respective test data generated for meta-heuristic

techniques

CSA

A�nity

Values

CSA

Test

Data

BPSO

A�nity

Values

BPSO

Test

Data

ABC

A�nity

Values

ABC

Test

Data

0.027 2300 1.41E-05 1400 1.77E-06 1500

0.0294 1900 1.77E-05 1700 1.78E-06 2600

0.0312 2200 2.08E-05 2100 1.89E-06 4500

0.0322 2300 4.85E-05 14000 1.92E-06 2000

0.0333 1300 5.06E-05 1200 1.94E-06 1700

0.0434 1600 6.28E-05 1900 2.01E-05 2100

0.0525 1400 9.30E-04 2700 2.03E-05 1900

0.0525 2700 3.00E-03 5000 2.20E-05 7900

0.0587 1200 9.37E-03 7700 2.38E-05 8800

0.0623 2700 1.88E-02 5400 2.48E-05 12000

0.0712 2000 2.38E-02 6500 4.50E-04 1400

0.0995 2100 3.28E-02 8000 4.68E-04 19000

0.9524 4800 1.31E-01 8500 3.71E-03 17000

0.9524 15000 4.99E-01 17000 3.89E-01 17000

0.9524 16000 9.10E-01 17900 3.92E-01 18500

125

Chapter 5 Test Data Generation for Object-Oriented Program

Figure 5.7: Fitness variation for test data

Figure 5.7 depicts the variation of �tness value of unique sets of test data

generated when the three meta-heuristic search algorithms are applied. The

algorithms are run for 1000 generations. The graph shows that the ABC

optimization algorithm provides better �tness values for the generated test

data when compared with the BPSO and CSA algorithms.

5.6.4 Code coverage analysis

Table 5.6 gives the analysis result of the obtained code coverage, by cover-

ing the nodes traversed in the ECFG. The test data of the respective �tness

function values (of CSA, BPSO and ABC) are used separately to achieve code

coverage. Results shown in Table 5.6 indicate that the ABC obtained better

coverage of nodes in the paths traversed when compared to CSA and BPSO.

Table 5.6: Code coverage analysis for proposed methodology

Meta-heuristic

Technique

No. of Paths

Covered Out of 7

Code Cov-

erage (%)

CSA 4 57.14%

BPSO 4 57.14%

ABC 5 71.42%

126

Chapter 5 Test Data Generation for Object-Oriented Program

Table 5.7 shows the obtained code coverage results for Triangle classi�cation

problem by Saini et al [136].

Table 5.7: Code coverage analysis for existing methodology

Meta-heuristic

Technique

Code Coverage

(%)

GA 56.62%

CSA 58.84%

When Table 5.6 and Table 5.7 are compared, it is found that CSA gives a

bit higher code coverage for Triangle classi�cation problem than Bank ATM

withdrawal case. This shows the CSA obtains better coverage in this case. It is

noted that the performance of these meta-heuristic search techniques depends

on the type of application (varying �tness function).

5.7 Summary

In this chapter, an attempt to generate test data automatically for Object-

Oriented methodology has been made using three meta-heuristic algorithms.

Based on the condition of the predicate node the test data were generated. To

generate suitable test data, methods were traversed to cover each node. Test

data values are selected based on a�nity values of individuals which satisfy

the predicate node condition. It was observed that ABC algorithm generates

more suitable test data based on the a�nity value.

127

Chapter 6

Conclusions and future scope of

work

The conclusive remarks based on the experimental work carried out are

included in this chapter along with the scope for future work.

Chapter 1 introduced the overview of the research in the present thesis.

It explains the problem at hand, and the proposed solution to handle those

by applying di�erent arti�cial intelligent techniques. This chapter also gave

a brief overview of the thesis. This chapter indicated the motive behind the

work, and the research objectives formulated based on the motivation. Finally,

the chapter summarized the contributions of the thesis, followed by the brief

outline of the thesis.

Chapter 2 gave a note on the literature review work, done in the area of fault

prediction analysis and test data generation. The survey mainly summarized

the work already done by di�erent researchers and practitioners in these areas.

In the �rst part of the survey, emphasis was laid on the metric suites used,

the datasets used for building prediction models, and the methods used to bring

out the prediction results. To achieve this, survey related to previous studies

for softwares designed by using object-oriented metrics for fault proneness was

carried out. This review was helpful to conclude that, among the numerous

128

Conclusions and future scope of work

metric suites available, CK metrics suite was found to be exclusively used by

di�erent authors in their analysis. It was also observed that `Machine learning

methods' were more often used in most of the studies to improve the perfor-

mance of prediction when compared with statistical approaches. It was further

observed that various authors have used datasets available in PROMISE and

NASA repositories.

The second part of the survey emphasized on the work done in the area

of test data generation, and the respective criteria used by the authors. It is

observed that many authors have used optimization algorithms to achieve the

desired results. As part of this work, seven meta-heuristic search algorithms

were applied for test data generation for traditional methods. It can be con-

cluded that CSA was able to obtain e�ective test data when compared to the

other six algorithms.

Chapter 3 emphasized on the models designed for predicting the fault

proneness using di�erent machine learning models.

In the �rst phase of this chapter, the fault prediction accuracy rate was

determined for two statistical and four neural network methods using the full

feature set of the CK metric suite. In the second phase of the chapter, the

e�ectiveness of feature reduction techniques such PCA and RST were studied.

At the end, the chapter draws a comparative analysis on the obtained fault

prediction accuracy rate. It can be concluded that the hybrid approach of

RBFN obtained better fault prediction rate when both the full feature and

reduced feature data sets were used. Also it is observed that the use of feature

reduction techniques slightly enhanced the accuracy rate.

Chapter 4 proposed a cost based evaluation framework, to evaluate the

usability of the prediction models designed in Chapter 3. In this work, Clas-

si�cation of faults into faulty or not-faulty classes was carried out using clas-

si�ers such as logistic regression and other neural network classi�ers such as

ANN, FLANN, PNN and RBFN. The usability of the prediction models were

evaluated based on the proposed `Normalized Estimated fault removal cost'

129

Conclusions and future scope of work

(NEcost), and a trade-o� between the obtained classi�cation rate. A predic-

tion model which obtained the least NEcost value was chosen as a suitable

model among the set of models designed. Also it implied that a model which

obtained an NEcost greater than the threshold value (one) were found to be

unsuitable for prediction, and such classes were further unit tested. The chap-

ter concludes that, the Gradient descent approach of RBFN obtained promis-

ing results in terms of fault removal cost when compared with LR, GD, LM,

FLANN and PNN classi�er models.

Chapter 5 proposed an approach to generate test data automatically us-

ing three meta-heuristic search techniques. In the literature survey done in

this thesis, test data were generated for traditional methods. This chapter

concentrated on generating test data for object-oriented methodology. A case

study on withdrawal operation in an Bank ATM was considered to employ

our approach. As it was not feasible to generate test data for all the tasks,

it is necessary to select limited number of important logical paths, for which

testing should be exercised. Important paths can be probed for validity, and

selectively ensure that the working of the software is correct. In this chapter,

test data were generated for only the Bank ATM withdrawal task. As the con-

trol �ow graph di�ers from traditional methods, an ECFG was designed for

object-oriented methodology. Similarly, the E-CC value was computed based

on the designed ECFG. Three meta-heuristic algorithms such as CSA, BPSO,

and the ABC algorithms were applied to generate test data. From the im-

plementation work carried out in this chapter, it can be concluded that ABC

algorithm was able to obtain suitable test data in comparison with CSA and

BPSO algorithms.

The overall conclusions that can be drawn from the work presented in this

thesis is that the �ndings will be bene�cial for the researchers, practitioners,

and the software professionals because of the following issues being addressed:

1. The designed prediction models can be used to evaluate the quality of

the software in the early phases of SDLC, as fault prediction is helpful

130

Conclusions and future scope of work

in identifying fault prone classes. This will ensure that the testing time

and resources are properly utilized.

2. In pipeline to the above key point, after the design phase is complete,

the prediction done will be helpful in identifying the highly fault prone

classes so that additional testing techniques/e�ort can be employed on

the fault-prone classes during testing phases. Even the design of the

software can be reconstructed if a particular class is highly fault prone.

3. A subset of software metrics i.e., CK metrics suite was considered as

independent variables, and the fault as dependent variable, where these

can be utilized to predict faulty classes.

4. Researchers may use more number of hybrid approaches of machine learn-

ing methods rather than statistical methods to classify the classes as

faulty or not faulty, so as to obtain better fault prediction accuracy.

5. Generating optimal test data automatically from a huge search space,

will be helpful in reducing the testing resources and time.

The contributions as well as the experimental data obtained from this work

are as follows:

� The ability of software metrics (CK metric suite) to �nd out fault prone

modules e�ciently using machine learning methods over statistical meth-

ods was studied (in Chapter-3). The experimental data obtained & the

comparison made, indicated that CK metrics suite are better indicators

of fault prediction when compared to other models existing in literature.

Also the e�ectiveness of feature reduction methods, which obtain reduced

data set were studied to know the performance of these techniques in fault

prediction.

� It is a di�cult task to deliver a 100% defect free software to the customers.

In order to obtain a less defective software, classi�cation of faulty classes

131

Chapter 6 Conclusions and future scope of work

is necessary. This was achieved by performing fault classi�cation (in

Chapter-3). Further, a cost based evaluation framework was proposed

(in Chapter-4) to identify faulty and non-faulty classes. From the ob-

tained results it was noticed that, performing fault prediction analysis is

necessary or not based on the cost incurred in fault identi�cation.

� Testing ensures that the software is defect free i.e, it is carried out with

an intention to �nd errors. In Chapter-5, test data were generated for an

object-oriented application by using meta-heuristic search techniques.

The results obtained, showed that ABC algorithm generated suitable

test data when compared to CSA and BPSO. Further, even code cover-

age analysis carried out indicates that ABC algorithm achieved better

coverage that CSA and BPSO.

6.1 Future scope of work

No one can unwrap the future. The future is a state based on the series

of events that have taken place since the initial state. In the long run, the e�ort

put in are of concern. Triggered by this thought process, all the work reported

in this thesis work will lead to extension that will enhance their impact in the

speci�c area of work.

The research work carried out, is an empirical study to �nd the e�ect of

object-oriented metrics on fault proneness. The results provide the necessary

guidance for future research on the impact of object-oriented metrics on fault

proneness. Some areas, which this thesis may help to extend in future are:

1. To couple various neural network models with meta-heuristic algorithms

such as GA, PSO, ABC etc. to achieve better classi�cation rate.

2. To generate test data using a�nity function for multiple paths in ECFG.

3. To perform code coverage analysis based on the generated test data for

multiple paths.

132

Bibliography

[1] J. A. McCall, P. K. Richards, and G. F. Walters, �Factors in software quality-

concept and de�nitions of software quality,� Rome Air Development Center,

Tech. Rep. RADC-TR-77-369, November 1977.

[2] B. W. Boehm, J. R. Brown, H. Kaspar, M. Lipow, G. McLeod, and M. Merritt,

Characteristics of Software Quality. North-Holland Publihser Co.� 1978.

[3] R. G. Dromey, �A model for software product quality,� IEEE Transactions on

Software Engineering, vol. 21, no. 2, pp. 146�162, February 1995.

[4] R. S. Pressman, Software Engineering - A practitioner's approach. McGraw

Hill Higher Education, June 2000.

[5] M. Wakil, A. Bastawisi, M. Boshra, and A. Fahmy, �Object-oriented design

quality models: A survey and comparison,� in Proceedings of 2nd International

Conference on Informatics and Systems, March 2004, pp. 1�11.

[6] R. B. Grady and D. L. Caswell, Software metrics: Establishing a company-wide

program. Prentice-Hall, Inc. Upper Saddle River, NJ, USA, 1987.

[7] S. Parnami, K. S. Sharma, and S. V. Chande, �A survey on generation of test

cases and test data using arti�cial intelligence techniques,� UACEE Interna-

tional Journal of Arti�cial Intelligence and Neural Networks, vol. 2, no. 1, pp.

16�18, April 2012.

[8] M. Warren and P. Walter, �A logical calculus of ideas immanent in nervous

133

Bibliography

activity,� Bulletin of Mathematical Biophysics, vol. 5, no. 4, pp. 115�133, De-

cember 1943.

[9] B. Christian and R. Andrea, �Metaheuristics in combinatorial optimization:

Overview and conceptual comparison,� ACM Computing Surveys (CSUR),

vol. 35, no. 3, pp. 268�308, September 2003.

[10] T. Back, U. Hammel, and H. P. Schwefel, �Evolutionary computation: Com-

ments on the history and current state,� IEEE Transactions on Evolutionary

Computation, vol. 1, no. 1, pp. 3�17, April 1997.

[11] J. Brownlee, Clever Algorithms: Nature-Inspired Programming Recipes. Lulu

Enterprises Inc., 2011.

[12] L. N. De Castro and F. J. Von Zuben, �Learning and optimization using the

clonal selection principle,� IEEE Transactions on Evolutionary Computation,

vol. 6, no. 3, pp. 239�251, June 2002.

[13] S. Forrest, A. S. Perelson, L. Allen, and R. Cherukuri, �Self-nonself discr-

minination in a compuer,� in Proceedings of IEEE Symposium on Research in

Security and Privacy. IEEE, Los Alamitos, CA, 1994, pp. 202�212.

[14] J. Timmis, M. Neal, and H. John, �An arti�cial immune system for data anal-

ysis,� Journal of BioSystems, vol. 55, no. 1, pp. 143�150, February 2000.

[15] M. Blaha and J. Rumbaugh, Object-oriented modeling and design with UML.

Pearson Education, 2005.

[16] T. J. McCabe, �A complexity measure,� IEEE Transactions on Software Engi-

neering, vol. 2, no. 4, pp. 308�320, December 1976.

[17] M. H. Halstead, Elements of Software Science. New York, USA: Elsevier

Science, 1977.

[18] W. Li and S. Henry, �Maintenance metrics for the object-oriented paradigm,�

in Proceedings of First International Software Metrics Symposium, 1993, pp.

52�60.

134

Bibliography

[19] S. R. Chidamber and C. F. Kemerer, �A metrics suite for object-oriented de-

sign,� IEEE Transactions on Software Engineering, vol. 20, no. 6, pp. 476�493,

June 1994.

[20] F. B. E. Abreu and R. Carapuca, �Object-oriented software engineering: Mea-

suring and controlling the development process,� in Proceedings of the 4th In-

ternational Conference on Software Quality, October 1994, pp. 1�8.

[21] M. Lorenz and J. Kidd, Object-Oriented Software Metrics. NJ, Englewood:

Prentice-Hall, 1994.

[22] R. Martin, �Object-oriented design quality metrics - an analysis of dependen-

cies,� in Proceedings Workshop Pragmatic and Theoretical Directions in Object-

Oriented Software Metrics, October 1994.

[23] D. P. Tegarden, S. D. Sheetz, and D. E. Monarchi, �A software complexity

model of object-oriented systems,� Decision Support Systems, vol. 13, pp. 241�

262, March 1995.

[24] W. Melo and F. B. E. Abreu, �Evaluating the impact of object-oriented design

on software quality,� in Proceedings of the 3rd International Software Metrics

Symposium, 1996, pp. 90�99.

[25] L. C. Briand, P. Devanbu, and W. Melo, �An investigation into coupling mea-

sures for c++,� in Proceedings of International Conference on Software Engi-

neering Association for Computing Machinery, 1997, pp. 412�421.

[26] L. Etzkorn, J. Bansiya, and C. Davis, �Design and code complexity metrics

for object-oriented classes,� in Object-Oriented Programming, March 1999, pp.

35�40.

[27] M. Cartwright and M. Sheppered, �An empirical investigation of an object ori-

ented software system,� IEEE Transactions on Software Engineeering, vol. 26,

no. 8, pp. 786�796, August 2000.

135

Bibliography

[28] R. Burrows, F. Ferrar, O. Lemos, A. Garcia, and F. Ta, �The impact of cou-

pling on the fault-proneness of aspect-oriented programs: An empirical study,�

in Proceedings of 21st International Symposium on Software Reliability Engi-

neering, San Jose, 2010, pp. 329�338.

[29] K. K. Aggarwal, S. Yogesh, K. Arvinder, and R. Malhotra, �Empirical analysis

for investigating the e�ect of object-oriented metrics on fault proneness: a

replicated case study,� Software Process: Improvement and Practice, vol. 14,

no. 1, pp. 39�62, August 2009.

[30] H. M. Olague, L. H. Etzkorn, S. Gholston, and S. Quattlebaum, �Empirical

validation of three software metrics suites to predict fault-proneness of object-

oriented classes developed using highly iterative or agile software development

processes,� IEEE Transactions on Software Engineeering, vol. 33, no. 6, pp.

402�419, June 2007.

[31] H. Leung and Y. Zhou, �Empirical analysis of object-oriented design metrics

for predicting high and low severity faults,� IEEE Transactions on Software

Engineering, vol. 32, no. 10, pp. 771�789, October 2006.

[32] F. Wu, �Empirical validatin of object-oriented metrics on NASA for fault pre-

diction,� in Proceedings of International Conference on Advances in Informa-

tion Technology and Education. Springer, 2011, pp. 168�175.

[33] G. Pai and J. Dugan, �Empirical analysis of software fault content and fault

proneness using bayesian methods,� IEEE Transactions on Software Engineeer-

ing, vol. 33, no. 10, pp. 675�686, October 2007.

[34] Y. Singh, A. Kaur, and R. Malhotra, �Empirical validation of object-oriented

metrics for predicting fault proneness models,� Software Quality Journal,

vol. 18, no. 1, pp. 3�35, March 2010.

[35] L. C. Briand, J. Wüst, J. W. Daly, and D. V. Porter, �Exploring the rela-

tionships between design measures and software quality in object-oriented sys-

136

Bibliography

tems,� The Journal of Systems and Software, vol. 51, no. 3, pp. 245�273, May

2000.

[36] E. Emam K, W. Melo, and J. C. Machado, �The prediction of faulty classes

using object-oriented design metrics,� The Journal of Systems and Software,

vol. 56, pp. 63�75, August 2001.

[37] T. Gyimothy, R. Ferenc, and I. Siket, �Empirical validation of object-oriented

metrics on open source software for fault prediction,� IEEE Transactions on

Software Engineering, vol. 31, no. 10, pp. 897�910, October 2005.

[38] N. Nagappan, L. Williams, V. Mladen, and O. Jason, �Early estimation of

software quality using in-process testing metrics: a controlled case study,� ACM

SIGSOFT Software Engineering Notes, vol. 30, no. 4, pp. 1�7, July 2005.

[39] S. Kanmani, U. V. Rhymend, V. Sankaranarayanan, and P. Thambidurai,

�Object-oriented software fault prediction using neural networks,� Journal of

Information and Software Technology, vol. 49, no. 5, pp. 483�492, May 2007.

[40] P. Tomaszewski, J. Hakansson, L. Lundberg, and H. Grahn, �Statistical models

vs. expert estimation for fault prediction in modi�ed code - an industrial case

study,� The Journal of Systems and Software, vol. 80, pp. 1227�1238, August

2007.

[41] P. Tomaszewski and H. Grahn, �Improving fault detection in modi�ed code -

a study from the telecommunication industry,� Journal of Computer Science

and Technology, vol. 22, no. 3, pp. 397�409, May 2007.

[42] R. Shatnawi and W. Li, �The e�ectiveness of software metrics in identifying

error-prone classes in post-release software evolution process,� The Journal of

Systems and Software, vol. 81, no. 11, pp. 1868�1882, November 2008.

[43] Y. Singh, A. Kaur, and R. Malhotra, �Software fault proneness prediction using

support vector machines,� in Proceedings of the World Congress on Engineer-

ing, July 1�3, London, U. K, 2009.

137

Bibliography

[44] A. Cruz and K. Ochimizu, �Towards logistic regression models for predicting

fault-prone code across software projects,� in Third International Symposium

on Empirical Software Engineering and Measurement, Lake Buena Vista, FL,

2009, pp. 460�463.

[45] Y. Zhou, B. Xu, and H. Leung, �On the ability of complexity metrics to predict

fault-prone classes in object oriented systems,� The Journal of Systems and

Software, vol. 83, no. 4, pp. 660�674, 2010.

[46] M. Ruchika and S. Yogesh, �On the applicability of machine learning techniques

for object-oriented software fault prediction,� Software Engineering: An Inter-

national Journal (SEIJ), vol. 1, no. 1, pp. 24�37, September 2011.

[47] M. Bharavi and K. K. Shukla, �Defect prediction for object oriented software

using support vector based fuzzy classi�cation model,� International Journal

of Computer Applications, vol. 60, no. 15, pp. 8�16, December 2012.

[48] M. Ruchika and J. Ankita, �Fault prediction using statistical and machine

learning methods for improving software quality,� Journal of Information Pro-

cessing Systems, vol. 8, no. 2, pp. 241�262, June 2012.

[49] H. Kapila and S. Satwinder, �Analysis of CK metrics to predict software fault-

proneness using bayesian inference,� International Journal of Computer Appli-

cations, vol. 74, no. 2, pp. 1�4, July 2013.

[50] J. Holand, Adaptation in Nature and Arti�cial Systems. Cambridge: MIT

Press, 1975.

[51] J. Kennedy and R. Eberhart, �Particle swarm optimization,� in Proceedings of

International Conference on Neural Networks. IEEE, 1995, pp. 1942�1948.

[52] K. James and C. E. Russell, �A discrete binary version of the particle swarm

algorithm,� in Proceedings of IEEE international conference on systems, man,

and cybernetics, Orlando, Florida, 1997, pp. 4104�4108.

138

Bibliography

[53] V. Cerny, �A thermodynamical approach to the travelling salesman problem:

An e�cient simulation algorithm,� Journal of Optimization Theory and Appli-

cations, vol. 45, no. 1, pp. 41�51, January 1985.

[54] C. C. Michael, G. McGraw, and M. A. Schatz, �Generating software test data

by evolution,� IEEE Transactions on Software Engineering, vol. 27, no. 12, pp.

1085�1110, December 2001.

[55] M. Harman and P. McMinn, �A theoretical and empirical study of search-based

testing: Local, global, and hybrid search,� IEEE Transactions on Software

Engineering, vol. 36, no. 2, pp. 226�247, March 2010.

[56] P. McMinn, �Search-based software test data generation: a survey,� Software

Testing, Veri�cation and Reliability, vol. 14, no. 2, pp. 105�156, June 2004.

[57] T. Seeley, The Wisdom of the Hive. Harvard University Press, Cambridge,

MA, 1995.

[58] M. P. Kevin, �Bacterial foraging optimization,� International Journal of Swarm

Intelligence Research, vol. 1, no. 1, pp. 1�16, June 2010.

[59] S. Srikrishna and P. Seeni, �Bacterial foraging algorithm based parameter esti-

mation of three winding transformer,� Energy and Power Engineering, vol. 3,

no. 2, pp. 135�143, May 2011.

[60] R. P. Pargas, M. J. Harrold, and R. R. Peck, �Test data generation using

genetic algorithms,� Journal of Software Testing, Veri�cation and Reliability,

vol. 9, no. 4, pp. 263�282, December 1999.

[61] J. C. Lin and P. L. Yeh, �Automatic test data generation for path testing using

GAs,� Information Sciences, vol. 131, no. 1, pp. 47�64, January 2001.

[62] N. Mansour and M. Salame, �Data generation for path testing,� Software Qual-

ity Journal, vol. 12, no. 2, pp. 121�136, June 2004.

139

Bibliography

[63] M. A. Ahmed and I. Hermadi, �GA-based multiple paths test data generator,�

Computers and Operations Research, vol. 35, no. 10, pp. 3107�3124, October

2008.

[64] C. Chen, X. Xu, Y. Chen, X. Li, and D. Guo, �A new method of test data gener-

ation for branch coverage in software testing based on EPDG and genetic algo-

rithm,� in Proceedings of 3rd International Conference on Anti-counterfeiting,

security and identi�cation in communication, 2009, pp. 307�310.

[65] P. R. Srivastava and T. H. Kim, �Application of genetic algorithm in software

testing,� International Journal of software Engineering and its Applications,

vol. 3, no. 4, pp. 87�96, October 2009.

[66] I. Alsmadi, F. Alkhateeb, E. A. Maghayreh, S. Samarah, and I. A. Doush,

�E�ective generation of test cases using genetic algorithms and optimization

theory,� Journal of Communication and Computer, vol. 7, no. 11, pp. 72�82,

November 2010.

[67] A. Rauf, S. Anwar, M. A. Ja�er, and A. A. Shahid, �Automated GUI test

coverage analysis using GA,� in Proceedings of 7th International Conference on

Information Technology: New Generations (ITNG). IEEE, 2010, pp. 1057�

1062.

[68] H. Tahbildar and B. Kalita, �Heuristic approach of automated test data gener-

ation for program having array of di�erent dimensions and loops with variable

number of iteration,� International Journal of Software Engineering and Ap-

plications (IJSEA), vol. 1, no. 4, pp. 75�93, October 2010.

[69] C. Sharma, S. Sabharwal, and R. Sibal, �A survey on software testing tech-

niques using genetic algorithm,� International Journal of Computer Sciences

Issues, vol. 10, no. 1, pp. 381�393, January 2013.

[70] S. Swain and D. Mohapatra, �Genetic algorithm-based approach for adequate

test data generation,� in Proceedings of International Conference on Advanced

Computing, Networking, and Informatics, 2013, pp. 453�462.

140

Bibliography

[71] A. Nunez, M. G. Merayo, R. M. Hierons, and M. Nunez, �Using genetic algo-

rithms to generate test sequences for complex timed systems,� Journal of Soft

Computing, vol. 17, no. 2, pp. 301�315, February 2013.

[72] W. Andreas, W. Stefan, and W. Joachim, �Applying particle swarm optimiza-

tion to software testing,� in Proceedings of the 9th Annual Conference on Ge-

netic and Evolutionary Computation, New York, USA, vol. 1. IEEE, 2007,

pp. 1121�1128.

[73] A. Li and Y. Zhang, �Automatic generating all-path test data of a program

based on PSO,� in Proceedings of World Congress on Software Engineering,

vol. 4. IEEE, 2009, pp. 189�193.

[74] C. Huanhuan, C. Li, Z. Bian, and K. Halei, �An e�cient automated test data

generation method,� in Proceedings of International Conference on Measuring

Technology and Mechatronics Automation (ICMTMA), vol. 1. IEEE, 2010,

pp. 453�456.

[75] S. Zhang, Y. Zhang, H. Zhou, and Q. He, �Automatic path test data genera-

tion based on GA-PSO,� in Proceedings of IEEE International Conference on

Intelligent Computing and Intelligent Systems (ICIS), vol. 1. IEEE, 2010, pp.

142�146.

[76] C. Mao, X. Yu, and J. Chen, �Swarm intelligence-based test data generation for

structural testing,� in Proceedings of IEEE/ACIS 11th International Confer-

ence on Computer and Information Science (ICIS). IEEE, 2012, pp. 623�628.

[77] R. Ding, X. Feng, S. Li, and H. Dong, �Automatic generation of software

test data based on hybrid particle swarm genetic algorithm,� in Proceedings of

Symposium on Electrical & Electronics Engineering (EEESYM). IEEE, 2012,

pp. 670�673.

[78] S. A. Khan and A. Nadeem, �Automated test data generation for coupling

based integration testing of object oriented programs using particle swarm op-

141

Bibliography

timization,� in Proceedings of the Seventh International Conference on Genetic

and Evolutionary Computing, ICGEC, 2013, pp. 115�124.

[79] X. Xu, Y. Chen, X. Li, and D. Guo, �A path-oriented test data generation

approach for automatic software testing,� in Proceedings of 2nd International

Conference on Anti-counterfeiting, Security and Identi�cation (ASID). IEEE,

2008, pp. 63�66.

[80] K. Liaskos and M. Roper, �Hybridizing evolutionary testing with arti�cial im-

mune systems and local search,� in Proceedings of International Conference on

Software Testing, Veri�cation and Validation. IEEE, 2008, pp. 211�220.

[81] A. Pachauri and Gursaran, �Use of clonal selection algorithm as software test

data generation technique,� in Proceedings of Second International Conference

on Advanced Computing & Communication Technologies (ACCT). IEEE,

2012, pp. 1�5.

[82] A. Khushboo, P. Ankur, and Gursaran, �Towards software test data generation

using binary particle swarm optimization,� in Proceedings of XXXII National

Systems Conference (NSC), 17th-19th December, Roorkee, India, vol. 1, 2008,

pp. 339�343.

[83] P. Ankur and Gursaran, �Comparative evaluation of a maximization and min-

imization approach for test data generation with genetic algorithm and binary

particle swarm optimization,� International journal of software engineering and

applications (IJSEA), vol. 3, no. 1, pp. 207�218, January 2012.

[84] G. Haichang, F. Boqin, and Z. Li, �A kind of SA-GA hybrid meta-heuristic al-

gorithm for the automatic test data generation,� in Proceedings of International

Conference Neural Networks and Brain, 2005, pp. 111�114.

[85] L. Bao, L. Zhi-Shu, Z. Jing-Yu, and S. Ji-Rong, �An automated test case

generation approach by genetic simulated annealing algorithms,� in Proceedings

of Third International Conference on Natural Computation (ICNC), 2007, pp.

106�111.

142

Bibliography

[86] X. Tan, C. Longxin, and X. Xiumei, �Test data generation using annealing im-

mune genetic algorithm,� in Proceedings of 5th International Joint Conference

on INC, IMS and IDC, 2009, pp. 344�348.

[87] B. Zhang and C. Wang, �Automatic generation of test data for path testing

by adaptive genetic simulated annealing algorithm,� in Proceedings of Interna-

tional Conference on Computer Science and Automation Engineering(CSAE).

IEEE, China, 2011, pp. 38�42.

[88] L. Gentiana Ioana, C. Octavian Augustin, and L. Vacariu, �Automatic test

data generation for software path testing using evolutionary algorithms,� in

Proceedings of Third International Conference on Emerging Intelligent Data

and Web Technologies (EIDWT), Bucharest, Romania, 2012, pp. 1�8.

[89] D. J. Mala and V. Mohan, �ABC tester - arti�cial bee colony based software test

suite optimization approach,� International Journal of Software Engineering,

Sprinter Global Publication, vol. 2, no. 2, pp. 1�33, July 2009.

[90] D. Surender Singh, C. Jitender Kumar, and K. Shakti, �Application of arti�cial

bee colony algorithm to software testing,� in Proceedings of 21st Australian

Software Engineering Conference , Auckland, New Zealand, vol. 1, 2010, pp.

149�154.

[91] K. Arvinder and G. Shivangi, �A bee colony optimization algorithm for code

coverage test suite prioritization,� International journal of engineering science

and technology (IJEST), vol. 3, no. 4, pp. 2786�2797, April 2011.

[92] A. Srikanth, N. J. Kulkarni, N. K. Venkat, P. Singh, and P. R. Srivastava,

�Test case optimization using arti�cial bee colony algorithm,� in Proceedings

of Advances in Computing and Communications, vol. 192, March 2011, pp.

570�579.

[93] L. Soma Sekhara Babu, M. L. Hari Prasad Raju, M. Uday Kiran, C. Swaraj,

and P. R. Srivastav, �Automated generation of independent paths and test

suite optimization using arti�cial bee colony,� in Proceedings of International

143

Bibliography

Conference on Communication Technology and System Design, 2012, pp. 191�

200.

[94] R. K. Sandhu, A. Puri, and H. S. Gill, �A novel approach for software testing

based on arti�cial bee colony technique,� in Proceedings of International Con-

ference on Sustainable Manufacturing and Operations Management, 26th-28th

June 2013, pp. 406�410.

[95] S. Dalal and R. S. Chhillar, �A novel technique for generation of test cases

based on bee conlny optimization and modi�ed genetic algorithm,� Interna-

tional Journal of Computer Applications, vol. 68, no. 19, pp. 12�16, April

2013.

[96] J. Dobbins, �IEEE guide for the use of IEEE standard dictionary of measures

to produce reliable software,� Institute of Electrical and Electronics Engineers,

New York, NY, USA, Tech. Rep. IEEE Std 982.2-1988, June 1989.

[97] V. R. Basili, L. C. Briand, and W. L. Melo, �A validation of object-oriented

design metrics as quality indicators,� IEEE Transactions on Software Engi-

neering, vol. 22, no. 10, pp. 751�761, October 1996.

[98] T. Menzies, B. Caglayan, Z. He, E. Kocaguneli, J. Krall, F. Peters,

and B. Turhan. (2012, June) The promise repository of empirical software

engineering data. [Online]. Available: http://promisedata.googlecode.com

[99] K. J. Yogendra and K. B. Santosh, �Min-max normalization based data per-

turbation method for privacy protection,� International Journal of Computer

and Communication Technology, vol. 2, no. 8, pp. 45�50, October 2001.

[100] R. Battiti, �First and second-order methods for learning between steepest de-

scent and newtons method,� Neural Computation, vol. 4, no. 2, pp. 141�166,

March 1992.

[101] K. Levenberg, �A method for the solution of certain non-linear problems in

least squares,� Quarterly Journal of Applied Mathematics, vol. 2, no. 2, pp.

164�168, July 1944.

144

http://promisedata.googlecode.com

Bibliography

[102] D. W. Marquardt, �An algorithm for the least-squares estimation of nonlinear

parameters,� SIAM Journal of Applied Mathematics, vol. 11, no. 2, pp. 431�

441, June 1963.

[103] D. S. Broomhead and L. David, �Multivariable functional interpolation and

adaptive networks,� Complex Systems, vol. 2, no. 3, pp. 321�355, 1988.

[104] J. Moody and J. Darken C, �Fast learning in networks of locally-tunes process-

ing units,� Neural Computation, vol. 1, no. 2, pp. 281�294, Summer 1989.

[105] Y. H. Pao, Adaptive pattern recognition and neural networks. Addison-Wesley,

1989.

[106] D. F. Specht, �Probabilistic neural networks,� Neural Networks, vol. 3, no. 1,

pp. 109�118, 1990.

[107] P. Karl, �On lines and planes of closest �t to systems of points in space,�

Philosophical magazine, vol. 2, no. 11, pp. 559�572, 1901.

[108] Z. Pawlak, �Rough sets,� International Journal of Computer and Information

Sciences, vol. 11, no. 5, pp. 341�356, October 1982.

[109] R. Sowinski, Intelligent Decision Support: Handbook of Applications and Ad-

vances of the Rough Sets Theory. Kluwer Academic Publishers, 1992.

[110] C. Cagatay, �Performance evaluation metrics for software fault prediction stud-

ies,� Acta Polytechnica Hungarica, vol. 9, no. 4, pp. 193�206, 2012.

[111] X. Yuan, Khoshgoftaar, E. B. Allen, and K. Ganesan, �Application of fuzzy

clustering to software quality prediction,� in Proceedings of 3rd Symposium on

ASSEST. IEEE, 2000, pp. 85�91.

[112] G. Denaro, M. Pezzem, and S. Morasca, �Towards industrially relevant fault

proneness models,� International Journal of Software Engineering and Knowl-

edge Engineering, vol. 13, no. 4, pp. 395�417, August 2003.

145

Bibliography

[113] E. Arisholm, L. Briand, and E. Johannessen, �A systematic and comprehen-

sive investigation of methods to build and evaluate fault prediction models,�

Journal of System and Software, vol. 83, no. 1, pp. 2�17, January 2010.

[114] T. Ostrand, E. Weyuker, and R. Bell, �Predicting the location and number of

faults in large software systems,� IEEE Transactions on Software Engineering,

vol. 31, no. 4, pp. 340�355, April 2005.

[115] Y. Jiang, B. Cukic, and Y. Ma, �Techniques for evaluating fault prediction

models,� Empirical Software Engineering, vol. 13, no. 5, pp. 561�595, October

2008.

[116] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, �Benchmarking classi�ca-

tion models for software defect prediction: A proposed framework and novel

�ndings,� IEEE Transactions on Software Engineering, vol. 34, no. 4, pp. 485�

496, August 2008.

[117] J. Demsar, �Statistical comparisons of classi�ers over multiple data sets,� Jour-

nal of Machine Learning Research, vol. 7, no. 1, pp. 1�30, January 2006.

[118] T. Mende and R. Koschke, �Revisiting the evaluation of defect prediction mod-

els,� in Proceedings of the 5th International Conference on Predictor Models in

Software Engineering (PROMISE), New York, USA, 2009, pp. 7:1�7:10.

[119] T. Mende and K. R, �E�ort-aware defect prediction models,� in Proceedings of

14th IEEE European Conference on Software Maintenance and Re-engineering

(CSMR), March 2010, pp. 107�116.

[120] S. Wagner, �A literature survey of the quality economics of defect-detection

techniques,� in Proceedings of the International Symposium on Empirical Soft-

ware Engineering (ISESE). ACM/IEEE, 2006, pp. 194�203.

[121] C. Jones, Software quality in 2010: a survey of the state of the art. Founder

and Chief Scientist Emeritus, December 2010.

146

Bibliography

[122] R. Huitt and N. Wilde, �Maintenance support for object-oriented programs,�

IEEE Transactions on Software Engineering, vol. 18, no. 12, pp. 1038�1044,

December 1992.

[123] B. Korel, �Automated software test data generation,� IEEE Transactions on

Software Engineering, vol. 16, no. 8, pp. 870�879, August 1990.

[124] R. S. Boyer, B. Elspas, and K. N. Levitt, �Select - a formal system for testing

and debugging programs by symbolic execution,� vol. 10, no. 6, pp. 234�245,

June 1975.

[125] L. A. Clarke, �A system to generate test data and symbolically execute pro-

grams,� IEEE Transactions on Software Engineering, vol. 2, no. 3, pp. 215�222,

September 1976.

[126] W. E. Howden, �Symbolic testing and the dissect symbolic evaluation system,�

IEEE Transactions on Software Engineering, vol. 4, no. 4, pp. 266�278, July

1977.

[127] J. A. Bauer and A. B. Finger, �Test plan generation using formal grammars,�

in Proceedings of the 4th International Conference on Software Engineering.

IEEE, 1979, pp. 425�432.

[128] W. Jessop, J. R. Kane, S. Roy, and J. Scanlon, �Atlas - an automated software

testing system,� in Proceedings of the 2nd International Conference on Software

Engineering. IEEE Computer Society Press, 1976, pp. 629�635.

[129] N. R. Lyons, �An automatic data generating system for data base simulation

and testing,� ACM SIGSIM Simulation Digest, vol. 8, no. 4, pp. 8�11, June

1977.

[130] D. L. Bird and C. U. Munoz, �Automatic generation of random self-checking

test cases,� IBM Systems Journal, vol. 22, no. 3, pp. 229�245, 1983.

[131] W. Xibo and S. Na, �Automatic test data generation for path testing using

genetic algorithms,� in Proceedings of Third International Conference on Mea-

147

Bibliography

suring Technology and Mechatronics Automation (ICMTMA), vol. 1. IEEE,

2011, pp. 596�599.

[132] M. Grindal, J. O�utt, and J. Mellin, �On the testing maturity of software

producing organizations,� in Testing: Academic and Industrial Conference-

Practice And Research Techniques, 2006. TAIC PART 2006. IEEE, 2006, pp.

171�180.

[133] K. Ananya and B. Swapan, �Static analysis of object-oriented systems using

extended control �ow graph,� in Proceedings of TENCON. IEEE, 2004, pp.

310�313.

[134] M. J. C Ghezzi and D. Mandrioli, Fundamentals of Software Engineering.

Prentice Hall, India, 1998.

[135] R. Jasper, M. Brennan, K. Williamson, B. Currier, and D. Zimmerman, �Test

data generation and feasible path analysis,� in Proceedings of the ACM SIG-

SOFT international symposium on Software testing and analysis. ACM, 1994,

pp. 95�107.

[136] S. Poonam and S. Tyagi, �Test data generation for basis path testing using

genetic algorithm and clonal selection algorithm,� International Journal of Sci-

ence and Research, vol. 3, no. 6, pp. 995�998, June 2014.

148

Dissemination

Journals

1. Yeresime Suresh, Lov Kumar and Santanu Ku. Rath, �Statistical and

Machine Learning Methods for Software Fault Prediction using CK Met-

ric Suite: A Comparative Analysis", ISRN Software Engineering, Vol.

2014, pp. 1-15, January 2014, Hindawi Publishers.

2. Yeresime Suresh, Lov Kumar and Santanu Ku. Rath, �Framework to

Assess the E�ectiveness of Software Fault Classi�cation", International

Journal of Information Processing, vol. 8, no. 2, pp. 1-12, June 2014,

IK Publishers.

3. Yeresime Suresh, and Santanu Ku. Rath, �Evolutionary Algorithms

for Object-Oriented Test Data Generation", ACM SIGSOFT Software

Engineering Notes, vol. 39, no. 4, pp. 1-6, July 2014.

4. Yeresime Suresh, and Santanu Ku. Rath, �Application of Meta-heuristic

Algorithms for Automated Software Test Data Generation", Interna-

tional Journal of Computational Intelligence Studies, Inderscience. [Ac-

cepted for Publication on: 25th April 2014]

149

Bibliography

Conferences

1. Yeresime Suresh, Meghansh Sharma, Shariq Islam, and Santanu Ku.

Rath, �Test Data Generation for Object-Oriented Methodology using

Clonal Selection Algorithm", in Proceedings of CONSEG: 7th Interna-

tional Conference on Software Engineering, pp. 27-33, 15th-17th Novem-

ber 2013, Pune, India. [Published by: Computer Society of India (CSI)]

2. Yeresime Suresh, Lov Kumar and Santanu Ku. Rath,� A Cost Based

Evaluation Framework for Software Fault Classi�cation using Chidamber

and Kemerer Metric Suite," 7th IEEE International Conference on Con-

temporary Computing (IC3), 7th-9th August 2014, JIIT Noida (Accepted).

150

Appendix A

Bank ATM pseudocode

package t e s t ;

import java . u t i l . Scanner ;

pub l i c c l a s s ATM {

pr i va t e i n t ba lance ;

i n t getBalance () {

re turn balance ;

}

void withdraw (i n t amount) {

i f (balance <1000)

System . out . p r i n t l n (" i n s u f f i c i e n t funds to withdraw") ;

e l s e i f (balance−amount<1000)

System . out . p r i n t l n (" balance a f t e r the withdrawl should not

be l e s s than 1000") ;

e l s e

deductBalance (amount) ;

}

void depo s i t (i n t amount) {

addBalance (amount) ;

151

Appendix A

}

void deductBalance (i n t amount) {

i n t ba l ;

ba l=getBalance () ;

bal−=amount ;

se tBa lance (ba l) ;

}

void addBalance (i n t amount) {

i n t ba l=getBalance () ;

ba l+=amount ;

se tBa lance (amount) ;

}

void setBa lance (i n t amount) {

balance=amount ;

}

/**

* @param args

*/

pub l i c s t a t i c void main (S t r ing [] a rgs) {

// TODO Auto−generated method stub

i n t cho i c e =0;

ATM a=new ATM() ;

whi l e (cho i c e !=−1){

System . out . p r i n t l n ("Enter your cho i c e ") ;

System . out . p r i n t l n (" 1 . Check Balance ") ;

System . out . p r i n t l n (" 2 .Withdraw Amount") ;

System . out . p r i n t l n (" 3 . Deposit Money") ;

System . out . p r i n t l n ("Enter −1 to e x i t ") ;

Scanner s=new Scanner (System . in) ;

cho i c e=s . next Int () ;

i f (cho i c e >3 | | cho i c e <1)

cont inue ;

152

Appendix A

e l s e i f (cho i c e==1)

System . out . p r i n t l n (a . getBalance ()) ;

e l s e i f (cho i c e==2){

System . out . p r i n t l n ("Enter Amount to withdraw") ;

i n t amount=s . next Int () ;

a . withdraw (amount) ;

}

e l s e i f (cho i c e==3){

System . out . p r i n t l n ("Enter Amount to Deposit ") ;

i n t amount=s . next Int () ;

a . d epo s i t (amount) ;

}

}

}

}

Listing A.1: Input Source Code for Bank ATM

153

Appendix B

Code Coverage Analysis

Code Coverage Ana lys i s :−

c l e a r

c l c

min = 1000 ;

max = 20000 ;

tot_max = 45000;

pin_c=0; mod_c=0; max_c=0; more_c=0; l e s s_c=0; tmax_c=0; wid_c=0;

ch= 'n ' ;

f i l e ID=fopen (' exp . txt ' , ' r ') ;

data=f s c a n f (f i l e ID , '%d ' , 3) ;

pin=data (1) ;

tot_amt=data (2) ;

ba l=data (3) ;

f c l o s e (f i l e ID) ;

upin = input ('Enter 4 Dig i t Pin Number : ') ;

i f pin~=upin

f p r i n t f ('Wrong PIN Number ! ! ! ! ! \ n I n s e r t the card again \n ') ;

pin_c=1;

e l s e

154

Appendix B

ch= 'y ' ;

end

whi l e ((ch== 'y ') | | (ch== 'Y '))

amt=input ('Enter amount to be withdrawn : ') ;

f i l e ID=fopen (' exp . txt ' , ' r ') ;

data=f s c a n f (f i l e ID , '%d ' , 3) ;

pin=data (1) ;

tot_amt=data (2) ;

ba l=data (3) ;

f c l o s e (f i l e ID) ;

i f (mod(amt , 100) ~= 0)

mod_c=1;

f p r i n t f ('Entered amount i s not in mu l t ip l e o f 100\n ') ;

e l s e i f amt>max

max_c=1;

f p r i n t f ('Entered amount i s g r e a t e r than maximum withdrawal

amount which i s :%d\n ' , max) ;

e l s e i f amt>bal

more_c=1;

f p r i n t f ('Entered amount i s g r e a t e r than cur rent balance

which i s :%d\n ' , ba l) ;

e l s e i f bal−amt<min

le s s_c=1;

f p r i n t f ('Entered amount l e ad s balance to l e s s than minimum

balance which i s :%d\n ' , min) ;

e l s e i f (tot_amt + amt) > tot_max

tmax_c=1;

f p r i n t f ('Entered amount l e ad s todays t r an sa c t i on balance

to maximum l im i t :%d\n ' , tot_max) ;

f p r i n t f ('Your todays t o t a l withdrawl amount:%d\n ' , tot_amt

) ;

e l s e

155

Appendix B

wid_c=1;

bal = bal−amt ;

tot_amt = tot_amt+amt ;

f i l e ID=fopen (' exp . txt ' , 'w ') ;

A=[pin ; tot_amt ; ba l] ;

f o r i = 1 : 3

f p r i n t f (f i l e ID , '%d\n ' , A(i)) ;

end

f c l o s e (f i l e ID) ;

f p r i n t f ('New balance :%d\n ' , ba l) ;

end

ch=input ('Want to cont inue ?(Y/N) ' , ' s ') ;

end

f p r i n t f ('Total Paths=7\n ') ;

total_path = pin_c + mod_c + max_c + more_c + les s_c + tmax_c +

wid_c ;

f p r i n t f ('No . o f Paths Covered=%d\n ' , total_path) ;

coverage=(total_path *100) /7 ;

f p r i n t f ('Path Coverage=%0.2 f%%\n ' , coverage) ;

The above code is the portion of code coverage implementation. The test

data achieved through the use of Clonal selection algorithm, Binary particle

swarm optimization and Arti�cial bee colony algorithm are passed as input

to the code coverage module, to achieve better coverage during the testing

process.

156

	Certificate
	Acknowledgment
	Abstract
	List of Acronyms / Abbreviations
	List of Figures
	List of Tables
	List of Symbols
	Introduction
	Motivation
	Research Objectives
	Summary of Contributions
	Outline of the Thesis

	Literature Review
	Fault prediction
	Observations

	Test data generation for traditional methods
	Results and analysis

	Summary

	Effectiveness of Machine Learning Methods in Fault Prediction Analysis
	Introduction
	Research Background
	Empirical Data Collection
	Data Normalization
	Dependent and Independent Variables

	Machine Learning Methods
	Statistical Methods
	Artificial Neural Network
	Radial Basis Function Network
	Functional Link Artificial Neural Network
	Probabilistic Neural Network

	Fault Prediction using Feature Reduction Techniques
	Application of Principal Component Analysis
	Application of Rough Set Theory

	Performance Evaluation Parameters
	Results and Analysis
	Fault Data
	Metrics Data
	Descriptive Statistics and Correlation Analysis
	Attribute Reduction
	Machine Learning Methods
	Comparison of Fault Prediction Models
	Comparison with existing methods

	Complexity analysis of prediction models
	Threats to validity
	Relation between fault prediction and test data generation
	Summary

	Cost-Based Evaluation Framework for Software Fault Classification
	Introduction
	Cost-Based Evaluation Framework
	Estimated fault removal cost (Ecost)
	Estimated testing cost (Tcost)
	Normalized fault removal cost (NEcost)

	Performance Evaluation Parameters
	Results and Analysis
	Neural network as a classifier

	Summary

	Test Data Generation for Object-Oriented Program using Meta-heuristic Search Algorithms
	Introduction
	Meta-heuristic Search Algorithms
	Role of meta-heuristic search based algorithms in software testing
	Need for automated test data generation

	Extended Control Flow Graph (ECFG)
	ECFG features
	Cyclomatic complexity computation for ECFG

	Fitness Function based on Korel's Branch Distance Function
	Case study: Bank Automatic Teller Machine (ATM)

	Test Data Generation for Bank ATM
	Construction of CFG for an individual method
	Construction of ECFG
	Test data generation using meta-heuristic search algorithms

	Results
	Case study: Bank ATM
	Experimental settings
	Interpretation of results
	Code coverage analysis

	Summary

	Conclusions and future scope of work
	Future scope of work

	Bibliography
	Dissemination
	Bank ATM pseudocode
	Code Coverage Analysis

