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Abstract 
Experimental investigation of plasma arc cutting has been carried out using AISI 

4140 and AISI 304 stainless steel as work-piece. The process parameters were considered 

as follows: feed rate, cutting current, cutting speed, gas pressure, voltage and torch height. 

The response parameters were chosen as follows: material removal rate (MRR), surface 

roughness (SR), right bevel angle (RBA), chamfer, dross, kerf width and heat affected 

zone (HAZ) which are the main cut quality characteristics of plasma arc cutting operation. 

The optimization of the process parameters have been carried out using desirability 

function, grey based principal component analysis (PCA) hybrid approach, genetic 

algorithm (GA), particle swarm optimization (PSO), simulated annealing (SA) and 

teaching-learning-based-optimization (TLBO) algorithm coupled with response surface 

methodology (RSM). A regression model was developed that represents the relationship 

between independent and dependent variables based on RSM. This type of novel approach 

has been proposed to evaluate and estimate the influence of plasma arc machining 

parameters on the quality of cut. This user-friendly mathematical approach is straight 

forward and the results thus obtained have also been validated by running confirmatory 

tests. The premise attributes provide beneficial knowledge for managing the machining 

parameters to enhance the preciseness of machined parts by plasma arc cutting. The 

obtained results indicate that the TLBO approach was significantly affected by the 

machining parameters directly with easy operability and economically. 

Key words: Desirability; GA; Grey; HAZ; MRR; PAC; PCA; PSO; RBA; SA; SR; 

TLBO  
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1 INTRODUCTION 

1.1 Overview 

Modern industries depend on the manipulation of heavy metal with alloys. Different 

cutting methods are used to machine raw materials into specified pieces for making 

infrastructure and machine tools. Plasma arc cutting (PAC), developed in the mid 1950's 

was predominantly used to cut stainless steel and aluminium alloys. Plasma is the fourth 

and the most highly energized state of matter. In fact, plasma appears and behaves like a 

high temperature gas but with the capability to conduct electricity [1]. The Plasma is 

generally defined as the gas that is partially or fully ionized containing electrons, ions, 

neutral atoms and/or molecules. There are two possible states of plasma, thermal and non-

thermal. Non-thermal plasmas are characterized by their low temperature while thermal 

plasmas have relatively very high temperatures and very high energy content. Partial 

thermal equilibrium is attained between the electrons and the heavy particles of the 

plasma plume. In the mid to late twentieth century, thermal plasmas have been tested and 

used extensively in many applications such as extractive metallurgy, process metallurgy, 

plasma spray coatings, plasma welding and cutting, synthesis of advanced materials and 

toxic and hazardous waste treatment. In the mid to late twentieth century, thermal plasmas 

have been tested and used extensively in many applications such as extractive metallurgy,  

process metallurgy, plasma spray coatings, plasma welding and cutting, synthesis of 

advanced materials and hazardous waste treatment [2]. 

The basic principle is that the arc formed between the electrode and the work piece 

is constricted by a fine bore, copper nozzle. This increases the temperature and velocity of 

the plasma emanating from the nozzle. The temperature of the plasma can be raised up to 
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20,000 °C and the velocity can approach the speed of sound. When used for cutting, the 

plasma gas flow is increased so that the deeply penetrating plasma jet cuts through the 

material and molten material is removed in the efflux plasma [3]. Since the introduction of 

the PAC process in the mid-1950, there has been a steady growth in its application in the 

metal fabrication industries for profile cutting of metallic sheets and plates. Despite 

superior industrial developments, the process has received very little attention from the 

research community on any of the scientific aspects of the process, including thermal 

plasma generation, plasma- material interaction, liquid metal removal and process control 

[4]. 

In PAC, the outlet of nozzle is very small in size to create a continuous flame to 

work material at a constant range of current density. The high rate of plasma jet is due to 

its tremendous thermal energy and momentum which tends in melting, vaporizing and 

removal of the material of the nozzle. Similarly, when the flow rate of plasma jet becomes 

very slow then unwanted dross is formed at bottom of work piece. So, a well optimized 

plasma cutting system is required for effective machining in industries. The practicability 

and efficacy is required to be established through experimentation and optimization using 

statistical and nature inspired algorithms based optimization approach for the processing 

parameters of PAC in order to achieve the best optimal setting. 

Experimentation and making inferences are the complimentary features of general 

scientific methodology. Statistics as a scientific discipline is mainly designed to achieve 

these objectives. Planning of experiments is very useful in deriving clear and accurate 

conclusions from the experimental observations. On this basis the inferences have three 

main aspects. Firstly, it establishes methods for drawing inferences from observations 
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when these are not exact and probabilistic in nature. Secondly, it specifies methods for 

collection of data appropriately, so that assumptions for the application of appropriate 

statistical methods can be successfully implemented. Lastly, techniques for proper 

interpretation of results are devised [5]. State of the art knowledge in PAC is defined more 

by the huge amount of patents literature than by journal papers; this fact induces a strong 

need for understanding the physical reasons behind industrially patented successful ideas 

that, due to patenting rules and strategies, are often not completely and correctly described 

[6; 7]. 

1.2 Literature Review 

The surface roughness and material removal rate of AISI 1017 mild steel using 

manual PAC machining was analyzed by Taguchi methodology.  Bhuvenesh et al. [8] 

observed that the relationship between average material removal rate and average surface 

roughness is inversely proportional to each other. Kechagias and Billis [9] modeled a 

parametric design of computer numerical controlled (CNC) plasma arc cutting process of 

St. 37 carbon steel and AISI steel plates by using robust design of orthogonal array L18 

(2
1
X3

7
). Arc current is the most significant factor. The plate thickness is the least 

significant parameter in PAC process. Madic and Radovanovic [10] modeled a parametric 

design of PAC process by using artificial neural network (ANN) to predict surface 

roughness. It is observed that surface roughness increases with increasing cutting speed, 

but decreases with increasing cutting arc current. Good surface finish can be achieved by 

this process using 8 mm thick plate, when cutting current and cutting speeds are set nearer 

to their higher and lower level of the experimental range respectively. 
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The proficiency of a manufacturing practice to produce a desired quality of cut and 

material removal rate (MRR) depend on various considerations. The factors that bias 

output responses are machining parameters, tool and work piece material properties and 

cutting conditions. Therefore, it is important for the researchers to model and appraise the 

relationship among roughness and the parameters affecting its value. The determination of 

this correlation remains an open field of research, mainly on account of the advances in 

machining and materials technology with the feasible modeling techniques. In 

machinability investigations, it is reviewed that the statistical design of experiments is 

used quite extensively. Statistical designs were assigned to the process of design of 

experiment so that the adequate data can be examined by statistical methods, resulting in 

precise and objective conclusions [11]. Yun and Na [12] carried out an experiment about 

the real time control of PAC process using intensity measurements of ejected plasma gas. 

They observed that the amount of the attached dross substantially reduced by a simple 

controlled speed. Zhang et al. [13] gave the various aspects of keyhole throughout the 

PAC process. Their experimental results revealed that once the keyhole was established, 

the width of the keyhole did not change with the changes in the welding current and the 

welding speed. But, it changed with the variation in the flow rate of the plasma gas and 

the diameter of the orifice. Asiabanpour et al. [4] optimized the quality of 18 parts 

manufactured by the automated plasma cutting process using response surface method 

(RSM) and desirability functions. It was concluded that a high value of current and 

pressure are necessary for quality cut due to PAC process.  

The input parameters of plasma arc cutting process using QstE-380 and Hardox 450 

alloy steel plate were optimized by using RSM. Ferreira et al. [14] observed that there 
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was increase in cutting speed to 65 % from 35 % with reduction in cost around 28 %. 

Hatala et al. [15] described the effect of technological factors on roughness parameters 

(Ra) and heat affected zone (HAZ) of the steel surface EN ISO S355 by using planned 

experimentation and regression model analysis. They concluded that for achieving higher 

quality of cut surface it was recommended to use higher pressures of plasma gas and 

appropriate feed rate of plasma torch. For getting lower HAZ value, the cutting speed and 

power should be controlled. Schitsin et al. [16] developed the application of plasma 

cutting of metals using reversed polarity current and mixed gas supply. The high 

efficiency of plasma cutting with reversed polarity in both the manual and automatic 

cutting modes in the plant conditions is stressed.  

CNC plasma cutting process by using S235JR sheet materials at different cutting 

speeds, amperes and arc voltages was experimented and temperature distribution, 

thickness of HAZ, surface roughness (SR) and hardness were measured from the material 

at their different values. Based on the values obtained from these measurements, the ideal 

cutting conditions were identified for the materials exposed to the cutting procedures [17]. 

Chakravarty et al. [18] validated the obtained results of hardness and toughness responses 

in spark plasma sintered zirconia toughened alumina (ZTA) machining by utilizing neural 

network and genetic algorithm technique. Zirconia content, spark plasma sintered (SPS) 

temperature and heating rate were assumed as the input variable in the entire 

experimentation. Bober [19] solved the cutting scheme of numerical controlled (NC) 

plasma cutting machine by employing backtracking algorithm, genetic algorithm and 

heuristic algorithm respectively. He discovered that the novel genetic algorithm gave 

predominant results among all algorithms with short interval of span in the machining.  
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The difficulty generated in laser beams, flame or plasma torches, water jet, and 

metal cutter paths of 2-Dimensional cutting operations was identified. Lee and Kwon [20] 

proposed a two-step genetic algorithm combining global search for piercing point 

optimization and local search for part sequencing. Keraita and Kim [21] examined the 

efficiency of a PC-based CNC pipe profile cutting machine by simultaneously managing 

only two axes. The manufactured CNC pipe cutting machine of plasma arc cutting process 

has the ability of making high precision parts by simultaneously controlling only two 

axes. Mikkelsen [22] investigated of ignition propensity of plasma cutting and other hot 

work processes in the nuclear industry. He found that the plasma cutting of similar 

sections of carbon steel led to higher relative ignition hazard than was seen for arc 

gouging. This design indicates that arc ampere is the most important parameter which 

affects the whole design of experiment by 50.89 % and the torch stand-off distance 

influences also right bevel angle by 15.90 % and plate thickness by about 6.20 %. Gullu 

and Atici [23] investigated the consequence of plasma arc parameters on the structure 

variation of AISI 304 and St. 52 steel plates by digital optic microscope (Maker: 

Panasonic, Model: PRIOR) and Vicker hardness measurement device for HAZ and 

hardness respectively. After cutting, it is seen that the areas near to our surface of the part 

hardness increases i.e., around 250-350 HV and decreased towards core of the material.  

A Fuzzy model was developed for predicting SR in plasma cutting of AISI 4140 

steel plate. It was evident from the statistical analysis that the cutting speed was the most 

significant factor affecting the SR [24]. Kim et al. [25] studied the characteristics of the 

plasma cutting for thick steel ship plate. They found that an increase in electric current 

increased the straightness and depth of heat affected zone of cutting plane. An increasing 



M. Tech. (Research) Thesis  
 

National Institute of Technology, Rourkela Page 47 
 

cutting speed increased the surface roughness of cutting surface and decreased the 

straightness of cutting plane. Plasma cutting conditions should comprehensively be 

considered for cutting shape, depth of heat affected zone and surface roughness of cutting 

surface.  

A report on the investigation of selected transient phenomena taking place in PAC 

that are relevant for process optimization was described and high-speed imaging 

diagnostics were exploited for the characterization of different technological solutions in 

order to provide deeper insights into torch and process design [26]. Saravanakumar et al. 

[27] applied RSM with Fuzzy ruled based approach to optimize the parameters of servo 

pneumatic system and analysis of variance (ANOVA) test has been carried out by Minitab 

software. Ye et al. [28] optimized the input variables of the inductive angle sensor 

utilizing RSM technique to test validity and accuracy of the model. Asiltürk and Neseli 

[29] modeled a mathematical design to optimize surface roughness using Taguchi based 

RSM. The feed rate was found to have critical effect in enhancing the surface smoothness 

in turning operation. RSM approach has been applied in turning process on AISI 410 steel 

with surface roughness as the output response and concluded that the feed rate is the most 

significant parameter on the SR among all chosen machining factors [11]. 

A model of design of experiment was developed by considering tool geometry 

parameters as input factors to optimize the output response i.e., SR. The results revealed 

that the radius of nose in tool gave dominant characteristics to the measured response 

[30]. Sankar et al. [31] used the combined approach of RSM and particle swarm 

optimization (PSO) technique to analyze the performance characteristics on system 
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identification of an orthotropic and isotropic plate along a dynamic system with 4 degree 

of freedom on time domain signals. 

Fuzzy theory was used for the prediction of cutting parameters in PAC process of 

AISI 4140 steel. The parameters considered in this study were plasma arc current, cutting 

speed, and thickness of cut material. Fuzzy rule–based modeling was employed for 

prediction of surface roughness. The most convenient pipe cutting method according to 

the Fuzzy analytic hierarchy process (AHP) and Fuzzy technique for order of preference 

by similarity to ideal solution (TOPSIS) techniques for ship building industry was 

illustrated [32]. Kafali et al. [33] discovered that the plasma cutting was the most 

favorable pipe cutting technique for straight cut of carbon steel pipes and more 

productive. By this method the shipyards were able to obtain a competitive advantage in 

pipe cutting operation. Todorov et al. [34] studied the aims to preview a modular 

conception of building high speed sheet metal cutting machines using three different 

sources – laser, plasma and water jet machining. The modular principle of building 

opportune to develop a wide variety of variants allowing different work piece parameters 

with addition to the usage of the specified cutting sources covering a range of machines. 

They focused on a product created using virtual prototyping technology showing its 

advantages in the development of multiple variants design. 

An electrode insulation layer was developed using oxygen plasma surface treatment 

for electrochemical micro-drilling. Hung et al. [35] suggested that the most effective 

improvement was to coat the insulation layer on the electrode sidewall so that current 

could only be accurately released from the bottom end. The innovative oxygen plasma 

surface treatment was used to improve film adhesion on the helical edge of electrode. 
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Krajcarz [36] described different ways of cutting metal, such as water jet cutting, laser 

and plasma cutting. He found that the water jet cutting was the most versatile method for 

the separation of materials. This technique can cut through almost any material such as 

steel, stone, ceramics, aluminium, glass, wood, plastics, laminates, etc. But laser plasma 

seems to be more universal because it can be used to cut materials ranging from 0.5-160 

mm. Zheng et al. [37] examined the efficacy and safety of terazosin and plasma kinetic 

resection of the prostate (PKRP) in the treatment of benign prostatic hyperplasia (BPH) 

patients with coexisting hypertension. They concluded that PKRP combined with 

terazosin in treating BPH with concomitant hypertension patient was a safe and effective 

procedure with a good patient compliance. King et al. [38] investigated the plasma arc 

welding process for TiB2–20TiC ceramics. They concluded that the large crystals and 

pores present in the FZ present critical flaws that would decrease the strength of a welded 

joint. Bhuvenesh et al. [39] investigated the SR and MRR of AISI 1017 mild steel using 

manual plasma arc cutting machining by Taguchi methodology. They observed that the 

relationship between average MRR and average SR was inversely proportional to each 

other. Yun and Na [12] carried out an experiment about the real time control of PAC 

process by using intensity measurements of ejected plasma gas. They observed that the 

amount of the attached dross substantially reduced by a simple controlled speed.  

The various aspects of keyhole were analyzed throughout the PAC process. The 

results revealed that once the keyhole is established, the width of the keyhole does not 

change with the changes in the welding current and the welding speed whereas, it changes 

with the changes in the flow rate of the plasma gas and the diameter of the orifice [40]. Xu 

et al. [41] carried out an experiment to reduce the kerf width and to improve the kerf 
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quality by using the hydro-magnetically confined plasma arc on engineering ceramic 

plates. They concluded that for a given diameter of nozzle, a high quality cut can be 

produced by using a lower arc current than that was usually required in conventional PAC 

process, while ensuring a fine arc shape and capability of cutting simply by employing 

hydro-magnetic constriction. Senthilkumar et al. [42] stated that the Non-Dominated 

Sorting GA-II (NSGA-II) was a fastest, elitist multi-objective genetic algorithm that was 

broadly used for generating the Pareto frontier. Its main advantage in solving multi-

objective problems is that it leads the search toward the global Pareto front while 

sustaining diversity of the solution set along that front.  

The advanced cutting techniques on Hardox 500 and St. 37 steel materials were 

compared and the effect of structural properties of the material was analyzed. Dahil et al. 

[43; 44] noticed that the plasma cutting is used to cut the work material with maximum 

hardness and minimum cutting damage occurs in the wire erosion process. Salonitis et al. 

[45] recently carried out an experimental investigation of the PAC process. Kumar et al. 

[46] modelled a Semi-empirical mathematical model on responses of wire electo-

discharge machining (WEDM) process using RSM approach. Ghodsiyeh et al. [47] 

optimized the parameters of WEDM operation utilizing RSM technique as a multi-

objective type problem on titanium alloy material. Madić et al. [48] optimized CO2 laser 

cutting process with several optimization techniques such as ANN trained with 

Levenberg–Marquardt algorithm, real coded genetic algorithm (RCGA), simulated 

annealing (SA) and improved harmony search algorithm (IHSA) approaches. Reddy et al. 

[49] optimized the input variables of electro-discharge machining (EDM) operation using 

Taguchi technique on the MRR, SR, white layer thickness and surface crack density. 



M. Tech. (Research) Thesis  
 

National Institute of Technology, Rourkela Page 51 
 

Further, they built a mathematical model by performing nonlinear regression analysis for 

predicting the responses of EDM process. Lal et al. [50] investigated the impact of 

WEDM process parameters on the kerf width while machining newly developed hybrid 

metal matrix composite (Al7075/SiC/Al2O3) material. Taguchi methodology was 

employed to optimize the machining parameters on the kerf width. Molchanova et al. [51] 

compared the special features of plasma, water jet and laser cutting and piercing of 

structural materials which are used in radio electronics. Zhu et al. [52] applied optical 

methods to analyze the effects of the rate of air flow in plasma arc machining. They 

concluded that the shape, height, intensity and thickness of ground-state OH distribution 

differ significantly with air flow rates. 

The surface topology, hardness distribution, friction and wear properties were 

analyzed using the microstructure of the brazed parts which was strengthened by plasma 

arc powder [53]. Zhang et al. [54] studied the metallurgical, nano-mechanical and wear 

behaviors of (CuCoCrFeNi) 95B5 multi-element alloy coated products which were 

fabricated by plasma transferred arc cladding process. Xu et al. [55] modeled a device 

which generated stable cold plasma jet under the atmospheric pressure. They analyzed 

friction, wear and thermal tests on a mirror steel NAK80/diamond friction pair in 

atmospheres of air, nitrogen and nitrogen cold plasma jet (NPJ) respectively. Xiaojie et al. 

[56] explored the performances of cutting by plasma with their new arc ignition circuit. 

They found that the performance of plasma cutting was affected significantly by cutting 

current and speed. 

The quality, mechanical properties and micro-structure of the cut edges of steel can 

be achieved by plasma, laser beam, water jet and Oxy-fuel flame cutting processes. 
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Weglowski and Pfeifer [57] suggested that the lowest roughness was achieved by means 

of plasma cutting over the water surface. Wang et al. [58] tested the accuracy of digital 

control of the plasma cutting power supply and the two power electronic building blocks. 

From the performance test results, they concluded that the design was rational and 

feasible, and the developed high power plasma cutting power supply which worked in 

reliably with excellent performance. Vereshchago and Kostyuchenko [59] designed a 

physical-mathematical model of source-arc system in plasma cutting which takes into 

account the instability of arcing at low currents. 

The cutting performance, such as cutting efficiency and electrode wear of PAC were 

tested for casing and wellhead [60]. The results showed that cutting performance is 

affected significantly by cutting current and velocity. Thiébaud et al. [61] modelled a 3-

Dimensional thermal simulated model for the flame cutting process using thick steel 

plates. They analyzed the metallurgical properties of steel and found the efficiency of 

process as 26.5 % throughout the experimentations. Tezuka et al. [62] studied different 

advanced cutting process such as plasma arc, laser and abrasive water jet machining 

operations to achieve the application of removing the fuel debris and the internal core of 

nuclear power plant. They found that both PAC and abrasive water jet (AWJ) machining 

economically enhanced the removal process of unwanted debris from the plant as 

compared to laser cutting process. Sun et al. [63] applied a new system in the plasma arc 

cutting power supply by low-frequency pilot arc technology to control the rapidity and 

stability of the arc. They concluded that this type of arrangement would help to achieve 

excellent dynamic responsibility. Prevosto and Kelly [64] investigated the characteristics 

of cutting arcs which were produced at the region of nozzle exit-anode gap and inside of 



M. Tech. (Research) Thesis  
 

National Institute of Technology, Rourkela Page 53 
 

the nozzle. They carried out experiments by varying cutting torch with specific energy 

density. 

The experiments to analyze the influence of plasma welding and cutting by varying 

cathode and the type of erosion have been carried out. Nemchinsky [65] described the role 

of cathode geometry and plasma flow pattern in the cathode proximity. Mancinelli et al. 

[66] analyzed a 2D model of the gas breakdown development in the space-charge layer of 

the double-arc cutting system which was continuous to the nozzle of a cutting arc torch 

operated with oxygen. They found that the flow of return electrons stops the cutting 

current loop of double-arcing process. Krajcarz [36] compared the best cutting technology 

for cutting purpose among AWJ, PAC and laser cutting process. He found that PAC was 

the appropriate machining for cutting thick steel plate. Kavka et al. [67] carried out 

experiments on PAC in the steam working medium. They found that around 20% of total 

available power was utilized for cutting of materials. Jiajian et al. [68] experimented on 

the dynamics of air flow rate of plasma discharge in non-equilibrium condition. It is 

concluded that the shape, height, intensity and thickness of ground-state OH distribution 

changed significantly with flow rate of air. Ismail and Taha [69] studied the hardness 

distribution of multiple passes in plasma arc surface hardening operation. They found that 

the value of hardness was higher at the center of the plasma arc hardening tracks and then 

decreased in the region adjacent to each plasma arc track. Guo and Ueng [70] optimized 

the deposition condition to increase the performance of acetylene/argon plasma in router 

bit and also analyzed the surface through scanning electron microscopy to enhance the 

quality of routing. Gruber et al. [71] observed the plasma arc between nozzle tip and 

anode in a series of duty cycles using high-speed camera. They revealed that the melting 
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process of hafnium at the tip of cathode caused the formation of droplet and this would 

reduce material loss of rate of cathode material. Farahnakian et al. [72] carried out 

experimentation the condition of turning operation by attaching plasma and ultrasonic set 

up on the AISI 4140 hardened steel. Results concluded a reduction in the cutting forces by 

hybrid machining in comparison with computed tomography (CT), positron emission 

tomography (PET), and user acceptance testing (UAT) process on cutting conditions. The 

surface roughness of work piece can be enhanced in the proposed machining. Emmelmann 

et al. [73] improved the plasma welding operation without taking any type of filler 

material for steel sheets. They observed the enhancement of performance of plasma 

welding can be improved by using a low power laser beam which was less than 500 W. 

The parameters of PAC of EN 31 steel by utilizing weighted principal component 

analysis based on Taguchi L27 orthogonal array were optimized. Das et al. [74] revealed 

that gas pressure is the most significant factor which affects the responses of PAC. 

Yoshihiro et al. [75] studied the effect of magnetic arc blow in the operation of oxygen 

plasma arc cutting. They successfully reduced the generation of double arc on steel plates 

using magnetized shield cap attachments. Akkurt [76] examined the machining quality 

such as cut edge deformation, cut surface properties, cut channel geometry and 

metallurgical practices in various cutting methods i.e., AWJ cutting, laser beam cutting 

(LBC), plasma beam cutting (PBC), water shield plasma cutting (WSPC), wire electrical 

discharge cutting (WEDC), electrical discharge machining (EDM), oxygen flame cutting 

(OFC), saw cutting (SC), electron beam machining (EBM), milling cutting (MC), ultra-

sonic machining (USM) and other conventional machining. He observed that the most 

significant changes occur with respect to metallurgical properties and hardness values 
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during oxygen flame cutting. In this method, the hardness values varied from the surface 

to the center and most part of the material is affected by the amount of heat released.  

The results of inert gas cutting of stainless steel and aluminum showing that good 

quality cuts are achieved with more than 60 % of the maximum cutting speed. Wandera et 

al. [77] suggested that the parameter limits for the velocity are set to 100 and 80 % of the 

maximum cut speed for better accurate results. Zhou et al. [78] developed the analysis of 

energy balance, a new composite heat source model of the manual process of oxygen 

cutting, an element birth and death technique was used in the numerical analysis by using 

the finite element code in ANSYS. Chen [79] analyzed the effect of cut quality of mild 

steel on CO2 laser machining by varying the gas composition such as oxygen, argon, 

nitrogen and helium, and their pressures. He found that a high concentration of oxygen 

was required for high performance of machining as compared to other inert gases. 

Ahmadi et al. [80] gave a mathematical model about oxygen assisted mild steel cutting by 

cw CO2 and Yb:YAG fiber lasers. The model originated from the conservation equations 

of mass, momentum, and energy in a steady state. This model approached to numerical 

predictions of nozzle speed, cutting speed and contribut ion of oxidation power. 

1.3 Summary 

Although lot of work has been done in the field of plasma arc machining, from the 

literature survey it is clear that there is lack of research in stainless steel of grade AISI 304 

and AISI 4140 for enhanced quality of cutting operation through plasma. Moreover, the 

knowledge about the fundamental parameters of plasma arc machining like cutting 

current, voltage, stand-off gap, feed rate and pressure of gas are incomplete. It is observed 

that literature in context to optimization of the quality response of plasma arc machining 
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based on various optimization techniques is limited. Optimization of the cutting 

characteristics like material removal rate, surface roughness, right bevel angle, dross, kerf 

and heat affected zone by various optimization techniques such as RSM, desirability, GA, 

PSO, SA, TLBO and DEA approach are still in its initial stages and therefore, there is 

scope for further development in these areas. 

1.4 Objectives of the Present Work 

From the summary of literature review, following objectives are outlined as: 

a) Experimental investigation of plasma arc cutting operation of stainless steel AISI 

304 and AISI 4140. 

b) Modeling of optimization criteria of plasma cutting operation using RSM, 

desirability function, Grey based PCA hybrid approach, genetic algorithm, PSO, 

SA and TLBO algorithm approaches. 

c) Developing the portable laboratorial plasma arc cutting machine set up and 

optimization of its process parameters. 

d) Investigating the cutting characteristics of CNC Oxy-fuel gas cutting using DEA 

based on Taguchi approach. 
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THEORY OF PLASMA CUTTING 

 

 

  



M. Tech. (Research) Thesis  
 

National Institute of Technology, Rourkela Page 58 
 

2 THEORY OF PLASMA CUTTING 

In this chapter, basic fundamentals of plasma and its applications are described. 

Further, the principle of Oxy-fuel gas cutting process and the description of stainless steel 

have also been explained. 

2.1 What is Plasma? 

 Generally, plasma is described as the fourth state of matter. 

 Plasma appears and behaves like a high temperature gas but with a capability to 

conduct electricity [81; 82]. 

 

Fig. 1 States of matter [81] 

2.2 Natural Plasma 

Approximately 99 % of the visible universe comprises of plasma. Plasma dominates 

the atmosphere of earth within solar system and farther out in the interstellar space. Some 

natural plasma can be observed close to the earth's surface and examples are given below 

[83]. 

 Sun consists of hot plasma with magnetic field as shown in Fig. 2. 
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Fig. 2 Natural example hot sun [84] 

 Lightning is the formation of electrically conducting plasma channel through the 

air in excess of 5 km distance from the ground's surface [85]. 

 

Fig. 3 Another example lightning [86]  
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2.3 Artificial Arc Creation 

In early 1950’s, the first open arc was discovered through tungsten inert gas (TIG) 

welding [87]. Further, the conventional plasma arc cutting process was applied in live 

industrial applications in 1960 [88]. 

2.4 How Plasma Cuts Through Metal? 

The plasma cutting process, as used in the cutting of electrically conductive metals, 

utilizes this electrically conductive gas to transfer energy from an electrical power source 

through a plasma cutting torch to the material being cut [89]. 

 

Fig. 4 Principle of plasma cutting [83] 

2.5  Types of Plasma Cutting Process 

In this section, the various types of the plasma cutting technologies are described.  

2.5.1 Conventional plasma arc cutting 

The plasma jet generated by conventional dry arc constriction techniques was 

introduced in 1957 by Union Carbide's Linde Division. In the same year, Dr. Robert Gage 

got a patent, which was a virtual monopoly for union carbide for 17 years. This technique 
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could be used to cut any metal at relatively high cutting speeds. The thickness of a plate 

could range from thin sheet metal to plates as thick as 10 inches (i.e., 250 mm). 

The cut thickness was ultimately dependent on the current-carrying capacity of the 

torch and the physical properties of the metal. A heavy duty mechanized torch with a 

current capacity of 1000 Amperes could cut through 10 inches thick of stainless steel and 

aluminium. However, in the most industrial applications, plate thickness seldom exceeded 

two inches. In this thickness range, conventional plasma cuts were usually beveled and 

had a rounded top edge. Beveled cuts were a result of an imbalance in the heat input into 

the cut face. 

A positive cut angle resulted because the heat energy at the top of the cut dissipated 

as the arc progressed through the cut. This heat imbalance was reduced by placing the 

torch as close as possible to the work piece and applying the arc constriction principle. 

Increased arc constriction caused the temperature profile of the electric arc to become 

more uniform and extended. Correspondingly, the cut became squarer. Unfortunately, the 

constriction of the conventional nozzle was limited by the tendency of increased 

constriction to develop two arcs in series, one arc between the electrode and nozzle, and a 

second arc between the nozzle and work piece. This phenomenon was known as double 

arcing, and damaged both the electrode and nozzle. Double arcing severely limited the 

extent to which plasma cut quality could be improved. 

Since the introduction of the plasma arc process in the mid-1950, considerable 

research has been focused on increasing arc constriction without creating double arcing. 

Plasma arc cutting as performed then is now referred to as conventional plasma cutting. It 

can be cumbersome to apply if the user is cutting a wide variety of metals and different 
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plate thicknesses. For example, if the conventional plasma process is used to cut stainless 

steel, mild steel, and aluminium, it is necessary to use different gases and gas flows for 

optimum cut quality on all three metals. Conventional plasma cutting predominated from 

1957 to 1970, and often required very expensive gas mixtures of argon and hydrogen [83].  

2.5.2 Air plasma cutting  

Air cutting was introduced in the early 1960s for cutting mild steel. The oxygen in 

the air provided additional energy from the exothermic reaction with molten steel. This 

additional energy increased cutting speeds by about 25 % over plasma cutting with 

nitrogen. Although air cutting was not pursued in the late 1960s in the United States and 

the western world, steady progress was made in Eastern Europe with the introduction of 

torch (i.e., Feinstrahl Brenner) producing a restricted arc, developed by Manfred van 

Ardenne. This technology was adopted in Russia and eventually in Japan. The major 

supplier became Mansfield of East Germany. Several shipyards in Japan were early users 

of air plasma cutting equipment. However, the electrode life was relatively short and 

studies disclosed that the cutting face of the work piece had a high percentage of nitrogen 

in solution which could cause porosity when subsequently welded [83].  

2.5.3 Water shield plasma cutting  

Water shield plasma cutting was similar to dual flow except that water was 

substituted for the shield gas. Cut appearance and nozzle life were improved because of 

the cooling effect provided by the water. Cut rectangularity, cutting speed and dross 

accumulation were not measurably improved over dual flow plasma cutting because the 

water did not provide additional arc constriction [83]. 
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2.5.4 Water injection cutting  

Earlier, it was stated that the key to improving cut quality was increasing arc 

constriction while preventing double arcing. In the water injection plasma cutting process, 

water was radially injected into the arc in a uniform manner. The radial impingement of 

the water at the arc provided a higher degree of arc constriction than could be achieved by 

just the copper nozzle alone. Arc temperatures in this region are estimated to approach 

50,000 K or roughly nine times the surface temperature of the sun and more than twice the 

temperature of the conventional plasma arc. The net result obtained was improved cut 

dimension, increased cutting speeds and the elimination of dross while cutting mild steel 

[83].  

2.5.5 Underwater cutting  

Further attempts in Europe to decrease the noise level of the plasma arc and to 

eliminate smoke development as much as possible led to underwater cutting. This method 

of high power plasma cutting with cutting currents above 100 amperes has become so 

popular that today many high power plasma cutting systems can cut under water. For 

underwater plasma cutting, the work piece is immersed about 2-3 inches under water and 

plasma torch cut while immersed in the water. The smoke and noise level as well as the 

arc glare are reduced dramatically. One negative effect of this cutting method is that the 

work piece cannot be observed while cutting and the cutting speed is reduced by 10-20 %. 

Further, the operator can no longer govern the cutting process from the arc sound nor can 

oversee the quality of cut produced by the consumables. 

Finally, while cutting in water, some water surrounding the cut zone disintegrates 

into oxygen and hydrogen, and the freed oxygen has a tendency to combine with the 



M. Tech. (Research) Thesis  
 

National Institute of Technology, Rourkela Page 64 
 

molten metal from the cut (especially aluminium and other light metals) to form metal 

oxide, which leaves free hydrogen gas in the water. If this free hydrogen gets collected in 

a pocket under the work piece, then it creates small explosions while reignited with the 

plasma jet. Therefore, the water needs to be constantly agitated while cutting such metals 

[83; 90]. 

2.5.6 Precision plasma cutting set up 

The set-up of the equipment being very simple, the easiness of use of the process 

and the quality of the components increase productivity and achieve high quality plasma 

cutting [83]. 

 

Fig. 5 Set up of plasma cutting process [83] 
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2.6 Computer Numerical Controlled Oxy-Fuel Gas Cutting 

Cutting of thick plates is the challenging task in industrial practice. Computer 

Numerical controlled (CNC) profile cutting process has got advancement up to highly 

sophisticated and automatic operation to cut thick plates. That may be either gas i.e., Oxy-

fuel cutting or plasma cutting machine. There is the requirement of variety of shapes or 

profiles to be cut from varying thickness of plates from 1-250 mm in industrial practice 

from variety of materials of plates like mild steel, stainless steel etc. Such cut shaped 

profiles are used in manufacturing and fabrication work [91]. 

In Oxy-flame cutting, a preheat flame is directed typically to the edge, or corner of 

the large section of steel to be cut. Once the steel becomes locally preheated to about 870 

°C or higher, it is blasted with a stream of high purity oxygen to make the cut. The oxygen 

readily reacts with the hot iron to produce a stream of molten FeO. The molten metal is 

swept away by the flowing oxygen. The iron combusts approximately according to: 

 Fe (hot solid) +1/2 O2 (gas) = FeO (liquid)      ∆H298°C = -63.8 kcal/mole (1) 

The enthalpy of this reaction heats and makes the molten products of combustion 

(i.e., FeO) so that it can flow away from the cut surface under the action of the blowing 

oxygen,. It heats the surrounding material so that the cut can be propagated. Iron oxide in 

the liquid state in actuality has an indefinite stoichiometry, which can vary depending on 

temperature and probably pressure. The metallurgist usually refers to molten iron oxide as 

FexO, where x typically ranges in between 0.95-1.0, under usual conditions. From 

Equation 1, the value of ∆H298°C is for the case where x equals 0.95. If more than 

stoichiometric quantities of oxygen are supplied to the iron being cut, there is the 
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possibility for the molten FeO to react and solidify to higher forms of oxides (Fe3O4 and 

Fe2O3) according to: 

 FeO +1/6 O2 = 1/3 Fe3O4  ∆H298°C = -25.5 kcal/mole (FeO further oxidized) (2) 

 FeO +1/4 O2 = 1/2 Fe2O3  ∆H298°C = -34.6 kcal/mole (FeO further oxidized) (3) 

These additional oxidations of the iron to Fe3O4 and Fe2O3 occur from either (i) 

more-than-stoichiometric amounts of oxygen being dissolved into the molten FeO by the 

high partial pressure of gaseous oxygen surrounding the liquid FeO which pushes the 

oxygen concentration in the molten FeO towards saturation, or by (ii) excess free oxygen 

in the gas phase combining and reacting with the ejected and cooling FeO as it solidifies. 

It seems reasonable to presume that both mechanisms will occur. The final products of 

iron cutting can be a mixture of all three of these oxides together with some melted, but 

un-oxidized iron that was also produced by the intense heat release of the above oxidation 

reactions. Material discharged from the kerf (i.e., the slit or the notch) of oxygen cutting is 

reported of consisting about two-thirds iron oxide and one-third un-oxidized iron that was 

melted and carried out of the kerf by the stream of unused oxygen [91]. 

2.7 Stainless Steel 

Stainless Steel is a steel alloy with a minimum of 10.5-11 % chromium content by 

mass [92]. In the 1821, French metallurgist Pierre Berthier discovered the iron-chromium 

alloys [93]. But in the 1912, Sheffield metallurgist Harry Brearley published it as Non-

rusting Steel in The New York Times [94]. In this project, AISI 4140 and AISI 304 

graded stainless steel are considered for experimentation of cutting process.  
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3 EXPERIMENTATION 

The whole experiment of plasma arc cutting process of both 1
st
 and 2

nd
 cases was 

carried out by computer numerical controlled (CNC) plasma machine (Model: BURNY 

1250, Maker: MESSER) where the cutting process is conducted in hypertherm 

environment. The parameters of plasma machining viz. oxygen supply, fuel gas supply 

and power supply were fixed at 20 MPa, 1.2 MPa and 400 VDC respectively. The 

material of AISI 4140 stainless steel of thickness 120 mm and 100 mm was selected for 

cutting operation in both the cases. Feed rate, cutting current, voltage and torch height 

were considered as the input process parameters. The quality of cut and material removal 

rate were measured as the major responses. Material removal rate (MRR) was measured 

by electronic weighing device. Surface roughness (SR) was measured using Talysurf 

device. The values of dross, chamfer, kerf width and heat affected zone (HAZ) were 

calculated with the help of Vernier caliper and the right bevel angle was measured using 

protractor. The industrial set up of plasma cutting operation is shown in Fig. 6 and the 

work piece of after cut is shown in Fig. 7. The structure of entire experimentation in this 

project is tabulated in Table 1. 
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Table 1 Structure of Experimentation 

 
Phase 1 Phase 2 Phase 3 Phase 4 

Work piece 
AISI-4140 

Stainless Steel 

AISI-4140 

Stainless Steel 

AISI-304 

Stainless Steel 

AISI-4140 

Stainless Steel 

Thickness of 

work piece 
120 mm 100 mm 5 mm 85 mm 

Process 

parameter 

a) Feed Rate 

b) Cutting 

Current 

c) Voltage 

d) Torch 

Height 

a) Feed Rate 

b) Cutting 

Current 

c) Voltage 

d) Torch 

Height 

a) Cutting 

Current 

b) Cutting 

Speed 

c) Gas 

Pressure 

d) Stand-off 

Gap 

a) Nozzle 

speed 

b) Torch 

height 

c) Oxy-fuel 

speed 

Response 

a) MRR 

b) SR 

c) Right 

Bevel 

Angle 

a) MRR 

b) SR 

c) Chamfer 

d) Dross 

e) Kerf 

a) MRR 

b) SR 

c) Chamfer 

d) Dross 

e) Right 

Bevel 

Angle 

f) Kerf 

g) HAZ 

a) Bevel 

angle 

b) Dross 

width 

c) Dross 

height 

Plasma cutting 

machine 
BURNY 1250 BURNY 1250 

Portable 

laboratorial PAC 

machine set up 

LINDE 

controller 

profile cutter 

Location of 

experimentati

on 

L & T Kansbahal L & T Kansbahal 
Central Workshop 

of NITRKL 

L & T 

Kansbahal 

RSM (Design 

of 

Experiment) 

Box-Behnken 

Design (L27) 

Central 

Composite 

Design (L30) 

Box-Behnken 

Design (L27) 
Taguchi (L9) 
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Fig. 6 Experimental set up used for plasma cutting process at industry 

In 3
rd

 case, AISI 304 stainless steel was selected for cutting operation with 

dimensions of 250×70×5 mm
3
. Cutting current, cutting speed, gas pressure and stand-off 

gap were considered as the input process factors. MRR, SR, chamfer, dross, right bevel 

angle, kerf width and HAZ were measured as the output responses. MRR was measured 

by electronic weighing device. Surface roughness was measured using Talysurf device. 

The value of chamfer, dross, kerf width and HAZ were measured with Vernier caliper. 

The cutting process is carried out with portable plasma arc cutting system by attaching 

brass type of 2 mm diameter nozzle which is given in Fig. 8 (a). In plasma cutting 

operation, materials with high melting temperature on the cut surface of work piece are 

removed with the help of the flame of plasma as shown in Fig. 8 (b). The schematic 

diagrams of used base table and nozzle which was designed by Solid works version 12 are 
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shown in Fig. 8 (c) and (d). The nozzle of plasma arc machining is presented in Fig. 8 (e), 

which is made up of brass material. The work piece of AISI 304 stainless steel after cut by 

plasma is shown in Fig. 8 (f). 

 

Fig. 7 Work piece of AISI 4140 steel after cut 
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Fig. 8 (a) Experimental set-up for plasma arc cutting system, (b) During plasma arc cutting 

operation, (c) Schematic diagram of used table for cutting process, (d) Schematic diagram of 

used nozzle for cutting process, (e) Brass nozzle used in plasma cutting and (f) Work piece 

of AISI 304 steel after cut 

The experimental setup of Oxy-fuel gas cutting process is displayed in Fig. 9. The 

whole experiment of CNC Oxy-fuel gas cutting process is experimented CNC profile 
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cutting machine (Model: LINDE, Maker: SIEMENS). AISI 4140 stainless steel is taken 

for investigation with thickness of 85 mm as shown in the same figure. Nozzle speed, 

Oxy-fuel speed and torch height were considered as the input process parameters. Bevel 

angle, dross breadth and dross height were measured as the output responses. 

 

Fig. 9 Experimental set up of CNC Oxy-fuel gas cutting operation 

3.1 Development of an Automated Plasma Arc Cutting System 

The plasma arc cutting setup comprises mainly of following parts: 
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3.1.1 Speed control unit 

Here, speed control unit is the movable tractors which run with a predefined speed 

required for cutting. Plasma arc cutting torch is fixed with it using a clamp in a 

particularly 90 º so that during cutting a stable and continuous arc form. Cutting speed can 

be changed using a regulator. 

3.1.2 Rail track 

Movable tractor is run in a particular speed over this rail track in a straight line. 

Plasma arc cutting torch: Torch is fixed with the movable tractor unit. A brass nozzle is 

attached in the torch and argon gas is passed through this. The torch was maintained at an 

angle approximate 90 º to the work piece. 

3.1.3 Plasma arc cutting machine 

This is the main part of plasma arc cutting setup by which controlled amount of 

current and voltage is supplied during cutting process. A rectifier with current range 50-

400 Amperes and voltage up to 230 Volts is attached for supplying power to the system 

depending on the current setting. 

3.1.4 Gas cylinder 

For plasma arc cutting argon gas is supplied to the cutting torch with a particular 

flow rate so that an inert atmosphere formed and stable arc created for cutting. Gas flow is 

controlled by a regulator and valve. 
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3.1.5 Work holding table 

A heavy ironed table is used for holding the work piece as well as speed controller 

with plasma torch, so that during cutting gap between the brass nozzle and work piece is 

maintained. 

3.2 Cut Quality Characteristics of Plasma Cutting 

3.2.1 Metal removal rate 

Metal removal rate (MRR) is one of the most important criterions determining the 

machining operation, with a higher rate always preferred in such operations. The metal 

removal rate is calculated using the following expression: 

 𝑀𝑅𝑅 =
𝑤𝑖 − 𝑤𝑓

𝜌 × 𝑡𝑚
 (4) 

where 𝑤𝑖  and 𝑤𝑓  are the initial and final weight of work piece before and after cut 

using plasma respectively. The 𝜌 is the density of AISI 304 and 4140 graded steel i.e., 

8000 kg/mm
3
 and 𝑡𝑚  is the machining time. 

3.2.2 Average surface roughness 

Surface finish is another important aspect in the machining. The average surface 

roughness (Ra), which is mostly used in industry, was taken up for the present study. The 

roughness was measured with a sampling length of 10 mm. The average surface 

roughness was measured using a Talysurf tester (a stylus-type surface roughness meter). 

3.2.3 Right bevel angle 

The bevel angle is the deviation angle from the 90º of fine cut which occurred due to 

shape of plasma flame. This is the major quality characteristics of plasma arc cutting 

(PAC) operation at cut side wall. 
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3.2.4 Chamfer 

A chamfer is a beveled edge connecting two surfaces. If the surfaces are at right 

angles, the chamfer will typically be symmetrical at 45 º. This is another characteristic of 

dimensional accuracy of the fabricated parts using plasma arc cutting operation. 

3.2.5 Dross 

Dross is the type of mass of solid impurities that forms on the surface of molten 

metal as a result of oxidation in the plasma arc cutting process. 

3.2.6 Kerf 

During plasma-arc cutting, the hot plasma jet melts the material and the kinetic 

energy of the jet removes the melt thus producing the desired kerf. This process causes a 

larger heat input in the material which results in a larger heat affected zone (HAZ). The 

dimensional accuracy largely depends on the kerf size, which in turn depends on the 

process variables. 

3.2.7 Heat affected zone 

There exists a narrow heat affected zone in PAC. The temperature of the zone will 

be below meting point and above recrystallization temperature. There is a change in 

micro-structure in heat affected zone. It is the zone of metallurgical change where the 

melted liquid have converted to solid form at the lowest temperature and this changes 

occur at the outer extremity [95]. 

  



M. Tech. (Research) Thesis  
 

National Institute of Technology, Rourkela Page 77 
 

 

VARIOUS OPTIMIZATION 

METHODS 
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4 VARIOUS OPTIMIZATION METHODS 

4.1 Response Surface Methodology 

According to Montgomery, response surface method (RSM) is a collection of 

mathematical and statistical techniques that are helpful for modeling and analysis of 

problems in which response is influenced by several input variables, and the main objective 

is to find the correlation between the response and the variables inspected [24]. RSM has 

many advantages, and has effectively been applied to study and optimize the processes. It 

offers enormous information from a small number of experiments. In addition, it is 

possible to detect the interaction effect of the independent parameters on the response. 

The model easily clarifies the effect for binary combination of the independent process 

parameters. Furthermore, the empirical model that related the response to the independent 

variables is used to obtain information. According to Pradhan, it has been widely used in 

analyzing various processes, designing the experiment, building models, evaluating the 

effects of several factors and searching for optimum conditions to give desirable responses 

and reduce the number of experiments [25], [26] and [27]. RSM is an interaction of 

mathematical and statistical techniques for modeling and optimizing the response 

variables which incorporates quantitative independent variables. The behavior of the 

system is explained by the following second order polynomial regression model also 

known as a quadratic model. 

 𝑦 = 𝑏0 + ∑ 𝑏𝑖 𝑥𝑖

𝑛

𝑖=1
+ ∑ 𝑏𝑖𝑗𝑥𝑖𝑥𝑗

𝑛

𝑖=1,𝑗=1
+ ∑ 𝑏𝑖𝑖 𝑥𝑖

2
𝑛

𝑖=1
± 𝛹 (5) 



M. Tech. (Research) Thesis  
 

National Institute of Technology, Rourkela Page 79 
 

where 𝑦 and 𝑥 are out put response and input factor respectively, 𝑏0, 𝑏𝑖 , 𝑏𝑖𝑗  and 𝑏𝑖𝑖  

are the polynomial constants and Ψ is the error constant. The coefficients of regression 

model can be estimated from the experimental results by Statistica 9.1 software [96]. 

4.2 Desirability Approach 

The final aim of response surface methodology approach is to optimize the process 

factors on responses. Therefore, the developed models can be utilized for the simulation 

and optimization for any machining operation. To optimize the process with two or more 

output responses, it is very useful to utilize the concept of desirability function. This is 

one of the most widely used methods for optimization of multiple response processes in 

the field of science and engineering. It combines multiple responses into one response 

called desirability function by choosing a value from 0 (one or more characteristics are 

unacceptable) to 1 (all process characteristics are on target). Each of the estimated 

responses is transformed to an individual desirability value (di) ranging from 0 to 1. 

Mathematically, it is defined as per following equation: 

 𝑑𝑖 = {

0

[
𝑦�̃� − 𝑦𝑖𝑚𝑖𝑛

𝑦𝑖𝑚𝑎𝑥
− 𝑦𝑖𝑚𝑖𝑛

]

1

}    

𝑦�̃� ≤ 𝑦𝑖𝑚𝑖𝑛

𝑦𝑖𝑚𝑖𝑛
≤ 𝑦�̃� ≤ 𝑦𝑖𝑚𝑎𝑥

𝑦�̃� ≥ 𝑦𝑖𝑚𝑎𝑥

 (6) 

where the values 𝑦𝑖𝑚𝑖𝑛
 and 𝑦𝑖𝑚𝑎𝑥

 the minimum and maximum acceptable value of 𝑦�̃� 

(each output response variable) respectively. The value of individual desirability value 

increases as the desirability of the corresponding response increases. The overall 

desirability value (𝐷) of the process was computed as a geometric mean of the individual 

desirability functions and is given as following equation [97]: 

 𝐷 = (𝑑1 × 𝑑2 × … × 𝑑𝑛)
1
𝑛 (7) 
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All computations of desirability function were carried out utilizing Statistica 9.1 

software. 

4.3 Grey Relational Analysis 

In the procedure of grey relational analysis (GRA), the experimental results of 

responses are normalized at first in the range between 0 and 1 due to different 

measurement units. This data pre-processing step is termed as grey relational generating. 

Based on the normalized experimental data, grey relational coefficient is calculated to 

correlate the desired and actual experimental data using Equation 11. The overall grey 

relational grade (GRG) is determined by averaging the grey relational coefficient 

corresponding to selected responses using Equation 12. This approach converts a multiple 

response process optimization problem into a single response optimization by calculating 

overall grey relational grade [65] and [66]. The normalized experimental results can be 

expressed as follows. 

For the larger-the-better characteristic  
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For the smaller-the-better characteristic  
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and for the nominal-the-better characteristic  
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where max yi(k) and min yi(k) are the largest and smallest values of yi(k) 

respectively and yob(k) is the target of yi(k). The Grey relational coefficient ξi(𝑘) for yi(k) 

to y0(k) is calculated as  

 
min max

0 max

( )
( )

i

i

k
k






  

  

 

(11) 

where 𝛥0𝑖(k)=x0(k)−x𝑖(k) is the difference of absolute value between x0(k) and xi(k), 

Δmin and Δmax are the minimum and maximum values of the absolute differences (Δ0i) of 

all comparing sequences. Ψ is a distinguishing coefficient, 0 ≤ Ψ ≤ 1, the value of Ψ is to 

be set to 0.5 to maintain equal weightage of all parameters. GRG, γ i is obtained by 

averaging the grey relational coefficient corresponding to each experiment. 
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(12) 

Experiments were conducted according to RSM orthogonal array of L27 and L30. 

4.4 Principal Component Analysis 

Principal component analysis is a mathematical approach that converts a set of 

observations of probably correlated variables into a set of values of uncorrelated variables. 

It was invented very early and later mostly used as a tool in investigative data analysis and 

for the formation of predictive models. Principal component analysis can be done by 

Eigen value decomposition of a data covariance matrix or singular value decomposition of 

a data matrix. It is used for identifying patterns in data and expressing the data in such a 

way as to highlight their similarities and differences [34]. The main advantage of principal 

component analysis is that once the patterns in data have been identified, the data can be 

compressed i.e., by reducing the number of dimensions, without much loss of information. 

The explicit goals of principal component analysis are:  
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1. To extract the most significant information from the data, 

2. To squeeze the size of the data set by keeping only the significant, 

3. To simplify the explanation of the data set and 

4. To analyze the structure of the observations and the variables. 

The procedure is described as follows [34]: 

1. The original multiple quality characteristic array 
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i=1,2,...,m; j=1,2, ...,n [35] 

where m is the number of experiment and n is the number of the response. In the 

present work, x is the grey relational coefficient of each response.  

2. Correlation coefficient array  

The correlation coefficient array is evaluated as follows: 
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where Cov(xi(j)), xi(l) is the covariance of sequences xi(l) and xi(l), σxi(j) is the 

standard deviation of sequence xi(j) and σxi(l) is the standard deviation of sequence xi(l).  

3. Determining the Eigen values and eigenvectors 

The Eigen values and eigenvectors are determined from the correlation coefficient array: 

 0)(  ikmk VIR   (15) 
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where λ is the Eigen value nkn
n

k

k ,...,3,2,1,
1




  and  1 2 3, , ,...,
T

ik k k k kmV a a a a is the 

eigenvectors corresponding to the Eigen value λk. The Eigen values and its variation are 

evaluated as per Equation 15. 

4. Principal components 

The uncorrelated principal component is formulated as 
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(16) 

where Ym1 is called the first principal component, Ym2 is called the second principal 

component and so on. The principal components are aligned in descending order with 

respect to variance, and therefore, the first principal component Ym1 accounts for the most 

variance in the data. 

4.5 Genetic Algorithm 

Genetic Algorithm is used extensively for the solution of optimization problems and 

was first developed by Holland in the 1970s. These algorithms are based on the biological 

evolution process. A similar analogy is used to evolve solutions to complex optimization 

problems. The notable feature of Genetic Algorithm is that it emulates the biological 

system's characteristics like self-repair and reproduction. A potential solution to a problem 

may be represented by a set of parameters known as genes. These genes are combined 

together to form a string which is referred to as a chromosome. It is widely believed that 

ideally a binary string should be used for the chromosome. The set of parameters 

represented by a particular chromosome is called as genotype. This genotype contains the 

information required to construct an organism called the phenotype. A fitness function is 

analogous to the objective function in an optimization problem. The fitness function 



M. Tech. (Research) Thesis  
 

National Institute of Technology, Rourkela Page 84 
 

returns a single numerical fitness which is proportional to the utility or ability of the 

individual which that chromosome represents. During reproduction in the GA, individuals 

are selected from the population and recombined, producing off-springs which will 

comprise the next generation. Two parents are selected and their chromosomes are 

recombined, typically using the mechanisms of crossover and mutation. Crossover is the 

operation when two individuals are taken and their chromosomes are cut at some 

randomly chosen position, to produce two head and tail segments. These segments are 

swapped to produce two new full length chromosomes. The off springs inherit some genes 

from each parent. This is known as a single point crossover. Mutation is the technique 

used to randomly alter the genes with a small probability and is typically applied after 

crossover. Crossover is more important for rapidly exploring a search space. Mutation 

provides only a small amount of random search. If the GA has been implemented 

correctly, the population will evolve over successive generations so that the fitness of the 

best and the average individual in each generation increases towards the global optimum. 

A gene is said to have converged when 70% of the population share the same value of the 

fitness function [98]. 

4.5.1 Algorithm of GA approach 

1. Initial population: Generate random population of chromo-somes. 

2. Fitness: Evaluate the fitness of each chromosome in the population. 

3. Test: If the end condition is satisfied, stop, and return the best solution in current 

population. 

4. New population: Create a new population by repeating following steps until the 

new population is complete. Reproduction: Select two parent chromosomes from 



M. Tech. (Research) Thesis  
 

National Institute of Technology, Rourkela Page 85 
 

the population according to their fitness. Crossover: With a crossover probability, 

crossover the parents to form a new offspring (children). If no crossover was 

performed, offspring is an exact copy of parents. Mutation: With a mutation 

probability, mutate new offspring at each locus (position in chromosome). 

5. Replace: Use new generated population for a further run of algorithm.  

6. Loop: Go to step 2 [99-101]. 

4.6 Simulated Annealing 

Unlike other non-conventional optimization patterns, simulated annealing process 

uses single point search method. Simulated annealing method resembles the coding 

process of molten metals through annealing. At high temperatures, the atoms in the 

molten metal can travel freely with respect to each other, but as the temperature is 

reduced, the movement of the atoms becomes restricted. The atoms start to get ordered 

and finally form crystals having the minimum possible energy. However, the formation of 

the crystal typically depends on the cooling rate. If the temperature is reduced at a very 

fast rate, the crystalline state may not be attained at all; instead, the system may end up in 

a polycrystalline state, which may possibly have a higher energy state than the crystalline 

state. Therefore, in order to achieve the absolute minimum energy state, the temperature is 

to be reduced at a slow rate. The process of slow cooling is known as annealing in 

metallurgical practice. The simulated annealing procedure simulates this process of slow 

cooling of molten metal to achieve the minimum function value in minimization problem. 

The cooling phenomenon is simulated by controlling a temperature-like parameter using 

the concept of the Boltzmann probability distribution. According to Yang et al. a system 

in thermal equilibrium at a temperature T has its energy distributed probabilistically as  
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    /P E exp E KT   (17) 

where K is Boltzmann constant. By adjusting the temperature T and assuming that 

the search process follows the Boltzmann probability distribution, the convergence of an 

algorithm can be achieved [58], [59], [60] and [61]. Simulated annealing algorithm starts 

with an initial point and a high temperature T. A second point is generated at random in 

the vicinity of the initial point and the difference in the function values ΔE at these two 

points is calculated. If the second point has a smaller function value, the point is accepted; 

otherwise the point is accepted with a probability exp(−ΔE/T). This completes one cycle 

of the simulated annealing procedure. In the next cycle, again another point created at 

random in the neighborhood of the updated current point and the Metropolis algorithm is 

used to accept or reject the point. In order to simulate the thermal equilibrium at every 

temperature, a number of points (n) are usually tested at a particular temperature, before 

reducing the temperature. The algorithm is terminated when a sufficiently small 

temperature is obtained or a desirable minimal change in function value is observed. The 

initial temperature T and number of iterations N performed at every temperature are two 

important parameters, which govern the successful working of the simulated annealing 

procedure. The algorithm is terminated when a sufficiently small temperature is obtained 

or a desirable minimum change in function value is observed. The initial temperature T 

and number of iterations N performed at every temperature are two important parameters, 

which govern the successful working of the simulated annealing algorithm is given below 

[62], [63] and [64].  
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4.6.1 Algorithm of SA approach 

1. Randomly generated initial point X
0
 is to be chosen with a termination 

temperature Tlow. Also, the set number of iterations (N) to be performed at a 

particular temperature and iteration counter t=0. 

2. The value of objective function E1 = f(X
t
) is to be evaluated. 

3. A neighbourhood point X
t+1

 using random perturbation and the objective function 

at X
t+1

 as E2 = f(X
t+1

) is to be evaluated. 

4. ΔE = E2 −E1 IS to be determined. 

5. Go to following steps: 

(i) If ΔE < 0, the point is accepted. That is X
t
 = X

t+1
 and E1 = E2. 

(ii) Set t = t+1 and step-6 is executed. 

(iii) If ΔE≥0, the random number r in the range (0, 1) created. It is checked whether 

r≤exp(−ΔE/T). If satisfied then t = t + 1 is set and step-6 is used. Else begin with 

new initial point X
t
 and go to step-3. 

6. If t >N step-7 is executed. 

7. The temperature is reduced periodically by a factor k1 according to T = k1T and 

step-3 is adopted. 

8. If T≤ Tlow the process is terminated. 

4.7 Particle Swarm Optimization 

Particle swarm optimization (PSO) is a population based stochastic optimization 

technique developed by Eberhart and Kennedy [14] in 1995, inspired by the social 

behavior of bird flocking or fish schooling. The intelligence of swarm is based on the 

principle of social and psychological behavior of the swarm. The optimization procedure 
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is initialized with a population of random solutions and searches for optima by updating 

generations. The potential solutions called particles fly through the problem space by 

following the current optimum particles. PSO is very easy to implement and there are few 

parameters to adjust. The algorithm can be explained based on the following scenario: a 

group of birds are randomly searching food in an area. There is only one piece of food in 

the area being searched. All the birds do not know where the food is. But they know how 

far the food is in their search. So the best strategy to attain the food is to simply follow the 

bird, which is nearest to the food. In optimization problems, each bird in the search space 

is referred to as particle. All the particles are evaluated by the fitness function to be 

optimized and have velocities for the particles. The particles fly through the problem 

space by following the current optimum particles. The problem is initialized with a group 

of random particles and then searches for optima by updating generations. In all the 

iterations, each particle is updated by following two best values. The best solution 

achieved so far among the particle is called as particle best termed as pbest and the best 

solution obtained so far in the population is called as global best termed as gbest. A 

particle takes the entire particle toward its pbest and gbest locations. After finding the two 

best values, the particles are updated with its velocity and positions using Eqs. (18) and 

(19). 

 v[] =ω×v[]+C1rand()×(pbest[]−present[])+C2×rand()×(gbest[]−present[])  (18) 

 p[] =present[]+v[] (19) 

where 

v[]=Particle velocity 

p[]=New particle position 
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persent[]=Current particle (solution) 

pbest[]=Best solution among the each particle 

gbest[]=Best among defined as stated before 

rand()=Random numbers between 0 and 1 

ω=Inertia Weights i.e., 0.9 

C1, C2=learning factors, usually C1=C2=2. 

4.7.1 Algorithm of PSO approach 

1. Initialize a population of n particles randomly. 

2. Calculate fitness value for each particle. If the fitness value is better than the best 

fitness value (pbest) in history, then set current value as the new pbest. 

3. Choose particle with the best fitness value of all the particles considered so far as 

the gbest. 

4. For each particle; calculate particle velocity and position according to Eqs. (18) 

and (19). 

5. Particle velocities on each dimension are clamped to a maximum velocity i.e., 

vmax. If the sum of acceleration would cause the velocity on that dimension to 

exceed vmax (specified by the user), the velocity on the dimension is limited to 

vmax. 

6. Terminate if maximum number of iterations is reached. Else, go to Step 2. 

7. End. 

4.8 Teaching Learning Based Optimization 

Recently, Rao et al. [102] proposed a new population based method known as 

teaching-learning-based-optimization (TLBO) algorithm. TLBO resembles the teaching-
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learning process in a class room for finding out the global optimal solution. Teacher and 

learners are the two critical components of the algorithm and emphasizes on two basic 

modes of the learning, through teacher (known as teacher phase) and interacting with the 

other learners (known as learner phase). In this algorithm a group of learners is considered 

as population and different subjects taught to the learners are considered as different 

design variables of the optimization problem. A learner’s overall result is equivalent to the 

value of the objective function. 

4.8.1 Algorithm of TLBO approach 

1. Initialize the number of learners L (i.e., the population size), number of subjects J 

taught to the learners (i.e., the design variables). Select maximum number of 

iterations I. Set iteration counter i = 0.  

2. Generate a random population of results Y and calculate corresponding f(Y).  

3. Calculate mean result in each subject by using; 

 Mji = 
1

𝐿
 ∑ 𝑋𝑖𝑗𝐿

𝐿
𝐿=1  (20) 

4. Identify the best learner l-best.  

5. Calculate dmij = ri (Yijl-best – TFMij) for each j.  

 Update Yʹijk =Yijl + dmij for all j and k. 

6. If f(Yʹ) gives better result,  

 Accept Yʹ  

 Else  

 Retain Y as Yʹ. 

7. Randomly select two learners L1 and L2 such that f(Yʹ) L1 ≠ f(Yʹ) L2 

8. If f(YL1) is better than f(YL2)  
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 YʹʹijL1 = YʹijL1 + ri (YʹijL1-YʹijL2) (21) 

     Else 

 YʹʹijL1 = YʹijL1 + ri (YʹijL2- YʹijL1) (22) 

9. If f(Yʹʹ) is better  

 Accept Yʹʹ 

     Else 

    Retain Yʹ as Yʹʹ 

10. If i ≥ I 

    Terminate and Yʹʹ is solution 

     Else 

 i = i+1, Y = Yʹʹ, go to Step 3. 

4.9 Data Envelopment Analysis Model 

The data envelopment analysis (DEA) model is being currently used for optimization 

of different processes. In the present investigation, the optimization of the process 

parameters of the CNC Oxy-fuel gas cutting has been carried out using DEA approach. The 

work material was considered as AISI 4140 steel. The output responses are bevel angle, 

dross breadth and dross height. The input parameters are nozzle speed, Oxy-fuel speed and 

torch height. 

Data Envelopment Analysis model initiated in the 1978. Charnes et al. [103] 

demonstrated Charnes, Cooper and Rhodes (CCR) model as the conversion of a fractional 

linear measure of efficiency into a linear programming (LP) format. As a result, Decision-

Making Units (DMUs) could be assessed on the basis of multiple inputs and outputs, even if 

the objective function was unknown. This nonparametric approach solves an LP formulation 
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per DMU and the weights assigned to each linear aggregation are the results of the 

corresponding LP. The weights are chosen so as to show the specific DMU in as positive a 

light as possible, under the restriction that no other DMU, given the same weights, is more 

than 100 % efficient. Consequently, a Pareto frontier is achieved, marked by specific DMUs 

on the boundary envelope of input–output variable space. The frontier is considered a sign of 

relative efficiency, which has been achieved by at least one DMU. Adler et al. [104] 

described that DEA is a mathematical model that measures the relative efficiency of 

decision-making units with multiple inputs and outputs but with no obvious objective 

function to aggregate the data in its entireness. Relative efficiency is expressed as the ratio of 

total weighted output to total weighted input. 

4.9.1  Steps of DEA approach 

1. Normalization of input response 

It is necessary to normalize responses to ensure that all the attributes are equivalent 

and occurred in the domain of [0, 1]. The given response is normalized by the following 

equation: 

 𝑍𝑖𝑗 =
𝑋𝑖𝑗

max 𝑋𝑖𝑗
 (23) 

For i=1,2,…,m and j=1,2,…,n 

And for the bevel angle and dross breadth parameters as per the following equation: 

 𝑍𝑖𝑗 =
min 𝑋𝑖𝑗

𝑋𝑖𝑗
 (24) 

For i=1,2,…,m and j=1,2,…,n 

where Xij is the mean for the i
th

 response in the j
th

 experiment. 

2. Calculation for relative efficiency 
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For each experiment the relative efficiency has been computed by the aid of Lingo 

14 software package. Following equation is used for the calculat ion of the relative 

efficiency: 

 max 𝐸𝑘𝑘 = ∑ 𝑂𝑘𝑦

𝑘

𝑦

𝑉𝑘𝑦 (25) 

Such that, 

 ∑ 𝐼𝑘𝑥𝑈𝑘𝑥 = 1 (26) 

𝐸𝑘𝑠 ≤ 1 For all the design such that, 

 𝑈𝑘𝑥 , 𝑉𝑘𝑦 > 0 (27) 

3. Calculation for S/N ratio 

Applying Taguchi method to obtain relative efficiency value according to larger-the-

better criterion by the help of Statistica 9.1 software as per following formula: 

 η = −10 log10(
1

𝑛
∑

1

𝑦𝑖
2

𝑛

𝑖=1

) (28) 
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RESULTS AND DISCUSSION 
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5 RESULTS AND DISCUSSION 

Cutting the stainless steel plates are still more defying than that of other steel metals 

due to the difference in the physical, mechanical, and metallurgical properties of the 

metals to be cut. Proper choice of mechanism and process variables are, therefore, 

obligatory to make the cuts with good quality. Therefore, plasma arc cutting of stainless 

steel metals has increasing demand due to the higher penetration rates and with the 

benefits of high cutting speed providing higher productivity. This work demonstrated a 

bid for development of empirical models of the plasma arc cutting process based on 

response surface methodology (RSM). Parameter design of RSM being simple and 

effective is adopted for in-depth study to understand process parameters and their 

interaction effects on responses like accuracy of dimensions in different directions of PAC 

built parts with minimum experimental runs [39]. To maintain a high production rate and 

admissible quality of cut devices, the machining process parameters of PAC must be 

optimized [40].  

In the 1
st
 case study, the entire experimentations are arranged utilizing Box-Behnken 

Design (BBD). From the experimental data, multiple regression models for the material 

removal rate, surface roughness and bevel angle are produced utilizing RSM on AISI 

4140 steel. The machining parameters i.e., feed rate, cutting current, voltage and torch 

height are optimized utilizing proposed approach to maximizing MRR and minimizing the 

surface roughness and bevel angle. In general plasma arc cutting process involves a large 

number of response parameters. In the present investigation, a number of response 

parameters have been optimized with respect to number of process parameters using RSM 
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combined with grey relational analysis and principal component analysis. The quality of 

cut and material removal rate are taken as the responses. 

In the present 2
nd

 investigation experimental investigation of plasma arc cutting 

processes on AISI 4140 stainless steel is done using central composite design of RSM. 

The process parameters considered for this study are feed rate, cutting current, voltage and 

torch height. The responses are material removal rate, surface roughness, chamfer, dross 

and kerf.  

In the 3
rd

 study, a portable plasma arc cutting machine was renovated with automatic 

heating arrangement for micro-plasma cutting. The slots are made up of stainless steel. 

The whole experimentations are planned using Box-Behnken Design (BBD) on AISI 304 

stainless steel material. From the experimental data, multiple regression models for the 

material removal rate, surface roughness, chamfer, dross, right bevel angle, kerf width and 

heat affected zone are developed using RSM. The machining parameters, i.e., cutting 

current, cutting speed, gas pressure and stand-off gap are optimized using RSM to 

maximize MRR and minimize the value of other cut characteristics.  

5.1 Results of Case 1 

The response surface methodology was utilized to study the influences of the 

independent factors feed rate (A), cutting current (B), voltage (C) and torch height (D) at 

three variation levels in the extraction procedure which is tabulated in Table 2. The whole 

experimentations were planned using Statistica 9.1 software (Company: Statsoft). Three 

levels are selected for each independent variable such as low (-1), middle (0) and high 

level (+1) which is shown in Table 2. The experimental design consisted of twenty seven 

cases or runs according to single blocked BBD. Analysis of variance (ANOVA) and F-test 
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are used to check significant criteria for the fitted models. The results obtained were 

presented as mean values with standard deviation. After getting the layout of experimental 

design of input factors from Statistica software, the cutting operation by plasma arc on the 

selected work piece have been carried out. According to the DOE, the three output quality 

characteristics of cut are measured and tabulated in Table 3. The design of experiment 

consisted of actual level value of input factors with standard order of BBD and 

corresponding value of output responses. After simulating the optimization approach by 

software to this model, the ANOVA evaluation has been carried out to each response. 

Similarly, the estimated coefficient of the model was calculated for each cut quality. The 

influences of input variables in plasma arc machining for each response is briefly 

described below: 

Table 2 Values of Input Process Parameters 

Process parameters Units Code L(1) L(2) L(3) 

Feed Rate mm/min A 900 950 1000 

Cutting Current Ampere B 40 45 50 

Voltage Volt C 100 125 150 

Torch Height mm D 1 2 3 
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Table 3 RSM Design with Input Parameters 

Std. 

Order 

Run 

Order 

Feed Rate 

(mm/min) 

Current 

(Ampere) 

Voltage 

(Volt) 

Torch 

Height 

(mm) 

MRR 

(mm
3
/min) 

SR 

(µm) 

Right 

Bevel 

Angle  

(Degree) 

8 1 950 45 150 3 0.273575 6.46 4 

3 2 900 50 125 2 0.080358 4.54 3 

9 3 900 45 125 1 0.276183 6.59 3 

20 4 1000 45 150 2 0.115758 3.66 4 

7 5 950 45 100 3 0.253758 4.83 3 

23 6 950 40 125 3 0.212808 6.28 2 

26 7 950 45 125 2 0.055367 4.34 4 

22 8 950 50 125 1 0.102458 7.61 2 

27 9 950 45 125 2 0.055367 4.44 4 

2 10 1000 40 125 2 0.256292 2.94 3 

10 11 1000 45 125 1 0.279733 6.79 3 

15 12 950 40 150 2 0.03145 4.77 3 

21 13 950 40 125 1 0.425975 6.14 3 

17 14 900 45 100 2 0.057892 4.78 4 

6 15 950 45 150 1 0.075092 6.54 3 

24 16 950 50 125 3 0.486575 5.51 4 

12 17 1000 45 125 3 0.512717 3.87 4 

16 18 950 50 150 2 0.087883 5.41 4 

5 19 950 45 100 1 0.076375 7.71 3 

11 20 900 45 125 3 0.419067 7.86 3 

1 21 900 40 125 2 0.209792 6.25 3 

18 22 1000 45 100 2 0.099542 3.98 4 

25 23 950 45 125 2 0.055367 4.46 4 

4 24 1000 50 125 2 0.131058 5.71 3 

19 25 900 45 150 2 0.060208 5.86 4 

14 26 950 50 100 2 0.10515 4.19 3 

13 27 950 40 100 2 0.030183 5.73 3 

 

5.1.1 RSM with desirability function approach 

5.1.1.1 For material removal rate: 

The impact of estimated values of MRR was calculated and recorded in Table 4. 

The ANOVA evaluation for MRR has been carried out firstly and its results are tabulated 

in Table 5. Here, the block effect has also been considered because the levels of block are 
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taken as one. Due to this variation in block, there is negligible amount of effect arisen in 

experiment. This effect is ignored for further computation of optimization. The total 

degree of freedom for all input factors of plasma arc cutting is 26. From the Table 5, it is 

understood that the most of the terms have P-value less than 0.05 under the confidence 

interval of 95 %. Hence, these terms demonstrates significance within experiment. In case 

of individual terms, only torch height is the most significant among all parameters. Pareto 

chart of effects of all factors on MRR response are shown in Fig. 10 and the results 

indicate that the quadratic of torch height is the second most enhancing factor among all 

considered factors. The scatter plot between the observed and the predicted value of MRR 

of all 27 runs is shown in Fig. 11. It is concluded that there is a reasonable correlation 

between the measured and predicted values of MRR response. In Fig. 13, the histogram 

plot of predicted data of MRR with 95 % confidence interval of normal distribution is 

displayed. The surface and contour plot of this interaction terms have been considered for 

further analysis and are shown in Fig. 16-17 respectively. In this figure, it is clearly 

displayed that the value of MRR increases with increasing cutting current and torch 

height. In Table 6, the model of estimated coefficients of the independent variable on the 

MRR is presented. 

  



M. Tech. (Research) Thesis  
 

National Institute of Technology, Rourkela Page 100 
 

Table 4 Effect of Estimated Values for MRR 

Factor Effect Std. Err. T P 

Constant 0.240427 0.018048 13.32148 0.000000 

A (mm/min) 0.048600 0.031260 1.55470 0.145985 

A
2 

-0.090480 0.023445 -3.85922 0.002272 

B (Ampere) -0.028836 0.031260 -0.92246 0.374462 

B
2
 -0.048153 0.023445 -2.05384 0.062447 

C (Volt) 0.003511 0.031260 0.11232 0.912430 

C
2
 0.063487 0.023445 2.70790 0.019029 

D (mm) 0.153781 0.031260 4.91939 0.000354 

D
2
 -0.202444 0.023445 -8.63482 0.000002 

A×B 0.002100 0.054144 0.03879 0.969699 

A×C 0.006950 0.054144 0.12836 0.899989 

A×D 0.045050 0.054144 0.83204 0.421637 

B×C -0.009267 0.054144 -0.17115 0.866955 

B×D 0.298642 0.054144 5.51568 0.000133 

C×D 0.010550 0.054144 0.19485 0.848770 
 

Table 5 ANOVA Table for MRR 

Factors SS DoF MS F P 

A (mm/min) 0.007086 1 0.007086 2.41708 0.145985 

A
2 

0.043662 1 0.043662 14.89356 0.002272 

B (Ampere) 0.002495 1 0.002495 0.85094 0.374462 

B
2
 0.012366 1 0.012366 4.21826 0.062447 

C (Volt) 0.000037 1 0.000037 0.01261 0.912430 

C
2
 0.021497 1 0.021497 7.33273 0.019029 

D (mm) 0.070945 1 0.070945 24.20036 0.000354 

D
2
 0.218580 1 0.218580 74.56014 0.000002 

A×B 0.000004 1 0.000004 0.00150 0.969699 

A×C 0.000048 1 0.000048 0.01648 0.899989 

A×D 0.002030 1 0.002030 0.69229 0.421637 

B×C 0.000086 1 0.000086 0.02929 0.866955 

B×D 0.089187 1 0.089187 30.42278 0.000133 

C×D 0.000111 1 0.000111 0.03797 0.848770 

Error 0.035179 12 0.002932 
  

Total SS 0.548623 26 
   

 

  



M. Tech. (Research) Thesis  
 

National Institute of Technology, Rourkela Page 101 
 

Table 6 Regression Coefficients of MRR 

Factor Regression Coef. Std. Err. T P 

Constant 39.24466 11.02705 3.55895 0.003931 

A (mm/min) -0.06972 0.01870 -3.72736 0.002888 

A
2 

0.00004 0.00001 3.85922 0.002272 

B (Ampere) -0.23532 0.13626 -1.72698 0.109797 

B
2
 0.00193 0.00094 2.05384 0.062447 

C (Volt) 0.02407 0.02473 0.97351 0.349518 

C
2
 -0.00010 0.00004 -2.70790 0.019029 

D (mm) -2.53113 0.59271 -4.27045 0.001087 

D
2
 0.20244 0.02345 8.63482 0.000002 

A×B 0.00000 0.00011 0.03879 0.969699 

A×C 0.00000 0.00002 0.12836 0.899989 

A×D 0.00045 0.00054 0.83204 0.421637 

B×C -0.00004 0.00022 -0.17115 0.866955 

B×D 0.02986 0.00541 5.51568 0.000133 

C×D 0.00021 0.00108 0.19485 0.848770 
 

Pareto Chart of Standardized Effects; Variable: MRR

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.0029316
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Fig. 10 Pareto chart of standardized effect of factors on MRR 
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In Fig. 10, the torch height factor with quadratic form had shown the most 

significant impact on the MRR response of plasma arc cutting operation. From this Pareto 

chart it can be revealed the comparison of influences among out all types of terms (i.e. 

individual, square and interaction terms).  

Observed vs. Predicted Values

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.0029316
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Fig. 11 Plot of observed vs. predicted values of MRR 

The scatter plot between the observed and the predicted value of plasma cut 

responses of all 27 runs is shown in Fig. 11. This plot showed the comparison between 

each of the observed values with the predicted value which are calculated from the 

developed model. Here, the most of the points lie on the normal line of fitted values 

except the plot of MRR, because the uniformity lacks in the middle region. From this 

result it can be revealed that the response model fits best to experimental data, as the 

relationship between the actual and the predicted MRR is linear. 
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Predicted vs. Residual Values

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.0029316
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Fig. 12 Plot of predicted vs. residual values of MRR 

From the Fig. 12, no standard pattern is formed in the plot of predicted vs. residual 

values that showed the adequacy of the fitted model for MRR. This plot displayed the 

variation of the raw residuals with respect to the predicted values which occurred in the 

analysis part of optimization. 
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Histogram of Raw Residuals

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.0029316
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Fig. 13 Histogram plot of predicted values of MRR 

The perfect normal probability distribution of the histogram plot of residuals for 

MRR response is shown in Fig. 13. From the above graphs, it is seen that the normal 

probability created in the histogram plot of residual for MRR is tolerable. The red line in 

the graph depicts the normality distributed curve of predicted values of MRR and here it is 

fitted well with 95 % confidence interval. 
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Residuals vs. Case Numbers

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.0029316

-5 0 5 10 15 20 25 30

Case Number

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

R
a
w

 R
e
s
id

u
a
ls

 
Fig. 14 Plot of residuals vs. case numbers values of MRR 

From the Fig. 14, it is evident that the highest MRR value among all experimental 

runs is by the run number 26. The red line indicates that the value of MRR increases with 

increase in run order. In this figure, each point indicates the experimental run orders 

which are conducted as per design of experiment in plasma arc machining. 
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Probability Plot; Var.:MRR; R-sqr=.93588; Adj:.86107

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.0029316
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Fig. 15 Probability plot of MRR 

The normal probability plot of MRR corresponding to each regression terms figured 

in Fig. 15. In this plot, it can be predicted the effect of the standardized T-value effect on 

all type of terms in normal probability plot. Here, most of the interaction terms are merged 

in the middle region of the plot. 
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Fitted Surface; Variable: MRR

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.0029316
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Fig. 16 3D fitted surface plot of MRR 

The 3D surface plot of the significant interaction terms can be exerted in Fig. 16. It 

is to be noted that all other terms are taken into account at their average value. From the 

figure, it is evident that the interaction of cutting current and torch height influences the 

above mentioned output. 
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Fitted Surface; Variable: MRR

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.0029316
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Fig. 17 2D fitted counter plot of MRR 

The counter plots of interaction terms at their average level vs. MRR are found in 

Fig. 17. Mainly the shapes of counter plots might be elliptical or saddle form that 

indicates the combinations of each variable are significant except torch height vs. cutting 

current plot. The lowest value of MRR can thus be obtained in the maximum region of 

current as seen in Fig. 17. 

DV: MRR (mm/min)
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Profiles for Predicted Values and Desirability
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Fig. 18 Profile plot of predicted values and desirability of MRR 

The noble desirability function methodology helped to find out the optimum MRR 

response which fits the quadratic fit model. The level of variable giving the highest 

desirability, i.e., 1.0000 was considered as optimum parametric setting. The optimized 

levels of variables (A, B, C and D) were determined using the desirability profiles that are 

shown in Fig. 18 for predicted values of responses and red dotted line showed desirability 

function value. 
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Fig. 19 Desirability 3D surface plot of MRR 
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Desirability Surface/Contours; Method: Quadratic Fit 1.4 
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Fig. 20 Desirability 2D counter plot of MRR 

The technique of desirability function helped to get optimum MRR response which 

was fitted by the quadratic fit model. The 3D and 2D interaction plots were determined 

using the desirability profiles that are shown in Fig. 19 and Fig. 20 respectively. Here, the 

green and red area showed the minimum and maximum influence of input variables on 

output response in the interaction condition. 

5.1.1.2 For surface roughness: 

Similarly in case of SR output response, the effect of estimated values was 

computed and recorded in Table 7. The ANOVA for SR has been carried out firstly and 

its results are given in Table 8. Here, the block effect has also been considered because 

the levels of block are taken as one. Due to this variation in block, there is negligible 
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amount of effect occurred in experiment. This effect is ignored for further calculation of 

optimization. The total degree of freedom for all input factors is 26. From the Table 8, it is 

seen that the most of the terms have P-value less than 0.05 under the confidence interval 

of 95 %. Hence, these terms show significance within experiment. In case of individual 

terms, only feed rate and torch height are the most significant among all parameters. 

Pareto chart of effects of all factors on SR response are shown in Fig. 21 and the results 

indicate that the quadratic of torch height is the second most enhancing factor among all 

considered factors. The scatter plot between the observed and the predicted value of SR of 

all 27 runs is shown in Fig. 22. It is concluded that there is a reasonable correlation 

between the measured and predicted values of SR response. In Fig. 24, the histogram plot 

of predicted data of SR with 95 % confidence interval of normal distribution is displayed. 

In Table 9, the model of estimated coefficients of the independent variable on the SR is 

obtained. 

Table 7 Effect of Estimated Values for SR 

Factor Effect Std. Err. T P 

Constant 5.97389 0.109622 54.4952 0.000000 

A (mm/min) -1.48833 0.189871 -7.8386 0.000005 

A
2 

-0.06333 0.142404 -0.4447 0.664419 

B (Ampere) 0.14333 0.189871 0.7549 0.464869 

B
2
 -0.34458 0.142404 -2.4198 0.032331 

C (Volt) 0.24667 0.189871 1.2991 0.218308 

C
2
 -0.19958 0.142404 -1.4015 0.186385 

D (mm) -1.09500 0.189871 -5.7671 0.000089 

D
2
 -1.73333 0.142404 -12.1720 0.000000 

A×B 2.24000 0.328867 6.8113 0.000019 

A×C -0.70000 0.328867 -2.1285 0.054699 

A×D -2.09500 0.328867 -6.3704 0.000036 

B×C 1.09000 0.328867 3.3144 0.006174 

B×D -1.12000 0.328867 -3.4056 0.005215 

C×D 1.40000 0.328867 4.2570 0.001113 
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Table 8 ANOVA Table for SR 

Factors SS DoF MS F P 

A (mm/min) 6.64541 1 6.64541 61.4442 0.000005 

A
2 

0.02139 1 0.02139 0.1978 0.664419 

B (Ampere) 0.06163 1 0.06163 0.5699 0.464869 

B
2
 0.63327 1 0.63327 5.8553 0.032331 

C (Volt) 0.18253 1 0.18253 1.6877 0.218308 

C
2
 0.21245 1 0.21245 1.9643 0.186385 

D (mm) 3.59707 1 3.59707 33.2590 0.000089 

D
2
 16.02370 1 16.02370 148.1571 0.000000 

A×B 5.01760 1 5.01760 46.3933 0.000019 

A×C 0.49000 1 0.49000 4.5306 0.054699 

A×D 4.38902 1 4.38902 40.5815 0.000036 

B×C 1.18810 1 1.18810 10.9853 0.006174 

B×D 1.25440 1 1.25440 11.5983 0.005215 

C×D 1.96000 1 1.96000 18.1224 0.001113 

Error 1.29784 12 0.10815 
  

Total SS 44.11383 26 
   

 

Table 9 Regression Coefficients of SR 

Factor Regression Coef. Std. Err. T P 

Constant 220.9933 66.97735 3.29952 0.006346 

A (mm/min) -0.1877 0.11361 -1.65235 0.124368 

A
2 

0.0000 0.00006 0.44475 0.664419 

B (Ampere) -5.8032 0.82763 -7.01179 0.000014 

B
2
 0.0138 0.00570 2.41977 0.032331 

C (Volt) -0.0611 0.15018 -0.40685 0.691282 

C
2
 0.0003 0.00023 1.40153 0.186385 

D (mm) 13.9617 3.60005 3.87818 0.002195 

D
2
 1.7333 0.14240 12.17198 0.000000 

A×B 0.0045 0.00066 6.81127 0.000019 

A×C -0.0003 0.00013 -2.12852 0.054699 

A×D -0.0209 0.00329 -6.37036 0.000036 

B×C 0.0044 0.00132 3.31441 0.006174 

B×D -0.1120 0.03289 -3.40563 0.005215 

C×D 0.0280 0.00658 4.25704 0.001113 
 



M. Tech. (Research) Thesis  
 

National Institute of Technology, Rourkela Page 114 
 

Pareto Chart of Standardized Effects; Variable: SR

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.1081535
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Fig. 21 Pareto chart of standardized effect of factors on SR 

The quadratic form of torch height factor had the most significant influence on the 

SR response of plasma arc cutting process as shown in Fig. 21. 
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Observed vs. Predicted Values

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.1081535
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Fig. 22 Plot of observed vs. predicted values of SR 

The scatter plot between the observed and the predicted value of plasma cut 

responses of all 27 runs is shown in Fig. 22. These plots show the comparison between 

each of the observed values with the predicted value that are calculated from the 

developed model. Here, the most of the points lie on the normal line of fitted values 

except the plot of SR, as the uniformity is maintained throughout the region. From this 

result, it can be concluded that the response model shows in good agreement with 

experimental data, because linear relation between the actual and predicted SR exists. 

DV: SR (µm)
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Predicted vs. Residual Values

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.1081535
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Fig. 23 Plot of predicted vs. residual values of SR 

From the Fig. 23, no standard pattern is formed in the plot of predicted vs. residual 

values which show the adequacy of the fitted model for SR. 
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Histogram of Raw Residuals

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.1081535
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Fig. 24 Histogram plot of predicted values of SR 

The perfect normal probability distribution of the histogram plot of residuals for SR 

response is shown in Fig. 24. From the above graphs, it is seen that the normal probability 

created in the histogram plot of residual for SR is acceptable. 

DV: SR (µm)
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Residuals vs. Case Numbers

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.1081535
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Fig. 25 Plot of residuals vs. case numbers values of SR 

From the Fig. 25, it is evident that it is evident that the highest SR value among all 

experimental runs is by the run number 24. The red line indicates that the value of MRR 

increases with run order. 
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Probability Plot; Var.:SR; R-sqr=.97058; Adj:.93626

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.1081535
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Fig. 26 Probability plot of SR 

The normal probability plot of MRR corresponding to each regression terms are 

figured in Fig. 26. The surface and contour plot of this interaction terms have been 

considered for further analysis and shown in Fig. 27-29-31-33-35 and Fig. 28-30-32-34-

36 respectively. 
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Fitted Surface; Variable: SR

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.1081535
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Fig. 27 3D fitted surface plot of SR(1) 
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Fitted Surface; Variable: SR

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.1081535
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Fig. 28 2D fitted counter plot of SR(1) 
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Fitted Surface; Variable: SR

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.1081535
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Fig. 29 3D fitted surface plot of SR(2) 
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Fitted Surface; Variable: SR

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.1081535
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Fig. 30 2D fitted counter plot of SR(2) 

DV: SR (µm)
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Fitted Surface; Variable: SR

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.1081535

Fig. 31 3D fitted surface plot of SR(3) 
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Fitted Surface; Variable: SR

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.1081535
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Fig. 32 2D fitted counter plot of SR(3) 

DV: SR (µm)

V
o

lt
a
g

e
 ( 
V

o
lt

)

Cutting Current ( Ampere)



M. Tech. (Research) Thesis  
 

National Institute of Technology, Rourkela Page 126 
 

Fitted Surface; Variable: SR

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.1081535
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Fig. 33 3D fitted surface plot of SR(4) 
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Fitted Surface; Variable: SR

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.1081535
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Fig. 34 2D fitted counter plot of SR(4) 
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Fitted Surface; Variable: SR

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.1081535
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Fig. 35 3D fitted surface plot of SR(5) 
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Fitted Surface; Variable: SR

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.1081535
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Fig. 36 2D fitted counter plot of SR(5) 

DV: SR (µm)
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Profiles for Predicted Values and Desirability
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Fig. 37 Profile plot of predicted values and desirability of SR 

For finding the optimum value of SR response, the desirability function helped by 

fitting the quadratic fit model. The level of variable giving the highest desirability i.e. 

1.0000 was considered as optimum parametric setting. The optimized levels of variables 

(A, B, C and D) were determined using the desirability profiles that are shown in Fig. 37 

for predicted values of responses and the red dotted line gave the values of desirability 

function. 
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Fig. 38 Desirability 3D surface plot of SR 
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Desirability Surface/Contours; Method: Quadratic Fit
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Fig. 39 Desirability 2D counter plot of SR 

The 3D and 2D plot of interaction variables were determined using the desirability 

profiles for SR that is shown in Fig. 38-39 respectively. From these surface plots of 

interaction terms, it can be predicted that the minimum SR value obtained at the 

interaction of cutting current and torch height. 

5.1.1.3 For right bevel angle: 

In Table 10, the effect of estimated values of RBA was computed and recorded. The 

ANOVA for right bevel angle has been carried out firstly and its results are given in Table 

11. Here, the block effect has also been considered because the levels of block are taken 

as one. Due to this variation in block, there is negligible amount of effect occurred in 

experiment. This effect is ignored for further calculation of optimization. The total degree 
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of freedom for all input factors is 26. From the Table 11, it is seen that the most of the 

terms have P-value less than 0.05 under the confidence interval of 95 %. Hence, these 

terms show significance within experiment. In case of individual terms, only torch height 

has shown the most significance among all parameters. Pareto chart of effects of all 

factors on right bevel angle response are shown in Fig. 40 and the results indicate that the 

quadratic of torch height is the second most enhancing factor among all considered 

factors. The scatter plot between the observed and the predicted value of right bevel angle 

of all 27 runs is shown in Fig. 41. It is concluded that there is a reasonable correlation 

between the measured and predicted values of right bevel angle response. In Fig. 43, the 

histogram plot of predicted data of right bevel angle with 95 % confidence interval of 

normal distribution is displayed. The surface and contour plot of this interaction terms 

have been considered for further analysis and shown in Fig. 46-47 respectively. In this 

figure, it is clearly displayed that the value of right bevel angle increases with increase in 

cutting current and torch height. In Table 12, the model of estimated regression 

coefficients of the independent variable on the right bevel angle is recorded. 
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Table 10 Effect of Estimated Values for Right Bevel Angle 

Factor Effect Std. Err. T P 

Constant 3.000000 0.083333 36.00000 0.000000 

A (mm/min) 0.166667 0.144338 1.15470 0.270690 

A
2 

0.125000 0.108253 1.15470 0.270690 

B (Ampere) 0.333333 0.144338 2.30940 0.039519 

B
2
 0.750000 0.108253 6.92820 0.000016 

C (Volt) 0.333333 0.144338 2.30940 0.039519 

C
2
 0.000000 0.108253 0.00000 1.000000 

D (mm) 0.500000 0.144338 3.46410 0.004682 

D
2
 0.625000 0.108253 5.77350 0.000088 

A×B 0.000000 0.250000 0.00000 1.000000 

A×C 0.000000 0.250000 0.00000 1.000000 

A×D 0.500000 0.250000 2.00000 0.068655 

B×C 0.500000 0.250000 2.00000 0.068655 

B×D 1.500000 0.250000 6.00000 0.000062 

C×D 0.500000 0.250000 2.00000 0.068655 
 

Table 11 ANOVA Table for Right Bevel Angle 

Factors SS DoF MS F P 

A (mm/min) 0.08333 1 0.083333 1.33333 0.270690 

A
2 

0.08333 1 0.083333 1.33333 0.270690 

B (Ampere) 0.33333 1 0.333333 5.33333 0.039519 

B
2
 3.00000 1 3.000000 48.00000 0.000016 

C (Volt) 0.33333 1 0.333333 5.33333 0.039519 

C
2
 0.00000 1 0.000000 0.00000 1.000000 

D (mm) 0.75000 1 0.750000 12.00000 0.004682 

D
2
 2.08333 1 2.083333 33.33333 0.000088 

A×B 0.00000 1 0.000000 0.00000 1.000000 

A×C 0.00000 1 0.000000 0.00000 1.000000 

A×D 0.25000 1 0.250000 4.00000 0.068655 

B×C 0.25000 1 0.250000 4.00000 0.068655 

B×D 2.25000 1 2.250000 36.00000 0.000062 

C×D 0.25000 1 0.250000 4.00000 0.068655 

Error 0.75000 12 0.062500 
  

Total SS 10.00000 26 
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Table 12 Regression Coefficients of Right Bevel Angle 

Factor Regression Coef. Std. Err. T P 

Constant -72.0417 50.91523 -1.41493 0.182510 

A (mm/min) 0.0867 0.08636 1.00353 0.335412 

A
2 

-0.0001 0.00004 -1.15470 0.270690 

B (Ampere) 2.1833 0.62915 3.47027 0.004629 

B
2
 -0.0300 0.00433 -6.92820 0.000016 

C (Volt) -0.1033 0.11416 -0.90513 0.383208 

C
2
 -0.0000 0.00017 -0.00000 1.000000 

D (mm) -10.0000 2.73671 -3.65402 0.003302 

D
2
 -0.6250 0.10825 -5.77350 0.000088 

A×B 0.0000 0.00050 0.00000 1.000000 

A×C 0.0000 0.00010 0.00000 1.000000 

A×D 0.0050 0.00250 2.00000 0.068655 

B×C 0.0020 0.00100 2.00000 0.068655 

B×D 0.1500 0.02500 6.00000 0.000062 

C×D 0.0100 0.00500 2.00000 0.068655 
 

Pareto Chart of Standardized Effects; Variable: Right Bevel Angle

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.0625
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Fig. 40 Pareto chart of standardized effect of factors on right bevel angle 
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Observed vs. Predicted Values

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.0625
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Fig. 41 Plot of observed vs. predicted values of right bevel angle 

DV: Right Bevel Angle (Degree)
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Predicted vs. Residual Values

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.0625
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Fig. 42 Plot of predicted vs. residual values of right bevel angle 

DV: Right Bevel Angle (Degree)
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Histogram of Raw Residuals

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.0625
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Fig. 43 Histogram plot of predicted values of right bevel angle 

DV: Right Bevel Angle (Degree)
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Residuals vs. Case Numbers

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.0625
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Fig. 44 Plot of residuals vs. case numbers values of right bevel angle 

From the Fig. 44, it is evident that the highest right bevel angle value among all 

experimental runs is by the run number 14. The red line indicates that the value of right 

bevel angle increases with increase in run order. 

DV: Right Bevel Angle (Degree)
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Probability Plot; Var.:Right Bevel Angle; R-sqr=.925; Adj:.8375

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.0625
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Fig. 45 Probability plot of right bevel angle 

The normal probability plot of right bevel angle corresponding to each regression 

terms is plotted in Fig. 45. 
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Fitted Surface; Variable: Right Bevel Angle

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.0625
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Fig. 46 3D fitted surface plot of right bevel angle 

The 3D surface plot of the significant interaction terms can be exerted in Fig. 46. It 

is to be noted that all other terms are taken into account at their average value. From the 

figure, it is evident that the interaction of cutting current and torch height is also 

influenced by the above mentioned output. 

DV: Right Bevel Angle (Degree)

0.8

1.2

2.0
2.4

2.8
3.2

1.6

Torch Height

(mm)

38
40

42
44

46
48

50
52

Cuttin
g Curre

nt

(Ampere)

0

1

2

3

4

5

6

R
ight B

evel A
ngle

(D
egree)



M. Tech. (Research) Thesis  
 

National Institute of Technology, Rourkela Page 142 
 

Fitted Surface; Variable: Right Bevel Angle

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.0625
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Fig. 47 2D fitted counter plot of right bevel angle 

The counter plots of interaction terms at their average level vs. right bevel angle are 

found in Fig. 47. Mainly the shapes of counter plots might be elliptical, or saddle form 

which indicates that the combination of each variable are significant except torch height 

vs. cutting current plot. Because, the lowest value of right bevel angle obtained in the 

maximum region of current this can be seen in Fig. 47. 

DV: Right Bevel Angle (Degree)
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Profiles for Predicted Values and Desirability
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Fig. 48 Profile plot of predicted values and desirability of right bevel angle 

In case of right bevel angle, the desirability function helped to get optimum value 

which was fitted by the quadratic fit model. The level of variable giving the highest 

desirability i.e., 1.0000 was considered as optimum level. The optimized levels of 

variables (A, B, C and D) were determined using the desirability profiles that are shown in 

Fig. 48 for predicted values of responses and desirability function value displayed with 

dotted line in red color. 

Feed Rate Cutting
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Desirability(mm/min)
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Fig. 49 Desirability 3D surface plot of right bevel angle 
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Desirability Surface/Contours; Method: Quadratic Fit 1 
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Fig. 50 Desirability 2D counter plot of right bevel angle 

The 3D and 2D plot of interaction variables were determined using the desirability 

profiles that are displayed in Fig. 49-50 respectively. From six interactions of input 

variables, all are given maximum effect on right bevel angle as the red colored areas are 

more than green. 

5.1.2 Hybrid approach  

In this hybrid approach i.e., Grey based principle component (PCA), firstly 

normalization of all the response values are done between 0 and 1 as per the higher the 

better and lower the better criteria according to the corresponding problem. The computed 

normalized value of each response is recorded in Table 13.  
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Table 13 Normalized Values for Output Responses of PAC 

MRR (mm
3
/min) SR (µm) Right Bevel Angle (Degree) 

0.504404 0.284553 0.0 

0.103982 0.674797 0.5 

0.509809 0.258130 0.5 

0.177345 0.853659 0.0 

0.463335 0.615854 0.5 

0.378471 0.321138 1.0 

0.052191 0.715447 0.0 

0.149782 0.050813 1.0 

0.052191 0.695122 0.0 

0.468587 1.000000 0.5 

0.517166 0.217480 0.5 

0.002626 0.628049 0.5 

0.820237 0.349593 0.5 

0.057424 0.626016 0.0 

0.093069 0.268293 0.5 

0.945824 0.477642 0.0 

1.000000 0.810976 0.0 

0.119577 0.497967 0.0 

0.095728 0.030488 0.5 

0.805920 0.000000 0.5 

0.372220 0.327236 0.5 

0.143739 0.788618 0.0 

0.052191 0.691057 0.0 

0.209053 0.436992 0.5 

0.062224 0.406504 0.0 

0.155361 0.745935 0.5 

0.000000 0.432927 0.5 

 

Then, the value of deviation sequences for normalized outputs are calculated and 

tabulated in Table 13. The Eigen values and vectors are determined to check the 

correlation among output responses of PAC operation. The values of Eigen are tabulated 

in Table 15 and similarly the values of Eigen vectors are recorded in Table 16 for each 

principal component. The grey relational coefficients are computed for each response. The 

overall grey relational grade is computed by taking average of grey coefficients in each 

run order. The grey relational coefficients and overall grey relational grade are tabulated 
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in Table 17. The ANOVA is carried out for the multi-objective problem of Grey based 

PCA approach and the obtained results are tabulated in Table 18 and Table 19. The 

regression coefficients of GRG are recorded in Table 20. 

Table 14 Deviation Sequences for Output Responses of PAC 

MRR (mm
3
/min) SR (µm) Right Bevel Angle (Degree) 

0.495596 0.715447 1.0 

0.896018 0.325203 0.5 

0.490191 0.741870 0.5 

0.822655 0.146341 1.0 

0.536665 0.384146 0.5 

0.621529 0.678862 0.0 

0.947809 0.284553 1.0 

0.850218 0.949187 0.0 

0.947809 0.304878 1.0 

0.531413 0.000000 0.5 

0.482834 0.782520 0.5 

0.997374 0.371951 0.5 

0.179763 0.650407 0.5 

0.942576 0.373984 1.0 

0.906931 0.731707 0.5 

0.054176 0.522358 1.0 

0.000000 0.189024 1.0 

0.880423 0.502033 1.0 

0.904272 0.969512 0.5 

0.194080 1.000000 0.5 

0.627780 0.672764 0.5 

0.856261 0.211382 1.0 

0.947809 0.308943 1.0 

0.790947 0.563008 0.5 

0.937776 0.593496 1.0 

0.844639 0.254065 0.5 

1.000000 0.567073 0.5 
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Table 15 Eigenvalues and Explained Variation for Principal Components 

Principal 

components 

Eigen 

value 

Explained variations 

(%) 

Cumulative Eigen 

value 

Cumulative 

% 

First 1.518351 50.61170 1.518351 50.6117 

Second 0.984279 32.80929 2.502630 83.4210 

Third 0.497370 16.57901 3.000000 100.0000 
 

Table 16 Eigenvectors for Principal Components and Contribution 

Variable Factor 1 Factor 2 Factor 3 

MRR (mm
3
/min) 0.244846 0.952146 -0.182944 

SR (µm) -0.700998 0.043492 -0.711835 

Right Bevel Angle 

(Degree) 
0.669815 -0.302533 -0.678102 

 

Eigenvalues of correlation matrix

Active variables only

  50.61%

  32.81%

  16.58%

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Eigenvalue number

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

E
ig

e
n
v
a
lu

e

 
Fig. 51 Plot of Eigen values of correlation matrix for first phase 

The Fig. 51 shows the variation in percentage of Eigen values in first phase 

experimentation. 
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Table 17 Grey Relational Coefficient and Grade of Output Responses of PAC 

Grey relational 

coefficient 1 

Grey relational 

coefficient 2 

Grey relational 

coefficient 3 

Overall grey 

relational grade 

0.502212 0.411371 0.333333 0.415639 

0.358162 0.605911 0.500000 0.488024 

0.504953 0.402619 0.500000 0.469191 

0.378028 0.773585 0.333333 0.494982 

0.482316 0.565517 0.500000 0.515944 

0.445820 0.424138 1.000000 0.623319 

0.345349 0.637306 0.333333 0.438663 

0.370311 0.345021 1.000000 0.571777 

0.345349 0.621212 0.333333 0.433298 

0.484772 1.000000 0.500000 0.661591 

0.508733 0.389857 0.500000 0.466197 

0.333918 0.573427 0.500000 0.469115 

0.735550 0.434629 0.500000 0.556726 

0.346602 0.572093 0.333333 0.417343 

0.355383 0.405941 0.500000 0.420441 

0.902240 0.489066 0.333333 0.574880 

1.000000 0.725664 0.333333 0.686332 

0.362208 0.498986 0.333333 0.398176 

0.356056 0.340249 0.500000 0.398768 

0.720378 0.333333 0.500000 0.517904 

0.443349 0.426343 0.500000 0.456564 

0.368661 0.702857 0.333333 0.468284 

0.345349 0.618090 0.333333 0.432258 

0.387312 0.470363 0.500000 0.452559 

0.347759 0.457249 0.333333 0.379447 

0.371847 0.663073 0.500000 0.511640 

0.333333 0.468571 0.500000 0.433968 
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Table 18 Effect of Estimated Values of Responses of PAC 

Factor Effect Std. Err. T P 

Constant 0.513354 0.012088 42.46941 0.000000 

A (mm/min) 0.083578 0.020936 3.99202 0.001787 

A
2 

-0.033732 0.015702 -2.14821 0.052811 

B (Ampere) -0.034038 0.020936 -1.62578 0.129952 

B
2
 -0.063722 0.015702 -4.05814 0.001587 

C (Volt) -0.028025 0.020936 -1.33856 0.205522 

C
2
 0.045602 0.015702 2.90416 0.013224 

D (mm) 0.075153 0.020936 3.58959 0.003716 

D
2
 -0.066070 0.015702 -4.20764 0.001215 

A×B -0.120246 0.036263 -3.31596 0.006156 

A×C 0.032297 0.036263 0.89063 0.390633 

A×D 0.085711 0.036263 2.36361 0.035816 

B×C -0.074305 0.036263 -2.04908 0.062974 

B×D -0.031745 0.036263 -0.87542 0.398528 

C×D -0.060989 0.036263 -1.68187 0.118412 
 

Table 19 ANOVA Table for GRG 

Factors SS DoF MS F P 

A (mm/min) 0.020956 1 0.020956 15.93626 0.001787 

A
2 

0.006068 1 0.006068 4.61482 0.052811 

B (Ampere) 0.003476 1 0.003476 2.64317 0.129952 

B
2
 0.021656 1 0.021656 16.46851 0.001587 

C (Volt) 0.002356 1 0.002356 1.79175 0.205522 

C
2
 0.011091 1 0.011091 8.43412 0.013224 

D (mm) 0.016944 1 0.016944 12.88515 0.003716 

D
2
 0.023281 1 0.023281 17.70427 0.001215 

A×B 0.014459 1 0.014459 10.99558 0.006156 

A×C 0.001043 1 0.001043 0.79323 0.390633 

A×D 0.007346 1 0.007346 5.58664 0.035816 

B×C 0.005521 1 0.005521 4.19872 0.062974 

B×D 0.001008 1 0.001008 0.76636 0.398528 

C×D 0.003720 1 0.003720 2.82868 0.118412 

Error 0.015780 12 0.001315 
  

Total SS 0.167213 26 
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Table 20 Regression Coefficients of GRG 

Factor Regression Coef. Std. Err. T P 

Constant 6.870780 7.385326 0.93033 0.370539 

A (mm/min) -0.017307 0.012527 -1.38162 0.192272 

A
2 

0.000013 0.000006 2.14821 0.052811 

B (Ampere) 0.039166 0.091260 0.42917 0.675401 

B
2
 0.002549 0.000628 4.05814 0.001587 

C (Volt) 0.021222 0.016560 1.28155 0.224210 

C
2
 -0.000073 0.000025 -2.90416 0.013224 

D (mm) -0.745630 0.396964 -1.87833 0.084841 

D
2
 0.066070 0.015702 4.20764 0.001215 

A×B -0.000240 0.000073 -3.31596 0.006156 

A×C 0.000013 0.000015 0.89063 0.390633 

A×D 0.000857 0.000363 2.36361 0.035816 

B×C -0.000297 0.000145 -2.04908 0.062974 

B×D -0.003175 0.003626 -0.87542 0.398528 

C×D -0.001220 0.000725 -1.68187 0.118412 
 

Pareto Chart of Standardized Effects; Variable: GRG

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.001315

DV: GRG
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Fig. 52 Pareto chart of standardized effect of factors on GRG 
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The torch height factor with quadratic form had displayed the most significant 

influence on the GRG response from Pareto chart in Fig. 52. 

Observed vs. Predicted Values

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.001315
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Fig. 53 Plot of observed vs. predicted values of GRG 

The scatter plot between the observed and the predicted value of plasma cut 

responses of all 27 runs is shown in Fig. 53. The comparison between each of the 

observed values with the predicted value is shown in those plots which are calculated 

from the developed model. Here, the most of the points lie on the normal line of fitted 

values except the plot of GRG, because the uniformity lacks in the middle region. From 

this result it can be revealed that the response model shows good fit to experimental data, 

because the relationship between the actual and the predicted GRG is linear. 
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Predicted vs. Residual Values

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.001315
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Fig. 54 Plot of predicted vs. residual values of GRG 

From the Fig. 54, no standard pattern is formed in the plot of predicted vs. residual 

values which show the adequacy of the fitted model for GRG. 
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Histogram of Raw Residuals

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.001315

DV: GRG
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Fig. 55 Histogram plot of predicted values of GRG 

The perfect normal probability distribution of the histogram plot of residuals for 

GRG response is shown in Fig. 55. From the above graphs, it is seen that the normal 

probability created in the histogram plot of residual for GRG is tolerable. 
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Residuals vs. Case Numbers

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.001315
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Fig. 56 Plot of residuals vs. case numbers values of GRG 

From the Fig. 56, it is evident that the highest GRG value among all experimental 

runs is by the run number 26. The red line indicates that the value of GRG increases with 

increase in run order. 
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Probability Plot; Var.:GRG; R-sqr=.90563; Adj:.79553

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.001315

DV: GRG

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5

Standardized Effects (t-values)

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

E
x
p
e
c
te

d
 N

o
rm

a
l 
V

a
lu

e

 
Fig. 57 Probability plot of GRG 

The normal probability plot of GRG corresponding to each regression terms is 

plotted in Fig. 57. The 3D surface plot of the significant interaction terms can be exerted 

in Fig. 58-60. It is to be noted that all other terms are taken into account at their average 

value. 
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Fitted Surface; Variable: GRG

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.001315

DV: GRG
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Fig. 58 3D fitted surface plot of GRG(1) 
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Fitted Surface; Variable: GRG

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.001315
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Fig. 59 2D fitted counter plot of GRG (1) 
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Fitted Surface; Variable: GRG

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.001315
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Fig. 60 3D fitted surface plot of GRG(2) 
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Fitted Surface; Variable: GRG

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.001315
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Fig. 61 2D fitted counter plot of GRG (2) 

The counter plots of interaction terms at their average level vs. GRG are found in 

Fig. 59-61. 
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Profiles for Predicted Values and Desirability
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Fig. 62 Profile plot of predicted values and desirability of GRG 

By the help of desirability function method, the optimum value of GRG response 

was discovered which was fitted by the quadratic fit model. The level of variable giving 

the highest desirability i.e., 1.0000 was considered as optimum level. The optimized levels 

of variables (A, B, C and D) were determined using the desirability profiles that are 

shown in Fig. 62 for predicted values of responses and the desirability function value 

presented with red colored dot lines. 
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Fig. 63 Desirability 3D surface plot of GRG 
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Desirability Surface/Contours; Method: Quadratic Fit
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Fig. 64 Desirability 2D counter plot of GRG 

The 3D and 2D surface plot of interaction variables were determined using the 

desirability profiles that are shown in Fig. 63-64 respectively. From all interaction terms, 

three figures depicted minimum influence of input variables on GRG response. 
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5.1.3 Genetic algorithm 

5.1.3.1 For material removal rate: 

 
Fig. 65 Results from GA approach for MRR 

Best fitness and individual value plot of MRR is shown in Fig. 65 where the best 

and average value of MRR is obtained as 3.92945 mm
3
/min. Here, negative sign is due 

the application of negativity theory for maximizing problem. Secondly, the best 

parametric optimal setting is obtained at 1000 mm/min of feed rate, 50 ampere of current, 

113.5 volt of voltage and 3 mm of torch height respectively.  
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5.1.3.2 For surface roughness: 

 
Fig. 66 Results from GA approach for SR 

Similarly, for the case of SR the problem is the minimization of the best fitness and 

individual value plot as given in Fig. 66 where the best and average values of SR are 

found as 25.28482 µm. The best parametric optimal setting is obtained at 1000 mm/min of 

feed rate, 40 ampere of current, 150 volt of voltage and 2.082 mm of torch height 

respectively. 
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5.1.3.3 For right bevel angle: 

 
Fig. 67 Results from GA approach for right bevel angle 

Similarly, for the case of right bevel angle the problem is the minimization of the 

best fitness and individual value plot as given in Fig. 67 where the best and average values 

of right bevel angle are found as 48.6317º and 48.6316º respectively. The best parametric 

optimal setting is obtained at 1000 mm/min of feed rate, 50 ampere of current, 100 volt of 

voltage and 1 mm of torch height respectively. Here, the simulation of genetic algorithm 

toolbox for all output responses stopped at same iteration number i.e., 176. 
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5.1.4 Particle swarm optimization 

5.1.4.1 For material removal rate: 

 
Fig. 68 Results from PSO approach for MRR 

The plot of best function value and optimum setting for MRR which was obtained 

from PSO methodology is shown in Fig. 68. From the graph, it can be seen that the 

optimum condition for MRR was found as 1000 mm/min of feed rate, 50 ampere of 

current, 113.499 volt of voltage and 3 mm of torch height respectively. The best value 

MRR is obtained as 3.92945 mm
3
/min. 
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5.1.4.2 For surface roughness: 

 
Fig. 69 Results from PSO approach for SR 

The plot of best function value and optimum setting for SR which was obtained 

from PSO methodology is shown in Fig. 69. From the graph, it can be seen that the 

optimum condition for SR was found as 1000 mm/min of feed rate, 40 ampere of current, 

150 volt of voltage and 2.082 mm of torch height respectively. The optimum value of SR 

is found as 25.28482 µm. 
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5.1.4.3 For right bevel angle: 

 
Fig. 70 Results from PSO approach for right bevel angle 

The plot of best function value and optimum setting for right bevel angle which was 

obtained from PSO methodology is shown in Fig. 70. From the graph, it can be seen that 

the optimum condition for MRR was found as 1000 mm/min of feed rate, 50 ampere of 

current, 100 volt of voltage and 1 mm of torch height respectively. The optimum value of 

right bevel angle occurred at 48.6317º from this approach. 

5.1.5 Simulated annealing 

5.1.5.1 For material removal rate: 

Nature based novel optimization technique i.e., simulated annealing algorithm is 

employed to the obtained regression equation of MRR from RSM method. By applying 

Boltzmann simulated annealing approach to the experimental data, the lowest value of 
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MRR is found to be 3.2726 mm
3
/min at 934.156 mm/min of feed rate, 49.874 ampere of 

current, 134.595 volt of voltage and 2.976 mm of torch height respectively. In Fig. 71, the 

best function value and comparative effect of input parameters are shown. Here, the feed 

rate was the most effective variable than others. The highest number of iteration for 

simulating the algorithm is 501 where the minimum value of MRR can be found. The best 

parametric setting of the whole experimentation as per simulated annealing is shown in 

Fig. 71 with current iteration number. 

 
Fig. 71 Results from SA approach for MRR 

5.1.5.2 For surface roughness: 

Nature based novel optimization technique i.e., simulated annealing algorithm is 

employed to the obtained regression equation of SR from RSM method. By applying 
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Boltzmann simulated annealing approach to the experimental data, the lowest value of SR 

is found as 20.7392 µm at its optimal setting. The optimal condition of surface roughness 

occurred at 965.496 mm/min of feed rate, 44.99 ampere of current, 111.143 volt of 

voltage and 2.249 mm of torch height respectively. Fig. 72 represents the best function 

value and comparative effect of input parameters. Here, the feed rate is found to be the 

most effective variable. The highest number of iteration for simulating the algorithm is 

501 where the minimum value of SR can be found. The best parametric setting of the 

whole experimentation as per simulated annealing is shown in Fig. 72 with current 

iteration number. 

 
Fig. 72 Results from SA approach for SR 
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5.1.5.3 For right bevel angle: 

Nature based novel optimization technique i.e., simulated annealing algorithm is 

employed to the obtained regression equation of right bevel angle from RSM method. By 

applying Boltzmann simulated annealing approach to the experimental data, the lowest 

value of right bevel angle is found to be 44.9597º at its optimal setting. The optimal 

condition for right bevel angle occurred at 966.943 mm/min of feed rate, 49.935 ampere 

of current, 123.613 volt of voltage and 1.007 mm of torch height  respectively. Fig. 73 

shows the best function value and comparative effect of input parameters. Here also, the 

feed rate is considered the most effective variable than other parameters. The highest 

number of iteration for simulating the algorithm is 501 where the minimum value of right 

bevel angle may be found. The best parametric setting of the whole experimentation as 

per simulated annealing is shown in Fig. 73 with current iteration number. 
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Fig. 73 Results from SA approach for right bevel angle 

5.1.6 TLBO results 

5.1.6.1 For material removal rate: 

The TLBO algorithm is run through Matlab R2012b version software by 

considering 300 as population size and 500 as number of generations. In each run the 

maximum number of function evaluations, N is considered as 750000. Only in the case of 

MRR response, the theory of negativity is applied because the main objective of this is to 

convert the maximization type to minimization type problem. Fig. 74 depicts plot of the 

fitness function value for each generation. It can be observed that it converges to the 

optimum result in very small population size and less number of generat ions. The optimal 

condition for material removal rate occurred at 1000.01 mm/min of feed rate, 49.9382 
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ampere of current, 147.874 volt of voltage and 2.9869 mm of torch height respectively. 

The best value of objective function using TLBO approach is obtained to be 3.80718 

mm
3
/min. 

 
Fig. 74 Obtained plot by TLBO approach for MRR 

5.1.6.2 For surface roughness: 

For SR response, the optimal condition predicted using novel approach of TLBO is 

at 1000 mm/min of feed rate, 49.5417 ampere of current, 146.63 volt of voltage and 

2.73299 mm of torch height respectively. The best value of the objective function is 

determined as 21.7302 µm for SR response which is shown in Fig. 75. 
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Fig. 75 Obtained plot by TLBO approach for SR 

5.1.6.3 For right bevel angle: 

In case of right bevel angle response, the optimal condition predicted using novel 

approach of TLBO is at 1000 mm/min of feed rate, 49.9994 ampere of current, 114.594 

volt of voltage and 1 mm of torch height respectively. The best value of the objective 

function is determined as 48.5337º for right bevel angle response which is depicted in Fig. 

76. 
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Fig. 76 Obtained plot by TLBO approach for right bevel angle 

5.2 Results of Case 2 

The Response Surface Methodology was utilized to study the influences of the 

independent factors Feed Rate (A), cutting current (B), voltage (C) and torch height (C) at 

three distinct levels in the extraction procedure which is shown in Table 21. The whole 

experimentation was planned using Statistica software of version 9.1. Three levels are 

selected for each independent variable such as low (-1), middle (0) and high level (+1) as 

shown in Table 21. The experimental design consists of thirty cases that run according to 

single blocked Central Composite Design (CCD). Analysis of variance (ANOVA) and F-

test were used as significant criteria for the fitted models. The results obtained were 

presented as mean values with its standard deviation. After getting the layout of 
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experimental design of input factors from Statistica software, the cutting operation by 

plasma arc on the selected work piece have been carried out. According to the DOE, the 

five output quality characteristics of cut are measured and tabulated in Table 22. The 

design of experiment consisted of actual level value of input factors with random order of 

design of experiment and corresponding responses. After simulation of this model using 

the optimization approach by software, the ANOVA evaluation has been carried out for 

each response of PAC operation. Then, the estimated coefficients of the model were 

calculated for every cut quality. The influence of input variables on plasma arc machining 

for each response is briefly described below: 

Table 21 Values of Input Process Parameters 

Process parameters Units Code L(1) L(2) L(3) 

Feed Rate mm/min A 920 945 970 

Current Ampere B 40.0 42.5 45.0 

Voltage Volt C 100 120 140 

Torch Height mm D 2.0 2.5 3.0 
 

  



M. Tech. (Research) Thesis  
 

National Institute of Technology, Rourkela Page 178 
 

Table 22 Response Surface Method Design with Input Parameters 

Std. 

Order 

Run 

Order 

Feed Rate 

(mm/min) 

Current 

(Ampere) 

Voltage 

(Volt) 

Torch 

Height 

(mm) 

MRR 

(mm3/min) 

SR 

(µm) 

Chamfer 

(mm) 

Dross 

(mm2) 

Kerf 

(mm) 

18 1 945 42.5 120 2.5 4891.10 58.16 1.83 3.63 2.73 

7 2 920 45.0 140 2.0 3992.62 46.49 1.01 0.80 3.44 

20 3 945 42.5 120 2.5 5541.59 51.81 1.52 9.57 2.64 

3 4 920 45.0 100 2.0 4494.18 25.82 1.42 4.26 2.70 

9 5 920 40.0 100 3.0 5497.43 71.42 1.88 8.26 3.53 

5 6 920 40.0 140 2.0 5082.01 41.88 1.00 7.00 3.30 

2 7 970 40.0 100 2.0 3842.59 62.86 1.05 4.29 2.38 

11 8 920 45.0 100 3.0 4865.14 69.52 1.64 7.63 3.41 

19 9 945 42.5 120 2.5 5345.53 51.13 1.52 8.52 2.61 

4 10 970 45.0 100 2.0 5678.41 32.08 1.83 0.45 2.73 

17 11 945 42.5 120 2.5 3061.77 37.48 1.24 3.00 3.48 

8 12 970 45.0 140 2.0 3929.05 63.29 1.47 1.74 1.93 

13 13 920 40.0 140 3.0 3905.86 72.62 1.58 4.56 2.39 

16 14 970 45.0 140 3.0 5670.24 52.73 1.05 5.25 2.63 

15 15 920 45.0 140 3.0 3489.34 35.60 1.62 2.73 3.73 

12 16 970 45.0 100 3.0 4995.12 63.60 1.10 6.34 2.53 

14 17 970 40.0 140 3.0 5427.69 34.60 1.53 1.74 3.58 

6 18 970 40.0 140 2.0 4223.34 56.61 1.08 6.43 2.65 

10 19 970 40.0 100 3.0 4854.34 71.30 1.63 3.83 3.41 

1 20 920 40.0 100 2.0 5030.29 54.97 1.38 5.27 2.64 

29 21 945 42.5 120 2.5 4072.35 62.76 1.97 8.57 2.34 

30 22 945 42.5 120 2.5 5448.16 34.18 1.68 4.56 2.57 

25 23 945 42.5 80 2.5 4402.74 43.74 1.47 8.43 2.62 

23 24 945 37.5 120 2.5 5470.08 52.35 1.64 9.03 3.73 

22 25 995 42.5 120 2.5 4415.95 66.97 1.78 5.89 2.93 

26 26 945 42.5 160 2.5 5520.10 26.57 1.93 8.52 2.28 

24 27 945 47.5 120 2.5 4649.92 45.13 1.43 3.67 2.04 

28 28 945 42.5 120 3.5 3805.88 44.59 1.67 7.27 3.16 

27 29 945 42.5 120 1.5 5453.33 63.04 1.24 5.79 2.27 

21 30 895 42.5 120 2.5 5538.55 61.25 1.52 8.53 3.07 

5.2.1 RSM with desirability function approach 

5.2.1.1 For material removal rate: 

The influence of estimated values of MRR was computed and recorded in Table 23. 

The analysis of variance (ANOVA) for MRR has been carried out firstly and its results 

were given in Table 24. Here, the block effect has also been considered because the levels 
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of block are taken as one. Due to this variation in block, there is negligible amount of 

effect occurring in experiment. This effect is ignored for further calculation of 

optimization. The total degree of freedom for all input factors is 29. From the Table 23, it 

is seen that the most of the terms have P-value less than 0.05 under the confidence interval 

of 95 %. Hence, these terms show significance within experiment. In Table 23, no single 

term has shown the significance in the experiment. Pareto chart of effects of all factors on 

MRR response are shown in Fig. 77 and the results indicate that the interaction of feed 

rate and cutting current has given the most influence among all the considered factors. 

The scatter plot between the observed and the predicted value of MRR for all 30 runs are 

shown in Fig. 78. It is concluded that there is a reasonable correlation between the 

measured and predicted values of MRR. In Fig. 80, the histogram plot of predicted data 

for MRR with 95 % confidence interval of normal distribution is displayed. In Table 24, 

the model of estimated regression coefficients of the independent variable on the MRR is 

tabulated. 

  



M. Tech. (Research) Thesis  
 

National Institute of Technology, Rourkela Page 180 
 

Table 23 Effect of Estimated Values for MRR 

Factor Effect Std. Err. T P 

Constant 4726.750 363.3439 13.00902 0.000000 

A (mm/min) 1.559 363.3439 0.00429 0.996633 

A
2 

51.595 339.8771 0.15180 0.881364 

B (Ampere) -199.148 363.3439 -0.54810 0.591690 

B
2
 92.970 339.8771 0.27354 0.788169 

C (Volt) -108.552 363.3439 -0.29876 0.769223 

C
2
 43.680 339.8771 0.12852 0.899448 

D (mm) -71.852 363.3439 -0.19775 0.845893 

D
2
 -122.228 339.8771 -0.35962 0.724142 

A×B 574.896 445.0036 1.29189 0.215946 

A×C 412.134 445.0036 0.92614 0.369037 

A×D 514.416 445.0036 1.15598 0.265769 

B×C -295.731 445.0036 -0.66456 0.516420 

B×D -72.689 445.0036 -0.16334 0.872428 

C×D 12.444 445.0036 0.02796 0.978060 
 

Table 24 ANOVA Table for MRR 

Factors SS DoF MS F P 

A (mm/min) 15 1 15 0.000018 0.996633 

A
2 

18254 1 18254 0.023045 0.881364 

B (Ampere) 237958 1 237958 0.300410 0.591690 

B
2
 59269 1 59269 0.074824 0.788169 

C (Volt) 70702 1 70702 0.089257 0.769223 

C
2
 13083 1 13083 0.016516 0.899448 

D (mm) 30977 1 30977 0.039106 0.845893 

D
2
 102443 1 102443 0.129329 0.724142 

A×B 1322023 1 1322023 1.668983 0.215946 

A×C 679417 1 679417 0.857727 0.369037 

A×D 1058496 1 1058496 1.336295 0.265769 

B×C 349828 1 349828 0.441639 0.516420 

B×D 21135 1 21135 0.026681 0.872428 

C×D 619 1 619 0.000782 0.978060 

Error 11881693 15 792113 
  

Total SS 15874599 29 
   

 



M. Tech. (Research) Thesis  
 

National Institute of Technology, Rourkela Page 181 
 

Table 25 Regression Coefficients of MRR 

Factor Regression Coef. Std. Err. T P 

Constant 318525.8 302196.6 1.05403 0.308550 

A (mm/min) -374.3 540.2 -0.69291 0.498953 

A
2 

0.0 0.3 0.15180 0.881364 

B (Ampere) -4590.7 4141.0 -1.10859 0.285067 

B
2
 7.4 27.2 0.27354 0.788169 

C (Volt) -281.2 475.6 -0.59117 0.563211 

C
2
 0.1 0.4 0.12852 0.899448 

D (mm) -17133.5 18947.1 -0.90428 0.380142 

D
2
 -244.5 679.8 -0.35962 0.724142 

A×B 4.6 3.6 1.29189 0.215946 

A×C 0.4 0.4 0.92614 0.369037 

A×D 20.6 17.8 1.15598 0.265769 

B×C -3.0 4.5 -0.66456 0.516420 

B×D -29.1 178.0 -0.16334 0.872428 

C×D 0.6 22.3 0.02796 0.978060 
 

Pareto Chart of Standardized Effects; Variable: MRR

4 factors, 1 Blocks, 30 Runs; MS Residual=792112.9

.0042912

.0279633

.1285164

.1518042

-.163344

-.197753

.2735394

-.29876

-.359623

-.548096

-.664559

.9261357

1.155982

1.291891

p=.05

Standardized Effect Estimate (Absolute Value)
 

Fig. 77 Pareto chart of standardized effect of factors on MRR 
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Observed vs. Predicted Values

4 factors, 1 Blocks, 30 Runs; MS Residual=792112.9
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Fig. 78 Plot of observed vs. predicted values of MRR 
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Predicted vs. Residual Values

4 factors, 1 Blocks, 30 Runs; MS Residual=792112.9
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Fig. 79 Plot of predicted vs. residual values of MRR 

From the Fig. 79, no standard pattern is formed in the plot of predicted vs. residual 

values which show the adequacy of the fitted model for MRR. 
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Histogram of Raw Residuals

4 factors, 1 Blocks, 30 Runs; MS Residual=792112.9
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Fig. 80 Histogram plot of predicted values of MRR 

DV: MRR (mm/min)
3



M. Tech. (Research) Thesis  
 

National Institute of Technology, Rourkela Page 185 
 

Residuals vs. Case Numbers

4 factors, 1 Blocks, 30 Runs; MS Residual=792112.9
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Fig. 81 Plot of residuals vs. case numbers values of MRR 

From the Fig. 81, it is evident that the highest MRR value among all experimental 

runs is by the run number 9. The red line indicates that the value of MRR increases with 

increase in run order. 
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Probability Plot; Var.:MRR; R-sqr=.25153; Adj:0.

4 factors, 1 Blocks, 30 Runs; MS Residual=792112.9
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Fig. 82 Probability plot of MRR 

The normal probability plot of MRR corresponding to each regression terms is 

plotted in Fig. 82. 
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Profiles for Predicted Values and Desirability
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Fig. 83 Profile plot of predicted values and desirability of MRR 

In order to get the optimum MRR value, the desirability function helped by fitting 

the quadratic fit model. The level of variables giving the highest desirability i.e., 1.0000 

was considered as optimum level. The optimized levels of variables (A, B, C and D) were 

determined using the desirability profiles that are shown in Fig. 83 for predicted values of 

responses. In same figure, the red dotted lines indicated the desirability function values. 
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Fig. 84 Desirability 3D surface plot of MRR 
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Desirability Surface/Contours; Method: Quadratic Fit
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Fig. 85 Desirability 2D counter plot of MRR 

The 3D and 2D interaction plot of variables on MRR were determined using the 

desirability profiles that are shown in Fig. 84-85 respectively. From these figures, it can 

be concluded that the impact of MRR is enhanced by all input variables with high amount. 

5.2.1.2 For surface roughness: 

In case of surface roughness response, the effect of estimated values of SR was 

computed and recorded in Table 26. The ANOVA for SR has been carried out firstly and 

its results are given in Table 27. Here, the block effect has also been considered because 

the levels of block are taken as one. Due to this variation in block, there is negligible 

amount of its effect on the experiment. This effect is ignored for further calculation of 

optimization. The total degree of freedom for all input factors is 29. From the Table 27, it 
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is seen that the most of the terms have P-value less than 0.05 under the confidence interval 

of 95 %. Hence, these terms are significant within experiment. In case of individual terms, 

only the interaction of voltage and torch height is the most significant among all 

parameters. Pareto chart for effects of all factors on SR response are shown in Fig. 86 and 

the results indicate that the quadratic of torch height is the second most enhancing factor 

among all considered factors. The scatter plot between the observed and the predicted 

value of SR of all 30 runs is shown in Fig. 87. It is concluded that there is a reasonable 

correlation between the measured and predicted values of SR response. In Fig. 89, the 

histogram plot of predicted data of SR with 95 % confidence interval of normal 

distribution is displayed. The surface and contour plot of this interaction terms have been 

considered for further analysis and shown in Fig. 92-93 respectively. In this figure, it is 

clearly displayed that the value of SR increases with increasing cutting current and torch 

height. In Table 28, the model of estimated regression coefficients of the independent 

variable on the SR is tabulated. 
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Table 26 Effect of Estimated Values for SR 

Factor Effect Std. Err. T P 

Constant 49.2533 5.132423 9.59651 0.000000 

A (mm/min) 2.5158 5.132423 0.49018 0.631096 

A
2 

8.4306 4.800942 1.75604 0.099474 

B (Ampere) -7.6308 5.132423 -1.48679 0.157787 

B
2
 0.7456 4.800942 0.15531 0.878649 

C (Volt) -6.8408 5.132423 -1.33287 0.202468 

C
2
 -6.0469 4.800942 -1.25952 0.227089 

D (mm) 4.2075 5.132423 0.81979 0.425172 

D
2
 3.2831 4.800942 0.68385 0.504498 

A×B 6.2237 6.285909 0.99011 0.337823 

A×C 0.3162 6.285909 0.05031 0.960538 

A×D -9.0762 6.285909 -1.44390 0.169327 

B×C 7.7413 6.285909 1.23152 0.237086 

B×D 2.5187 6.285909 0.40070 0.694292 

C×D -14.1038 6.285909 -2.24371 0.040373 
 

Table 27 ANOVA Table for SR 

Factors SS DoF MS F P 

A (mm/min) 37.977 1 37.9765 0.240281 0.631096 

A
2
 487.374 1 487.3744 3.083661 0.099474 

B (Ampere) 349.378 1 349.3777 2.210544 0.157787 

B
2
 3.812 1 3.8123 0.024121 0.878649 

C (Volt) 280.782 1 280.7820 1.776533 0.202468 

C
2
 250.729 1 250.7294 1.586387 0.227089 

D (mm) 106.218 1 106.2183 0.672053 0.425172 

D
2
 73.913 1 73.9125 0.467651 0.504498 

A×B 154.940 1 154.9403 0.980321 0.337823 

A×C 0.400 1 0.4001 0.002531 0.960538 

A×D 329.513 1 329.5133 2.084859 0.169327 

B×C 239.708 1 239.7078 1.516652 0.237086 

B×D 25.376 1 25.3764 0.160559 0.694292 

C×D 795.663 1 795.6631 5.034230 0.040373 

Error 2370.759 15 158.0506 
  

Total SS 5609.618 29 
   

 



M. Tech. (Research) Thesis  
 

National Institute of Technology, Rourkela Page 192 
 

Table 28 Regression Coefficients of SR 

Factor Regression Coef. Std. Err. T P 

Constant 7607.658 4268.685 1.78220 0.094965 

A (mm/min) -13.943 7.631 -1.82712 0.087645 

A
2 

0.007 0.004 1.75604 0.099474 

B (Ampere) -65.456 58.494 -1.11903 0.280730 

B
2
 0.060 0.384 0.15531 0.878649 

C (Volt) -0.183 6.718 -0.02722 0.978641 

C
2
 -0.008 0.006 -1.25952 0.227089 

D (mm) 356.262 267.638 1.33113 0.203024 

D
2
 6.566 9.602 0.68385 0.504498 

A×B 0.050 0.050 0.99011 0.337823 

A×C 0.000 0.006 0.05031 0.960538 

A×D -0.363 0.251 -1.44390 0.169327 

B×C 0.077 0.063 1.23152 0.237086 

B×D 1.007 2.514 0.40070 0.694292 

C×D -0.705 0.314 -2.24371 0.040373 
 

Pareto Chart of Standardized Effects; Variable: SR

4 factors, 1 Blocks, 30 Runs; MS Residual=158.0506
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Fig. 86 Pareto chart of standardized effect of factors on SR 
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Observed vs. Predicted Values

4 factors, 1 Blocks, 30 Runs; MS Residual=158.0506
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Fig. 87 Plot of observed vs. predicted values of SR 

DV: SR (µm)
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Predicted vs. Residual Values

4 factors, 1 Blocks, 30 Runs; MS Residual=158.0506
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Fig. 88 Plot of predicted vs. residual values of SR 

From the Fig. 88, no standard pattern is formed in the plot of predicted vs. residual 

values which show the adequacy of the fitted model for SR. 
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Histogram of Raw Residuals

4 factors, 1 Blocks, 30 Runs; MS Residual=158.0506
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Fig. 89 Histogram plot of predicted values of SR 
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Residuals vs. Case Numbers

4 factors, 1 Blocks, 30 Runs; MS Residual=158.0506
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Fig. 90 Plot of residuals vs. case numbers values of SR 

From the Fig. 90, it is evident that the highest SR value among all experimental runs 

is by the run number 13. The red line indicates that the value of SR decreases with 

increase in run order. 
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Probability Plot; Var.:SR; R-sqr=.57738; Adj:.18293

4 factors, 1 Blocks, 30 Runs; MS Residual=158.0506
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Fig. 91 Probability plot of SR 

The normal probability plot of SR corresponding to each regression terms is plotted 

in Fig. 91. 
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Fitted Surface; Variable: SR

4 factors, 1 Blocks, 30 Runs; MS Residual=158.0506
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Fig. 92 3D fitted surface plot of SR 
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Fitted Surface; Variable: SR

4 factors, 1 Blocks, 30 Runs; MS Residual=158.0506
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Fig. 93 2D fitted counter plot of SR 

DV: SR (µm)
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Profiles for Predicted Values and Desirability
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Fig. 94 Profile plot of predicted values and desirability of SR 

Similarly in case of surface roughness, the desirability function method helped to 

get optimum value which was fitted by the quadratic fit model. The level of variable 

giving the highest desirability i.e., 1.0000 was considered as optimum level. The 

optimized levels of variables (A, B, C and D) were determined using the desirability 

profiles that are shown in Fig. 94 for predicted values of responses and desirability 

function values are plotted by dotted line in red color. 
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Fig. 95 Desirability 3D surface plot of SR 
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Desirability Surface/Contours; Method: Quadratic Fit
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Fig. 96 Desirability 2D counter plot of SR 

The 3D and 2D interaction plot of variables on SR response were determined using 

the desirability profiles that are shown in Fig. 95-96 respectively. From these figures, it 

can be revealed that the value of SR is rising with decreasing value of voltage. Thus, the 

high value of voltage is required for minimal surface roughness during machining.   

5.2.1.3 For chamfer: 

In the same way for chamfer response, the effect of estimated values was computed 

and recorded in Table 29. The ANOVA for chamfer has been carried out firstly and its 

results are given in Table 30. Here, the block effect has also been considered because the 

levels of block are taken as one. Due to this variation in block, there is negligible amount 

of effect occurred in experiment. This effect is ignored for further calculation of 
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optimization. The total degree of freedom for all input factors is 29. From the Table 30, it 

is seen that the most of the terms have P-value less than 0.05 under the confidence interval 

of 95 %. Hence, these terms show significance within experiment. In case of individual 

terms, only the interaction of voltage and torch height has shown the most significance 

among all parameters. Pareto chart of effects of all factors on chamfer response are shown 

in Fig. 97 and the results indicate that the quadratic of torch height is the second most 

enhancing factor among all considered factors. The scatter plot between the observed and 

the predicted value of chamfer of all 30 runs is shown in Fig. 98. It is concluded that there 

is a reasonable correlation between the measured and predicted values of chamfer 

response. In Fig. 100, the histogram plot of predicted data of chamfer with 95 % 

confidence interval of normal distribution is displayed. The surface and contour plot of 

this interaction terms have been considered for further analysis and shown in Fig. 103-104 

respectively. This figure clearly displays that the value of chamfer increases with increase 

in cutting current and voltage. In Table 31, the model of estimated regression coefficients 

of the independent variable on the chamfer is computed. 

  



M. Tech. (Research) Thesis  
 

National Institute of Technology, Rourkela Page 204 
 

Table 29 Effect of Estimated Values for Chamfer 

Factor Effect Std. Err. T P 

Constant 1.626667 0.113495 14.33245 0.000000 

A (mm/min) -0.022500 0.113495 -0.19825 0.845514 

A
2 

-0.052708 0.106165 -0.49647 0.626756 

B (Ampere) -0.034167 0.113495 -0.30104 0.767517 

B
2
 -0.110208 0.106165 -1.03808 0.315677 

C (Volt) -0.055833 0.113495 -0.49194 0.629881 

C
2
 -0.027708 0.106165 -0.26099 0.797647 

D (mm) 0.220833 0.113495 1.94575 0.070670 

D
2
 -0.150208 0.106165 -1.41485 0.177535 

A×B 0.038750 0.139003 0.27877 0.784227 

A×C 0.078750 0.139003 0.56653 0.579409 

A×D -0.253750 0.139003 -1.82550 0.087899 

B×C -0.011250 0.139003 -0.08093 0.936565 

B×D -0.303750 0.139003 -2.18521 0.045151 

C×D 0.081250 0.139003 0.58452 0.567559 
 

Table 30 ANOVA Table for Chamfer 

Factors SS DoF MS F P 

A (mm/min) 0.003038 1 0.003038 0.039301 0.845514 

A
2 

0.019050 1 0.019050 0.246487 0.626756 

B (Ampere) 0.007004 1 0.007004 0.090625 0.767517 

B
2
 0.083286 1 0.083286 1.077617 0.315677 

C (Volt) 0.018704 1 0.018704 0.242009 0.629881 

C
2
 0.005265 1 0.005265 0.068117 0.797647 

D (mm) 0.292604 1 0.292604 3.785932 0.070670 

D
2
 0.154715 1 0.154715 2.001813 0.177535 

A×B 0.006006 1 0.006006 0.077713 0.784227 

A×C 0.024806 1 0.024806 0.320962 0.579409 

A×D 0.257556 1 0.257556 3.332456 0.087899 

B×C 0.000506 1 0.000506 0.006550 0.936565 

B×D 0.369056 1 0.369056 4.775126 0.045151 

C×D 0.026406 1 0.026406 0.341664 0.567559 

Error 1.159308 15 0.077287 
  

Total SS 2.378097 29 
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Table 31 Regression Coefficients of Chamfer 

Factor Regression Coef. Std. Err. T P 

Constant -68.8627 94.39520 -0.72952 0.476925 

A (mm/min) 0.0820 0.16875 0.48589 0.634067 

A
2 

-0.0000 0.00008 -0.49647 0.626756 

B (Ampere) 0.7669 1.29350 0.59287 0.562098 

B
2
 -0.0088 0.00849 -1.03808 0.315677 

C (Volt) -0.0729 0.14856 -0.49057 0.630832 

C
2
 -0.0000 0.00013 -0.26099 0.797647 

D (mm) 15.9909 5.91839 2.70190 0.016396 

D
2
 -0.3004 0.21233 -1.41485 0.177535 

A×B 0.0003 0.00111 0.27877 0.784227 

A×C 0.0001 0.00014 0.56653 0.579409 

A×D -0.0102 0.00556 -1.82550 0.087899 

B×C -0.0001 0.00139 -0.08093 0.936565 

B×D -0.1215 0.05560 -2.18521 0.045151 

C×D 0.0041 0.00695 0.58452 0.567559 
 

Pareto Chart of Standardized Effects; Variable: Chamfer

4 factors, 1 Blocks, 30 Runs; MS Residual=.0772872

-.080934
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p=.05

Standardized Effect Estimate (Absolute Value)
 

Fig. 97 Pareto chart of standardized effect of factors on chamfer 

DV: Chamfer (mm)
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Observed vs. Predicted Values

4 factors, 1 Blocks, 30 Runs; MS Residual=.0772872
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Fig. 98 Plot of observed vs. predicted values of chamfer 

DV: Chamfer (mm)
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Predicted vs. Residual Values

4 factors, 1 Blocks, 30 Runs; MS Residual=.0772872
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Fig. 99 Plot of predicted vs. residual values of chamfer 

From the Fig. 99, no standard pattern is formed in the plot of predicted vs. residual 

values which show the adequacy of the fitted model for chamfer. 

DV: Chamfer (mm)
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Histogram of Raw Residuals

4 factors, 1 Blocks, 30 Runs; MS Residual=.0772872
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Fig. 100 Histogram plot of predicted values of chamfer 

DV: Chamfer (mm)
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Residuals vs. Case Numbers

4 factors, 1 Blocks, 30 Runs; MS Residual=.0772872
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Fig. 101 Plot of residuals vs. case numbers values of chamfer 

From the Fig. 101, it is evident that the highest chamfer value among all 

experimental runs is by the run number 26. The red line indicates that the value of 

chamfer increases with increase in run order. 

DV: Chamfer (mm)
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Probability Plot; Var.:Chamfer; R-sqr=.51251; Adj:.05751

4 factors, 1 Blocks, 30 Runs; MS Residual=.0772872
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Fig. 102 Probability plot of chamfer 

The normal probability plot of chamfer corresponding to each regression terms is 

plotted in Fig. 102. 

DV: Chamfer (mm)
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Fitted Surface; Variable: Chamfer

4 factors, 1 Blocks, 30 Runs; MS Residual=.0772872
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Fig. 103 3D fitted surface plot of chamfer 
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Fitted Surface; Variable: Chamfer

4 factors, 1 Blocks, 30 Runs; MS Residual=.0772872
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Fig. 104 2D fitted counter plot of chamfer 

DV: Chamfer (mm)
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Profiles for Predicted Values and Desirability
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Fig. 105 Profile plot of predicted values and desirability of chamfer 

The technique of desirability function helped to get optimum value of chamfer 

response which was fitted by the quadratic fit model. The level of variable giving the 

highest desirability i.e., 1.0000 was considered as optimum level. The optimized levels of 

variables (A, B, C and D) were determined using the desirability profiles that are shown in 

Fig. 105 for predicted values of responses and red dotted line presented the corresponding 

values of desirability function. 
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Fig. 106 Desirability 3D surface plot of chamfer 
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Desirability Surface/Contours; Method: Quadratic Fit
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Fig. 107 Desirability 2D counter plot of chamfer 

The 3D and 2D interaction plots of input variables on chamfer response were 

obtained using the desirability profiles that are shown in Fig. 106-107 respectively. From 

these interaction plots, it can be concluded that the lowest value of torch height is 

preferred for minimum chamfer during plasma machining. 

5.2.1.4 For dross: 

Similarly for the case of dross response, the effect of estimated values was 

computed and recorded in Table 32. The ANOVA for dross has been carried out firstly 

and its results are given in Table 33. Here, the block effect has also been considered 

because the levels of block are taken as one. Due to this variation in block, there is 

negligible amount of effect on experiment. This effect is ignored for further calculation of 
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optimization. The total degree of freedom for all input factors is 29. From the Table 33, it 

is seen that the most of the terms have P-value less than 0.05 under the confidence interval 

of 95 %. Hence, these terms show significance within experiment. In case of individual 

terms, no single term has shown significance throughout the experiment. Pareto chart of 

effects of all factors on dross response are shown in Fig. 108 and the results indicate that 

the quadratic of torch height is the second most enhancing factor among all considered 

factors. The scatter plot between the observed and the predicted value of dross of all 30 

runs is shown in Fig. 109. It is concluded that there is a reasonable correlation between 

the measured and predicted values of dross response. In Fig. 111, the histogram plot of 

predicted data of dross with 95 % confidence interval of normal distribution is displayed. 

In Table 34, the model of estimated regression coefficients of the independent variable on 

the dross is given. 

Table 32 Effect of Estimated Values for Dross 

Factor Effect Std. Err. T P 

Constant 6.30833 1.038633 6.07369 0.000021 

A (mm/min) -1.31000 1.038633 -1.26127 0.226474 

A
2 

-0.45917 0.971552 -0.47261 0.643294 

B (Ampere) -1.90833 1.038633 -1.83735 0.086049 

B
2
 -0.88917 0.971552 -0.91520 0.374564 

C (Volt) -0.82500 1.038633 -0.79431 0.439400 

C
2
 0.17333 0.971552 0.17841 0.860789 

D (mm) 1.08833 1.038633 1.04785 0.311298 

D
2
 -0.79917 0.971552 -0.82257 0.423638 

A×B 0.89500 1.272061 0.70358 0.492470 

A×C 1.32250 1.272061 1.03965 0.314971 

A×D -0.20000 1.272061 -0.15723 0.877164 

B×C -0.78000 1.272061 -0.61318 0.548944 

B×D 2.41250 1.272061 1.89653 0.077318 

C×D -1.68500 1.272061 -1.32462 0.205124 
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Table 33 ANOVA Table for Dross 

Factors SS DoF MS F P 

A (mm/min) 10.2966 1 10.29660 1.590810 0.226474 

A
2 

1.4457 1 1.44572 0.223362 0.643294 

B (Ampere) 21.8504 1 21.85042 3.375858 0.086049 

B
2
 5.4214 1 5.42138 0.837595 0.374564 

C (Volt) 4.0837 1 4.08375 0.630934 0.439400 

C
2
 0.2060 1 0.20602 0.031830 0.860789 

D (mm) 7.1068 1 7.10682 1.097993 0.311298 

D
2
 4.3794 1 4.37943 0.676616 0.423638 

A×B 3.2041 1 3.20410 0.495029 0.492470 

A×C 6.9960 1 6.99603 1.080876 0.314971 

A×D 0.1600 1 0.16000 0.024720 0.877164 

B×C 2.4336 1 2.43360 0.375988 0.548944 

B×D 23.2806 1 23.28063 3.596823 0.077318 

C×D 11.3569 1 11.35690 1.754625 0.205124 

Error 97.0883 15 6.47255 
  

Total SS 198.1005 29 
   

 

Table 34 Regression Coefficients of Dross 

Factor Regression Coef. Std. Err. T P 

Constant 39.7616 863.8410 0.04603 0.963895 

A (mm/min) 0.2251 1.5443 0.14573 0.886071 

A
2 

-0.0004 0.0008 -0.47261 0.643294 

B (Ampere) -2.5780 11.8372 -0.21779 0.830528 

B
2
 -0.0711 0.0777 -0.91520 0.374564 

C (Volt) -0.7803 1.3595 -0.57394 0.574517 

C
2
 0.0002 0.0012 0.17841 0.860789 

D (mm) -14.2625 54.1611 -0.26333 0.795876 

D
2
 -1.5983 1.9431 -0.82257 0.423638 

A×B 0.0072 0.0102 0.70358 0.492470 

A×C 0.0013 0.0013 1.03965 0.314971 

A×D -0.0080 0.0509 -0.15723 0.877164 

B×C -0.0078 0.0127 -0.61318 0.548944 

B×D 0.9650 0.5088 1.89653 0.077318 

C×D -0.0843 0.0636 -1.32462 0.205124 
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Pareto Chart of Standardized Effects; Variable: Dross

4 factors, 1 Blocks, 30 Runs; MS Residual=6.472552
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Fig. 108 Pareto chart of standardized effect of factors on dross 
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Observed vs. Predicted Values

4 factors, 1 Blocks, 30 Runs; MS Residual=6.472552
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Fig. 109 Plot of observed vs. predicted values of dross 

DV: Dross (mm )2
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Predicted vs. Residual Values

4 factors, 1 Blocks, 30 Runs; MS Residual=6.472552
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Fig. 110 Plot of predicted vs. residual values of dross 

From the Fig. 110, no standard pattern is formed in the plot of predicted vs. residual 

values which show the adequacy of the fitted model for dross. 

DV: Dross (mm )2
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Histogram of Raw Residuals

4 factors, 1 Blocks, 30 Runs; MS Residual=6.472552
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Fig. 111 Histogram plot of predicted values of dross 

DV: Dross (mm )2



M. Tech. (Research) Thesis  
 

National Institute of Technology, Rourkela Page 222 
 

Residuals vs. Case Numbers

4 factors, 1 Blocks, 30 Runs; MS Residual=6.472552
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Fig. 112 Plot of residuals vs. case numbers values of dross 

From the Fig. 112, it is evident that the highest dross value among all experimental 

runs is by the run number 3. The red line indicates that the value of dross increases with 

increase in run order. 

DV: Dross (mm )2
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Probability Plot; Var.:Dross; R-sqr=.5099; Adj:.05248

4 factors, 1 Blocks, 30 Runs; MS Residual=6.472552
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Fig. 113 Probability plot of dross 

The normal probability plot of dross corresponding to each regression terms is 

plotted in Fig. 113. 
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Profiles for Predicted Values and Desirability
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Fig. 114 Profile plot of predicted values and desirability of dross 

By the help of desirability function technique, it can be able to find optimum value 

of dross response with the quadratic fit empirical model. The level of variable giving the 

highest desirability i.e., 1.0000 was considered as optimum level. The optimized levels of 

variables (A, B, C and D) were determined using the desirability profiles. The predicted 

values of responses and desirability function with red dotted lines are displayed in Fig. 

114. 
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Fig. 115 Desirability 3D surface plot of dross 
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Desirability Surface/Contours; Method: Quadratic Fit
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Fig. 116 Desirability 2D counter plot of dross 

In Fig. 115-116, the 3D and 2D interaction plots of variables for dross were 

determined using the desirability profiles. Here, highest value of feed rate and voltage 

along with torch height gave minimum influence on dross whereas cutting current is 

opposite during cutting process by plasma arc.  

5.2.1.5 For kerf: 

In Table 35, the effect of estimated values of kerf was computed and tabulated. The 

ANOVA for kerf has been carried out firstly and its results are given in Table 36. Here, 

the block effect has also been considered because the levels of block are taken as one. Due 

to this variation in block, there is negligible amount of effect occurred in experiment. This 

effect is ignored for further calculation of optimization. The total degree of freedom for all 
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input factors is 29. From the Table 36, it is seen that the most of the terms have P-value 

less than 0.05 under the confidence interval of 95 %. Hence, these terms show 

significance within the experiment. In case of individual terms, only torch height has 

shown significance within the experiment. Pareto chart of effects of all factors on kerf 

response are shown in Fig. 117 and the results indicate that the linear form of torch height 

is the second most enhancing factor among all considered factors. The scatter plot 

between the observed and the predicted value of kerf of all 30 runs is shown in Fig. 118. It 

is concluded that there is a reasonable correlation between the measured and predicted 

values of kerf output. In Fig. 120, the histogram plot of predicted data of kerf with 95 % 

confidence interval of normal distribution is displayed. In Table 37, the model of 

estimated regression coefficients of the independent variable on the kerf is shown. 

Table 35 Effect of Estimated Values for kerf 

Factor Effect Std. Err. T P 

Constant 2.728333 0.201400 13.54683 0.000000 

A (mm/min) -0.298333 0.201400 -1.48130 0.159227 

A
2 

0.193750 0.188393 1.02844 0.320043 

B (Ampere) -0.346667 0.201400 -1.72128 0.105752 

B
2
 0.136250 0.188393 0.72322 0.480669 

C (Volt) -0.030000 0.201400 -0.14896 0.883572 

C
2
 -0.081250 0.188393 -0.43128 0.672399 

D (mm) 0.435000 0.201400 2.15988 0.047379 

D
2
 0.051250 0.188393 0.27204 0.789301 

A×B -0.452500 0.246664 -1.83448 0.086494 

A×C -0.105000 0.246664 -0.42568 0.676385 

A×D 0.185000 0.246664 0.75001 0.464852 

B×C 0.050000 0.246664 0.20271 0.842089 

B×D -0.055000 0.246664 -0.22298 0.826562 

C×D -0.177500 0.246664 -0.71960 0.482832 
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Table 36 ANOVA Table for Kerf 

Factors SS DoF MS F P 

A (mm/min) 0.534017 1 0.534017 2.194238 0.159227 

A
2 

0.257411 1 0.257411 1.057683 0.320043 

B (Ampere) 0.721067 1 0.721067 2.962814 0.105752 

B
2
 0.127296 1 0.127296 0.523052 0.480669 

C (Volt) 0.005400 1 0.005400 0.022188 0.883572 

C
2
 0.045268 1 0.045268 0.186003 0.672399 

D (mm) 1.135350 1 1.135350 4.665076 0.047379 

D
2
 0.018011 1 0.018011 0.074005 0.789301 

A×B 0.819025 1 0.819025 3.365318 0.086494 

A×C 0.044100 1 0.044100 0.181204 0.676385 

A×D 0.136900 1 0.136900 0.562513 0.464852 

B×C 0.010000 1 0.010000 0.041089 0.842089 

B×D 0.012100 1 0.012100 0.049718 0.826562 

C×D 0.126025 1 0.126025 0.517828 0.482832 

Error 3.650583 15 0.243372 
  

Total SS 7.645217 29 
   

 

Table 37 Regression Coefficients of Kerf 

Factor Regression Coef. Std. Err. T P 

Constant 25.33838 167.5065 0.15127 0.881780 

A (mm/min) -0.15097 0.2995 -0.50414 0.621489 

A
2 

0.00015 0.0002 1.02844 0.320043 

B (Ampere) 2.42007 2.2953 1.05434 0.308417 

B
2
 0.01090 0.0151 0.72322 0.480669 

C (Volt) 0.12379 0.2636 0.46957 0.645414 

C
2
 -0.00010 0.0002 -0.43128 0.672399 

D (mm) -5.07050 10.5023 -0.48280 0.636210 

D
2
 0.10250 0.3768 0.27204 0.789301 

A×B -0.00362 0.0020 -1.83448 0.086494 

A×C -0.00011 0.0002 -0.42568 0.676385 

A×D 0.00740 0.0099 0.75001 0.464852 

B×C 0.00050 0.0025 0.20271 0.842089 

B×D -0.02200 0.0987 -0.22298 0.826562 

C×D -0.00887 0.0123 -0.71960 0.482832 
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Pareto Chart of Standardized Effects; Variable: Kerf

4 factors, 1 Blocks, 30 Runs; MS Residual=.2433722
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Fig. 117 Pareto chart of standardized effect of factors on kerf 
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Observed vs. Predicted Values

4 factors, 1 Blocks, 30 Runs; MS Residual=.2433722
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Fig. 118 Plot of observed vs. predicted values of kerf 

DV: Kerf (mm)
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Predicted vs. Residual Values

4 factors, 1 Blocks, 30 Runs; MS Residual=.2433722
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Fig. 119 Plot of predicted vs. residual values of kerf 

From the Fig. 119, no standard pattern is formed in the plot of predicted vs. residual 

values which show the adequacy of the fitted model for kerf. 

DV: Kerf (mm)
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Histogram of Raw Residuals

4 factors, 1 Blocks, 30 Runs; MS Residual=.2433722
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Fig. 120 Histogram plot of predicted values of kerf 

DV: Kerf (mm)
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Residuals vs. Case Numbers

4 factors, 1 Blocks, 30 Runs; MS Residual=.2433722
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Fig. 121 Plot of residuals vs. case numbers values of kerf 

From the Fig. 121, it is evident that the highest kerf value among all experimental 

runs is by the run number 11. The red line indicates that the value of kerf decreases with 

increase in run order. 

DV: Kerf (mm)
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Probability Plot; Var.:Kerf; R-sqr=.5225; Adj:.07684

4 factors, 1 Blocks, 30 Runs; MS Residual=.2433722
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Fig. 122 Probability plot of kerf 

The normal probability plot of kerf corresponding to each regression terms is plotted 

in Fig. 122. 
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Profiles for Predicted Values and Desirability
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Fig. 123 Profile plot of predicted values and desirability of kerf 

The method of desirability function helped to get optimum value of kerf response 

which was fitted by the quadratic fit model. The level of variable giving the highest 

desirability i.e., 1.0000 was considered as optimum level. In Fig. 123, the optimized levels 

of variables (A, B, C and D) were determined using the desirability profiles. The predicted 

values of responses and desirability function with red dotted lines are displayed in the 

same figure i.e. Fig. 123. 
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Fig. 124 Desirability 3D surface plot of kerf 
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Desirability Surface/Contours; Method: Quadratic Fit
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Fig. 125 Desirability 2D counter plot of kerf 

The interaction plots in 3D and 2D version of input variables on kerf response were 

found out using the desirability profiles that are shown in Fig. 124-125 respectively. Here, 

only voltage parameter gave red area with raising its value that means the voltage should 

be minimized for required minimum kerf width. 

5.2.2 Hybrid approach 

In this hybrid approach i.e., Grey PCA, all values of responses are normalized in 

between 0 and 1 as per the higher the better and lower the better criteria according to the 

corresponding problem. The computed normalized value of each response is recorded in 

Table 38. Then, the value of deviation sequences for corresponding outputs are calculated 

and tabulated in Table 39. The Eigen values and vectors are determined to check the 
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correlation among output responses of PAC operation. The values of Eigen are tabulated 

in Table 40 and similarly the values of Eigen vectors are recorded in Table 41 for each 

principal component. The grey relational coefficients are computed for each response and 

lastly computed the overall grey relational grade by averaging the grey coefficients for 

each run order. The grey relational coefficients and overall grey relational grade are 

tabulated in Table 42. The ANOVA is carried out for the multi-objective problem of Grey 

based PCA approach and the obtained results are tabulated Table 43 in and Table 44. The 

regression coefficients of GRG are recorded in Table 45. 
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Table 38 Normalized Values for Output Response 

MRR 

(mm
3
/min) 

SR (µm) Chamfer (mm) Dross (mm
2
) Kerf (mm) 

0.699113 0.308974 0.144330 0.651316 0.555556 

0.355736 0.558333 0.989691 0.961623 0.161111 

0.947715 0.444658 0.463918 0.000000 0.605556 

0.547420 1.000000 0.567010 0.582237 0.572222 

0.930838 0.025641 0.092784 0.143640 0.111111 

0.772074 0.656838 1.000000 0.281798 0.238889 

0.298399 0.208547 0.948454 0.578947 0.750000 

0.689192 0.066239 0.340206 0.212719 0.177778 

0.872785 0.459188 0.463918 0.115132 0.622222 

1.000004 0.866239 0.144330 1.000000 0.555556 

-1.1E-05 0.750855 0.752577 0.720395 0.138889 

0.331442 0.199359 0.515464 0.858553 1.000000 

0.322579 0.000000 0.402062 0.549342 0.744444 

0.996881 0.425000 0.948454 0.473684 0.611111 

0.163395 0.791026 0.360825 0.750000 0.000000 

0.738867 0.192735 0.896907 0.354167 0.666667 

0.904185 0.812393 0.453608 0.858553 0.083333 

0.443912 0.342094 0.917526 0.344298 0.600000 

0.685065 0.028205 0.350515 0.629386 0.177778 

0.752308 0.377137 0.608247 0.471491 0.605556 

0.386207 0.210684 0.000000 0.109649 0.772222 

0.912008 0.821368 0.298969 0.549342 0.644444 

0.512474 0.617094 0.515464 0.125000 0.616667 

0.920385 0.433120 0.340206 0.059211 0.000000 

0.517523 0.120726 0.195876 0.403509 0.444444 

0.939502 0.983974 0.041237 0.115132 0.805556 

0.606940 0.587393 0.556701 0.646930 0.938889 

0.284369 0.598932 0.309278 0.252193 0.316667 

0.913984 0.204701 0.752577 0.414474 0.811111 

0.946553 0.242949 0.463918 0.114035 0.366667 
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Table 39 Deviation Sequences for Output Responses of PAC 

MRR 

(mm
3
/min) 

SR (µm) Chamfer (mm) Dross (mm
2
) Kerf (mm) 

0.300887 0.691026 0.855670 0.348684 0.444444 

0.644264 0.441667 0.010309 0.038377 0.838889 

0.052285 0.555342 0.536082 1.000000 0.394444 

0.452580 0.000000 0.432990 0.417763 0.427778 

0.069162 0.974359 0.907216 0.856360 0.888889 

0.227926 0.343162 0.000000 0.718202 0.761111 

0.701601 0.791453 0.051546 0.421053 0.250000 

0.310808 0.933761 0.659794 0.787281 0.822222 

0.127215 0.540812 0.536082 0.884868 0.377778 

-3.8E-06 0.133761 0.855670 0.000000 0.444444 

1.000011 0.249145 0.247423 0.279605 0.861111 

0.668558 0.800641 0.484536 0.141447 0.000000 

0.677421 1.000000 0.597938 0.450658 0.255556 

0.003119 0.575000 0.051546 0.526316 0.388889 

0.836605 0.208974 0.639175 0.250000 1.000000 

0.261133 0.807265 0.103093 0.645833 0.333333 

0.095815 0.187607 0.546392 0.141447 0.916667 

0.556088 0.657906 0.082474 0.655702 0.400000 

0.314935 0.971795 0.649485 0.370614 0.822222 

0.247692 0.622863 0.391753 0.528509 0.394444 

0.613793 0.789316 1.000000 0.890351 0.227778 

0.087992 0.178632 0.701031 0.450658 0.355556 

0.487526 0.382906 0.484536 0.875000 0.383333 

0.079615 0.566880 0.659794 0.940789 1.000000 

0.482477 0.879274 0.804124 0.596491 0.555556 

0.060498 0.016026 0.958763 0.884868 0.194444 

0.393060 0.412607 0.443299 0.353070 0.061111 

0.715631 0.401068 0.690722 0.747807 0.683333 

0.086016 0.795299 0.247423 0.585526 0.188889 

0.053447 0.757051 0.536082 0.885965 0.633333 
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Table 40 Eigenvalues and Explained Variation for Principal Components 

Principal 

components 

Eigen 

value 

Explained variations 

(%) 

Cumulative Eigen 

value 

Cumulative 

% 

First 1.517185 30.34369 1.517185 30.3437 

Second 1.131617 22.63233 2.648801 52.9760 

Third 0.963514 19.27028 3.612315 72.2463 

Fourth 0.822231 16.44462 4.434546 88.6909 

Fifth 0.565454 11.30908 5.000000 100.0000 
 

Table 41 Eigenvectors for Principal Components and Contribution 

Variable Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 

MRR 

(mm
3
/min) 

0.545948 -0.275111 0.380823 0.442568 -0.534193 

SR (µm) -0.283886 -0.677908 0.492808 0.062001 0.461677 

Chamfer 

(mm) 
-0.433712 0.392407 0.104119 0.799239 0.091031 

Dross 

(mm
2
) 

-0.651759 -0.119488 0.142578 -0.234208 -0.696958 

Kerf (mm) 0.091940 0.544513 0.762197 -0.326579 0.086339 
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Eigenvalues of correlation matrix

Active variables only
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Fig. 126 Plot of Eigen values of correlation matrix for second phase 

The Fig. 126 shows the variation in percentage of Eigen values in first phase 

experimentation. 
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Table 42 Grey Relational Coefficient and Grade of Output Responses of PAC 

Grey 

relational 

coefficient 1 

Grey 

relational 

coefficient 2 

Grey 

relational 

coefficient 3 

Grey 

relational 

coefficient 4 

Grey 

relational 

coefficient 5
 

Overall grey 

relational 

grade 

0.624308 0.419806 0.368821 0.589147 0.529412 0.506299 

0.436962 0.530973 0.979798 0.928717 0.373444 0.649979 

0.905329 0.473780 0.482587 0.333333 0.559006 0.550807 

0.524890 1.000000 0.535912 0.544803 0.538922 0.628905 

0.878484 0.339130 0.355311 0.368634 0.360000 0.460312 

0.686883 0.593006 1.000000 0.410441 0.396476 0.617361 

0.416111 0.387161 0.906542 0.542857 0.666667 0.583868 

0.616669 0.348733 0.431111 0.388416 0.378151 0.432616 

0.797175 0.480394 0.482587 0.361045 0.569620 0.538164 

1.000008 0.788941 0.368821 1.000000 0.529412 0.737436 

0.333331 0.667427 0.668966 0.641350 0.367347 0.535684 

0.427878 0.384426 0.507853 0.779487 1.000000 0.619929 

0.424657 0.333333 0.455399 0.525952 0.661765 0.480221 

0.993802 0.465116 0.906542 0.487179 0.562500 0.683028 

0.374082 0.705244 0.438914 0.666667 0.333333 0.503648 

0.656916 0.382478 0.829060 0.436364 0.600000 0.580963 

0.839186 0.727160 0.477833 0.779487 0.352941 0.635321 

0.473445 0.431814 0.858407 0.432638 0.555556 0.550372 

0.613546 0.339721 0.434978 0.574307 0.378151 0.468141 

0.668725 0.445290 0.560694 0.486141 0.559006 0.543971 

0.448917 0.387802 0.333333 0.359621 0.687023 0.443339 

0.850352 0.736776 0.416309 0.525952 0.584416 0.622761 

0.506316 0.566312 0.507853 0.363636 0.566038 0.502031 

0.862642 0.468656 0.431111 0.347032 0.333333 0.488555 

0.508918 0.362510 0.383399 0.456000 0.473684 0.436902 

0.892063 0.968944 0.342756 0.361045 0.720000 0.656962 

0.559873 0.547881 0.530055 0.586118 0.891089 0.623003 

0.411309 0.554897 0.419913 0.400703 0.422535 0.441871 

0.853219 0.386011 0.668966 0.460606 0.725806 0.618922 

0.903429 0.397756 0.482587 0.360759 0.441176 0.517142 
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Table 43 Effect of Estimated Values of Responses of Pac 

Factor Effect Std. Err. T P 

Constant 0.532842 0.025084 21.24266 0.000000 

A (mm/min) 0.031797 0.025084 1.26765 0.224250 

A
2 

-0.015300 0.023464 -0.65207 0.524221 

B (Ampere) 0.063820 0.025084 2.54427 0.022451 

B
2
 0.024079 0.023464 1.02621 0.321056 

C (Volt) 0.051126 0.025084 2.03821 0.059563 

C
2
 0.035937 0.023464 1.53162 0.146432 

D (mm) -0.086806 0.025084 -3.46067 0.003495 

D
2
 0.011387 0.023464 0.48532 0.634459 

A×B 0.033796 0.030721 1.10011 0.288627 

A×C -0.008395 0.030721 -0.27328 0.788367 

A×D 0.054909 0.030721 1.78733 0.094103 

B×C -0.018790 0.030721 -0.61164 0.549934 

B×D -0.023052 0.030721 -0.75037 0.464639 

C×D 0.052091 0.030721 1.69561 0.110611 
 

Table 44 ANOVA Table for GRG 

Factors SS DoF MS F P 

A (mm/min) 0.006066 1 0.006066 1.60693 0.224250 

A
2 

0.001605 1 0.001605 0.42520 0.524221 

B (Ampere) 0.024438 1 0.024438 6.47333 0.022451 

B
2
 0.003976 1 0.003976 1.05312 0.321056 

C (Volt) 0.015683 1 0.015683 4.15431 0.059563 

C
2
 0.008856 1 0.008856 2.34587 0.146432 

D (mm) 0.045212 1 0.045212 11.97620 0.003495 

D
2
 0.000889 1 0.000889 0.23554 0.634459 

A×B 0.004569 1 0.004569 1.21024 0.288627 

A×C 0.000282 1 0.000282 0.07468 0.788367 

A×D 0.012060 1 0.012060 3.19454 0.094103 

B×C 0.001412 1 0.001412 0.37411 0.549934 

B×D 0.002126 1 0.002126 0.56306 0.464639 

C×D 0.010854 1 0.010854 2.87509 0.110611 

Error 0.056627 15 0.003775 
  

Total SS 0.194690 29 
   

 

  



M. Tech. (Research) Thesis  
 

National Institute of Technology, Rourkela Page 245 
 

Table 45 Regression Coefficients of GRG 

Factor Regression Coef. Std. Err. T P 

Constant 6.73001 20.86227 0.32259 0.751457 

A (mm/min) 0.00780 0.03730 0.20901 0.837252 

A
2 

-0.00001 0.00002 -0.65207 0.524221 

B (Ampere) -0.36087 0.28588 -1.26234 0.226102 

B
2
 0.00193 0.00188 1.02621 0.321056 

C (Volt) -0.00009 0.03283 -0.00289 0.997731 

C
2
 0.00004 0.00003 1.53162 0.146432 

D (mm) -2.19688 1.30802 -1.67954 0.113749 

D
2
 0.02277 0.04693 0.48532 0.634459 

A×B 0.00027 0.00025 1.10011 0.288627 

A×C -0.00001 0.00003 -0.27328 0.788367 

A×D 0.00220 0.00123 1.78733 0.094103 

B×C -0.00019 0.00031 -0.61164 0.549934 

B×D -0.00922 0.01229 -0.75037 0.464639 

C×D 0.00260 0.00154 1.69561 0.110611 
 

Pareto Chart of Standardized Effects; Variable: GRG

4 factors, 1 Blocks, 30 Runs; MS Residual=.0037751

DV: GRG
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p=.05

Standardized Effect Estimate (Absolute Value)
 

 

Fig. 127 Pareto chart of standardized effect of factors on GRG 
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According to Pareto chart of GRG response i.e. in Fig. 127, the torch height factor 

with linear form had the most significant influence on the response of plasma arc cutting 

procedure. 

Observed vs. Predicted Values

4 factors, 1 Blocks, 30 Runs; MS Residual=.0037751

DV: GRG
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Fig. 128 Plot of observed vs. predicted values of GRG 

The scatter plot between the observed and the predicted value of plasma cut 

responses of all 27 runs is shown in Fig. 128. The comparison between each of the 

observed values with the predicted value is shown in those plots which are calculated 

from the developed model. Here, the most of the points lie on the normal line of fitted 

values except the plot of GRG, because the uniformity lacks in the middle region. From 

this result it can be revealed that the response model shows good fit to experimental data, 

because the relationship between the actual and the predicted GRG is linear. 
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Predicted vs. Residual Values

4 factors, 1 Blocks, 30 Runs; MS Residual=.0037751

DV: GRG
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Fig. 129 Plot of predicted vs. residual values of GRG 

From the Fig. 129, no standard pattern is formed in the plot of predicted vs. residual 

values which show the adequacy of the fitted model for GRG. 
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Histogram of Raw Residuals

4 factors, 1 Blocks, 30 Runs; MS Residual=.0037751

DV: GRG
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Fig. 130 Histogram plot of predicted values of GRG 

The perfect normal probability distribution of the histogram plot of residuals for 

GRG response is shown in Fig. 130. From the above graphs, it is seen that the normal 

probability created in the histogram plot of residual for GRG is tolerable. 
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Residuals vs. Case Numbers

4 factors, 1 Blocks, 30 Runs; MS Residual=.0037751

DV: GRG
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Fig. 131 Plot of residuals vs. case numbers values of GRG 

From the Fig. 131, it is evident that the highest GRG value among all experimental 

runs is by the run number 22. The red line indicates that the value of GRG increases with 

increase in run order. 
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Probability Plot; Var.:GRG; R-sqr=.70914; Adj:.43768

4 factors, 1 Blocks, 30 Runs; MS Residual=.0037751

DV: GRG
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Fig. 132 Probability plot of GRG 

The normal probability plot of GRG corresponding to each regression terms is 

plotted in Fig. 132. 
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Profiles for Predicted Values and Desirability
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Fig. 133 Profile plot of predicted values and desirability of GRG 

The methodology of desirability function facilitated to determine optimum GRG 

response which was fitted by the quadratic fit model. The level of variable giving the 

highest desirability i.e., 1.0000 was considered as optimum level. The optimized levels of 

variables (A, B, C and D) were determined using the desirability profiles. The predicted 

values of responses and desirability function with red dotted lines that are demonstrated in 

Fig. 133. 

Feed Rate Cutting
Current

Voltage Torch Height
Desirability(mm/min)

(Ampere)
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Fig. 134 Desirability 3D surface plot of GRG 
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Desirability Surface/Contours; Method: Quadratic Fit 1 
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Fig. 135 Desirability 2D counter plot of GRG 

The surface interaction plot in 3D and 2D were found using the desirability profiles 

that are displayed in Fig. 134-135 respectively. In this case, the influential value of GRG 

is increased with maximum value in feed rate only. 
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5.2.3 Genetic algorithm 

5.2.3.1 For material removal rate: 

 
Fig. 136 Results from GA approach for MRR 

The best fitness and individual value plot of MRR is shown in Fig. 136 where the 

best and average value of MRR is obtained as 30207.2 mm
3
/min. Here, negative sign is 

due the application of negativity theory for maximizing problem. Secondly, the best 

parametric optimal setting is obtained at 920 mm/min of feed rate, 40 ampere of current, 

100 volt of voltage and 2 mm of torch height respectively.  



M. Tech. (Research) Thesis  
 

National Institute of Technology, Rourkela Page 255 
 

5.2.3.2 For surface roughness: 

 
Fig. 137 Results from GA approach for SR 

Similarly, for the case of SR the problem is the minimization of the best fitness and 

individual value plot as given in Fig. 137 where the best and average values of SR are 

found as 216.77179 µm. The best parametric optimal setting is obtained at 920 mm/min of 

feed rate, 45 ampere of current, 140 volt of voltage and 2.367 mm of torch height 

respectively. 
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5.2.3.3 For chamfer: 

 
Fig. 138 Results from GA approach for chamfer 

Similarly, for the case of chamfer the problem is the minimization of the best fitness 

and individual value plot as given in Fig. 138 where the best and average values of 

chamfer are found as 38.8355 mm. The best parametric optimal setting is obtained at 920 

mm/min of feed rate, 40 ampere of current, 100 volt of voltage and 2 mm of torch height 

respectively. Here, the simulation of genetic algorithm toolbox for all output responses 

stopped at same iteration number i.e., 176. 
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5.2.3.4 For dross: 

 
Fig. 139 Results from GA approach for dross 

In the case of dross, the best fitness and individual value plot as given in Fig. 139 

where the best and average values of dross are found as 29.4362 mm
2
 and 29.4321 mm

2
 

respectively. The best parametric optimal setting is obtained at 970 mm/min of feed rate, 

45 ampere of current, 100.003 volt of voltage and 2 mm of torch height respectively. 

Here, the simulation of genetic algorithm toolbox for all output responses stopped at same 

iteration number i.e., 176. 
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5.2.3.5 For kerf: 

 
Fig. 140 Results from GA approach for kerf 

In the case of kerf, the best fitness and individual value plot as given in Fig. 140 

where the best and average values of kerf are found as 144.3957 mm. The best parametric 

optimal setting is obtained at 970 mm/min of feed rate, 45 ampere of current, 140 volt of 

voltage and 2 mm of torch height respectively. Here, the simulation of genetic algorithm 

toolbox for all output responses stopped at same iteration number i.e., 176. 
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5.2.4 Particle swarm optimization 

5.2.4.1 For material removal rate: 

 
Fig. 141 Results from PSO approach for MRR 

The plot of best function value and optimum setting for MRR which was obtained 

from PSO methodology is shown in Fig. 141. From the graph, it can be seen that the 

optimum condition for MRR was found as 920 mm/min of feed rate, 40 ampere of 

current, 100 volt of voltage and 2 mm of torch height respectively. The optimal value of 

MRR is determined using PSO technique as 3020.72 mm
3
/min. 
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5.2.4.2 Mean surface roughness: 

 
Fig. 142 Results from PSO approach for SR 

The plot of best function value and optimum setting for SR which was obtained 

from PSO methodology is shown in Fig. 142. From the graph, it can be seen that the 

optimum condition for SR was found as 920 mm/min of feed rate, 45 ampere of current, 

140 volt of voltage and 2.3669 mm of torch height respectively. The optimum value of SR 

is obtained as 216.7718 µm by PSO approach. 
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5.2.4.3 For chamfer: 

 
Fig. 143 Results from PSO approach for chamfer 

The plot of best function value and optimum setting for chamfer which was obtained 

from PSO methodology is shown in Fig. 143. From the graph, it can be seen that the 

optimum condition for chamfer was found as 920 mm/min of feed rate, 40 ampere of 

current, 100 volt of voltage and 2 mm of torch height respectively. The best value of 

chamfer utilizing PSO technique is determined as 38.8355 mm. 
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5.2.4.4 For dross: 

 
Fig. 144 Results from PSO approach for dross 

The plot of best function value and optimum setting for dross which was obtained 

from PSO methodology is shown in Fig. 144. From the graph, it can be seen that the 

optimum condition for dross was found as 970 mm/min of feed rate, 45 ampere of current, 

100 volt of voltage and 2 mm of torch height respectively. The optimal worth of dross 

response using novel approach of PSO technique is evaluated as 29.4371 mm
2
. 
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5.2.4.5 For kerf: 

 
Fig. 145 Results from PSO approach for kerf 

The plot of best function value and optimum setting for kerf which was obtained 

from PSO methodology is shown in Fig. 145. From the graph, it can be seen that the 

optimum condition for kerf was found as 970 mm/min of feed rate, 45 ampere of current, 

140 volt of voltage and 2 mm of torch height respectively. The best function value of kerf 

using PSO methodology is obtained as 144.3957 mm. 
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5.2.5 Simulated annealing 

5.2.5.1 For material removal rate: 

 
Fig. 146 Results from SA approach for MRR 

Nature based novel optimization technique i.e., simulated annealing algorithm is 

employed to the obtained regression equation of surface roughness from RSM method. By 

applying Boltzmann annealing approach to the experimental data, the lowest value of 

MRR is found as 30476.41078 mm
3
/min at 920 mm/min of feed rate, 40 ampere of 

current, 129.869 volt of voltage and 2 mm of torch height respectively. From the Fig. 146, 

the best function value and comparative effect of input parameters are shown. Here, the 

feed rate gave the most effective variable than other two parameters. The highest number 

of iteration for simulating the algorithm is 501 where the minimum value of MRR found. 
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The best parametric setting of the whole experimentation as per simulated annealing is 

shown in Fig. 146 with current iteration number. 

5.2.5.2 For surface roughness: 

 
Fig. 147 Results from SA approach for SR 

Nature based novel optimization technique i.e., simulated annealing algorithm is 

employed to the obtained regression equation of surface roughness from RSM method. By 

applying Boltzmann annealing approach to the experimental data, the lowest value of SR 

is found as 218.75136 µm at 922.97 mm/min of feed rate, 44.149 ampere of current, 

139.545 volt of voltage and 2.399 mm of torch height respectively. From the Fig. 147, the 

best function value and comparative effect of input parameters are shown. Here, the feed 

rate gave the most effective variable than other two parameters. The highest number of 



M. Tech. (Research) Thesis  
 

National Institute of Technology, Rourkela Page 266 
 

iteration for simulating the algorithm is 501 where the minimum value of SR obtained. 

The best parametric setting of the whole experimentation as per simulated annealing is 

shown in Fig. 147 with current iteration number. 

5.2.5.3 For chamfer: 

 
Fig. 148 Results from SA approach for chamfer 

Nature based novel optimization technique i.e., simulated annealing algorithm is 

employed to the obtained regression equation of surface roughness from RSM method. By 

applying Boltzmann annealing approach to the experimental data, the lowest value of 

chamfer is found as 38.8983 mm at 920.011 mm/min of feed rate, 40.211 ampere of 

current, 101.854 volt of voltage and 2.001 mm of torch height respectively. From the Fig. 

148, the best function value and comparative effect of input parameters are shown. Here, 
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the feed rate gave the most effective variable than other two parameters. The highest 

number of iteration for simulating the algorithm is 501 where the minimum value of 

chamfer observed. The best parametric setting of the whole experimentation as per 

simulated annealing is shown in Fig. 148 with current iteration number. 

5.2.5.4 For dross: 

 
Fig. 149 Results from SA approach for dross 

Nature based novel optimization technique i.e., simulated annealing algorithm is 

employed to the obtained regression equation of dross from RSM method. By applying 

Boltzmann annealing approach to the experimental data, the lowest value of dross is 

found as 28.717 mm
2
 at 963.512 mm/min of feed rate, 45 ampere of current, 137.263 volt 

of voltage and 2 mm of torch height respectively. From the Fig. 149, the best function 
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value and comparative effect of input parameters are shown. Here, the feed rate gave the 

most effective variable than other two parameters. The highest number of iteration for 

simulating the algorithm is 501 where the minimum value of dross found. The best 

parametric setting of the whole experimentation as per simulated annealing is shown in 

Fig. 149 with current iteration number. 

5.2.5.5 For kerf: 

 
Fig. 150 Results from SA approach for kerf 

Nature based novel optimization technique i.e., simulated annealing algorithm is 

employed to the obtained regression equation of kerf from RSM method. By applying 

Boltzmann annealing approach to the experimental data, the lowest value of kerf is found 

as 144.30718 mm at 969.99 mm/min of feed rate, 44.997 ampere of current, 117.413 volt 
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of voltage and 2 mm of torch height respectively. From the Fig. 150, the best function 

value and comparative effect of input parameters are shown. Here, the feed rate gave the 

most effective variable than other two parameters. The highest number of iteration for 

simulating the algorithm is 501 where the minimum value of kerf found. The best 

parametric setting of the whole experimentation as per simulated annealing is shown in 

Fig. 150 with current iteration number. 

5.2.6 TLBO results 

5.2.6.1 For material removal rate: 

 
Fig. 151 Obtained plot by TLBO approach for MRR 

The TLBO algorithm is run through Matlab R2012b version software by 

considering 300 as population size and 500 as number of generations. In each run the 
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maximum number of function evaluations N is considered as 750000. Only in the case of 

MRR response, the theory of negativity is applied because the main objective of this is to 

convert the maximization type to minimization type problem. Fig. 151 depicts plot of the 

fitness function value for each generation. It can be observed that it converges to the 

optimum result in very small population size and less number of generations. From Fig. 

151, the optimal condition for MRR occurred at 924.226 mm/min of feed rate, 40.6128 

ampere of current, 105.911 volt of voltage and 2.97552 mm of torch height respectively. 

The best objective function value of MRR is found as 31180.1 mm
3
/min. 

5.2.6.2 For surface roughness: 

 
Fig. 152 Obtained plot by TLBO approach for SR 
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The TLBO algorithm is run by considering 300 as population size and 500 as 

number of generations. In each run the maximum number of function evaluations N is 

considered as 750000. Fig. 152 depicts plot of the fitness function value for each 

generation. It can be observed that it converges to the optimum result in very small 

population size and less number of generations. From Fig. 152, the optimal condition for 

SR occurred at 938.349 mm/min of feed rate, 43.8974 ampere of current, 139.636 volt of 

voltage and 3 mm of torch height respectively. The best objective function value of SR is 

found as 225.793 µm. 

5.2.6.3 For chamfer: 

 
Fig. 153 Obtained plot by TLBO approach for chamfer 
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The TLBO algorithm is run by considering 300 as population size and 500 as 

number of generations. In each run the maximum number of function evaluations N is 

considered as 750000. Fig. 153 depicts plot of the fitness function value for each 

generation. It can be observed that it converges to the optimum result in very small 

population size and less number of generations. From Fig. 153, the optimal condition for 

chamfer occurred at 924.454 mm/min of feed rate, 41.8109 ampere of current, 105.083 

volt of voltage and 2.97086 mm of torch height respectively. The best objective function 

value of chamfer is found as 39.8281 mm. 

5.2.6.4 For dross: 

 
Fig. 154 Obtained plot by TLBO approach for dross 
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The TLBO algorithm is run by considering 300 as population size and 500 as 

number of generations. In each run the maximum number of function evaluations N is 

considered as 750000. Fig. 154 depicts plot of the fitness function value for each 

generation. It can be observed that it converges to the optimum result in very small 

population size and less number of generations. From Fig. 154, the optimal condition for 

dross occurred at 969.999 mm/min of feed rate, 44.9999 ampere of current, 117.292 volt 

of voltage and 2 mm of torch height respectively. The best objective function value of 

dross is found as 29.2925 mm
2
. 

5.2.6.5 For kerf: 

 
Fig. 155 Obtained plot by TLBO approach for kerf 
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The TLBO algorithm is run by considering 300 as population size and 500 as 

number of generations. In each run the maximum number of function evaluations N is 

considered as 750000. Fig. 155 depicts plot of the fitness function value for each 

generation. It can be observed that it converges to the optimum result in very small 

population size and less number of generations. From Fig. 155, the optimal condition for 

kerf occurred at 970.006 mm/min of feed rate, 45.0006 ampere of current, 139.898volt of 

voltage and 2.00345 mm of torch height respectively. The best objective function value of 

kerf is found as 144.396 mm. 

5.3 Results of Case 3 

The Response Surface Methodology was utilized to study the influences of the 

independent factors cutting current (A), cutting speed (B), gas pressure (C) and stand-off 

gap (D) at three variation levels in the extraction procedure which is shown in Table 46. 

The whole experimentations were planned using Statistica software version 9.1 (Statsoft 

company made). Three levels are selected for each independent variable such as low (-1), 

middle (0) and high level (+1) which is shown in Table 46. The experimental design 

consisted of twenty seven cases or runs according to 3 blocked Box-Behnken Design 

(BBD). Analysis of variance (ANOVA) and F-test were used as significant criteria for the 

fitted models. The results obtained were presented as mean values with standard 

deviation. After getting the layout of experimental design of input factors from Statistica 

software, the cutting operation by plasma arc on the selected work piece have been carried 

out. According to the DOE, the seven output quality characteristics of cut are measured 

and tabulated in Table 47. The design of experiment consisted of actual level value of 

input factors with standard order of BBD and correspondingly the output responses. After 
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simulating the optimization approach by software to this model, the ANOVA evaluation 

has been carried out to each response. Similarly, the estimated coefficients of the model 

were calculated for each cut quality. The influences of input variables in plasma arc 

machining for each response is briefly described below: 

Table 46 Values of Input Process Parameters 

Process parameters Units Code L(1) L(2) L(3) 

Cutting Current Ampere A 100 150 200 

Cutting Speed mm/s B 2 3 4 

Gas Pressure L/min C 12 15 18 

Stand-off Gap mm D 2.0 2.5 3.0 
 

Table 47 Cut Quality Responses with L27 Orthogonal Array 

Run 

Cutting 

Current 

(Ampere) 

Cutting 

Speed 

(mm/s) 

Gas 

Pressure 

(L/min) 

Stand-off 

Gap 

(mm) 

MRR 

(mm3/min)  
SR 

(µm) 

Chamfer 

(mm) 
Dross 

(mm2
)

 

Right 

Bevel 

Angle 

(Degree) 

Kerf 

(mm)

 

HAZ 

(mm) 

1 100 2 15 2.5 1087.08 23.00 0.28 1.43 3 2.90 1.36 

2 200 2 15 2.5 375.16 14.91 0.15 0.91 3 2.61 2.77 

3 100 4 15 2.5 1531.83 29.60 0.43 1.67 3 3.02 1.33 

4 200 4 15 2.5 983.91 21.94 0.25 1.35 3 2.79 1.71 

5 150 3 12 2.0 1104.75 22.92 0.27 1.45 4 2.80 1.68 

6 150 3 18 2.0 1321.83 26.07 0.35 1.54 4 2.96 1.49 

7 150 3 12 3.0 952.66 20.84 0.22 1.33 4 2.86 1.91 

8 150 3 18 3.0 879.75 20.22 0.21 1.28 3 2.74 1.90 

9 150 3 15 2.5 994.54 21.47 0.24 1.36 3 2.71 1.61 

10 100 3 15 2.0 1442.68 27.58 0.38 1.62 4 2.91 1.33 

11 200 3 15 2.0 679.26 17.98 0.19 1.08 3 2.57 2.49 

12 100 3 15 3.0 1012.59 21.88 0.25 1.38 3 2.76 1.91 

13 200 3 15 3.0 617.18 15.76 0.13 1.03 4 2.57 2.25 

14 150 2 12 2.5 596.76 15.16 0.13 1.10 3 2.59 2.38 

15 150 4 12 2.5 1325.51 21.41 0.26 1.42 4 2.72 1.82 

16 150 2 18 2.5 671.34 15.84 0.17 1.12 4 2.59 2.27 

17 150 4 18 2.5 1195.09 23.25 0.29 1.48 3 2.72 1.74 

18 150 3 15 2.5 870.09 18.69 0.20 1.26 3 2.61 1.90 

19 100 3 12 2.5 1172.25 23.76 0.27 1.49 3 2.80 1.64 

20 200 3 12 2.5 530.55 14.50 0.13 1.05 3 2.53 2.67 

21 100 3 18 2.5 1233.08 23.73 0.29 1.51 3 2.80 1.68 

22 200 3 18 2.5 615.91 17.19 0.15 1.11 3 2.56 2.44 

23 150 2 15 2.0 667.95 16.65 0.14 1.12 3 2.65 2.22 

24 150 4 15 2.0 1358.50 24.82 0.34 1.56 4 2.73 1.79 

25 150 2 15 3.0 585.16 14.04 0.12 1.15 4 2.55 2.45 

26 150 4 15 3.0 895.16 19.81 0.16 1.29 3 2.72 2.00 

27 150 3 15 2.5 840.37 18.29 0.18 1.26 3 2.40 1.93 
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5.3.1 RSM with desirability function approach 

5.3.1.1 For material removal rate: 

In the 3
rd

 step, the effect of estimated values of MRR was computed and recorded in 

Table 48. The ANOVA for MRR has been carried out firstly and its results are given in 

Table 49. Here, the block effect has also been considered because the levels of block are 

taken as one. Due to this variation in block, there is negligible amount of effect occurred 

in experiment. This effect is ignored for further calculation of optimization. The total 

degree of freedom for all input factors is 26. From the Table 49, it is seen that the most of 

the terms have P-value less than 0.05 under the confidence interval of 95 %. Hence, these 

terms show significance within experiment. In case of individual terms, cutting current, 

cutting speed and gas pressure have shown the most significance among all parameters. 

Pareto chart of effects of all factors on MRR response are shown in Fig. 156 and the 

results indicate that the linear form of cutting current is the second most enhancing factor 

among all considered factors. The scatter plot between the observed and the predicted 

value of MRR of all 27 runs is shown in Fig. 157. It is concluded that there is a reasonable 

correlation between the measured and predicted values of MRR response. In Fig. 159, the 

histogram plot of predicted data of MRR with 95 % confidence interval of normal 

distribution is displayed. In Table 50, the model of estimated regression coefficients of the 

independent variable on the MRR is represented. 
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Table 48 Effect of Estimated Values for MRR 

Factor Effect Std. Err. T P 

Constant 968.108 33.28832 29.0825 0.000000 

A (Ampere) -612.923 57.65707 -10.6305 0.000000 

A
2 

-7.854 43.24280 -0.1816 0.858905 

B (mm/s) 551.092 57.65707 9.5581 0.000001 

B
2
 -6.850 43.24280 -0.1584 0.876763 

C (L/min) 39.087 57.65707 0.6779 0.510685 

C
2
 -47.604 43.24280 -1.1009 0.292551 

D (mm) -272.078 57.65707 -4.7189 0.000498 

D
2
 -37.353 43.24280 -0.8638 0.404636 

A×B 82.000 99.86497 0.8211 0.427596 

A×C 12.265 99.86497 0.1228 0.904286 

A×D 184.005 99.86497 1.8425 0.090228 

B×C -102.500 99.86497 -1.0264 0.324955 

B×D -190.275 99.86497 -1.9053 0.080975 

C×D -144.995 99.86497 -1.4519 0.172166 
 

Table 49 ANOVA Table for MRR 

Factors SS DoF MS F P 

A (Ampere) 1127025 1 1127025 113.0075 0.000000 

A
2 

329 1 329 0.0330 0.858905 

B (mm/s) 911106 1 911106 91.3572 0.000001 

B
2
 250 1 250 0.0251 0.876763 

C (L/min) 4583 1 4583 0.4596 0.510685 

C
2
 12086 1 12086 1.2119 0.292551 

D (mm) 222080 1 222080 22.2681 0.000498 

D
2
 7441 1 7441 0.7461 0.404636 

A×B 6724 1 6724 0.6742 0.427596 

A×C 150 1 150 0.0151 0.904286 

A×D 33858 1 33858 3.3949 0.090228 

B×C 10506 1 10506 1.0535 0.324955 

B×D 36205 1 36205 3.6303 0.080975 

C×D 21024 1 21024 2.1080 0.172166 

Error 119676 12 9973 
  

Total SS 2509854 26 
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Table 50 Regression Coefficients of MRR 

Factor Regression Coef. Std. Err. T P 

Constant 1665.937 2912.110 0.57207 0.577833 

A (Ampere) -19.345 9.279 -2.08483 0.059114 

A
2 

0.003 0.017 0.18163 0.858905 

B (mm/s) 843.381 463.951 1.81782 0.094127 

B
2
 6.850 43.243 0.15842 0.876763 

C (L/min) 13.781 181.057 0.07611 0.940584 

C
2
 5.289 4.805 1.10086 0.292551 

D (mm) -275.352 1086.342 -0.25347 0.804198 

D
2
 149.412 172.971 0.86380 0.404636 

A×B 0.820 0.999 0.82111 0.427596 

A×C 0.041 0.333 0.12282 0.904286 

A×D 3.680 1.997 1.84254 0.090228 

B×C -17.083 16.644 -1.02639 0.324955 

B×D -190.275 99.865 -1.90532 0.080975 

C×D -48.332 33.288 -1.45191 0.172166 
 

Pareto Chart of Standardized Effects; Variable: MRR

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=9973.012

.1228158
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-.863795
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p=.05

Standardized Effect Estimate (Absolute Value)
 

Fig. 156 Pareto chart of standardized effect of factors on MRR 

DV: MRR (mm/min)

A (Ampere)

A
2 

B 

B
2

C  

C
2

D (mm)

D
2

A×B

 

A×C

A×D

B×C

B×D

C×D

(mm/s)

(L/min)

3



M. Tech. (Research) Thesis  
 

National Institute of Technology, Rourkela Page 279 
 

Observed vs. Predicted Values

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=9973.012
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Fig. 157 Plot of observed vs. predicted values of MRR 

DV: MRR (mm/min)
3



M. Tech. (Research) Thesis  
 

National Institute of Technology, Rourkela Page 280 
 

Predicted vs. Residual Values

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=9973.012
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Fig. 158 Plot of predicted vs. residual values of MRR 

From the Fig. 158, no standard pattern is formed in the plot of predicted vs. residual 

values which show the adequacy of the fitted model for MRR. 
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Histogram of Raw Residuals

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=9973.012
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Fig. 159 Histogram plot of predicted values of MRR 
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Residuals vs. Case Numbers

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=9973.012
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Fig. 160 Plot of residuals vs. case numbers values of MRR 

From the Fig. 160, it is evident that the highest MRR value among all experimental 

runs is by the run number 6. The red line indicates that the value of MRR decreases with 

increase in run order. 
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Probability Plot; Var.:MRR; R-sqr=.95232; Adj:.89669

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=9973.012
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Fig. 161 Probability plot of MRR 

The normal probability plot of MRR corresponding to each regression terms is 

plotted in Fig. 161. 
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Profiles for Predicted Values and Desirability
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Fig. 162 Profile plot of predicted values and desirability of MRR 

By the assistance of the desirability function, the optimum value of MRR response 

is obtained from the quadratic fit empirical model. The level of variable giving the highest 

desirability i.e., 1.0000 was considered as optimum level. The optimized levels of 

variables (A, B, C and D) were determined using the desirability profiles that are depicted 

in Fig. 162. The predicted values of responses and desirability function with red dotted 

lines are recorded in Fig. 162. 
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Fig. 163 Desirability 3D surface plot of MRR 
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Desirability Surface/Contours; Method: Quadratic Fit
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Fig. 164 Desirability 2D counter plot of MRR 

The 3D and 2D surface plot of interaction terms on material removal rate output 

response were determined using the desirability profiles that are figured in Fig. 163-164 

respectively. The highest amount MRR can be achieved by low and high value of stand-

off gap and cutting speed respectively. 

5.3.1.2 For surface roughness: 

In the same way, the effect of estimated values for surface roughness was computed 

and recorded in Table 51. The ANOVA for SR has been carried out firstly and its results 

are given in Table 52. Here, the block effect has also been considered because the levels 

of block are taken as one. Due to this variation in block, there is negligible amount of 

effect occurred in experiment. This effect is ignored for further calculation of 
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optimization. The total degree of freedom for all input factors is 26. From the Table 52, it 

is seen that the most of the terms have P-value less than 0.05 under the confidence interval 

of 95 %. Hence, these terms show significance within experiment. In case of individual 

terms, cutting current, cutting speed and stand-off gap have shown the most significance 

among all parameters. Pareto chart of effects of all factors on SR response are shown in 

Fig. 165 and the results indicate that the linear form of cutting current is the second most 

enhancing factor among all considered factors. The scatter plot between the observed and 

the predicted value of MRR of all 27 runs is shown in Fig. 166. It is concluded that there 

is a reasonable correlation between the measured and predicted values of SR response. In 

Fig. 168, the histogram plot of predicted data of SR with 95 % confidence interval of 

normal distribution is displayed. In Table 53, the model of estimated regression 

coefficients of the independent variable on the SR is displayed. 

Table 51 Effect of Estimated Values for SR 

Factor Effect Std. Err. T P 

Constant 20.88667 0.684609 30.50892 0.000000 

A (Ampere) -7.87833 1.185777 -6.64403 0.000024 

A
2 

-1.20125 0.889333 -1.35073 0.201702 

B (mm/s) 6.87167 1.185777 5.79508 0.000085 

B
2
 0.22375 0.889333 0.25159 0.805613 

C (L/min) 1.28500 1.185777 1.08368 0.299801 

C
2
 -0.33375 0.889333 -0.37528 0.714000 

D (mm) -3.91167 1.185777 -3.29882 0.006355 

D
2
 -0.79375 0.889333 -0.89252 0.389660 

A×B 0.21500 2.053826 0.10468 0.918357 

A×C 1.36000 2.053826 0.66218 0.520371 

A×D 1.74000 2.053826 0.84720 0.413462 

B×C 0.58000 2.053826 0.28240 0.782449 

B×D -1.20000 2.053826 -0.58428 0.569856 

C×D -1.88500 2.053826 -0.91780 0.376802 
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Table 52 ANOVA Table for SR 

Factors SS DoF MS F P 

A (Ampere) 186.2044 1 186.2044 44.14310 0.000024 

A
2 

7.6960 1 7.6960 1.82448 0.201702 

B (mm/s) 141.6594 1 141.6594 33.58290 0.000085 

B
2
 0.2670 1 0.2670 0.06330 0.805613 

C (L/min) 4.9537 1 4.9537 1.17436 0.299801 

C
2
 0.5941 1 0.5941 0.14084 0.714000 

D (mm) 45.9034 1 45.9034 10.88223 0.006355 

D
2
 3.3602 1 3.3602 0.79660 0.389660 

A×B 0.0462 1 0.0462 0.01096 0.918357 

A×C 1.8496 1 1.8496 0.43848 0.520371 

A×D 3.0276 1 3.0276 0.71775 0.413462 

B×C 0.3364 1 0.3364 0.07975 0.782449 

B×D 1.4400 1 1.4400 0.34138 0.569856 

C×D 3.5532 1 3.5532 0.84236 0.376802 

Error 50.6184 12 4.2182 
  

Total SS 451.5603 26 
   

 

Table 53 Regression Coefficients of SR 

Factor Regression Coef. Std. Err. T P 

Constant 60.5500 59.89053 1.01101 0.331963 

A (Ampere) -0.3844 0.19083 -2.01424 0.066959 

A
2 

0.0005 0.00036 1.35073 0.201702 

B (mm/s) 6.0058 9.54164 0.62943 0.540863 

B
2
 -0.2237 0.88933 -0.25159 0.805613 

C (L/min) -0.2975 3.72362 -0.07990 0.937638 

C
2
 0.0371 0.09881 0.37528 0.714000 

D (mm) -11.9817 22.34175 -0.53629 0.601558 

D
2
 3.1750 3.55733 0.89252 0.389660 

A×B 0.0022 0.02054 0.10468 0.918357 

A×C 0.0045 0.00685 0.66218 0.520371 

A×D 0.0348 0.04108 0.84720 0.413462 

B×C 0.0967 0.34230 0.28240 0.782449 

B×D -1.2000 2.05383 -0.58428 0.569856 

C×D -0.6283 0.68461 -0.91780 0.376802 
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Pareto Chart of Standardized Effects; Variable: SR

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=4.2182
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Fig. 165 Pareto chart of standardized effect of factors on SR 
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Observed vs. Predicted Values

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=4.2182
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Fig. 166 Plot of observed vs. predicted values of SR 

DV: SR (µm)
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Predicted vs. Residual Values

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=4.2182
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Fig. 167 Plot of predicted vs. residual values of SR 

From the Fig. 167, no standard pattern is formed in the plot of predicted vs. residual 

values which show the adequacy of the fitted model for SR. 
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Histogram of Raw Residuals

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=4.2182
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Fig. 168 Histogram plot of predicted values of SR 

DV: SR (µm)
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Residuals vs. Case Numbers

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=4.2182
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Fig. 169 Plot of residuals vs. case numbers values of SR 

From the Fig. 169, it is evident that the highest SR value among all experimental 

runs is by the run number 9. The red line indicates that the value of SR decreases with 

increase in run order. 
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Probability Plot; Var.:SR; R-sqr=.8879; Adj:.75712

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=4.2182
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Fig. 170 Probability plot of SR 

The normal probability plot of SR corresponding to each regression terms is plotted 

in Fig. 170. 
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Profiles for Predicted Values and Desirability

5.0000

30.697

45.000

0.

.5

1.

1
4
.0

4
0
2
1
.8

2
0
2
9
.6

0
0

100. 200.

1.0000

2. 4. 12. 18. 2.

2.25

3.

D
e
s
ir
a
b
ili
ty

 
Fig. 171 Profile plot of predicted values and desirability of SR 

The methodology of desirability function aided to obtain optimum SR response 

value which was fitted by the quadratic fit model. The level of variable giving the highest 

desirability i.e., 1.0000 was considered as optimum level. The optimized levels of 

variables (A, B, C and D) were determined using the desirability profiles that are shown in 

Fig. 171. And, the predicted values of responses and desirability function with red dotted 

lines are presented in same figure i.e. Fig. 171. 
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Fig. 172 Desirability 3D surface plot of SR 
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Desirability Surface/Contours; Method: Quadratic Fit
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Fig. 173 Desirability 2D counter plot of SR 

The 3D and 2D surface plot of interaction variables on surface roughness were 

determined using the desirability profiles that are presented in Fig. 172-173 respectively. 

The minimum value of SR response was occurred with highest amount of cutting current 

and lowest amount of cutting speed. 

5.3.1.3 For chamfer: 

In case of chamfer, the ANOVA has been done in Table 55. It is evident that the 

cutting current has shown very significance than other individual terms as its F-value got 

the highest considering all terms with P-value less than 0.05. Fig. 174 shows the Pareto 

chart of effects of all factors on chamfer response and the results reveal that the linear 

form cutting current is the second most enhancing factor among all chosen factors. The 
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scatter plot between the observed and the predicted value of chamfer of all 27 runs is 

shown in Fig. 175. From this result it can be revealed that the response model shows good 

fit to experimental data. In Fig. 177, the histogram plot of predicted data of chamfer with 

95 % confidence interval of normal distribution is shown. The model of estimated 

coefficient by multiple regressions for chamfer is calculated in Table 54 from the institute 

licensed software of Statistica 9.1. Similarly, the regression model of chamfer is recorded 

in Table 56. 

Table 54 Effect of Estimated Values for Chamfer 

Factor Effect Std. Err. T P 

Constant 0.240000 0.014380 16.68962 0.000000 

A (Ampere) -0.150000 0.024907 -6.02235 0.000060 

A
2 

-0.027500 0.018680 -1.47213 0.166722 

B (mm/s) 0.123333 0.024907 4.95171 0.000335 

B
2
 -0.005000 0.018680 -0.26766 0.793506 

C (L/min) 0.030000 0.024907 1.20447 0.251627 

C
2
 -0.007500 0.018680 -0.40149 0.695117 

D (mm) -0.096667 0.024907 -3.88107 0.002184 

D
2
 -0.010000 0.018680 -0.53532 0.602209 

A×B -0.025000 0.043141 -0.57950 0.572970 

A×C 0.000000 0.043141 0.00000 1.000000 

A×D 0.035000 0.043141 0.81130 0.432991 

B×C -0.005000 0.043141 -0.11590 0.909649 

B×D -0.080000 0.043141 -1.85440 0.088409 

C×D -0.045000 0.043141 -1.04310 0.317461 
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Table 55 ANOVA Table for Chamfer 

Factors SS DoF MS F P 

A (Ampere) 0.067500 1 0.067500 36.26866 0.000060 

A
2 

0.004033 1 0.004033 2.16716 0.166722 

B (mm/s) 0.045633 1 0.045633 24.51940 0.000335 

B
2
 0.000133 1 0.000133 0.07164 0.793506 

C (L/min) 0.002700 1 0.002700 1.45075 0.251627 

C
2
 0.000300 1 0.000300 0.16119 0.695117 

D (mm) 0.028033 1 0.028033 15.06269 0.002184 

D
2
 0.000533 1 0.000533 0.28657 0.602209 

A×B 0.000625 1 0.000625 0.33582 0.572970 

A×C 0.000000 1 0.000000 0.00000 1.000000 

A×D 0.001225 1 0.001225 0.65821 0.432991 

B×C 0.000025 1 0.000025 0.01343 0.909649 

B×D 0.006400 1 0.006400 3.43881 0.088409 

C×D 0.002025 1 0.002025 1.08806 0.317461 

Error 0.022333 12 0.001861 
  

Total SS 0.180667 26 
   

 

Table 56 Regression Coefficients of Chamfer 

Factor Regression Coef. Std. Err. T P 

Constant 0.093333 1.258000 0.07419 0.942080 

A (Ampere) -0.005800 0.004008 -1.44695 0.173525 

A
2 

0.000011 0.000007 1.47213 0.166722 

B (mm/s) 0.281667 0.200422 1.40537 0.185269 

B
2
 0.005000 0.018680 0.26766 0.793506 

C (L/min) 0.020000 0.078215 0.25571 0.802508 

C
2
 0.000833 0.002076 0.40149 0.695117 

D (mm) 0.063333 0.469288 0.13496 0.894884 

D
2
 0.040000 0.074722 0.53532 0.602209 

A×B -0.000250 0.000431 -0.57950 0.572970 

A×C -0.000000 0.000144 -0.00000 1.000000 

A×D 0.000700 0.000863 0.81130 0.432991 

B×C -0.000833 0.007190 -0.11590 0.909649 

B×D -0.080000 0.043141 -1.85440 0.088409 

C×D -0.015000 0.014380 -1.04310 0.317461 
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Pareto Chart of Standardized Effects; Variable: Chamfer

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.0018611
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Fig. 174 Pareto chart of standardized effect of factors on chamfer 
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Observed vs. Predicted Values

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.0018611
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Fig. 175 Plot of observed vs. predicted values of chamfer 

DV: Chamfer (mm)
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Predicted vs. Residual Values

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.0018611
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Fig. 176 Plot of predicted vs. residual values of chamfer 

From the Fig. 176, no standard pattern is formed in the plot of predicted vs. residual 

values which show the adequacy of the fitted model for chamfer. 

DV: Chamfer (mm)
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Histogram of Raw Residuals

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.0018611
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Fig. 177 Histogram plot of predicted values of chamfer 

DV: Chamfer (mm)
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Residuals vs. Case Numbers

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.0018611
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Fig. 178 Plot of residuals vs. case numbers values of chamfer 

From the Fig. 178, it is evident that the highest chamfer value among all 

experimental runs is by the run number 8. The red line indicates that the value of chamfer 

increases with increase in run order. 

DV: Chamfer (mm)
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Probability Plot; Var.:Chamfer; R-sqr=.87638; Adj:.73216

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.0018611

(1)

-8 -6 -4 -2 0 2 4 6 8

Standardized Effects (t-values)

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

E
x
p
e
c
te

d
 N

o
rm

a
l 
V

a
lu

e

 
Fig. 179 Probability plot of chamfer 

The normal probability plot of chamfer corresponding to each regression terms is 

plotted in Fig. 179. 
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Profiles for Predicted Values and Desirability
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Fig. 180 Profile plot of predicted values and desirability of chamfer 

The noble technique of desirability function used to get optimum value of chamfer 

response by the help of quadratic fit model. The level of variable giving the highest 

desirability i.e., 1.0000 was considered as optimum level. The optimized levels of 

variables (A, B, C and D) were determined using the desirability profiles that are shown in 

Fig. 180. The predicted values of responses and desirability function with red dotted lines 

are figured in Fig. 180. 
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Fig. 181 Desirability 3D surface plot of chamfer 
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Desirability Surface/Contours; Method: Quadratic Fit
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Fig. 182 Desirability 2D counter plot of chamfer 

The 3D and 2D plot of interaction variables were determined using the desirability 

profiles that are shown in Fig. 181-182 respectively. From these figures, it can be 

concluded that with the highest value of cutting speed and lowest value of cutting current, 

maximum chamfer value can be achieved. But in plasma cutting process, only minimum 

chamfer required so, minimum and maximum value of cutting speed and current 

respectively should be given to the machine. 

5.3.1.4 For dross: 

From the analysis of ANOVA table of dross i.e., Table 58, it is concluded that 

cutting current and the interaction term of cutting speed and stand-off gap have shown 

significance according to F-test. The Pareto chart of effects of all factors on dross 
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response is shown in Fig. 183 and the results show that the linear form of cutting current 

is the second most influencing factor among all considered factors. In Fig. 184, the scatter 

plot between the observed and the predicted value of dross of all 27 runs is displayed. 

Referring to the figure it is concluded that the relationship between the actual and the 

predicted dross is linear. The histogram plot of predicted data of dross with 95 % 

confidence interval of normal distribution is displayed in Fig. 186. Then, the surface and 

contour graph for the interaction term is displayed in Fig. 189-190 respectively. This 

figure demonstrates that with increasing speed of cutting and decreasing stand-off gap 

simultaneously improve the value of dross. The model of estimated coefficient by 

multiple regressions for dross is given in Table 57. Similarly, the regression model of 

chamfer is recorded in Table 59. 

Table 57 Effect of Estimated Values for Dross 

Factor Effect Std. Err. T P 

Constant 1.317222 0.022175 59.4004 0.000000 

A (Ampere) -0.428333 0.038409 -11.1520 0.000000 

A
2 

0.004167 0.028807 0.1446 0.887394 

B (mm/s) 0.323333 0.038409 8.4182 0.000002 

B
2
 0.007917 0.028807 0.2748 0.788128 

C (L/min) 0.033333 0.038409 0.8679 0.402494 

C
2
 -0.027083 0.028807 -0.9402 0.365666 

D (mm) -0.151667 0.038409 -3.9488 0.001932 

D
2
 -0.020833 0.028807 -0.7232 0.483407 

A×B 0.100000 0.066526 1.5032 0.158648 

A×C 0.020000 0.066526 0.3006 0.768838 

A×D 0.095000 0.066526 1.4280 0.178793 

B×C 0.020000 0.066526 0.3006 0.768838 

B×D -0.150000 0.066526 -2.2548 0.043621 

C×D -0.070000 0.066526 -1.0522 0.313425 
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Table 58 ANOVA Table for Dross 

Factors SS DoF MS F P 

A (Ampere) 0.550408 1 0.550408 124.3665 0.000000 

A
2 

0.000093 1 0.000093 0.0209 0.887394 

B (mm/s) 0.313633 1 0.313633 70.8665 0.000002 

B
2
 0.000334 1 0.000334 0.0755 0.788128 

C (L/min) 0.003333 1 0.003333 0.7532 0.402494 

C
2
 0.003912 1 0.003912 0.8839 0.365666 

D (mm) 0.069008 1 0.069008 15.5927 0.001932 

D
2
 0.002315 1 0.002315 0.5230 0.483407 

A×B 0.010000 1 0.010000 2.2595 0.158648 

A×C 0.000400 1 0.000400 0.0904 0.768838 

A×D 0.009025 1 0.009025 2.0392 0.178793 

B×C 0.000400 1 0.000400 0.0904 0.768838 

B×D 0.022500 1 0.022500 5.0839 0.043621 

C×D 0.004900 1 0.004900 1.1072 0.313425 

Error 0.053108 12 0.004426 
  

Total SS 1.044985 26 
   

 

Table 59 Regression Coefficients of Dross 

Factor Regression Coef. Std. Err. T P 

Constant 2.298333 1.939927 1.18475 0.259049 

A (Ampere) -0.012533 0.006181 -2.02762 0.065402 

A
2 

-0.000002 0.000012 -0.14464 0.887394 

B (mm/s) 0.384167 0.309065 1.24300 0.237608 

B
2
 -0.007917 0.028807 -0.27482 0.788128 

C (L/min) -0.046389 0.120613 -0.38461 0.707255 

C
2
 0.003009 0.003201 0.94018 0.365666 

D (mm) -0.053333 0.723676 -0.07370 0.942465 

D
2
 0.083333 0.115226 0.72321 0.483407 

A×B 0.001000 0.000665 1.50317 0.158648 

A×C 0.000067 0.000222 0.30063 0.768838 

A×D 0.001900 0.001331 1.42802 0.178793 

B×C 0.003333 0.011088 0.30063 0.768838 

B×D -0.150000 0.066526 -2.25476 0.043621 

C×D -0.023333 0.022175 -1.05222 0.313425 
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Pareto Chart of Standardized Effects; Variable: Dross

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.0044257
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Fig. 183 Pareto chart of standardized effect of factors on dross 
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Observed vs. Predicted Values

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.0044257
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Fig. 184 Plot of observed vs. predicted values of dross 

DV: Dross (mm )2
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Predicted vs. Residual Values

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.0044257
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Fig. 185 Plot of predicted vs. residual values of dross 

From the Fig. 185, no standard pattern is formed in the plot of predicted vs. residual 

values which show the adequacy of the fitted model for dross. 

DV: Dross (mm )2
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Histogram of Raw Residuals

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.0044257
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Fig. 186 Histogram plot of predicted values of dross 

DV: Dross (mm )2
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Residuals vs. Case Numbers

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.0044257
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Fig. 187 Plot of residuals vs. case numbers values of dross 

From the Fig. 187, it is evident that the highest dross value among all experimental 

runs is by the run number 5. The red line indicates that the value of dross decreases with 

increase in run order. 

DV: Dross (mm )2
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Probability Plot; Var.:Dross; R-sqr=.94918; Adj:.88989

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.0044257
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Fig. 188 Probability plot of dross 

The normal probability plot of dross corresponding to each regression terms is 

plotted in Fig. 188. 
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Fitted Surface; Variable: Dross

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.0044257
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Fig. 189 3D fitted surface plot of dross 
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Fitted Surface; Variable: Dross

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.0044257
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Fig. 190 2D fitted counter plot of dross 

DV: Dross (mm )2
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Profiles for Predicted Values and Desirability
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Fig. 191 Profile plot of predicted values and desirability of dross 

The desirability function method helped to find the value of optimum dross response 

which was fitted by the quadratic fit model. The level of variable giving the highest 

desirability i.e., 1.0000 was considered as optimum level. The optimized levels of 

variables (A, B, C and D) were determined using the desirability profiles that are shown in 

Fig. 191. The desirability function with red dotted lines and predicted values of responses 

are also shown in same figure (i.e. Fig. 191). 
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Fig. 192 Desirability 3D surface plot of dross 
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Desirability Surface/Contours; Method: Quadratic Fit
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Fig. 193 Desirability 2D counter plot of dross 

The 3D and 2D counter plot of interaction variables were determined using the 

desirability profiles that are shown in Fig. 192-193 respectively. Here, only minimum 

value of cutting speed is needed to get better minimal dross during plasma arc cutting 

operation. 

5.3.1.5 For right bevel angle: 

From the ANOVA of right bevel angle, it is revealed that only the square term of 

gas pressure and stand-off gap gave a tremendous effect on experimental results as its P-

value is lowest than others which are shown in Table 61. Here, the interaction terms i.e., 

A×D, B×C, B×D and C×D are taken into account as significant terms due to the lowest 

value in P in ANOVA table. This type of results mainly occurred due to the equality of 
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values in the measurement of right bevel angle. The present analysis is compatible with 

the results of Kechagias et al. [9; 105] as they concluded that the cutting current is the 

main enhancing factor on the right bevel angle. The Pareto chart of effects of all factors 

on right bevel angle response is shown in Fig. 194 and the results indicate that the 

interaction of cutting current and stand-off distance is the second most improving factor 

among all considered factors. The scatter plot between the observed and the predicted 

value of right bevel angle of all 27 runs is shown in Fig. 195. It is concluded that the 

relationship between the actual and the predicted MRR was not in linear. So, it can be 

revealed that the response model showed bad fit to the experimental data set. In Fig. 197, 

the histogram plot of predicted data of right bevel angle with 95 % confidence interval of 

normal distribution is plotted. Furthermore, the surface and contour plot of above said 

interaction terms are shown in Fig. 200-202-204-206-201-203-205-207 respectively. 

Then, the model of estimated coefficient by multiple regressions for right bevel angle is 

tabulated in Table 60. Similarly, the regression model of chamfer is recorded in Table 62. 
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Table 60 Effect of Estimated Values for Right Bevel Angle 

Factor Effect Std. Err. T P 

Constant 3.50000 0.073493 47.62352 0.000000 

A (Ampere) 0.00000 0.127294 0.00000 1.000000 

A
2 

0.12500 0.095470 1.30931 0.214946 

B (mm/s) 0.00000 0.127294 0.00000 1.000000 

B
2
 -0.12500 0.095470 -1.30931 0.214946 

C (L/min) -0.16667 0.127294 -1.30931 0.214946 

C
2
 -0.25000 0.095470 -2.61861 0.022442 

D (mm) -0.16667 0.127294 -1.30931 0.214946 

D
2
 -0.50000 0.095470 -5.23723 0.000209 

A×B 0.00000 0.220479 0.00000 1.000000 

A×C 0.00000 0.220479 0.00000 1.000000 

A×D 1.00000 0.220479 4.53557 0.000683 

B×C -1.00000 0.220479 -4.53557 0.000683 

B×D -1.00000 0.220479 -4.53557 0.000683 

C×D -0.50000 0.220479 -2.26779 0.042608 
 

Table 61 ANOVA Table for Right Bevel Angle 

Factors SS DoF MS F P 

A (Ampere) 0.000000 1 0.000000 0.00000 1.000000 

A
2 

0.083333 1 0.083333 1.71429 0.214946 

B (mm/s) 0.000000 1 0.000000 0.00000 1.000000 

B
2
 0.083333 1 0.083333 1.71429 0.214946 

C (L/min) 0.083333 1 0.083333 1.71429 0.214946 

C
2
 0.333333 1 0.333333 6.85714 0.022442 

D (mm) 0.083333 1 0.083333 1.71429 0.214946 

D
2
 1.333333 1 1.333333 27.42857 0.000209 

A×B 0.000000 1 0.000000 0.00000 1.000000 

A×C 0.000000 1 0.000000 0.00000 1.000000 

A×D 1.000000 1 1.000000 20.57143 0.000683 

B×C 1.000000 1 1.000000 20.57143 0.000683 

B×D 1.000000 1 1.000000 20.57143 0.000683 

C×D 0.250000 1 0.250000 5.14286 0.042608 

Error 0.583333 12 0.048611 
  

Total SS 6.000000 26 
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Table 62 Regression Coefficients of Right Bevel Angle 

Factor Regression Coef. Std. Err. T P 

Constant 8.83333 6.429281 1.37392 0.194586 

A (Ampere) -0.03500 0.020486 -1.70848 0.113259 

A
2 

-0.00005 0.000038 -1.30931 0.214946 

B (mm/s) 4.25000 1.024300 4.14918 0.001349 

B
2
 0.12500 0.095470 1.30931 0.214946 

C (L/min) 0.05556 0.399733 0.13898 0.891770 

C
2
 0.02778 0.010608 2.61861 0.022442 

D (mm) -7.66667 2.398398 -3.19658 0.007681 

D
2
 2.00000 0.381881 5.23723 0.000209 

A×B 0.00000 0.002205 0.00000 1.000000 

A×C 0.00000 0.000735 0.00000 1.000000 

A×D 0.02000 0.004410 4.53557 0.000683 

B×C -0.16667 0.036747 -4.53557 0.000683 

B×D -1.00000 0.220479 -4.53557 0.000683 

C×D -0.16667 0.073493 -2.26779 0.042608 
 

Pareto Chart of Standardized Effects; Variable: Right Bevel Angle

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.0486111
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Fig. 194 Pareto chart of standardized effect of factors on right bevel angle 

DV: Right Bevel Angle (Degree)
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Observed vs. Predicted Values

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.0486111
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Fig. 195 Plot of observed vs. predicted values of right bevel angle 

DV: Right Bevel Angle (Degree)
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Predicted vs. Residual Values

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.0486111
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Fig. 196 Plot of predicted vs. residual values of right bevel angle 

From the Fig. 196, no standard pattern is formed in the plot of predicted vs. residual 

values which show the adequacy of the fitted model for right bevel angle. 

DV: Right Bevel Angle (Degree)



M. Tech. (Research) Thesis  
 

National Institute of Technology, Rourkela Page 327 
 

Histogram of Raw Residuals

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.0486111
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Fig. 197 Histogram plot of predicted values of right bevel angle 

DV: Right Bevel Angle (Degree)
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Residuals vs. Case Numbers

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.0486111
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Fig. 198 Plot of residuals vs. case numbers values of right bevel angle 

From the Fig. 198, it is evident that the highest right bevel angle value among all 

experimental runs is by the run number 5. The red line indicates that the value of right 

bevel angle increases with increase in run order. 

DV: Right Bevel Angle (Degree)
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Probability Plot; Var.:Right Bevel Angle; R-sqr=.90278; Adj:.78935
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Fig. 199 Probability plot of right bevel angle 

The normal probability plot of right bevel angle corresponding to each regression 

terms is plotted in Fig. 199. 
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Fitted Surface; Variable: Right Bevel Angle

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.0486111
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Fig. 200 3D fitted surface plot of right bevel angle (1) 
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Fitted Surface; Variable: Right Bevel Angle

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.0486111
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Fig. 201 2D fitted counter plot of right bevel angle (1) 

DV: Right Bevel Angle (Degree)
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Fitted Surface; Variable: Right Bevel Angle

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.0486111
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Fig. 202 3D fitted surface plot of right bevel angle (2) 
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Fitted Surface; Variable: Right Bevel Angle

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.0486111
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Fig. 203 2D fitted counter plot of right bevel angle (2) 

DV: Right Bevel Angle (Degree)
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Fitted Surface; Variable: Right Bevel Angle

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.0486111
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Fig. 204 3D fitted surface plot of right bevel angle (3) 
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Fitted Surface; Variable: Right Bevel Angle

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.0486111
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Fig. 205 2D fitted counter plot of right bevel angle (3) 

DV: Right Bevel Angle (Degree)
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Fitted Surface; Variable: Right Bevel Angle

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.0486111

 4.8 

 4.4 

 4 

 3.6 

 3.2 

 
Fig. 206 3D fitted surface plot of right bevel angle (4) 
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Fitted Surface; Variable: Right Bevel Angle

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.0486111
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Fig. 207 2D fitted counter plot of right bevel angle (4) 

DV: Right Bevel Angle (Degree)
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Profiles for Predicted Values and Desirability
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Fig. 208 Profile plot of predicted values and desirability of right bevel angle 

Here, the technique of desirability function adopted to get optimum value of right 

bevel angle response from its quadratic fit empirical model. The level of variable giving 

the highest desirability i.e., 1.0000 was considered as optimum level. The optimized levels 

of variables (A, B, C and D) were determined using the desirability profiles that are 

shown in Fig. 208. The predicted values of responses and desirability function with red 

dotted lines are depicted in Fig. 208. 
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Fig. 209 Desirability 3D surface plot of right bevel angle 
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Desirability Surface/Contours; Method: Quadratic Fit
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Fig. 210 Desirability 2D counter plot of right bevel angle 

The 3D and 2D plot of interaction variables were determined using the desirability 

profiles that are shown in Fig. 209-210 respectively. For the requirement of minimum 

right bevel angle, only maximum cutting speed is needed during machining.  

5.3.1.6 For kerf: 

The cutting current has shown the highest significance than other individual factors 

in the ANOVA. It is shown in Table 64. The Pareto chart of effects of all factors on kerf 

width response is shown in Fig. 211 and the results indicate that block effect is the second 

most enhancing factor among all considered factors. The plot of scatter between the 

observed and the predicted value of kerf width of all 27 runs is shown in Fig. 212. It is 

concluded that the response model of kerf width presented good fit to experimental data. 
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In Fig. 214, the histogram plot of predicted data of kerf width with 95 % confidence 

interval of normal distribution is presented. Furthermore, the estimated coefficient model 

using multiple regressions for kerf width is resulted in Table 63. Similarly, the regression 

model of chamfer is recorded in Table 65. 

Table 63 Effect of Estimated Values for Kerf 

Factor Effect Std. Err. T P 

Constant 2.778333 0.042086 66.01585 0.000000 

A (Ampere) -0.260000 0.072895 -3.56678 0.003875 

A
2 

-0.088750 0.054671 -1.62334 0.130476 

B (mm/s) 0.135000 0.072895 1.85198 0.088777 

B
2
 -0.060000 0.054671 -1.09747 0.293969 

C (L/min) 0.011667 0.072895 0.16005 0.875506 

C
2
 -0.070000 0.054671 -1.28038 0.224606 

D (mm) -0.070000 0.072895 -0.96029 0.355861 

D
2
 -0.088750 0.054671 -1.62334 0.130476 

A×B 0.030000 0.126258 0.23761 0.816192 

A×C 0.015000 0.126258 0.11880 0.907396 

A×D 0.075000 0.126258 0.59402 0.563527 

B×C 0.000000 0.126258 0.00000 1.000000 

B×D 0.045000 0.126258 0.35641 0.727718 

C×D -0.140000 0.126258 -1.10884 0.289226 
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Table 64 ANOVA Table for Kerf 

Factors SS DoF MS F P 

A (Ampere) 0.202800 1 0.202800 12.72193 0.003875 

A
2 

0.042008 1 0.042008 2.63524 0.130476 

B (mm/s) 0.054675 1 0.054675 3.42984 0.088777 

B
2
 0.019200 1 0.019200 1.20444 0.293969 

C (L/min) 0.000408 1 0.000408 0.02562 0.875506 

C
2
 0.026133 1 0.026133 1.63938 0.224606 

D (mm) 0.014700 1 0.014700 0.92215 0.355861 

D
2
 0.042008 1 0.042008 2.63524 0.130476 

A×B 0.000900 1 0.000900 0.05646 0.816192 

A×C 0.000225 1 0.000225 0.01411 0.907396 

A×D 0.005625 1 0.005625 0.35286 0.563527 

B×C 0.000000 1 0.000000 0.00000 1.000000 

B×D 0.002025 1 0.002025 0.12703 0.727718 

C×D 0.019600 1 0.019600 1.22954 0.289226 

Error 0.191292 12 0.015941 
  

Total SS 0.560200 26 
   

Table 65 Regression Coefficients of Kerf 

Factor Regression Coef. Std. Err. T P 

Constant 7.61167 3.681731 2.06742 0.060966 

A (Ampere) -0.01865 0.011731 -1.58976 0.137874 

A
2 

0.00004 0.000022 1.62334 0.130476 

B (mm/s) -0.45000 0.586566 -0.76718 0.457805 

B
2
 0.06000 0.054671 1.09747 0.293969 

C (L/min) -0.12222 0.228907 -0.53394 0.603135 

C
2
 0.00778 0.006075 1.28038 0.224606 

D (mm) -1.50500 1.373444 -1.09579 0.294678 

D
2
 0.35500 0.218685 1.62334 0.130476 

A×B 0.00030 0.001263 0.23761 0.816192 

A×C 0.00005 0.000421 0.11880 0.907396 

A×D 0.00150 0.002525 0.59402 0.563527 

B×C -0.00000 0.021043 -0.00000 1.000000 

B×D 0.04500 0.126258 0.35641 0.727718 

C×D -0.04667 0.042086 -1.10884 0.289226 
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Pareto Chart of Standardized Effects; Variable: Kerf

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.015941
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Fig. 211 Pareto chart of standardized effect of factors on kerf 
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Observed vs. Predicted Values

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.015941
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Fig. 212 Plot of observed vs. predicted values of kerf 

DV: Kerf (mm)
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Predicted vs. Residual Values

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.015941
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Fig. 213 Plot of predicted vs. residual values of kerf 

From the Fig. 213, no standard pattern is formed in the plot of predicted vs. residual 

values which show the adequacy of the fitted model for kerf. 

DV: Kerf (mm)
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Histogram of Raw Residuals

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.015941
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Fig. 214 Histogram plot of predicted values of kerf 

DV: Kerf (mm)
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Residuals vs. Case Numbers

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.015941
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Fig. 215 Plot of residuals vs. case numbers values of kerf 

From the Fig. 215, it is evident that the highest kerf value among all experimental 

runs is by the run number 9. The red line indicates that the value of kerf decreases with 

increase in run order. 

DV: Kerf (mm)
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Probability Plot; Var.:Kerf; R-sqr=.65853; Adj:.26015

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.015941

-5 -4 -3 -2 -1 0 1 2 3

Standardized Effects (t-values)

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

E
x
p
e
c
te

d
 N

o
rm

a
l 
V

a
lu

e

 
Fig. 216 Probability plot of kerf 

The normal probability plot of kerf corresponding to each regression terms is plotted 

in Fig. 216. 
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Profiles for Predicted Values and Desirability
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Fig. 217 Profile plot of predicted values and desirability of kerf 

The methodology of desirability function was taken to determine the value of 

optimum kerf response from its quadratic fit model. The level of variable giving the 

highest desirability i.e., 1.0000 was considered as optimum level. The optimized levels of 

variables (A, B, C and D) were determined using the desirability profiles that are shown in 

Fig. 217. The predicted values of responses and desirability function with red dotted lines 

are presented in Fig. 217 simultaneously. 

Cutting Current Cutting Speed Gas Pressure Stand-off Gap Desirability
(Ampere) (mm/s) (L/min) (mm)
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Fig. 218 Desirability 3D surface plot of kerf 
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Desirability Surface/Contours; Method: Quadratic Fit
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Fig. 219 Desirability 2D counter plot of kerf 

The 3D and 2D plot of interaction variables on kerf width were obtained utilizing 

the desirability profiles that are shown in Fig. 218-219 respectively. In these figures, 

green circular section in middle occurred in every surface plot that means all interaction 

terms are suitable for minimizing kerf width. 

5.3.1.7 For heat affected zone: 

Table 67 presents the ANOVA for heat affected zone with respect to all individual 

and interaction terms. From this analysis it is determined that the cutting current has very 

influencing characteristics than other factors as its F-value is the highest. This type of 

claim satisfies the findings of Kadirgamma et al. [106] and Salonitis and Vatousianos 

[107] i.e., the cutting current has major role in controlling the HAZ response. The Pareto 

12

14

16

18

2.0

0.8

1.4

2.0

2.6

3.2

0.8

1.4

2.0

2.6

3.2

0.8
1.4

2.0

2.6

3.2

Cutting Speed

S
ta

nd
-o

ff 
G

ap
(m

m
)

(m
m

)

(m
m

)

C
ut

tin
g 

S
pe

ed
(m

m
/s

)

2
2.5

3.5
4

3

Cutting Current
(Ampere)

80 160 220

Cutting Current
(Ampere)

80 160 220

Cutting Current
(Ampere)

80 160 220

(mm/s)

2.8 3.6

2.0
Cutting Speed

(mm/s)

2.8 3.6

Gas Pressure
(L/min)

S
ta

nd
-o

ff 
G

ap

S
ta

nd
-o

ff 
G

ap

12 14 16 18

G
as

 P
re

ss
ur

e
(L

/m
in

)

12

14

16

18

G
as

 P
re

ss
ur

e
(L

/m
in

)



M. Tech. (Research) Thesis  
 

National Institute of Technology, Rourkela Page 352 
 

chart of effects of all factors on heat affected zone is shown in Fig. 220 and these results 

concluded that cutting current is the most enhancing factor among all considered factors. 

Again for interactions, only the combination between cutting current and speed has shown 

the noticeable effect due to its lowest P-value. In Fig. 221, the scatter plot of the observed 

vs. the predicted value of heat affected zone of all 27 runs is presented. It was determined 

that the relationship between the actual and the predicted HAZ was linear and the model 

could be considered relevant for predictions and optimization in RSM. The histogram plot 

of predicted data of heat affected zone with 95 % confidence interval of normal 

distribution is shown in Fig. 223. Moreover, the surface and contour graph of the 

interaction between cutting current and speed is displayed in Fig. 226-227 respectively. It 

is concluded that at lower value of cutting current and speed, the minimum value of HAZ 

is achieved due less temperature generated in this type of condition in plasma arc 

machining. For HAZ, the model of estimated coefficient is collected in Table 66. Further, 

the estimated regression model of HAZ is given in Table 68. 
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Table 66 Effect of Estimated Values for HAZ 

Factor Effect Std. Err. T P 

Constant 2.019444 0.074669 27.04528 0.000000 

A (Ampere) 0.846667 0.129331 6.54653 0.000027 

A
2 

-0.072917 0.096998 -0.75173 0.466699 

B (mm/s) -0.510000 0.129331 -3.94338 0.001951 

B
2
 -0.105417 0.096998 -1.08679 0.298477 

C (L/min) -0.096667 0.129331 -0.74744 0.469193 

C
2
 -0.077917 0.096998 -0.80328 0.437434 

D (mm) 0.236667 0.129331 1.82994 0.092198 

D
2
 -0.052917 0.096998 -0.54554 0.595375 

A×B -0.515000 0.224007 -2.29903 0.040268 

A×C -0.135000 0.224007 -0.60266 0.557953 

A×D -0.410000 0.224007 -1.83030 0.092140 

B×C 0.015000 0.224007 0.06696 0.947715 

B×D -0.010000 0.224007 -0.04464 0.965127 

C×D 0.090000 0.224007 0.40177 0.694915 

 

Table 67 ANOVA Table for HAZ 

Factors SS DoF MS F P 

A (Ampere) 2.150533 1 2.150533 42.85710 0.000027 

A
2 

0.028356 1 0.028356 0.56510 0.466699 

B (mm/s) 0.780300 1 0.780300 15.55028 0.001951 

B
2
 0.059268 1 0.059268 1.18112 0.298477 

C (L/min) 0.028033 1 0.028033 0.55866 0.469193 

C
2
 0.032379 1 0.032379 0.64526 0.437434 

D (mm) 0.168033 1 0.168033 3.34867 0.092198 

D
2
 0.014934 1 0.014934 0.29762 0.595375 

A×B 0.265225 1 0.265225 5.28556 0.040268 

A×C 0.018225 1 0.018225 0.36320 0.557953 

A×D 0.168100 1 0.168100 3.35000 0.092140 

B×C 0.000225 1 0.000225 0.00448 0.947715 

B×D 0.000100 1 0.000100 0.00199 0.965127 

C×D 0.008100 1 0.008100 0.16142 0.694915 

Error 0.602150 12 0.050179 
  

Total SS 4.263985 26 
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Table 68 Regression Coefficients of HAZ 

Factor Regression Coef. Std. Err. T P 

Constant 0.591667 6.532153 0.09058 0.929323 

A (Ampere) 0.042417 0.020814 2.03791 0.064227 

A
2 

0.000029 0.000039 0.75173 0.466699 

B (mm/s) -0.127500 1.040689 -0.12251 0.904519 

B
2
 0.105417 0.096998 1.08679 0.298477 

C (L/min) -0.290833 0.406129 -0.71611 0.487625 

C
2
 0.008657 0.010778 0.80328 0.437434 

D (mm) -0.011667 2.436774 -0.00479 0.996259 

D
2
 0.211667 0.387992 0.54554 0.595375 

A×B -0.005150 0.002240 -2.29903 0.040268 

A×C -0.000450 0.000747 -0.60266 0.557953 

A×D -0.008200 0.004480 -1.83030 0.092140 

B×C 0.002500 0.037335 0.06696 0.947715 

B×D -0.010000 0.224007 -0.04464 0.965127 

C×D 0.030000 0.074669 0.40177 0.694915 
 

Pareto Chart of Standardized Effects; Variable: HAZ

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.0501792
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Fig. 220 Pareto chart of standardized effect of factors on MRR 
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Observed vs. Predicted Values

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.0501792
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Fig. 221 Plot of observed vs. predicted values of HAZ 

DV: HAZ (mm)
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Predicted vs. Residual Values

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.0501792
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Fig. 222 Plot of predicted vs. residual values of HAZ 

From the Fig. 222, no standard pattern is formed in the plot of predicted vs. residual 

values which show the adequacy of the fitted model for HAZ. 

DV: HAZ (mm)
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Histogram of Raw Residuals

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.0501792
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Fig. 223 Histogram plot of predicted values of HAZ 

DV: HAZ (mm)
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Residuals vs. Case Numbers

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.0501792
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Fig. 224 Plot of residuals vs. case numbers values of HAZ 

From the Fig. 224, it is evident that the highest HAZ value among all experimental 

runs is by the run number 26. The red line indicates that the value of HAZ increases with 

increase in run order. 

DV: HAZ (mm)
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Probability Plot; Var.:HAZ; R-sqr=.85878; Adj:.69403

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.0501792
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Fig. 225 Probability plot of HAZ 

The normal probability plot of HAZ corresponding to each regression terms is 

plotted in Fig. 225. 
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Fitted Surface; Variable: HAZ

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.0501792
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Fig. 226 3D fitted surface plot of HAZ 
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Fitted Surface; Variable: HAZ

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.0501792
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Fig. 227 2D fitted counter plot of HAZ 

DV: HAZ (mm)
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Profiles for Predicted Values and Desirability
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Fig. 228 Profile plot of predicted values and desirability of HAZ 

Similarly, the desirability function helped to find optimum value of heat affected 

zone (HAZ) response which was fitted by the quadratic fit model. The level of variable 

giving the highest desirability i.e., 1.0000 was considered as optimum level. The 

optimized levels of variables (A, B, C and D) were determined using the desirability 

profiles that are shown in Fig. 228. The predicted values of responses and desirability 

function with red dotted lines are shown in Fig. 228 concurrently. 

Cutting Current Cutting Speed Gas Pressure Stand-off Gap Desirability
(Ampere) (mm/s) (L/min) (mm)
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Fig. 229 Desirability 3D surface plot of HAZ 
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Desirability Surface/Contours; Method: Quadratic Fit 1.2 
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Fig. 230 Desirability 2D counter plot of HAZ 

The 3D and 2D surface interaction plots of variables on heat affected zone were 

determined using the desirability profiles that are shown in Fig. 229-230 respectively. The 

interaction term of stand-off gap and gas pressure gave no effect on HAZ which showed 

no influential characteristics occurred on HAZ response throughout plasma machining.  

5.3.2 Hybrid approach 

In this hybrid approach i.e., Grey PCA, all values of responses are normalized in 

between 0 and 1 as per the higher the better and lower the better criteria according to the 

corresponding problem. The computed normalized value of each response is recorded in 

Table 69. Then, the value of deviation sequences for corresponding outputs are calculated 

and tabulated in Table 70. The Eigen values and vectors are determined to check the 
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correlation among output responses of PAC operation. The values of Eigen are tabulated 

in Table 71 and similarly the values of Eigen vectors are recorded in Table 72 for each 

principal component. The grey relational coefficients are computed for each response and 

the overall grey relational grade is calculated by averaging the grey coefficients in each 

run order. The grey relational coefficients and overall grey relational grade are tabulated 

in Table 73. ANOVA is carried out for the multi-objective problem of Grey based PCA 

approach and the obtained results are tabulated in Table 74 and Table 75. The regression 

coefficients for GRG are recorded in Table 76. 
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Table 69 Normalized Values for Output Response 

MRR 

(mm
3
/min) 

SR (µm) 
Chamfer 

(mm) 

Dross 

(mm
2
) 

Right Bevel 

Angle 

(Degree) 

Kerf (mm) 
HAZ 

(mm) 

0.615491 0.424165 0.483871 0.315789 1 0.193548 0.979167 

0.000000 0.944087 0.903226 1.000000 1 0.661290 0.000000 

1.000000 0.000000 0.000000 0.000000 1 0.000000 1.000000 

0.526295 0.492288 0.580645 0.421053 1 0.370968 0.736111 

0.630768 0.429306 0.516129 0.289474 0 0.354839 0.756944 

0.818444 0.226864 0.258065 0.171053 0 0.096774 0.888889 

0.499278 0.562982 0.677419 0.447368 0 0.258065 0.597222 

0.436244 0.602828 0.709677 0.513158 1 0.451613 0.604167 

0.535485 0.522494 0.612903 0.407895 1 0.500000 0.805556 

0.922925 0.129820 0.161290 0.065789 0 0.177419 1.000000 

0.262910 0.746787 0.774194 0.776316 1 0.725806 0.194444 

0.551091 0.496144 0.580645 0.381579 1 0.419355 0.597222 

0.209239 0.889460 0.967742 0.842105 0 0.725806 0.361111 

0.191584 0.928021 0.967742 0.750000 1 0.693548 0.270833 

0.821626 0.526350 0.548387 0.328947 0 0.483871 0.659722 

0.256063 0.884319 0.838710 0.723684 0 0.693548 0.347222 

0.708871 0.408098 0.451613 0.250000 1 0.483871 0.715278 

0.427892 0.701157 0.741935 0.539474 1 0.661290 0.604167 

0.689125 0.375321 0.516129 0.236842 1 0.354839 0.784722 

0.134343 0.970437 0.967742 0.815789 1 0.790323 0.069444 

0.741715 0.377249 0.451613 0.210526 1 0.354839 0.756944 

0.208141 0.797558 0.903226 0.736842 1 0.741935 0.229167 

0.253132 0.832262 0.935484 0.723684 1 0.596774 0.381944 

0.850147 0.307198 0.290323 0.144737 0 0.467742 0.680556 

0.181556 1.000000 1.000000 0.684211 0 0.758065 0.222222 

0.449566 0.629177 0.870968 0.500000 1 0.483871 0.534722 

0.402198 0.726864 0.806452 0.539474 1 1.000000 0.583333 
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Table 70 Deviation Sequences for Output Responses of PAC 

MRR 

(mm
3
/min) 

SR (µm) 
Chamfer 

(mm) 

Dross 

(mm
2
) 

Right Bevel 

Angle 

(Degree) 

Kerf 

(mm) 

HAZ 

(mm) 

0.384509 0.575835 0.516129 0.684211 0 0.806452 0.020833 

1.000000 0.055913 0.096774 0.000000 0 0.338710 1.000000 

0.000000 1.000000 1.000000 1.000000 0 1.000000 0.000000 

0.473705 0.507712 0.419355 0.578947 0 0.629032 0.263889 

0.369232 0.570694 0.483871 0.710526 1 0.645161 0.243056 

0.181556 0.773136 0.741935 0.828947 1 0.903226 0.111111 

0.500722 0.437018 0.322581 0.552632 1 0.741935 0.402778 

0.563756 0.397172 0.290323 0.486842 0 0.548387 0.395833 

0.464515 0.477506 0.387097 0.592105 0 0.500000 0.194444 

0.077075 0.870180 0.838710 0.934211 1 0.822581 0.000000 

0.737090 0.253213 0.225806 0.223684 0 0.274194 0.805556 

0.448909 0.503856 0.419355 0.618421 0 0.580645 0.402778 

0.790761 0.110540 0.032258 0.157895 1 0.274194 0.638889 

0.808416 0.071979 0.032258 0.250000 0 0.306452 0.729167 

0.178374 0.473650 0.451613 0.671053 1 0.516129 0.340278 

0.743937 0.115681 0.161290 0.276316 1 0.306452 0.652778 

0.291129 0.591902 0.548387 0.750000 0 0.516129 0.284722 

0.572108 0.298843 0.258065 0.460526 0 0.338710 0.395833 

0.310875 0.624679 0.483871 0.763158 0 0.645161 0.215278 

0.865657 0.029563 0.032258 0.184211 0 0.209677 0.930556 

0.258285 0.622751 0.548387 0.789474 0 0.645161 0.243056 

0.791859 0.202442 0.096774 0.263158 0 0.258065 0.770833 

0.746868 0.167738 0.064516 0.276316 0 0.403226 0.618056 

0.149853 0.692802 0.709677 0.855263 1 0.532258 0.319444 

0.818444 0.000000 0.000000 0.315789 1 0.241935 0.777778 

0.550434 0.370823 0.129032 0.500000 0 0.516129 0.465278 

0.597802 0.273136 0.193548 0.460526 0 0.000000 0.416667 
 

Table 71 Eigenvalues and Explained Variation for Principal Components 

Principal 

component

s 

Eigen 

value 

Explained variations 

(%) 

Cumulative Eigen 

value 

Cumulative 

(%) 

First 5.520784 78.86834 5.520784 78.8683 

Second 0.977063 13.95804 6.497847 92.8264 

Third 0.274189 3.91698 6.772036 96.7434 

Fourth 0.150522 2.15032 6.922558 98.8937 

Fifth 0.049129 0.70185 6.971687 99.5955 

Sixth 0.015563 0.22233 6.987250 99.8179 

Seventh 0.012750 0.18214 7.000000 100.0000 
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Table 72 Eigenvectors for Principal Components and Contribution 

Variable Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7 

MRR 

(mm
3
/min) 

0.415699 0.029965 0.310553 0.120791 -0.401154 0.726812 -0.161501 

SR (µm) -0.419695 0.095500 -0.008270 -0.229302 -0.164886 -0.003745 -0.857256 

Chamfer 

(mm) 
-0.411630 0.020350 -0.025145 -0.557169 -0.539364 0.141607 0.456192 

Dross 

(mm
2
) 

-0.415884 0.021975 -0.291246 0.048264 0.533776 0.668072 0.090370 

Right 

Bevel 

Angle 

(Degree) 

-0.085649 -0.990710 -0.000673 0.040253 -0.061612 0.034426 -0.067495 

Kerf (mm) -0.375778 0.014236 0.887638 0.108014 0.214203 -0.040862 0.107082 

HAZ 

(mm) 
0.400134 -0.085881 0.173580 -0.778958 0.431716 0.050026 -0.082036 

 

Eigenvalues of correlation matrix

Active variables only
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Fig. 231 Plot of Eigen values of correlation matrix for third phase 
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The Fig. 231 shows the variation in percentage of Eigen values in first phase 

experimentation. 

Table 73 Grey Relational Coefficient and Grade of Output Responses of PAC 

Grey 

relational 

coefficient 

1 

Grey 

relational 

coefficient 

2 

Grey 

relational 

coefficient 

3 

Grey 

relational 

coefficient 

4 

Grey 

relational 

coefficient 

5 

Grey 

relational 

coefficient 

6 

Grey 

relational 

coefficient 

7 

Overall 

grey 

relational 

grade 

0.565285 0.464755 0.492063 0.422222 1.000000 0.382716 0.960000 0.612435 

0.333333 0.899422 0.837838 1.000000 1.000000 0.596154 0.333333 0.714297 

1.000000 0.333333 0.333333 0.333333 1.000000 0.333333 1.000000 0.619048 

0.513503 0.496173 0.543860 0.463415 1.000000 0.442857 0.654545 0.587765 

0.575220 0.466987 0.508197 0.413043 0.333333 0.436620 0.672897 0.486614 

0.733616 0.392731 0.402597 0.376238 0.333333 0.356322 0.818182 0.487574 

0.499639 0.533608 0.607843 0.475000 0.333333 0.402597 0.553846 0.486552 

0.470032 0.557307 0.632653 0.506667 1.000000 0.476923 0.558140 0.600246 

0.518396 0.511506 0.563636 0.457831 1.000000 0.500000 0.720000 0.610196 

0.866439 0.364916 0.373494 0.348624 0.333333 0.378049 1.000000 0.523551 

0.404174 0.663823 0.688889 0.690909 1.000000 0.645833 0.382979 0.639515 

0.526921 0.498079 0.543860 0.447059 1.000000 0.462687 0.553846 0.576064 

0.387368 0.818947 0.939394 0.760000 0.333333 0.645833 0.439024 0.617700 

0.382142 0.874157 0.939394 0.666667 1.000000 0.620000 0.406780 0.698448 

0.737056 0.513531 0.525424 0.426966 0.333333 0.492063 0.595041 0.517631 

0.401950 0.812109 0.756098 0.644068 0.333333 0.620000 0.433735 0.571613 

0.632008 0.457916 0.476923 0.400000 1.000000 0.492063 0.637168 0.585154 

0.466371 0.625905 0.659574 0.520548 1.000000 0.596154 0.558140 0.632385 

0.616618 0.444571 0.508197 0.395833 1.000000 0.436620 0.699029 0.585838 

0.366124 0.944175 0.939394 0.730769 1.000000 0.704545 0.349515 0.719217 

0.659383 0.445335 0.476923 0.387755 1.000000 0.436620 0.672897 0.582702 

0.387039 0.711802 0.837838 0.655172 1.000000 0.659574 0.393443 0.663553 

0.401005 0.748797 0.885714 0.644068 1.000000 0.553571 0.447205 0.668623 

0.769405 0.419181 0.413333 0.368932 0.333333 0.484375 0.610169 0.485533 

0.379235 1.000000 1.000000 0.612903 0.333333 0.673913 0.391304 0.627241 

0.475994 0.574170 0.794872 0.500000 1.000000 0.492063 0.517986 0.622155 

0.455455 0.646717 0.720930 0.520548 1.000000 1.000000 0.545455 0.698444 
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Table 74 Effect of Estimated Values of Responses of PAC 

Factor Effect Std. Err. T P 

Constant 0.577612 0.014171 40.75991 0.000000 

A (Ampere) 0.073735 0.024545 3.00407 0.010983 

A
2 

-0.011745 0.018409 -0.63803 0.535438 

B (mm/s) -0.079229 0.024545 -3.22789 0.007248 

B
2
 0.004722 0.018409 0.25653 0.801889 

C (L/min) -0.000577 0.024545 -0.02349 0.981645 

C
2
 0.045322 0.018409 2.46199 0.029929 

D (mm) 0.039758 0.024545 1.61981 0.131238 

D
2
 0.065794 0.018409 3.57406 0.003824 

A×B -0.066573 0.042513 -1.56593 0.143343 

A×C -0.026264 0.042513 -0.61779 0.548261 

A×D -0.037165 0.042513 -0.87419 0.399175 

B×C 0.097179 0.042513 2.28586 0.041239 

B×D 0.089002 0.042513 2.09351 0.058212 

C×D 0.056367 0.042513 1.32586 0.209571 
 

Table 75 ANOVA Table for GRG 

Factors SS DoF MS F P 

A (Ampere) 0.016311 1 0.016311 9.02442 0.010983 

A
2 

0.000736 1 0.000736 0.40709 0.535438 

B (mm/s) 0.018832 1 0.018832 10.41928 0.007248 

B
2
 0.000119 1 0.000119 0.06581 0.801889 

C (L/min) 0.000001 1 0.000001 0.00055 0.981645 

C
2
 0.010955 1 0.010955 6.06140 0.029929 

D (mm) 0.004742 1 0.004742 2.62378 0.131238 

D
2
 0.023087 1 0.023087 12.77390 0.003824 

A×B 0.004432 1 0.004432 2.45213 0.143343 

A×C 0.000690 1 0.000690 0.38166 0.548261 

A×D 0.001381 1 0.001381 0.76420 0.399175 

B×C 0.009444 1 0.009444 5.22515 0.041239 

B×D 0.007921 1 0.007921 4.38278 0.058212 

C×D 0.003177 1 0.003177 1.75790 0.209571 

Error 0.021689 12 0.001807 
  

Total SS 0.126518 26 
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Table 76 Regression Coefficients of GRG 

Factor Regression Coef. Std. Err. T P 

Constant -0.831757 1.239707 -0.67093 0.514972 

A (Ampere) 0.004497 0.003950 1.13831 0.277206 

A
2 

0.000005 0.000007 0.63803 0.535438 

B (mm/s) -0.376874 0.197508 -1.90815 0.080579 

B
2
 -0.004722 0.018409 -0.25653 0.801889 

C (L/min) 0.068548 0.077077 0.88934 0.391298 

C
2
 -0.005036 0.002045 -2.46199 0.029929 

D (mm) 0.918295 0.462464 1.98566 0.070403 

D
2
 -0.263176 0.073635 -3.57406 0.003824 

A×B -0.000666 0.000425 -1.56593 0.143343 

A×C -0.000088 0.000142 -0.61779 0.548261 

A×D -0.000743 0.000850 -0.87419 0.399175 

B×C 0.016197 0.007086 2.28586 0.041239 

B×D 0.089002 0.042513 2.09351 0.058212 

C×D 0.018789 0.014171 1.32586 0.209571 
 

Pareto Chart of Standardized Effects; Variable: GRG

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.0018074

DV: GRG
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.2565269
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Fig. 232 Pareto chart of standardized effect of factors on GRG 
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The stand-off gap factor with quadratic form had the most significant influence on 

the GRG response of PAC operation as shown in Fig. 232. 

Observed vs. Predicted Values

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.0018074

DV: GRG
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Fig. 233 Plot of observed vs. predicted values of GRG 

The scatter plot between the observed and the predicted value of plasma cut 

responses of all 27 runs is shown in Fig. 233. The comparison between each of the 

observed values with the predicted value is shown in those plots which are calculated 

from the developed model. Here, the most of the points lie on the normal line of fitted 

values except the plot of GRG, because the uniformity lacks in the middle region. From 

this result it can be revealed that the response model shows good fit to experimental data, 

because the relationship between the actual and the predicted GRG is linear. 
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Predicted vs. Residual Values

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.0018074

DV: GRG
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Fig. 234 Plot of predicted vs. residual values of GRG 

From the Fig. 234, no standard pattern is formed in the plot of predicted vs. residual 

values which show the adequacy of the fitted model for GRG. 
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Histogram of Raw Residuals

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.0018074

DV: GRG
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Fig. 235 Histogram plot of predicted values of GRG 

The perfect normal probability distribution of the histogram plot of residuals for 

GRG response is shown in Fig. 235. From the above graphs, it is seen that the normal 

probability created in the histogram plot of residual for GRG is tolerable. 
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Residuals vs. Case Numbers

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.0018074

DV: GRG
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Fig. 236 Plot of residuals vs. case numbers values of GRG 

From the Fig. 236, it is evident that the highest GRG value among all experimental 

runs is by the run number 20. The red line indicates that the value of GRG increases with 

increase in run order. 
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Probability Plot; Var.:GRG; R-sqr=.82857; Adj:.62858

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.0018074

DV: GRG
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Fig. 237 Probability plot of GRG 

The normal probability plot of GRG corresponding to each regression terms is 

plotted in Fig. 237. 
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Fitted Surface; Variable: GRG

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.0018074

DV: GRG

 0.7 

 0.65 

 0.6 

 0.55 

 0.5 

 0.45 

 
Fig. 238 3D fitted surface plot of GRG 

The 3D surface plot of the significant interaction terms is shown in Fig. 238. It is to 

be noted that all other terms are taken into account at their average values. The figure 

evidenced that the interaction of gas pressure and cutting speed is also influenced by the 

above mentioned output. 
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Fitted Surface; Variable: GRG

4 3-level factors, 1 Blocks, 27 Runs; MS Residual=.0018074

DV: GRG
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Fig. 239 2D fitted counter plot of GRG 

The counter plots of interaction terms at their average level vs. GRG are found in 

Fig. 239. Mainly the shapes of counter plots might be elliptical or saddle form which 

indicates that the combination of each variable are significant except gas pressure vs. 

cutting speed plot. The lowest value of GRG obtained in the maximum region of current 

this can be seen in Fig. 239. 
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Profiles for Predicted Values and Desirability

.40000

.72575

.90000

0.

.5

1.

G
R

G

.4
8
5
5
3

.6
0
2
3
8

.7
1
9
2
2

100. 200.

1.0000

2. 4. 12. 15. 18. 2.

2.75

3.

D
e
s
ir
a
b
ili
ty

 
Fig. 240 Profile plot of predicted values and desirability of GRG 

In case of GRG response, the desirability function method also adopted to specify 

the optimum value from its quadratic fit empirical model. The level of variable giving the 

highest desirability i.e., 1.0000 was considered as optimum level. The optimized levels of 

variables (A, B, C and D) were determined using the desirability profiles that are shown in 

Fig. 240. And, this figure displayed the predicted values of responses and desirability 

function with red dotted lines at the same time. 

Cutting Current Cutting Speed Gas Pressure Stand-off Gap Desirability
(Ampere) (mm/s) (L/min) (mm)
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Fig. 241 Desirability 3D surface plot of GRG 
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Desirability Surface/Contours; Method: Quadratic Fit
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Fig. 242 Desirability 2D counter plot of GRG 

The 3D and 2D plot of interaction variables on GRG output were determined using 

the desirability profiles that are shown in Fig. 241-242 respectively. The interaction of 

cutting speed and current gave minimum value of GRG whereas interaction of gas 

pressure and stand-off gap gave maximum value of GRG in the third case experimentation 

of plasma arc cutting process. 
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5.3.3 Genetic algorithm 

5.3.3.1 For material removal rate: 

 
Fig. 243 Results from GA approach for MRR 

Best fitness and individual value plot of MRR is shown in Fig. 243, where the best 

and average value of MRR is obtained as 1898.87099 mm
3
/min. Here, negative sign is 

due the application of negativity theory for maximizing problem. Secondly, the best 

parametric optimal setting is obtained at 100 ampere of cutting current, 4 mm/s of cutting 

speed, 18 L/min of gas pressure and 2 mm of stand-off gap. 
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5.3.3.2 For surface roughness: 

 
Fig. 244 Results from GA approach for SR 

Similarly, for the case of SR the problem is the minimization and the best fitness 

and individual value plot as given in Fig. 244, where the best and average value of SR is 

found as 12.93477 µm. The best parametric optimal setting is obtained at 200 ampere of 

cutting current, 2 mm/s of cutting speed, 12 L/min of gas pressure and 2.356 mm of stand-

off gap. 
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5.3.3.3 For chamfer: 

 
Fig. 245 Results from GA approach for chamfer 

Similarly, for the case of chamfer the problem is the minimization, and the best 

fitness and individual value plot as given in Fig. 245 where the best and average values of 

chamfer are found as 0.083296 mm. The best parametric optimal setting is obtained at 200 

ampere of cutting current, 2 mm/s of cutting speed, 12 L/min of gas pressure and 2 mm of 

stand-off gap. 
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5.3.3.4 For dross: 

 
Fig. 246 Results from GA approach for dross 

Similarly, for the case of dross the problem is the minimization and the best fitness 

and individual value plot as given in Fig. 246, where the best and average value of dross is 

found to be 0.79244 mm
2
. The best parametric optimal setting is obtained at 200 ampere 

of cutting current, 2 mm/s of cutting speed, 12.128 L/min of gas pressure and 2 mm of 

stand-off gap. 
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5.3.3.5 For right bevel angle: 

 
Fig. 247 Results from GA approach for right bevel angle 

Similarly, for the case of right bevel angle the problem is the minimization and the 

best fitness and individual value plot as given in Fig. 247, where the best and average 

values of right bevel angle is found to be 1.8337º. The parametric optimal setting is 

obtained at 100 ampere of cutting current, 4 mm/s of cutting speed, 18 L/min of gas 

pressure and 3 mm of stand-off gap. Here, the simulation of genetic algorithm toolbox for 

all output responses stopped at same iteration number i.e., 176. 
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5.3.3.6 For kerf: 

 
Fig. 248 Results from GA approach for kerf 

Similarly, for the case of kerf the objective is minimization and the best fitness and 

individual value plot as given in Fig. 248, where the best and average value of kerf is 

found as 2.6394 mm. The parametric optimal setting is obtained at 165.73 ampere of 

cutting current, 2.354 mm/s of cutting speed, 15.174 L/min of gas pressure and 2.618 mm 

of stand-off gap. Here, the simulation of genetic algorithm toolbox for all responses 

stopped at same iteration number i.e., 176. 
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5.3.3.7 For heat affected zone: 

 
Fig. 249 Results from GA approach for HAZ 

Similarly, for the case of HAZ the objective is minimization and the best fitness and 

individual value plot as given in Fig. 249, where the best and average value of HAZ is 

found to be 1.18845 mm. The parametric optimal setting is obtained at 100 ampere of 

cutting current, 2.958 mm/s of cutting speed, 15.504 L/min of gas pressure and 2 mm of 

stand-off gap. Here, the simulation of genetic algorithm toolbox for all responses stopped 

at same iteration number i.e., 176. 
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5.3.4 Particle swarm optimization 

5.3.4.1 For material removal rate: 

 
Fig. 250 Results from PSO approach for MRR 

The plot of best function value and optimum setting for MRR which was obtained 

from PSO methodology is shown in Fig. 250. From the graph, it can be seen that the 

optimum condition for MRR can be found as 100 ampere of cutting current, 4 mm/s of 

cutting speed, 18 L/min of gas pressure and 2 mm of stand-off gap. The objective function 

value of MRR utilizing PSO algorithm is calculated as 1898.871 mm
3
/min. 
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5.3.4.2 Mean surface roughness: 

 
Fig. 251 Results from PSO approach for SR 

The plot of best function value and optimum setting for SR which was obtained 

from PSO methodology is shown in Fig. 251. From the graph, it can be seen that the 

optimum condition for SR can be found as 200 ampere of cutting current, 2 mm/s of 

cutting speed, 12 L/min of gas pressure and 2.356 mm of stand-off gap. The best value of 

objective function for SR using PSO algorithm is obtained as 12.93476 µm. 
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5.3.4.3 For chamfer: 

 
Fig. 252 Results from PSO approach for chamfer 

The plot of best function value and optimum setting for chamfer which was obtained 

from PSO methodology is shown in Fig. 252. From the graph, it can be seen that the 

optimum condition for chamfer can be found as 200 ampere of cutting current, 2 mm/s of 

cutting speed, 12 L/min of gas pressure and 2 mm of stand-off gap. The best function 

value of chamfer using PSO approach is obtained as 0.08329 mm. 
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5.3.4.4 For dross: 

 
Fig. 253 Results from PSO approach for dross 

The plot of best function value and optimum setting for dross which was obtained 

from PSO methodology is shown in Fig. 253. From the graph, it can be seen that the 

optimum condition for dross can be found as 200 ampere of cutting current, 2 mm/s of 

cutting speed, 12.128 L/min of gas pressure and 2 mm of stand-off gap. The optimum 

value of dross with the help of PSO technique is obtained as 0.79244 mm
2
. 

 

 

  



M. Tech. (Research) Thesis  
 

National Institute of Technology, Rourkela Page 393 
 

5.3.4.5 For right bevel angle: 

 
Fig. 254 Results from PSO approach for right bevel angle 

The plot of best function value and optimum setting for right bevel angle which was 

obtained from PSO methodology is shown in Fig. 254. From the graph, it can be seen that 

the optimum condition for right bevel angle can be found as 100 ampere of cutting 

current, 4 mm/s of cutting speed, 18 L/min of gas pressure and 3 mm of stand-off gap. 

The optimal value of chamfer with the help of PSO technique is obtained as 1.8337º. 
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5.3.4.6 For kerf: 

 
Fig. 255 Results from PSO approach for kerf 

The plot of best function value and optimum setting for kerf which was obtained 

from PSO methodology is shown in Fig. 255. From the graph, it can be seen that the 

optimum condition for kerf can be found as 167.449 ampere of cutting current, 2 mm/s of 

cutting speed, 15.153 L/min of gas pressure and 2.659 mm of stand-off gap. The optimal 

value of kerf using PSO approach is determined as 2.64695 mm. 
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5.3.4.7 For heat affected zone: 

 
Fig. 256 Results from PSO approach for HAZ 

The plot of best function value and optimum setting for HAZ which was obtained 

from PSO methodology is shown in Fig. 256. From the graph, it can be seen that the 

optimum condition for HAZ can be found as 100 ampere of cutting current, 2.956 mm/s 

of cutting speed, 15.506 L/min of gas pressure and 2 mm of stand-off gap. The optimal 

value of HAZ utilizing PSO technique is found as 2.64695 mm. 
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5.3.5 Simulated annealing 

5.3.5.1 For material removal rate: 

 
Fig. 257 Results from SA approach for MRR 

Nature based novel optimization technique i.e., simulated annealing algorithm is 

employed to obtain regression equation of MRR from RSM method. By applying 

Boltzmann annealing approach to the experimental data, the lowest value of MRR is 

found to be 1680.471 mm
3
/min at 130.013 ampere of cutting current, 4 mm/s of cutting 

speed, 18 L/min of gas pressure and 2 mm of stand-off gap. Fig. 257 shows the best 

function value and comparative effect of input parameters. Here, the cutting current is the 

most effective variable. The highest number of iteration for simulating the algorithm is 

501, where the minimum value of MRR is found. The best parametric setting of the whole 
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experimentation as per simulated annealing is shown in Fig. 257 with current iteration 

number. 

5.3.5.2 For surface roughness: 

 
Fig. 258 Results from SA approach for SR 

Nature based novel optimization technique i.e., simulated annealing algorithm is 

employed to obtain regression equation of SR from RSM method. By applying Boltzmann 

annealing approach to the experimental data, the lowest value of SR is found to be 15.185 

µm at 156.375 ampere of cutting current, 2 mm/s of cutting speed, 15.738 L/min of gas 

pressure and 2.987 mm of stand-off gap. Fig. 258 shows the best function value and 

comparative effect of input parameters. Here, the cutting current is the most effective 

variable. The highest number of iteration for simulating the algorithm is 501, where the 
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minimum value of SR obtained. The best parametric setting of the whole experimentation 

as per simulated annealing is shown in Fig. 258 with current iteration number. 

5.3.5.3 For chamfer: 

 
Fig. 259 Results from SA approach for chamfer 

Nature based novel optimization technique i.e., simulated annealing algorithm is 

employed to the obtained regression equation of chamfer from RSM method. By applying 

Boltzmann annealing approach to the experimental data, the lowest value of chamfer is 

found to be 0.13547 mm at 156.625 ampere of cutting current, 2.014 mm/s of cutting 

speed, 13.071 L/min of gas pressure and 2.063 mm of stand-off gap. Fig. 259 shows the 

best function value and comparative effect of input parameters. Here, the cutting current is 

the most effective variable. The highest number of iteration for simulating the algorithm is 
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501, where the minimum value of chamfer can be found. The best parametric setting of 

the whole experimentation as per simulated annealing is shown in Fig. 259 with current 

iteration number. 

5.3.5.4 For dross: 

 
Fig. 260 Results from SA approach for dross 

Nature based novel optimization technique i.e., simulated annealing algorithm is 

employed to the obtained regression equation of dross from RSM method. By applying 

Boltzmann annealing approach to the experimental data, the lowest value of dross is 

found to be 1.01796 mm
2
 at 168.617 ampere of cutting current, 2 mm/s of cutting speed, 

14.858 L/min of gas pressure and 2.554 mm of stand-off gap. Fig. 260 signifies the best 

function value and comparative effect of input parameters. Here, the cutting current gave 
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the most effective variable than other two parameters. The highest number of iteration for 

simulating the algorithm is 501 where the minimum value of dross observed. The best 

parametric setting of the whole experimentation as per simulated annealing is shown in 

Fig. 260 with current iteration number. 

5.3.5.5 For right bevel angle: 

 

Fig. 261 Results from SA approach for right bevel angle 

Nature based novel optimization technique i.e., simulated annealing algorithm is 

employed to the obtained regression equation of right bevel angle from RSM method. By 

applying Boltzmann annealing approach to the experimental data, the lowest value of 

right bevel angle is found to be 2.48322º at 146.557 ampere of cutting current, 3.929 
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mm/s of cutting speed, 17.787 L/min of gas pressure and 2.898 mm of stand-off gap. Fig. 

261 displays the best function value and comparative effect of input parameters. Here, the 

cutting current is the most effective variable. The highest number of iteration for 

simulating the algorithm is 501, where the minimum value of right bevel angle observed. 

The best parametric setting of the whole experimentation as per simulated annealing is 

shown in Fig. 261 with current iteration number. 

5.3.5.6 For kerf: 

 
Fig. 262 Results from SA approach for kerf 

Nature based novel optimization technique i.e., simulated annealing algorithm is 

employed to the obtained regression equation of kerf from RSM method. By applying 

Boltzmann annealing approach to the experimental data, the lowest value of kerf is found 
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to be 2.64236 mm at 160.635 ampere of cutting current, 2.202 mm/s of cutting speed, 

15.279 L/min of gas pressure and 2.683 mm of stand-off gap. Fig. 262 shows the best 

function value and comparative effect of input parameters. Here, the cutting current is the 

most effective variable. The highest number of iteration for simulating the algorithm is 

501, where the minimum value of kerf observed. The best parametric setting of the whole 

experimentation as per simulated annealing is shown in Fig. 262 with current iteration 

number. 

5.3.5.7 For heat affected zone: 

 
Fig. 263 Results from SA approach for HAZ 

Nature based novel optimization technique i.e., simulated annealing algorithm is 

employed to the obtained regression equation of HAZ from RSM method. By applying 
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Boltzmann annealing approach to the experimental data, the lowest value of HAZ is found 

to be 1.57021 mm at 147.874 ampere of cutting current, 3.986 mm/s of cutting speed, 

17.535 L/min of gas pressure and 2.003 mm of stand-off gap. Fig. 263 shows the best 

function value and comparative effect of input parameters. Here, the cutting current is the 

most effective variable. The highest number of iteration for simulating the algorithm is 

501, where the minimum value of HAZ is observed. The best parametric setting of the 

whole experimentation as per simulated annealing is shown in Fig. 263 with current 

iteration number. 

5.3.6 TLBO results 

5.3.6.1 For material removal rate: 

 
Fig. 264 Obtained plot by TLBO approach for MRR 
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The TLBO algorithm is run through Matlab R2012b version software by 

considering 300 as population size and 500 as number of generations. In each run the 

maximum number of function evaluations N is considered as 750000. Only in the case of 

MRR response, the theory of negativity is applied because the main objective of this is to 

convert the maximization type to minimization type problem. Fig. 264 depicts plot of the 

fitness function value for each generation. It can be observed that it converges to the 

optimum result in very small population size and less number of generations. From Fig. 

264, it can be concluded that the optimal condition for MRR occurred at 112.175 ampere 

of cutting current, 3.972 mm/s of cutting speed, 17.608 L/min of gas pressure and 2.000 

mm of stand-off gap. The objective function value of MRR is found as 1795.06 mm
3
/min. 
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5.3.6.2 For surface roughness: 

 
Fig. 265 Obtained plot by TLBO approach for SR 

The TLBO algorithm is run through Matlab R2012b version software by 

considering 300 as population size and 500 as number of generations. In each run the 

maximum number of function evaluations N is considered as 750000. Fig. 265 depicts 

plot of the fitness function value for each generation. It can be observed that it converges 

to the optimum result in very small population size and less number of generations. From 

Fig. 265, it can be concluded that the optimal condition for SR occurred at 197.273 

ampere of cutting current, 2.282 mm/s of cutting speed, 15.754 L/min of gas pressure and 

3 mm of stand-off gap. The objective function value of SR is found as 15.061 µm. 
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5.3.6.3 For chamfer: 

 
Fig. 266 Obtained plot by TLBO approach for chamfer 

The TLBO algorithm is run through Matlab R2012b version software by 

considering 300 as population size and 500 as number of generations. In each run the 

maximum number of function evaluations N is considered as 750000. Fig. 266 depicts 

plot of the fitness function value for each generation. It can be observed that it converges 

to the optimum result in very small population size and less number of generations. From 

Fig. 266, it can be concluded that the optimal condition for chamfer occurred at 200.008 

ampere of cutting current, 3.797 mm/s of cutting speed, 17.816 L/min of gas pressure and 

2.990 mm of stand-off gap. And the objective function value of chamfer is found as 

0.14671 mm. 
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5.3.6.4 For dross: 

 
Fig. 267 Obtained plot by TLBO approach for dross 

The TLBO algorithm is run through Matlab R2012b version software by 

considering 300 as population size and 500 as number of generations. In each run the 

maximum number of function evaluations N is considered as 750000. Fig. 267 depicts 

plot of the fitness function value for each generation. It can be observed that it converges 

to the optimum result in very small population size and less number of generations. From 

Fig. 267, it can be concluded that the optimal condition for dross occurred at 200 ampere 

of cutting current, 2.812 mm/s of cutting speed, 16.14 L/min of gas pressure and 2.475 

mm of stand-off gap. And the objective function value of dross is found as 0.99714 mm
2
. 
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5.3.6.5 For right bevel angle: 

 
Fig. 268 Obtained plot by TLBO approach for right bevel angle 

The TLBO algorithm is run through Matlab R2012b version software by 

considering 300 as population size and 500 as number of generations. In each run the 

maximum number of function evaluations N is considered as 750000. Fig. 268 depicts 

plot of the fitness function value for each generation. It can be observed that it converges 

to the optimum result in very small population size and less number of generations. From 

Fig. 268, it can be concluded that the optimal condition for right bevel angle occurred at 

164.69 ampere of cutting current, 3.999 mm/s of cutting speed, 17.9956 L/min of gas 

pressure and 2.84321 mm of stand-off gap. The objective function value of right bevel 

angle is found as 2.52053º. 
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5.3.6.6 For kerf: 

 
Fig. 269 Obtained plot by TLBO approach for kerf 

The TLBO algorithm is run through Matlab R2012b version software by 

considering 300 as population size and 500 as number of generations along with function 

evaluation of 750000 in each run. Fig. 269 depicts plot of the fitness function value for 

each generation. It can be observed that it converges to the optimum result in very small 

population size and less number of generations. From Fig. 269, it can be concluded that 

the optimal condition for kerf occurred at 156.816 ampere of cutting current, 2.758 mm/s 

of cutting speed, 15.515 L/min of gas pressure and 2.721 mm of stand-off gap. And the 

objective function value of kerf is found as 2.66833 mm. 
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5.3.6.7 For heat affected zone: 

 
Fig. 270 Obtained plot by TLBO approach for HAZ 

The TLBO algorithm is run through Matlab R2012b version software by 

considering 300 as population size and 500 as number of generations. In each run the 

maximum number of function evaluations N is considered as 750000. Fig. 270 depicts 

plot of the fitness function value for each generation. It can be observed that it converges 

to the optimum result in very small population size and less number of generations. From 

Fig. 270, it can be concluded that the optimal condition for HAZ occurred at 112.406 

ampere of cutting current, 3.102 mm/s of cutting speed, 15.704 L/min of gas pressure and 

2.021 mm of stand-off gap. And the best objective function value of HAZ is found as 

1.31858 mm. 

5.4 CNC Oxy-Fuel Gas Cutting Using DEA Based Taguchi Approach  

Experimental layout with output data presented in Table 78 have been analysed by 

above-mentioned procedure. Data have been normalized first by using Equations 23-24 as 
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per objective criteria [108]. Normalized data has been tabulated as given in Table 79. 

Normalized data of bevel angle and dross breadth are considered as input factor, whereas 

normalized data of dross height have been considered as output factor in Lingo version 14 

software for determining the relative efficiency (Table 79). Finally, Taguchi methodology 

has been applied on relative efficiency for evaluating optimal parametric setting. Nozzle 

speed, torch height and Oxy-fuel speed at their 3
rd

, 1
st
 and 1

st
 level respectively, are 

observed (Fig. 272) as more favourable machining condition. Each normalized data are 

fed into the Lingo Version 14 software package for determining the relative efficiency. 

Analysis of variance (ANOVA) of input parameters of the cutting process is shown in 

Table 81. Fig. 271 gives the percentage contribution chart in 3D pie plot. Table 82 shows 

the factor ranking in accordance with their degree of significance. 

Table 77 Values of Input Process Parameters of CNC Oxy-Fuel Gas Cutting 

Process parameters Units Code L(1) L(2) L(3) 

Nozzle speed m/min A 1 1.5 2 

Torch height mm B 2.0 2.5 3.0 

Oxy-fuel speed mm/min C 450 550 650 
 

Table 78 Taguchi Design of L9 with Input and Output Values 

 

Sl. 

No. 

Nozzle 

speed 

(m/min) 

Torch 

height (mm) 

Oxy-fuel speed 

(mm/min) 

Bevel 

angle 

(Degree) 

Dross 

width 

(mm) 

Dross 

height 

(mm) 

1 1 2.0 450 3 4.53 6.83 

2 1 2.5 550 4 6.92 3.58 

3 1 3.0 650 4 3.86 6.34 

4 1.5 2.0 550 2 4.65 7.56 

5 1.5 2.5 650 6 5.61 5.56 

6 1.5 3.0 450 5 7.83 4.47 

7 2 2.0 650 3 6.79 5.48 

8 2 2.5 450 6 5.56 7.64 

9 2 3.0 550 4 4.95 5.68 
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Table 79 Normalized Values, Computed Relative Efficiency and S/N Ratio of Responses 

 

Table 80 Estimated Model Coefficients for S/N Ratios 

Term Regression Coef. Std. Err. T P 

Constant -2.55221 0.2500 -10.210 0.009 

Nozzle speed 1.0 -1.52329 0.3535 -4.309 0.050 

Nozzle speed 1.5 0.54930 0.3535 1.554 0.260 

Torch height 2.0 0.70310 0.3535 1.989 0.185 

Torch height 2.5 0.09681 0.3535 0.274 0.810 

Oxy-fuel speed 450 1.07382 0.3535 3.038 0.093 

Oxy-fuel speed 550 -0.75172 0.3535 -2.127 0.167 

 

S = 0.7499  R-Sq = 94.6%  R-Sq(adj) = 78.3% 
 

Table 81 Analysis Of Variance for Relative Efficiency 

Source DoF Seq. SS Adj. SS Adj. MS F 
Percentage 

Contribution 

Nozzle speed 

(m/min) 
2 10.712 10.712 5.3562 9.53 51.6639 

Torch height 

(mm) 
2 3.431 3.431 1.7153 3.05 16.5477 

Oxy-fuel speed 

(mm/min) 
2 5.466 5.466 2.7329 4.86 26.3625 

Residual Error 2 1.125 1.125 0.5623  5.4259 

Total 8 20.734    100 
 

  

Sl. No. Norm. 1 Norm. 2 Norm. 3 
Relative 

efficiency 
S/N Ratio 

1 0.66667 0.85210 0.89398 0.72836 -2.75306 

2 0.50000 0.55780 0.46859 0.58321 -4.68352 

3 0.50000 1.00000 0.82984 0.57611 -4.78992 

4 1.00000 0.83011 0.98953 0.82757 -1.64394 

5 0.33333 0.68806 0.72775 0.73429 -2.68269 

6 0.40000 0.49298 0.58508 0.82394 -1.68209 

7 0.66667 0.56848 0.71728 0.87596 -1.15034 

8 0.33333 0.69424 1.00000 1.00000 0.00000 

9 0.50000 0.77980 0.74346 0.66189 -3.58432 
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Table 82 Response Table for Signal to Noise Ratios (Larger-Is-Better) 

Level Nozzle speed (m/min) Torch height (mm) Oxy-fuel speed (mm/min) 

1 -4.076 -1.849 -1.478 

2 -2.003 -2.455 -3.304 

3 -1.578 -3.352 -2.874 

Delta 2.497 1.503 1.826 

Rank 1 3 2 

 

 
Fig. 271 Percentage contribution of machining parameters 
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Fig. 272 Main effect plot of Relative efficiency 

 

5.5 CONFIRMATORY TEST 

Confirmation testing is necessary to validate the approached model. Once the 

optimal combination of plasma arc cutting factors is selected, the final step is to predict 

and verify the expected output response through the confirmatory experiments. So, the 

confirmatory experiments were conducted using the optimum setting of the machining 

parameters obtained from desirability function approach coupled with RSM. These 

experiments were used to predict and validate the improvement in the quality 

characteristics for plasma arc machining. The estimated desirability function value (�̃�) 

can be determined by using the optimum parameters as 

 �̃� = 𝐷𝑚 + ∑ (𝐷𝑖
̅̅̅ − 𝐷𝑚)

𝑛

𝑖=1
 (29) 
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where 𝐷𝑚  is the total mean of the desirability function value at the optimal level 

[109; 110]. In order to validate the results obtained, three confirmatory experiments were 

conducted for each of the responses at optimal levels of the process variables. The 

desirability function value is calculated and compared with the predicted values. Table 83 

shows the comparison of estimated values and experimental values of each response 

obtained from the first case experiment. Similarly, Table 84 demonstrates the comparison 

of values obtained from various optimization approaches and last confirmatory test results 

for the second case experiment. Lastly, the comparison of output response of PAC in the 

third experiment is tabulated in Table 85. 

Table 83 Confirmation Test Results of Plasma Arc Cutting for Case 1 

Optimization 

Approach 

Feed rate 

(mm/min) 

Cutting current 

(Ampere) 
Voltage (Volt) 

Torch height 

(mm) 

MRR 

(mm3/min) 

RSM 946.5263 50.0868 123.7877 1.4394 0.0256 

Desirability 1000 50 150 3 0.598497 

GA 1000 50 113.5 3 3.92945 

PSO 1000 50 113.499 3 3.92945 

SA 934.156 49.874 134.595 2.976 3.2726 

TLBO 1000.01 49.9382 147.874 2.9869 3.80718 

Experimental 

value 
1000 50 125 3 0.506944 

 SR (µm) 

RSM 1008.213 49.185 64.548 3.133 3.551 

Desirability 900 50 150 3 8.108 

GA 1000 40 150 2.082 25.28482 

PSO 1000 40 150 2.082 25.28482 

SA 965.496 44.99 111.143 2.249 20.7392 

TLBO 1000 49.5417 146.63 2.73299 20.7392 

Experimental 

value 
1000 50 150 2 3.85 

 
Right Bevel 

Angle (Degree) 

RSM 1002.465 50.715 114.474 1.727 3.333 

Desirability 1000 50 150 3 3.835 

GA 1000 50 100 1 48.6317 

PSO 1000 50 100 1 48.6317 

SA 966.943 49.935 123.613 1.007 44.9597 

TLBO 1000 49.9994 114.594 1 48.5337 

Experimental 

value 
1000 50 100 1 4 
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Fig. 273 Comparison of approaches in first phase 
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Table 84 Confirmation Test Results of Plasma Arc Cutting for Case 2 

Optimization 

Approach 

Feed rate 

(mm/min) 

Cutting current 

(Ampere) 
Voltage (Volt) 

Torch height 

(mm) 

MRR 

(mm
3
/min) 

RSM 951.4757 42.3029 114.3322 2.6301 4734 

Desirability 995 47.5 160 3.5 6771.73 

GA 920 40 100 2 30207.2 

PSO 920 40 100 2 30207.2 

SA 920 40 129.869 2 30476.41078 

TLBO 924.226 40.6128 105.911 2.97552 31180.1 

Experimental 

value 
920 40 100 2 2764.84 

 SR (µm) 

RSM 908.9561 50.0871 152.9153 2.3686 39.5 

Desirability 895 40 140 3.5 75.68 

GA 920 45 140 2.367 216.77179 

PSO 920 45 140 2.3669 216.7718 

SA 922.97 44.149 139.545 2.399 218.75136 

TLBO 938.349 43.8974 139.636 3 225.793 

Experimental 

value 
920 45 140 2.5 28.62 

 Chamfer (mm) 

RSM 944.5464 44.4648 78.3166 2.196 1.6156 

Desirability 920 40 160 3.5 2.0546 

GA 920 40 100 2 38.8355 

PSO 920 40 100 2 38.8355 

SA 920.011 40.211 101.854 2.001 38.8983 

TLBO 924.454 41.8109 105.083 2.97086 39.8281 

Experimental 

value 
920 40 100 2 1.29 

     Dross (mm2) 

RSM 1055.875 49.929 167.549 3.552 3.521 

Desirability 945 47.5 100 3.5 9.901 

GA 970 45 100.003 2 29.4362 

PSO 970 45 100 2 29.4371 

SA 963.512 45 137.263 2 28.717 

TLBO 969.999 44.9999 117.292 2 29.2925 

Experimental 
value 

970 45 120 2 2.76 

     Kerf (mm) 

RSM 882.7605 34.9384 133.7895 2.4102 3.151 

Desirability 895 47.5 160 3.5 4.065 

GA 970 45 140 2 144.3957 

PSO 970 45 140 2 144.3957 

SA 969.99 44.997 117.413 2 144.30718 

TLBO 970.006 45.0006 139.898 2.00345 144.396 

Experimental 

value 
970 45 140 2 2.81 
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Fig. 274 Comparison of approaches in second phase 
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Table 85 Confirmation Test Results of Plasma Arc Cutting for Case 3 

Optimization 

Approach 

Cutting Current 

(Ampere) 

Cutting Speed 

(mm/s) 

Gas Pressure 

(L/min) 

Stand-off Gap 

(mm) 

MRR 

(mm
3
/min) 

RSM 133.08 3.6738 21.1161 3.8056 582.20 

Desirability 100 4 12 2.5 1542.82 

GA 100 4 18 2 1898.87099 

PSO 100 4 18 2 1898.871 

SA 130.013 4 18 2 1680.471 

TLBO 112.175 3.972 17.608 2 1795.06 

Experimental 

value 
100 4 18 2 652.93 

 SR (µm) 

RSM 185.9596 7.5043 13.789 3.6503 23.4254 

Desirability 100 4 18 2.25 30.6972 

GA 200 2 12 2.356 12.93477 

PSO 200 2 12 2.356 12.93476 

SA 156.375 2 15.738 2.987 15.185 

TLBO 197.273 2.282 15.754 3 15.061 

Experimental 

value 
200 2 15 2.5 24.42 

 Chamfer (mm) 

RSM 194.3289 2.4226 16.6022 3.0434 0.133 

Desirability 100 4 18 2.25 1.475 

GA 200 2 12 2 0.083296 

PSO 200 2 12 2 0.08329 

SA 156.625 2.014 13.071 2.063 0.13547 

TLBO 200.008 3.797 17.816 2.99 0.14671 

Experimental 

value 
200 2 15 2 0.16 

     Dross (mm2) 

RSM 236.4002 4.2987 18.59 4.0965 1.102 

Desirability 125 4 18 2.25 1.687 

GA 200 2 12.128 2 0.79244 

PSO 200 2 12.128 2 0.79244 

SA 168.617 2 14.858 2.554 1.01796 

TLBO 200 2.812 16.14 2.475 0.99714 

Experimental 
value 

200 2 18 2.5 1.23 

     
Right Bevel 

Angle (Degree) 

RSM 146.9697 2.7576 14.7273 2.4848 3.0051 

Desirability 200 2.5 18 3 4.2396 

GA 100 4 18 3 1.8337 

PSO 100 4 18 3 1.8337 

SA 146.557 3.929 17.787 2.898 2.48322 

TLBO 164.69 3.999 17.9956 2.84321 2.52053 

Experimental 

value 
150 4 18 3 3 

     Kerf (mm) 

RSM 188.3842 2.3209 14.9168 2.5551 2.498 

Desirability 100 4 12 3 3.085 

GA 165.73 2.354 15.174 2.618 2.6394 
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Contd. 

Optimization 

Approach 

Cutting Current 

(Ampere) 

Cutting Speed 

(mm/s) 

Gas Pressure 

(L/min) 

Stand-off Gap 

(mm) 
Kerf (mm) 

PSO 167.448 2 15.153 2.659 2.64695 

SA 160.635 2.202 15.279 2.683 2.64236 

TLBO 156.816 2.758 15.515 2.721 2.66833 

Experimental 

value 
150 2 15 2.5 2.64 

     HAZ (mm) 

RSM 179.8258 4.9182 16.5023 2.4575 1.678 

Desirability 200 2 18 3 2.898 

GA 100 2.958 15.504 2 1.18845 

PSO 100 2.956 15.506 2 2.64695 

SA 147.874 3.986 17.535 2.003 1.57021 

TLBO 112.406 3.102 15.704 2.021 1.31858 

Experimental 

value 
150 4 15 2 1.73 

 

 

 

  



M. Tech. (Research) Thesis  
 

National Institute of Technology, Rourkela Page 421 
 

 

 
Fig. 275 Comparison of approaches in third phase 

The comparison of all approaches for PAC in three different phases of 

experimentation is tabulated in Tables 83, 84 and 85 respectively. From these tables, it 

may be noted that there is good agreement between the predicted values and the 

experimental values for each response in various optimization approaches. Similarly, the 

comparison plots of optimization techniques on PAC process are plotted in Fig.s 273, 274 

and 275 respectively. From the above descriptive analysis, evidently the best design is 

becoming one primary challenge of technology market. In this paper, the optimal values 

of process parameters have been numerically found out using the quadratic model of 

RSM. Since time and cost are comprised while operating the experimental runs, it is 

relevant to reduce the number of runs while not compromising the quality goals [41]. 
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In 4
th

 phase, confirmation testing is a necessary in final step in Taguchi optimization 

methodology. Once the optimal combination of Oxy-fuel gas cutting parameters is 

selected, it is needed to predict and verify the expected response through the confirmation 

experiments. However, there is no need to run the confirmation test if the optimal Oxy-

fuel gas cutting parameter combination is already included in the OA. It can be found that 

the optimal Oxy-fuel gas cutting levels combination (A3B1C1) was not included in the 

experiment matrix (Table 86). The predicted S/N ratio using the optimal levels of the 

design factors (η ̂opt) can be calculated as [111]: 

 
η̂𝑜𝑝𝑡 = �̅� + ∑(𝜂 ̅𝑖,𝑜𝑝𝑡 − 𝜂 ̅)

𝑝

𝑖=1

  
(30) 

where 𝜂 ̅𝑖,𝑜𝑝𝑡  is the mean S/N ratio for i
th

 parameter at the optimal level, p is the 

number of parameters that significantly affect the quality characteristic. In order to 

statistically judge the closeness of the predicted (𝜂 ̅𝑖,𝑜𝑝𝑡) and observed value of S/N ratio 

(𝜂𝑜𝑏𝑠 ), the k (CIs) were determined. The CI is given by: 

 
𝐶𝐼 = √𝐹𝛼;1,𝜗𝑒

 𝑉𝑒𝑟𝑟𝑜𝑟 [(
1

𝑛𝑒𝑓𝑓
) + (

1

𝑟
)] 

(31) 

where 𝐹𝛼;1,𝜗𝑒
=18.51 is the F value from statistic table at a 95 % confidence level, 

𝜗𝑒=2 is the degrees of freedom for the error, 𝑉𝑒𝑟𝑟𝑜𝑟=0.5623 is the mean square of error, 

r=3 is the validation test trial number, and 𝑛𝑒𝑓𝑓  is defined as: 

 
𝑛𝑒𝑓𝑓 =

𝑁 

1 + 𝜗𝑡𝑜𝑡𝑎𝑙
 

(32) 

where N=9 is the total number of experiments and 𝜗𝑡𝑜𝑡𝑎𝑙=6 is the total degrees of 

freedom of all parameters. By substituting these values in Equation 32, 𝑛𝑒𝑓𝑓  value 

obtained as 1.2857. Similarly CI is obtained as 3.40069 by using Equation 31. If the 

difference between η̂𝑜𝑝𝑡 and 𝜂𝑜𝑏𝑠  is within the CI value, then the optimum Oxy-fuel 
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cutting parameter level combinations are valid. Table 87 shows the results of relative 

efficiency at optimal settings of process parameters. It can be observed that the calculated 

values of the prediction errors are within the 95 % confidence interval from Table 87. 

Table 86 Confirmatory Test Results for Relative Efficiency 

No. of 

experiment 

Nozzle speed 

(m/min) 

Torch height 

(mm) 

Oxy-fuel speed 

(mm/min) 

Relative 

efficiency 

1 2 2 450 0.7346 

2 2 2 450 0.7189 

3 2 2 450 0.7197 
 

Table 87 Analysis of Confirmatory Test 

Performance 

Characteristics 

Optimal 

Setting level 

Predicted 

optimal 

values 

95 % confidence 

interval 

Actual 

confirmation 

experimental 

value 

S/N Ratio A3-B1-C1 0.19942 -3.20127<𝜂𝑜𝑏𝑠<3.60011 -2.80043 
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6 CONCLUSION AND SCOPE FOR FUTURE 

6.1 Conclusions 

This work furnishes the findings of an experimental investigation on the effect of 

feed rate, cutting current, cutting speed, gas pressure, voltage and torch height on the 

characteristic of cut while machining AISI 4140 and AISI 304 stainless steel by plasma 

arc. Response surface methodology (RSM), desirability function, genetic algorithm (GA), 

particle swarm optimization (PSO), simulated annealing (SA) and teaching learning based 

optimization (TLBO) algorithm approaches have been carried out to find optimal 

condition of input factors on cut attributes of PAC operation. These methodologies are 

applied as single-objective criteria for each case. A novel approach of response surface 

method coupled with grey relational analysis and principal component analysis has been 

carried out to optimize plasma arc cutting processes with multi-objective criteria. The 

shortened quadratic models developed using the combinatorial plea of RSM and grey 

relational analysis (GRA) with principle component analysis (PCA) were reasonably 

accurate and can be used for prediction within the limits of the factors investigated. In the 

third case, a portable plasma cutting machine is renovated with automatic heating 

arrangement. The experiments have been conducted to produce slots using L27 orthogonal 

array based on Box-Behnken design. The different responses such as material removal 

rate, surface roughness, right bevel angle, chamfer, dross, kerf width and heat affected 

zone are measured in order to determine optimum setting of process parameters. The logic 

behind the application of various optimization techniques is to compare the results of 

output responses on input variables. The comparison of the seven optimization methods in 

plasma arc cutting is not carried out till now. In this present work, the noble advanced 
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optimization methodologies are applied to optimize the responses of the plasma arc 

cutting process by taking different design of experiment and optimization techniques on 

different output variables of plasma arc cutting process. 

The conclusions based on the assignment of optimizing process parameters of PAC 

and Oxy-fuel machining is summarized as follows: 

a) The main aim of the optimization process in this project was to study the 

influence of the machining variables that lead to satisfaction of different 

conflicting objectives such as material removal rate (MRR) has to be maximized 

while other responses should be minimized. The single objective as well as multi-

objective optimization for output responses has been carried out to achieve the 

desired optimal settings. 

b) The regression coefficient results imply that the predicted and experimental 

values are in good agreement and the adequacy of the model for cut quality 

responses of plasma arc cutting process. 

c) TLBO approach has been proposed lately as population arranged meta-heuristic 

optimization technique for tackling optimization issues. Both statistical and 

nature inspired meta-heuristic approaches are applied on plasma arc cutting 

process in this study. 

d) From results, it was concluded that the use of the hybrid RSM based GRA-PCA 

and TLBO algorithm which can efficiently search the process parameters for 

finding optimal machining conditions. Hence, both approaches can be 

successfully applied as fitting methodology for enhancing the cut quality for 

industries. 
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e) Material removal rate (MRR) and surface roughness (SR) responses were best 

optimized by desirability approach among all the techniques approached 

according to Box-Behnken design (BBD) with L27 orthogonal array. The 

maximum MRR (0.598497 mm
3
/min) was achieved in feed rate = 1000 mm/min, 

cutting current = 50 ampere, voltage = 150 volt, torch height = 3 mm, and 

minimum surface roughness (8.108 μm) was achieved in feed rate = 900 

mm/min, cutting current = 50 ampere, voltage = 150 volt, torch height = 3 mm 

utilizing desirability approach. Hence, desirability and RSM approach might be 

considered for better optimization of MRR and SR respectively. 

f) The maximum MRR (30207.2 mm
3
/min) was observed equal value in feed rate = 

920 mm/min, cutting current = 40 ampere, voltage = 100 volt, torch height = 2 

mm using GA and PSO technique. Hence, considering central composite design 

of L30 orthogonal array, GA and PSO approaches gave best optimal results for 

MRR where as RSM approach contributed the best optimum results for other 

responses. So, RSM approach might be chosen for better optimization 

methodology in minimizing responses of PAC process.  

g) The maximum MRR (582.20 mm
3
/min) was attained equal value in cutting 

current = 133.08 ampere, cutting speed = 3.6738 mm/s, gas pressure = 21.1161 

L/min, stand-off Gap = 3.8056 mm employing RSM technique. RSM approach 

showed better acceptable results to all responses except MRR whereas both GA 

and PSO approaches illustrated constant outcome of objective function when 

BBD with L27 orthogonal array was considered. 
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h) From these three types of layouts on PAC, PSO approach showed the acceptable 

optimum results for maximizing the MRR response whereas, for minimization of 

responses such as chamfer, surface roughness and kerf, TLBO approach gave the 

best optimal results with minimum iterations among all the approaches. 

i) Data envelope analysis coupled with Taguchi’s optimization technique revealed 

that nozzle speed was the most influencing parameter in the computer numerical 

controlled Oxy-fuel gas cutting process as it contributes 51.6639 % towards 

experiment, which is the maximum as compared to other parameters. The best 

possible optimum condition of this process is at 2 m/min of nozzle speed, 2.0 mm 

of torch height and 450 mm/min of Oxy-fuel speed.  

j) All confirmatory test results were found in agreement with those of predicted 

values of the cut responses in the PAC as well as Oxy-fuel gas cutting. 

6.2 Scope for Future Work 

The following suggestions may be considered to research work in future. 

a) Similar kind of comparative study on any machining process can be carried out 

for optimizing its process parameters. 

b) Experimental investigation of plasma machining of other steels can be carried 

out. 

c) Finite element modelling of the plasma arc cutting operation can be carried out to 

determine temperature distribution. 
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8 APPENDIX 

Regression equations used for optimization 

1. Case 1 

 

MRR=39.24466-0.06972*A+0.00004*A^2-

0.23532*B+0.00193*B^2+0.02407*C-0.00010*C^2-

2.53113*D+0.20244*D^2+0.00045*A*D-

0.00004*B*C+0.02986*B*D+0.00021*C*D 

(33) 

 

 

SR=220.9933-0.1877*A-5.8032*B+0.0138*B^2-

0.0611*C+0.0003*C^2+13.9617*D+1.7333*D^2+0.0045*A*B-

0.0003*A*C-0.0209*A*D+0.0044*B*C-

0.1120*B*D+0.0280*C*D 

(34) 

 

 

RBA=-72.0417+0.0867*A-0.0001*A^2+2.1833*B-0.0300*B^2-

0.1033*C-10.0000*D-

0.6250*D^2+0.0050*A*D+0.0020*B*C+0.1500*B*D+0.010

0*C*D 

(35) 

 

2. Case 2 

 
MRR=318525.8-374.3*A-4590.7*B+7.4*B^2-281.2*C+0.1*C^2-

17133.5*D-244.5*D^2+4.6*A*B+0.4*A*C+20.6*A*D-

3.0*B*C-29.1*B*D+0.6*C*D 

(36) 

 

 
SR=7607.658-13.943*A+0.007*A^2-65.456*B+0.060*B^2-

0.183*C-0.008*C^2+356.262*D+6.566*D^2+0.050*A*B-

0.363*A*D+0.077*B*C+1.007*B*D-0.705*C*D 

(37) 

 

 

Chamfer=-68.8627+0.0820*A+0.7669*B-0.0088*B^2-

0.0729*C+15.9909*D-

0.3004*D^2+0.0003*A*B+0.0001*A*C-0.0102*A*D-

0.0001*B*C-0.1215*B*D+0.0041*C*D 

(38) 

 

 

Dross=39.7616+0.2251*A-0.0004*A^2-2.5780*B-0.0711*B^2-

0.7803*C+0.0002*C^2-14.2625*D-

1.5983*D^2+0.0072*A*B+0.0013*A*C-0.0080*A*D-

0.0078*B*C+0.9650*B*D-0.0843*C*D 

(39) 
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Kerf=25.33838-

0.15097*A+0.00015*(1)^2+2.42007*B+0.01090*B^2+0.12

379*C-0.00010*C^2-5.07050*D+0.10250*D^2-

0.00362*A*B-0.00011*A*C+0.00740*A*D+0.00050*B*C-

0.02200*B*D-0.00887*C*D 

(40) 

 

3. Case 3 

 

MRR=1665.937-

19.345*A+0.003*A^2+843.381*B+6.850*B^2+13.781*C+5.289*C^2-

275.352*D+149.412*D^2+0.820*A*B+0.041*A*C+3.680*A*D-

17.083*B*C-190.275*B*D-48.332*C*D 

(41) 

 

 

SR=60.5500-0.3844*A+0.0005*A^2+6.0058*B-0.2237*B^2-

0.2975*C+0.0371*C^2-

11.9817*D+3.1750*D^2+0.0022*A*B+0.0045*A*C+0.0348*A*D+0.0967*

B*C-1.2000*B*D-0.6283*C*D 

(42) 

 

 

Chamfer=0.093333-

0.005800*A+0.000011*A^2+0.281667*B+0.005000*B^2+0.020000*C

+0.000833*C^2+0.063333*D+0.040000*D^2-

0.000250*A*B+0.000700*A*D-0.000833*B*C-0.080000*B*D-

0.015000*C*D 

(43) 

 

 

Dross=2.298333-0.012533*A-0.000002*A^2+0.384167*B-0.007917*B^2-

0.046389*C+0.003009*C^2-

0.053333*D+0.083333*D^2+0.001000*A*B+0.000067*A*C+0.001900*A

*D+0.003333*B*C-0.150000*B*D-0.023333*C*D 

(44) 

 

 

RBA=8.83333-0.03500*A-

0.00005*A^2+4.25000*B+0.12500*B^2+0.05556*C+0.02778*C^2-

7.66667*D+2.00000*D^2+0.02000*A*D-0.16667*B*C-1.00000*B*D-

0.16667*C*D 

(45) 

 

 

Kerf=7.61167-0.01865*A+0.00004*A^2-0.45000*B+0.06000*B^2-

0.12222*C+0.00778*C^2-

1.50500*D+0.35500*D^2+0.00030*A*B+0.00005*A*C+0.00150*A*D+0.

04500*B*D-0.04667*C*D 

(46) 



M. Tech. (Research) Thesis  
 

National Institute of Technology, Rourkela Page 446 
 

 

 

HAZ=0.591667+0.042417*A+0.000029*A^2-0.127500*B+0.105417*B^2-

0.290833*C+0.008657*C^2-0.011667*D+0.211667*D^2-0.005150*A*B-

0.000450*A*C-0.008200*A*D+0.002500*B*C-

0.010000*B*D+0.030000*C*D 

(47) 

 

4. Case 4 

 
RE=1.07547+0.216722*A-0.123317*B-0.000609915*C 

(48) 
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