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Abstract 

Embedding ergonomic consideration into product/machine/equipment/component 

design as well as work environment taking into account both psychological and 

physical needs of user helps to enhance user efficiency, satisfaction and productivity. 

It is vital to find best design elements to visualize the product which possesses the 

characteristics not only to satisfy the users but also reduces fatigue and injury during 

prolonged use. Although subjective and objective product characteristics are 

important during product design, user comfort becomes a vital factor that can be 

quantified by the analysis on continuous physical interaction between product and 

user. Beside above influential factors, ergonomic design of product also considers 

cognitive and behavioral information during the design stage with a view to improve 

the comfort level of the user and aesthetic look of the product.  

To address above issues, an integrated approach using statistical and artificial 

intelligence techniques has been proposed in this thesis to effectively handle 

subjective and objectives characteristics during design phase. The statistical method 

is used to assess various user requirements and their significance whereas artificial 

intelligence method determines the relationship between user requirements and 

product characteristics. Since most of the psychological needs of users are difficult to 

express quantitatively, combined approach of statistical and artificial intelligence 

method can handle the subjectivity and uncertainty in an effective manner. The 

approach has been demonstrated with the help of design of office chair. Keeping 

view with the physical interaction between human soft tissue and product as a 

measuring factor of comfort sensation in an office environment, a numerical analysis 

of human soft tissue-chair seat model has been introduced into current work. In order 

to evaluate superior ergonomically designed product (office chair), suitable multi-

attribute decision making (MADM) approach based on few important features has 

been chosen to address the usability of product improving satisfaction level of 

customer. The study also analyses a kinematic model of human upper arm extremity 

to diagnose comfort arm posture that allows the operator to have a comfort work 

zone within which possible postures can be accepted. 

The integrated approach of statistical and artificial intelligence techniques 

produces an office chair that satisfies most of comparable design elements of Bureau 

of Indian Standard (BIS). Finite element (FE) model of the human soft tissue 

(buttock)-seat predicts maximum stress in human soft tissue (at ischial tuberocity) on 

prolonged sitting in an office environment. By the help of a detailed and realistic two 

dimensional geometric description, the analysis provides insight into the problem and 
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finds the ways to reduce the stress on bony prominence causing cell death of muscle 

tissue and avoids suffering from pressure sore. The analysis also shows the effect of 

postural changes on maximum stress beneath ischial tuberocity. However, a large 

number of products are available in the market place possessing a wide range of 

features to address the ergonomic considerations. In this regard, several multi-

attribute decision making (MADM) methods have been attempted  considering both 

subjective and objective weights for qualitative and quantitative design attributes for 

selecting a suitable alternate (chair). In order to synergize the capability of an 

operator within workstation, a comfort work zone has been generated with a 

kinematic model of human arm. The model predicts an isocomfort posture of human 

upper extremity to enhance the operator performance within a workplace. Model 

efficiency has been predicted by using two artificial intelligence techniques such as 

adaptive neuro-fuzzy inference system (ANFIS) and least square support vector 

machine (LSSVM). 

The methodology adopted in this study is quite general and can be extended to 

design of hand tools, machinery, vehicles and furniture used in various work 

environments. The numerical approach considered in this work may be extended to 

dynamic analysis where vibrational effect can be analyzed in a moving vehicle. 

Contouring of the seat can be considered to study its influence on pressure 

distribution at ischial tuberosity. Kinematic model proposed in this study can be 

extended to model the whole human body with more number of degrees of freedom. 

Keywords: Ergonomic design; Subjective and objective design characteristics; 

Comfort level; Artificial intelligence techniques; Bureau of Indian 

Standard; Numerical model; Finite element model; Ischial tuberocity; 

Multi-attribute decision making (MADM) approach; Kinematic model; 

Neuro-fuzzy inference system (ANFIS); Least square support vector 

machine (LSSVM). 
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1.1 Introduction 

It is imperative to focus on design and performance of work system for ensuring a 

healthy and safe work environment that leads to improve productivity. Although 

technological advancement leads to improve productivity, the risk factors emerging 

from complex interaction of employees and elements of work system needs to be 

sufficiently dealt in involving ergonomic concepts in order to enhance human 

performance (Peterson,1997).Therefore, ergonomic design of a 

product/equipment/machine becomes highly desirable because interaction between 

user and product/machine leads to enhance user satisfaction, comfort and 

performance of users minimizing health risks. Ergonomic typically solves the physical 

problem associated with work environment by reducing mismatch between user 

anthropometric and biomechanical parameters with physical dimension of work place, 

equipment, furniture (Bridger, 1995; Jeong and Park, 1990). The physical problems 

resulting due to anthropometric and biomechanical aspects are excess muscle loads, 

posture change, working with awkward posture, exposure to constant static and 

vibration force, repetition and duration of body movements. Such problems lead to 

fatigue and musculoskeletal disorder and physical injuries in low back area, upper 

extremities and blood circular system (Nunes, 2009). World Health Organization 

(WHO) has recognized work related musculoskeletal disorder (WMSD) as a major 

part of health problem that directly affects the behavior of employees and become an 

influential factor for occupational accidents (Hilton and Whiteford, 2010; Sobeih et al., 

2009). It has been observed that repetitive work in the same posture can lead to 

antagonistic of muscle tendon resulting in degradation of joint function (Bridger, 1995; 

Marras and Schoenmarklin, 1993). 

Consideration of ergonomic principles and methodologies not only involves 

anthropometric and biomechanical aspects at design phase to improve the physical 

capability of employees but also touches psychological needs of user to enhance 

user satisfaction (Kuoppala et al., 2008; Morag, 2007; Moreau, 2003; Fredriksson et 

al., 2001; Neumann et al., 2006; Vink et al., 2006; Kazmierczak et al., 2007; Erdinc 

and Vayvay, 2008; Falck et al., 2010; Axelsson, 2000). User satisfaction associated 

with psychological aspect and functional requirement of the product/machine 

invariably improves the performance of the users and considered as an important 

issue in designing a consumer/industrial product (Dandavate et al., 1996; Yang et al., 

1999; Park and Han, 2004). Improving functional requirements not necessarily satisfy 

the user thoroughly especially in case of consumer products such as compact disc 

(CD) players, mobiles, personal data assistant (PDA) etc. In such cases, subjective 

performance of the product also matters to improve the user satisfaction. Usability of 
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a product comes through both functional requirement as well as subjective 

performance of the product. Usability is defined as the degree of ease of use 

(subjective performance) and effectiveness of use (objective performance or 

functional requirement) within a specified users, tools and work environments 

(Bennet, 1984; Shackel, 1984; Veryzer, 1995). Objective performance explains how 

to interpret the product, how fast the users use/control the product and how well the 

product functions. Subjective performance measures user perception of image and 

impression regarding the product that explains the appearance of product as well as 

the attitude or judgmental feelings about the product (Han et al., 2000).  

1.2 Application of Ergonomic design 

Ergonomics concern with human performance considering human physiology and 

psychology for the improvement of work system consisting of person, jobs, tools, 

equipment and workspace. Three general applications of ergonomics are observed in 

practice as discussed below. 

 Ergonomics in industry 

In manufacturing and service sectors, ergonomics reduce risk of work related 

injuries and fatigue by designing the tools and equipment within user physical 

capability so that the operator becomes flexible with work environment. Ergonomics 

emphasize on design of the tools, equipment and work processes to improve work 

productivity and efficiency providing safety (Lucas, 1984). Ergonomics usually 

emphasize physical work load and productivity issues alongside safety and health 

(Schmidtke, 1989; Luczak and Volpert, 1987). 

Ergonomics in equipment design 

Inadequate equipment operation leads to awkward/inaccurate posture and body 

vibration giving rise to musculoskeletal disorder, unhealthy and unsafe work place 

(Santos et al., 2011).The application of ergonomics can reduce the complex 

operation on operator so that the task demand can be compatible with human 

capabilities. Operator work schedule/habits should be considered during design of 

the equipment to make the way of operation easy. The design of equipment is always 

a compromise between the operator’s biological needs and physical requirements of 

the equipment (Das and Grady, 1983; Das and Sengupta, 1996). 

Ergonomics in product design 

As the demand of a consumer product mostly depends upon the needs of end 

user and producer cannot control the skill level of user, it is difficult for the part of 

manufacturer to control over the end use of product. The ease of use of product is 

associated with ergonomics (Weiman, 1982). Although product design based on 

functionality, quality and cost as important factors, ergonomics emphasizes other 
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design elements such as comfort, safety (Vink et al., 2006), image/impression 

(Jordan,1998), emotion and attractiveness (Nagamachi, 2002; Park and Han, 2004). 

Ergonomic provides an opportunity to use the products easily and safely. For 

example Volvo, Mercedes provides maximum comfort with their ergonomic design of 

seat and layout. Also during the design of key board, mouse, electronics product and 

furniture, ergonomic has a value to use the product easily.   

1.3 Need for research 

In spite of several applications of ergonomics design, a number of key barriers 

still exist in many design processes. It becomes difficult to conceptualize the 

relationship between subjective feelings and design characteristics. Since user 

requirements are product and situation specific, it is difficult to predict the change in 

subjective feelings. In addition to the issues related to user satisfaction, ergonomics 

also concern with health related issues. Health injuries in work environment are 

caused due to poor/awkward work posture, repetitive and continuous work for 

prolonged time duration, incompatibility between user and tools/equipment. Health 

risk factors when combined with poor machine structure, equipment, tools and 

workspace create a physical and mental stress and fatigue on human body. As 

muscle fatigue induces musculoskeletal disorder, it is important to quantify fatigue 

and maximum limit of tolerable muscle loads (Burderf, 1992; Chaffin et al., 1999; 

Armsstrong et al., 1990). In order to address to a large number of users satisfying 

their necessity and preference, many products are available in the market. In such a 

market environment, selection of a particular product becomes a difficult task. With 

such ideas in mind, an effective method can be opted in the presence of multiple, 

usually conflicting criteria to find out a suitable product with all important design 

features. In addition to the issues related user comfort and satisfaction, ergonomics 

also concern with design of workplace, layout and work facilities to balance the 

interaction between human beings and tasks for providing safe and enabling 

workplace environment (Schnauber,1986; Resnik and Zanotti,1997; Burri and 

Helander,1991; Shikdar and Das,1995; Das and Sengupta,1996). 

 

These problems offer new opportunities for ergonomic design as follows: 

 Concept of user satisfaction should be emphasized from both subjective and 

objective design requirements to evaluate a product’s usability (Nagamachi, 

1995; Han et al., 2000).  

 As it becomes a complex task to design a product/equipment/machine relating 

design characteristics of product and user requirements, an appropriate 

customer driven approach must be adopted.  
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 It is also necessary to develop a relationship between product characteristics 

and user comfort level using an appropriate method due to non-linearity of the 

relationship.  

 It is necessary to investigate various physical exposures of muscles and 

predict muscle fatigue in the work environment using as simple and efficient 

tool. 

 The physical discomfort is usually associated with biomechanical aspects 

(Anderson et al., 1979). Hence, biomechanical analysis using analytical or 

numerical models can help to quantify the damage on soft tissues of the 

users, fatigue on human limbs and musculoskeletal disorders occurring 

through interaction of product/machine and human body (Tewari, and Prasad, 

2000; Thakurta et al., 1995). 

 Although a product can be designed considering subjective and objective 

design requirements and health related risk factors, it is often difficult to 

choose a particular product in a market place with selected functions 

satisfying large number of users. Therefore, a suitable selection approach in a 

well-structured manner must be developed to provide a feasible alternative in 

the presence of multiple and conflicting criteria.  

 Always poor working posture, unnatural postures and irregular motions have 

been considered as major cause of musculoskeletal disorders (Haslegrave, 

1994). Therefore, it is important to design a comfort work zone for users to 

assume good working posture for task performance minimizing stress and 

discomfort. Improved comfort work zone enables the operators to use the 

hands correctly and safely reducing unhealthy and lengthy reaches. 

1.4 Research objectives 

Based on discussion in previous sections, this section of thesis addresses the 

issues and problems related to system design. Present work focuses a framework 

providing the guidelines and principles to the designer and decision makers to 

improve the quality, usability of product (office chair) in order to increase the comfort 

level, reduce the stress and injury due to prolong sitting in office work environment. 

The objective of the research is to develop the models by extracting the guidelines in 

order to reduce the risk of musculoskeletal disorder in office environment and 

increase customer satisfaction and hence productivity. 

Based on this guiding principle, the objective of present work are as follows: 
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 To develop an integrated approach to handle objective and subjective user 

requirements while designing office furniture with a view to enhance customer 

satisfaction. 

 To develop stress-time relationship on human muscle tissue through 

numerical analysis and ascertain the cause of pressure ulcer so that cell 

death can be minimized.  

 To propose a multi-attribute decision making approach for selecting a suitable 

ergonomically designed product under uncertain decision making 

environment. 

 To predict the comfort work zone considering comfort posture within which 

materials and controls existing in the work place are easily accessible. 

1.5 Thesis outline 

To meet the above the objectives, the thesis can be organized into seven chapters 

including introduction. A brief outline of each chapter is given as follows: 

Chapter 2: Literature review 

The chapter deals with review of related literatures that provide background 

information on the issues and problems to be considered in the thesis and hence 

focus the relevance of the present study. It identifies the problems associated with 

work system design with relevance to technical and psychological aspects, health 

and safety issues, comfort and productivity. The chapter proposed different 

approaches to identify various aspects in work system design. Present research 

summarizes on various system design issues considering ergonomics guidelines 

Chapter3: An integrated approach for designing office furniture with ergonomic 

considerations 

Since it is difficult to manage subjective requirements in the design process, this 

chapter proposes an integrated approach to deal with subjective and objective design 

criteria for a product with ergonomic consideration. The procedure is demonstrated 

with the help of design of an office chair. A questionnaire survey was conducted 

including information on user requirements regarding office chair, anthropometric 

sitting and standing dimensions and design parameters of office chair. The survey 

was conducted through different modes over a period of four months. The 

respondents are advised to provide ratings in a five point Likert type scale (1 for 

strongly agree and 5 for strongly disagree) on forty different items. The user 

requirements and design criteria are suitable to the users having average 

anthropometric dimension. A total of one hundred fifty responses are collected. Sixty 

percent of the respondents belong to officers and staffs of different banks and twenty 
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percent respondents belong to technical institutes. Rest data are collected from 

different government/private offices. After screening, 100 data with useful responses 

are considered for further analysis. Data reduction technique like factor analysis has 

been applied to survey data in order to eliminate redundancy. Thirteen different 

models of office chairs from standard manufacturers are displayed to the respondents 

to finalize the tangible and intangible design parameters of the office chair. Total of 

forty different adjectives indicating user requirements were identified. Twenty two 

user requirements were loaded on three factors having factor loading score more 

than 0.7.The reduced user requirements are translated into design characteristics 

using quality function deployment (QFD). The nonlinear relationship between design 

characteristics and user satisfaction is developed through adaptive neuro-fuzzy 

inference system (ANFIS). Finally, a large number of design scenarios are generated 

using design of experiment (DOE) approach and the best design parameters are 

chosen that maximizes user satisfaction. A prototype model is developed by using 

optimal design parameters. The design parameters are compared with 

measurements by Bureau of Indian Standards (BIS). The comparison indicates that 

some of the design parameters of the proposed model are out of range suggesting 

that the variation is due to localization of sample data.  The standard needs to be 

reviewed regularly to enhance comfort level of the users. 

Chapter 4: Study on human-product interaction by means of a stress analysis to 

minimize risk of injuries 

Once the prototype with proper design parameters satisfying user satisfaction has 

been developed, the numerical model is developed to analyze the effect on human 

tissues due to prolonged use. The model includes a soft human tissue, ischial 

tuberosity (a bony part) and the seat cushion/rigid seat. Soft tissue (buttock)-seat 

model is assumed to be two dimensional axisymmetric finite element model with an 

upright posture. The nonlinear soft tissue-seat model is developed using ANSYS 

10.0. A volunteer weighing fifty five kilogram is contacted to obtain image of the soft 

tissue (buttock). The seat cushion has been modeled by a rectangular flat surface 

having thickness of 80 mm and area of 450×450 mm2. Two different models 

comprising of human soft tissue-rigid seat (model I) and human soft tissue-soft 

polyurethane foam cushion (model II) are considered. The simulation is conducted 

over a period of three hours to study the effect of time of loading on soft tissue. The 

stress distribution throughout meshed model is studied by varying the material 

properties of seat cushion, angle of loading (sitting posture) and cushion thickness. It 

is observed that the maximum stress affected area is less in case of soft cushion 
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having elastic modulus of E=20kPa and density  =40 kg/m3 than the cushion having 

elastic modulus of E=200kPa and density  =60kg/m3. The model predicts a 

maximum stress of 20324Pa at ischial tuberosity after a continuous sitting duration of 

half an hour on a soft cushion having elastic modulus of E=20kPa and density  =40 

kg/m3 and comparable with experimental value (nearly 19500Pa) (Verver et al., 

2004). The morphological changes at ischial tuberosity has been noticed as a result 

of von Mises stress in soft muscle tissues for three different cushion types with 

continuous sitting for 1800sec. It has been seen that the size of damage area 

decreases from rigid seat to soft cushion. It is minimum for the cushion having elastic 

modulus 20kPa and density 40 kg/m3. The trend of increasing stress with increase in 

time of sitting at ischial tuberosity is nearly similar for all seat types. The analysis also 

been done by changing the posture from 00  to 030 to investigate the effect of loading 

direction and time of loading on change in stress and damage area at ischial 

tuberocity. 

Chapter 5: A novel multi-attribute decision making approach for product selection 

conforming ergonomic considerations 

In the market place, a large number products are available with various design 

features (design attributes) with ergonomic considerations. However, it is difficult to 

choose a particular one suiting to user’s needs. Multi attribute decision making 

(MADM) approach provides a structured approach in selecting a feasible alternative 

in the presence of multiple and conflicting criteria. Generally, MADM approach carries 

objective weight for design attributes to find a feasible alternative. But the weights 

need not be necessarily expressed objectively. In many situations, the weights are 

expresses objectively and subjectively. In this chapter, a novel decision making 

approach has been explored to consider both subjective and objective weights of 

design attributes so that the decision maker facilitates with the objective information 

regarding the product as well as the uncertainty of human judgement. The approach 

is explained with an example having six alternatives based on ten attributes of 

different design features (attributes).  

The structure of the present work is as follows. Section 1 concerns with finding 

the design characteristics (attribute) with respect to alternatives (office chair). Section 

2 considers both objective subjective weights of various attributes. On the basis of 

statistical variance method, the objective weights of the attributes are computed. 

Analytic Hierarchy Process (AHP) is used to calculate subjective weights of 

attributes. The integrated weights of attributes are obtained considering the different 

weightings proportion of the objective and subjective weights. Four decision makers 
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are involved to assign the fuzzy rating values to alternatives under each attribute 

using a five-point fuzzy scale with triangular membership functions. In order to assess 

the rating of alternative under each attribute, the fuzzy numbers are aggregated. The 

aggregated fuzzy rating values are converted into crisp values to simplify the 

calculations using left and right score (Chen, 1985). The aggregate crisp values are 

then normalized. The normalization is based upon beneficial and non beneficial 

attribute. For beneficial attributes higher values are desired (maximization) whereas 

lower values (minimization) are preferred for non-beneficial attributes. In Section 3, 

three different MADM methodologies such as TOPSIS (Techniques for Order 

Preference by Similarity to Ideal Solution), VIKOR (VIseKriterijumska Optimizacija I 

Kompromisno Resenjea) and PROMETHEE (Preference Ranking Organization 

Method for Enrichment Evaluations) are utilized to find out the best possible way to 

choose the suitable office chair. In order to check the stability of the ranking, a 

sensitivity analysis has been carried out considering different proportion of attribute 

weights (subjective and objective).  

Chapter 6: Kinematic analysis of human upper extremity based on comfort joint 

posture reducing unhealthy and awkward posture. 

In this chapter, a kinematic model of human upper extremity is analyzed allowing 

the movements of all axes of kinematic chain within a comfort zone so that fatigue on 

human limb can be reduced. The diagnosis of posture analysis of the upper 

extremities within the comfort operating zone allows the operator to have a comfort 

work range within which possible posture can be accepted. With the help of comfort 

joint angle range from literature (Diffrient et al., 1985) as comfort posture and different 

segment measurements of upper arm (link length) (Kaur et al., 2011;Singh et al., 

2013), forward kinematic equations are developed to achieve the hand reach position 

and consequently three dimensional comfort work zone. The parameters used in the 

link segment are extracted from the model of Murray (Murray, and Johnson, 2004). 

Human body carries a number of links with offset joints and adapts some specific 

postures to formulate specific task. Therefore, it is important to get a right posture 

within comfort work zone. Due to the presence of non-linearity, complexity and 

singularity issues in solving inverse kinematic problem, two artificial intelligence 

techniques such as adaptive neuro-fuzzy inference system (ANFIS) and least square 

support vector machine (LSSVM) are used to predict upper arm posture (comfort joint 

angles). It has been seen that LSSVM shows a better performance with less error 

(0.1173428) in comparison to ANFIS (0.506631) for predicting the posture.  
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Chapter 7: Executive summary and conclusion  

This chapter presents the summery of the results, suggestions and scope for 

future work in the direction of ergonomic design. With specific contribution and 

limitations, the chapter concludes the work enclosed in the thesis. 
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2.1 Introduction 

Demand for improved performance of product and comfort for the operator/user 

have led to an increasing emphasis on ergonomic design. Development of a 

comfortable product bridges the gap between the subjective feeling of comfort and 

the prediction of comfort level of new designs through practical use. Various 

customer-driven approaches allow the needs of the customer to be communicated 

through the various stages of product planning, design, engineering and 

manufacturing into a final product to improve the performance of product/machine 

and user satisfaction. Sometimes, simulation of computer models to test the design 

process for highest degree of comfort allows manufacturers to speed up the design 

process by reducing cost and minimizing health hazards.  Due to advanced 

technology, convenient functions are added to a product. However, providing more 

functions usually results in a more complex user interface which sometimes neither 

offer user satisfaction as a part of usability nor provide physical comfort. Customer 

demand for product with improved performance is as important as the demand for 

products with improved comfort level. Therefore, the manufacturers consider user 

satisfaction, comfort and biomechanical issues as the most important factors that 

distinguish each product/tool/equipment from each other product/tool/equipment. 

Ergonomics not only concern with health related issues (Kuoppala et al., 2008) and 

psychological aspects (Fredriksson et al., 2001) but also associated with system 

performance aspects like productivity (Kazmierczak et al., 2007) and quality (Falck et 

al., 2010) by integrating various features in the product t design stage. 

In this direction, the present chapter highlights various concepts and approaches 

through a broad-based literature survey. Current literature survey deals with ninety 

articles published after 1992 with attention paid to last twenty two years. Sixteen 

articles referred here are published before 2000 and rest published after 2000. The 

majority of the citations are found from peer reviewed journal publications (90%). The 

other citations are taken from conference articles and book chapters. Two journals 

namely International Journal of Industrial Ergonomics and Applied Ergonomics 

together account for 35% of total citations in journals. Table 2.1 provides the source 

and number of citations from each source. The literature review provides enough 

information regarding existing problem to identify gap in the existing work and 

provides advancement in solving the problem and minimizing the gap so that the 

relevance of the present work can be emphasized. 
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Table 2.1 Summary of publications referred 
 

Name of Journals Citation 

International Journal of Industrial Ergonomics 24 

Applied Ergonomics 15 

Journal of Occupational and Environmental Medicine 1 

The Ergonomics Open Journal 1 

International Journal of Industrial Engineering Computations 1 

Expert System with Applications 3 

Applied Soft Computing 1 

Mathematical and Computer Modeling 1 

Journal of Human Ecology 1 

International Journal of Services and Operation Management 1 

Journal of Convergence Information Technology 1 

Computers and Industrial Engineering 1 

Materials and Design 1 

Journal of Biomechanics 4 

Journal of Engineering 1 

Computer Methods in Biomechanics and Biomedical Engineering 1 

International Journal of Solids and Structures 1 

Cellular Polymers 1 

Journal of Rehabilitation Research and Development   3 

Journal of Electromyography and Kinesiology 1 

International Journals of Simulation Modeling 1 

Journal of Biomechanical Engineering 3 

Archives of Physical Medicine and Rehabilitation 1 

Computers in Industry 2 

Journal of Mechanical Design 1 

Journal of Operation Management 1 

Human Factors and Ergonomics in Manufacturing and Service 
Industries 

3 

Ergonomics 2 

Journal of the Chinese Institute of Industrial Engineers 1 

Computer Standards and Interfaces 1 

Scandinavian Journal of Work, Environment and Health 1 

International Review of Social Sciences and Humanities 1 

Journal of Electronic Commerce Research 1 

The Journal of Visualization and Computer Animation 1 

Conferences 6 

Books 1 

Total 91 

 

The referred literature is broadly classified into four categories such as (1) 

Ergonomic consideration improving user satisfaction, (2) Biomechanical analysis in 

ergonomic design, (3) Ergonomic consideration in product selection and (4) Layout 

design for improving work environment as illustrated. Each classification refers work 

system design issue with ergonomic consideration and associated with specific 

problem. Figure 2.1illustrates percentage of papers surveyed under each 

classification category. The next sections provide a brief discussion on these issues. 
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Figure 2.1 Percentage of papers under each classification category 
 

 

2.2 Ergonomic consideration for improving user satisfaction 

User satisfaction generally depends on perceived image/impression, functionality 

and physical comfort during user-product interaction. To relate user satisfaction with 

product’s design features, various research studies focus on embedding affective 

human factors into product design. Usually, mismatch between product and user 

anthropometric data can lead to an uncomfortable and awkward body posture making 

adverse impact on working condition. Keeping in view with user comfort, attempts 

have been made to embed customers’ views in product design through interviews 

and well-structured questionnaire survey in order to design the product to 

accommodate anthropometric variability. Reitenbach et al. (2009) have proposed an 

office chair design to support the postures of Chinese female office workers in a 

comfortable way by means of interviews, questionnaire survey and focus group 

discussions. Focusing on the comfort level of user and usability of office chair, the 

study conducts a comparative analysis on Hong Kong office workers and Chinese 

factory workers. Mokdad and Ansari (2009) have conducted a survey on Bahraini 

school students and suggested variability in design of furniture for them by comparing 

the anthropometric dimensions of boys and girls (6-12 years).Goonetilleke and 

Feizhou (2001) have proposed integration of subjective and objective measurement 

to evaluate the useful seat depth for a target population. Objective evaluation 

revealed that a seat depth of 31-33 cm is adequate for South China region population 

whereas seat depth of 38-43cm is adequate for US population. Considering 

40%
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anthropometric data as a major parameters for product design, many countries have 

been making great efforts in establishing an anthropometric database for different 

population groups such as civilians, military personnel, students and workers (Bolstad 

et al., 2001; Wang et al., 2002).Thariq et al. (2010)have evaluated design parameters 

(dimensions) for fixed type side mounted desktop chair to improve comfort level by 

developing relation between the chair dimensions and the desk dimensions with 

anthropometric dimension of university students of Sri Lanka. Musa (2011) has made 

a comparison between students of different age groups by their anthropometric 

dimensions and concluded that the design of furniture for 12-year students does not 

match with that of 17-year students. The analysis emphasized in selecting different 

design criteria for different age groups so that there is less chance of mismatch 

between school furniture and students’ anthropometric dimension. Jindo and 

Hirasago (1997) have described the style and design specification of passenger car 

interiors by subjective evaluation and proposed empirical relationship using multiple 

regression method. Gauvali and Boudolos (2006) have utilized theoretical and 

practical ergonomic principles to provide a relation between furniture dimensions and 

anthropometric measures for choosing unique furniture dimension for unique 

anthropometric measurement. Castellucci (2010) has made a comparison of various 

furniture sizes of different schools based on anthropometric data of Chilean students 

in Valparaiso region. It is found that mismatch exists between furniture dimension 

(seat height and seat to desk height) and students’ anthropometry. Jung (2005) has 

designed a new structure with minimum controls, cost and maximum flexibility of a 

prototype of adjustable table and chair. The prototype design is validated considering 

students’ physical dimensions through subjective trials and the dimensions provided 

by International Standards data. Lin and Kang (2000) present an anthropometric 

database for designing high school and primary school desks and chairs keeping in 

view with subjective comfort level and anthropometric data. Ray et al. (1995) have 

presented a statistical analysis of anthropometric data of Indian school students to 

facilitate the furniture and toys that reduce biomechanical and visual problems. 

Several studies focus on various customer driven approaches into product 

development process in order to translate design features into user needs aimed at 

maximizing user satisfaction. Han et al. (2000) have emphasized the importance of 

objective performance and subjective impression during design phase to explain the 

usability of product and identified the relationship between design variables of 

electronics product and usability using multiple linear regression techniques. 

Menendez et al. (2011) have studied ergonomic aspects of a highly adjustable office 

chair and its impact on employees through statistical analysis. Shimizu and Jindo 
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(1995) have proposed a method for analyzing sensitivity evaluation using a fuzzy 

regression method which takes into account the non-linearity of human sensation in 

designing vehicle interiors. Khanam et al. (2006) have explored the type of furniture 

used by the graduate students in the classroom environment keeping in view with 

relationship between physical design, physical structure and biomechanics of human 

body. Chen and Ko (2008) have proposed a fuzzy quality function deployment (QFD) 

approach for designing new product that maximize the customer satisfaction. The 

proposed model is illustrated with a case study from semiconductor packing industry. 

Jindo et al. (1995) have focused on design support system for design of office chairs 

and conducted a subjective evaluation using semantic differential method in order to 

find out a relation between design elements and user perception. Nagamachi (1995) 

in Kansei engineering approach has proposed an elegant methodology for translating 

customer requirements expressed in subjective manner into objective design 

attributes using statistical method. Solomani and Zhong sheng (2006) have prioritized 

the design characteristics using QFD. 

Vergara and Page (2000) have studied the relation between lumbar and pelvic 

posture with the backrest of a chair through extensive experimentation. Park et al. 

(2000) have proposed new design of a chair to reduce muscle fatigue and discomfort 

as compared to conventional computer chair. Vos et al. (2006) have investigated 

experimentally the impact of postural and chair design on seat pan interface 

pressure. It is concluded that the chair design has greater impact on seat pan 

interface pressure than postural change. Ellegast et al. (2012) have evaluated the 

effect of task performed during sitting on a chair on human muscle. Groenesteijn et 

al. (2009) have investigated the influence of chair parameters on comfort and seat 

interface pressure when prolonged work is being done using office chair. Lili et al. 

(2010) have provided guidelines on design of office chair using ergonomics to 

improve the comfort level of the users.  

In order to quantify vague nature of expression on comfort by the users, several 

studies have used fuzzy models to build the relationship between design 

characteristics and user requirements. Dursun Kaya et al. (2003) and Kwong et al. 

(2009) have adopted adaptive neuro-fuzzy inference system (ANFIS) to develop 

relationship between user satisfaction and design parameters of school chair and 

desk. The design parameters are established through six anthropometric dimensions 

of boys and girls. Wang (2011) has developed an approach based on rough set 

theory, ANFIS and Kansei engineering to convert customers’ preferences into 

product form elements. The investigation has considered some adjectives to describe 

the consumers’ psychological feeling on a product. Park and Han (2004) have used a 
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fuzzy rule-based approach to build the relationship between design variables of 

products and user satisfaction. Three different chair dimensions such as 

luxuriousness, balance and attractiveness with a number of continuous and 

discontinuous variables are considered to build the model. To verify the model 

performance, traditional regression model is compared with proposed fuzzy model. 

Jiang et al. (2012) have attempted to model the relationship between user 

satisfaction and design attributes of products using swarm optimization in conjunction 

with ANFIS. In order to find the effectiveness of the proposed approach, modeling 

results are compared with fuzzy regression and genetic algorithm based ANFIS 

approach. Chan et al. (2011) have used genetic programming (GP) based QFD to 

develop relationship between engineering characteristics and customer requirement 

for a digital camera. The method is compared with linear regression and fuzzy 

regression approach. 

 

2.3 Bio-mechanical analysis in ergonomic design  

Human psychological conditions (comfort or discomfort) are always associated 

with body’s biomechanical and physiological perspective. Feelings of discomfort and 

uneasiness are associated with tiredness and pain whereas comfort is associated 

with relaxation (Helander and Zhang, 1997).Biomechanical problems caused by the 

product due to lack of capabilities to perform the tasks need to be identified to 

prescribe preventive measures in injury-prone situations. As muscle fatigue leads to 

cumulative trauma disorder (CTDS), it is important to quantify fatigue and identify 

maximum muscle load that a human body can tolerate (Chaffin et al., 1999). Buckle 

and Devereux (2002) have defined musculoskeletal disorder (MSD) in terms of 

injuries at muscles, joints, ligaments and cartilage caused due to repetitive task. 

Factors such as awkward posture, prolonged contact stress, forceful exertions, 

vibration and environmental conditions cause MSD. With time, it converts from mild 

symptoms to severe chronic conditions. Visual discomfort and musculoskeletal 

discomfort in neck and shoulders are most common occupational health concerns for 

people who work with computers continuously for a prolonged period of time 

(Berggvist and Knave, 1994; Hunting et al., 1981). 

Ma et al. (2008) have proposed a seat-buttock model to find out the contact 

pressure at seat-buttock interface and stress at bony prominence. Gru-jicis et al. 

(2009) have examined stress distribution over the seated-human/seat interface 

through a realistic model of car seat. Siefert et al. (2008) have proposed a human 

model interacted with car seat to estimate seat pressure distribution using finite 
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element analysis. Fok and Chou (2009) have proposed a human finger model in 

order to predict the internal loading pattern at tendons and joint surfaces during 

dynamic motion under different flexion-extension joint angles. Tang et al. (2010) have 

considered a two-dimensional human buttock-thigh model to investigate the effect of 

varying vertical vibration frequencies on seat-interface contact pressure during sitting 

on three different seat cushions using a finite element model. 

Considering pressure distribution as an objective measure of discomfort, various 

researchers have proposed relations between chair seat pressure distribution and 

comfort level of the user. Verver et al. (2004) have proposed a finite element (FE) 

model of the human buttocks to predict the pressure distribution between human and 

seating surface with detailed and realistic geometric description. A parametric study 

indicates that a pressure distribution at human-seat interface strongly depends on 

variations in human flesh and seat cushion properties. Wang and Lakes (2002) have 

analytically investigated the contact problems between two homogeneous and 

isotropic soft bodies to simulate the contact of human buttocks and seat cushions 

allowing Poisson’s ratio of seat cushion to be negative. Analysis by both the Hertz 

model and a finite thickness 3D elasticity model shows that cushions with negative 

Poisson’s ratio can reduce the contact pressure and prevent pressure-induced 

discomfort and pressure sores/ulcers in sick people. Lowe and Lakes (2000) have 

reached a similar conclusion using a FE model. Moes and Horvath (2002) have 

proposed a FE approach for shape optimization of seats considering interactive force 

between seat and body. Hobson (1992) has studied the effect of seated posture and 

body orientation on pressure distribution and shear force acting at body seat interface 

within and between two study groups made up of subjects with spinal cord injuries 

and nondisabled subjects. Silver-Thorn and Childress (2003) have investigated the 

effect of parameter variations on the prosthetic interface stresses for persons with 

trans-tibial amputation using FE approach. 

As most of the manual work is still done with hand tools, badly designed tools can 

induce upper extremity musculoskeletal disorder like hand-arm vibration syndrome 

and carpel tunnel syndrome (Punnett and wegman, 2004).Harih and Dolsak (2013) 

have developed hand tool handles which can avoid deformation in soft tissue due to 

higher contact area and anatomical shape of handles. Vignais and Marin (2014) have 

proposed a biomechanical analysis of upper arm extremity during cylinder grasping 

based on inverse kinematics. In an effort to reduce the incidence of decubitus ulcers 

among wheelchair users, Todd and Thacker (1994) have emphasized on cushion 

design to minimize the pressure at the buttock-cushion interface using finite element 

analysis. Linder-Ganz et al. (2006) have used FE approach for estimating tissue 
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deformation over critical time durations causing pressure injuries using muscle tissue 

of albino (Sprague–Dawley) rats exposed to pressures. Ceelen et al. (2008) have 

conducted experiments using magnetic resonance (MR) and T2-weighted MR 

imaging to measure the tissue deformation and damage. A finite element model is 

proposed to calculate the strain in damage experiment. A correlation analysis 

revealed a linear correlation between experimental and numerical strains. Gefan et 

al. (2008) have indicated through specialized experiments on planar tissues that 

there is 95% likelihood that cells could tolerate engineering strains below 65% for one 

hour whereas the cells could endure strains below 40% over a 285 min trial period. 

The decrease in endurance of the cells to compressive strains occurs between one-

three hour post-loadings. In another paper, Gefan et al. (2005) have proved that 

stiffening occurs in-vivo in muscular tissue which undergoes widespread cell death 

produced by applied bone compression. The local cell-death related stiffening affects 

the distribution of mechanical stresses and deformations in adjacent (not yet 

damaged) muscular tissue promoting deep pressure sore. Linder-Ganz and Gefen 

(2009) have pointed out that the efficacy of wheelchair cushions should be evaluated 

not only based on their performance in redistributing interface pressures but also 

according to their effects on stress concentrations in deep tissues, particularly 

muscles to minimize deep tissue injury. Ragan et al. (2002) have analyzed the effect 

of cushion thickness on subcutaneous pressure during seating using finite element 

modeling approach. Fathallah (2010) have focused on MSD in agricultural workers 

considering psychosocial and socio-cultural aspect of the work environment. 

 

2.4 Ergonomic consideration in product selection 

In order to compete in the market-place, functions are being added to the product 

based on assumption that more functions would enhance the product performance. 

However, addition of more functions to a product usually results in complex user-

product interface making it difficult to use. Hence, it is vital to prioritize the important 

features possessing the ability to fulfill use requirements during product design stage 

(Besharati et al., 2006). Han et al. (2004), Chuang et al. (2001) and Han (2003) have 

investigated the relationship between user satisfaction and design features of 

different mobile phones. Park and Kim (1998) have used modified House of Quality 

(HOQ) for selecting a set of design requirements of indoor building in order to 

improve the quality of air. Park et al. (2011) have proposed a combination of three 

approaches such as general usability principle, user interface component and 

guideline properties to choose a suitable mobile. Lin et al. (2008) have proposed a 
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framework of analytic hierarchy process (AHP) and technique for order preference by 

similarity to ideal solution (TOPSIS) to choose a suitable personal data assistant. Lin 

et al. (2007) have presented a grey relational analysis approach for determining the 

best combination of features in a mobile phone. Recently, Hua et al. (2014) have 

proposed a hybrid multi-criteria decision making (MCDM) model like VIKOR 

(Visekriterijums kokompromisno rangiranje) to select a smart phone. Isıklar and 

Buyukozkan (2007) have proposed a MCDM approach to evaluate mobile phone in 

accordance to user preferences. Liu et al. (2012) have focused on customer utility 

generation, an optimum design selection approach based on fuzzy set decision-

making to identify design attributes from customer preferences using an analytical 

hierarchy process. A multi-attribute analysis is developed to investigate the 

preference of each attribute from the expert’s group decision. Conjoint analysis is 

used in the product customization to find the effectiveness of model. Mokhlis and 

Yaakop (2012) have focused on importance of different choice criteria (innovative 

features, image, price, personal recommendation, durability, portable aspects, media 

influence and post-sales service) in mobile phone selection among Malaysian 

consumers. Guan and Lin (2001) have proposed a neural network approach to select 

mobile phones. 

 

2.5 Layout design for improving work environment 

Layout design in a workplace enables the operator to use their hands and legs 

safely and properly preventing unhealthy and awkward movements of body parts. 

There may be possibility to apply maximum effort or may require extended reach to 

achieve a specific task. Layout design needs understanding of human posture as well 

as movements during work activities with maximum capabilities to obtain a safe, 

healthy and comfortable work environment. Cimino et al. (2009) have proposed a 

methodology based on 3-D simulation to evaluate the impact of workstation 

parameters on multiple performance measures (force level to lift the objects, stress 

level related to working posture, energy expenditure and process time). Hu et al. 

(2010) have presented an experimental analysis on drilling task to estimate three 

objectives performances such as maximum elbow angle extension, maximum muscle 

force capacity reduction and task completion time and two subjective feelings like 

discomfort in body parts and perceived exertion.  

Kumar et al. (2009) have explored a tractor control layout (steering, foot clutch, 

foot break and foot accelerators in the workspace envelop) for Indian people 

considering anthropometric dimensions. Margarities and Marmaras (2006) have 
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suggested ergonomic requirements for individual work stations in an office 

environment considering office equipment, environmental conditions, work 

performance and usability related issues.  

With the help of a CAD model, Rajan et al. (1999) have developed an integrated 

virtual-reality based environment to analyze the assembly of product and jig design in 

order to meet the required tolerance in aircraft industry. Dewangan et al. (2010) have 

developed a statistical approach considering factor analysis to design agricultural 

hand tools and equipment for workers in the hilly region of North East India. 

Although layout design facilitates the task of the operator by positioning the 

equipments/tools around, human posture prediction is also one of the most important 

issues to determine a healthy work environment. Lindegard et al. (2005) have 

developed a relation between VDU-user’s comfort rating and observed working 

posture Comfort rating can be obtained through a questionnaire and the working 

posture can be observed by an ergonomist. In order to simulate human posture (set 

of joint angles) from a defined work zone (position of human limbs), researchers have 

attempted to solve inverse kinematic solution through algebraic (Zhao and Badler, 

1994), iterative (Jung et al., 1995) and analytical method (Hingtgen et al., 2004). 

Wang and Verriest (1998 a) have proposed a geometric method for four degree of 

freedom arm model to predict reach posture. They have investigated motion analysis 

based on analytical inverse kinematic solution which is task oriented. Wang (1999) 

have determined motion prediction for two activities such as serving water from a jar 

and picking up a bottle.  

 

2.6 Conclusions 

Critical analysis of articles published in last few years in the broad spectrum of 

ergonomics reveal that systematic framework is needed in design confirming to ease 

human in human and products/machines/equipment/components interaction. The 

interactions are sometimes expressed in both subjective and objective manner. The 

objective characteristics relates to usability aspects whereas subjective 

characteristics aims at enhancing satisfaction of the users. A broad framework is vital 

to improve the comfort level of the users and subsequently productivity of the 

organization. In addition to design framework, simulation of user-product model using 

analytical and numerical analysis helps the designer to predict comfort level in terms 

of stresses and fatigue being developed on human soft tissues/muscles during the 

interaction process. Although empirical models and artificial intelligence techniques 

are capable of developing relationship between important design variables and user 
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comfort level, simulation models referring to biomechanical analysis can be employed 

to understand the physical underpinnings of interactions. The design analysis leads 

to develop a user-friendly product. However, selection of best product out of a large 

number of alternatives available in a specific situation needs managerial decision 

making approach. Literature suggests that a large number of articles focus in               

this direction. However, human judgement in a uncertain situation needs                 

careful application of various approaches available in the literature. During the use          

of a product, estimation of comfort work zone is an important issue as evident            

from the literature.  
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3.1 Introduction 

Ergonomically designed industrial or office work environment consider both 

psychological and physical needs of employees during design phase for increasing 

the job satisfaction and prevent the injuries in workplace (Braun et al., 1996). Since 

the employees spend most of the time at the workplace, ergonomically designed 

furniture plays an important role in decreasing fatigue and injury level even if an 

employee continues prolonged work. This is vital for enhancing employees’ efficiency 

and productivity in workspace. Nowadays, employees in office environment not only 

engaged in studying and signing files but also work in computers, present business 

plans, and discuss with colleagues. As a result, the employees sustain muscular 

disorder and spine stiffness problems due to constant pressure at back, shoulder and 

neck muscles (Kingma and Dieen, 2009). Groenesteijn et al. (2012) have evaluated 

effect of office tasks on the posture and movements in different office environments. 

In order to prevent muscular disorder, movement of muscle and spine should be 

increased during sitting posture (Andreas et al., 2007). Since human-product 

interaction focuses on subjective satisfaction as well as on objective performance, 

studies have been carried out in the past to establish the relationship between user 

sensitivities and design elements of office chair (Jindo et al., 1995). In the process of 

enhancing customer satisfaction, more functions are added to the product to ensure 

satisfaction in terms of convenience and ease of use, the structure of the product 

becomes complex one. Therefore, human-product interaction is viewed as vital 

element for product design. Usability of the product is concerned with the process of 

use (i.e., how the user complete the tasks using system functions) measured in terms 

of efficiency, effectiveness and satisfaction (Han et al., 2000). Kansei engineering 

approach proposes an elegant methodology for translating customer requirements of 

a product expressed in subjective manner into objective design attributes using 

statistical method (Nagamachi, 1995; Horiguchi and Suetomi, 1995). In many 

situations, multiple regression techniques are used to establish the relationship 

between usability and design elements (Han et al., 2000). Optimization techniques 

have also been used to find out best values of design parameters that maximize 

customer satisfaction (Hong et al., 2002). In many cases, a functional model is 

needed to describe the relationship between subjective customer requirement and 

design elements. 

Since it is difficult to manage subjective requirements in the design process, 

present work proposes an integrated approach to deal with subjective and objective 

design criteria for product development with ergonomic consideration. The procedure 
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is demonstrated with the help of design of office chair. Customers’ expectation from 

the product is extracted through a questionnaire survey. Data reduction technique like 

factor analysis has been applied to survey data to eliminate redundancy. The 

reduced customer requirements are translated into design characteristics using 

quality function deployment (QFD). The relationship between design characteristics 

and customer satisfaction is developed through adaptive neuro-fuzzy inference 

system (ANFIS). Finally, a large number of design scenarios are generated using 

design of experiment (DOE) approach and best design parameters are chosen that 

maximizes customer satisfaction. A prototype model is developed using the optimal 

parameters and compared with Bureau of Indian Standards (BIS). The verification 

result suggests that the proposed model parameters are within the prescribed ranges 

of BIS. 

 

3.2 Methodology 

The complete methodology for designing an office chair with ergonomic 

considerations can be explained with the help of following six steps. A well-structured 

questionnaire is prepared to extract data on customer attributes, design 

characteristics and anthropometric dimensions of users through cross-sectional 

survey study. Factor analysis is carried out on customer attributes to reduce the 

number of variables removing redundancy. QFD is employed to transform the 

customer requirements into important design attributes. Since it is difficult to establish 

relationship between design requirements and customer satisfaction due to 

involvement of subjectivity, a black-box type predictive approach such as ANFIS is 

used to map design requirements with customer satisfaction. Once ANFIS model is 

well trained, good number of scenarios are generated using DOE approach and the 

best design is recommended which maximizes the customer satisfaction value. 

Finally, the design is verified by comparing with standard data or developing 

prototypes. To design a suitable product (office chair) ergonomically, followings steps 

are considered. 

 

3.2.1 Data collection 

 Data collection consists of two different types of survey in the eastern parts of 

India. First, complaints regarding the product (office chair) were collected through 

formal and informal interviews. In second survey, the respondents need to answer 

the questionnaire consisting of a set of variables, anthropometric sitting and standing 

dimensions and a set of design attributes. The study was conducted on different age 

group (from 21 to 60 years) of officers and managers working in government and 
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non-government agencies and they used the chairs for a prolonged period every day. 

Data are mainly collected from staff of various offices like technical institutions 

(private and public), banks (private and public), hospitals (private and public) and 

government organization. A cross-sectional survey with random sampling procedure 

was conducted. One hundred twenty five responses are obtained. 60% data are 

collected from banks, 20% data are collected from technical institutions, and rest of 

the data is collected from hospitals and other sources.  

Table 3.1 Customer requirements 

Sl. 
No 

Items  

1 The chair is made for active sitting 1 2 3 4 5 

2 The chair is retro looking (designating the style of an earlier 
time) 

1 2 3 4 5 

3 The chair gives pleasant sensation 1 2 3 4 5 

4 The chair is immortal (lasting forever) 1 2 3 4 5 

5 The chair is chic (stylish and fashionable) 1 2 3 4 5 

6 The chair is gaudy one (excessive showy) 1 2 3 4 5 

7 The chair is flashy one (too bright intended to get attraction) 1 2 3 4 5 

8 The chair is made for active sitting 1 2 3 4 5 

9 The chair is very feminine (womanliness) 1 2 3 4 5 

10 The chair is very casual one (convenient) 1 2 3 4 5 

11 The chair is cute one 1 2 3 4 5 

12 The chair is enjoyable 1 2 3 4 5 

13 The chair is so cozy (friendly,     comfortable) 1 2 3 4 5 

14 The chair is untroubled (free from disturbance) 1 2 3 4 5 

15 The chair is so cheap 1 2 3 4 5 

16 The chair is voluminous 1 2 3 4 5 

17 The chair is soft enough 1 2 3 4 5 

18 The chair is sturdy enough (strong, solid and thick, unlikely 
to break) 

1 2 3 4 5 

19 The chair is well balanced 1 2 3 4 5 

20 The chair is masculine (pertaining to the characteristic of a 
man) 

1 2 3 4 5 

21 The chair is so cool 1 2 3 4 5 

22 The chair is most luxurious one 1 2 3 4 5 

23 The chair is stylish one 1 2 3 4 5 

24 The chair design is contemporary (old but modern feelings) 1 2 3 4 5 

25 The chair has a personal recognition 1 2 3 4 5 

26 The chair is elegant for you (attractive appearance and 
behaviour) 

1 2 3 4 5 

27 The chair is having distinct features 1 2 3 4 5 

28 The chair is simple 1 2 3 4 5 

29 The surface of chair is plain 1 2 3 4 5 

30 The chair is comfortable 1 2 3 4 5 

31 It is an ordinary chair 1 2 3 4 5 

32 The chair is flexible 1 2 3 4 5 

33 The chair provides headrest 1 2 3 4 5 

34 The chair provides spinal curvature support 1 2 3 4 5 
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35 The chair provides footrest 1 2 3 4 5 

36 Your leg is comfortable with the chair 1 2 3 4 5 

37 The chair is having backrest contour 1 2 3 4 5 

38 The armrest is large enough to support your arm 1 2 3 4 5 

39 The chair  is  having  a  base with wheel 1 2 3 4 5 

40 The chair is having lower back support 1 2 3 4 5 

 
Table 3.2 Tangible design attributes 

Sl. 
No 

Backrest Seat pan Arm rest Whole body Others 

1 Tilt of Backrest(maximum 
angle of the backrest in 
relation to the seat pan) 

Length of 
seat pan 

Length of 
arm rest 

Ratio of seat pan 
and backrest 

Use of 
decoration 

2 Width of Backrest Width of seat 
pan 

Width of 
armrest 

Width-height ratio 
of whole body 

Use of 
pattern 

3 Height of Backrest Thickness of 
seat pan 

Height of 
armrest 

Height of whole 
body 

Use of 
cushion 

4 Thickness of Backrest Width and 
length ratio of 
seat pan 

Width-
height 
ratio of 
armrest 

Size of whole 
body 

Use of 
curved 
lines 

5 Width-Height ratio of 
Backrest 

Height 
adjustment of 
seat pan 

 Number of 
controls used 

Number of 
colors used 

 
Table 3.3 Intangible design attributes 

Sl. No Categorical design variables 

1 Shape of backrest 

2 Material of backrest 

3 Colour of backrest 

4 Shape of seat pan 

5 Material of seat pan 

6 Colour of seat pan 

7 wheels 

8 Low back support 

9 Headrest 

10 Shape of armrest 

11 Material of armrest 

12 Colour of armrest 

13 Shape of base 

 
Table 3.4 Anthropometric standing dimension (mm) 

Sl.  No Anthropometric dimension Average 

1 Stature(without shoes) 1643.8 

2 Eye height 1498.8 

3 Cervical height 1425.3 

4 Wrist height 810 

5 Elbow height 990 

6 Waist height 1064 

7 Ductylion height 640 

8 Ankle height 97 

9 Crotch height 876.5 

10 Gluteal furrow height 740 
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Table 3.5 Anthropometric sitting dimension (mm) 

Sl.  No Anthropometric dimension Average 

1 Sitting height 806.2 

2 Eye height 696.4 

3 Cervical height 606.6 

4 Upper lumbar height 276.2 

5 Elbow rest height 221 

6 Popliteal height 459.4 

7 Buttock height 455 

8 Buttock popliteal length 439 

9 body depth 190 

10 Shoulder breadth  446 

11 Hip breadth seated 361.5 

12 Popliteal depth 344.6 

 
Based on existing literature (Han, 2000; Jindo and Hirasago, 1995), informal 

discussion with office chair manufacturer and interview with users, a list of adjectives 

is used to represent customer’s requirements towards the product as shown in Table 

3.1. A total of forty different adjectives indicating customer requirements were 

identified. Thirteen different models of office chairs from standard manufacturers are 

displayed to the respondents to finalize the tangible and intangible design attributes 

of the office chair as listed in Table 3.2 and 3.3 respectively. In fact, the design of 

office chairs involves consideration of many tangible and intangible criteria for 

reducing fatigue to the users and improving user satisfaction. Ten standing and 

twelve sitting anthropometric dimensions of office employees were collected as 

shown in Table 3.4 and 3.5 respectively. The customer requirements and design 

criteria are suitable to the users having average anthropometric dimension shown in 

Tables 3.4 and 3.5. A respondent views the customer requirements taking into 

consideration of anthropometric dimensions. The respondent needs to answer in 

terms of Likert-type scale from 1 to 5 (1 for strongly disagree and 5 for strongly 

agree). 

 

3.2.2 Factor Analysis 

The responses obtained through the data collection were tested to examine the 

validity and reliability of variable to obtain a statically proven identification of customer 

requirements. The validity was tested through factor analysis method using principal 

component method following varimax rotation to extract the important dimensions for 

model analysis which removes the redundancy and duplication from a set of 

correlated variables (Noruzy et al., 2011; Hair et al., 2010). 
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3.2.3 Quality function deployment (QFD) 

The reduced customer requirements identified in step 2 must be expressed in 

terms of design requirements to provide guidelines for design and manufacturing 

engineers while manufacturing the product. QFD plays an important role in this 

respect for transforming customer requirements into design characteristics. The main 

objective of QFD is to transform customers’ voice (requirement) into design 

parameters. House of quality (HOQ) starts with customer requirements, i.e., variables 

defined by the customers. These variables are the inputs to the HOQ. Customer 

ratings for customer needs are determined by left correlation matrix using equation 

3.1. The individual rating of each design requirement is obtained from the central 

matrix by using equation 3.2. 
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Where, i jB ,denotes the relationship between customer needs, Zi, is the initial 

customer rating, ijA , denote the relative importance of 
thi characteristic with respect to 

thj  customer’s needs in the relationship matrix, Xj represents the  importance of 
thj

customer needs and n , is the number of customer needs. The refined rating of each 

design requirement in the top matrix can be calculated in a similar way as in case of 

left matrix. The final ratings of design requirement are normalized by dividing each 

rating with the maximum ratings. 

 

3.2.4 Adaptive Neuro Fuzzy Inference System (ANFIS): 

Once the design characteristics have been identified in step 3, it is important to 

relate the design attributes with customer satisfaction so that best design can be 

reached. Since it is not possible to mathematically define the relationship among 

design attributes and customer satisfaction due to inherent imprecise nature of 

variables, ANFIS can be used to map non-linear relationship for prediction of result 

(Jang, 1991, 1993). ANFIS is a combination of two different methodology, i.e., neural 

network and fuzzy logic. A neural network can learn from both the data and feedback 

without understanding the pattern involved in the data. But, the fuzzy logic models 

are easy to comprehend the pattern because they use linguistic terms in the form of 

IF-THEN rules. A neural network with their learning capabilities can be used to learn 

the fuzzy decision rules; thus creating a hybrid intelligent system. The fuzzy system 
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provides expert knowledge to be used by the neural network. A fuzzy inference 

system consists of three components. These are: 

(a)  rule base, contains a selection of fuzzy rules.  

(b)  data base, defines the membership functions used in the rules 

(c)  reasoning mechanism, to carry out the inference procedure on the rules and 

given facts. 

This combination merges the advantages of fuzzy system and a neural network. 

Jang (1991) proposed a combination of a neural network and fuzzy logic popularly 

known as called an ANFIS. ANFIS is a fuzzy inference system implemented in the 

framework of neural networks. The combination of both artificial neural network and 

fuzzy inference system thus improves system performance without interference of 

operators. A typical adaptive network shown in Figure 3.1 is a network structure 

consisting of a number of nodes connected through directional links. Each node is 

characterized by a node function with fixed or adjustable parameters. Learning or 

training phase of a neural network is a process to determine parameter values to 

sufficiently fit the training data. The basic learning rule method is the back 

propagation method, which seeks to minimize some error, usually sum of squared 

differences between network’s outputs and desired outputs. Generally, the model 

performance is checked by the means of distinct test data, and relatively good fitting 

is expected in the testing phase. Considering a first order (Takagi and Sugeno, 1985; 

Sugeno and Kang, 1988) fuzzy interface system, a fuzzy model consists of two rules. 

Rule 1 : If x is A1 and y is B1 then  
1111 ryqxpf   

Rule 2 : If x is A2 and y is B2 then 
2222 ryqxpf   

If f1 and f2 are constants instead of linear equations, we have zero order TSK fuzzy-

model. Node functions in the same layer are of the same function family as described 

below. It is to be noted that Oi
j denotes the output of the ithnode in layer j. 

Layer 1:  Each node in this layer generates a membership grade of a linguistic label. 

For instance, the node function of the ith node might be 
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where, x is the input to the node 1 and Ai is the linguistic label (small, large) 

associated with this node; and {ai, bi, ci } is the parameter set that changes the 

shapes of the membership function. Parameters in this layer are referred to as the 

“Premise Parameters”. 
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Layer 2: Each node in this layer calculates the firing strength of each rule via 

multiplication
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Layer 3:  The ith node of this layer calculates the ratio of the ith rule’s firing strength to 

the sum of all rule’s firing strengths: 
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  For convenience outputs of this layer will be called normalized firing 

strengths. 

Layer 4:   Every node i in this layer is a squared node with a node function 
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Where, is the output of layer 3, and is the parameter set. Parameters in this layer 

will be referred as “Consequent Parameters “. 

Layer 5:  The single circle node computes the overall output as the summation of all 

incoming signals i.e. 
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Thus, an adaptive network is presented in Figure 3.1 is functionally equivalent to a 

fuzzy interface system. The basic learning rule of ANFIS is the back propagation 

gradient decent which calculates error signals (defined as the derivative of the 

squared error with respect to each nodes output) recursively from the output layer 

backward to the input nodes. This learning rule is exactly the same as the beck-

propagation learning rule used in the common feed-forward neural networks by Jang 

(1993). From ANFIS architecture (Figure 3.1), it is observed that the given values of 

the of premise parameters, the overall output can be expressed as a linear 

combination of the consequent parameters. Based on this observation, a hybrid 

learning rule is employed here, which combines a gradient decent and the least 

squares method to find a feasible of antecedent and consequent parameters. The 

details of the hybrid rule are given by Jang (1993) where it is also claimed to be 

significantly faster than the classical back propagation method. From the ANFIS 

architecture shown in Figure 3.1, we observe that when the values of the premise 

parameters are fixed and the overall output can be expressed as a linear 

combination. The output f can be rewritten as: 
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which is linear in the consequent parameters p1, q1, r1, p2, q2, r2. Therefore, the hybrid 

learning algorithm developed can be applied directly. More specifically, in the forward 

pass of the hybrid learning algorithm, node outputs go forward until layer 4 and the 

consequent parameters are identified by the least squares method. In the backward 

pass, the error signal propagates backward and the premise parameters are updated 

by gradient descent. As mentioned the consequent parameters thus identified are 

optimal under the condition that the premise parameters are fixed. Accordingly, the 

hybrid approach converges much faster since it reduces the dimension of the search 

space of the original back-propagation method. For this network created fixes the 

membership functions and adapt only the consequent part; then ANFIS can be 

viewed as a functional-linked network where the enhanced representation, which take 

advantage of human knowledge and express more insight. By fine-tuning the 

membership functions, we actually make this enhanced representation. 

 

 

Figure 3.1 A typical architecture of ANFIS structure 

 The data collected on office chairs through QFD model analysis are normalized. 

The selected normalized design elements are considered as inputs for ANFIS system 

and the overall customer satisfaction for chair is considered as output. Total 

experimental data set is divided into training and testing data set. A total of 80 

datasets are used in ANFIS model. Sixty datasets are considered as training and 

twenty datasets are considered under testing. During training, a five layered ANFIS 

structure is constructed with one input, three hidden and one output. The Gaussian 

type of membership function (gaussmf) is used for input and linear type function is 

used for output. The number of correct outputs is noted till the error is minimized. 
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3.2.5 Design of Experiment: 

 DOE is a cost effective statistical method used to optimize the response of a 

process under the influence of multiple factors. The information on factor and 

interaction effects on response can be estimated with less number of experimental 

runs. In fact, it involves multiple factors during experimentation to find out optimum 

treatments for best performance. The factors with different levels (high and low) are 

the input parameters which affect the output performance. The best combination is 

selected out of a number of combinations of different levels of different factors. DOE 

extensively uses full factorial and fractional factorial experiments to optimize process 

parameters. Since fractional factorial experiments requires less number of 

experiments compared to full factorial design, Taguchi proposes simplification and 

standardization of fractional factorial designs to estimate main effect at different 

levels of factors and optimize the parameters (Wu and Hamada, 2000). 

 

3.3 Results and discussions 

 One hundred twenty five data are collected from respondents through cross-

sectional survey on 40 items as shown in Table 3.1 to consolidate the customer 

requirement on office chair. The survey data are subjected to factor analysis to 

eliminate redundancy of data. Factor analysis has been carried out SPSS 14.0. 

Twenty two customer requirements were loaded on three factors showing factor 

loading score more than 0.7.The items exhibiting factor loading score of 0.7 

(threshold value) are not considered further. Total variance explained by three factors 

was found to be 78.5% which is acceptable value for principal component with 

varimax rotated factor loading procedure. Ten items were loaded under factor 1, five 

items under factor 2 and seven items under factor 3 (Table 3.6). Factors extracted 

from analysis are named as comfortness (factor 1), balance (factor 2) and 

luxuriousness (Factor 3). Cronbach’s alpha (α) has been used to assess the internal 

consistency of the scale. The value of alpha for all dimensions is 0.702, which is just 

the acceptable value of 0.70 for demonstrating internal consistency of the established 

scale. The values of α obtained are 0.878, 0.933, and 0.939 for factors 1, 2, and 3 

respectively. The Kaiser-Meyer-Olkin (KMO > 0.6) and Bartlett’s test of sphericity (p < 

0.05) statistics are used to test empirically whether the data were likely to factor well. 

The value of KMO was found to be 0.665; hence, it can be concluded that the matrix 

did not suffer from multi collinearity or singularity. The result of Bartlett’s test of 

sphericity shows that it is highly significant (sig. = 0.000) which indicates that the 

factor analysis is correct and suitable for testing multidimensionality. 
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Table 3.6 Factor Analysis for all items (0.702) 

          Dimensions             Variables  Factor Loadings 

    Comfortness(0.878) 1.Active sitting 
2.Cute 
3.Enjoyable 
4.Friendly 
5.Untroubled and free 
 from disturbance 
6.Masculine 
7.Having plain surface 
8.Comfortable 
9.Flexible 
10.Having lower  
back support 

0.729 
0.833 
0.850 
0.820 
0.719 
 
0.719 
0.825 
0.882 
0.816 
0.778 

       Balance(0.933) 1.Lasting forever 
2.Soft enough 
3.Sturdy enough 
4.Well Balanced 
5.Having Footrest 

0.885 
0.865 
0.875 
0.843 
0.782 

   Luxuriousness(0.939) 1.Excess showy 
2.Too bright, intended 
to get attraction 
3.Refind one 
4.Luxurious one 
5.Stylish one 
6.Having personal 
recognition 
7.Elegant for you 

0.715 
0.753 
 
0.720 
0.775 
0.742 
0.744 
0.808 

 

 The customer requirements are classified into three factors such as comfortness, 

balance and luxuriousness. The items under each factor are expressed by the 

customers in a vague sense. To provide guidelines for the manufacturing, the vague 

items under each factor needs to be converted into design attributes. QFD being a 

suitable method of converting vague customer requirements into tangible design 

attributes, it is used for establishing the relationship among customer requirement 

and design attributes through experts’ opinion and brainstorming sessions. Three 

different QFD models named as QFD model 1 (comfortness), QFD model 2 (balance) 

and QFD model 3 (luxuriousness) are used for correlating customer requirement with 

design attributes. Ten, five and seven items (customer requirements) are considered 

under QFD models 1, 2 and 3 respectively (Table 3.6). The design attributes 

extracted from the experts for three models are shown in Table 3.7. The design 

attributes considered are nine, seven and nine for models 1, 2, and 3 respectively. 
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Table 3.7 Design attributes for three different QFD models 

QFD model 1(comfortness) QFD model 2(balance) QFD model3(luxuriousness) 

Tilt of backrest Width-height ratio of 
backrest 

Seat adjustment range 

Number of controls Base material Use of pattern 

Width of backrest Size of base wheel Use of curved line 

Depth of seat pan Width-height ratio of seat 
pan 

Use of cushion 

Height of armrest from the 
floor 

Width-height ratio of whole 
body 

Use of colour 

Overall height Thickness of seat pan Shape of backrest 

Overall width Width-height ratio of armrest Use of decoration 

Low back support  Shape of seat pan 

Width of seat pan  Backrest height 

 

 Initial rating of customer requirements for each model is derived using a 1 to 10 

scale as shown for the case of model 1, 2, 3 in Figure 3.2, 3.3 and 3.4. The customer 

ratings for each customer requirement were obtained from left correlation matrix 

using equation (1) and initial design requirements is obtained from central matrix 

using equation (2). The correlation of customer requirements (left matrix), design 

requirements (top matrix) and customer requirements with design attributes (central 

matrix) are extracted from the experts using scale of 0.8, 0.6, 0.4 and 0.2 for 

designating relationship ‘strong’, ‘moderate’, ‘weak’, and ‘very weak’ respectively. 

Finally, initial design requirements and with correlation values shown in top matrix are 

used in equation (1) to obtain final design ratings. The normalized refined rating of 

design attributes are obtained by dividing each rating with the maximum available 

design requirement rating. In Figure 3.2, the QFD model 1 (comfortness) is shown. 

From the normalized refined rating for design attributes, ‘Tilt of backrest’ has the most 

prioritized followed by ‘Number of controls’ (Table 3.8). Finally, four design attributes 

such as tilt of back rest, number of controls, overall width and overall height are 

considered out of nine design attributes having normalized refined rating value of 

0.85 (threshold). Similarly, other two models have been developed. For QFD model 2 

(balance), four design attributes such as width-height ratio of backrest, width-height 

ratio of seat pan, width-height ratio of whole body, and width-height ratio of 

armrest(Table 3.9) exhibiting normalized refined rating value of 0.80 (threshold) and 

above have been considered. Similarly, five design attributes such as seat 

adjustment range, use of pattern, use of cushion, use of decoration, and backrest 

height showing (Table 3.10) normalized refined rating value of 0.90 (threshold) and 

above have been considered for QFD model 3 (luxuriousness). 
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Table 3.8 Ranking of Design attributes for model-1(comfortness) 
 

No Design requirement Initial Design 
requirement 
Rating 

Revised 
Design 
requirement 
Rating 

Normalized 
refined rating 

Rank 

1 Tilt of Back rest 5.994 8.642 1.000 1 

2 Overall height 4.778 7.153 0.856 4 

3 Overall Width 5.136 8.045 0.931 3 

4 Height of  armrest 4.510 7.400 0.828 5 

5 Low back support 3.484 5.425 0.628 9 

6 Length of seat pan 3.479 6.149 0.711 8 

7 Size of base wheel 3.824 6.244 0.722 7 

8 Number of controls 5.659 8.341 0.965 2 

9 Height of backrest 4.005 6.946 0.804 6 

 
Table 3.9 Ranking of Design attributes for model-2(balance) 

 

No QFD model 2(balance) Initial 
Design 
requirement 
Rating 

Revised 
Design 
requirement 
Rating 

Normalized 
refined 
rating 

Rank 

1 Width-height ratio of backrest 6.624 10.450 0.962 3 

2 Base material 3.662 5.830 0.537 7 

3 Width-height ratio of seat pan 7.486 10.861 1.000 1 

4 Thickness of seat pan 3.642 7.433 0.684 6 

5 Width-height ratio of whole 
body 

6.840 10.515 0.968 2 

6 Width-height ratio of armrest 6.440 10.040 0.924 4 

7 Size of base wheel  4.488 7.957 0.733 5 

 
Table 3.10 Ranking of Design attributes for model-3(luxuriousness) 

 

No Design requirement Initial Design 
requirement 
Rating 

Revised 
Design 
requirement 
Rating 

Normalized 
refined 
rating 

Rank 

1 Seat adjustment range 6.516 10.016 0.975 3 

2 Use of pattern 6.909 10.258 0.998 2 

3 Use of cushion 5.383 8.255 0.803 5 

4 Use of curved line 4.396 7.284 0.709 6 

5 Use of colour 4.480 7.127 0.694 7 

6 Shape of backrest 3.966 6.318 0.615 9 

7 Use of decoration 6.356 9.971 0.970 4 

8 Backrest height 
 

6.816 10.276 1.000 1 

9 Shape of seat pan 4.482 6.696 0.652 8 
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Figure 3.2 QFD model for comfortness 
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Figure 3.3 QFD model for balance 
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Figure 3.4 QFD model for luxuriousness 

 
 One hundred twenty five survey data collected from the respondents over 13 

types of chairs regarding satisfaction level of the users are used in the ANFIS model 

to develop the relationship between design attributes and customer satisfaction. 

Three ANFIS models have been developed to relate QFD model 1 (comfortness), 

QFD model 2 (balance) and QFD model 3 (luxuriousness). The inputs to each ANFIS 

model is the design attributes related to the type of QFD model obtained over 13 

types of chairs during survey (basically these are chair dimensions or tangible design 

attributes shown in Table 3.2). The output of each model is nothing but the sum of the 

customer requirements. For example, ANFIS model for QFD model 1 (comfortness) 
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treats four design attributes such as tilt of back rest, number of controls, overall width 

and overall height as inputs and sum of response value of ten customer requirements 

such as active sitting, cute, enjoyable, friendly, untroubled and free from disturbance, 

masculine, having plain surface, comfortable, flexible, and having lower back support 

as outputs. In each model, 94 data (75%) are used for training and 31 data (25%) 

used for testing. The data in each model is normalized by diving corresponding 

maximum value. The ANFIS architecture for three QFD models: (a) comfortness, (b) 

balance, (c) luxuriousness is shown in Figure 3.5. Input membership function is 

described with Gaussian membership function. Hybrid learning algorithm is used and 

ANFIS model is run till the error is minimized. Error is minimized in three epochs 

during training. Then, testing of data is carried out. The pattern of variation of actual 

and predicted response is shown for training and testing dataset for QFD model 1 

(comfortness). Figures 3.6 and 3.7 shows that actual (blue dot) and predicted (red 

dot) values for three models which are uniformly distributed respectively for training 

and testing data.  

 

(a) comfortness 
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(b) balance 

 

 

 

(c) luxuriousness 

Figure 3.5 ANFIS model structure: (a) comfortness, (b) balance, (c) luxuriousness 

 



39 
 

 

(a) 

 

(b) 
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(c) 

Figure 3.6 Distribution of predicted and actual response training: (a) comfortness, (b) 

balance, (c) luxuriousness 

 

(a) comfortness 
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(b) balance 

 

 

(c)luxuriousness 

Figure 3.7 Distribution of predicted and actual response testing: (a) luxuriousness, (b) 

balance, (c) luxuriousness 
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The surface plot shown in Figure 3.8 indicates that the total landscape of decision 

space is covered by the ANFIS model for QFD model 1 (comfortness).For the model 

1(comfortness), Input 1 indicates ‘tilt of backrest’ and input 2 indicates ‘number of 

controls’. Similarly for model 2 (balance), input 1 is ‘width-height ratio of seat pan’ and 

input 2 is ‘width-height ratio of whole body’ and for model 3(luxuriousness), input 1 is 

‘backrest height’ and input 2 is ‘use of pattern’. 

 

 

 

(a) comfortness 

 

(b) balance 
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(c) luxuriousness 

Figure 3.8 Surface plots: (a) comfortness (b) balance(c) luxuriousness 

 

 The residual analysis is carried out for the predicted values of the model by 

calculating the difference of actual and predicted values for training and testing data. 

The residual plots for three factors are depicted in Figure 3.9. It is observed that the 

residuals for three factors are distributed uniformly along the centre line. The absolute 

percentage relative error in training phase is 0.00039 and in testing phase 0.122164. 

The residuals are distributed normally when tested with Anderson-Darling test 

statistic. Similar procedure is adopted to predict the response for QFD model 2 

(balance) and 3 (luxuriousness). The absolute percentage relative error for QFD 

model 2 (balance) is 0.025632 (training) and 0.063265 (testing). Similarly, absolute 

percentage relative error for QFD model 3 (luxuriousness) is 0.068057 (training) and 

0.124575 (testing).Therefore, it can be stated that prediction of customer satisfaction 

can be made with ANFIS accurately. 

 

(a) comfortness 
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(b) balance 

 

(c) luxuriousness 

Figure 3.9 Residual plots: (a) comfortness (b) balance(c) luxuriousness 

 The Anderson-Darling test (AD Test) is also carried out in order to compare the fit 

of an observed cumulative distribution function to an expected cumulative distribution 

function. Smaller the AD value, greater is the evidence that the data fit to the normal 

distribution. The test results are shown in Figure 3.10 for respective factors 

(comfortness, balance, luxuriousness) standardized residue. The following figures 

suggest that all the data are normally distributed for the data obtained from ANFIS 

model. Similarly, the normal probability plot of residual for testing data of three 

models is shown in Figure. Since p-value of the normality plots is found to be above 

0.05, it signifies that residue follows normal distribution.  
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(a) comfortness 

 

(b) balance 
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(c) luxuriousness 

Figure 3.10 Normal probability curve of residual at 95% confidence 

level:(a)comfortness(b)balance(c)luxuriousness 

Table 3.11 Levels of various designs attributes (parameters) 

Symbol control 
parameters 

Actual levels Coded levels 

  Low Medium High Maximum Low Medium High 

A Use of pattern No  Yes  0.000  1.000 

B Use of cushion No  Yes  0.000  1.000 

C Use of decoration No  Yes  0.000  1.000 

D Height 
adjustment(mm) 

89.7 101.6 112.3 132.6 0.677 0.767 0.847 

E Overall height of 
backrest(mm) 

370.5 426.0 528.0 584 0.635 0.730 0.921 

F Tilt of backrest(in 
degree) 

18 19 26 32 0.563 0.594 0.813 

G Number of 
controls 

No One Two Two 0.000 0.500 1.000 

H Total height(mm) 990 1,110 1,245 1,245 0.795 0.892 1.000 

I Total width(mm) 535 620 838 838 0.638 0.740 1.000 

J Width-height ratio 
of backrest 

0.712 0.833 0.935 1,066 0.668 0.782 0.877 

K Width-Length 
ratio of seat pan 

0.941 0.992 1.024 1,128 0.834 0.879 0.907 

L Width-height ratio 
of whole body 

0.200 0.486 0.638 0.854 0.234 0.569 0.747 

M Width-height ratio 
of armrest 

0.228 0.319 0.55 0.55 0.415 0.580 1.000 
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Table 3.12 Experimental design using orthogonal array of l36  103 32   

 

 Thirteen important design attributes meeting all the three requirements such as 

comfortness, balance and luxuriousness of the customers (nine design attributes for 

comfortness, four design attributes from balance and five design attributes for 

luxuriousness) are treated as various factors for the design of office chair. The 

relationship of these attributes with customer satisfaction is established through 

ANFIS model. In order to search the best design, a large number of scenarios were 

generated using DOE approach. The criteria for best design parameter are based on 

‘larger-the-better’ type, i.e., maximizing customer satisfaction level. The design 

attributes (parameters) are use of pattern, use of cushion, use of decoration, number 

of control used, range of height adjustment, backrest height, tilt of backrest, overall 

height, overall width, width-height ratio of backrest, width-length ratio of seat pan, 

width-height ratio of whole body and width-height ratio of armrest. Out of 13 

parameters (design attributes), three parameters, each having two levels (low and 

high) and ten parameters, each having three levels (low, medium, high) are 

considered. This requires a total of (23 * 310) = 472,392 experiments. But Taguchi’s 

mixed level experiments can produce same information using 36 experiments. Each 

parametric level is divided by the maximum value of design attribute (parameter) to 

set the levels. Because of frequency of occurrence maximum parametric values is 

comparatively less as observed in the survey. Therefore, frequently occurring 
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parametric values are used to set the levels as shown in Table 3.9. Three ANFIS 

models (for QFD models 1, 2 and 3) were run considering respective design 

attributes to obtain the response (customer satisfaction). The customer satisfaction 

values obtained from three models are summed to provide the response for DOE 

scenario generation assuming equal weightage for customer requirement factors 

such as comfortness, balance and luxuriousness. The experimental layout along with 

the responses is shown in Table 3.10. The main effect plot shown in Figure 3.11 finds 

the optimal setting of design attributes as A1 B1 C0 D0.767 E0.635 F0.594 G0.5 H0.892 I0.638 

J0.877 K0.879 L0.569 M0.415. 

 

Figure 3.11 Effect of control design parameters on response 

 The values of optimal design attributes of office chair are shown in Table 3.11. 

These values are compared with office chair dimensions of BIS. However, BIS does 

not provide values of all the attributes considered in this work. Therefore, a few 

dimensions (design attributes) are selected to verify the design. It can be observed 

from the Table 11 that four design attributes such as height range adjustment (D), 

total height of backrest (E), whole body height (H), and whole body width (I) are 

within the limits. However, height range adjustment is slightly (1 to 2 millimeters) 

above the BIS limit. Four BIS elements such as width of the seat, depth of the seat, 

height of seat pan from the floor (higher range), and height of seat pan from the floor 

(lower range) are considered for comparing the design attribute values so obtained 

(Table 3.12). Width of the seat is obtained by deducting sum of armrest width and 
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clearance from the overall seat width (arm rest width is obtained as 30 mm from the 

survey data and arm rest width both sides is 60 mm whereas a clearance of 3.5 mm 

is assumed). The width of seat is calculated as 471.5 mm which is more than the BIS 

specification of 450 mm. Depth of the seat is obtained by dividing width of seat by 

optimal width-depth ratio of seat pan. The calculated depth of seat is 475 mm which 

is above the minimum BIS limit. Height of seat pan from the floor (higher range) is 

calculated by subtracting total height of backrest from whole body height. The value 

is 452 mm which is below the maximum limit of 500 specified by BIS. Height of seat 

pan from the floor (lower range) is calculated by subtracting height range adjustment 

from height of seat pan from the floor (higher range). The value is calculated as 350 

mm which is below the minimum BIS specification of 400 mm. 

Table 3.13 Comparison of optimum parameter with Bureau of Indian Standard (BIS) 

Sl. No Design attributes Optimal values 
of design 
attributes 

BIS 
specifications(mm) 

A Use of pattern Yes  

B Use of cushion Yes  

C Use of decoration No  

D Height range adjustment(mm) 101.6 100 

E Total height of backrest(in 
degree) 

538.0 250(minimum) 

F Tilt of backrest 190  

G Number of controls 1  

H Whole body height(mm) 990.0 785.0(minimum) 

I Whole body width(mm) 535.0 535.0(minimum) 

J Width-height ratio of backrest 0.9347  

K Width-height ratio of seat pan 0.992  

L Width-height ratio of whole body 0.486  

M Width-height ratio of arm rest 0.228  

 By considering these dimensions, a prototype of office chair is made using Auto 

CAD Version 10 as shown in Figure 3.8 and3.9. 
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Table 3.14 Dimensions of prototype (excluding known control parameter) for 

comparison 

BIS elements Calculation from 
design attributes 

Optimal 
values(mm) 

BIS 
specifications(in 
mm) 

Width of the seat  Whole width of seat 
including armrest-
(width of armrest 
clearance) 

535.0-
(60+3.5)=471.5 

450(minimum) 

Depth of seat Width  of seatwidth 
depth ratio of seat pan 

471.5
0.992=475.0 

400(minimum) 

Height of seat pan 
from the floor(higher 
range) 

Whole body height-
Total height of 
backrest 

0.992-
538.0=452.0 

500(maximum) 

Height of seat pan 
from the floor(lower 
range) 

Height of seat pan 
from the floor(higher 
range)-height range 
adjustment 

452.0-
101.6=350.4 

400(minimum) 
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Figure 3.12 (a) Orthographic Projection (All dimensions are in mm) 
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Figure 3.12 (b) Prototype of office chair with optimized design parameter 

(All dimensions are in mm) 

3.4 Conclusions 

 Ergonomically designed industrial or office work environment considering both 

psychological and physical needs of employees helps to reduce fatigue when the 

employees continue prolonged work. Use of ergonomically designed equipment not 

only increases job satisfaction but also injury level can be prevented at the work 

place; hence enhance employees’ efficiency and productivity. Since the design 

includes both subjective and objective criteria, it is not easy to design a product that 

improves user satisfaction. Therefore, an integrated approach using statistical and 

artificial intelligence techniques has been proposed in this article. The approach is 

described with the help of an office chair design. The user/customer requirements 

have been extracted through a cross-sectional survey. Factor analysis has been 



53 
 

carried out on data to eliminate redundancy. The customer requirements are mapped 

to design attributes using QFD. A functional relationship has been developed among 

design attributes with customer satisfaction using adaptive neuro-fuzzy system. 

Finally, a Taguchi robust design approach is adopted to generate various scenario of 

office chairs having varied design attributes. Finally, the design that maximizes 

customer satisfaction has been chosen. The optimal design so obtained is compared 

with design specifications laid down in BIS. The proposed design satisfies most of 

comparable design elements of BIS. The variations are attributed to localization of 

sample data. The approach is quite general and can be adopted in any design. 
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4.1 Introduction 

Pressure ulcer is the localized area of tissue degeneration in sub-dermal tissue as 

a result of prolonged continuous mechanical load (National Pressure Ulcer Advisory 

Panel, 1989). External mechanical load (weight of the body) always induces a 

mechanical deformation in soft tissue (Chow and Odell, 1978). Excess pressure for a 

long time restricts the blood vessels resulting in the formation of tissue ischemia and 

ultimately tissue necrosis (Crenshaw and Vistnes, 1987). When a larger pressure is 

applied to soft tissue, it decreases the time of causing cell death and the tissue 

damage starts due to impaired capillary profusion giving rise to hypoxia (Kosiak et al., 

1958). It has been indicated that the pressure sore mostly occurs at the lower part of 

body i.e. 43% at the sacrum and 5% at the ischial tuberocity (bony part). To lower the 

stress distribution, either the intensity of load or sitting time duration is to be reduced 

but at the same time the work at an office environment must not be compromised 

(Peterson,1976). Therefore, design modification of the product (chair seat cushion) or 

choosing the product with suitable properties should be emphasized to achieve this 

goal. Sitting comfort for a long time can decrease the rate of cell death. Seat cushion 

properties can be useful in reducing the deformation of tissues. Polyurethane foam 

with different properties can be used to investigate stress distribution at ischial 

tuberocity. Recently, number of studies have reported the effect of foam density, 

foam compressibility, strain rate and energy absorption of polymeric foam under 

uniaxial loading. Polyurethane foam under polymeric foam category is mostly used 

for seat cushion because it can undergo large compressive deformation and not only 

absorb but also dissipate considerable amount of energy under loading in 

comparison to solid specimen of equal volume (Avelle, 2001). Polyurethane foam 

exhibits viscoelastic behavior which depends upon the time scale of loading and 

temperature of material (Gibson, 2012; Lakes, 1999; Briody et al., 2012; Mills, 2007; 

Schrodt et al., 2005). 

As the tissue lying below the bony part exhibits maximum stress under loading 

and undergoes tissue deformation, the present study focuses on the stress 

distribution at the tissue near bony prominence (ischial tuberocity) through numerical 

analysis by changing cushion properties. In this context, the mechanical condition of 

seat is considered by changing seat material properties and parameters to study 

change in stress distribution at ischial tuberocity. A rigid seat-buttock model is also 

considered for validation purpose. As the change in cushion properties are alone not 

sufficient for reduction in stress distribution at ischial tuberocity, further analysis with 

different thickness of cushion and loading angles has also been carried out. The 

objective of the present work is to develop a simple two dimensional finite element 
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buttock-seat model with various material parameters, thicknesses of seat with 

different loading angle to predict stress at ischial tuberocity in order to provide 

guidelines to reduce occurrence of pressure ulcer. 

4.2 Model descriptions 

A volunteer weighing fifty five kilogram is contacted to obtain image of the buttock 

using magnetic resonance imaging (MRI) technique. The volunteer is scanned 

against a weight bearing posture sitting on MR compatible plastic chair with erect 

back rest and buttock support area 400 mm wide. Markers on the chairs are used to 

maintain the buttock position for the cushion by aligning the midline of body with a 

frontal marker on chair (Shabshin et al., 2010). Data on buttock of seated human 

including fats, muscles and ischial tuberocity is extracted from a double donut 0.5T 

open MR system for developing a 2D model representing buttock (Linder-Ganz et 

al.,2007; Linder-Ganz et al.,2008). Using the data from MRI, the position of ischial 

tuberocity, muscle and fats are traced and the boundary is located by maintaining the 

distance between ischial tuberocity and skin (Tang et al., 2010). A dimensional 

buttock model is made for exporting to simulation software. A non linear FE analysis 

using ANSYS 10.0 is developed to obtain the maximum stress distribution at ischial 

tuberocity due to the interaction of different seat cushion and buttock. Two different 

models comprising of human soft tissue-rigid seat (model I) and human soft tissue-

soft polyurethane foam cushion (model II) are considered. The model includes a soft 

human tissue, ischial tuberocity (a bony part) and the seat as shown in Figure 4.1. 

Buttock-seat model is assumed to be two dimensional axisymmetric finite element 

model with an upright posture. Ischial tuberocity is assumed to be a circle of radius 

ten millimeters. The seat cushion has been modeled by a rectangular flat surface 

having thickness of 80 mm and area of 450×450 mm2 (following standard office chair 

width of Bureau of Indian Standards specification). In order to analyze the structure, 

the model is divided into small sub-domains (elements) and the equations are 

discretized and solved within each of the sub-domains (elements).  
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Figure 4.1 Model of seat cushion and buttock (soft tissue)  

As seen from Figure 4.2, x-y plane is considered to present the meshed 

axisymmetric model of buttock as well as seat with boundary conditions. Bottom of 

the seat is fixed from all directions. Contact interface is determined to make an 

interaction between seat and buttock. Load is applied due to the weight of the upper 

part of the body. The load carried by the soft tissue is 22kg which is the half of the 

upper part of an average weighed human being (Tang et al., 2010). The components 

of both soft tissue and seat model are meshed with four-node first order quadrilateral 

finite elements. The simulation is conducted over a period of three hours to study the 

effect of time of loading on soft tissue. Displacement for all nodes along the 

axisymmetric line is fixed. The seat-buttock model is meshed with 1194 four-node 

quadrilateral solid finite elements. Plane 182 element type is used for simulation of 

both seat and buttock. An element is defined by four nodes and each node carries 

two degrees of freedom (translation along x and y directions). To model the 

interaction between human buttock and seat cushion, contact element CONTA 171 is 

used. A total of 100 steps are considered for each simulation run.  
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Figure 4.2 Finite element model of seat cushion and buttock (soft tissue)  

 

The stress distribution throughout meshed model is studied by varying the 

material properties of seat cushion, angle of loading (sitting posture) and cushion 

thickness. The angle of loading ranges from 00 to 300. The thickness of cushion 

ranges from 60 mm to 80 mm. 

4.2.1 Material properties for seat 

Since polyurethane foam falls under elastomers category, hyper-elasticity is used 

to describe the material properties. Odgen hyper-elastic model based on stretch ratio 

is considered to describe the current state of deformation in soft cushion (Odgen, 

1997).The governing equation used for the analysis is a strain energy function given 

as follows. 
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where N is the order of fitting, μi, αiand βi are the temperature dependent material 

parameters to be determined, elJ and thJ  are the elastic volumetric deformation and 

thermal volumetric deformation respectively, 321
ˆ,ˆ,ˆ   are the principal stretch ratios 

which provide a measure of deformation. 

All the polyurethane foams exhibit some visco-elastic properties with deformation 

depending upon the load, time, and temperature. Stress relaxation is an important 

factor for analysis as the deformation exists even after the removal of the stress. 

Visco-elastic behavior occurs in the process of prolonged sitting and the behavior is 

defined in terms of time based Prony series model. The governing equation is given 

as: 
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where i (relaxation time),Gi(relaxation modulus) and G0(instantaneous shear 

modulus) are the material dependent parameters determined by relaxation test and N 

is the order of Prony series.  

Three different types of seat materials are considered for analysis. For a rigid seat 

(model I), low carbon steel with elastic modulus of 210 GPa and Poisson’s ratio of 0.3 

is considered. The density (ρ) of the rigid seat is considered as 100kg/m3. Model II 

allows the simulation of polyurethane foam cushion with two different material 

stiffness and density. Due to the rigidity of the bony part (ischial tuberocity), it allows 

only linear elastic material properties and having stiffness of E=80GPa and density, 

 =1600kg/m3. The model II undergoes large elastic deformation with approximately 

70% deformation for both the polyurethane material. One of the polyurethane foam 

considered as SAF 6060 having modulus of elasticity of E=200 kPa and density =60 

kg/m3. Material parameters for SAF 6060 cushion is highlighted in Table 4.1. A strain 

energy function of second order under uniaxial compression test was implemented to 

find out the material properties of soft foam (Schrodt,2005).The test indicates that 

material properties of the foam depend upon the temperature and humidity. Similarly, 

by choosing the order of Prony series and performing a curve fitting from the 

experimental results of relaxation test, the visco-elastic parameters can be estimated 

(Gru-jicic, 2009). Table 4.2 shows visco-elastic material parameters under time based 

Prony series model of second order. 

Table 4.1  Material properties for Ogden hyper-foam (SAF 6060) for soft cushion 

(E=200 kPa,  = 60 kg/m3)  

)MPa(1  1  1  )MPa(2  2  2  

0.481 × 10−2 0.198 × 102 0.145 × 10−1 0.36 × 10−2 0.198 × 102 0.65 × 10−2 

 

Table 4.2 Coefficients of Prony series parameters for cushion exhibiting 

viscoelasticity 

N )i(G  (sec)  

1       0.3003      0.010014 

2       0.1997        0.1002 

 

The second polyurethane foam considered in the present analysis also belongs to 

polyurethane foam category but having elastic modulus of E=20 kPa and density of 

 = 40 kg/m3. The data of material properties is obtained from uniaxial compression 
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test (Briody, 2011). The Ogden hyper-foam model of second order is shown in Table 

4.3. A set of Prony series material parameters of third order from relaxation test is 

defined in Table 4.4 (Briody, 2011). 

Table 4.3 Material properties for Ogden hyper-foam for soft cushion (E=20 kPa,  = 

40 kg/m3)  

)MPa(1  1  1  )MPa(2  2  2  

0.44185 110  21.4556 0 .37050 510  -6.8900 0 

 

Table 4.4 Coefficients of Prony series parameters for cushion exhibiting 

viscoelasticity 

N )i(G  (sec)  

1 0.0973 0.30639 

2 0.1740 11.21 

3 0.1290 1011 

 

4.2.2 Material properties for human soft tissue 

The buttock part of the human soft tissue is modeled with visco-hyper-elastic 

model. This hyper-elastic behavior of soft tissue is represented by polynomial strain 

energy potential function (U) based on strain invariant which shows the nonlinear, 

incompressible, isotropic, hyper-elastic polynomial behavior.  

      i2el
N

1i i

j

2

i

1

N

1ji

ij 1J
D

1
3I3ICU  



                                         (4.3)                                                  

where U is the strain energy potential, elJ is the elastic volumetric deformation, I1̅ and 

I2̅ are the principal invariants which are independent of coordinate system used to 

measure the strain. N is the order of fitting and ijC  and iD are the material 

parameters. ijC  describes the shear behaviour of the material and iD  denotes the 

compressibility. In this work, second order hyper-elastic parameters of tissue are 

considered as shown in Table 4.5 (Tang et al., 2010). The density of soft tissue is 

considered as 1000 kg/m3 (Pennestrì, 2005). 

Table 4.5 Material parameters for hyperelastic material to define the soft human 

tissue 

C10 C01 C20 C11 C02 D1 D2 

0.08556 -0.05841   0.039 -0.02319 0.00851 3.65273      0 

 

Viscoelastic parameter for soft tissue are considered as shear modulus, G1=0.5, Bulk 

modulus, K1=0.5 and relaxation time, 1 =0.8 secs which are taken from the work of 

Tang and Tsui,2006. 
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4.3 Results and discussions 

Model I as shown in Figure 4.1 is simulated for three hours using ANSYS 10.0 

and the von Mises stress distribution at ischial tuberocity after each half an hour 

interval is noticed to quantify the stresses for erect sitting posture. Figure 4.3 shows 

the variation of stress at ischial tuberocity for a rigid seat (Model I) at each half an 

hour for different seat thickness. Figure 4.4 shows the red patches depicting high 

stress region which is most probably the damage area for seat thickness of 80 mm. 

Both the Figures 4.3 and 4.4 indicate that the von Mises stress at ischial tuberocity 

goes on increasing with sitting time. However, the stress becomes constant after an 

interval of one and a half hours for seat thickness of 60 and 70 mm and two hours for 

seat thickness of 80 mm (Figure 3). It is evident from Figure 4.4 that the area of high 

stress region increases with time. Experimental studies report that tissue stiffening 

occurs after one hour of continuous loading of 32kPa (Linder-Ganz et al., 2006). The 

stress developed in human tissue within one hour of sitting is sufficient for causing 

cell death. After one hour of sitting, tissues have been stiffened and hence stresses 

on the tissue may not increase substantially. However, the intensity of load for 

stipulated time duration significantly influences cell damage. For example, a pressure 

of 11.5kPa for 360 minute of loading can cause the same damage as pressure of 

35kPa for 15 minutes (Linder-Ganz et al., 2007). Figure 4.4(a) shows a maximum von 

Mises stress of 37193Pa at ischial tuberocity after sitting for half an hour. The result 

obtained through the present work is comparable with experimental value (26.7 kPa) 

obtained in Verver et al. (2004).  

 

Figure 4.3 Variation of von Mises stress with increase in time for different thickness 

of seat 
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Figure 4.4 (a) Finite element model for rigid seat with magnification of muscle region 

subjected to high stress  

 

  

Figure 4.4 (b) Stress distribution at ischial tuberocity for erect immobilized continuous 

sitting on rigid seat of thickness of 80mm for 1800 sec (von Mises 

stress=37193Pa High stress area=11.20 mm2) 
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Figure 4.4 (c) Stress distribution at ischial tuberocity for erect immobilized continuous 

sitting on rigid seat of thickness of 80 mm for 5400 sec (von Mises 

stress=37997 Pa High stress area=17.02 mm2) 

 

Figure 4.4 (d) Stress distribution at ischial tuberocity for erect immobilized continuous 

sitting for rigid seat of thickness of 80 mm for 9000 sec (von Mises 

stress=38442 Pa High stress area=23.36 mm2) 

 

4.3.1 Model validation 

The model is validated using rigid seat as described above. However, sitting on 

rigid seat is not a practical condition in an office environment. Soft cushion is used to 

provide a comfortable working environment. Hence, further analysis is carried out on 

soft cushion considering Model II with different cushion properties and cushion 
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thickness. Experimental studies show that mild tissue stiffness generally occurs just 

after ninety minutes of continuous loading on a rigid seat due to tissue dehydration 

(Gefen et al., 2005). Therefore, a soft cushion should be considered in order to avoid 

the stiffening of soft muscle tissues in a short interval of time. As the visco-elastic 

materials have the capacity to absorb the energy on impact of load (Ferguson-Pell, 

1990), soft cushion made of polyurethane foam with two different set of visco-hyper-

elastic cushion properties is considered here to estimate the effect of cushion 

properties in predicting stress distribution in muscle tissue. The Young’s modulli and 

density for these two cushion type are E1=200kPa, E2= 20kPa, and
3

1 m/kg60

3

2 m/kg40 having cushion thickness of 80 mm. 

As shown in Figure 4.5 (a and b), for both polyurethane cushion properties of 

model II, comparatively less stress is developed at ischial tuberocity than that of rigid 

seat (Figure 4.3). The pattern of increase in stress is same as that of rigid seat for 

one and a half an hours. After one and half hour, the stress go on  increasing at 

slower rate up to three hours instead of remaining constant as in case of rigid seat. 

This phenomenon indicates that the tissue muscles take comparatively longer time to 

become stiffened when interact with soft cushion than that of rigid seat. 
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(b) 

Figure 4.5 Variation of von Mises stress over time for soft cushion of (a) elastic 

modulus=200kPa and density= 60kg/m3 (b) elastic modulus=20kPa and 

density=40kg/m3 for erect immobilized continuous sitting 

Figure 4.6 shows the morphological changes at ischial tuberocity due to von 

Mises stress in soft muscle tissues (for model II) for different continuous sitting time 

interval. As depicted from the Figure 4.6, the size of damage area increases 

continuously with time. 

 

Figure 4.6 (a) Finite element model for soft seat cushion (E=200kPa and  =60kg/m3) 

with magnification of muscle region subjected to high stress 
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Figure 4.6 (b) Stress distribution at ischial tuberocity for erect immobilized continuous 

sitting on soft cushion (E=200kPa and  =60kg/m3) for 1800 sec (von 

Mises stress=22002Pa High stress area=1.24 mm2) 

 

 Figure 4.6 (c) Stress distribution at ischial tuberocity for erect immobilized continuous 

sitting on soft cushion (E=200kPa and  =60kg/m3) for 5400 sec (von 

Mises stress=23153Pa High stress area=11.49 mm2) 
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Figure 4.6 (d) Stress distribution at ischial tuberocity for erect immobilized continuous 

sitting on soft cushion (E=200kPa and  =60kg/m3) for 9000 sec (von 

Mises stress=23400Pa High stress area=24.23 mm2) 

Figure 4.7 shows a von Mises stress distribution in soft tissue muscles for a 

cushion having elastic modulus of 20kPa and density of 40 kg/m3. Comparing Figures 

4.6 and 4.7, it can be observed that the maximum stress affected area is less in case 

of soft cushion of elastic modulus of 20kPa and density 40 kg/m3 than that for the 

cushion having elastic modulus of 200kPa and density 60kg/m3. Model II (E=20kPa 

and density40kg/m3) predicts a maximum stress of 20324Pa at ischial tuberocity after 

a continuous sitting duration of half an hour and the value approaches to the 

maximum experimental value (nearly 19500Pa) (Verver et al., 2004). But the trend of 

increasing stress at ischial tuberocity is nearly similar for both the cushion. 

Comparing Figures 4.4, 4.6 and 4.7, it can be deduced that the size of the affected 

zone as well as the stress is much larger for a rigid seat (Model I) as compared to 

that of soft cushion (Model II). It is evident from Figures 4.6 and 4.7 that the cushion 

having elastic modulus 20kPa and density 40kg/m3 shows less stress distribution at 

ischial tuberocity in comparison to cushion having elastic modulus 200kPa and 

density 60kg/m3. Therefore, further analysis carried out on soft cushion having elastic 

modulus 20kPa and density 40kg/m3. 
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Figure 4.7 (a) Finite element model for soft seat cushion (E=20kPa and  =40kg/m3) 

with    magnification of muscle region subjected to high stress 

 

 

Figure 4.7 (b) Stress distribution at Ischial tuberocity for erect immobilized continuous 

sitting on soft cushion (E=20kPa and  =40kg/m3) for 1800 sec (von 

Mises stress=20324Pa High stress area=0.17mm2) 
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Figure 4.7 (c) Stress distribution at Ischial tuberocity for erect immobilized continuous 

sitting on soft cushion (E=20kPa and  =40kg/m3) for 5400 sec (von 

Mises stress=21953Pa High stress area=6.77 mm2) 

 

Figure 4.7 (d) Stress distribution at Ischial tuberocity for erect immobilized continuous 

sitting on soft cushion (E=20kPa and  =40kg/m3) for 9000 sec (von 

Mises stress=22914Pa High stress area=9.32 mm2) 

The above discussions demonstrate dependence of von Mises stress at ischial 

tuberocity on time of erect immobilized continuous sitting for different properties of 

seats. Frequent immobilized continuous sitting makes the muscle tissues intolerable 

for further compression even for soft polyurethane foam. Also in an erect immobilized 

sitting, a transverse load is acted along the direction of fibers of muscles tissue 
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present below ischial tuberocity (Verver et al., 2005). Therefore, in order to make the 

stress relax or to reduce the direct load on fibers either a postural changes or a 

leisure time should be preferred after certain duration of sitting. Different posture 

showing sidewise leaning are illustrated in Figure 4.8. Lifting from seat or a leisure 

time after certain duration of continuous sitting make the body relaxes somewhat but 

does not recover the muscle stiffness again back to starting zero level of relaxation. 

During vertical sitting, the longissimus and gluteus muscles are loaded by the sacrum 

and ischial tuberosities. Since the postural change causes change in position of the 

ischial tuberocity, the  longissimus and gluteus muscles are not subjected to that 

much vertical load as in case of neutral position. Only a fraction of total vertical load 

acts on ischial tuberocity and hence on the muscles just lies below it.  

 

 

Figure 4.8 Postures (a) neutral position (b) left wise leaning (c) right-wise leaning 

Postural change transfers the load to those regions of body other than on ischial 

tuberocity and relieves the muscles below ischial tuberocity by distributing the stress 

towards thighs and waist. The analysis for posture shown in Figure 4.8. It has been 

observed that stress drops from 37193Pa to 34500Pa with a change in tilting angle 

from 00 (erect sitting) to 300 while interacting with rigid seat for half an hour. The 

stress drops from 20324Pa to 14632Pa for soft cushion of elastic modulus of 20kPa 

with density 40kg/m3 for change in tilting angle from 00 (erect sitting) to 300. However, 

sitting continuously with same tilting angle (300) or posture from thirty minutes to 

three hours, the stress increases from 34500Pa to 35600Pa while interacting with 

rigid seat. Similarly, sitting continuously with same tilting angle (300) or posture from 

thirty minutes to three hours, the stress increases from 14632Pa to 16922Pa while 

interacting with soft cushion of elastic modulus 20kPa and density 40kg/m3. Stress 

distribution is shown in Figure 4.9. Figure 4.10 displays a maximum shear stress of 

8438Pa after thirty minutes of continuous sitting with 300 tilting posture and the shear 

stress increases gradually when the time increases.  

Load Load Load 

c b 
a 
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Figure 4.9 (a) Finite element model for immobilized continuous sitting with tilting 

angle of 300 for soft cushion with elastic modulus of 20kPa and density 

40kg/m3 

 
Figure 4.9 (b) Stress distributions at 
ischial tuberocity on immobilized 
continuous sitting with tilting angle of 300 
for soft cushion of elastic modulus of 
20kPa and density 40kg/m3 (von Mises 
stress=14632Pa Time=1800sec) 

 
Figure 4. 9 (c) Stress distributions at 
ischial tuberocity on immobilized 
continuous sitting with tilting angle of 300 
for soft cushion of elastic modulus of 
20kPa and density 40kg/m3 (von Mises 
stress=15069Pa  Time=3600sec) 

 
Figure 4.9 (d) Stress distributions at 
ischial tuberocity on immobilized 
continuous sitting with tilting angle of 300 
for soft cushion of elastic modulus of 
20kPa and density 40kg/m3 (von Mises 
stress=15975Pa 
Time=5400sec)  

 
Figure 4.9 (e) Stress distributions at 
ischial tuberocity on immobilized 
continuous sitting with tilting angle of 300 
for soft cushion of elastic modulus of 
20kPa and density 40kg/m3 (von Mises 
stress=16922Pa Time=7200sec) 
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Figure. 4.10 (a) Finite element model for immobilized continuous sitting with tilting 

angle of 300 for soft cushion with elastic modulus of 20kPa and density 

40kg/m3 

 
Figure 4.10 (b) Shear stress distribution at 
ischial tuberocity on immobilized 
continuous sitting with tilting angle of 300 
for soft cushion of elastic modulus 20kPa 
and density 40kg/m3 (Shear 
stress=8438Pa Time=1800sec) 
 

 
Figure 4.10 (c) Shear stress distribution at 
ischial tuberocity on immobilized 
continuous sitting with tilting angle of 300 
for soft cushion of elastic modulus 20kPa 
and density 40kg/m3 (Shear 
stress=8554Pa Time=3600sec) 

 
Figure 4.9 (f) Stress distributions at ischial 
tuberocity on immobilized continuous 
sitting with tilting angle of 300 for soft 
cushion of elastic modulus of 20kPa and 
density 40kg/m3 (von Mises 
stress=16395Pa  Time=9000sec) 
 

 
Figure 4.9 (g) Stress distributions at 
ischial tuberocity on immobilized 
continuous sitting with tilting angle of 300 
for soft cushion of elastic modulus of 
20kPa and density 40kg/m3 (von Mises 
stress=16922Pa Time=10800sec) 
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Figure 4.10 (d) Shear stress distribution at 
ischial tuberocity on immobilized 
continuous sitting with tilting angle of 300 
for soft cushion of elastic modulus 20kPa 
and density 40kg/m3 (Shear 
stress=8738Pa 
Time=5400sec) 
 

 
Figure 4.10 (e) Shear stress distribution 
at ischial tuberocity on immobilized 
continuous sitting with tilting angle of 300 
for soft cushion of elastic modulus 20kPa 
and density 40kg/m3 (Shear 
stress=8922Pa 
Time=7200sec) 

 
Figure 4.10 (f) Shear stress distribution at 
ischial tuberocity on immobilized 
continuous sitting with tilting angle of 300 
for soft cushion of elastic modulus 20kPa 
and density 40kg/m3 (Shear 
stress=9183Pa Time=9000sec) 

 

 
Figure 4.10 (g) Shear stress distribution 
at ischial tuberocity on immobilized 
continuous sitting with tilting angle of 300 
for soft cushion of elastic modulus 20kPa 
and density 40kg/m3 (Shear 
stress=9183Pa Time=10800sec) 

 
 

The pattern of change of von Mises stress and shear stress at ischial tuberocity is 

analyzed for change in cushion thickness as shown in Figures 4.11a and 4.11b 

respectively. It has been found that increase of cushion thickness is effective in 

reducing von Mises stress for any time duration of continuous sitting. However, shear 

stress increases with thickness of cushion. The thickness of cushion is increased up 

to eighty mill meters since the cushion thickness beyond this value is ineffective in 

decreasing the stress beneath the ischial tuberocity (Chow and Odell., 1978).  
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(a) 

 

 (b) 

Figure 4.11 Effect of time duration of tilted (300) sitting on (a) von Mises stress (b) 

shear stress for soft cushion (E= 20kPa and density=40kg/m3) 

4.4 Conclusions 

The present study presents a numerical approach for analyzing the stresses 

being developed beneath ichibial tuberocity due to continuous working in office 

environment in sitting posture on office chair. The analysis provides insight into the 

problem and suggests the ways to reduce the stress on bony prominence causing 
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cell death of muscle tissue. The methodology provides guidelines to avoid suffering 

from pressure sore to some extent in an office environment. Although analysis shows 

that stress within muscle decreases with proper cushion thickness and postural 

changes but a postural change always deals with the change in position of ischial 

tuberocity during leaning (Gefen et al., 2005). In order to overcome this limitation, the 

present study deals with calculation of stress beneath the ischial tuberocity. It has 

been shown that use of right kind of foam for seat cushion and thickness can 

substantially reduce the stress level at ischial tuberocity. This work considers a 

simple 2D formulation to provide guidelines for the designers to analyze behavior of 

interaction of soft human tissue and cushion material. The study can be improved by 

considering a real model with 3D formulation. 
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5.1 Introduction 

Competition in the market place demands high workload in an office environment 

resulting in prolonged sitting. Prolonged sitting may cause health risk like muscular 

disorders (Hales and Bernard, 1996). Therefore, ergonomically designed office chair 

possessing capability of maintaining compatibility between the user and product may 

lead to reduce fatigue. While designing or procuring an office chair, the psychological 

needs must be fulfilled in addition to physical needs to improve user satisfaction. 

Selection of an office chair with salient features satisfying ergonomic needs (both 

physical and psychological needs) becomes a complex decision making process. 

Keeping in view of complexity of the problem, multi-attribute decision making (MADM) 

approach can be considered during product design focusing on the requirements of 

user in terms of conflicting criteria in order to solve the task of selection of an 

ergonomically designed product. In a decision making process, it is unlikely that 

decision makers can express their preferences using crisp rating for attributes (Jee 

and Kang, 2000; Shanian and Savadogo, 2006; Jahan et al., 2010). As experts are 

not able to exactly specify to their preferences, linguistic variables using a fuzzy scale 

is used to conveniently deal with impreciseness and ambiguity in judgement (Chen, 

2000; Chen et al., 2006; Girubha and Vinodh, 2012 ). Decision making in fuzzy 

environment has been suitably articulated by Zadeh (1965), Zadeh and Bellman 

(1970) and Carlsson and Fuller (1996). Still the decision making becomes 

inconsistent because most of the approaches consider either objective or subjective 

attributes (Rao, 2012; Maniya and Bhatt, 2010). In decision making, usually some 

attributes are objective and some are subjective in nature. The attributes need to be 

properly evaluated for estimating attribute weights integrating both objective and 

subjective criteria (Rao and Patel, 2010). The subjective attributes can be dealt using 

eigen method (Saaty, 1977) or Delphi method (Hwang and Lin, 1987) whereas the 

objective attributes can be effectively managed by entropy method (Hwang and 

Yoon, 1981) for weight estimation. To address this issue, a novel decision making 

technique is proposed in this work considering both subjective and objective weights 

for attributes in order to facilitate the decision maker to deal with objective information 

regarding the product as well as the uncertainty of human judgment. The attribute 

ratings obtained from multiple experts are aggregated for effective decision making. 

Three different popular MADM methods such as TOPSIS (Techniques for Order 

Preference by Similarity to Identical Solution), VIKOR (VIseKriterijumska Optimizacija 

I Kompromisno Resenjea) and PROMETHEE (Preference Ranking Organization 

Method for Enrichment Evaluations) are used to solve the selection problem of 

choosing the best ergonomically designed office chair. All the methods are 
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considered under same managerial decision. TOPSIS, a linear weighting technique 

developed by Hwang and Yoon (1981) in its crisp form and then in expanded form by 

Chen and Hwang (1992), is based on the concept that the chosen alternative should 

have the shortest Euclidean distance from positive ideal solution and farthest from 

negative ideal solution (Rao, 2006). VIKOR, on the other hand, determines a 

compromise solution which is feasible and closest to the ideal solution but makes an 

agreement by mutual concession which the help of the decision maker to take a 

decision with conflicting criteria (Opricovic and Tzeng, 2004). It introduces the multi-

criteria ranking index based on the particular measure of ‘‘closeness” to the ‘‘ideal” 

solution (Opricovic, 1998). PROMETHEE proceeds to a pair-wise comparison of 

alternatives in each single criterion in order to determine partial binary relations 

denoting the strength of preference of an alternative ‘a’ over alternative ‘b’ (Rao and 

Rajesh, 2009). In order to check the stability of ranking with respect to different 

weighted attributes, a sensitivity analysis has been performed considering different 

proportion of attribute weight (subjective and objective) and the evaluation carried 

under three different MADM methods.  

 

5.2 Proposed Methodology 

MADM has established as an effective methodology for solving a large variety of 

multi-criteria decision making and ranking problems (Hwang and Yoon, 1981). In this 

study, a novel approach of MADM has been proposed to find a suitable 

ergonomically designed product with respect to design characteristics (attributes). 

The best alternative is chosen from a set of n alternatives {A1,A2, …, An} whereas the 

performance of the alternatives are decided on the basis of m attributes {C1, C2, …, 

Cm} by a group of k decision maker (DMs) {DM1, DM2, …, DMk}as given in Table 5.1. 

The weight for the attributes are considered as {w1, w2, ….wm}. 

Table 5.1 Decision matrix 

Alternatives Attributes 

C1 
(w1) 

C2 
(w2) 

- - Cm 
(wm) 

A1 *

11x  
*

12x  - - *

1mx  

A2 *

21x  
*

22x  - - *

2mx  

- - - - - - 
- - - - - - 

An *

1nx  
*

2nx  - - *

nmx  

 

Different steps of the proposed work are described in Figure 5.1. The 

methodology consists of six major computational steps as discussed below. 
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Figure 5.1 Graphical representation of generic MADM model  

 

Step 1: Identify the problem 

To illustrate the approach, an ergonomically designed office chair selection 

problem is considered as a case study. As the selection of an ergonomically 

designed office chair includes technical specification as well as user preference, it 

becomes a difficult task to choose an office chair with specific features that satisfy a 

range of customers. In addition to design characteristics in terms of technical 

specifications provided by manufacturers, expert opinion is also considered to take 

into account the customer preferences. A group of DMs analysed the possible 

attributes and alternatives from a set of available office chairs in the market place and 

important attributes and alternatives are considered. Since impreciseness and 

ambiguity exist to assign rating for each attribute and alternative, a linguistic scale is 

used to express decision makers’ opinion on each alternative with respect to 

attribute.  

Step 2: Preparation of decision table 

To model decision makers’ judgement, fuzzy scales are employed which translate 

the linguistic terms into triangular fuzzy numbers as linguistic variables deal with 

ambiguity and subjectivity (Zadeh, 1975). To convert the qualitative terms into 

quantitative values, a five point fuzzy scale with triangular fuzzy numbers based on 

the works of Chen (1985) is chosen. As shown in Figure 5.2, linguistic terms “very 
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low”(VL), “low”(L), “medium”(M), “high”(H), “very high”(VH) are included to measure 

the performance of each alternative with respect to each attribute. The crisp score of 

fuzzy number ‘M’ is obtained as follows (Chen, 1985): 



 


otherwise,0

1x0,x
)x(max                   (5.1) 



 


otherwise,0

1x0,x1
)x(min                   (5.2) 

The fuzzy max and fuzzy min of fuzzy numbers are defined in a manner such that 

absolute location of fuzzy numbers can be automatically incorporated in the 

comparison case. The left score of each fuzzy number ‘Mi’ is defined as  

      xμxμSupMμ Mimin
x

iL                              (5.3) 

The  iL Mμ  score is a unique, crisp, real number in (0, 1). It is the maximum 

membership value of the intersection of fuzzy number Mi and the fuzzy min. The right 

score is obtained   as: 

      xμxμSupMμ Mimax
x

iR                 (5.4) 

Again  iR Mμ is a crisp number (0, 1). Given the left and right scores, the total crisp 

score of a fuzzy number Mi is defined as: 

       2/M1MM iLiRiT                 (5.5) 

These ratings may be given by a single or a group of decision maker. Yue (2011) 

states that MADM problems can provide reliable results if analysis of multiple experts 

is taken into account instead of the analysis of a single expert. 

 

 

 

 

 

 

 

 

 

 

                

 

Figure 5.2 Linguistic terms to fuzzy numbers conversion (5-point scale) 
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After evaluation of aggregate crisp score value (xij), the rating value for alternative 

i with respect to each attribute j, the aggregate crisp values are normalized so that 

rating values given by the decision makers can be converted into a common scale. 

Considering the normalized value ( *
ijx ), a decision table is prepared. Normalization is 

carried out using following relationship. 

 
maxij

ij*

ij
x

x
x                                                                                     (5.6)    

where, xij is the aggregate crisp score of alternative ‘i’ under attribute ‘j’. 

Step 3: Allocate the weights of importance of the identified attributes 

The proposed methodology uses integrated weights of objective and subjective 

preference for assigning attribute weights. By varying proportion of objective and 

subjective weights, a large number of decision making scenarios can be generated to 

provide the decision makers a wide range of solutions to choose the best one.  

 

Step 3(a): Computation of objective weights of importance of the attributes 

The objective weights can be computed by using the normalized data given in 

decision matrix developed in previous step. As the statistical variance gives a 

measure of dispersion of data points around their mean value (Rao and Patel, 2010), 

the proposed method determines the objective weight of attributes in terms of 

statistical variance method. The statistical variance for determining the objective 

weights of importance of the attributes is given by the following equation. 

    
2n

1i
mean

*
ij

*
ijj xxn/1v 



                  (5.7) 

where vj is the variance of the data corresponding to the jth attribute and  
mean

*
ijx is the 

average value of *
ijx .  

The objective weight of the jth attribute, 0
jw can be computed by dividing the 

statistical variance of the jth attribute with the total value of the statistical variances for 

m number of attributes. Thus, 0
jw can be computed by the following equation. 




 m

1j

j

j0
j

v

v
w                    (5.8) 

Step 3(b): Computation of subjective weights of importance of the attributes 

The subjective preferences can be evaluated through pair-wise comparison of the 

attributes. A pair-wise comparison matrix (m × m) for all attributes can be constructed 

with respect to objective by using Saaty's 1-9 scale of pair-wise comparisons so that 
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each attribute can compared with each other attribute. For each comparison, the 

decision maker decides which of the attribute is most important among two and then 

assigns a score to show how much more important it is than the other. After making 

the pair-wise comparisons, the consistency is checked by using the following 

computations.   

Consistency Index,
1m

m
CI max




                                                                       (5.9) 

where, λmax is the maximum Eigen value of the matrix and m is matrix size 

Consistency Ratio,
RI

CI
CR                            (5.10) 

Consistency ratio (C.R.) can be defined as the ratio of consistency index (C.I.) and 

randomly generated consistency index (R.I.) values (Saaty, 1980). The judgement 

matrix is consistent if a CR value is less than 0.10.  

 

Step 4: Computation of integrated weights of importance of the attributes 

For utilizing both objective and subjective weights of the attributes, an integrated 

weight of importance is to be calculated. The integrated weight can be described by 

using the following equation. 

s
j

so
j

oi
j wwwww                (5.11) 

where, i
jw , o

jw and s
jw  denote the integrated, objective and subjective weight of the jth 

attribute respectively. The weightings are taken in between 0 and 1. ow  and sw  

represent the weightings proportion considered for objective and subjective weights 

respectively. The weightings are taken between 0 and 1. 

 

Step 5: Determination of ranking of the alternatives 

Each decision matrix has three main components viz., (a) alternatives, (b) 

attribute, (c) weight or relative importance of each attribute. Three different MADM 

methods such as Techniques for Order Preference by Similarity to Identical Solution 

(TOPSIS), a compromise ranking method known as VIseKriterijumska Optimizacija I 

Kompromisno Resenjea (VIKOR) and Preference Ranking Organization Method for 

Enrichment Evaluations (PROMETHEE) are considered to measure the performance 

of alternative. The selected MADM methods adopt different strategies for ranking the 

alternatives. TOPSIS ranks the alternative based on shortest distance from the 

positive ideal solution and the farthest distance from the negative-ideal solution 

whereas VIKOR method provides a compromising solution in which an agreement is 

established between two mutual concessions. PROMETHEE method uses ‘‘net 
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preference flow’’ function to rank the alternatives (Brans et al., 1984). Both VIKOR 

and PROMETHEE methods use linear normalization as shown in equation 5.6. 

TOPSIS method uses vector normalization and the normalized value can be obtained 

by following equation. 

2
1

m

1j

2

ijij

*

ij xxx






 

                                                                                                  (5.12) 

5.2.1 Techniques for Order Preference by Similarity to Identical Solution 

(TOPSIS) 

TOPSIS method is based on calculation of preference index in order to evaluate 

the ranking of alternatives by computing the shortest Euclidean distances to both 

positive ideal solution and negative ideal solution simultaneously. It is based on the 

idea that the chosen alternative should have the shortest distance from the positive 

ideal solution and on the other hand, the farthest distance from the negative ideal 

solution. Here, the normalized decision matrix can be obtained by equation 5.13. 

2
1

m

1j

2

ijij

*

ij xxx






 



                                                                                         (5.13)      

The weighted normalized decision matrix considering integrated weights can be 

expressed as *
ijXi

j
WijY  . The positive ideal solution and negative ideal solution can 

be calculated using following formulae. 

The positive ideal (best) solutions can be expressed as: 

 















 






  ''

ij
i

'
ij

i

*
m

*
1

Jjymin,Jjymax

y..,,.........y=*A

               (5.14) 

The negative ideal (worst) solutions can be expressed as: 

 















 






 



''
ij

i

'
ij

i

m
-
1

Jjymax,Jjymin

y..,,.........y=-A

              (5.15) 

where 'J  is associated with beneficial attribute and "J is associated with non-

beneficial attribute.  

The separation of each alternative from the ideal one is given by the Euclidean 

distance. The separation of each alternative from the positive ideal solution is given 

as 

  I,....1i,yyD

m

1j

2*
jij

*
i  



               (5.16) 
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Similarly, the separation of each alternative from the negative ideal solution is 

expressed as  

  I,....1i,yyD

m

1j

2

jiji  


                 (5.17) 

After calculating the separation the relative closeness to the ideal solution is 

carried out. The relative closeness (preference index) of the alternatives to the ideal 

solution is defined as  

I,....1i,
DD

D
C

i
*
i

i*
i 








                           (5.18) 

*

iC  is also called as the overall performance score of alternative. A set of alternatives 

is generated according to the value of 
*

iC  indicating the most preferred and least 

preferred feasible solutions. The alternative which has highest value of performance 

score will be given top ranking in the order. Ranking will be done for different 

proportion of subjective and objective weights. The final selection of the best 

alternative will be assessed through the analysis of final ranking matrix. 

 

5.2.2 VIseKriterijumska Optimizacija I Kompromisno Resenjea (VIKOR) 

The foundation for compromise solution was established by Yu (1973) and Zeleny 

(1982) and later advocated by Oprocovic and Tzeng (2002, 2007) and Tzeng et al. 

(2002, 2005). The compromise solution is closest to the ideal solution which is a 

feasible solution. The compromise ranking algorithm of the VIKOR method has the 

following steps: 

For alternative Ai the rating of jth attribute is expressed as fij 

Step 1: The first step is to determine the objective, also determine the best, i.e., 
*

jf

and the worst, i.e.


jf , values of all attributes. 

ij
i

*

j fmaxf  ,j=1,2,……m                                                                                 (5.19(a)) 

 ij
i

j fminf 
,j=1,2,…….m                                                                                (5.19(b)) 

Step 2: Compute the values Sj and Rj, i=1,2,…,n. 

 
 







n

1j j

*

j

ij

*

j
ji ff

ff
wS                                                                                  (5.20) 

 
 




j

*

j

ij

*

j
j

j
i ff

ff
wmaxR                                                                             (5.21) 

where wj, are the weights of the attribute expressing the relative importance. 
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Step 3: Compute the values Qi, i=1,2,…n by the following relation 

        **

i

**

ii RRRR1SSSSQ  
                                       (5.22) 

where *S  is the minimum value of iS  i.e. i
i

* SminS  and S is the maximum value of 

Si i.e. i
i

SmaxS 

 

Similarly, 
*R  is the minimum value of the iR  i.e. i

i

* RminR  and 
R is the 

maximum value of Ri i.e i
i

RmaxR 

 

  is introduced as the weight of strategy of “ the majority of attribute” (or the 

maximum group utility”), usually 5.0 . 

Step 4: By arranging the alternatives in the ascending order of S, R and Q values, 

the three ranking lists can be obtained. The compromise ranking list for a given   is 

obtained by ranking with Qi measures. The best alternative, ranked by Qi, is the one 

with the minimum value of Qi. 

Step 5: Propose a compromise solution for alternative Ak 

Under a given weight of attribute, alternative Ak is the best ranked by Q value 

(Minimum) if the following two conditions are satisfied (Tzeng et al., 2005): 

Condition 1: ‘Acceptable advantage’:     DQAQAQ 1K                               (5.23) 

 1N1DQ                                                                                                       (5.24) 

where,
1A the second best alternative in the ranking list by Q. N is the number of 

alternatives. 

Condition 2:‘Acceptable stability in decision making’: Alternative Ak must also be the 

best ranked by S or/and R. This compromise solution is stable within a decision 

making process, which could be ‘‘voting by majority rule’’ (when  5.0  is needed), 

or ‘‘by consensus’’     ( 5.0 ), or ‘‘with veto’’  5.0 . Here,   is the weight of the 

decision making strategy ‘‘the majority of attribute’’ (or ‘‘the maximum group utility’’). 

If one of the conditions is not satisfied, then a set of compromise solutions is 

proposed, which consists of:  

1- Alternatives 
KA  and 

1A  if only condition 2 is not satisfied 

2- Alternatives
KA ,

1A ,….. PA if condition 1 is not satisfied; PA  is determined by the 

relation     DQAQAQ 1P   
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5.2.3 Preference Ranking Organization Method for Enrichment Evaluations 

(PROMETHEE) 

PROMETHEE method was introduced by Brans et al. (1984). Like all other 

ranking methods, PROMETHEE deals with a pair wise comparison of alternatives for 

each single attribute in order to determine partial binary relations denoting the 

strength of preference of an alternative A1 over alternative A2. The alternatives are 

evaluated on different attribute. The implementation of PROMETHEE also requires 

relative importance or the weights of the attribute considered and information on the 

decision maker preference function, which he/she uses when comparing the 

contribution of the alternatives in terms of each separate attribute. The preference 

function (Pi) translates the difference between the evaluations obtained by two 

alternatives (A1 and A2) in terms of a particular attribute, into a preference degree 

ranging from 0 to 1.The method covers the following steps given below 

Here the decision maker gives his/her preference function by comparing the 

contribution of one alternative with respect to another in terms of each separate 

attribute. The preference function (Pi) finds a difference between two alternatives (A1 

andA2) for a particular attribute in terms of a preference degree 0 or 1. Let Pj, A1A2 be 

the preference function associated to the attribute Cj. 

    2j1jj2A1A,j ACACGP                                                                               (5.25) 

1P0 2A1A,i   

where, Gj is a non-decreasing function of the observed deviation (d) between two 

alternativesA1 and A2 over the attribute Cj. Let the decision maker have specified a 

preference function Pj and weight wj for each attribute Cj(j=1, 2, . . . , m). The multiple 

attribute preference index 
21AA is then defined as the weighted average of the 

preference functions Pj 





m

1j

AA.jjAA 2121
Pw                                                                                           (5.26) 

21AA , represents the intensity of preference of the decision maker of alternative 

A1over alternative A2 when considering simultaneously all the attribute and the value 

ranges from 0 to 1. This preference index determines a valued outranking relation on 

the set of actions. As an example, the schematic calculation of the preference indices 

for a problem consisting of three alternatives and four attribute is given in Figure 5.3 

(Marinoni, 2005). 
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Figure 5.3 Preference indices for a problem consisting of three alternatives and four 

attributes. 

For PROMETHEE outranking relations, the leaving flow, entering flow and the net 

flow for a particular alternative(A) belonging to a set of alternatives ‘A’ are defined by 

the following equations: 




 
Ax

xa)A(                                                                                                   (5.27)                                                                                                              




 
Ax

ax)A(                                                                                                   (5.28) 

)A()A()A(                                                                                          (5.29) 

)A( is called the leaving flow, )A(  is called the entering flow and )A(  is called 

the net flow. )A( is the measure of the outranking character of A (i.e. dominance of 

alternative ‘A’ overall other alternatives) and )A(  gives the outranked character of 

A(i.e. degree to which alternative A is dominated by all other alternatives). The net 

flow, )A(  represents a value function, whereby a higher value reflects a higher 

attractiveness of alternative A. The net flow values are used to indicate the 

outranking relationship between the alternatives. For example, for each alternative A, 

belonging to the set of alternatives (A1, A2….An), 
21AA is an overall preference index 

of A1 over A2, taking into account all the attribute. Alternative A1 outranks A2 if 

   21 AA   and A1 is said to be indifferent to A2 if    21 AA  . 
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5.3 Results and discussions 

Keeping view with the increasing demand for a suitable ergonomically designed 

office chair, six different alternatives with respect to ten design characteristics 

(attribute) are considered as shown in Figure 5.4. The attribute are considered with 

an extensive literature review of previous report for ergonomically designed office 

chair (Mohanty and Mahapatra, 2014). A survey among manufacturers of chairs and 

opinion of experts specialized in ergonomically designed chair revealed that the 

evaluation of office chair should carry ten important design characteristics. Based on 

the evaluation of four decision makers, a decision matrix is made considering six 

alternatives {A1, A2, A3, A4, A5, A6} and ten attributes {C1, C2… C10}. Relative weights 

{w1, w2 ….w10} are assigned to each design characteristic (attribute) to represent the 

DM’s preference information.  

 

 

  
 

   

 

Figure 5.4 Office chair model for analysis 

 

Ten important attributes considered are Depth of seat (C1), Overall depth (C2), 

Width of seat (C3), Size of base (C4), Width height ratio (C5), Seat adjustment (C6), 

Backrest height (C7), Swivel angle (C8), Decoration (C9), and Density of cushion (C10). 

Based on the dimensions considered and comparison with Bureau of Indian standard 

data, the attributes are classified into beneficial and non-beneficial category. Out of 

ten attribute, C1, C2, C3, C4, C5, C6, C7, C8 and C9 are beneficial (higher the value is 
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desired) and C10 is non-beneficial attribute (lower the value is desired). As the 

alternatives (Office chair) based on attributes are of conflicting in nature, a five point 

fuzzy scale with triangular fuzzy numbers is chosen to rate the alternatives. A team of 

four decision makers, DM1, DM2, DM3 and DM4 has been formed to evaluate the 

alternatives. An individual decision maker’s judgment is evaluated by using fuzzy 

rating scale with triangular membership functions in order to extract the rating values 

of alternatives where individual attribute is given linguistic terms as is given in Table 

5.2. Linguistic terms are further converted to their corresponding fuzzy numbers as 

shown in Table 5.3. In order to assess with each attribute weight, individual fuzzy 

numbers are aggregated as is highlighted in Table 5.4. Aggregate fuzzy numbers are 

then transformed into crisp values and the corresponding values are given in Table 

5.5. 

Table 5.2 Linguistic rating for alternatives selection  

Decision 
Maker 

Alternative C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 

D1 A1 L L VL M L H M M VL L 
A2 M M H H H M M M H L 
A3 L H M M L L H VL VL M 
A4 L VL L H M M H VL M M 

A5 M H M M M M M L VH L 

A6 L L VL M L H M L M L 

D2 A1 M M L H M VH H H L M 
A2 H M H H VH H H H M L 
A3 M H H H M M VH L L H 

A4 M M M VH M H H L M H 

A5 VH H H M H H H M H L 
A6 M M L M M VH M M M M 

D3 A1 H M M M M VH H VH L L 
A2 VH H VH VH VH VH VH VH H M 
A3 H VH H M M H VH L VL H 

A4 H M M VH H VH VH L M H 

A5 VH VH H M H VH H H VH M 
A6 H M M L M VH H M H L 

D4 A1 VL L VL H L M M M M L 
A2 M L M VH M M M L VH L 

A3 L M M M L L H VL L M 

A4 L VL L H L M H VL M M 
A5 M M M M M M M L H L 
A6 VL L VL L L M L VL M L 
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Table 5.3 Fuzzy numbers associated with alternatives 

 

  C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 

D1 A1 L(0,0.3,0.5) L(0,0.3,0.5) VL(0,0,0.3) M(0.3,0.5,0.7) L(0,0.3,0.5) H(0.5,0.7,1) M(0.3,0.5,0.7) M(0.3,0.5,0.7) VL(0,0,0.3) L(0,0.3,0.5) 

A2 M(0.3,0.5,0.7) M(0.3,0.5,0.7) H(0.5,0.7,1) H(0.5,0.7,1) H(0.5,0.7,1) M(0.3,0.5,0.7) M(0.3,0.5,0.7) M(0.3,0.5,0.7) H(0.5,0.7,1) L(0,0.3,0.5) 

A3 L(0,0.3,0.5) H(0.5,0.7,1) M(0.3,0.5,0.7) M(0.3,0.5,0.7) L(0,0.3,0.5) L(0,0.3,0.5) H(0.5,0.7,1) VL(0,0,0.3) VL(0,0,0.3) M(0.3,0.5,0.7) 

A4 L(0,0.3,0.5) VL(0,0,0.3) L(0,0.3,0.5) H(0.5,0.7,1) M(0.3,0.5,0.7) M(0.3,0.5,0.7) H(0.5,0.7,1) VL(0,0,0.3 M(0.3,0.5,0.7) M(0.3,0.5,0.7) 

A5 M(0.3,0.5,0.7) H(0.5,0.7,1) M(0.3,0.5,0.7) M(0.3,0.5,0.7) M(0.3,0.5,0.7) M(0.3,0.5,0.7) M(0.3,0.5,0.7) L(0,0.3,0.5) VH(0.7,0.7,1) L(0,0.3,0.5) 

A6 L(0,0.3,0.5) L(0,0.3,0.5) VL(0,0,0.3) M(0.3,0.5,0.7) L(0,0.3,0.5) H(0.5,0.7,1) M(0.3,0.5,0.7) L(0,0.3,0.5) M(0.3,0.5,0.7) L(0,0.3,0.5) 

D2 A1 M(0.3,0.5,0.7) M(0.3,0.5,0.7) L(0,0.3,0.5) H(0.5,0.7,1) M(0.3,0.5,0.7) VH(0.7,0.7,1) H(0.5,0.7,1) H(0.5,0.7,1) L(0,0.3,0.5) M(0.3,0.5,0.7) 

A2 H(0.5,0.7,1) M(0.3,0.5,0.7) H(0.5,0.7,1) H(0.5,0.7,1) VH(0.7,0.7,1) H(0.5,0.7,1) H(0.5,0.7,1) H(0.5,0.7,1) M(0.3,0.5,0.7) L(0,0.3,0.5) 

A3 M(0.3,0.5,0.7) H(0.5,0.7,1) H(0.5,0.7,1) H(0.5,0.7,1) M(0.3,0.5,0.7) M(0.3,0.5,0.7) VH(0.7,0.7,1) L(0,0.3,0.5) L(0,0.3,0.5) H(0.5,0.7,1) 

A4 M(0.3,0.5,0.7) M(0.3,0.5,0.7) M(0.3,0.5,0.7) VH(0.7,0.7,1) M(0.3,0.5,0.7) H(0.5,0.7,1) H(0.5,0.7,1) L(0,0.3,0.5) M(0.3,0.5,0.7) H(0.5,0.7,1) 

A5 VH(0.7,0.7,1) H(0.5,0.7,1) H(0.5,0.7,1) M(0.3,0.5,0.7) H(0.5,0.7,1) H(0.5,0.7,1) H(0.5,0.7,1) M(0.3,0.5,0.7) H(0.5,0.7,1) L(0,0.3,0.5) 

A6 M(0.3,0.5,0.7) M(0.3,0.5,0.7) L(0,0.3,0.5) M(0.3,0.5,0.7) M(0.3,0.5,0.7) VH(0.7,0.7,1) M(0.3,0.5,0.7) M(0.3,0.5,0.7) M(0.3,0.5,0.7) M(0.3,0.5,0.7) 

D3 A1 H(0.5,0.7,1) M(0.3,0.5,0.7) M(0.3,0.5,0.7) M(0.3,0.5,0.7) M(0.3,0.5,0.7) VH(0.7,0.7,1) H(0.5,0.7,1) VH(0.7,0.7,1) L(0,0.3,0.5) L(0,0.3,0.5) 

A2 VH(0.7,0.7,1) H(0.5,0.7,1) VH(0.7,0.7,1) VH(0.7,0.7,1) VH(0.7,0.7,1) VH(0.7,0.7,1) VH(0.7,0.7,1) VH(0.7,0.7,1) H(0.5,0.7,1) M(0.3,0.5,0.7) 

A3 H(0.5,0.7,1) VH(0.7,0.7,1) H(0.5,0.7,1) M(0.3,0.5,0.7) M(0.3,0.5,0.7) H(0.5,0.7,1) VH(0.7,0.7,1) L(0,0.3,0.5) VL(0,0,0.3) H(0.5,0.7,1) 

A4 H(0.5,0.7,1) M(0.3,0.5,0.7) M(0.3,0.5,0.7) VH(0.7,0.7,1) H(0.5,0.7,1) VH(0.7,0.7,1) VH(0.7,0.7,1) L(0,0.3,0.5) M(0.3,0.5,0.7) H(0.5,0.7,1) 

A5 VH(0.7,0.7,1) VH(0.7,0.7,1) H(0.5,0.7,1) M(0.3,0.5,0.7) H(0.5,0.7,1) VH(0.7,0.7,1) H(0.5,0.7,1) H(0.5,0.7,1) VH(0.7,0.7,1) M(0.3,0.5,0.7) 

A6 H(0.5,0.7,1) M(0.3,0.5,0.7) M(0.3,0.5,0.7) L(0,0.3,0.5) M(0.3,0.5,0.7) VH(0.7,0.7,1) H(0.5,0.7,1) M(0.3,0.5,0.7) H(0.5,0.7,1) L(0,0.3,0.5) 

D4 A1 VL(0,0,0.3) L(0,0.3,0.5) VL(0,0,0.3) H(0.5,0.7,1) L(0,0.3,0.5) M(0.3,0.5,0.7) M(0.3,0.5,0.7) M(0.3,0.5,0.7) M(0.3,0.5,0.7) L(0,0.3,0.5) 

A2 M(0.3,0.5,0.7) L(0,0.3,0.5) M(0.3,0.5,0.7) VH(0.7,0.7,1) M(0.3,0.5,0.7) M(0.3,0.5,0.7) M(0.3,0.5,0.7) L(0,0.3,0.5) VH(0.7,0.7,1) L(0,0.3,0.5) 

A3 L(0,0.3,0.5) M(0.3,0.5,0.7) M(0.3,0.5,0.7) M(0.3,0.5,0.7) L(0,0.3,0.5) L(0,0.3,0.5) H(0.5,0.7,1) VL(0,0,.3) L(0,0.3,0.5) M(0.3,0.5,0.7) 

A4 L(0,0.3,0.5) VL(0,0,0.3) L(0,0.3,0.5) H(0.5,0.7,1) L(0,0.3,0.5) M(0.3,0.5,0.7) H(0.5,0.7,1) VL(0,0,0.3) M(0.3,0.5,0.7) M(0.3,0.5,0.7) 

A5 M(0.3,0.5,0.7) M(0.3,0.5,0.7) M(0.3,0.5,0.7) M(0.3,0.5,0.7) M(0.3,0.5,0.7) M(0.3,0.5,0.7) M(0.3,0.5,0.7) L(0,0.3,0.5) H(0.5,0.7,1) L(0,0.3,0.5) 

A6 VL(0,0,0.3) L(0,0.3,0.5) VL(0,0,0.3) L(0,0.3,0.5) L(0,0.3,0.5) M(0.3,0.5,0.7) L(0,0.3,0.5) VL(0,0,0.3) M(0.3,0.5,0.7) L(0,0.3,0.5) 
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Table 5.4 Aggregate fuzzy number of alternatives 
Alternatives Criteria 

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 

A1 (0.2,0.375,0.625) (0.15,0.4,0.6) (0.075,0.2,0.45) (0.4,0.6,0.85) (0.15,0.4,0.6) (0.55,0.65,0.925) (0.4,0.6,0.85) (0.45,0.6,0.85 (0.075,.275,0.5) (0.075,0.35,0.55) 

A2 
(0.45,0.6,0.85) (0.275,0.5,0.725) (0.5,0.65,0.925) (0.6,0.7,1) (0.55,0.65,0.925) (0.45,0.6,0.85) (0.45,0.6,0.85) (0.375,0.55,0.8) (.5,0.65,0.925) (0.075,0.35,0.55) 

A3 
(0.2,0.45,0.675) (0.5,0.65,0.925) (0.4,0.6,0.85) (0.35,0.55,0.775) (0.15,0.4,0.6) (0.2,0.45,0.675) (0.6,0.7,1) (0,0.15,0.4) (0,0.15,0.4) (0.4,0.6,0.85) 

A4 
(0.2,0.45,0.675) (0.15,0.25,0.5) (0.15,0.325,0.55) (0.6,0.7,1) (0.275,0.5,0.725) (0.45,0.6,0.85) (0.55,0.7,1) (0,0.15,0.4) (0.3,0.5,0.7) (0.4,0.6,0.85) 

A5 
(0.5,0.6,0.85) (0.5,0.65,0.925) (0.4,0.6,0.85) (0.3,0.5,0.7) (0.4,0.6,0.85) (0.45,0.6,0.85) (0.4,0.6,0.85) (0.2,0.45,0.675) (0.6,0.7,1) (0.075,0.35,0.55) 

A6 (0.2,0.375,0.625) (0.15,0.4,0.6) (0.075,0.2,0.45) (0.15,0.4,0.6) (0.15,0.4,0.6) (0.55,0.65,0.925) (0.275,0.5,0.725) (0.15,0.325,0.55) (0.35,0.55,0.775) (0.075,0.35,0.55) 

 
Table 5.5 Crisp ratings of alternatives 

Alternatives Criteria 

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 

A1 0.409574 0.41 0.268889 0.59 0.41 0.6582 0.59 0.600867 0.318665 0.36642 
A2 0.60087 0.5 0.645354 0.702797 0.6582 0.60087 0.60087 0.554043 0.645354 0.36642 
A3 0.45551 0.645354 0.59 0.545493 0.41 0.45551 0.702797 0.225217 0.225217 0.59 
A4 0.45551 0.313636 0.362788 0.702797 0.5 0.60087 0.688963 0.225217 0.5 0.59 
A5 0.612727 0.645354 0.59 0.5 0.59 0.60087 0.59 0.45551 0.702797 0.36642 
A6 0.409574 0.41 0.268889 0.41 0.41 0.6582 0.5 0.362788 0.545493 0.36642 

 

Table 5.6 Normalized crisp ratings 

Alternatives Criteria 

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 

A1 0.668445 0.63531 0.416653 0.839503 0.622911 1 0.839503 1 0.453424 0.621051 
A2 0.980648 0.774769 1 1 1 0.912898 0.854969 0.922072 0.918265 0.621051 
A3 0.743415 1 0.914227 0.776175 0.622911 0.692054 1 0.374821 0.320459 1 
A4 0.743415 0.485991 0.562153 1 0.759648 0.912898 0.980316 0.374821 0.711443 1 
A5 1 1 0.914227 0.711443 0.896384 0.912898 0.839503 0.758088 1 0.621051 
A6 0.668445 0.63531 0.416653 0.583383 0.622911 0.999999 0.711443 0.603774 0.776175 0.621051 
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The aggregate crisp values of attribute are now normalized using equation 5.6 so 

that the attribute ratings given by the decision makers can be converted into a 

common scale. The normalized decision matrix for attribute is shown in Table 5.6. 

On the basis of statistical variance method, the variance and the objective 

weights of the attributes are computed by using equations 5.7 and 5.8. The variance 

and the objective weight value for ten attribute are given in Table 5.7.  

Table 5.7 Objective weights of attribute 

Attribute C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 

Variance 0.0189 0.0369 0.0602 0.0224 0.0220 0.0105 0.0093 0.0598 0.0580 0.0320 

Objective weights 
0.057 0.112 0.182 0.068 0.0668 0.032 0.028 0.181 0.176 0.096 

 

Analytic Hierarchy Process (AHP) is used to calculate subjective weights of 

attribute. A pair-wise comparison matrix ( 1010 ) as shown in Table 5.8 can be 

constructed for attribute based upon the intensity of importance. The value of CR is 

calculated by using equations 5.9 and 5.10. The value of CR obtained is 0.0654 

which is less than 0.1 and hence the result is acceptable. The subjective weights are 

calculated using geometric means and the result is shown in Table 5.9.  

Table 5.8 Pair wise comparison matrix. 

 Dept
h 

Overal
l depth 

Width of 
seat 

Size of 
base 

Width 
height 
ratio 

Seat 
adjustmen
t 

Back rest 
height 

Swivel 
angle 

Decoration Densit
y 

Depth 1 3 2 3 1 2 4 3 6 1/4 
Overall depth 1/3 1 1/3 1/4 1/6 1/5 1/2 1/5 2 1/5 
Width of seat ½ 3 1 3 1/3 2 4 3 5 1/4 
Size of base 1/3 4 1/3 1 1/3 1 4 1/3 4 1/2 
Width height 
ratio 

1 6 3 3 1 4 5 3 6 1/4 

Seat adjustment ½ 5 1/2 1 1/4 1 2 1/3 3 1/5 
Backrest height ¼ 2 1/4 1/4 1/5 1/2 1 1/4 1/2 1/6 
Swivel angle  1/3 5 1/3 3 1/3 3 4 1 3 1/3 
Decoration 1/6 1/2 1/5 1/4 1/6 1/3 2 1/3 1 1/6 
Density 4 5 4 2 4 5 6 3 6 1 

 

To check the consistency of matrix eigen value λmax is to be calculated 

Consistency index (CI): 

110

1086.10

1n

nmax










= 0.0956 

Consistency ratio (CR): 

    = RI

CI

= 45.1

0956.0

= 0.0654 < 0.1 
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Table 5.9 Subjective weight design attributes 

 Criterion Weight 

1 Depth seat pan 0.143 

2 Overall depth 0.027 

3 Width of seat 0.110 

4 Size of base 0.065 

5 Width height ratio 0.188 

6 Seat adjustment 0.0611 

7 Backrest height 0.0268 

8 Swivel angle 0.0881 

9 Decoration 0.0259 

10 Density 0.261 

 

The integrated weights of attributes are obtained using equation 5.11. Table 5.10 

gives the integrated weights of attributes considering the different weightings 

proportion of the objective and subjective weights within the range 0 to 1. 
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Table 5.10 Integrated Weight calculation 

Importance of 
Objective weight 
(w0) 

Importance of 
Subjective weight 
(ws) 

Integrated Weights of Attribute 
Attributes 

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 

i
c1

w  
i
c2

w  
i
c3

w  
i
c4

w  
i
c5

w  
i

c6
w  

i

c7
w  

i

c8
w  

i

c9
w  

i

c10
w  

1.0 0 0.057 0.111 0.182 0.068 0.066 0.032 0.028 0.181 0.175 0.096 
0.8 0.2 0.074 0.094 0.167 0.067 0.091 0.037 0.028 0.162 0.145 0.129 
0.6 0.4 0.091 0.077 0.153 0.066 0.115 0.043 0.027 0.143 0.115 0.162 
0.5 0.5 0.100 0.069 0.146 0.066 0.127 0.046 0.027 0.134 0.100 0.178 
0.4 0.6 0.108 0.060 0.138 0.066 0.139 0.049 0.027 0.125 0.085 0.195 
0.2 0.8 0.125 0.043 0.124 0.065 0.163 0.055 0.027 0.106 0.055 0.228 
0 1.0 0.143 0.027 0.110 0.065 0.188 0.061 0.026 0.088 0.025 0.261 

 

The normalized decision matrix for TOPSIS is obtained using equation 5.13 and 

the decision matrix is shown in Table 5.11. The ranking of the alternatives is 

illustrated by considering purely subjective weight (wo = 1 and ws = 0). By multiplying 

normalized decision matrix with corresponding integrated attribute weights, the 

weighted normalized decision matrix can be obtained as is given in Table 5.12.  

Table 5.11 Normalized decision matrix 

Alternatives Attribute 

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 

A1 0.336 0.333 0.228 0.411 0.330 0.448 0.391 0.570 0.251 0.330 

A2 0.493 0.406 0.548 0.490 0.531 0.410 0.398 0.526 0.508 0.330 

A3 0.373 0.524 0.501 0.381 0.330 0.310 0.466 0.214 0.177 0.531 

A4 0.373 0.255 0.308 0.490 0.403 0.410 0.456 0.214 0.394 0.531 

A5 0.502 0.524 0.501 0.350 0.476 0.410 0.391 0.432 0.553 0.330 

A6 0.335 0.333 0.228 0.286 0.330 0.449 0.331 0.344 0.430 0.330 

 

 The positive ideal solution and the negative ideal solution for the alternatives are 

calculated using equations 5.14 and 5.15 respectively. The positive ideal solution is 

given as {0.0288, 0.058, 0.099, 0.033, 0.035, 0.014, 0.013, 0.103, 0.097, and 0.032}. 

Similarly, the negative ideal solution is given by {0.019, 0.028, 0.041, 0.019, 0.022, 

0.009, 0.009, 0.038, 0.031, and 0.051}. The positive and negative separation ( *
iD and


iD ) of each alternative from ideal solutions is calculated using equations 5.16 and 

5.17 respectively. The Preference index ( *
iC ) showing the ranking of alternatives can 

be obtained by using equation 5.18. and the final ranking of six alternatives are 

depicted in Table 5.13. In the similar manner, the ranking order of six alternatives 

considering integrated weights of different proportions is given in Table 5.14.  
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Table 5.12  Weighted normalized matrix for alternatives 

Alternatives Attributes 

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 

A1 0.019 0.037 0.042 0.028 0.022 0.014 0.011 0.103 0.044 0.032 
A2 

0.028 0.045 0.099 0.033 0.035 0.013 0.011 0.095 0.090 0.032 
A3 

0.021 0.058 0.091 0.026 0.022 0.009 0.013 0.038 0.031 0.051 
A4 

0.021 0.028 0.056 0.033 0.027 0.013 0.013 0.038 0.070 0.051 
A5 0.029 0.058 0.091 0.0240 0.031 0.013 0.011 0.078 0.097 0.032 
A6 0.020 0.037 0.041 0.020 0.022 0.014 0.009 0.062 0.075 0.032 

 

Table 5.13 Ranking index ( *
iC ) of alternatives 

Alternatives Positive 
Separation 
Measure 

Negative 
Separation 
Measure 

Preference 
Index 

Ranking of  the 
alternatives 

*
iD  

iD  *
iC  

A1 0.0057 0.0043 0.4389 3 
A2 0.0002 0.0093 0.9762 1 
A3 0.0076 0.0028 0.2692 5 
A4 0.0070 0.0014 0.1692 6 
A5 0.0006 0.0080 0.9213 2 
A6 0.0055 0.0025 0.3153 4 

 

Table 5.14 Ranking of alternatives considering integrated weight 

Alternatives wo = 1  
ws = 0 

wo = 0.8 
ws = 0.2 

wo = 0.6 
ws = 0.4 

wo = 0.4  ws 
= 0.6 

wo = 0.2 
ws = 0.8 

wo = 0  
ws = 1 

A1 3 3 3 3 3 3 
A2 1 1 1 1 1 1 
A3 5 5 5 5 5 5 
A4 6 6 6 6 6 6 
A5 2 2 2 2 2 2 
A6 4 4 4 4 4 4 

 

The normalized decision matrix for VIKOR method can be obtained in a linear 

method as shown in Table 5.6. Keeping in view with the normalized decision matrix, 

the best value (
*

jf ) and the worst value (


jf ) for the attributes are obtained using 

equations 5.19(a) and 5.19(b) respectively. The best values and worst values are: 
*

jf  

= (1, 1, 1, 1, 1, 1, 1, 1, 1, and 0.621051) and 


jf  = (0.668445, 0.485991, 0.416653, 

0.583383, 0.622911, 0.692054, 0.711443, 0.374821, 0.320459, 1). For ranking the 

alternatives, the methodology needs to calculate Si, Ri along with the final values of 

Qi as given in Table 5.15 based on equations 5.20, 5.21 and 5.22 where i=1, 2,….n. It 

has been seen alternative A2 is best ranked by ‘minimum Q value’ and the stability in 

decision making is completely satisfied (condition 2) for all weighing proportion but 

the acceptance advantage (condition 1) is not satisfied as Q(A2)-Q(A5)=0.15<0.2. 

Therefore, a final ranking of alternatives as shown in Table 5.15 is obtained through a 
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compromise solution satisfying equations 5.23 and 5.24 i.e. the alternative in the 

second position (A5) forms a compromise solution together with the alternative (A2) in 

the first position satisfying the conditions provided in VIKOR method. Considering 

integrated weight with different proportion of objective and subjective weights, the 

ranking of the alternatives is illustrated. 

Table 5.15 The ranking and the compromise solutions 
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In PROMETHEE method, the decision maker gives his/her preference in order to 

compare the alternatives for each attribute. A preference value ranging between 0 

and 1 will be assigned to the ‘better’ alternative whereas the ‘worst’ alternative 

receives a value 0. Based on this theory, a pair-wise comparison of attribute ‘depth of 

seat’ is prepared as shown in Table 5.16. As ‘depth of seat’ is a beneficial attribute, 

higher values are desired. Considering wo = 1 and ws = 0, the leaving (the measure of 

the outranking character, )A(  (i.e. dominance of alternative A to other 

alternatives)), entering ( )A(  (i.e. degree to which alternative A is dominated by all 

other alternatives) and net flows ( )A( ) are evaluated using equations 5.27, 5.28 

and 5.29 respectively. The final ranking is illustrated in Table 5.17. 

  

Table 5.16 Preference function(Pi) resulting from the pair wise comparisons of the six 

alternatives with respect to criterion depth of cut. 

 A1 A2 A3 A4 A5 A6 

A1 - 0 0 0 0 0 

A2 1 - 1 1 1 1 

A3 1 0 - 1 0 1 

A4 1 0 0 - 0 1 

A5 1 0 1 1 - 1 

A6 0 0 0 0 0 - 

 

Table 5.17 Positive  )A( , negative  )A(  and net flows  )A(  for the scenario 

 A1 A2 A3 A4 A5 A6 )A(  )A(  )A(  Rank 

A1 - 0.213 0.213 0.391 0.213 0.210 1.24 2.967 -1.727 5 

A2 0.787 - 0.696 0.843 0.517 0.968 3.811 0.995 2.816 1 

A3 0.543 0.303 - 0.543 0.303 0.543 2.235 2.056 0.179 3 

A4 0.608 0.125 0.276 - 0.193 0.432 1.634 2.912 -1.278 4 

A5 0.787 0.354 0.514 0.775 - 0.968 3.398 1.226 2.172 2 

A6 0.242 0 0.357 0.360 0 - 0.959 3.121 -2.162 6 

  Similarly, net flows for different proportion of objective and subjective weight 

for all the attributes can be tried. The ranking thus obtained based on )A(  value is 

given in Table 5.18. 

Table 5.18 Ranking of alternatives considering integrated weight 

Alternatives wo = 1  
ws = 0 

wo = 0.8 
ws = 0.2 

wo = 0.6 
ws = 0.4 

wo = 0.4  
ws = 0.6 

wo = 0.2 
ws = 0.8 

wo = 0  
ws = 1 

A1 5 5 5 5 5 5 
A2 1 1 1 1 1 1 
A3 3 3 3 3 3 2 
A4 4 4 4 4 4 4 
A5 2 2 2 2 2 3 
A6 6 6 6 6 6 6 
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The preference index values for different alternatives with respect to three MADM 

methodologies are shown in Figures. 5.5, 5.6 and 5.7 for different weight proportion. 

It is observed that alternate A2 is the best among all when attribute weight became 

more subjective. The ranking order for alternatives changes according to the change 

in proportion of attribute weight (subjective and objective). It has been found ranking 

order for the alternatives change with increase of the proportion of objective weight 

for all the methods. However, change of ranking order with increase of objective 

weight is more pronounced in the VIKOR method. When only objective weight for 

attributes is considered, A3 becomes best alternative instead of A2 in case of VIKOR. 

In case of TOPSIS method, the ranking of alternative remains same whatever may 

the weighing proportion. The final ranking of alternatives considering different 

weighting proportion of objective and subjective weights is summarized in Table 5.19. 

 

 

Figure 5.5 Integrated subjective objective weight with wo=0 and ws=1 
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Figure 5.6 Integrated subjective objective weight with wo=0.5 and ws=0.5 

 

 

Figure 5.7 Integrated subjective objective weight with wo=1 and ws=0 
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Table 5.19 Ranking order comparison 



99 
 

5.4 Conclusions 

In this research, an attempt has been made to select best office chair with ergonomic 

considerations using three important MADM methodologies. In the selected MADM 

approaches, attribute weights are determined using combination of objective and 

subjective weights to emulate real life decision making process. It is observed that the 

best alternative chosen remains same for different weighing proportions although the 

selected MADM methods use different types of normalization to eliminate the units of 

criterion functions and different ranking index measurement method. The proposed 

method attempts to consider both subjective and objective weights of qualitative and 

quantitative attributes and integrates them to decide the importance of weights of the 

alternatives. Considering wo = 1 and ws = 0, the ranking of the alternatives is illustrated 

for all the three methods such as TOPSIS, VIKOR, and PROMETHE. The alternatives 

are arranged in the descending order of their preference as A2-A5-A1-A6-A3-A4. From the 

above values of preference index, it is understood that the alternative designated as A2 is 

the first right choice for the given design application under the given conditions 

considering ten attributes of the product. It is observed that alternative 2 becomes the 

best choice in all the three methods even if the weighting proportion of the objective and 

subjective weight changes. It is also found that ranking order of alternatives 1, 3, 4 and 6 

in PROMETHE changes with weighting proportion of objective and subjective weights. In 

VIKOR method, preference order of alternatives 3 and 4 is altered when the proportion of 

objective weight decreases. However, the second alternative is the best alternative in all 

of the three methods whatever may be the proportion of weights of the attributes. The 

result indicates that all MADM methods considered in this work behave in a similar 

manner resulting same best alternative irrespective of proportion of weightings for 

objective and subjective weights. Therefore, the decision makers have the liberty of 

choosing the best method depending on ease of computational procedure. The method 

uses only ten features of the product. In future, more features of the product can be 

incorporated in the decision making process and other MADM approaches may be 

explored. 
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6.1 Introduction 

Posture analysis is an important issue for the performance analysis of tasks because 

it is responsible for promoting health by minimizing stress and discomfort during work 

(Haslegrave, 1994). Musculoskeletal disorders are frequently observed in work 

environment during manual operation due to abnormal and poor working postures of the 

body (Haslegrave, 1994; Westgaard and Aaras, 1984). However, it is difficult to identify 

specific comfort posture (comfort link configuration) as the redundancy of human arm 

develops many link configurations and joint motions to perform the same task (Gragg et 

al., 2013). Extra degree of freedom (DOF) due to redundancy helps in free positioning 

and moves around or between obstacles (Conkur and Buckingham, 1997; Chiaverini, 

1997). As deviations from normal postures over a prolonged period of time results in 

stress in joint muscles and other soft tissue muscles, it is important to design a 

workspace to place all materials tools, and equipment within the work envelope so that 

they are easily accessible by the operators (Grandjean and Hunting, 1977; Corlettet et 

al., 1979, Corlett and Manenica, 1980; Das and Gardy, 1983). Improved layout of 

workspace enables the operators to use their hands safely avoiding awkward postures 

and thereby prevents the operators from serious injury problem (Kee, 2002). Therefore, 

prediction of good posture within comfort workspace becomes a useful way for 

enhancing the productivity by minimizing operator’s stress and injury (Lim and Hoffmann, 

1997).  

Most of the posture prediction model relies on analytical and heuristic approaches to 

provide feasible postures with redundant degrees of freedom and infinite feasible 

movements of arm (Jung et al., 1992; Kee et al., 1992). Although inverse kinematic (IK) 

approach finds joint angle by considering the hand position in space but the complexity 

of the IK solution increases with higher redundancy due to increase in number of DOF. 

Increase in DOF leads to non-linear equations and singularity problem resulting in 

indeterminate situation for posture (joint angles) evaluation. Since analytical, geometric, 

iterative or algebraic method finds difficulty to provide complex IK solutions, the present 

work proposes two artificial intelligence techniques to predict kinematic model of upper 

arm posture with a comfort work envelop. Least Squares Support Sector Machines 

(LSSVM) and Adaptive Neuro Fuzzy Inference System (ANFIS) enhance the model 

capabilities by providing an infinite number of postures for highly redundant hand. A 

kinematic model of human arm with seven degrees of freedom is considered to generate 

a three dimensional workspace around operator. In order to avoid the physical 
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constraint, an isocomfort joint angle range (Diffrient et al., 1985) is considered to 

determine the workspace. With the help of Indian anthropometric data for segment 

lengths, a forward kinematics (FK) model is employed to develop a relation between 

human comfort range of joint angles and the position of kinematic hand. Finally, a 

workspace is generated with possible positions of kinematic hand. Once the positions 

inside workspace (comfort work zone) obtained through FK solution, the model becomes 

trained through LSSVM and ANFIS for estimating the IK solution of a 7-DOF kinematic 

chain model (human arm model) to predict a comfort posture within the comfort work 

zone.  

 

6.2 Model description 

Posture of human arm is predicted  with a range of comfort joint angles and link 

parameters. Human arm consists of three parts such as upper arm, lower arm and hand. 

Although upper body can generate infinite postures with many degrees of freedom of 

different parts, present work focuses only on arm for simplifying the model analysis. The 

model considers a three link system of a kinematic chain with seven degrees of freedom 

such as three glenohumeral joint, two elbow joints and two wrist joints.The glenohumeral 

joint (also known as shoulder joint) is formed by the humeral head and the glenoid cavity 

of the scapula. In general, it has three rotational degrees of freedom such as flexion and 

extension, abduction and adduction and internal and external rotation. The elbow joint 

can be regarded as a hinge joint with two degrees of freedom such as flexion-extension 

and pronation-supination. Finally, wrist, a pivot joint, has two degrees of freedom like 

flexion-extension and wrist deviation. Although the effect of spine develops discomfort 

and fatigue, the spine and other parts are assumed to perform no joints movements. The 

joints in the model are connected through links. Three links describe the segment 

lengths such as upper arm, lower arm and hand. In order to carry out the kinematic 

analysis, different segment measurements are selected from previous literature (Kaur et 

al., 2011, Singh et al., 2013). The coordinate frames at each joint are defined by Denavit-

Hartenberg (D-H) convention. Four parameters (referred as D-H parameters) describe 

the relative motion between two coordinate frames.  
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Kinematic analysis 

 

 

Figure 6.1 Human model arm representation(a) human arm(b)Coordinate frame 

Figure 6.1 shows three coordinate frames correspnding to three joints with seven 

degrees of freedom. For the present study,  D-H notation is adopted to describe 

kinematic model of human upper arm. 

6.2.1 Denavit -Hartenberg Representation 

D-H notation uses a 4 × 4 homogeneous transformation matrix representing each 

link's coordinate system at the joint with respect to the adjacent link's coordinate system. 

A kinematic chain model carries n joints (from 1 to n) with 1n   links (from 0 to n, 

starting from base) and each joint is placed between two links. By this convention, joint i 

connects link 1i  to link i. It is considered that the location of the joint i to be fixed with 

respect to link 1i  . Each link of the kinematic chain model is rigidly attached to a 

coordinate frame for performing the kinematics analysis.  

 

Lua 

Lfa 

Lh 

Lc 



 

103 
 

 

Figure 6.2 The denavit Hartenberg notation (Mittal and Nagrath, 2007) 

Figure 6.2 shows two length parameters ( ia and id ) and two angle parameters ( i

and i ). For a joint, the parameters, ia , i , and di are constant and determined by the 

geometry of the link.  ia  is the distance between axes 1iz  and zi (link length), id  is the 

distance between axes 1ix  and ix measured along axis 1iz  (joint distance). i  is the 

angle between axes 1iz  and iz ,measured about axis ix  (twist angle). i is the angle 

between axes 1ix  and ix ,measured about axis 1iz   (joint angle). As the joint moves, 

only the parameter i  becomes the variable that represents the joint angular 

displacement. With these four parameters, the transformation matrix, 
1i

iT 
can be 

obtained showing the position and orientation of each coordinate frame with respect to 

previous frame with its position and orientation.  

An overview of all the parameters, used to describe the kinematic arm model, is 

presented in Table 6.1. 
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Table 6.1 D-H parameters of human arm model 

   d  a    

Link 1 
















 
1

2
 0 0 0 

Link 2 
















 
2

2

 0 0 







 

2

 

Link 3 
















 
3

2

 -lua 0 







 

2

 

Link 4  4  0 0 







 


2

 

Link 5  5  -Ifa 0 







 

2

 

Link 6 
















 
6

2

 0 0 







 

2
 

Link 7  7  0 -Ih 







 

2

 

The segment lengths are collected from (Murray, 2004). Where, Lc, the length of 

clavicle i.e. the distance from sternum to the shoulder, Lua, the length of upper arm, Lfa, 

the length of lower arm and Lh, the length of hand. The joint angle range for different 

comfort level (comfort zone) is derived from previous estimation (Diffrient et al., 1985) 

and provided in Table 6.2.  

Table 6.2 Joint angle range for comfort zone (Diffrient et al., 1985) 

Joint Posture Comfort Zone different comfort range 

Shoulder extension-flexion -150—350 

Shoulder adduction-abduction -250-00 

Shoulder rotation -200-450 

Elbow flexion 150-1000 

Elbow supination-pronation -900—300 

Wrist ulnar radial deviation -150-50 

Wrist extension-flexion -250-450 

 

D-H notation of the joint is introduced with some convention to solve this matrix. The 

convention and steps for D-H notation is presented as follows.The following steps based 

on D-H notation are used for deriving the forward kinematics. 

Step 1: Base frame is assigned. Set the origin anywhere on the axisz0  . The 0x  and 0y  

axes  are chosen conveniently to form a right-hand frame. 

Step 2: The origin io   is located, where the common normal to iz and 1iz  intersects at iz . 

If iz  intersects 1iz  , ia located at this intersection. If iz  and 1iz   are parallel, locate io in 

any convenient position along iz . 
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Step 3: ix  is considered along the common normal between 1iz  and iz  through io , or in 

the direction normal to i1i zz   plane if 1iz  and iz  intersect. 

Step 4: iy  is established to complete a right-hand frame. 

Step 5: The end-effector frame is assigned as nnnn zyxo . Assuming the nth joint is 

revolute, set azn   along the direction 1nz  . The origin no  is taken conveniently along nz  

direction, preferably at the centre of the gripper or at the tip of any tool that the 

manipulator may be carrying. 

Step 6: All the link parameters iiii ,d,a,   are tabulated. 

Step 7: The homogeneous transformation matrices iA is determined by substituting the 

parameters from table 6.1  in equation 6.1. 

Step 8: Then the global transformation matrix End

0 T  is formed using equation 6.2. This 

then gives the position and orientation of the frame expressed in base coordinates. 

In this convention, each homogeneous transformation matrixis iA represented as a 

product of four basic transformations:  

 

           
           

   


























l000

dcossin0

sinasincoscoscossin

cosasinsincossincos

A
iii

iiiiiii

iiiiiii

i

                     (6.1)                                         

Where four quantities iiii ,d,a,  are parameter associated with link i and joint j. The 

four parameters iiii ,d,a,   in the above equation are generally given name as joint 

angle, link length, link offset, and link twist respectively.By substituting the D-H 

parameters from Table 6.2  in equation 6.1, the individual transformation matrices A1 to 

AEnd can be obtained and the global transformation matrix )T( End

0
from the first joint to 

the last joint of the 7-DOF Redundant manipulator  can be derived by multiplying all the 

individual transformation matrices. So, 

                                                             

1000

paon

paon

paon

AAAAAAAAT
zzzz

yyyy

xxxx

End7654321End

0




















                 (6.2) 
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Where, zyx p,p,p
 
are the positions and )a,a,a( and ),o,o,o(),n,n,n( zyxzyxzyx  

are the 

orientations of the end-effector. The orientation and position of the end-effector can be 

calculated in terms of joint angles and the D-H parameters of the manipulator are shown 

in following equations:

            
                                                                                cssccccsssccs        

ccssscscsccsscsssccccsscccn

2121421214376

21213576572121421214357567x





                                                                                                                                      

(6.3) 

           

                                                                         sscccsccssccs        

sccsscscscssccssccsccsscccn

2121421214376

21213576572121421214357567y





                                                                                                                                      

(6.4) 

543753743673367356754367z scssccssssccssccsccscsccn 

              (6.5)                            

         
                                                                                              ccsssss        

csscssscccccscssccccssscco

2121356

2121421214356212142121436x





(6.6)           

         

                                                                                               sccssss        

ssccssccscccssscccsccsscco

2121356

2121421214356212142121436y





 

(6.7)                                    

                      ccsscsccsso 6436355436z                                                             (6.8)     

 

           

                                                                                                                                cssccccssscss       

ccssscccsscsscsssccccscccsa

2121421214376

21213576572121421214357567x





                                                                                                                                     (6.9)              
 

           

                                                                                                                                 sscccsccsscss       

sccssccscsssccssccsccscccsa

2121421214367

21213575672121421214357567y





                                                                                                                                    (6.10)

 
                     cccssccsssscscsccscsa 75353473467356754367z             (6.11)                          

             
                                               csscdcssccccssscdssd        

ccssscccssdcsscsssccccscccsdp

21213212142121435677

2121357657721214212143575677x



   

                                                                                                                                    (6.12)                                                                                                                                                  
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             

                                                                                                                            sscccsccsscdssd       

sccsscccssdssccssccscccsccsdp

212142121435677

2121357657721214212143755677y





                                                                                                                                   (6.13) 

                            dssdcccdccssdssssdccssdcccssdp 13453577473573467736577456377z 

                                                                                                                                   (6.14)
 

where )sin(s),cos(c iiii  . From equation (6.3)-(6.14), the position and orientation 

of the 7-DOF redundant manipulator can be obtained and the exact value of these 

equations can be calculated if all the joint angles and link parameters are given. This is 

the solution to the forward kinematics.  

6.3 Methods for determination of IK solutions 

This chapter investigates the use of two artificial intelligence techniques to produce 

the solution to the inverse kinematics problem for a three joints upper arm kinematic 

chain. 

6.3.1 LSSVM Architecture 

The basic formulation of the standard LSSVM (Suykens and Vandewalle, 1999). for 

function estimation is briefly described in this section. Consider a given training set of N 

data points  N

1kkk y,x


with input data N

k Rx   and output ryk  , where 
NR the N-

dimensional vector space and r is is the one-dimensional vector space. This study uses 

position in workspace as input (x) parameters of the LSSVM. The output of LSSVM is 

joint angle(y). 

Following regression model is used. 

b)x(w)x(y T  ,                                                                                                    (6.15) 

Where the nonlinear mapping (.) maps the input data into a higher dimensional feature 

space;
nRw ; rb ; w=an adjustable weight vector; b=the scalar threshold, 

The following optimization problem is formulated: 

Minimize: 



N

1t

2

k

T e
2

1
ww

2

1                                                                                    (6.16)                                                                                                      

subject to:    kk

T ebxW)x(y       k=1,……..,N                                               (6.17)                                                          

where, et is the error variable at time t, where ) (  is a nonlinear function mapping the 

input space into a higher dimensional space and   is the regulation constant. The 

Lagrange function can be obtained as  
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     
 


N

1i

N

1t

iii

T

i

2

i

T yebxwe
2

1
ww

2

1
,e,b,WL                                (6.18)                                               

where t are the Lagrange multipliers. The solution of the above Eq.(6.18) can be 

obtained by partially differentiating with respect to each variable 







 N

1k

kK )x(w0
w

L  







 N

1k

K 00
b

L  

kk

k

e0
e

L




    k=1,………,N 

  0yebxw0
L

kkk

T

K




    k=1,……..,N                                                  (6.19) 

When the variables w and e are removed, the equation can be rewritten as a linear 

function group 





























  y

0b

I1

10
1

N

T
                                                                                               (6.20) 

Where y=y1 …yN,  N1 ..,.........  and Mercer’s theorem (Smola et al. 1998; Vapnik, 

1998), is applied within the   matrix, 

     lkl

T

k x,xkxx  ,                                    k, l=1,…….N 

Where k (xk, xl) is the kernel function. Choosing 0  , ensures the matrix 













 I1

10
1

T

   is invertible. Then the analytical of  and b is given by 

 
  


















2

T

lklk
lk

2

xxxx
expx,xK                   k,l=1,……………N                           (6.21) 

Where  is the width of radial basis function. 

The resulting LSSVM model for joint angle prediction becomes then 

Joint angle=   bx,xk
N

1k

kK 


                                                                                    (6.22) 

The above described LSSVM has been adopted for prediction of joint angle 

6.3.2 ANFIS Architecture 

Previous chapter (chapter 3) presents the relevant methodology of ANFIS 

architecture. During training, a five layered ANFIS structure is constructed with one input, 

three hidden and one output. The Gaussian type of membership function (gaussmf) is 
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used for input and linear type function is used for output. The number of correct outputs 

is noted till the error is minimized.  

6.4 Results and discussions 

With the help of comfort joint angle range as comfort posture and segment length, 

the kinematic equations are solved and hence trajectory can be achieved by moving 

each joint gradually to the determined position. A comfort work zone can be created by 

using equation 6.12, 6.13 and 6.14.  Figure 6.4 shows the comfort work zone with hand 

reach positions (px,py and pz).  

 

 

Figure 6.3 Workspace for 7-DOF redundant manipulator showing human arm extremity 

As it is difficult to solve the nonlinear equation with the values of hand reach 

position(px,py and pz) in order to find out the comfort joint angles( 1 , 2 , 3 , 4 , 5 , 6

and 7 ), in the proposed approach consider LSSVM and ANFIS model to obtain an IK 

solutions. Hand reach position that obtained from the forward kinematic relations are 

considered as input for LSSVM and ANFIS model and posture of upper arm in terms of 

joint angle (extracted from literature) as output in order to predict an improved set of joint 

angles. A sample of input-output data are trained in order to predict 1 , 2 , 3 , 4 , 5 , 6

and 7 . Each of the networks carries seven different models with input px (input1), py 
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(input2) and pz. (input3) and output 1 , 2 , 3 , 4 , 5 , 6 and 7 respectively. In order to 

construct the model, dataset of 1600 training data and 400 data testing data was 

considered. Both ANFIS and LSSVM networks will be trained with position px,py and pz 

as inputs and corresponding joint angles theta1, theta2, theta3, theta4, theta5, theta6 

and theta7values as output. The matrix data1 contains the px,py and pz- 1  values to train 

the first network. Similarly, for second network will be trained with all position values as 

input and corresponding 2  value as output and so on. It has been seen that the 

predicted joint angle falls within the isocomfort joint angle range. It has been seen from 

table 6.3 that in both the model the root mean square error have potential values that 

indicate that this solution is accurate for individual data and may be useful for future 

posture prediction system.  Both model are able to map Cartesian coordinates of position 

point on comfort zone to healthy biomechanical configurations(joint angles).The surface 

plot in case of ANFIS as shown in figure.6.5 shows an uniform distribution of data and 

homogeneity in the training data. Therefore it has been confirmed that the solution is 

adequate for predicting a comfort posture with a healthy trajectory around the operator. 

Low residual value of LSSVM in comparison to ANFIS shows that LSSVM provides a 

better solution in comparison to ANFIS. In this study, the radial basis function is used as 

the kernel function of LSSVM. Figure 6.6 shows the residual for all seven angles which 

are nothing but the difference between the predicted output from the model and the 

actual output of joint angles obtained from literature. As the points are randomly spread 

around the horizontal axis, the prediction is found to be appropriate. Figure shows that 

the residual obtained from LSSVM model (red colour) are very close to the horizontal 

axis in comparison to the blue lines for ANFIS model which indicates LSSVM model 

shows less error in comparison to ANFIS model. 

 

 



 

111 
 

 

1  

 

2  

 

3  

 

4  

 

 

5  

 

6  

 



 

112 
 

 

7  

Figure 6.4 Surface plot for 1 , 2 , 3 , 4 , 5 , 6 , 7  

Table 6.3 Prediction comparison between LSSVM and ANFIS 

 ANFIS LSSVM 

Training (RMSE) Testing 
(RMSE) 

Training 
(RMSE) 

Testing 
(RMSE) 

1  
0.006416 0.335284 0.000156 0.067134 

2  
0.023065 0.20086 0.001387 0.015626 

3  
0.006504 0.555197 0.003414 0.033452 

4  
0.00158 0.591968 0.000818 0.234112 

5  
0.002328 0.418890 0.000899 0.095139 

6  
0.010064 1.14556 0.008165 0.332050 

2  
0.001673 0.2986661 0.000891 0.043887 
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Figure 6.5 Residual plot for 1 , 2 , 3 , 4 , 5 , 6 , 7 through LSSVM and ANFIS 

To ensure effective performance, the operator needs to work within a comfort work 

zone so that there is no interference during manual operation. Comfort posture also 

provides a healthy and safety work environment. In this study, an isocomfort joint posture 

has been considered from previous literature to create a comfort work zone. With the 

help of Indian anthropometric data and D-H notation, the proposed model helps to 

analytically generate three-dimensional isocomfort work zone by using forward 

kinematics for a range of isocomfort postures. Two intelligence techniques have been 

applied to predict comfort joint arm postures considering end position of hand in 

workspace.  

The results of this study may be generalized or justified to a larger extent by 

considering more degrees of freedom resulting in complex situation to the link system. 

Therefore, only the upper extremity is considered for the analysis. The results show that 

the predicted joint angles are found within the isocomfort range. No significant difference 

between actual and predicted joint is observed in both the techniques as the root mean 

square error has low values. Table 6.4 shows LSSVM and ANFIS based root mean 

square error (RMSE) results.  

6.5 Conclusions 

This study predicts the comfort joint angles for human arm in sitting and standing 

postures. The study develops an inverse kinematics solution for 7-DOF kinematic chain 

model using ANFIS and LSSVM. The difference in actual and predicted joint angle with 

ANFIS and LSSVM model for 7-DOF kinematic chain model clearly depicts that the 

proposed LSSVM method performs better as minimum RMSE error is observed. The 
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model is constructed considering hand end position as input and seven joint positions as 

output parameters in training and testing data with a smaller number of iteration steps. 

Hence, it is concluded that the trained LSSVM and ANFIS models can be utilized to 

solve complex, nonlinear and discontinuous kinematics equation of complex kinematic 

chain model for biomechanical studies in order to predict comfort work zone.  
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7.1 Introduction 

The present thesis involves detailed study on affective satisfaction of user, product’s 

functional performance and comfort of the user to enhance the design process of 

product/machine/equipment/component. Affective satisfaction of user deals with the 

issues related to product’s intangible characteristics that satisfy the users. Objective 

performance originates from the effectiveness of use whereas the comfort level of user is 

quantified through biomechanical and physiological perspective of human body during 

physical interaction with the product. Consideration of three criteria such as product 

performance in terms of usability, user satisfaction and comfort level generally enhances 

the design process. To deal with the complex operator-system interaction, the study 

outlines various approaches relevant to design phase of a product. The study also 

emphasizes on prediction of comfort level through biomechanical analysis of human 

body-product interaction. In order to meet the objectives, the methodology proposed 

here as follows:  

1. An integrated approach is established that deals with subjective and objective 

design criteria of product with ergonomic consideration. In order to deal with 

subjective feelings associated with product, a questionnaire survey has been 

conducted. Customer driven approaches like QFD and factor analysis are 

considered in order to establish the relation between user requirements and 

design elements. Intelligence technique like ANFIS develops a relation between 

design parameters and customer satisfaction. The approach is described with the 

help of an office chair design.  

2. The study also involves a biomechanical analysis as a measure of comfortness 

during physical interaction of user and product. To describe the biomechanical 

analysis, human-chair seat model with various parameters is considered as a 

case study. Present work develops a simple two-dimensional finite element 

model of human soft tissue with ischial tuberocity-seat with various seat material 

parameters, thicknesses of seat and different loading angle to predict stress at 

ischial tuberosity in order to provide guidelines to reduce occurrence of pressure 

ulcer. The analysis investigates maximum extent of stress in soft tissue muscle 

(at ischial tuberocity) on prolonged sitting in an office environment.  

3. The study carries out various possible ways to choose a suitable ergonomically 

design product with most usability factors (design criteria) among a number of 

conflicting criteria. 
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4. As awkward posture is always associated with a measure of discomfort, the 

analysis covers the prediction of comfort posture with design of comfort work 

zone in order to place all materials, tools and equipment within the work envelope 

so that they are easily accessible by the operators. 

7.2 Summary of findings 

 A novel integrated approach using statistical and artificial intelligence techniques 

has been proposed in this thesis to handle effectively subjective and objective 

design characteristics. Customers’ expectation from the product is extracted 

through a questionnaire survey. Data reduction technique like factor analysis has 

been applied to survey data to eliminate redundancy. The reduced customer 

requirements are translated into design characteristics using QFD. Through an 

artificial intelligence technique like adaptive neuro-fuzzy inference system, the 

nonlinear relationship between user satisfaction and design attributes can be 

successfully established. The prototype is compared with the data prescribed by 

Bureau of Indian Standard (BIS) for office chair. It is observed that some 

parameters are not within the range of BIS data. The variations are attributed to 

localization of sample data. 

 A numerical approach based on simple two dimensional finite element seat-soft 

tissue model is proposed in the thesis to provide guidelines for the designers for 

analyzing the behavior of interaction of soft human tissue and cushion material 

and estimates maximum stress beneath the bony structure (ischial tuberocity). It 

can be deduced that the size of the affected zone as well as the stress is much 

larger for a rigid seat as compared to soft cushion. The cushion having elastic 

modulus of 20 kPa and density 40 kg/m3 shows less stress distribution at ischial 

tuberosity in comparison to cushion having elastic modulus of 200 kPa and 

density 60 kg/m3. The effect of sitting posture (tilting posture) from 00 to 030  has 

also been analyzed to study the influence of postural change on maximum stress 

at ischial tuberocity. It has been observed that only a fraction of total vertical load 

acts on ischial tuberosity due to postural change because change of posture 

transfers the load to those regions of body other than ischial tuberosity. 

Therefore, the muscles lying below ischial tuberosity relieves stress by 

distributing the stress toward thighs and waist. The stress at ischial tuberosity 

goes on increasing with sitting time. However, the stress becomes constant after 
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an interval of one and half hours of continuous sitting but the intensity of load 

causes significant influence on cell damage. 

 The proposed MADM method in this work considers both subjective and objective 

weights of design attributes for selection of alternatives in an uncertain 

environment so that the decision maker facilitate with the objective information 

regarding the product as well as the uncertainity of human judgement on the 

product. In order to rank the alternatives with different weighting proportion, three 

MADM methods like TOPSIS, VIKOR and PROMETHEE have been used. In 

order to check the stability of ranking with respect to different weighted criteria, a 

sensitivity analysis has been carried out considering different proportion of 

attribute weights (subjective and objective). It is to be noted that the alternative 

designated as 2 is the first preference by all the methods even if the weighting 

proportion of subjective and objective weights vary.  

 The proposed kinematic model of human arm makes it possible to evaluate 

analytically comfort work zone satisfying a comfort posture. Human arm with 

seven degrees of freedom is considered to generate a three dimensional 

workspace around operator. In order to avoid the physical constraint, an 

isocomfort joint angle range (Diffrientet al., 1985) is considered to determine the 

workspace. As it is difficult to solve complex inverse kinematic equations, this 

chapter explores two artificial intelligence techniques such as LSSVM and ANFIS 

model to predict upper arm comfort posture under a standing/sitting condition 

satisfying comfort work zone. 

7.3 Contribution of research work 

 Providing a novel integrated approach using statistical and artificial intelligence 

techniques, current methodology manages subjective and objective design 

criteria for product development with ergonomic consideration and provides a 

guideline to adopt this approach in any design phase of any product. Through an 

artificial intelligence technique like adaptive neuro fuzzy inference system, the 

model is able to develop a nonlinear relationship between customer satisfaction 

and design attributes.  

 As the proposed design does not satisfy all prescribed limits regarding design 

elements of Bureau of Indian Standard (BIS), it has been suggested that the 

variations are attributed to localization of data collection. The standards should 
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be regularly reviewed and formulated in accordance with the technological 

development as well as localization effect of anthropometric parameters.  

 The numerical analysis considering simple 2D finite element formulation provides 

insight into the problem and prescribes guidelines to avoid suffering from 

pressure sore to some extent. It also suggests the ways to reduce the stress on 

bony prominence causing cell death of muscle tissue during prolonged sitting in 

an office environment. 

 Effect of changing posture suggests that change in posture transfers the load to 

those regions of body other than ischial tuberocity and relieves the muscles from 

the load below ischial tuberocity by distributing the stress towards thighs and 

waist. In order to make stress relaxed or reduce the direct load on fibers, either a 

postural change or a leisure time should be preferred after certain duration of 

sitting. It has been shown that use of right kind of foam for seat cushion and 

thickness can substantially reduce the stress level at ischial tuberosity. 

 A novel multi attribute decision making (MADM) approach is proposed in the 

present work to choose a suitable alternative (office chair) considering both 

subjective and objective weights for design attributes in an uncertain 

environment. 

 Sensitivity analysis shows that different weighting proportion for subjective and 

objective weights significantly influence in choosing the alternatives. It is to be 

noted that the alternative designated as 2 is the first preference by all the 

methods even if the weighting proportion of subjective and objective weights 

varies. The model demonstrates that the ranking of alternatives depends upon 

the weighting proportion of subjective and objective weights. However, different 

approaches lead to approximately same alternatives preference order for a given 

weighting proportions. 

 The kinematic analysis of upper extremities allows the operator to have comfort 

work zone within which possible posture can be accepted to enable the operator 

to use their hands safely to perform the task. The proposed LSSVM and ANFIS 

models can produce solution to complex inverse kinematics problem to suggest 

the joint angles to reach at specified locations within a safe work zone. 
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7.4 Limitations of study 

 The work has been limited to analyze only one performance i.e. sitting in office 

environment. 

 Although numerical analysis shows the stress within muscle decreases with 

proper cushion thickness and postural changes, this work considers a simple 2D 

model to provide guidelines for the designers and analyze behavior of interaction 

of soft human tissue and cushion material. The study can be improved 

considering a model with 3D formulation.  

 Contouring of the seat can potentially influence on pressure distribution at ischial 

tuberosity but this effect has not been considered in the present work. 

7.5 Scope of future research 

 The work can be extended to design of hand tools, machinery, vehicles and 

furniture with ergonomic consideration used in various work environments. 

 The numerical approach considered in this work may be extended to dynamic 

analysis where vibrational effect can be analyzed in a moving vehicle.  

 .Contouring of the seat can be considered to study its influence on pressure 

distribution at ischial tuberosity. 
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