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Abstract

Iris is one of the most reliable biometric trait used for human recognition due to

its stability and randomness. Typically, recognition concerns with the matching

of the features extracted from the iris regions. A feature extraction method can

be categorized as local or global, depending on the manner in which the features

are extracted from an image. In case of global features fail to represent details

of an image because, the computation is focused on the image as a whole. On the

contrary, local features are more precise and capable of representing the details of an

image as they are computed from specific regions of the image. In the conventional

approaches, the local features consider corners as keypoints, that may not always be

suitable for iris images.

Salient regions are visually pre-attentive distinct portions in an image and are

appropriate candidate for interest points. The thesis presents a salient keypoint

detector called Salient Point of Interest using Entropy (SPIE). Entropy from local

segments are used as the significant measure of saliency. In order to compute the

entropy value of such portions, an entropy map is generated. Scale invariance

property of the detector is achieved by constructing the scale-space for the input

image.

Generally local feature extraction methods suffer from high dimensionality.

Thus, they are computationally expensive and unsuitable for real-time application.

Some reduction techniques can be applied to decrease the feature size and increase

the computational speed. In this thesis, feature reduction is achieved by decreasing

the number of keypoints using density-based clustering. The proposed method

reduces keypoints efficiently, by grouping all the closely placed keypoints into one.

Each cluster is then represented by a keypoint with its scale and location, for which

an algorithm is presented. The proposed schemes are validated through publicly

available databases, which shows the superiority of the proposed ones over the

existing state-of-the-art methods.

Keywords: Iris biometrics, feature extraction, feature reduction, salient points, scale-space,

clustering.
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Chapter 1

Introduction

Biometrics is the science of recognizing the identity of an individual based on

physiological and behavioral characteristics of the subject. Automated biometrics

attempt to mimic a fundamental human attribute to distinguish and recognize other

people as individual and unique. This automation is achieved through a combination

of hardware and pattern recognition algorithms. Here, hardware implies to biometric

scanner like, fingerprint scanner in the case of fingerprint biometrics or iris scanner

in the case of iris biometrics. There is a long history of using distinguishing

marks for identification. From hand-impressions on cave walls and hand-written

signatures on documents to the measurement of unique patterns of Morse operators,

there has been longing to use and measure biometric identity [1]. The usage of

computers to identify people from their physical and behavioral attributes dates

back to the digital computer evolution of the 1960s. However, even after decades

of research and hundreds of projects the field of biometrics still remains fresh and

challenging. Worldwide over the past few years, there has been a marked increase

in both government and private sector interest in massive biometric deployments

for accelerating humanmachine interaction, efficiently delivering human services,

fighting identity fraud and even battling terrorism [2].

A generic biometric system operates by taking an input from an individual,

preprocess the input to find the region of interest, extract features, and authenticate

1



Introduction

the individual [3]. A biometric system usually has three operating modes: enrollment

mode, verification mode, and identification mode. Figure 1.1 illustrates the three

modes of biometric system. In enrollment mode, the feature from a subject

is extracted and stored in the database. During verification mode, a subject

is authenticated by comparing live query biometric template with the database

template of the individual whom the subject claims himself to be. The comparison in

this mode is a one-to-one process. In identification mode, the system takes live query

template from the subject and searches the entire database to find the best-match

template to identify the subject. The comparison in this mode is a one-to-many

process.

Due to tremendous need of security in an automated system, various biometric

traits like face, iris, fingerprint, gait, voice, face-thermograph, signature are key

areas of research. Observing underlying nature of the traits, two basic categories

can be identified as: Physiological (or passive) and Behavioral (or active) biometrics.

Physiological biometrics are based on direct measurement or data derived from

measurement of a part of the human body. A person is identified by his/her

face by another person. Fingerprint detection is one of the age-old methods used

for recognizing the authenticity of a person. However, iris pattern, retina tissue

pattern, palmprint geometry have evolved as leading physiological biometrics with

the evolve of automation of biometric recognition system. Behavioral characteristics

are the actions taken by a person. Behavioral biometrics, in turn, are based

on measurements of data derived from an action, and thereby indirectly measure

characteristics of the human body. Voice recognition, keystroke dynamics, and

online/offline signature are some leading behavioral biometric traits. To ensure

a trait to be able to serve as biometric token, it must satisfy following criteria:

• Distinctiveness or uniqueness: A biometric should have features that

allow high levels of discrimination in selecting any particular individual while

rejecting everyone else. The larger the number of people to be distinguished,

the more important this factor becomes.

2
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• Stability: Age, and perhaps accident or disease, may change a trait over a

period of time. A biometric should preserve enough features so that these

changes will have a minimal effect on the system’s ability to discriminate.

Stability may be of less significance where re-enrollment can be simply or

easily achieved, or where re-issue over shorter duration is legally required.

• Scalability: A biometric should be capable of being processed efficiently,

both at acquisition time and when it is searched in a database for

identification-based access. Scalability issues may be less of a concern for

verification-based access control systems than for large identification systems.

• Usability: A major basis for the adoption of biometrics is its convenience. If

a biometric is difficult or slow to use, it would probably not be adopted. There

is also a question of acceptance of the trait by some social or religious sect.

• Inclusiveness: An extremely high proportion of the population should be

measurable, particularly for large-scale identity systems.

• Insensitivity: Changes in the external environment (e.g., lighting,

temperature) within reasonable boundaries should not cause system failures

due to malfunction of the trait.

• Vulnerability: It should be difficult to create a fake prosthetic biometric

(known as spoofing), or to steal and use a detached one.

• Privacy: Ideally the permission of the owner of a biometric should need to

be sought before acquisition of the trait. A trait should not be easily captured

without a person’s notice or permission.

Iris is a unique trait which satisfies all the aforesaid criteria. In this thesis we

have investigated on iris biometric system.

3
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Figure 1.1: Modes of biometric authentication

4



Chapter 1 Introduction

Eyelid

Pupillary region

Iris and its Texture

Sclera

Eyelashes

Outer Iris boundary

Inner Iris boundary

Figure 1.2: Anatomy of human eye

1.1 Iris Biometrics

The anatomy of human eye is depicted in Figure 1.2. Pupil is the darkest circular

shaped area in the eye image. Pupil controls the amount of light entering the

eye by dilation and contraction. Iris is an internal organ that is well protected

against damage and scour by a highly transparent membrane (the cornea). This

distinguishes it from fingerprint, which easily wears off with age and makes it

difficult to recognize. Most significant features (viz. freckles, coronas, stripes,

furrows, crypts) in the eye image are in the iris. It has a fine texture, determined

randomly during embryonic gestation and is unique. Even genetically identical

individuals have completely independent iris textures. Thus making it ideal for

human recognition with high confidence. The randomness of the flowery pattern in

iris is unique for every individual and hence can work as a token for authenticating

an individual. An unimplemented conceptual design of an iris biometric system is

first proposed by Leonard Flom and Aran Safir [4]. The first prototype unit for

biometric system was developed in 1995 by L. Flom, A. Safir, and J. Daugman.

Further, research establishes iris to be a candidate for reliable and non-cooperative

biometric authentication. Iris, due to its stability and ease of acquiring, plays a

5
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significant role among all the biometric traits. The general block diagram of iris

biometric system is shown in Figure 1.3.

Recent authentication systems need secure, fast, and accurate computing for

which iris pattern is found to be suitable. Furthermore iris image can be captured

without active cooperation of the subject. This marks the suitability of iris

recognition also for criminal identification. Iris biometric system involves challenges

of automating the system to identify the region of interest, finding useful feature(s)

from the region of interest, matching two features when a query comes, maintaining

feature sets corresponding to every enrolled subject in the database etc. All these

segments are independent research areas and forms an authentication system when

deployed together.

1.2 Motivation

Analyzing the texture of the iris has been the most popular area of research in iris

biometrics [5]. The global feature extraction approaches fail to work under change

6



Chapter 1 Introduction

in rotation, scaling, illumination, and viewpoint of two iris images. In last few

decades, good amount of works have been done for recognition; however, iris based

identification is still in its infancy and needs careful attention. Efficient extraction

and reduction of the local features are the challenges within the field of computer

vision, especially for real-time applications. The main objectives of any feature

extraction technique are, high efficiency and less computation time.

Scale Invariant Feature Transform (SIFT) [6] and Speeded-Up Robust Feature

(SURF) [7] are most popular local feature extraction techniques known till date.

They are widely used in Object Recognition and Content Based Image Retrieval

(CBIR), because of their robustness and repeatability. Even though they are used

in iris recognition [8–12], they suffer from two of the major shortcomings. Firstly,

they consider corners in an image as keypoints. Secondly, their descriptors do not

take texture information into account. An iris image predominantly has random

patterns. It is rich in texture and does not have prominent corners unlike objects.

Hence corners cannot be considered as keypoints in iris images, and they can be best

described through texture analysis.

A keypoint denotes to a point of “interest” in an image. Edges and corners can

be considered as interest point and region around them as a feature. Edge points

and corners are the locations within the image where rapid changes in intensity take

place. In other words, these are the points where there is high randomness. It is very

well known that entropy is a measure of randomness. So, all points within an image

having entropy greater than some threshold are interest points. Thus making them

a suitable candidate for keypoints. Another reason for applying the entropy-measure

for detection is that, it is used to measure the strength of detected keypoints [13]. A

feature point descriptor with greater entropy value implies more information content

in the descriptor, thus making it more discriminant. And it is very well known that,

a more discriminative descriptors lead to better recognition.

One of the major advantages of local feature is its superior accuracy, but at the

same time it suffers from high dimensionality. Such high dimensional features are

7
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time consuming, thus making them unsuitable for real-time applications. Hence,

in addition to feature extraction, reduction techniques can be applied to further

decrease the size of the feature and increase the speed of the authentication system.

However, reduction of feature may lead to fall in accuracy. Therefore, the system

has to tradeoff between time and accuracy, depending on the system requirements.

There are two approaches of reducing the feature size: (a) dimensionality reduction

and (b) keypoint reduction. In this thesis, we have suggested a feature reduction

scheme for dense descriptors like Phase Intensive Local Pattern (PILP) [14], where

the second approach is an obvious choice. Here, groups of closely placed keyoints

are clustered and each represented by single keypoint.

1.3 Iris Databases

This section discusses in detail about the databases used in all experiments relevant

to the research in this thesis. The proposed system has been tested on two publicly

available databases, viz. BATH and CASIAv3. Database available from BATH

University [15] includes images from 50 subjects. For each subject, 20 images from

each eye are captured. Database from Chinese Academy of Sciences’ Institute of

Automation contains eyes acquired in an indoor environment. CASIA version 3

(CASIAv3) [16] is a superset of CASIAv1. In version 3, most of the images have

been captured in two sessions with an interval of at least one month. CASIAv3

database comprises 16213 iris images from 819 eyes. Figure 1.4 presents sample

images from each iris database.

1.4 Performance Measures

The match score generated after testing with user given template and database

template is deterministic (0:imposter, and 1:genuine) in case of knowledge based or

token based authentication system. It is a process of matching two alphanumeric

8
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(a)

(b)

Figure 1.4: Sample iris images from: (a) BATH and (b) CASIAv3 databases
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strings (e.g. password submitted by the subject and corresponding password stored

in database). However the matching of biometric templates are more complex

due to the reason that n-dimensional biometric templates have no sorted ordering.

The second challenge in this domain is that the templates of query and database

image do not match exactly due to noise. Hence the matching problem is more of

pattern matching. The matching module in the biometric system is responsible for

generating a score when a query template and a database template are given as input

to it. The generated score is a numerical value signifying extent to which the query

template resembles the database template. Hence the system needs a threshold to

decide the genuinity of the query template. Any score above the decided threshold is

concluded as an genuine match. Likewise any score below the threshold is concluded

as a imposter match. If the threshold is chosen very high, the system would lead

some genuine matches to be judged as imposter, which is otherwise known as False

Rejection. On the contrary, if the threshold is chosen very low, the system would

lead some imposter matches to be judged as genuine or False Acceptance. The choice

of threshold value is therefore bears profound significance.

10



Chapter 1 Introduction

Similarity scores or genuine-scores are generated when two biometric templates

of the same subject are compared. This type of score is called genuine-score or

intra-class variation. The set of feature chosen should be such that intra-class

variation is small. Likewise when two biometric templates of two different subjects

are compared, inter-class variation score (imposter-score) is generated. The values of

imposter-scores should be high enough to be discriminating from the genuine-scores.

However, the distribution of genuine-scores and imposter-scores are not mutually

exclusive in practical scenarios; rather, they are overlapped. While recognition,

the scores that exceed a chosen threshold value (τ), results in false acceptance.

The genuine score that falls below τ results in false rejection. Figure 1.5 shows

the representation of few performance measures. The commonly used measures to

evaluate the performance of biometric systems are:

• False Acceptance Rate (FAR): FAR is the frequency of fraudulent access

to imposters claiming identity [17]. This statistic is used to measure biometric

performance when operating in the verification mode. A false accept occurs

when the query template of an individual is incorrectly matched to existing

biometric template of another individual.

• False Rejection Rate (FRR): FRR is the frequency of rejections relative

to people who should be correctly verified. This statistics is used to measure

biometric performance when operating in the verification mode. A false reject

occurs when an individual is not matched correctly to his/her own existing

biometric template.

• Equal Error Rate (EER): ERR is the point where FAR is equal to FRR.

In general, the lower the equal error rate value, the higher the accuracy of the

biometric system. Note, however, that most operational systems are not set

to operate at the equal error rate, so the measure’s true usefulness is limited

to comparing biometric system performance. EER is sometimes referred to as

the Crossover Error Rate.

11



Chapter 1 Introduction

• Genuine Acceptance Rate (GAR): GAR is the fraction of genuine scores

exceeding the threshold τ . It is defined as:

GAR = 1− FRR (1.1)

• Receiver Operating Characteristic (ROC) Curve: ROC curve depicts

the dependence of FAR with GAR for change in the value of threshold. The

curve is plotted using linear, logarithmic or semi-logarithmic scales. ROC can

also be represented by plotting FRR against FAR for change in the threshold

value.

1.5 Contribution in the Thesis

In this thesis there are two major contributions as follows:

Feature Extraction: Salient Points of Interest using Entropy (SPIE):

A keypoint detection scheme using entropy is proposed specifically for textured

images like iris. SPIE detects salient keypoints from the textured region in iris of an

individual for efficient feature extraction. Salient regions are visually pre-attentive

distinct portions in an image. Entropy from local segments within an image is

used as the significant measure of saliency. To know the entropy value of such

portions, an entropy map is generated. Salient keypoint detection is performed

using SPIE, and subsequently each point is represented using Speeded-Up Robust

Feature (SURF) descriptor. The similarity score is obtained using nearest neighbor

distance ratio. This is further discussed in detail in the Chapter 2 of the thesis.

Feature Reduction Scheme using Density-based Clustering:

A scheme is suggested to reduce the number of keypoints detected by a keypoint

detector. Density-based clustering is applied to group the keypoints together;

those are placed very close to each other. Each cluster of keypoints can be then

12
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represented by a single keypoint. Each cluster along with the noise points forms

the new set of keypoints. SURF is then used to describe these keypoints and the

similarity score is obtained using nearest neighbor distance ratio. Details of the

above are presented in the Chapter 3 of the thesis.

The last chapter of the thesis depicts the analytical remarks to overall

achievements and limitations of all the proposed works, concluding with scope for

further research work in this domain.
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Chapter 2

Feature Extraction: Salient Points

of Interest using Entropy (SPIE)

The very beginning and most substantial step in pattern recognition is feature

extraction. It is required to transform the image to some reduced feature space

for the efficient exercise of any image processing operation. A feature extraction

method can be categorized as local or global, depending on the manner in which the

features are extracted from an image. One of the most widely used global feature

in iris recognition is Gabor filter based feature, proposed by John Daugman [18].

There are many notable work in global feature [18–38] extraction for iris recognition.

However, global features fail to represent details of an image as they are computed

over the image as a whole. On the contrary, local features are more precise and

capable of representing the details of an image as they are computed from specific

regions of the image. Such regions can be identified around some unique points

in the image, known as interest points or keypoints and the feature extracted from

these regions are known as keypoint descriptor. Thus, in any local feature extraction

technique, keypoint detection and keypoint description are the two important steps.

Figure 2.1 shows the general steps involved in the process of local feature extraction

for iris image.
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Eye image
Iris boundary

detection

Annular iris

segmentation
Keypoint

detection

Keypoint

description

Figure 2.1: Local feature extraction for iris image

Scale Invariant Feature Transform (SIFT) [39] and Speeded-Up Robust Feature

(SURF) [7] are the two most popular local feature extraction technique known

till date. They are widely used in object recognition and Content Based Image

Retrieval (CBIR), because of their robustness and repeatability. Even though they

are used in iris recognition [10, 11], they suffer from a few major shortcomings;

such as, they consider only corners as keypoints and their descriptors do not take

texture information into account. So an efficient local feature extraction technique

is required, to make use of the random patterns present in iris. Alternatively, some

salient regions in the image can be considered as keypoints.

The suggested iris recognition scheme adopts local feature extraction technique,

so as to explore the rich texture information in the iris. A keypoint detection

method is introduced and various popular feature descriptors are used to find suitable

feature space to explicitly describe the iris texture. The objective of the proposed

detector is to unearth the salient points in the iris texture. Conventional salient

point detectors, compute keypoints solely at the given resolution and thus overlook

the scale parameter. By representing the image at multiple scales, a detector can

achieve scale invariance. Even though the proposed method embraces the multi-scale

theory; however, defers in the manner of its usage.

This chapter is organized as follows. Few notable related work in keypoint

detection are presented in Section 2.1. Proposed salient keypoint detection method

is described in Section 2.2 and feature matching is discussed in Section 2.3. In

Section 2.4, the experimental results are provided. Finally, the summary is presented

at the end of this chapter.
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2.1 Related Work

Early developments within the field of local keypoint detectors can be found in

the work of Moravec [40]. His method tries to detect visible objects by reverting

regions with high local directional variance. A local window is slightly sifted in

various directions in the image and results in the average change of image intensities.

This value gives the directional variance, and the method of computing these values

is popularly known as Moravec operator. In the year 1988, Harris and Stephens

developed Harris detector [41]. They noted that Moravec’s corner detector can be

closely related to the local auto-correlation function. This function identifies the edge

and corner regions in an image. Moreover, it helps in determining the response of

an edge or corner by taking trace and determinant into consideration. This detector

is rotation-invariant; yet it is not scale-invariant. Harris-Laplace detector [42]

developed during early 1990s, applies Harris’s detector in a multi-scale image to

achieve scale invariance. The modified auto-correlation matrix is adaptable to scaling

changes, to make it invariant to variation in image resolution. The inconvenience of

identifying a requisite and stable scale for features such as blobs, corners, edges, and

ridges remained a challenge. Lindeberg [43] investigated same as a problem of scale

selection. In the year 1994, he came up with the method of automatic scale selection,

which was accomplished by finding local extrema over the scale-space. He also

suggests the Gaussian function is the only scale-space kernel. Later in 2004, David

Lowe proposed Scale Invariant Feature Transform (SIFT) detector, which is invariant

to image translation, scaling, and rotation. Like Lindeberg, he also used Gaussian

kernel in the construction of scale-space. Approximation of Laplacian-of-Gaussian

(LoG) to Difference-of-Gaussian (DoG) [39] is the groundbreaking work by Lowe.

The keypoints at maxima of the scale-space, applied with DoG function are selected.

As a result, the preferred keypoints hold a high level of efficiency and achieve rotation

invariance [44]. A comprehensive list of some of the popular keypoints detector is

given below.

16



Chapter 2 Feature Extraction: Salient Points of Interest using Entropy

1981: Moravecs operator [40]

– Directional variance

– Used for object detection

1988: Harris corner detector [41]

– Auto-correlation function - eigen values

– Rotation invariant

1993: Harris-Laplacian detector [42]

– Harris points + Laplacian at different scales

– Scale invariant

1997: Smallest Univalue Segment Assimilating Nucleus (SUSAN) [45]

– Based on self dissimilarity

– Some resemblance with DoG features

1998: Laplacian of Gaussian (LoG) [43]

– Multi-scale representation

– Automatic scale selection

1999: Scale Invariant Feature Transform (SIFT) [6]

– Approximated LoG

– Invariant

2003: Scale & Affine Invariant Interest Point Detectors [46]

– Multi-scale representation Harris detector

– Invariant to scale and affine

2004: Affine Invariant Salient Region Detector [47]

– Entropy as saliency measure

– Repeatability under intra-class variability

2006: Features from Accelerated Segment Test (FAST) [48]

– Machine learning based corner detector

– It outperforms previous detectors
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2008: Speeded-Up Robust Feature (SURF) [7]

– Fast Hassian matrix approximation

– Robust and fast

2008: Center Surround Extremas (CenSurE) [49]

– Simplified center-surround filters to approximate the Laplacian

– Claims to be better scale-space detectors

2009: Speeded Up Surround Extrema (SUSurE) [50]

– Modified CenSurE

– Accelerated the process by skipping the computation of the filter response

2010: Adaptive and Generic Accelerated Segment Test (AGAST) [51]

– Generates optimal decision tree for FAST using adaptive and generic
segment test

– Improved FAST

2011: Binary Robust Invariant Scalable Keypoints (BRISK) [52]

– Multi-scale AGAST

– Lower computational cost

2.2 Salient Keypoint Detection

The primary step in any local feature extraction scheme requires identification of

keypoints. A keypoint can be defined as a point of interest in an image. Edges and

corners can be contemplated as interest point and region around them as a feature.

These are the points in the image where rapid changes in intensities are recorded.

In other words, these are the points where there is high randomness. It is very well

known that entropy is a measure of randomness. So, all points within an image

having higher entropy value are candidates to be interest points. Thus entropy is a

suitable measure for the detection of keypoints. Moreover, a feature descriptor with

larger entropy value generally implies higher information content and thus more

18



Chapter 2 Feature Extraction: Salient Points of Interest using Entropy

discriminatory. And it is very well known that more discriminative descriptors lead

to better recognition.

Entropy has been used to detect salient regions in an image [47, 53, 54]. The

term saliency is extensively used in cognitive psychology and computer vision. A

salient region in an image refers to pre-attentively distinct region. In terms of

image processing, salient region is a region that “stand-out” with respect to its

neighborhood. Hence, a salient point in an image is literally almost unique point.

Extensive studies on visual saliency for object recognition can be found in many

recent works [47, 54–56]. Few noteworthy points are stated below.

• Salient points are local in nature.

• Local information alone are sufficient to describe the image contents.

• Performance of local descriptors using saliency for object recognition is

comparatively better.

• Use of entropy measures to identify regions of saliency in an image [47,53,54].

• Salient points have higher entropy value [53].

2.2.1 Salient Point Detection using Entropy Map

Following are the major stages of computation used to detect salient points in an

image:

• Construction of Scale-Space: For the given input image, the scale-space

is constructed by convolving the image with variable-scale Gaussian filter as

shown in Figure 2.2. The scale invariance property of a keypoint detector can

be achieved with automatic scale selection in the Gaussian scale-space. The

scale-space for the input image is constructed by smoothening it successively

with Gaussian [43,57]. It is defined as a function L(x, y, σ), which is generated
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Figure 2.2: Scale-space construction and the corresponding entropy images

by convolving a variable-scale Gaussian filter G(x, y, σ), with the input image

I(x, y):

L(x, y, σ) = G(x, y, σ) ∗ I (x, y) (2.1)

where ∗ is the convolution operation in x and y, and

G(x, y, σ) =
1

2πσ2
e−(x

2+y2)/2σ2

(2.2)

• Computation of Entropy Map: Keypoint can be considered as a point

where there is high randomness; or in other words, high value of entropy. In

order to identify such points, the entropy value is a prerequisite for each point.

However, the challenge is in computing entropy for a point. To tackle this,

an alternate representation of an image, known as entropy map, is introduced

in this chapter. For each point in an image, entropy is computed for a small

region around it. As a result, each point in the entropy map gives the entropy

value for the corresponding point in the original image. Such entropy maps

are computed for each blurred image in the scale-space.

Considering different probabilities between states, entropy gives a general

uncertainty measure [58]. This measure is popularly known as Shannon’s

entropy. For the given events occurring with probability Pi, the Shannon’s
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entropy is described as

H =

m
∑

i=1

Pi log
1

Pi
= −

m
∑

i=1

Pi logPi (2.3)

Similarly, Shannon’s entropy can be evaluated for an image by considering the

probabilities of the gray level distributions in the image. Hence the entropy of

a gray image can be computed using,

H(R) = −

255
∑

k=0

Pk(R)log2Pk(R) (2.4)

Here H(R) indicates entropy for the region R in gray image, and Pk means

probabilities of the frequency of histogram in the region R. Entropy map

E(x, y, σ) is computed for the given blurred image G(x, y, σ) in the scale-space,

where the value of each point (x, y) in E(x, y, σ) is the entropy value computed

for a window around corresponding pixel (x, y) in G(x, y, σ). This map can

be viewed as an image, termed as entropy image. Figure 2.4 shows the

Difference-of-Gaussian (DoG) and entropy image for Lena and Cameraman

images. Entropy image is shown in gray and jet color-map available in

MATLAB, for better visual realization. While computing entropy map, it

is important to determine the appropriate window size, such that the entropy

value computed has certain significance. The window size depends upon the

value of σ of the Gaussian filter with which the blurred image is generated [7].

For each blurred image in the scale-space, respective entropy map E(x, y, σ) is

generated using the Algorithm 2.1 and an example is depicted in Figure 2.3.
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Figure 2.3: Computation of entropy map for a region in iris strip

Algorithm 2.1 Generate Entropy Map

Input: G: Gaussian Blurred Image, σ: Sigma value of the Gaussian kernel.
Output: Emap: Entropy Map
1: for each point (i, j) in G do
2: R← wSize× wSize sized window

3: Emap(i, j,R)← −
255
∑

k=0

Pk(R)log2Pk(R)

4: end for
5: return Emap

• Keypoint Localization: Finally, local maxima are detected in the

scale-space. Each candidate point is compared with its 3×3 neighborhood

in same scale, the scales above, and below, as shown in Figure 2.5. A point

is selected only if its value is larger in comparison to all of its neighbors.

Subsequently, if the selected point is greater than some threshold, then it is

accepted as a stable keypoint.
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Figure 2.5: Maxima detection from the entropy image in the scale-space
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2.3 Matching

After keypoints are detected, they are described using a fast and robust local

descriptor, Speeded-Up Robust Feature (SURF) [7]. SURF features are matched

using nearest neighbor distance ratio (NNDR) for Euclidean distance between them,

given by:

NNDR =
d1(u, v)

d2(u, v)
(2.5)

Where, d(u, v) is the Euclidean distance defined as,

d(u, v) =

(

∑

i

(ui − vi)
2

)1/2

(2.6)

In (2.5), d1, d2 are the two nearest distances while matching. Smaller is the ratio,

better will be the match.

2.4 Experimental Evaluation

To evaluate the performance of the proposed keypoint detection technique, SURF

descriptor is used and compared with few popular feature extraction techniques. All

methods are tested on publicly available BATH and CASIAv3 databases. Local

features are extracted from the segmented annular iris images [9]. Figure 2.6

demonstrates the SPIE keypoints with their scales and orientations. Accuracies

for various methods are calculated from the ROC curve and are given in Table 2.1.

It may be observed that the proposed SPIE has a higher accuracy for both the

databases. Figure 2.7 depicts the ROC curve for each method. The distribution

of genuine and impostor similarity scores for the proposed method is shown in the

Figure 2.8. Here, the similarity score is the NNDR ratio computed for any genuine

or impostor pair of irises.
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Figure 2.6: Keypoints with scale and orientation using proposed SPIE (sample iris
images from CASIAv3)

Table 2.1: Performance measures for SIFT, SURF and proposed method

Databases → BATH CASIAv3
Approaches ↓ ACC FAR FRR ACC FAR FRR
SIFT 89.82 6.29 17.32 92.59 4.03 11.63
SURF 92.39 4.35 10.32 94.72 4.69 6.73
Proposed SPIE 94.23 3.48 7.69 96.33 2.85 5.23

2.5 Summary

In this chapter, a salient keypoint detection method, SPIE is proposed, particularly

for textured iris images. It is compared with two state-of-the-art local features [6,7],

and the accuracy is found to be 94.23% for BATH and 96.33% for CASIAv3. For both

the databases the accuracy obtained is more in comparison to other two methods

with least false acceptance and rejection rate. This escalation in result is because the

proposed method is capable of unearthing salient keypoints present in the textured

iris image.
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Figure 2.7: ROC curve for SIFT, SURF and proposed SPIE
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Chapter 3

Feature Reduction Scheme using

Density-based Clustering

Local features are generally parameterized in very high dimensional spaces. This

confines the execution of feature matching systems in terms of speed. Reduction can

be achieved, either by compressing the dimension of feature vector or by reducing the

number of detected keypoints. The proposed method reduces keypoints efficiently,

by grouping all the closely placed keypoints into one. The overall feature reduction

and extraction scheme is depicted in Figure 3.1. Each steps are discussed in details

in the following subsections.

Keypoint Detection
Keypoints Clustering

using DBSCAN

Unique Keypoint

Representation

SURF Descriptors

Assignment

Figure 3.1: Block diagram for keypoint reduction of local features

This chapter is organized as follows. Few notable related works in feature

reduction are presented in Section 3.1. Suggested reduction scheme for SPIE is

described in Section 3.2 and in Section 3.3, reduction scheme for PILP is discussed.

Finally, the summary is presented at the end of this chapter.
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3.1 Related Work

One of the early work in the direction of reduction of local features is PCA-SIFT [59].

It is proposed by Ke et al. for the dimensionality reduction of SIFT descriptor. It

projects the high dimensional feature vector of SIFT onto a lower dimension using

Principal Component Analysis (PCA). It reduces the descriptor and also able to

reduce the presence of high frequency noise in it. Hua and his fellow researchers at

Microsoft Research Lab, observed PCA-SIFT to be less discriminative [60]. They

suggested a similar reduction technique using Fisher analysis (LDA), that separate

data well in the feature sub-space.

In a different approach to the priors, Alitappeh et al. reduced SIFT descriptor

by applying Subtractive Clustering [61]. They decreased the size of features by

removing keypoints those possessed high degrees of similarity with others. These

remaining keypoints were more distinctive than the omitted ones. In another work

Rudinac et al. reduced the number of keypoints of local features in two stages [62].

In first stage; they rejected points close in a specified neighborhood using a spatial

criterion followed by selecting strong keypoints with high entropy. Yuasa et al.

proposed a measure for robustness and distinctiveness of the local feature based on

diverse density [63]. Based on this measure, they identified keypoints as strong or

weak. Stronger keypoints lead to better matching.

In this chapter, we attempt to reduce the keypoints generated by SPIE and

PILP [14] and compared their performances.

3.2 Feature Reduction for Salient Points of

Interest using Entropy (SPIE)

Initially, keypoints are extracted using SPIE detector and their location and scale

information are recorded. Subsequently, a clustering technique is utilized to reduce

the number of keypoints. Among all clustering algorithm, density-based is best

29



Chapter 3 Feature Reduction Scheme using Density-based Clustering

suited as it do not assume cluster to have a fixed number of cluster nor any particular

shape. Another reason for using density-based clustering is that it allows noise points

that do not belong to any of the cluster. Such noise points are isolated keypoints

that are discriminative and do not need to be part of any cluster.

3.2.1 Clustering of keypoints using DBSCAN

Cluster can be defined as a task of grouping similar points (data) together. Typically,

within a cluster the density of points is considerably high in comparison to its

neighbor. Density-based spatial clustering of applications with noise (DBSCAN)

identify clusters by checking the ε-neighborhood of each object in the dataset. Any

such object within the ε-neighborhood is said to be density-reachable. It then

iteratively collects directly density-reachable objects from these core objects, which

may involve the merging of a new density-reachable cluster. The process terminates

when no new object can be added to any cluster.

Following are few important definitions related to DBSCAN [64]:

Definition 3.2.1 (ε-neighborhood) Let D be a database, then ε-neighborhood of

a point p, denoted by Nε(p), is defined by

Nε(p) = {q ∈ D|dist(p, q) ≤ ε}

Definition 3.2.2 (direct density-reachable) A point p is directly

density-reachable from a point q if

1.p ∈ Nε(q)

2. |Nε(q)| ≥ minPts

Figure 3.2 illustrates the core and border points, and direct density-reachable

points in a cluster.

Definition 3.2.3 (density-reachable) A point p is density-reachable from a point
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q, if there is a chain of points p1, . . . , pn, where, p1 = q and pn = p such that pi+1 is

directly density-reachable from pi.

Definition 3.2.4 (density-connected) A point p is density-connected to a point

q, if there is a point o such that both, p and q are density-reachable from o.

Figure 3.3 depicts the concept of density-reachability and density-connectivity.

Definition 3.2.5 (cluster) Let D be a database of points. A cluster C is an

non-empty subset of D satisfying the following conditions:

1. ∀p, q ∈ C and q is density-reachable from p, then q ∈ C.

2. ∀p, q ∈ C: p is density-connected to q.

Definition 3.2.6 (noise) Let C1, . . . , Ck be the clusters of database D, a noise is

defined as the set of points in D not belonging to any cluster,

noise = {p ∈ D|∀i : p /∈ Ci}

Figure 3.2: DBSCAN: (a) core and border points (b) direct density-reachability

Figure 3.3: DBSCAN: (a) density-reachability (b) density-connectivity
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Algorithm 3.1 DBSCAN

Input: D, eps, minPts
Output: C and Noise: set of cluster and noise points respectively
1: initialize C ← 0 and Noise← 0
2: while P ∈ D and P.visited 6= TRUE do
3: P.visited← TRUE

4: NeighborP ts← epsNeighborhood(P, eps)
5: if sizeof(NeighborP ts) < minPts then
6: Noise← Noise ∪ P
7: else
8: expandCluster(P,NeighborP ts, C, eps,minP ts)
9: end if
10: end while
11: return [C,Noise]

Algorithm 3.2 expandCluster

Input: P,NeighborP ts, C, eps,minP ts
Output: C
1: C ← C ∪ P
2: for each point P ′ in NeighborP ts do
3: if P ′.visited == FALSE then
4: P ′.visited← TRUE

5: NeighborP ts′ ← epsNeighborhood(P ′, eps)
6: if sizeof(NeighborP ts′) >= minPts then
7: NeighborP ts← NeighborP ts ∪NeighborP ts′

8: end if
9: end if
10: if P ′ 6∈ C then
11: C ← C ∪ P ′

12: end if
13: end for

Algorithm 3.1 and 3.2 states the algorithm for DBSCAN. Here, an arbitrary point

is selected among the points that have not been visited before and is marked visited.

Its ε-neighborhood is retrieved using epsNeighborhood method. If it contains

sufficiently many points, then a cluster formation begins. Otherwise, this point

is considered to be a noise. Now all point within the epsNeighborhood added to the

selected point as its own epsNeighborhood if they are dense enough. This procedure
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proceeds until the density-connected cluster is totally found. Subsequently, the

algorithm starts over again for a new unvisited point.

We have used DBSCAN to bundle up closely placed keypoints those basically are

parts of an individual larger feature. Thus intuitively, they can be represented by a

unique keypoint and there by assisting in reducing the number of keypoints naturally

and efficiently. Figure 3.4 illustrates the formation of clusters from keypoints

detected using DBSCAN in a iris patch.

Clusters

Isolated Keypoints

Cluster Centroid

Segmented

Iris

IRIS PATCH
Cluster

Isolated Keypoints

Cluster Centroid

Cluster Member

Figure 3.4: Cluster formation from keypoints in a iris patch

3.2.2 Unique keypoint representation

Each cluster obtained from DBSCAN along with noise points, forms the new set of

reduced keypoints. Noise points are actually the isolated keypoints and are included

directly to the new set of keypoints. However, each cluster requires to be represented

by a new keypoint. Any keypoint, requires its location and scale information to

describe it using a local descriptor. The geometric centroid of the cluster is assigned
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as the new location for the keypoint. Whereas, the scale can be determined using

the scale-space theory [43, 57, 65]. The scale-space is constructed by convolving an

image with variable scale Gaussian kernels. For each scale, there is a specific size of

the Gaussian filter [7]. In other words, if the size of the window is known, then the

scale can be determined as they are related. Based on this hypothesis, we determine

the scale from the diameter of the cluster using the Algorithm 3.3 and depicted in

Figure 3.5. Here, the diameter of the cluster is identical to the window size of the

feature formed by the cluster in the scale-space.

Definition 3.2.7 (Window size) The window size of a keypoint is the size of the

mask taken around a keypoint to represent its scale at which the feature has been

detected.

Definition 3.2.8 (Cluster diameter) The diameter of the cluster is the twice of

the sum of the maximum possible distance between the centroid to any keypoint within

the cluster and half of the window size of that keypoint.

dn
window	around	the	detected

keypoint

orientation	and	size	of	the

keypoint	representing	the

feature

   : distance	between	the	centroid

						and	the	keypoint	within	the	cluster

   : cluster	center	(	centroid	)

   : window	size

++

Figure 3.5: Determination of scale (window size) for a cluster of keypoints.
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Algorithm 3.3 Cluster keypoint representation

Input: C := {C1, C2, . . . , Cn} : Clusters of keypoints
where, Ci := {kp1, kp2, . . . , kpm}

Output: KP [Scale, LOC] := {KP1, KP2, . . . , KPn} : new set of keypoints
1: for each cluster Ci in C do
2: centi := centroid(Ci)
3: dmax := max

j
[distance(centi, kpj)]

4: φi := 2×
[

dmax +
φkpj

2

]

5: LOCi := centi
6: Scalei := α.φi

7: KPi := [Scalei, LOCi]
8: end for
9: return KP

3.2.3 Experimental Evaluation

To evaluate the performance, all methods are tested on publicly available BATH

and CASIAv3 databases. Accuracy for various methods are calculated from the

ROC curve and are mentioned in the Table 3.1. Performance of the reduced SPIE

has been found inferior compared to the state-of-the-art detectors: SIFT [6] and

SURF [7]. Empirically, it is validated that keypoints produced by SPIE are optimal.

Hence, there is no scope for further reductions. Figure 3.6 depicts the ROC curve

for each method. The distribution of genuine and impostor scores for the proposed

reduction scheme for SPIE is shown in the Figure 3.7. The time comparison for

various methods are shown in the Table 3.2. The proposed reduction method

(SPIER) is also compared with a similar reduction scheme using k-means clustering

(SPIER(k-means)). Here, k value is set to three-quarters of the total number of

keypoints. Figure 3.8 shows the effect of k on accuracy of the reduction scheme.

Table 3.1: Performance of various local features

Databases → BATH CASIAv3
Approaches ↓ ACC FAR FRR ACC FAR FRR
SIFT 89.82 6.29 17.32 92.59 4.03 11.63
SURF 92.39 4.35 10.32 94.72 4.69 6.73
SPIE 94.23 3.48 7.69 96.33 2.85 5.23
SPIER 85.33 5.72 11.55 87.39 5.33 7.15
SPIER (k-means) 69.36 10.94 19.70 73.54 8.71 17.75
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(a) BATH Database (b) CASIAv3 Database

Figure 3.6: ROC curve for various local features

Table 3.2: Time (in seconds) comparison for various local features

Databases → BATH CASIAv3
Approaches ↓ Average

#keypoints
Average
time
(extraction)

Average
time
(matching)

Average
#keypoints

Average
time
(extraction)

Average
time
(matching)

SIFT 131.47 0.38 3.94 364.07 1.13 10.92
SURF 13.60 0.16 0.40 62.03 0.36 1.86
SPIE 10.23 1.53 0.36 54.74 4.93 1.64
SPIER 5.69 1.58 0.29 19.17 4.97 1.03
SPIER (k-means) 7.53 1.55 0.26 42.35 4.95 1.26

3.3 Feature Reduction for Phase Intensive Local

Pattern (PILP)

To validate the suggested feature reduction scheme, we tried it on an existing feature

known as Phase Intensive Local Pattern (PILP). It is capable of extracting high

dimensional subtle local features existing in iris region. It detects a sufficiently

large number of densely packed keypoints, giving an excellent recognition accuracy.

However, it is computationally very expensive. The large number of detected

keypoints causes the extraction and recognition process considerably slow.
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(a) BATH Database
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Figure 3.7: Score distribution for reduced SPIE

3.3.1 Keypoints Detection using PILP

Keypoint detection through Phase Intensive Local Pattern (PILP) [14] is obtained

with a variable size filter depending on different scales. These scales are varied from

3 to 9 at a step of 2. Correspondingly the filters’ size also increases from 3 × 3 to
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Figure 3.8: Effect of k on accuracy

9 × 9. At a given scale ∆, the PIP at a pixel (xc, yc) with respect to its ∆2 − 1

neighbors considering a phase-tilt φ can be derived using (3.1). For each scale,

the value of φ is varied from 0 to 7π
4

with an leap of π
4
, resulting eight filters as

shown in Figure 3.9. It is found that only four out of these filters are unique, as

shown in Figure 3.10. Finally for each pixel location in the convolved image for each

scale, local extrema are identified as potential keypoints. Now selecting a suitable

threshold value, high enough to eliminate the edge features. Figure 3.11 illustrates

the whole PILP keypoint detection method and summarized in Algorithm 3.4.

PILP (xc, yc,∆, φ) =

∆2−1
∑

n=1

s(in, ic).2
sin(tan−1( yn−yc

xn−xc
)−φ)

∆2−1
∑

n=1

2sin(tan
−1( yn−yc

xn−xc
)−φ)

=

∆2−1
∑

n=1















s(in − ic).















2sin(tan
−1( yn−yc

xn−xc
)−φ)

∆2−1
∑

n=1

2sin(tan
−1( yn−yc

xn−xc
)−φ)





























(3.1)

where, s(in, ic) = 1 if in ≥ ic and s(in, ic) = 0 if in < ic
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Figure 3.9: PILP filter bank [14]

Figure 3.10: Intensity representation of the PILP filter bank [14]

3.3.2 Feature Reduction using Density-based Clustering

Keypoints detected from PILP are reduced using the proposed reduction scheme

previously discussed in Section 3.2.

3.3.3 Feature Descriptor

Authors of the PILP feature applied SIFT descriptor to represent their keypoints,

which suffers from high dimensionality and longer execution time. Speeded-up
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Algorithm 3.4 Keypoint Extraction PILP

Input: I: Original image; F3, F5, F7, F9: Filter banks
Output: K: Extracted keypoints from I
1: for ∆ := 3 to 9 do
2: K∆ ≡ Φ
3: for i := 0 to 3π/4 do
4: I∆,iπ/4 ← I ⊕ f∆,iπ/4 ⊕ s
5: i← i+ π/4
6: end for
7: for i := 0 to 3π/4 do
8: for each pixel (x, y) in I∆,[i mod 4]π/4 do
9: if I∆,[i mod 4]π/4(x, y) is extrema among its neighbours in I∆,[i mod 4]π/4,

I∆,[(i−1) mod 4]π/4, and I∆,[(i+1) mod 4]π/4 then
10: K∆ ← K∆ ∪ (x, y)
11: i← i+ π/4
12: end if
13: end for
14: end for
15: ∆← ∆+ 2
16: end for
17: K ← K3 ∪K5 ∪K7 ∪K9

18: return K
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Figure 3.11: PILP keypoint extraction method [14]

Robust Feature (SURF) [7] is much faster and low dimensional feature compared to

Scale Invariant Feature Transform(SIFT) [39], and with almost same accuracy due

to its distinctiveness and repeatability. SURF uses only 64 dimensions compared

to SIFT using 128 dimensional vector. This reduces feature computation time and

allows quick matching with increased robustness simultaneously. A circular window

is constructed around every detected keypoint and orientation is estimated using

Haar Wavelet responses to have invariance to rotation. Further, SURF descriptors

are obtained by taking a rectangular window around every detected keypoint in the

direction of orientation. The windows are split into 44 sub regions and Haar wavelet

responses extracted in horizontal and vertical direction are summed up. The wavelet

responses are summed up along with the absolute values to find the polarity of image

intensity changes. Thus summing up the descriptor vectors from all 44 sub-regions,

feature descriptor of length 64 is obtained. The descriptor vector of length 64 for

each interest point forms feature vector.
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3.3.4 Experimental Evaluation

To evaluate the performance, all methods are tested on publicly available BATH

and CASIAv3 databases. To assess the performance of the proposed extraction and

reduction techniques, accuracy for various methods are calculated from the ROC

curve and are mentioned in the Table 3.3. Figure 3.12 depicts the ROC curve for

each method. The distribution of genuine and impostor scores for the proposed

reduction scheme for PILP is shown in the Figure 3.13. The time comparison

for various methods are shown in the Table 3.4. The proposed reduction method

(PILPR) is also compared with a similar reduction scheme using k-means clustering

(PILPR(k-means)). Here, k value is set to three-quarters of the total number of

keypoints.

(a) BATH Database (b) CASIAv3 Database

Figure 3.12: ROC curve for various local features

3.4 Summary

In this chapter, feature reductions of SPIE and PILP are done using the suggested

reduction scheme and studied. For both detectors, number of keypoints and time
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Table 3.3: Performance of various local features

Databases → BATH CASIAv3
Approaches ↓ ACC FAR FRR ACC FAR FRR
SIFT 89.82 6.29 17.32 92.59 4.03 11.63
SURF 92.39 4.35 10.32 94.72 4.69 6.73
SPIE 94.23 3.48 7.69 96.33 2.85 5.23
SPIER 85.33 5.72 11.55 87.39 5.33 7.15
SPIER (k-means) 69.36 10.94 19.70 73.54 8.71 17.75
PILP 97.55 3.11 6.75 98.34 1.68 2.23
PILPR 96.23 2.39 4.63 97.68 1.25 1.96
PILPR (k-means) 72.31 9.45 18.24 76.63 7.56 15.81

Table 3.4: Time (in seconds) comparison for various local features

Databases → BATH CASIAv3
Approaches ↓ Average

#keypoints
Average
time
(extraction)

Average
time
(matching)

Average
#keypoints

Average
time
(extraction)

Average
time
(matching)

SIFT 131.47 0.38 3.94 364.07 1.13 10.92
SURF 13.60 0.16 0.40 62.03 0.36 1.86
SPIE 10.23 1.53 0.36 54.74 4.93 1.64
SPIER 5.69 1.58 0.29 19.17 4.97 1.03
SPIER (k-means) 7.53 1.55 0.26 42.35 4.95 1.26
PILP 512.23 1.72 15.36 1526.55 5.17 45.79
PILPR 124.83 1.77 3.74 351.83 5.46 10.55
PILPR (k-means) 382.46 1.74 11.46 1141.89 5.28 33.64

reduced dramatically. However, the accuracy of reduced SPIE fell considerably as

the number of decreased keypoints was too low. The suggested scheme applies

density-based clustering to reduce the number of keypoints, and is found suitable

for dense keypoint detector like PILP. Here, the number of keypoints and time

reduced significantly, with a slight fall in accuracy. From the results it has been

found that the average feature extraction time for the reduced PILP is 3.74 secs,

which is roughly one-fifth of the actual PILP. The accuracy is found to be 96.23%

for BATH and 97.68% for CASIAv3.
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(a) BATH Database
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Figure 3.13: Score distribution for reduced PILP
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Chapter 4

Conclusions and Future Work

This thesis proposes two schemes; one for the keypoint detection and another

for the keypoint reduction of the local features for iris biometrics. The first

contribution deals with the salient keypoint detection using local entropy measures

in the scale-space. Traditional local feature detectors consider corners as the point

of interest; however, iris images are rich in texture. Thus salient points are the

unpretentious choices for interest point detection. The proposed SPIE detector,

identifies salient regions by measuring entropy of each points in the scale-space.

Those points with higher entropy value in their neighborhood are considered as

candidate keypoints. To evaluate its performance, experiments are conducted on

the publicly available BATH and CASIAv3 iris databases, and their results are

compared with the state-of-the-art SIFT and SURF features. The proposed method

outperforms with achieving the overall accuracies of 94% and 96% for BATH and

CASIAv3 databases respectively.

The second contribution is made to suggest a local feature reduction scheme

in which an attempt is made to decrease the number of keypoints using clustering

technique. The idea behind the proposed approach is to group the closely placed

keypoints which are part of a larger feature and thereby reducing the number of

keypoints. Density-based clustering (DBSCAN) is the most appropriate for such

grouping situations. Initially, the keypoints are detected and are grouped using
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DBSCAN. Each group of keypoints is then represented as a single keypoint for

which an algorithm is also discussed. Keypoints are detected using the proposed

SPIE detector; however, results are unsatisfactory. The main cause for this fall

in performance is that the reduced number of keypoints is very low and loses

its discriminative property. Therefore, the reduction scheme is quite appropriate

for dense keypoint detector like PILP. It is capable of detecting large number of

densely packed keypoints, giving an excellent recognition accuracy. Experiments

are performed, and results prove that the suggested reduction scheme operates well

with accuracies of 96% and 97% for BATH and CASIAv3 databases respectively.

Additionally, there is a significant reduction in number of keypoints as well as

computational time.

To conclude this thesis, the proposed schemes have been critically analyzed,

and few limitations are noted. The proposed techniques involve the usage of

existing state-of-the-art local descriptor like SIFT and SURF. Alternatively, a new

descriptor can be designed using texture analysis, which would better describe the

iris regions. Further, an efficient matching technique can be developed, using better

data-structure like kd-tree or hashing techniques.
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