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ABSTRACT 

 

Alumina, being a ceramic material, is very hard and strong, is a well-known bioinert 

ceramics, useful for many implant applications. But strong atomic bonding results in poor 

machinability in alumina, which is a useful and required property for implants as the shape 

and dimensional accuracy & criticality are very strict. Hence being a poorly machinable 

material wide applicability of alumina as implant material is restricted. 

In the present work, two different grades (C and R) of commercial grade high pure alumina is 

studied for its machinability (drilling character) by incorporating a weak interphase material, 

rare earth phosphates (REP`s), namely lanthanum phosphate (LaPO4) and yttrium phosphate 

(YPO4). Variation of REP was studied between 10 – 50wt. % for both the aluminas. Both the 

phosphates were stable and found to remain inert (no reaction with alumina) on sintering upto 

1600
o
C, making a true composite character of the alumina-REP sintered compositions. 

Microstructural studies showed well distributed alumina and rare earth phosphates grains 

after sintering. All the sintered samples were found to be drillable for all the condition. Only 

a threshold value of REP content was observed at 1600
o
C for the higher reactive alumina. 

Biological studies showed positive results for all the compositions studied. CAl2O3 with 

30wt. % REP content sintered at 1600
o
C was found to be machinable with a densification of 

>85% and strength >150MPa. 
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CHAPTER 1 

Introduction 



 

1.1 Ceramic Materials 

Ceramic materials defined as inorganic, non-metallic compounds of a metal or a non-metal. 

Ceramic materials may be crystalline or non-crystalline. They are formed by the action of 

heat and subsequent cooling. Clay is one of the earliest materials used to produce ceramics, 

as pottery, but many different ceramic materials are used in domestic, industrial and building 

products. Ceramic materials tend to be strong, brittle, chemically inert, and non-conductors of 

heat and electricity, but their properties vary widely. For example, porcelain is extensively 

used to make electrical insulators but some ceramic compounds act as superconductors. Fig. 

1.1 – Fig. 1.2 shows the classifications and applications of ceramic material. 
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 Fig. 1.1: Broad Classifications of Ceramics [1] 
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1.1.1 Properties of Ceramics 

 

1. High hardness, electrical and thermal insulating, chemical stability and high melting 

temperatures. 

2. Brittle, virtually no ductility can cause problems in both processing and performance of 

ceramic products. 

3. Some ceramics is translucent, window glass (based on silica) being the clearest example. 

 

1.1.2. Alumina ceramics  

Alumina ceramic is one of the most desirable ceramic for engineering work. Alumina or 

aluminium oxide is a chemical compound of aluminium and oxygen with the chemical 

formula Al2O3. It usually occurs in its crystalline polymorphic phase α-Al2O3, in which it 

composes the mineral corundum. Al2O3 is significant in its use to produce aluminium metal, 

as abrasive material because of its hardness, and as a refractory material due to the high 

melting point.  

 

Alumina ceramics are white in color but may vary to different shades depending on the 

impurities content in them. The color may also be due to the sintering additives. Many 

industries commercially produce different ranges of highly pure alumina ceramics in the 

range of 96% – 99.9% purity for various industrial applications [2]. 
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Fig. 1.2: Applications of Advance Ceramic Materials [1] 
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1.1.3. Characteristics of Alumina ceramic 

1. Good strength and stiffness. 

2. Good hardness and wear resistance. 

3. Good corrosion resistance. 

4. Good thermal stability. 

5. Excellent dielectric properties. 

1.1.4 Applications of Alumina Ceramic 

1. Medical Prostheses. 

2. Electronic Substrates. 

3. Thermocouple tubes. 

4. Refractories. 

5. Wear components. 

6. Electrical insulators. 

7. Sealing rings. 

 

1.2 Machinable Ceramics 

Most of the ceramic components have complex shapes and require a good tolerance and 

surface finish. Such characteristics are usually achieved by machining, which is both costly 

and potentially damaging to the strength of the component. Machining is emerging as an 

inevitable requirement for flexible use of advanced ceramics, especially for structural 

ceramics. However, the extremely high hardness and brittleness of ceramics make 

conventional machining very difficult or even impossible. In some cases (especially optical 

and electronic applications), machining damage may be so intrusive as to necessitate 

additional polishing operations [3]. In this context, the machining may be seen as a major 

limiting step in ceramics manufacturing. 

 

In past few years, many researchers have been focused on the improvement of ceramic 

machinability [4-6]. There are two methods that used for improving the machinability of 

ceramic materials. One method is to introduce a weak interface or layered structured material 

in the matrix to facilitate crack deflection, where phase and porosity distribution in three-

dimension are controlled and optimized [7-8]. The other method is the structure design 
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method, where the machinability of ceramics is optimized by adjusting the distribution of 

phase and porosity [8]. 

 

The most popular ceramic based machinable materials are machinable glass-ceramics, 

consisting of finely dispersed mica platelets in a glass matrix, can be cut and drilled using 

conventional metal-working tools. The ease of cutting derives from the cleavage of the mica 

crystals beneath the cutting tool, and material removal by linking of the microcrack. These 

materials are used in a variety of applications requiring their high-temperature properties, 

high hardness, electrical or thermal insulation, or dielectric properties, combined with the 

convenience of machining. However, their high-temperature use is limited by softening of the 

glass phase or coarsening of the crystallites, usually at temperatures above 800°C [9-10].  

Interest in monazite ceramics during the eighties was due to its high temperature stability, 

high melting point (> 1900°C) greater than that of alumina (Al2O3) and low thermal 

conductivity and diffusivity [11]. After that in mid-nineties search for high temperature, 

oxidation resistant and weakly bonded interface materials for ceramic composites had also 

ended up in monazite ceramics, especially rare earth phosphates La, Ce, Y [12]. Due to the 

identical thermal expansion coefficients of Al2O3 and LaPO4 their composites were widely 

investigated and were found to be chemically inert. 

 

1.3 Biomaterials 
 

In recent years, many definitions have been developed for the term “Biomaterials”. The 

consensus developed by experts in this field is the following: biomaterials (or biomedical 

materials) are defined as synthetic or natural materials used to replace parts of living system 

or to function in intimate contact with living tissue [13]. A biomaterial is a substance that has 

been engineered to take a form which, alone or as part of a system, is used to direct, by 

control of interactions with components of living systems, the course of any therapeutic or 

diagnostic procedure, in human or veterinary medicine [14]. Biomaterials are intended to 

interface with biological systems to evaluate, treat, augment, or replacement of any tissue, 

organ or function of the body and are now used in a number of different applications 

throughout the body [15-16]. The significant difference of biomaterials from other classes of 

materials is their ability to remain in a biological environment without damaging the 

surroundings and without being hurt in that process.  
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Biomaterials are solely associated with the health care domain and must have an interface 

with tissue or tissues components [17]. 

 

Significant advancements in the development of medical applications have occurred in last 

few years, and innovation, and use of ceramic materials for skeletal repair and reconstruction 

is a major one [15]. The revolution occurred in ceramic to repair and reconstruct the damaged 

or diseased parts of the body [18]. When ceramics entered in bio-medical field a new class of 

materials, namely, “Bioceramics” is created. Ceramic materials can be classified as bioinert, 

bioactive and bioresorbable. Bioinert ceramics such as alumina have high compressive and 

bending strength and better biocompatibility than metals. Therefore, alumina is used for 

osteosynthetic devices (alumina monocrystal) or to fabricate bone and joint prosthetic in the 

1980`s [19] and due to its bio inertness it shows low reactivity with good mechanical feature 

(little wear and stability). The most popular applications are in ortho prosthetic joints, and it 

has proven to be very effective. Dental also uses this material proposed to achieve aesthetic 

and reliability of dental repair [20]. 

 

1.4 Composite Materials  
 

Composite materials define that the working elements that can consider both the structural 

form and composition of the material constituents follows. A composite material will be 

substantial framework made out of a mixture or mix of two or more macro-constituents 

varying in structure and material arrangement and that are insoluble in one another [21].  

 

The principle of composites states that it can be constructed of any grouping of two or more 

materials such as metallic, organic, or inorganic. While the possible material combinations in 

composites are almost unrestricted, the constituent forms are more limited. Real constituent 

structure is utilized as parts of composite material are filaments, particles, lamina or layer and 

networks. The lattice is the body component, serving to encase the composite and provide for 

it is mass structure. The filaments, particles, lamina, and fillers are the structural element, and 

they focus the interior structure of the composites. By and large, yet not, they are the added 

substance stage. Fig. 1.3 shows the composite material morphology. 
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1.4.1 Types of Composites 
 

The nature and the structure of composites, a working material can be made. A few order 

frameworks have been utilized, including characterization (1) by fundamental material mix, 

e.g. metal-natural or metal-inorganic; (2) by mass material blend, e.g. network frameworks or 

overlays; (3) by conveyance of the constituents, e.g. persistent or intermittent and (4) by 

capacities, e.g. electrical or structural. The order framework primarily utilized is focused on 

the type of the fundamental constituents. This gives five general classes of composites:  

 

1. Fiber composites made out of fiber with or without a matrix.  

2. Flake composites, composed of flat flakes with or without a matrix.  

3. Particulate composites consisting of particles with or without a matrix.  

4. Filled (or skeletal) composites, made out of a ceaseless skeletal framework supplied by a 

second material.  

5. Laminar composites composed of layer or laminar constituent.  

 

The fiber type composites have evoked the most interest among engineers concerned with 

structural applications. Initially, most work is done with strong, stiff fibers of solid, circular 

cross section in a much weaker, more flexible matrix. Then development work disclosed the 

particular advantage offered by metal and ceramic fibers. In structural applications, flakes 

appear to provide several advantages over fibers.  

Fig. 1.3: Morphology of Composite Material 
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For example, flake composites containing parallel flakes have a higher theoretical modulus 

than fiber composites and can be packed closer and with fewer voids. Compared with fibers, 

flakes are relatively inexpensive and can handled in batch quantitates. 

 

Particulate composites have an additive constituent that is essentially one or two dimensional 

and macroscopic. Particulate composites differ from the fiber, and flake types in the 

distribution of the additives constituent are usually random rather than controlled. In the filled 

composites, there is a continuous 3D structural matrix, infiltrated or impregnated with a 

second phase filler material. The filler also has a 3D shape determined by the void form. The 

matrix itself may be an ordered honeycomb, a group cell, or a random sponge-like network of 

open pores. Laminar or layered composites have been made up of films or sheets, and they 

are easier to design, produce, standardize and control than another type of composites. The 

most successful application of the laminar principle has been the development of sandwich 

materials. Composites materials have many characteristics that differ from those of more 

conventional engineering materials. Most common construction materials are homogenous 

and isotropic. In contrast, composite materials are often both in homogeneous (or 

heterogeneous) and non-isotropic (or anisotropic). Fig. 1.4 shows the different types of 

composites. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Filled Composite 

Fiber Composite 

Flake Composite 
Laminar Composite 

Fig. 1.4: Different Types of Composites 
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1.4.2 Alumina and Its Composites 
 

Alumina is widely used as structural materials because of their high melting point and 

excellent mechanical properties, electrical resistance and chemical durability [22]. The 

application of alumina ranges from high-speed cutting tools, dental implants, electrical and 

thermal insulators, wear resistance parts and coatings. Alumina-based nano-sized ceramic 

composites will demonstrate a novel and favorable properties in comparison with their micro-

sized crystalline counterparts [23]. Alumina forms composite with other materials ranging 

from metals, inter-metallic, to ceramic. The starting materials for composites are carefully 

selected such that even if a reaction occurs between them, at least two phases must be distinct 

in the material and the interaction of these phases in the matrix would not affect the 

properties of the matrix. The starting material for making of composites are carefully selected 

such that even if a reaction occurs between them, at least two phase must be distinct in the 

material and the interaction of these phases matrix would not affect the properties of the 

composites. 

 
 

1.5 Alumina-Rare Earth Phosphate (REP) Composite  
 

In mid-nineties, search for high temperature, oxidation resistant and weakly bonded interface 

material for ceramics has resulted in rare earth phosphate compounds like lanthanum 

phosphate (LaPO4) [24]. Due to identical thermal expansion coefficient of Al2O3 and LaPO4, 

their composites were widely investigated and were found to be chemically inert and 

machinable. The melting temperature of rare earth phosphates is above 2000°C. Therefore 

REP’s are suitable to the fabricate the composites with Al2O3 

 

Lanthanum phosphate (LaPO4) in the Al2O3 composite is quite stable, and no reaction occurs 

between the two phase up to 1600°C as per the provided ratio of La:P. According to Morgan 

et al., LaPO4 is stable in an alumina matrix, and phases are separated up to 1600°C, and 

sintered products are machinable also. LaPO4-Al2O3 weak interface is reported to deflect the 

cracks and thus improves machinability [24]. Yttrium phosphate (YPO4) in the Al2O3 based 

composites also has the similar nature as that of lanthanum phosphate. It is chemically and 

thermally stable and has no reaction with alumina even at high temperatures. It remains as a 

separate entity in a mixture of alumina and provides machinable character to alumina ceramic 

due to the phenomenon of weak interface [24].  
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Flexible use of advanced ceramics is limited due to high hardness that makes conventional 

machining very difficult or even impossible. Reduced hardness leads to good machinability. 

It has reported that lanthanum phosphate has low hardness of 4.2 GPa [25], which is close to 

that of machinable mica containing glass-ceramic (3 GPa) [26] and layered ternary 

compounds Ti3SiC2 (4-5 GPa) [26]. Many researchers have dedicated their research work to 

impart machinability in ceramics [12, 15, 16, 20, 24] [28-31]. 
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Part A: Bioceramic Era and Alumina 

Part B: Machinability 

Part C: Rare Earth Phosphates and Ceramic Machinability 

Part D: Biological Studies 

Part E: Motivation and Objective of the Work 

 

CHAPTER 2 

Literature Review 



Part A 

Bioceramic Era 

2.1 The Bioceramics Era 

In the last few decades treatment procedure through reconstructive surgeries has changed 

significantly with the introduction of bioceramics. Bioceramics are a particular class of 

ceramics that perform tailored functional/biological/chemical activities of the living system 

[1]. During the past 30-40 years, there has been a significant advancement in the development 

of medical materials for skeletal repair and reconstruction. The ceramic based materials 

within this class of medical implants are referred as “bioceramics” [2]. The use of ceramics in 

vivo as implants is a newly explored area for more than 30 years which are used to alleviate 

pain and restore function of the diseased/damaged part of the body. Bioceramics are now 

employed in a number of applications throughout the body. Various parts of the human 

skeletal structure, which require replacement by prosthetic on damage (Fig. 2.1). According 

to the type of bioceramics used and their interaction with the host tissue, they can be 

categorized as either “bioinert”, “bioactive” or “bioresorbable”. A major contributor to the 

need for ‘spares parts’ for the body is a progressive deterioration of tissue with ages. With 

growing age, the natural hard tissues in our system, which are natural living composites of 

calcium phosphate-based ceramics and collagen were particularly vulnerable to fracture 

because the osteoblast become less productive in elderly person that lead to reduction of bone 

density and strength [3].  

 

The success of bioceramics in hard tissue replacement primarily depends on the fact that 

natural bone is a supportive living tissues composed of a carbonate containing calcium apatite 

approx. 60 wt. % in type 1 collagen approx. 30 wt. % matrix. It also contains approx. 10 wt. 

% water. The mineral component of bone is a form of calcium phosphate/calcium apatite 

known as hydroxyapatite [HAP, molecular formula of HAP is Ca10(PO4)6(OH)2]. The bone 

minerals also contain many substitutes containing magnesium, sodium, potassium, fluorides, 

chlorides and carbonate ions. This apatite mineral is closely associated with collagen fibers to 

yield flat plate-like nano-crystals. The organic matrix renders the tensile strength whereas the 

mineral components give rise to compressive strength of bone. Two bone can be 

distinguished: cortical bone that has approx. 90% solid bone tissue and trabecular bone that is 

spongy and contain 80% marrow-filled voids (Fig. 2.2). Bone is a dynamic tissue subject to 
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constant deposition by osteoblast activity and subsequent resorption by osteoclast. When a 

new surface is introduced into the bone tissue, a sequence of complex is triggered [4]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.1: Various Parts of the Human Skeletal Structure can be Repaired from Ceramic 

Material. 

 

All prosthetic materials elicit a response from the host tissue that varies with the bulk/surface 

properties of that particular material. When a Bioinert/bioactive bioceramic is porous, bone 

in-growth occurs which mechanically attaches the bone to the material.  
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The type of attachment known as “biological fixation” for the damaged tissue. The 

bioceramic materials classification is taken over in next section. 

 
 
 
 
 

 

     Fig. 2.2: Interior Structure of Human Bone. 

 

 

2.2 Classification of Bioceramics 

1. Bioinert ceramics. 

2. Bioactive ceramics. 

3. Bioresorbable ceramics. 

 

The mechanism of the tissue attachment is directly related to the type of tissue response at the 

implant interface [5]. No material implanted in living tissue is inert, all materials are elicited 

a response from living tissue. Such kind of response which allows to achieve prosthetic 

attachment to the musculoskeletal system shown in below [6]. 
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A comparison of the relative chemical activity of these different types of bioceramics is 

shown in Fig. 2.3 [6]. 

 

Fig. 2.3: Bioactivity Spectrum for Various Bioceramic Implants [6]. 

In Fig 2.3. : 

(A) Relative rate of bioactivity. 

(B) Time dependence of formation of bone bonding at an implant interface; 

(a) 45S5 Bioglass;  

(b) KGS Ceravital; 

(c) 55S4 Bioglass; 

(d) A/W glass-ceramic;  

 If the material is toxic, the surrounding tissue dies. 

 If the material is nontoxic and biologically inactive (nearly inert), a fibrous tissue of 

variable thickness forms. 

 If the material is nontoxic and biologically active (bioactive), an interfacial bond 

forms. 

 If the material is nontoxic and dissolves the surrounding tissue replace it. 
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(e) HA; 

(f) KGX ceravital; 

(g) Al2O3-Si3N4; 

In Fig 2.3 (a) the relative reactivity is correlates very closely with the rate of formation of an 

interfacial bond of implants with bone. The relative level of reactivity of an implant 

influences the thickness of the zone or layer of the material and tissue. Failure analysis of the 

implants during last few years shows failure originating from the biomaterial tissue interface 

[7-8].  

 

When a material is nearly inert, and the interface is not chemically or biologically bonded 

(type 1 in Table 2.1 and Fig. 2.3). The concept behind almost inert, microporous bioceramics 

(type 2 in Table 2.1 and Fig. 2.3) is the growth of tissue into pores on the surface throughout 

the implants, as originated by Hulbert et al. [9]. Another approach types 2 in Table 2.1 and 

type 3 in Fig. 2.3 is bioactive material, the concept of bioactive materials is intermediate 

between resorbable and bioinert [5, 7, 8]. A bioactive material is one that elicits a particular 

biological response at the interface of the material that results in the formation of a bond 

between the tissues and the material [9]. Resorbable biomaterial (type 3 in Table 2.1 and type 

in Fig. 2.3) are designed to degrade gradually over a period and be replaced by the natural 

host tissue [10-13]. 

 

Table 2.1: Shows the Basic Attachment Mechanism of Bioceramics [1]: 

Type of 

bioceramics 

Mechanism of attachment Type of 

attachment 

Example 

1. Bioinert Bone growth occurs into the surface 

irregularities by cementing/ press 

fitting into a defect. 

Morphological 

fixation 

Al2O3 and ZrO2 

2. Bioactive Attachment directly by chemical 

bonding at the surface 

Bioactive 

fixation 

Bioactive glasses/glass-

ceramics/dense HAP 

3. Resorbable Slowly replaced by bone ----- Calcium phosphate, 

tricalcium phosphate, and 

bone bioactive glasses 
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Ceramic materials have been given a lot of attention as biomedical implants with time as they 

possess some highly desirable characteristics for some specific applications. Other than their 

extensive medical use in the field of orthopedics, they have been used in dentistry for their 

inertness to body fluids, high compressive strength and resemblance to natural teeth. Also for 

blood interfacing applications like heart valves, the high specific strength of carbon fibres and 

their biocompatibility has been utilized. For artificial tendons and ligament, replacement 

composites ceramics materials comprising carbons fibres as reinforcing components are 

applied in tensile loading applications. 

 
 

2.3 Applications and Characteristic Features of Bioceramics  

Bioceramics are needed to alleviate pain and restore normal activity to diseased or damaged 

parts of the body. As people age, progressive deterioration of tissues requires replacements in 

many critical applications. Bone is especially vulnerable to fracture in older people because 

of a loss of bone density and strength [14]. After successful research and many animal-human 

trials, various bioceramics products are commercially available in the medical market as a 

substitute for the original damaged body parts and many other critical applications. 

 

The major applications areas are as follow [15]: 

1. Replacement of hip, knee, teeth, tendons and ligaments. 

2. Repair for periodontal diseases. 

3. Maxillofacial reconstruction. 

4. Augmentation and stabilization of the jaw bone. 

5. Spinal fusion, bone repair after tumour surgery. 

6. Pyrolytic carbon coating for prosthetic heart valves. 

7. Treatment of cancer by localized delivery through radioactive glass micropores. 

 

Features of these application are shown in table 2.2 and characteristics are shown in table 

2.3 in detailed manner. 
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Table 2.2: Biomedical Applications of Bioceramics [16] 

Devices Functions Biomaterial 

Artificial total hip, Knee, 

shoulder, elbow, wrist 

Reconstruct arthritic or fractures 

joints 

High density alumina, metal 

bioglass coating 

Bone plates, screws, wires Repair fractures Bioglass-metal fibre 

composites, Polysulfone-

carbon fibre composite 

Intrameduallary nails Align fractures Bioglass-metal fibre 

composites, Polysulfone-

carbon fibre composite 

Harrington rods Correct chronic spinal curvature Bioglass-metal fibre 

composites, Polysulfone-

carbon fibre composite 

Permanently implanted artificial 

limbs 

Replace missing extremities Bioglass-metal fibre 

composites, Polysulfone-

carbon fibre composite 

Vertebrae Spacers and extensors Correct congential deformity Al2O3 

Spinal fusion Immobilize vertebrae to protect 

spinal cord 

Bioglass 

Alveolar bone replacements, 

mandibular reconstruction 

Restore the alveolar ridge to 

improve denture fit 

Polytetra fluro ethylene 

(PTFE) – carbon composites, 

porous Al2O3, bioglass, dense-

apatite. 

End osseous tooth replacement 

implants 

Replaced diseased, damaged or 

loosened teeth 

Al2O3, bioglass, dense 

hydroxyapatite, vitreous 

carbon 

Orthodontic anchors Provide post for stress 

application required to change 

deformities 

Bioglass-coated Al2O3, 

bioglass coated vitallium 
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Table 2.3: Characteristics Features of Ceramic Biomaterials [16] 

PS – Partially Stabilized; HAP – Hydroxyapatite; NA – Not available; AW – Apatite 

Wallastonite; HV – Vickers Hardness; DPH – Diamond Pyramid Hardness. 

 

 

 

 

 

 

 

Material Young’s 

Modulus 

(GPa) 

Compressive 

Strength 

(MPa) 

Bond 

Strength 

Hardness Density 

g/cm
2
 

Klc 

(MPam
1/2

) 

Bone 3-30 130-180 60-150 NA NA NA 

Al2O3 380 4000 300-400 2000-3000 

(HV) 

>3.9 5.0-6.0 

ZrO2 150-200 2000 200-500 1000-3000 

(HV) 

6.0 4.0-12.0 

Graphite 

(LTI) 

20-25 138 NA NA 1.5-1.9 NA 

Pyrolitic 

Carbon 

17-28 900 270-500 NA 1.7-2.2 NA 

Vitreous 

Carbon 

24-31 172 70-207 150-200 

(DPH) 

1.4-1.6 NA 

Bioactive 

HAP 

73-117 600 120 350 3.1 <1 

Bioglass ~ 75 1000 50 NA 2.5 0.7 

AW Glass 

Ceramic 

118 1080 215 680 2.8 2 
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2.4 Bioinert Ceramic -- Alumina 

2.4.1. Overview on Alumina (Al2O3) 

Alumina is very typical representative of the structural ceramics group. These materials are 

usually intended to serve as structural parts subjected to mechanical loads at high 

temperatures. The characteristic feature of structural ceramics is good mechanical behavior; 

therefore, efforts in developing, fabricating, and optimizing these materials are concentrated 

towards high strength. The objective of development of high strength ceramics is substitution 

of metallic materials in relevant regions. The structure of aluminum oxide consists of close-

packed planes of the large oxygen ions stacked in the sequence A-B-A-B, thus forming a 

hexagonal close packed array of anions. The cations occupy the octahedral sites of this 

primary array and form another type of close packed planes which are inserted between the 

oxygen layers. Only two-thirds of the octahedral sites are filled with cations to maintain the 

charge neutrality. Fig. 2.4 (a) illustrates the packing of Al and O in the basal plane. Three 

different types of cation layers are possible depending on the position of the vacant cation site 

within layer, which may be termed as a, b and c. The stacking occurs in the sequence of a-b-

c-a-b-c. This gives the complete stacking sequence of anion and cation layers of the form A-

a-B-b-A-c-B-a-A-b-B-c-A. It is only reproduced after the sixth oxygen layer or after the 

sequence a-b-c is repeated twice Fig. 2.4 (b). 

  

The unit cell of α-alumina defined in this way is called the crystallographic or structural unit 

cell. In contrast, in the morphological unit cell the cation sequence is repeated only once, and 

the height is half that of the structural cell. This significant difference between the two cells 

has given rise to some confusion in the literature dealing with crystallographic indices of 

sapphire [18]. The structure of α-Al2O3 results in coordination number of 6 and 4 for the 

cation and the anion, respectively. The ionic radii for this coordination are 0.053nm for Al
3+

 

and 0.138nm for O
2-

. Lattice parameters for unit cell are a0 = 0.7589 and c0 = 12.991Å 

respectively. 
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Fig. 2.4: Base plane of α-Al2O3 showing the hexagonal close packing anion sublattice (large 

open cirlces) and the cations occupying two-third of the octahedral (small filled circles); 

small open circles are empty octahedral interstics (A) The cation sublattice in α-Al2O3 filled 

circles are Al and (B) open circles are empty octahedral interstics [17]. 

 

2.4.2 Alumina as Bioceramics 

In last 30 years alumina has proven its bio inertness. Alumina (α-Al2O3) is being in 

orthopedic surgery for more than 30 years. Such alumina implants are total hip prosthesis, 

dental implants, bone screws, alveolar ridge and maxillofacial reconstructions and segmental 

bone replacements. Fig. 2.5 shows the applications of alumina ceramic for biomedical 

implants. 

 
 
 
 
 
 

 

[A] 

[B] 
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Fig. 2.5: Applications of Alumina Ceramic for Biomedical Applications. 

All these are due to a combination of a range of structural properties such as corrosion 

resistance, biocompatibility, wear resistance, low friction and high strength [19-24]. Two 

major advantages of medical grade alumina over other materials are: (a) low wear rates; (b) 

low concentration of wear particles (debris) in the surrounding tissue. The corrosion 

resistance of alumina ceramics is also very high (rate of corrosion 10
-4

 g-cm
-2

 / day 

corresponding to maximum corrosion rate of 1mm in 10 years). Therefore, the material is 

termed as “Biological Inert”. Superior tribological properties like, high density, small grain 

sizes (< 4 μm, having a very narrow size distribution) have resulted in an exceptionally low 

coefficient of friction and minimum wear rate [19, 20, 25]. These advantageous properties 

have made alumina ceramics the articulating surface in total hip / knee prostheses. Table 2.4 

shows the characteristics of alumina implants with respect to ISO standard 6474 [26]. 

 

 

Alumina Femoral Head 

Femoral Stem 

Unassembled Hip Joint Total Hip Joint 

Screws 

Ceramic Teeth’s 

Alumina Screws 

Alumina Maxillofacial Implant  
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    Table 2.4: Characteristics of Alumina Implants with Respect to ISO Standard 6474 [6]. 

Properties Al2O3 Implants ISO standard 6474 

Density (g/cm
3
) > 3.93 > 3.90 

Average grain size (μm) 3-6 < 7 

Hardness (Vickers) 2300 >  2000 

Compressive Strength (MPa) 4500 ----- 

Bending Strength (MPa) 550 400 

Young Modulus (GPa) 380 ----- 

Fracture Toughness (KIc) (MPa m
1/2

) 5-6 ----- 

 

2.4.3 Advantages and Disadvantages of alumina ceramic [1] 

Advantages: 

a) Extremely high melting point. 

b) Extreme hardness. 

c) Low wear resistance. 

d) High strength. 

e) High Hardness. 

Disadvantages  

a) High densification.  

b) Brittle nature after sintering because of this more prone to get cracks. 

c) Poor machinability. 
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Part B 

  Machinability 

 

2.5 Machinability 

The term machinability refers to the ease with which a material can be machined to an 

acceptable surface finish [27]. If a material x is more machinable than material y, it means 

that less power is required to machine x than to y. x can be cut quickly without cracking, and 

it could give a better surface finish while machining without wearing the tools much (free 

machining). Moreover, ease of chip disposal, cutting temperature, operator safety, etc. are 

other criteria of machinability. Therefore, to manufacture components economically, 

engineers are challenged to find ways to improve machinability without affecting the 

performance.  

 

The condition and physical properties of the work material have a direct influence on the 

machinability of a work material. The various conditions and characteristics described as the 

condition of work material, individually and in combinations, directly influence and 

determine the machinability. Operating condition, tool material and geometry, and the 

workpiece requirement exercise indirect effects on machinability and can often be used to 

overcome difficult conditions presented by the work material. 

 

2.5.1 Conditions for Machining of Work Materials  

The following factors determine the condition of the work material: 

1. Microstructure. 

2. Grain Size. 

3. Heat Treatment. 

4. Chemical Composition. 

5. Fabrication. 

6. Hardness. 
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 2.5.2 Physical Properties   

 The following physical properties affect the machining characteristics: 

1.Modulus of Elasticity. 

2.Thermal Conductivity. 

3. Thermal Expansion. 

4. Work Hardening. 

 

2.6 Machining Operations [28] 

Machining is any process in which a cutting tool is used to remove a small chip of material 

from the workpiece. For machining, relative motion is required between the tool and the work 

and the basic machining process shown in Fig. 2.6. This relative motion is achieved in most 

machining operation by means of a primary motion called cutting speed and a secondary 

motion called feed. The shape of the tool and its penetration into the work surface, combined 

with these motions, produce the desired shape of the resulting work surface. 

 

 

 

 

 

 

Fig. 2.6: Basic Machining Process 
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There are three primary machining processes classified as turning, drilling and milling. Other 

operations are falling into miscellaneous planning, boring, broaching and sawing.  

 

Turning is a method in which cutting tool with a single cutting edge is used to remove 

material from a rotating workpiece to generate a cylindrical shape shown in Fig. 2.7. The 

primary motion is provided by rotating the work piece, and the feed motion is achieved by 

moving the cutting tools slowly in a direction parallel to the axis of rotation of the workpiece 

[28]. 

 

                      

Fig. 2.7: Turning Process 

 

Drilling is used to create a round hole. Process of drilling completed by a rotating tool that 

has different types of cutting edges shown in Fig. 2.8. The tool is fed in a direction parallel to 

its axis of rotation into the workpiece to form the round shape [28]. 

 

                                                                                           

Fig. 2.8. Drilling Process 
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Milling is a rotating tool with multiple cutting edge is moved slowly relative to the material 

to generate a plane or straight surface shown in Fig. 2.9. The direction of the feed motion is 

perpendicular to the tools axis of rotation [29]. The rotating milling cutter provides the speed 

motion. The two basic forms of milling are shown in Fig. 2.10: 

 

1. Peripheral milling. 

2. Face milling. 

 

       

 

Fig. 2.9: Milling Process [29] 

 

                    

 

 

Fig. 2.10: Different Types of Milling Process (A) Peripheral Milling; (B) Face Milling [29] 

 

 

 

Spindle 

(A) (B) 
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Part C 

    Rare Earth Phosphates and Ceramic Machinability 

 

2.7 Rare Earth Phosphates (REP) 

2.7.1 Rare Earth Oxides (REO`s) 

Rare earth metals or Rare earth oxides are a group of 17 elements in the periodic table. This 

group consists of 15 lanthanides along with scandium and yttrium shown in Fig. 2.11. 

Scandium and yttrium both are considered as rare earth oxide since they are likely to occur in 

the same ore deposits as the lanthanides and to have similar chemical properties. REO`s share 

many similar features, that is why they occur together in geological deposits, but their 

distribution and concentrations vary. These oxides were initially obtained from earths or 

oxides from relatively rare minerals. Thus, they were named rare earths. But despite their 

name, rare earth oxides (with the exceptions of the radio-activeness) are not rare but 

relatively plentiful present in the earth's crust [30]. 

 

 

 

 

 

 

      Fig. 2.11: The Rare Earth Oxides Subdivided in Groups 

 

The more abundant REO are each similar in crystal concentration to industrial metals such as 

chromium, nickel, copper, or lead. Even the least abundant REO, thulium, is nearly 200 times 

more common than gold. REO have very little tendency to become concentrated in 

exploitable ore deposits. Therefore, they are also referred to as “Rare” because it is not 

common to find them in commercially viable concentrations.  

REO`s can be classified into two categories - light rare earth oxides (LREOs) and heavy rare 

earth oxides (HREOs) based on their electron configuration shown in Fig. 2.6. The LREO`s 

are defined through lanthanum to gadolinium; atomic number 57 to 64. The HREO`s are 

defined through terbium to lutetium, atomic number 65 to 71, and also yttrium (atomic 

Light Rare Earth Oxide Heavy Rare Earth Oxide 
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number 39) and scandium (atomic number 21). The principal rare-earth ores, the minerals 

monazite and bastnaesite, have formed the basis for historical production, with minor 

contributions from deposits containing xenotime [31]. Monazite, phosphate mineral, is 

known to exist in at least four forms, depending on whether Ce, La, Nd or Pr is the principal 

rare earth component. 

 

2.7.2 Rare Earth Phosphates 

Rare earth phosphates belong to the family of rare earth zircons, having high melting point 

(between 1900°C-2000°C) and show excellent thermal stability in both reducing and 

oxidizing atmosphere [32]. Rare earth phosphates are synthesized for this work by direct 

reaction between rare earth oxide and phosphoric acid. In a fine-grained two-phase 

composite, material removal should occur by the formation and link of cracks at the weak 

interfaces between the alumina and REP phases [33]. This is the basis for designing the 

current work, alumina based machinable bio-ceramics. Rare earth phosphates also have a 

biological role, and they have already shown non-toxicity and biocompatibility in different 

bio-medical applications [34-35], mainly as bio-imaging phosphor / luminescent labeling 

materials for bio-imaging [36-41]. 

 

2.7.2.A Lanthanum Phosphate 

Lanthanum phosphate is known as Monazite, and also has long been known as a ceramic 

material with its high-temperature phase stability and high melting point [32]. The other 

properties of monazite, such as low thermal conductivity, chemical inertness and non-

reactivity towards other ceramic oxides, and having thermal expansion coefficients are 

comparable to alumina ceramic [42]. In LaPO4, 4 coordinated in a distorted tetrahedral 

environment. La is 9 co-ordinated by O in an unusual arrangement while O is 3 or 4 co-

ordinated to 2 or 3 La and 1P [43]. The density of LaPO4 is 5.13 g/cm
3
. A new outlook of the 

material emerged recently because of investigations in the areas of photoluminescence and 

catalysis. For the development of photo-luminescent materials both bulk and nanometer-sized 

lanthanum, phosphates were found to be useful as excellent hosts/matrices [44]. 

 

 

 

 

29 



The potential applications are in optoelectronic devices, solid state lasers, displays, and 

phosphors. Lanthanum phosphate is widely used as Lewis acid catalyst, and the catalytic 

property has been shown to depend on the surface area [45]. Due to the identical thermal 

expansion coefficients of Al2O3 and LaPO4, their composites were widely investigated and 

were found to be chemically inert. 

 

2.7.2.B Yttrium Phosphate 

Yttrium phosphate is also known as Xenotime. Xenotime is used chiefly as a source of 

yttrium and heavy lanthanide metals (dysprosium, ytterbium, erbium and gadolinium). 

Sometimes gemstones are also cut from the finer xenotime crystals. Yttrium is a silvery 

metallic transition metal chemically similar to the lanthanides, and it has often been classified 

as a rare earth element [46]. Yttrium is commonly found combined with the lanthanides in 

rare earth minerals and is never found in nature as free elements. Most significant use of 

yttrium is in making phosphors, such as the red ones utilized in the television set cathode ray 

tube (CRT) displays and LEDs [47]. It is also utilized in the production of electrodes, 

electrolytes, electronic filters, laser and superconductors, various medical applications, and 

the tracing of different materials to enhance their properties.  

 

Yttrium is a soft, silver-metallic, lustrous and highly crystalline transition metal in group 3. 

As expected from periodic trends, it is less electronegative than its predecessor in the group, 

scandium, and less electronegative than the next number of period 5, zirconium. Additionally, 

it is of comparable electronegativity to its successor in its group, lutetium, due to the 

lanthanide contraction. The pure element is relatively stable in air in bulk form, due to 

passivation resulting from the formation of a protective oxide (Y2O3) film on its surface.  

 

The similarities of yttrium to the lanthanides are so strong that the element has historically 

been grouped with them as a rare earth element [46]. Also, it is always found in nature 

together with them in rare earth minerals. Yttrium is so close in size to the so-called 'Yttrium 

group' of heavy lanthanide ions that in solution, it behaves as if it were one of them. Even 

though the lanthanides are one row farther down the periodic table than the yttrium, the 

similarity in atomic radius may be attributed to the lanthanide contraction. 
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2.8 Techniques for Preparation of Rare Earth Phosphates (REP) 

Literature data suggest the availability of rare earth phosphates processing techniques to 

achieve the pure phase of REP powder without any impurities. Most relevant synthesis 

process and their detail analysis related to the preparation are discussed below.  

 

R. Wang et al. has synthesized LaPO4 powder by mixing phosphoric acid with lanthanum 

oxide in a water bath. Lanthanum oxide was dissolved in diluted phosphoric acid with La to P 

of 1:1 in order to achieve LaPO4 as a final product. The direct reaction between lanthanum 

oxide and phosphoric acid is a clean reaction with no by-product other than water according 

to the reaction: 

 

La2O3 + 2H3PO4       2LaPO4 + 3 H2O 

La2O3 powder was added slowly added to 85% H3PO4 (diluted by distilled water), and a large 

amount precipitates formed immediately at the reaction site. The synthesized powder was 

washed several times with de-ionized water until pH value of filtered water became close to 7 

[48-50].  

 

Lucas et al has synthesized LaPO4 powder by an aqueous precipitation method from the 

addition of a rare earth chloride solution (LaCl3.7H2O, CeCl3.7H2O, YCl3.6H2O) into a 

reactor containing a phosphate solution. Ammonium hydrogen phosphate used as the 

phosphating agent. The concentration of the solution was 0.4 mol L
-1

 for a Re/P mole ratio of 

the initial reagents equals to 1. They mixed 0.4 and 0.2 mol L
-1

 for a Re/P ratio of 2:1; and 

0.2 and 0.6 mol L
-1

 for a Re/P ratio of 1:3. Fully automated device used for this synthesis and 

solution was added at a rate of 30 mL min
-1

, using a peristaltic pump. Ammonium hydroxide 

solution used to maintain pH under controlled and regulated temperature and suspension 

continuously stirred and refluxed. After the suspension was centrifuged. The resulting 

precipitate was washed by centrifuging and finally dried at 80°C [51].  

 

Nair et al. samples of ARP3O10 the conventional ceramic route prepared (A=Ca or Ba; R=La, 

Ce or Sm). The samples were prepared by mixing the stoichiometric proportion of raw 

materials in the powder form followed by heating. The raw material used in the preparation 

of samples are CaCO3 (99.9%), BaCO3 (99%), CeO2 (99%), NH4H2PO4 (98%). 
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These materials were weighed, then mixed together in an agate mortar. Acetone was used for 

proper mixing. Then mixture was dried at 100°C. The same process was repeated three times 

to get a homogenous mixture. The dried powder was kept in the platinum crucible for 

calcined at a temperature of 750-1000°C for 3 hours in an electrically heated furnace. 

Calcined powder was soft grinded in an agate mortar to get a fine powder [52].  

 

G. Gong et al. has prepared LaPO4 powder by calcined rhabdophane-type LaPO4.0.5H2O at 

1300°C for 6 hours. The calcined powder was milled with silicon nitride balls in ethanol for 

three days and sieved through 200-mesh screen. X-ray diffraction techniques did phase 

conformation. The La/P atomic ratio of the calcined powder (ICP) was 0.99 [53].  

 

Monazite type lanthanum phosphate powder was prepared by Min et al. using dry milling of 

rhabdophane-type LaPO4.0.5H2O by alumina balls at room temperature in air for ten days 

(mechanochemical method). X-ray diffraction of the dry-milled powder showed only 

monazite-type LaPO4. The La/P atomic ratios obtained from the chemical analysis method 

0.99 [54]. They have prepared [55] rhabdophane-type LaPO4.0.5H2O by forming LaCl3 first 

by using La2O3 and HCl and further reacting this LaCl3 with H3PO4.  

 

Byrappa et al. has synthesized LaPO4 powder by taking La2O3 and H3PO4 in ratio of 1:1.2 in 

a beaker containing water (14 mL) to prepare LaPO4. The mixture was stirred for about 15 

min, forming a white colloidal solution. The pH of the solution was adjusted to 1.4-2 using 

ethanol. Then the solution was autoclaved in a Teflon-lined steel autoclave at 120°C for 16-

30 hours and washing the product several times in water and alcohol [35]. 

 

 

2.9 Machinability of Al2O3-REP Composites 

Various researchers have developed machinability in alumina ceramics by using rare earth 

phosphates. Mostly all the literatures are based on Al2O3 - LaPO4 composites. In the 

following most relevant processes used to prepare the composites, and their machinable 

properties studied the literature were discussed.  
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Wang et al. reported that the addition of LaPO4 in alumina ceramic matrix to improve the 

machinability of the composites. The composites were prepared with different ratios of LP 

with Al2O3 and sintered between 1300°C to 1600°C and by X-ray diffraction proved that the 

Al2O3 and LaPO4 have a separate phase and exist as a composite. Due to the layered structure 

of LaPO4 and the weak interface between the Al2O3 and LaPO4 phase, the 40wt. % 

composites can be machined by using cemented carbide drills instead of conventional 

diamond tools [49]. Again wang reported this work with a better result and 30 wt. % 

composites were machinable [50].  

 

Gong et al. reported that pressureless sintering fabricated Al2O3/LaPO4 composites in N2 

atmosphere. The effect of sintering temperature and sintering time on densification was 

investigated and also dependence of mechanical and microstructural properties of LaPO4. The 

provided ratio of La:P was close to 1:1 and no reactions were observed at 1600°C for 2 hours 

in N2 atmosphere. The 30 wt. % composite machined by using cemented carbide drills. 

LaAl11O18 was formed when the composites were sintered at 1700°C for 1 hour in N2 and not 

machinable [53].  

 

Min et al. reported that composites were prepared with ratios of xAl2O3 (x=0 to 1 mass) and 

(1-x) LaPO4 and pressed to disk shape. Measured relative density that was larger than 94% 

and porosity was analyzed less than 6% were achieved when the specimens were sintered at 

1600°C for 5 hours. Each sample machined with using metallic WC drills and drilling done at 

2500 RPM. The sintered ceramics (x = 0 to 0.7) were found to be machinable and could drill 

quickly with the metallic WC drills [54].  

 

Davis et al. reported that two-phase composites consisting of LaPO4 or CePO4 and alumina, 

mullite, or zirconia were found to be machinable, i.e. they can be drilled using by 

conventional tungsten carbide metal-working tools. Single-phase LaPO4 was also reported to 

be machinable. Drilling rates, grinding rates, and normal forces are used to compare the ease 

of machinability. Cracking and deformation within the monazite phase was reported to be the 

reason for such property. The formation of a finely crushed, smeared layer of material 

between the workpiece and tool was analyzed after drilling all of the machinable materials 

[56].  
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Two-phase composites consisting of Al2O3/LaPO4 were prepared by Majeed et al. with 

different ratio of LaPO4 and subjected to ultrasonic machining, using low carbon steel tools 

(solid and hollow) of 3mm diameter. The effect of LaPO4 on machining studied by analyzing 

the acoustic emission signals emitted by the workpiece during machining. The material 

removal rate was calculated by the time of machining. The microstructures of composites 

studied and the profiles of the drilled holes were plotted using a projector with magnification 

of 20 [57].  

 

Wang et al. developed a new method for machinable ceramic by using composition variation 

and structure design methods of ceramics while retaining mechanical properties of the 

materials. This method also provides the fundamental design principle for the other 

comparable, but intrinsically different, ceramic systems based on chemical compatibility and 

thermodynamic properties. Graded machinable Al2O3-LaPO4 composites were designed, 

fabricated and characterized [58].  

 

Wang et al. reported that hot pressing can make the Al2O3/LaPO4 composites, and the layered 

LaPO4 grains inhibited densification of the composites and grain growth of Al2O3 due to 

decreasing grain boundaries. The fine and homogenous microstructure did not improve the 

fracture strength and elastic modulus due to the formation of weak bonding between Al2O3 

and LaPO4. But reported that the machinability of alumina matrix materials could be 

significantly improved by introducing an interface dispersion phase of layer structure LaPO4 

[59].  

 

Zhou et al. reported a novel process to fabricate Ce-TZP/CePO4 composites Sintered Ce-TZP 

ceramic preform with 35 vol. % open pore volume was developed by adding graphite 30 vol. 

%. The Ce-TZP/CePO4 composites containing different amount of liquid precursor were 

obtained by infiltration and pyrolysis cycles. These composites can be cut and drilled by 

using conventional tungsten carbide metal working tools. The machinable Ce-TZP/CePO4 

composites containing a range from 2.3 to 7.5 vol. % CePO4 has excellent machinability as 

well as machining outstanding mechanical properties [60].  
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Majeed et al reported that Al2O3/LaPO4 composites are prepared with different ratios of 

LaPO4 in Al2O3 and subjected to ultrasonic machine with low carbon steel tools (solid and 

hollow). Acoustic emission (AE) signal emitted by the workpiece during machinability was 

also analyzed. Ultra-scan inspection carried out to check for any internal defect. This work 

significance of LaPO4 addition on machinability of Al2O3/LaPO4 composites in the term of 

MRR. AE response and whole geometry and associated defects [61]. 
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Part D 

Biological Studies 

 

2.10 In Vitro Cytotoxicity and Cell Viability 

Cell viability and cytotoxicity will support to understand the in vivo compatibility and level 

of toxicity of the synthetic composites for clinical applications. Therefore, different schools 

are continuously evaluated and reported this phenomenon for the future development of a 

new of biomaterials.  

 

Ketul et al. fabricated nanoporous alumina membrane to investigate bone cell response. 

Osteoblast was seeded on nanoporous alumina membranes to study both short-term adhesion 

and proliferation and long-term functionality and matrix production. Both the thing are done 

by MTT assay and cell counting. The total protein content was measured after cell lysis using 

the BCA assay. The results from nanoporous alumina membrane were compared with those 

of amorphous alumina, aluminum. Commercially available ANOPORETM and glass. Results 

indicate the improved osteoblast adhesion [62].  

 

Kim et al. studied in vitro cellular response and attachment on freeze dried HA-gelatin 

composites. Osteoblast human osteosarcoma cells are spreading and actively proliferate on 

composite scaffold. The cells proliferation rate is calculated indirectly from the cells cultured 

on Ti discs coated with gelatin and HA-gelatin composites using MTT assay. The alkaline 

phosphate activities express by the cell culture on composites and HA coatings on Ti Discs 

enhances significantly compared with those on pure gelatin. This finding suggests that HA-

gelatin composites have a high potential for use as hard tissue regeneration scaffolds [63].  

 

Dalby et al reported the study that the original attachment of osteoblast-like cells on HA 

reinforced polyethylene composites (HAPE), which is designated as a second generation 

orthopedic biomaterial with suitable mechanical and biological characteristics for bone 

augmentation. Optimization of the material features like mechanical properties enhancements 

has a significant role for effective attachments of osteoblast cells. Polishing followed by 

roughing the surface of HAPE enhances osteoblast proliferation [64].  
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Filho et al. studied the cells attachment, cellular interaction and modulation of osteoblast cells 

on biocompatible material such as porous HA scaffolds. Biocompatibility of materials has 

been investigated through consideration of human osteoblast (HOB) cells on the fibronectin-

coated glass surface and monolayers formation of HOB observed. The cellular adhesion to 

material interaction includes two phenomena: (a) physicochemical properties of the 

interacting surface and (b) molecular properties of both surfaces and also the interaction 

medium. The study pointed out that cell attachment is a property that depends on physical 

and topological features of both biomaterials and cell surfaces [65]. 
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Part E 

Motivation and Objective of the Work 

 

2.11 Motivation of Work 

In the last few decades, bioceramic materials perform tailored functional / biological / 

chemical activities of the living system and have significantly improved the treatment 

procedure through reconstructive surgeries. In such cases, alumina based bioceramics, mostly 

used as implants, are most prominent. There are several literatures available on the use of 

alumina based bioceramics, but nearly no study was found to tailor the dimensions of the 

implants. So that the dimensional criticality may be maintained as and when required for such 

applications.  

 

Few literatures are available on the aspect of machinability of alumina-based ceramics, that 

too mostly using lanthanum phosphate, but no one has directed the research target towards 

bioceramics. Hence, such an area is found to be untouched, and that has motivated to carry 

out the initial study on the Machinable Alumina based Ceramics for Biomedical 

Applications.  

 

The study of alumina quality, different rare earth phosphates and their contents, sintering 

temperatures, etc. is done with primary characterizations like machinability by drilling and 

behavior in biological environments. The properties are also correlated with the 

microstructural developments and composite nature of the sintered alumina-based ceramics. 

 

2.12 Objective of Work 

1. Preparation of pure phase REP (LaPO4 and YPO4). 

2. Preparation Al2O3-REP ceramic matrix composites using two different alumina 

grades with different compositions, up to 50wt% of REP in the batch. 

3. To study the sintering behaviour for optimum combination of densification, phase 

retention of Al2O3 and REP. 

4. Investigate the machinability and flexural strength of composites. 

5. Investigation of biocompatibility of the composites. 
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CHAPTER 3 

Experimental 



3.1 Raw materials 

3.1.1 Alumina 

Two different grades of alumina, namely CAl2O3 and RAl2O3 (Almatis, India) [1] were used 

in the study. Details of the physicochemical properties of both the aluminas are given in 

Table 3.1. 

 

 

             

  Table 3.1: The Physico-chemical Properties of Both the Aluminas 

 

3.1.2 Rare Earth Phosphates 

Two kind of rare earth phosphates were prepared for the study, namely, lanthanum phosphate 

(LaPO4) and yttrium phosphate (YPO4). Both the phosphates were made from their respective 

oxides by reaction with orthophosphoric acid. Purity of both the lanthanum (III) oxide 

(La2O3) and yttrium (III) oxide (Y2O3) were 99.9% chemical grade, AR/ACS quality (Alfa 

Aesar, India make). Orthophosphoric acid (H3PO4) used was chemical grade AR quality, 

(Loba Chemie, India made) assay of 85%. 

 

 

 

Properties Unit CAl2O3 RAl2O3 

SiO2 % 0.03 0.03 

Al2O3 % 99.8 99.5 

Fe2O3 % 0.02 0.03 

MgO % 0.05 0.01 

CaO % 0.02 0.02 

Na2O % 0.07 0.10 

Specific Surface Area (BET) m
2
/g 8.9 3.0 

D50 Cilas µm 0.4 2.6 
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3.2 Preparation of Rare Earth Phosphates (REP) 

Preparation of REPs was done by the wet chemical synthesis. For preparing both the rare 

earth phosphates same protocol was used. REP powder was synthesized by mixing of rare 

earth oxide with phosphoric acid in a stoichiometric amount. The direct reaction between the 

rare earth oxide (REO) and phosphoric acid is a clean reaction with no by-production other 

than water. The reactions are as follow. 

 

                                 La2O3 + 2H3PO4                   2LaPO4 + 3H2O [2] ----------- (1) 

                                 Y2O3 + 2H3PO4                    2YPO4 + 3H2O [3] ------------ (2) 

REO powder was slowly added to the H3PO4 (diluted by distilled water) on a magnetic 

stirrer. The reaction was exothermic. Precipitate form from the reaction and gradually broke 

into the fine particles. The precipitate was dried for 12 hours at 75°C and then double 

calcined at 800°C (LaPO4) and 1000°C (YPO4) for 2 hours. X-ray diffraction technique did 

phase identification of the calcined powders. The preparation route of the rare earth 

phosphates is shown in Fig. 3.1. 

 

 

 

 

             

                                                                 

 

 

 

 

 

 

 

 

Fig. 3.1: Preparation Route for Rare Earth Phosphate 

Calcination at 800°C (LaPO
4
) & 1000°C 

(YPO
4
)
 
for 2 hours 

REO H
3
PO

 

Stirring by adding some 

distilled water 

Drying at 

75°C for 12 

hours
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3.3 Preparation of composites 

Al2O3/LaPO4 composites were prepared by magnetic stirring method with different LaPO4 

content (10, 20, 30, 40, and 50 wt. %) in wet (alcohol) medium for 1 hour and then dried. 

Batch compositions of the Al2O3-REP composites are shown in Table 3.2. Mixed powders 

were pressed at 150 MPa in a hydraulic press (Carver, USA, make) to pellets (15mm dia x 10 

mm) and bar (60 mm x 6 mm x 6 mm) shapes. 4% PVA solution (6% concentration) was 

used as green binder. Pressed forms were then sintered at different temperatures with a 

soaking period of 2 h. CAl2O3-REP composites were sintered at 1400, 1450, 1500, 1550 and 

1600°C and RAl2O3-REP composites at 1500, 1550 and 1600°C (below 1500°C RAl2O3 was 

very poorly densified) in electrically heated programmable furnace (Bysakh, India, make). 

Sintered samples were cooled down naturally in the furnace. Fig. 3.2 shows the flow diagram 

for preparation route of composites. 

 

 

Alumina (C and R)  

Wt.% 

REP (LaPO4 and YPO4)  

Wt.% 

100 0 

90 10 

80 20 

70 30 

60 40 

50 50 

 

Table 3.2: Ratios of Al2O3:REP in Wt.% 
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                  Fig. 3.2: Flow Diagram for Preparation Route of Composites 

 

3.4 Characterization  

3.4.1 Characterization of Starting Materials 

3.4.1.1 Phase Analysis 

Phase analysis of REP powder and the sintered composite was done the X-ray diffractions 

method (Rigaku, Japan) with an attachment of a Ni filter 0.154 nm and Cu-Kα as the 

radiation source. These X-ray diffraction techniques give some relevant parameters such as a 

crystal structure, chemical analysis, crystallite size, etc. the generator voltage and the current 

was set at 35 KV and 25 mA respectively. All composite powder were scanned in a 

continuous mode over a 2ϴ range from 15 to 60 with a scanning rate of 5°/minute. The peak 

positions, phase purity, peaks of different atomic plans and the relative intensities of the 

powder pattern were identified in comparison with the reference powder diffraction data 

(JCPDS). Fig. 3.3 shows the basic setup of XRD machine used. 

.  

Al
2
O

3
 REP 

Wet mixing in Iso-Propyl 

Alcohol medium 

Dried at 75°C for 12 hours 

Loose grinding & mixing PVA 

solution (4%) 

3 gram (Pellet) & 5 

gram (Bar) 

Pressed at 150 

MPa 

Sintered at 1400°C - 

1600°C (CAl2O3) & 

1500°C – 1600°C 

(RAl2O3) for 2 hours 
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3.4.1.2 Fourier Transformed Infrared Analysis (FTIR) 

FTIR spectroscopy was used to characterize the chemical functional groups present in 

materials, based on the characteristics of vibrational and rotational energies of different 

molecular bonds. FTIR analyses of calcined LaPO4 and YPO4 powders were done at a 

resolution of 4 cm
-1

 using Spectrum RX
-1

 instrument (Perkin-Elmer) in the wavenumber 

range 4000 to 400 cm
-1

 using the KBr wafer technique. The mixture was ground to a finely 

after drying in an agate mortar. The spectrogram of the sample is observed on the computer 

monitor, and a graphic representation of the spectra was taken. 

 

3.4.1.3 Microstructural Analysis 

Field Emission Scanning electron microscope (FESEM) is a typical electron microscope that 

images formed by just scanning it with a beam of electrons. The electrons (secondary 

electrons, backscattered electrons (BSE) interact with the surface atoms that initiate to 

develop relevant information about the sample's microstructure and elemental composition. 

The microstructure of Al2O3 precursor was analyzed using scanning electron microscope 

(NOVA NANO SEM, FEI make) with gold coating of 240 seconds and analyzed in 

backscattered electron mode at 15KV sources. Several FESEM images were taken similarly 

of sintered composites at different temperature to determine the weak interface of REP. 

 

 

 

Fig. 3.3: XRD Machine (Rigaku, Japan) 
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3.4.2. Characterization of Sintered Products  

3.4.2.1 Density Measurement 

Densification study of the sintered samples was done by Archimedes principle, using a 

vacuum method in the water medium. Relative densification (percent theoretical density) was 

calculated as the ratio between bulk density and theoretical density of the composition. 

Theoretical density of each composition was calculated from the ideal (theoretical) density 

values of each component and their weight fractions used to make the composition. Dry 

weights of all the Al2O3/REP composites samples were taken by using a digital balance. Then 

the composite samples were kept in a beaker filled with distilled water and maintained in a 

vacuum desiccator for 45 minutes to remove entrapped air present in the samples. Suspended 

as well as soaked weights of the samples were taken using four-digit accuracy electronic 

balance. Bulk density and relative density of the sample were calculated as: 

 

Bulk Density =  D/W-S  -------------- (3) 

                      Relative Density = Bulk Desnity/Specific Gravity  --------------- (4) 

Were D = dry weight of the sample. 

          W = soaked weight of the sample. 

          S= suspended weight of the sample. 

Percent relative densification was calculated as per the formula (Bulk density / specific 

gravity of the composite) x 100 

Specific Gravity of the composite is calculated as, ρ = ρREPVREP + ρAl2O3VAl2O3,  

Where, ρ is the specific gravity of each component and V is the volume fration of hat 

component in the composite mix.  

ρLaPO4 = 5.07 g/cm
3
,
 
ρYPO4 = 5.1 g/cm

3
, ρAl2O3 = 3.99 g/cm

3
. 
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3.4.2.2 Flexural Strength (MOR) 

Determination of the flexural strength is frequently necessary as a part of the design of the 

structural ceramics to check compliance with established specifications or to provide 

information necessary to the design of an engineering structure. It is the ability of bar to resist 

failure in bending. The flexural strength is expressed as “Modulus of Rapture” (MOR) in 

MPa.  

 

Three samples of each composition of all sintering temperatures were taken to determine the 

flexural strength for each test, and average values have been reported. Flexural strength was 

determined by standard three-point bending method in an instrument (Tinius Olsen, USA, 

make). The parameter for the three-point bending test was span length of 40mm with cross 

head speed of 0.5mm/min. The edges of the rectangular bars of 60 x 6 x 6 mm. the 

fundamental setup of flexural strength shown in Fig. 3.4 and Flexural strength were 

calculated by: 

 

                       σflexural =  (3FL/2BD
2
)    -------------- (5) 

where F = Fracture load; L =Span length; B =Width of sample and D =Thickness of the 

sample.     

 

 

             

             Fig. 3.4: Basic Setup of flexural strength 
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3.4.2.3 Machinability  

The machinability of the sintered Al2O3/REP composites was tested by drilling using hand 

drill machine (Bosch make model GSB 10 RE having no-load speed of 2600 rpm). Cemented 

carbide drill bit, 4 mm dia. was used for the drilling purpose. Water was used at the drill tip to 

reduce the friction heat. Fig. 3.5 shows the hand drill machine that was used for drilling. 

 

 

 

 

 

 

 

 

 

 

Fig. 3.5: Bosch Hand Drill (GSB 10 RE) 

 

3.4.2.4 In vitro cytotoxicity test 

An in vitro cytotoxicity test of steam sterilized Al2O3/REP composites (powder) was 

performed using MG 63 Osteoblast Cell line by direct contact method as per ISO-10993-5 

guideline [11]. Osteoblast cells were employed in the present study because it can be easily 

cultured in a reproducible manner and also this cell line is widely used for many 

biocompatibility tests.  

 

It has ease rate of proliferation with most of the biomaterial surface because it more 

resistance to survive in the atmosphere as compared to other cells. In the beginning, guideline 

Osteoblast cells were subcultured, trypsinized and seeded onto multiwell tissue culture plates. 

The Osteoblast cells were cultured with DMEM (Dulbecco's Modified Eagle Medium), 10% 

FBS (Fetal Bovine Serum) and incubated at 37°C in 5% CO2 atmosphere till formation of a 

cell monolayer. The test specimen (Al2O3/REP) was incubated at 37°C for 24 to 26 hrs. The 

Al2O3/REP was examined using inverted microscope for cellular response to the requisite 

incubation. In vitro cytotoxicity of the test, specimen was also compared with the positive 

Cemented Carbide Drill Bit (4mm) 
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control Osteoblast cells and Pure Al2O3. Cell was examined by inverted microscopy to check 

the response of the cells around the test specimens (composites). 

 

3.4.2.5 Cell Viability study  

The MTT assay was performed to measure the metabolic activity of cells and assessed 

through, ‘color-change’ phenomenon from yellow colored tetrazolium salt, MTT {3-(4,5-

diamethyl thiazol-2-yl)-2,5-diphenyltetrazolium bromide} to purple colored formazan. Fresh 

test specimens Al
2
O

3
/REP (powder) composites were sterilized by steam sterilization 20 

minute, and extract was prepared after 24–26 hrs. incubation at 37°C in 1 ml culture medium 

containing serum protein. The extract solution was further diluted to 10, 5 and 2.5% in same 

culture medium. Equal volume (100 µl) of extract as obtained from Al2O3/REP composites 

(powder), positive control Osteoblast cells and pure Al2O3. The cells were placed on a 

subconfluent monolayer of Osteoblast cells and incubated for 24 at 37°C. The cultured cells 

were treated with 50 µl of MTT and further incubated at 37°C for 4 h in humidified and 5% 

CO2 atmosphere. Aspiration removed the excess amount of MTT, and formazan crystals were 

dissolved by adding 100 µl of isopropanol. Cytotoxicity tests were performed in triplicate. 

The color exchange was quantified by measuring absorbance at 570 nm using a 

spectrophotometer. Representation of cell viability index is done against the batch 

composition. 
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Part A: Raw Material Characterization 

Part B: Characterization of Sintered Composites 

Part C: Cytotoxicity of Composites 

CHAPTER 4 

Results & Discussion 



This chapter deals with the preparation and different characterizations of REPs 

used in the study. Next the sintered composites of different Al 2O3-REP 

compositions were characterized. Composite nature of the sintered compositions 

is confirmed by phase analysis; densification behavior was characterized by 

measuring the bulk density and relative densification; 3 point modulus of rupture 

(flexural) testing for measuring the strength; machinability was studied by 

drilling method using a conventional drill bit; microstructural features was 

investigated under electron microscope with elemental distribution study of the 

relevant elements and also the biological compatibility of the sintered 

compositions were studied by cytotoxicity measurement.  

 

Four different compositions prepared with REP and the sintering kinetics of 

composites at various temperature as given in Table 4.1. In in this table, CAl2O3 

is calcined and RAl2O3 reactive alumina (Commercial grade alumina).  

 

Table 4.1: Sintering Schedule of Composites 

 

Composition Temperature 

CAl2O3-LaPO4 1400°C – 1600°C (2 hours) 

RAl2O3-LaPO4 1500°C – 1600°C (2 hours) 

CAl2O3-YPO4 1400°C – 1600°C (2 hours) 

RAl2O3-YPO4 1500°C – 1600°C (2 hours) 
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Part A 

Raw material Characterization 

 

4.1 Properties of Alumina’s 

Two types of alumina powders were used in this study namely CAl2O3 and RAl2O3. Details 

of the two aluminas are given in Table 3.1. From the values, it can be seen that both the 

aluminas are highly pure but CAl2O3 is relatively finer and reactive as compared to that of 

RAl2O3 [1]. 

 

4.2 Characterizations of REP 

4.2.1. Phase Analysis of Rare Earth Phosphates (REP`s) 

Two different types of REP`s were used in this study. Both REP`s prepared by using wet 

chemical synthesis and direct chemical reaction between respective rare earth oxides and 

H3PO4. La2O3 and Y2O3 were used to make LaPO4 and YPO4 respectively. The reaction 

product obtained was dried and then double calcined at 800°C (LaPO4) and 1000°C (YPO4) 

and checked for phase analysis by X-ray diffraction technique. Fig. 4.1 shows the phase 

analysis of double calcined lanthanum phosphate (LaPO4) and yttrium phosphate (YPO4). 

Phase analysis shows only LaPO4 (32-0493) and YPO4 (84-0335) phases with no other 

impurity phosphate phase or oxide phase [2-5]. 

 

       

 

  Fig. 4.1: Phase Analysis of the REPs (A) LaPO4; (B) YPO4 

 

(A) (B) 
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4.2.2 Fourier Transformed Infrared (FTIR) Analysis 

FTIR analysis of both the prepared phosphates was done to measure the characteristics 

energy absorption peaks of different molecular bonds in the infra-red region. Fig. 4.2 (A) 

shows the FTIR analysis of LaPO4. The very first band is characteristics of the vibration of 

phosphates group at about 584 cm
-1

 for v4, after this a stretch of v1 and v3 at 1050 cm
-1

 and the 

v2 is observed in the investigated range of wavenumbers. The broad band at 3455 cm
-1

 and 

the bands 1639 and 1458 cm
-1

 are associated with H2O [5]. A small band at 2005 cm
-1

 can be 

corresponding to the La - O [6-7]. 

  

The spectra of YPO4 is shown in Fig. 4.2 (B); the peak appearing at 525 – 641 cm
-1

 and 1049 

and 1258 cm
-1

 are corresponded to the bending vibration (u4 region) and stretching vibration 

(u3) of PO4 group. A band at 2922 cm
-1

 can be assigned to stretching vibration of Y - O. Peak 

centered at 1650, 2020 and 3408 cm
-1

 belong to the bending and stretching vibrations of O-H 

group [5]. 

 

     

     

 

  Fig. 4.2: FTIR Analysis of REP`s (A) LaPO4; (B) YPO4 

 

 

(A) (B) 
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4.2.3 Microstructure of Rare Earth Phosphates 

Calcined REP powders were studied for the microstructural characterization and the 

photomicrographs are shown in Fig 4.3 and 4.4. The morphology of LaPO4 shows micron 

sized particles [Fig. 4.3 (A) low-magnification], which are found to have a sponge-like 

structure on high-magnification [Fig. 4.3(B)]. Calcined YPO4 particles show a needle or rod-

like structure [5] and the morphology shows high aspect ratio of the individual rod like grains 

[Fig. 4.4 (A) & (B)]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                      

                     

        Fig. 4.4: FESEM Photomicrographs of Calcined YPO
4 

(A) Low Magnification; (B) High 

Magnification 

 

 

(A) (B) 

Fig. 4.3: FESEM Photomicrographs of Calcined LaPO
4 

(A) Low Magnification; (B) High 

Magnification  

(A) (B) 
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                                                          Part B 

                                      Characterizations of Composites 

 

4.3 Densification Study of Composites 

Densification behavior is studied by the Archimedes principle using a vacuum method in the 

water medium. For pure alumina compositions, CAl2O3 is highly sinterable (about 97% 

densification was obtained at 1600°C compared to that of RAl2O3, due to its increased 

reactivity from finer particle sizes. But it is observed that the addition of REP reduces the 

extent of densification of the composites for all the sintering temperatures. Again increasing 

amount of REP is found to decrease the density values gradually (Fig. 4.5 – Fig. 4.8). This is 

due to the presence of REP particles in between the alumina particles that act as a weak 

interphase material, results in interfacial debonding and reduced sintering / densification [8-

9].  

 

Increasing amount of REP content in the compositions, increases the presence of REP 

particles in the alumina matrix; hence greater extent of debonding and desintering of alumina 

ceramics occur, resulting in further lower density values. But the increase in sintering 

temperature, helps in increasing the sintering effect, thus results in higher density values for 

all the different composition and REP contents.  

 

The fall in relative densification against rare earth content for both the types of alumina and 

REPs is much prominent compared to that of the bulk density plot. As the REPs have higher 

true density (specific gravity) values and increasing amount of REP increases the theoretical 

density of the compositions. 
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        Fig. 4.5: Bulk Density and Relative Density Plot of CAl2O3 – LaPO4 Against the 

Temperature 

 

      Fig. 4.6: Bulk Density and Relative Density Plot of RAl2O3 – LaPO4 Against the Temperature 
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  Fig. 4.7: Bulk Density and Relative Density Plot of CAl2O3 – YPO4 Against the Temperature 

 

 

           Fig. 4.8: Bulk Density and Relative Density Plot of RAl2O3-YPO4 Against the Temperature 
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4.4 Phase Analysis of Composites  

Phase analysis study of the sintered composites sintered at different temperatures shows only 

the peaks of the reactant phases, namely Al2O3 and REP and no other reaction product phases 

are observed. This trend is found for both the types of alumina, both the REPs, for all the 

REP contents and all the sintering temperatures. Increase in REP phase intensity is observed 

as the REP content is increased in the compositions. Phase analysis studies of 10 wt. % to 50 

wt. % of REP (LaPO4 and YPO4) containing composites sintered at different temperatures are 

shown in Fig. 9 - Fig. 12 respectively.  

 

Presence of separate and individual reactant phases and absence of any other phases indicate 

that no reaction has occurred between the reactant phases within the sintered composites for 

all the different contents of REP sintered at various temperatures. Hence, the sintered 

products are composite in nature for both the REP containing batches, even after sintering at 

different temperatures. REP phases are present as un-reacted one in the sintered compositions 

and remain as an interphase material. 
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1600°C 

 * = LaPO
4
 (32-0493) 

= Al
2
O

3
 (42-1468) 

Fig. 4.9: XRD Pattern of CAl2O3-LaPO4 Composites Containing 10 wt. % - 50 wt. % of LaPO
4
 

Sintered at Different Temperatures 

1500°C 1550°C 
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1550°C 1500°C 

1600°C 

 * = LaPO
4
 (32-0493) 

= Al
2
O

3
 (42-1468) 

Fig. 4.10: XRD Pattern of RAl2O3-LaPO4 Composites Containing 10 wt. % - 50 wt. % of LaPO
4
 

Sintered at Different Temperatures 
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1400°C 1450°C 

1500°C 1550°C 

1600°C 

Fig. 4.11: XRD Pattern of CAl2O3-YPO4 Composites Containing 10 wt. % - 50 wt. % of YPO
4
 

Sintered at Different Temperatures 

 = YPO4   (84-0335)  

= C Al2O3 (42-1468) 
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 = YPO4    (84-0335)  

= R Al2O3 (42-1468) 

Fig. 4.12: XRD Pattern of RAl2O3-YPO4 Composites Containing 10 wt. % - 50 wt. % of YPO
4
 

Sintered at Different Temperatures 

1500°C 1550°C 

1600°C 
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4.5 Flexural Strength of composites 

The Flexural strength of the composites is characterized by 3-point bending test method on 

bar samples of 60x6x6 mm dimension. A gradual decrease in the strength values is observed 

for both the aluminas with the increasing addition of REP. Flexural strength values of the 

composites are shown in Fig. 4.13 – Fig. 16. This gradual and continuous decrease in strength 

with increasing amount of REP is due to the increasing presence of REP particles in the 

alumina matrix causing increasing effect of desintering/debonding. Presence of REP particles 

reduces the sintering in the compositions, thus deteriorated the densification (as already 

described) and the corresponding strength. Increase in sintering temperature is found to 

increases the strength values for all the compositions, which is associated with the increased 

sintering effect resulting in greater densification and strength. CAl2O3 shows a higher 

strength values compared to that of RAl2O3 for all the sintering temperatures and all the REP 

containing conditions. This is due to the increased sintering and densification of CAl2O3. 

 

 

       Fig. 4.13: Flexural Strength Plots of CAl2O3 – LaPO4  
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Fig. 4.14: Flexural Strength Plots 

of RAl2O3 – LaPO4 

Fig. 4.15: Flexural Strength Plots 

of CAl2O3 – YPO4  

Fig. 4.16: Flexural Strength Plots 

of RAl2O3 – YPO4  
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4.6 Microstrucutre Analysis 

Microstructural developments of sintered Al2O3-REP composites with different REP content 

are shown in Fig. 17 – Fig. 20. All the different compositional variations are studied and only 

1600°C sintered products are shown as representative ones. In each of the CAl2O3 and 

RAl2O3 composites containing both the REPs, two different phases can be distinguished 

easily. Higher scattering of the incident electron (for both backscattered and secondary 

electrons) by the REP phases (due to the presence of rare earth elements having higher 

atomic number) resulting in higher brightness of the REP particles. The rod-like feature of 

the YPO4 particles is also observed in different composites containing various types of 

aluminas. This feature also indicates the presence YPO4 as a separate entity in the sintered 

products, showing the composite character even after sintering.  

 

Again, the size of the REP grains were found to be in the range of 1-2 micron but the size of 

alumina grains were found to be reduced by increasing amount of REP content in the sintered 

composites. This is common for both the aluminas and both the different types of REPs. This 

may be due to the higher extent of the restriction in the diffusion path of alumina for grain 

growth in increased presence of the REP particles in between them. In general, REP grains, 

distributed in the Al2O3 matrix and refines the grain size of Al2O3 [3] and reduces the size of 

alumina grains after sintering.  

 

Elemental distribution mapping of different elements present in the sintered composites is 

shown in Fig. 21 – Fig. 24. It can be seen that elements like Al, P, O and rare earth (like La or 

Y) are well distributed in the photomicrographs. This confirms the well distribution of the 

elements, and so the respective oxides, namely Al2O3 and REP in the sintered composites 
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Fig. 4.17: FESEM Micrographs of the Fractured Surface of CAl2O3-LaPO4 Composites 

Sintered at 1600°C (back-scattered); (A) 10 wt.% LaPO4; (B) 20 wt.% LaPO4; (C) 30 wt.% 

LaPO4; (D) 40 wt.% LaPO4;  (E) 50 wt.% LaPO4 
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Fig. 4.18: FESEM Micrographs of the Fractured Surface of RAl2O3-LaPO4 Composites 

Sintered at 1600°C (back-scattered); (A) 10 wt.% LaPO4; (B) 20 wt.% LaPO4; (C) 30 wt.% 

LaPO4; (D) 40 wt.% LaPO4; (E) 50 wt.% LaPO4. 
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Fig. 4.19: FESEM Micrographs of the Fractured Surface of CAl2O3-YPO4 Composites 

Sintered at 1600°C (back-scattered); (A) 10 wt.% YPO4; (B) 20 wt.% YPO4; (C) 30 wt.% 

YPO4; (D) 40 wt.% YPO4;  (E) 50 wt.% YPO4 
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Fig. 4.20: FESEM Micrographs of the Fractured Surface of RAl2O3-YPO4 Composites 

Sintered at 1600°C (back-scattered); (A) 10 wt.% YPO4; (B) 20 wt.% YPO4; (C) 30 wt.% 

YPO4; (D) 40 wt.% YPO4; (E) 50 wt.% YPO4 
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Fig. 4.21: Elementary Mapping of 

CAl2O3/LaPO4 Composite Sintered 

 at 1600°C 

Fig. 4.22: Elementary Mapping of 

RAl2O3/LaPO4 Composite Sintered 

at 1600°C 

Fig. 4.23: Elementary Mapping of 

CAl2O3/YPO4 Composite Sintered  

at 1600°C 

Fig. 4.24: Elementary Mapping of 

RAl2O3/YPO4 Composite Sintered 

 at 1600°C 
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4.7 Machinability study 

The machinability study by drilling of different sintered samples is investigated by the 

cemented carbide drill bits. Fig. 4.25 shows the drilling study of pure Al2O3 sintered samples. 

It shows that pure alumina is not drillable and cracks/ breaks during the drilling operation 

under cemented drill bits. Strong bonding in pure alumina samples after sintering resulted in 

poor machinability and so the sintered samples were broken due to failure. 

 

 

 

 

 

 

 

Fig. 4.25: Photographs of Pure Alumina Samples, Without Any REP (A) CAl2O3 ; (B) 

RAl2O3  

 

Drilling study of the sintered composites with different aluminas and different amounts of 

LaPO4 and YPO4 are shown in Fig. 4.26 – Fig. 4.27. Grossly, the incorporation of REPs in 

alumina makes the sintered composites drillable. The holes are cleanly drilled, with no 

evidence of large-scale cracking or chipping 

 

The addition of REP serves two purposes: (i) It forms a fine, highly stable REP phase, which 

pins the boundaries of Al2O3 and refines the grain size of Al2O3. (ii) It segregates at the Al2O3 

grain boundaries and does not react with Al2O3 even at high temperature (1600°C).  

(A) 

(B) 
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This enhances the machinability of the composites by crack deflection along the weak 

interface between REP and Al2O3 and along layer plane of REP phase during drilling [2]. 

Microstructural photographs and elemental distribution of the elements present confirmed 

that REP particles are well distributed in the alumina matrix. They are acting as a weak 

interphase material in between the alumina particles, causing de-sintering and debonding 

effect and resulting in crack deflection and machinability.  

 

REP grains possess a layered crystal structure, and they get readily delaminated due to its low 

cleavage energy, fractures propagate parallel to the layer crystals [2]. Crack deflections, 

branching and blunting during machining of these layered crystals help to prevent 

macroscopic fractures from propagation beyond the local cutting area. For the Al2O3-REP 

composites, the layered structure REPs surrounding the Al2O3 grains is the main feature in 

the microstructure of this composite. Microstructural photomicrographs showed in Fig. 4.17 – 

4.20 indicate that most of the fracture mode belongs to inter-granular fracture, which 

confirms the formation of weak Al2O3-REP interfaces and is the primary reason of the 

improved machinability of this composite.  

 

Hence, the layered structure REP and the weak interface at the Al2O3- REP grain boundaries 

are the primary reason for the improvement of the machinability. Both of them enhance the 

crack deflection and avoid the catastrophic failure of the material during drilling. In the two-

phase mixtures of Al2O3 and REPs easy material removal by formation and linking of cracks 

at the weak interfaces between the two phases makes the composites machinable [2][8].  

 

Drilling study also showed that for CAl2O3, which shows greater sinterability compared to 

RAl2O3, there is a threshold amount of REP content for the composite to be machinable at 

higher temperatures [Fig. 4.26A – Fig. 4.27A]. For the CAl2O3 composites sintered at 

1550°C, a minimum of 20 wt. % of REP and for composite sintered at 1600°C, minimum of 

30 wt. % of REP is found to be required to become drillable. This may be associated with the 

greater extent of densification of fine alumina at higher temperatures, which is reducing the 

desintering and debonding effect of REP and requiring threshold content for drillability. 
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Fig. 4.26: Photographs of Drilled Composites (A) CAl2O3-LaPO4; (B) RAl2O3-LaPO4 

(A) 

(B) 
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Fig. 4.27: Photographs of Drilled Composites (A) CAl2O3-YPO4; (B) RAl2O3-YPO4 

 

 

(A) 

(B) 
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Part C 

Cytotoxicity of Composites 

 

4.8 Cytotoxicity of composites 

The concept of biocompatibility, associated with a set of In vitro standard tests. It is 

introduced to confirm the biological behavior of the synthetic material. When the synthetic 

materials are first used in biomedical applications, the only requirement is to achieve a 

suitable condition such as combination of physical properties to match those of the replaced 

tissue with minimal toxic response of the host. Bioactivity is the ability to interact with a 

biological environment to enhance the biological response [10-11]. Confirmation of In vitro 

cytotoxicity of bioceramic material is to evaluate cell response of the composites [10] [12]. 

Biomaterials once implanted will help the body to heal itself. Capability of bioceramic within 

living bone and host material are mandatory to develop new bioactive ceramics for load 

bearing bone repair applications. Here in, In vitro cytotoxicity and cell viability is analyzed 

using MG 63 osteoblast cells. 

 

 

4.8.1. In Vitro Cytotoxicity 

In vitro cytotoxicity of composites (sintered at 1600°C) carried out direct contact with MG 63 

osteoblast cells is represented in the Fig. 4.28 – Fig. 4.31. The cytotoxicity of the composites 

evaluated with following the ISO-10993-5 [13]. The test result performed on the composites 

(powder) exhibits small spherical and long tail morphology characteristics of MG 63 

osteoblast cell line and analyzed with pure Al2O3, 10 and 50 wt. % of REP. The positive 

control and pure Al2O3 are found to adhere and expand on composite powder. The fraction of 

long shaped cells is similar to a positive control and composites. Morphology of the MG 63 

osteoblast cells (Dead & Live) are marked in Fig 4.28 and same for all respective ones. 

Generally dead cell are look like open envelope and live cells poses there original tail like 

structure. The results of the cytotoxicity test reveal that the extract of composites does not 

affect the cell viability and proliferation. 
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Fig. 4.28: Inverted Microscope Images of MG 63 Osteoblast Cell Adhesion on CAl2O3-

LaPO4 Composites Sintered at 1600°C (A) Control; (B) Pure CAl2O3; (C) 10 wt. % of 

LaPO4; (D) 50 wt. % of LaPO4 

 

 

 

Fig. 4.29: Inverted Microscope Images of MG 63 Osteoblast Cell Adhesion on RAl2O3-LaPO4 

Composites sintered at 1600°C (A) Control; (B) Pure RAl2O3; (C) 10 wt. % of LaPO4; (D) 50 wt. % 

of LaPO4 
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Fig. 4.30: Inverted Microscope Images of MG 63 Osteoblast Cell Adhesion on CAl
2
O

3
-YPO

4
 

Composites Sintered at 1600°C (A) Control; (B) Pure CAl
2
O

3
; (C) 10 wt. % of YPO

4
; (D) 50 wt. % 

of YPO
4
 

Fig. 4.31: Inverted Microscope Images of MG 63 Osteoblast Cell Adhesion on RAl
2
O

3
-YPO

4
 

Composites Sintered at 1600°C (A) Control; (B) Pure RAl
2
O

3
; (C) 10 wt. % of YPO

4
 (D) 50 wt. % 

of YPO
4
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4.8.2 Cell viability study 

Metabolic study of the composites (10 and 50 wt. % of REP in both the Al2O3) sintered at 

1600°C has been investigated by MTT assay using MG 63 Osteoblast cells. The difference in 

the cell viability index amongst the sintered composites is shown in Fig. 32 – Fig. 35. The 

cell viability index of pure alumina and composites containing 10 and 50 wt. % of REPs is 

evaluated by controlled tissue culture plate and then compared. Clearly, it shows that 

different ratios of REP supports the growth of the MG 63 cells and also proves that higher 

amount of REP also supports the growth of cells. Results show that composites are non-toxic 

and have biocompatible nature. 

 

 

 

Fig. 4.32: Cell Viability Index of Composites (10 & 50 wt. % of LaPO4) Sintered at 1600°C 

CAl2O3/LaPO4   
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Fig. 4.33: Cell Viability Index of Composites (10 & 50 wt. % of LaPO4) Sintered at 1600°C 

RAl2O3/LaPO4   

 

 

Fig. 4.34: Cell Viability Index of Composites (10 & 50 wt. % of YPO4) Sintered at 1600°C 

CAl2O3/YPO4 
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Fig. 4.35: Cell Viability Index of Composites (10 & 50 wt. % of YPO4) Sintered at 1600°C 

RAl2O3/YPO4 
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CHAPTER 5 

Conclusion 



5.1 Conclusion  

1. Phase pure rare earth phosphates (REP), namely LaPO4 and YPO4 were prepared used 

reaction synthesis technique and calcination. The preparation of rare earth phosphates is 

scalable process and can be produced in laboratory in maintained neat and clean 

atmosphere. Synthesized phosphates were characterized and confirmed by phase 

analysis, FTIR and microstructural characterization.  

 

2. Two grades of commercially available synthetic and pure alumina, namely CAl2O3 and 

RAl2O3 were used to Al2O3-REP composites by solid mixing in wet medium, pressing 

and sintering between 1400 to 1600°C. REP content in the compositions were varied 

between 10 to 50 wt. %.  

 

3. Densification and strength study of the different composites showed that the sinterability 

and strength of Al2O3/REP composites were dependent on the REP content. Increasing 

amount of REP content was found to decrease the densification and strength of the 

composites and increasing sintering temperature resulted in increased values.  

 

4. Phase analysis study of the sintered composites confirmed the presence of only alumina 

and REP phases irrespective of REP content and sintering temperature. This indicates no 

reaction between the components has occurred, and the sintered products are composites 

in nature.  

 

5. Microstructural study and elemental distribution confirmed the well distribution of Al2O3 

and REP particles in all the compositions. REP particles have also retained their features 

even after sintering, showing their thermal stability and non-reactivity with alumina. 

Thus, the sintered samples are composites in nature.  

 

6. The machinability of composites is markedly improved due to the presence of weak 

interphase material REP in between the Al2O3 particles. Hence, the sintered composites 

are drilled by using conventional cemented carbide drill bits. But pure alumina, without 

any REP content, were found to be not drillable and cracked during drilling in the same 

drill bits.  
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7. Al2O3/REP composites also showed the positive results in cytotoxicity testing and cell 

viability study supports the growth of cells on the sintered composited and showed good 

compatibility.  

 

8. CAl2O3 showed better result as compare to the other alumina in all aspects. 

 

9. CAl2O3 with 30wt. % REP content sintered at 1600°C was found to be machinable with 

a densification of >85% and strength >150MPa, may be reported as the optimum batch 

with desired properties. 

 

10. Both rare earth phosphates are biocompatible. REPs are being used in biomedical fields, 

mainly as bio-imaging phosphors. Most of the rare earth oxides are radioactive in nature 

but these do not have much radio activeness. Both REPs with CAl2O3 showed better 

result as compare to other REP/alumina composites. 

 

 

5.2 Future Scope of Work 

 Machinability study of ceramic materials is not common and so the simplest and easiest 

techniques, drilling, are studied here. Sintered composited prepared in the study were 

found to be well machinable by drilling, but further machinability study may be proposed 

as future scope of the work. 

 

 CAl2O3 with 30 wt. % REP content sintered at 1600°C was found to be machinable with 

a densification of >85% and strength >150MPa. But all the properties of this 

composition and also other compositions may also be improved by incorporating better 

processing techniques, like isostatic pressing, hot pressing, etc. Study with these 

advanced processing techniques may be taken up as future scope of the work.  

 

 Cytotoxicity and cell viability study was done as the biological study of the sintered 

composites. However, further detailed biological study, including in-vivo 

characterization, may be taken up as the future scope of the work. 
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