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Abstract

Networked Control Systems (NCSs) are distributed control systems where sensors, actuators,

and controllers are interconnected by communication networks, e.g. LAN, WAN, CAN,

Internet. Use of digital networks are advantageous due to less cost, ease in installation

and/or ready availability. These are widely used in automobiles, manufacturing plants,

aircrafts, spacecrafts, robotics and smart grids. Due to the involvement of network in such

systems, the closed-loop system performance may degrade due to network delays and packet

losses. Since delays are involved in NCS, predictor based compensators are useful to improve

control performance of such systems. Moreover, the digital communication network demands

implementation of digital compensators.

First, the thesis studies stability analysis of NCSs with uncertain time-varying delays.

For this configuration, both the controller and actuators are assumed as event-driven (i.e. the

delays are fractional type). The NCS with uncertain delays and packet losses are represented

as systems in polytopic form as well as with norm-bounded uncertainties. The closed-loop

system stability is guaranteed using quadratic Lyapunov function in terms of LMIs. For given

controller gain the maximum tolerable delay calculated and the resultant stability regions of

the system is explored in the parameter plane of control gain and maximum tolerable delay.

The stability region is found to be almost same for both the methods for the case of lower

order systems (an integrator plant), whereas for higher order systems (second order example

system), the obtained stability region is more for the case of polytopic approach than the

norm-bounded one. This motivates to use the polytopic modeling approach in remaining of

the thesis.

Next, design of digital Smith Predictor (SP) to improve the performance of NCS with



bounded uncertain delays and packet losses in both the forward and feedback channels is con-

sidered. For implementing a digital SP, it is essential that the controller is implemented with

constant sampling interval so that predictor model is certain and therefore the controller is

required to be time-driven one (sensor-to-controller channel uncertainties are integer type).

On the other hand, the actuator is considered to be event-driven since it introduces lesser

delay compared to the time-driven case. Thereby, the controller-to-actuator channel delays

are fractional type. The system with uncertain delay parameters (packet losses as uncertain

integer delays) are modeled in polytopic form. For this system, Lyapunov stability criterion

has been presented in terms of LMIs to explore the closed-loop system stability. Finally,

the proposed analysis is verified with numerical studies and using TrueTime simulation en-

vironment. It is observed that the digital SP improves the stability performance of the NCS

considerably compared to without predictor. However, the choice of predictor delay affects

the system performance considerably.

Further, an additional filter is used along with conventional digital SP to improve the

system response and disturbance rejection property of the controller. For this configurations,

both the controller and actuators are assumed to be time-driven. The NCS with random

but bounded delays and packet losses introduced by the network is modeled as a switched

system and LMI based iterative algorithm is used for designing the controller.

A LAN-based experimental setup is developed to validate the above theoretical findings.

The plant is an op-amp based emulated integrator plant. The plant is interfaced with a

computer using data acquisition card. Another computer is used as the digital controller

and the two computers are connected via LAN using UDP communication protocol. The

effectiveness of the proposed controller design method is verified with this LAN-based experi-

mental setup. Three controller configurations (i.e. without and with digital SP as well as the

digital SP with filter) are considered for comparison of their guaranteed cost performance.

It is shown that the digital SP with filter improves the performance of NCS than with and

without simple digital SP based NCS configurations.

Finally, design of digital predictor based robust H∞ control for NCSs is made in such

a way that the effect of randomness in network delays and packet losses on the closed-

loop system dynamics is reduced. For the purpose, the predictor delay is chosen as a fixed



one whereas variation of random delays in the system are modeled as disturbances. Then

quadratic H∞ design criterion in the form of LMIs is invoked so that the network jitter effect

is minimized. The efficacy of the proposed configurations are validated with the developed

LAN based NCS setup. It is seen that the designed controllers effectively regularize the

system dynamics from random variations of the network delays and packet losses.
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Chapter 1

Introduction

1.1 Networked Control Systems (NCSs)

Control system components (sensors, controllers and actuators) are traditionally con-

nected or, in the other sense, communicate among themselves through conventional

wiring. Such control architecture are also called as point-to-point control architecture

[110] as shown in Figure 1.1. But it requires huge connection wiring from sensors

to controller and controller to actuators making it difficult to maintain and reconfig-

ure. In recent years, a traditional point-to-point architecture is no longer able to meet

emerging requirements, e.g. less installation and maintenance costs, reduced dedicated

wiring and power requirements and simple reconfiguration.

The common-bus network architecture has been introduced to meet the above

requirements as shown in Figure 1.2. Such systems are referred to as Networked

Control Systems (NCSs). NCSs are control systems in which the system components

are spatially distributed and connected via real-time digital networks (for example

LAN, WAN, CAN and internet) [24, 116, 118]. These are widely used in automobiles,

manufacturing plants, aircrafts, spacecrafts and Smart Grids.
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Controller
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Figure 1.1: Point-to-Point Configuration of NCS

Sensor n

Controller

PlantActuator 2
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Figure 1.2: General Configuration of NCS

1.1.1 Network Technologies for NCS

In NCS, the communication network is the backbone for exchanging the information

among all system components. A computer network can be characterized by its phys-

ical capacity or its organizational purpose. The network is divided into two categories

as dedicated networks (control networks) and non-dedicated networks (data networks).
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1.1.1.1 Dedicated networks

In a dedicated network, a constant and frequent packet transmission takes place among

a relatively larger set of nodes. For example, Control Net (CAN) [45].

1.1.1.2 Non-dedicated networks

A non-dedicated network uses large data packets and relatively infrequent transmission

rates, with high data rates to support the transmission of large data files. For example

LAN, MAN and WAN [87].

1.1.1.3 Local Area Networks (LANs)

LAN is a network that connects computers and devices in a limited geographical area

such as a home, school, office building, or single organization. These can be used for

few kilometers, high data rate i.e. at least several Mbps. For example, Ethernet, IBM

Token Ring, Token Bus, Fiber Distributed Data Interface (FDDI) [87].

1.1.1.4 Metropolitan Area Networks (MANs)

MAN is a network that spans a metropolitan area or campus. Its geographic scope

is larger than LAN and smaller than WAN. MANs provide Internet connectivity for

LANs in a metropolitan region, and connect them to wider area networks like the

Internet. These can be used for upto 50 kilometers. For example, cable TV networks

and ATM networks [87].

1.1.1.5 Wide Area Networks (WANs)

WAN is a network spanning a large geographical area of around several hundred miles

to across the globe. It provides lower data transmission rates than LANs. For exam-

ple, ARPANET, MILNET (US military), NSFNET, KREONET, BoraNet, KORNET,

INET and Internet [87].
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The above mentioned networks can be connected to each other using several compo-

nents like repeaters, bridges, routers, gateways, network interface cards and switches.

1.1.2 NCS Configurations

Broadly the NCS configurations can be divided into two types and they are Level One

Communication (L1C) configuration and Level Two Communication (L2C) configura-

tion [110].

1.1.2.1 Level One Communication

Level One Communication (L1C) can be classified into two groups as direct structure

and indirect (hierarchical) structure.

In direct structure, the controller and remote system (plant) components (sensors

and actuators) are physically located at different locations and are directly linked by

a common sharing network in order to perform remote closed-loop control system as

shown in Figure 1.3. Example of NCS in the direct structure is a DC motor speed

control system, where the output signal (speed) information is sent to the input of the

plant (DC motor) through the controller via a network.

In hierarchical structure, the main controller and a remote closed-loop system

(plant with remote controller) are physically located at different locations and are

indirectly linked by a common sharing network in order to perform remote closed-

loop control system as shown in Figure 1.4. The only difference between a direct

and hierarchical structure is the controller. Here two controllers are used namely a

main and a remote controller. The main controller computes and sends the refer-

ence signal in a packet via a network to the remote system. The remote system then

processes the reference signal to perform local closed-loop control and returns to the

sensor measurement to the main controller for networked closed-loop control. Main

controller calculates the reference signal for the remote controller. Since the data is
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transmitted directly to the components via the remote controller therefore the system

performance improves. Also this structure is more modular [66]. It is widely used in

several applications including mobile robots, tele-operation [110].

Controller

Actuator SensorPlant

Network

Figure 1.3: Direct Configuration of NCS

Controller
Remote

Controller

SensorPlantActuator

Network

Figure 1.4: Hierarchical Configuration of NCS

Control and analysis methodologies for the direct structure could also be applied for

the hierarchical structure by treating the remote closed-loop system as the controlled

plant.
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1.1.2.2 Level Two Communication

In Level Two Communication (L2C) configuration, communication occurs at two levels

(two communication channels) and is shown in Figure 1.5. A kind of field bus dedicated

to real-time control network is used for communicating micro controller to the plant.

This communication is known as level-1 communication. In level-2 communication,

micro-controllers are used to communicate with a high-level computer system, through

another communication network. This network is typically non-dedicated networks like

local area network, wide area network (WAN), or possibly the Internet. As shown in

Figure 1.5, micro-controllers communicate with system components using a dedicated

network in level-1 and with a high level controller using a non-dedicated network in

level-2 communication [110].

Level One Communication (Dedicated Networks)

Plant SensorsActuators

High Level
Controller

Level Two Communication (Non−Dedicated Networks)

Micro
Controller 2

Micro
Controller 1

Micro
Controller n

Figure 1.5: Level Two Configuration of NCS
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1.2 Network Features in NCS

The fundamental issues in NCSs (with non-dedicated networks) are random delays

and packet (information) losses. These are introduced by networks among system

components (also called nodes) that influences the system stability and performance.

Analysis and design of controllers for such NCS are important due to their potential

advantages and applications.

1.2.1 Time-Driven versus Event-Driven Components

Time-driven communication is a conventional communication process in which infor-

mation are communicated at regular time-intervals. Since the time-driven commu-

nication is easy to implement in engineering, NCSs with time-driven communication

are widely used in practical applications. It is implemented based on three different

sampling procedures: periodic sampling procedure, nonuniform sampling procedure

and stochastic sampling procedure [128].

Event-driven communication is an alternative communication process to time-

driven communication aiming to decrease the frequency of sampling and avoid the

unnecessary waste of communication and computational resources. There are two dif-

ferent sampling schemes in the event-driven communication: event-triggered sampling

and self-triggered sampling [128].

1.2.2 Time-Delay

Time-delay in a physical system enforces delayed response to an input. Whenever ma-

terial, information or energy is physically transmitted from one place to another, delay

is associated with the transmission. The amount of the delay varies by the distance

and the transmission speed. The presence of long delays makes system analysis and

control design much more complex.
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The network-induced delay [91] that includes sensor-to-controller delay and controller-

to-actuator delay based on NCS configuration arises when data exchange happens

among devices connected by communication network. Such delays, depending on the

network characteristics such as network-load, topologies, routing schemes, are gen-

erally time-varying. The delays are in a network communication described as the

following.

1. Waiting delay (dwk (t)): In cases, a source (the main controller or the remote

system) has to wait for queuing and network availability before actually sending a

frame or a packet out. This is referred to as waiting delay.

2. Frame delay (dfk(t)): The frame time delay is the delay during the moment that

the source is placing a frame or a packet on the network.

3. Propagation delay (dpk(t)): The propagation delay is the delay for a frame or

a packet traveling through a physical media. The propagation delay depends on the

speed of signal transmission and the distance between the source and destination.

Further, the delays in a feedback control system is described as the

1. Senor-to-controller delay (dsck (t)): This delay is generated when a sensor trans-

mits a measurement to a controller. The sensor-to-controller delay at time index k is

computed by

dsck (t) = tcsk − tssk

where tcsk and tssk are the time instants at which the controller starts to compute the

control signal and the sensor starts to measure the system output respectively.

2. Computational delay (dck(t)): Computational delay is the time needed for a

controller to compute a control signal based on the received measurement. This delay

is described by

dck(t) = tcfk − tcsk

where tcfk is the time instant when the controller finishes computing a control signal.

3. Controller-to-actuator delay (dcak (t)): This delay is occurs when a controller
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sends a control signal to an actuator. This delay is defined as

dcak (t) = task − tcfk

where task is the time-instant when the actuator receives the control signal and starts

to operate.

Controller 

Actuator 

Sensor 

    

 

 

 

 

 

 

     

 

Figure 1.6: Timing diagram for delays and packet losses

Actually the network delays dsck (t) and d
ca
k (t) may be either less than or more than

one sampling interval h but all the delays are assumed less than one sampling interval

for easy explanation and is shown in Figure 1.6. The controller processing delay dck(t)

and both the network delays may be lumped together as the total delay dk(t) for

easy analysis. The total delay in NCS may be written as: dk(t) = dsck (t) + dck(t) +

dcak (t). The controller processing delay always exists and is generally small compared to

network delays, and could be neglected. When the control or sensory data travel across

networks, there can be additional delays such as the queuing delay at a switch or a

router, and the propagation delay between network hops. The delays dsck (t) and d
ca
k (t)

also depend on other factors such as maximal bandwidths from protocol specifications,

and frame or packet sizes. Note that, dwk (t), d
f
k(t) and d

p
k(t) are not shown in Figure 1.6
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for simple explanation.

1.2.3 Packet Loss

Packet loss occurs when data is transmitted through non-dedicated communication

network among system components in packet form. Due to digital network character-

istic, the continuous-time signal from the plant is first sampled to be carried over the

communication network. Chances are that the packets may get lost during transmis-

sion because of uncertainty and noise in communication channels. It may also occur

at the destination when out of order delivery takes place.

A timing diagram representing time-delay and packet-loss is shown in Figure 1.6.

The sending end communication is considered as a time-driven one, i.e. it sends data

packets periodically at k− 1, k, k+1 and k+2, sampling intervals. The data packets

at sthk−1 and sthk instants are received at the receiver end with delays dk−1(t) and dk(t)

respectively. The sthk+1 data packet y((k+1)h) is not received at the receiver and hence

a packet loss occurs (i.e. at controller to actuator channel) that instant.

1.2.4 Packet Loss considered as Delay

Apart from delays, packet loss in the network is another concern. In Figure 1.6, the sthk

data packet y(kh) is received to the receiver with delay dk(t). Since the data packet

y((k + 1)h) is lost, resultantly there is no data received in sthk+1 sampling interval and

the data packet received at next sampling interval, i.e. let sthk+2 sampling interval.

If one continuous to operate over last received data then the delay is increased to

one sampling period (h) more, i.e. h + dk+2(t) with respect to sthk+1 sampling instant.

Therefore, the random packet losses (in terms of multiple sampling intervals) may also

represented as delays, i.e. appending the delay and packet loss together as random

delays [117, 96, 84].
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1.3 NCS Modeling

Due to the uncertain nature of time-delays and packet losses, NCS are modeled using

different techniques leading to available analysis and design techniques to be applied.

Broadly this can be categorized into two groups: (i) Sampled-data system approach.

(ii) Switched system approach. In general, the former one is used when fractional

delays are involved in the NCS, e.g. due to use of an event driven node. While the

later one is useful when all the nodes in an NCS are time-driven ones.

1.3.1 Sampled-Data System Approach

In this approach, an NCS is represented as a sampled-data system, which involves

continuous time plant and event-driven or time-driven components (digital controller,

sampler, and holder). Therefore, the continuous-time signal is to be appropriately

sampled for interacting with digital network. Sampled data system formulation of

NCS [118, 27, 94, 19] can capture the hybrid characteristic of signals present in the

overall system. Network-induced features such as delays, packet losses can also be

incorporated appropriately in the model. Often design of digital controllers for a

sampled-data system is done by using lifting technique [56, 75]. Lifting techniques

provide an equivalent characterization of sampled-data system with delay for NCSs.

This technique also considers the inter-sample behavior into account as well as variation

in sampling frequency [105]. An approach for sampled-data modeling approach is

described next.

Consider a NCS shown in Figure 1.7. Where the sensor is time-driven and both

the controller and actuators are event-driven. The sampling interval is considered to

be h with the kth sampling instant is defined as sk , kh.
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Delay Delay 

Sampler ZOH 

Controller 

Plant 
u(t) y(t) 

Figure 1.7: Sampled-data system representation for an NCS

Let the plant dynamics be represented as

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)
(1.1)

where x(t) ∈ R
n, u(t) ∈ R

m and y(t) ∈ R
p are the plant state vector, input and out-

put vectors respectively. A,B,C are constant matrices with appropriate dimensions.

The network induced delays are sensor-to-controller delay (dsc(t)) and controller-to-

actuator delay (dca(t)). Considering a static gain controller, these delays become

additive and may be written cumulatively as dk(t) = dsc(t) + dca(t). Moreover, it is

considered as 0 ≤ dk(t) < h.

Further, consider a state-feedback controller of the form

u(t) = Ky(t− dk(t)) = KCx(t− dk(t))

where K ∈ R
1×n is a static feedback gain matrix. Now for feedback control of the

system, one requires to exploit the information flow process in such NCS. Figure 1.8

shows such an information flow diagram at the plant input within a sampling interval

[sk, sk+1). In this case, the system may have two active control information, viz. xk−1

and xk based on the information xk received at sk + dk(t) instant. Note that, the
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number of such active control information depends on maximum delay bound. For

example, if maximum delay bound is 0 ≤ dk(t) ≤ nh, then active control information

within an interval will be (n+1). In general, the maximum active control information

will be (n+ 1) if the delay is nh.

                                                                                                                             

                                                                                                              

                                                                                  

                                                                                                                          

                                                                                 

Figure 1.8: Information flow within a sampling interval for 0 ≤ dk(t) < h.

Thus, the control input in a sampling period [sk, sk+1) may be described by

u(t) = KCxk−1, when t∈[sk, sk + dk(t)),

= KCxk, when t∈[sk + dk(t), sk+1).

Correspondingly, the sampled-data model can be represented:

xk+1 = eAhxk +

∫ dk(t)

0

eAsdsBKCxk−1 +

∫ h

dk(t)

eAsdsBKCxk (1.2)

Now, considering augmented state vector ψk = [xTk , x
T
k−1]

T , (1.2) can be written as:

ψk+1 = F (dk(t))ψk (1.3)

where F (dk(t)) =


 eAh −Mk Mk−1

I 0


, Mk =

∫ h

dk(t)
eAsdsBKC and

Mk−1 =
∫ dk(t)

0
eAsdsBKC.
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Now, one can work with the model (1.3) for analysis or controller design. Note that,

the model in (1.3) is an uncertain system description due to the uncertain parameter

dk. Also, the model is not an direct working model for analysis and controller design.

The uncertainties arising out from the variations in time-delay can be formulated

as parametric uncertainties in norm-bounded or polytopic framework (see Appendix

A) .

1.3.2 Switched System Approach

In this approach, the system is represented as a combination of subsystems one of

which is active at once. The switching from one subsystem to another happens via the

variation of network delays and packet losses that generates the so called switching

signal among the models. The stability of NCS and performance for the discrete-time

switched systems are presented in [15, 47, 6, 121]. The controller may be designed by

using state feedback approach [103] or output feedback approach [113].

For illustration, consider the same system as shown in Figure 1.7 with plant dynam-

ics in (1.1) but with the controller and actuators are time-driven. Then time delays

dsc(t) and dca(t) are automatically ceiled to integer multiples of h since controller and

actuators are assumed to be time-driven one.

For convenience, define the minimum and maximum integers nd = ⌊dk(t)/h⌋ and

n̄d = ⌈d̄k(t)/h⌉ respectively. Therefore, the network induced delays can be written as

nd ≤ nd ≤ n̄d. Note that, due to variation of network delays, nd is a random integer

variable parameter.

From Figure 1.7, the control input can be written as:

u(t) = Ky(t− dk(t)) = KCx(t− dk(t)) (1.4)

Now, consider the information flows at the nodes of the NCS. Figure 1.9 shows

an information flow diagram at the plant input within a sampling interval [sk, sk+1).
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In this case, the model is having one active control information, viz. xk−1 based

on information on xk−1 received at before or sk-instant. Note that, the number of

such active control information depends on maximum delay bound. For example, if

maximum delay bound is 0 ≤ dk(t) ≤ nh then active control information within an

interval will be n. In general, the maximum active control information will be n if the

delay is nh.

                                                                                                                 

                                                        

                                                                              Figure 1.9: Information flow within a sampling interval for 0 ≤ dk(t) < h.

Let 0 ≤ dk(t) < h (nd = 1). In general, the control input in a sampling period

[sk, sk+1) may be described by

u(t) = KCxk−1, when t∈[sk, sk+1) (1.5)

Therefore, the system description using (1.1) and (1.5) become

xk+1 = Adxk +BdKCxk−1 (1.6)

where Ad = eAh and Bd =
∫ h

0
eAsdsB.

Equation (1.6) may be rewritten as:

ψ(k + 1) = Fiψ(k) (1.7)
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where Fi =


 Mk Mk−1

I 0


, Mk = Ad, Mk−1 = BdKC, i = 1, 2, · · · , (n̄d − nd) and

ψ(k) = [xTk , x
T
k−1]

T .

1.4 Review on Control Design for NCS

This section briefly reviews some cursory works on controller design for NCS. The

different approaches that are applied to controller design for NCS are discussed next

[21].

1.4.1 Stochastic Control Approach

Since the network delays and packet losses are uncertain and random in nature, it

is intuitive that one may attempt to design a controller considering the system is a

stochastic one. This approach is more realistic to the nature of the random uncertain-

ties in time-delays and may yield better performance.

In [69], a Linear Quadratic Gaussian (LQG) optimal stochastic controller is de-

signed for an NCS with mutually independent stochastic delays. In this, the NCS is

modeled as a stochastic system and the distribution of random delays are assumed to

be known in advance. To overcome this assumption, [102] designed an average delay

window to achieve online-delay prediction for an NCS with unknown delay distribu-

tion and improved the LQG-optimal control performance. In reality, random delays

may take values more than one sampling period but aforementioned works [69, 102]

considered delays that are less than one sampling period. In [48, 28], a stochastic

optimal controller is designed to guarantee the mean square exponential stability of

the NCS with full or partial state feedback control when the delay is more than one

sampling period. Moreover, when the delay is arbitrary or even infinite, [127] derived

the stochastic optimal controller through solving an algebraic Riccati equation.

In [107], the random delays are modeled as a linear function of the stochastic vari-
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able satisfying Bernoulli random binary distribution, and the prescribed H∞ distur-

bance attenuation performance is achieved by designing an observer-based controller

to guarantee the stochastically exponential stability of the closed-loop NCS. It is as-

sumed that the construction of the observer was based on the knowledge of all the

control inputs at the actuator node. This assumption has further been relaxed in [98].

In [112], an optimal stochastic controller is designed to guarantee the mean square

exponential stability of the NCS with time-driven sensor nodes and event-driven con-

troller/actuator nodes, when the random delays are independent and identically dis-

tributed stochastic variables. For an MIMO NCS with multiple independent stochastic

delays, a delayed state-variable model was formulated and a LQR optimal controller

is designed to compensate for the multiple time-delays in [44].

1.4.2 Robust Control Approach

The random network delays can be transformed into uncertainty (or disturbance) in

an NCS, and then a robust controller can be designed to guarantee the robust stabil-

ity and robust performance of the NCS. Compared to stochastic one, robust control

approaches, in general, do not need the prior knowledge about the distribution char-

acteristics of random delays. In [70], a continuous-time robust controller is designed

using µ-synthesis with the sensor-to-controller delay is assumed to be constant and

controller-to-actuator delay is treated as the multiplicative perturbation of the NCS.

In [35], an NCS with asymmetric path-delays over random communication networks

was investigated under the criteria of H∞-norm minimization, and a delay-dependent

switching controllers has been designed via a piecewise Lyapunov function approach as

well as a common Lyapunov function approach. In [124], a discrete-time switched sys-

tem model is proposed to describe an NCS with random delays and then, based on the

obtained switched system model, a sufficient condition is derived for the NCS to be ex-

ponentially stable and ensure a prescribed H∞ performance level. Moreover, a convex

optimization problem is formulated to design the H∞ controllers which minimize the
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H∞ performance level. In [114], a robust H∞ memoryless type controller is designed

for uncertain NCSs with both delays and packet losses. The H∞ performance was

analyzed by introducing some slack matrix variables and employing the information

of the lower bound of delays. A different delay-dependent H∞ controller is designed

in [33] that is less conservative than [114]. This formulation uses information on both

the lower and upper bounds of delays and avoids introducing slack matrix variables.

The H∞ control problem of NCSs with both delays and packet disordering was in-

vestigated in [99] with the assumption that the actuator always uses the latest arrival

control law. This problem has further been investigated in [43], where the NCS was

modeled as a discrete-time system with uncertain parameters. An improved Lyapunov-

Krasovskii functional method was proposed in [43] to design a less conservative H∞

stabilizing controller by solving a minimization problem based on linear matrix in-

equalities.

1.5 Time-Delay Compensation for NCS

Since time-delays are involved in NCS, it is intuitive that predictive controllers work

well for them. In a predictive control strategy, one attempts to predict either the plant

model parameters or states/output information with limited information available at

hand. In case of NCS, since the output information is delayed, one may employ

predictors for predicting present state/output information from delayed transmitted

measurements that can be further used for improving control performance. Since such

predictor based controller uses otherwise present state/output for control even in the

presence of delay, these are alternatively also called, in general applications, delay

compensators. These are used in process industry [31, 78] but also in other fields such

as robotics [79] and internet congestion control [63]. Such compensators are often used

to improve the performance of classical controllers (PI, PID, LQG) for processes with

delays. Since NCSs inherently involve delays, it is likely as well as true that delay
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compensation based control techniques are applied to NCS. This section discusses

same delay compensation schemes that are either applicable or applied to NCS.

1.5.1 Smith Predictor (SP)

The simplest dead-time compensator structure is known as Smith Predictor (SP) in-

troduced in 1957 by O. J. M. Smith. Since then it is widely used in the area of

process control [120], networked control systems [9, 93, 39, 16], data transmission net-

works [62, 85, 3], production-inventory systems [80], etc. The classical Smith predictor

structure is shown in Figure 1.10. In this, the plant model dynamics is considered as

the plant dynamics. There are two loops working in a Smith predictor. The outer loop

is the actual feedback loop of the process which is always affected by delays and an

inner loop that consists of the process model in series with an estimated delay. The

outputs of inner and outer loop are subtracted in order to cancel out the effect of delay

in the control loop.

y(t) r(t) 
Plant Controller 

Compensator 

N 

E 

T 

W 

O 

R 

K 

Delay Plant Model 

Figure 1.10: Classical Smith Predictor

Over the years, riding on the successfulness of the classical one, several modified

SPs have been developed for betterment of the compensating effect. To improve the

set-point response, a modified Smith predictor is proposed in [1] and it is demonstrated

that faster set-point response and better load disturbance rejection can be achieved

with this scheme. The control configuration is shown in Figure 1.11. A convenient
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property of the proposed controller in [1] is that it decouples the set-point response

from the load response by using an additional filter.

y(t) r(t) 
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Figure 1.11: Astrom et al.’s Smith Predictor [1]

An adaptive Smith Predictor may be advantageous to compensate for changes in

plant parameters. An adaptive SP control scheme has been developed in [40, 39] with

an online time-delay estimator, shown in Figure 1.12. The time delay is estimated

from measured round-trip time with a high resolution digital signal processor timer.
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Figure 1.12: Lai and Hsu’s Smith Predictor [40, 39]

Some more modified SP structures have been presented in [2, 38, 101, 64, 90, 60,

54, 37, 119, 57] and the digital versions of SPs are discussed in [73, 92, 9].
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1.5.2 Predictive Control

Due to unknown networked delays and packet losses in NCSs, several predictive con-

trol methods has been studied in [52, 51, 53, 50]. Generally, the networked predictive

control system structure consists of two main parts, i.e. the control prediction genera-

tor at the controller side and the network delay compensator at the actuator side. The

former one is used to generate a set of future control predictions to satisfy the system

performance requirements using conventional control methods (e.g., PID, LQG). The

latter one is used to compensate for the unknown random network delays by choosing

the latest control value from the control prediction sequences available on the plant

side. This networked predictive control system structure is shown in Figure 1.13.
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u(t) y(t) 

Networked Predictive Controller 

Figure 1.13: The Networked Predictive Control System

In [52, 51, 53, 50], only delayed control inputs have been used to derive the control

predictions. However, in real-time, it is difficult to obtain the control input due to the

existence of delays. To overcome this drawback, an improved predictive controller has

been proposed and a compensation scheme in presence of both the channel delays and

packet losses in [125].

In order to improve further, another design method for networked predictive control

is presented in [23] by packing the current predictive control input signal with history

of predictive input signals. By this, the future plant input is predicted. There after,

an state predictor has been designed such that its performance and stability will not
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be affected by the future input of the plant.

A different networked predictive control strategy has been proposed in [95] by ap-

propriately assigning subsystems or designing a switching signal. Average dwell time

method has been used effectively for finding the switching signal using a varying Lya-

punov function. Further, an improved predictive control design strategy, combined

with the switched Lyapunov function technique, was proposed in [97], where the con-

troller gain varies with the random delay to make the corresponding closed-loop system

asymptotically stable with an H∞-norm bound.

Some of the other predictive control structures for NCS such as model predictive

and networked predictive based structures are presented in [10, 71, 7, 74] and [49, 76,

84, 108] respectively.

1.6 Motivations

From the review made above, it appears that although there are considerable attempts

for compensator design for NCSs, the following are not well addressed in literature.

1. Use of digital networks in NCSs are advantageous due to remote data exchange,

reduced complexity in wiring, less costs, easy reconfiguration and maintenance.

Also, these are widely used in automobiles, aircrafts, spacecrafts, manufacturing

processes and smart grids.

2. The uncertain delays and packet losses can be modeled as uncertain parameters.

Such modeling further requires to represent the system in either with polytopic

system model or norm-bounded uncertainty. A detailed comparison of these two

modeling is to be investigated.

3. NCSs involving digital communication network demands implementation of dig-

ital delay compensators. How to design and implement digital version of cele-

brated Smith Predictor for NCSs with uncertain delays and packet losses is not
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well addressed in literature.

4. How to improve the performance of an NCSs with uncertain delays and packet

losses using digital Smith Predictor with/without filter ?

5. How to minimize the jitter (it is a time-related, abrupt, spurious (false) variations

in a specified time-interval) effect on NCSs with delays and packet losses using

digital Smith predictor ?

6. How to develop an NCS experimental setup?

1.7 Aim and Objectives

1.7.1 Aim of the thesis

With the above motivations, this work attempts to address some of the related issues.

Mainly, design of digital compensators in purview of ensuring/improving stability of

NCSs in presence of uncertain delays is targeted. It also attempts to verify the design

through an experimental setup involving real-time network.

1.7.2 Objectives of the thesis

The objectives of the thesis are the following.

1. To study NCS modeling using with polytopic and norm-bounded approaches

with respect to involvement of time-varying delays.

2. To design and implement digital version of celebrated Smith Predictor for NCSs

with uncertain delays and packet losses.

3. To improve the performance of an NCSs with uncertain delays and packet losses

using digital Smith Predictor with/without filter.
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4. To minimize the jitter effect on NCSs with delays and packet losses using digital

Smith predictor.

5. To develop an NCS experimental setup for validation of the theoretical findings.

1.8 Outline of the Thesis

As seen, this chapter presents an overview of NCSs as well as review on control design

and delay compensation methods.

Next chapter presents a comparison of polytopic and norm-bounded modeling ap-

proaches for NCS considering time-varying delays as uncertain parameters. The sta-

bility properties of the developed models using the two approaches are illustrated and

numerically compared.

Chapter 3 presents a study on stability performance of digital Smith Predictor

based NCSs considering the delays and packet losses in both feedback and forward

channels. For stability analysis, the overall uncertain system is represented as a poly-

topic one. The effectiveness of the proposed controller is verified with a simulation as

well as TrueTime Simulation.

Chapter 4 presents a digital Smith predictor with filter based NCSs considering

uncertain bounded integer delays and packet losses in both the feedback and forward

channels. Guaranteed cost controller design and its cost performance is considered for

performance evaluation of the proposed controller. The effectiveness of the controller

is verified with a LAN-based simulation and practical experiment on an integrator

plant

Chapter 5 presents a design of digital predictor based H∞ control for Networked

Control Systems (NCSs) with random network induced delays. The controller is de-

signed with the objective that the effect of network jitter is minimized so that the

system dynamics is less effected from random variations. For the purpose, the predic-

tor delay is chosen as a nominal one whereas variation of random delays in the system
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are modeled considering these as disturbances. The effectiveness of the proposed con-

troller is validated through analysis as well as practical experiment on an integrator

plant.

Finally, chapter 6 highlights the contributions of this thesis. Suggestions for future

work is also provided therein.





Chapter 2

Polytopic and Norm-Bounded

Modeling for NCSs

For stability studies of an Networked Control System (NCS), one requires appropri-

ate consideration of the uncertain delays in the system model. This chapter studies

comparison of polytopic and norm-bounded modeling approaches for NCS considering

time-varying delays as uncertain parameter. The stability properties of the developed

models using the two approaches are illustrated and numerically compared.

2.1 Introduction

From the robust control perspective, variation of delay in an NCS can be modeled as

parametric uncertainties by using either (i) Polytopic system representation [12, 11]

or (ii) Norm-Bounded (NB) representation [25, 30]. Due to the uncertain nature of

time-delays and packet losses, broadly, the system can be represented as either a

sampled-data system or a switched system. A involves a continuous-time plant and

event-driven or time-driven control components such as digital controller, sampler and

holder. Therefore, the continuous-time signal is to be appropriately represented in

sampled-data form for consideration of the effect of digital network. Sampled-data
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system formulation of an NCS has been studied in [118, 27, 94, 19].

Although the polytopic and norm-bound tools are individually used for stability

analysis of an NCS, typically in presence of an event-driven node leading to delays

that are fractional multiples of the sampling interval comparison of them is required to

make an appropriate choice for use. The norm-bounded approach allows to use widely

investigated quadratic stabilization results whereas the polytopic approach, may be

slightly less conservative [55], and it induces computational complexity in terms large

dimensions of stability criterion.

Sampler ZOH 

u(t) x(t) 

Network 

Plant 

Controller 

Figure 2.1: Schematic overview of an NCS.

An investigation on stability analysis of an NCS with time-varying delays using

static feedback controller is made in this chapter. The NCS setup for this study is as

shown in Figure 2.1. The plant is a continuous-time one whereas the feedback control

is through a digital network. Then the requirement is to represent the overall system

into either continuous or discrete-domain. Here, the discrete-domain representation

and corresponding analysis is used since the continuous-time analysis for such hybrid

systems are comparatively more conservative. The uncertainties arising out from the

variations in time delay is formulated as parametric uncertainties, which is further

represented in polytopic as well as NB framework. The stability of these models are

analyzed employing quadratic Lyapunov stability criterion in terms of Linear Matrix

Inequalities (LMIs). The two methods are finally compared using two numerical ex-

amples.
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The next section presents the modeling of the NCS with time-varying delays. Sec-

tion 2.3 describes the stability analysis. Numerical results using two examples are

presented in section 2.4. Finally, section 2.5 presents the discussion of the chapter.

2.2 Polytopic and Norm-bounded System Models

Polytopic model :

A polytope is a bounded and convex polyhedron. Consider the continuous-time

LTI system

ẋ(t) = Fx(t) (2.1)

where F is an uncertain matrix. For above system, the polytopic form can be written

as:

F ∈ F = Co{F1, F2, · · · , Fn}.

where F is a set of vertices and Co denotes a convex hull. For generation of polytope

i.e. finite set of vertices, please see appendix A.

Norm-Bounded model :

For norm-bounded model, the above system (2.1) can be represented as:

ẋ(t) = (F0 +∆F )x(t)

where F0 is the nominal component of the uncertain matrix. The uncertain matrix

∆F may be decomposed to ∆F = DFτE. Therefore the norm-bounded matrices can

be written as:

F = {F0 +DFτE : FτF
T
τ ≤ I}.

where D,E are constant matrices and Fτ is a diagonal matrix with all the normalized

uncertain parameters.
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2.3 NCS Modeling

The investigation of the effectiveness of the stability performance for an NCS with

uncertain delays (as shown in Figure 2.1) has been done by two modeling approaches

(i.e. polytopic and NB). The dynamics of the continuous-time plant in Figure 2.1 is

given by

ẋ(t) = Ax(t) +Bu(t) (2.2)

where x(t)∈Rn and u(t)∈Rm are the state and control input respectively. A∈Rn×n and

B∈Rn×m are constant matrices. Time instant with h sampling interval is considered

as sk := kh, k being the sampling instant. The network induced delays are sensor-

to-controller delay (τsc) and controller-to-actuator delay (τca). Considering a static

gain controller, these delays becomes additive and may be written cumulatively as

τ = τsc + τca. Moreover, it is considered that τ is bounded as:

0≤τ≤τmax.

The objective this chapter is to study the comparison of polytopic and norm-bounded

models for NCS.

2.3.1 Sampled-Data System Representation

Let us also define the multiplicity index of the delay bound as:

d := ⌈τmax/h⌉.

For stabilization of the NCS, a state feedback controller is considered as:

u(t) = Kx(t)
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Figure 2.2 shows an information flow diagram at the plant input within a sampling

interval [sk, sk+1) for d = 1, i.e., 0≤τ≤h. In this case, the model has two active

control information, viz. xk−1 and xk. Note that, the number of such active control

information depends on d. If d≤p then there would be (p+1) number of active control

information (xk−p, · · · , xk) in a sampling interval.

                                                                                                                                                                                

                                                                                                               

                                                                                  

                                                                                                                                

                                                                                       

Figure 2.2: Information flow within a sampling interval for d ≤ 1.

In general, the control input in a sampling interval [sk, sk+1) may be described by

u(t) = Kxk−q, when t∈[sk + τk−q − qh, sk + τk−(q−1) − (q − 1)h).

The discrete-time model of the NCS can then be described as

xk+1 = eAhxk +

0∑

q=d

∫ τk−(q−1)−(q−1)h

τk−q−qh

eAsdsBKxk−q (2.3)

Defining an augmented state vector as ψk = [xTk , x
T
k−1, · · · , x

T
k−d]

T , (2.3) may be rewrit-

ten as:

ψk+1 = F (τk)ψk (2.4)
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where F (τk) =




eAh +Mk Mk−1 Mk−2 · · · Mk−d

I 0 0 · · · 0

0 I 0 · · · 0
... 0

. . . 0 0

0 · · · 0 I 0




and

Mk−q =





∫ τk−(q−1)−(q−1)h

τk−q−qh eAsdsBK if d≤q≤0

0 if 0 < q < d
.

The above system description contains the uncertain delay parameter

τk = [τk, τk−1, · · · , τk−d] with τk−q ∈ [τk−q−1, τk−q+1] for 0≤q≤d.

For further consideration of system (2.4), the uncertain system matrix F (τk) may

be represented using system with parametric uncertainties. For a given plant model

(2.2), obtaining this requires computing matrix exponentials. Computational simpli-

fication may be achieved by considering the plant model in real Jordan form [12].

2.3.2 Polytopic Representation

The system (2.4) can be described in polytopic form by expressing

F (τk) =

d∑

r=0

τk−rFr (2.5)

where τk−r ∈ {τ k−r, τ̄k−r} with τ k−r := min(τk−r), τ̄k−r := max(τk−r), Fr are constant

matrices with r = 0, 1, · · · , d. Each matrix in the set (2.5) may be written as a convex

combination of generators of the set as

Ω , co(F (τk)) =
2d∑

l=1

αlHl (2.6)

with
∑2d

l=1 αl = 1, αl ∈ [0, 1] and Hl are constant matrices. This form corresponds to

time-varying systems modeled by an envelope of linear time-invariant systems.



2.4 Stability Analysis of Discrete-Time Systems 33

2.3.3 Norm-Bounded Representation

An alternative representation of (2.4) may be obtained by modeling the uncertain

parameters in norm-bounded fashion as

F (τk) = F0 +∆F (τk) (2.7)

where F0 is the nominal component of the uncertain matrix F (τk). The uncertain

component ∆F (τk) may be decomposed as in (2.8) withD and E are constant matrices

of appropriate dimensions defining the structure of the uncertainty whereas F̄ (τk) is

uncertain satisfying

∆F (τk) = DF̄ (τk)E, with F̄ (τk)T F̄ (τk)≤I (2.8)

A choice of F̄ (τk) would be a diagonal matrix with all the normalized uncertain pa-

rameters as its diagonal elements so that it satisfies (2.8).

2.4 Stability Analysis of Discrete-Time Systems

For stability, the uncertain system (2.4) needs to be represented in a form that is

conducive to analysis, e.g. using an quadratic Lyapunov function V (ψk) = ψT
k Pψk

approach. With this, the stability can be guaranteed if the following inequality is

satisfied

P = P T > 0 and F T (τk)PF (τk)− P < 0 (2.9)

where P is a positive definite matrix of appropriate dimensions. Due to the uncertainty

matrix F (τk) in (2.9) is having an infinite number of inequalities and it is computa-

tionally not tractable. Next, the following modeling of the system is considered so

that the solution becomes tractable.
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2.4.1 Polytopic Systems

The stability of polytopic systems describes as

Lemma 2.1. To guarantee the stability of (2.5), the following LMIs are to be satisfied:


 P HT

l P

∗ P


 > 0, l = 1, 2, · · · , 2d. (2.10)

where Hl are vertices of Ω as per (2.6). Note that, the number of LMIs for ensuring

stability increases exponentially with increase in d. This may induce computational

complexity as well as conservatism due to over-approximation for large d, which is

often the case of such NCS.

Proof. The common quadratic Lyapunov function V (ψk) = ψT
k Pψk approach is used

to guarantee the stability of the LMIs (2.10). The stability of the LMIs ensures the

stability of the system (2.4). Replacing the uncertain system (2.9) with its polytopic

form (2.6), one obtains




2d∑

l=1

αlHl




T

P




2d∑

l=1

αlHl


− P < 0 (2.11)

Since
∑2d

l=1 αl = 1, the above inequalities can be written as




2d∑

l=1

αlHl




T
2d∑

l=1

αlP




2d∑

l=1

αlHl


−

2d∑

l=1

αlP < 0 (2.12)

Above (2.12) can be written as

2d∑

l=1

αlH
T
l PHl −

2d∑

l=1

αlP < 0 (2.13)
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2d∑

l=1

αl(H
T
l PHl − P ) < 0 (2.14)

The above inequalities can be written as

HT
l PHl − P < 0 (2.15)

with
∑2d

l=1 αl = 1 and l = 1, 2, · · · , 2d. Using Schur complement, (2.15) can be repre-

sented as (2.10).

2.4.2 Norm-Bounded Systems

The stability of NB systems presents the following lemma

Lemma 2.2. Stability of (2.4) with the uncertainty modeling as per (2.7) and (2.8) is

guaranteed if there exists a P > 0 satisfying the following LMI [25]:




−P + ǫETE F T
0 P 0

∗ −P PD

∗ ∗ −ǫI


 < 0 (2.16)

where P > 0, ǫ > 0 are the LMI variables.

Proof. The stability condition (2.9) along with (2.7) can be written as

F0 +∆F (τk))TP (F0 +∆F (τk))− P < 0 (2.17)

Taking Schur complement on the above, one can write


 −P (F0 +∆F (τk))T

∗ −P−1


 < 0 (2.18)
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Seperating the uncertain matrices in (2.18), one can write using (2.8)



 −P F T
0

∗ −P−1



+



 0 (DF̄ (τk)E)T

∗ 0



 < 0 (2.19)

The above can also be written as:


 −P F T

0

∗ −P−1


 +


 ET

0



[
F̄ T (τk)

] [
0 DT

]
+



 0

D




[
F̄ (τk)

] [
E 0

]
< 0 (2.20)

Now, one has to take care of the uncertain terms. For this,

XTY + Y TX ≤ ǫ−1XTX + ǫY TY (2.21)

where ǫ > 0. Using (2.21), (2.20) can be written as



 −P F T
0

∗ −P−1



 +



 ET

0




[
ǫ
] [

E 0
]
+


 0

D



[
F̄ (τk)(ǫ−1I)F̄ T (τk)

] [
0 DT

]
< 0, (2.22)

Substituting F̄ (τk)F̄ T (τk) ≤ I from (2.8) in (2.22), one can write


 −P F T

0

∗ −P−1


+


 ǫETE 0

0 0


+


 0 0

0 ǫ−1DDT


 < 0 (2.23)
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After addition, the above can be written as


 −P + ǫETE F T

0

F0 −P−1 + ǫ−1DDT


 < 0 (2.24)

To eliminate involvement of both P and P−1 terms and express the above as an LMI,

pre-and post-multiply (2.24) with



 I 0

0 P



. This yields


 I 0

0 P




 −P + ǫETE F T

0

F0 −P−1 + ǫ−1DDT




 I 0

0 P


 < 0

⇒


 −P + ǫETE F T

0 P

PF0 −P + ǫ−1PDDTP


 < 0 (2.25)

Finally taking Schur complement on (2.25), one obtains (2.16).

2.5 Numerical Examples

In this section, the steps involved in the two modeling approaches are elucidated using

two numerical examples.

2.5.1 Example 1

Consider an integrator plant described by

ẋ(t) = Ax(t) +Bu(t),

with A = 0 and B = b. For scaling down the control gain matrix for stabilization, con-

sider b = 100 with h = 1 ms. For this system, the modeling using the two approaches

are described next.
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2.5.1.1 Polytopic Modeling

Case 1 (0 ≤ τmax≤h). Following Figure 2.2 and (2.3)-(2.4), one can write

F (τk) =


 I +

∫ h

τk
eAsdsBK

∫ τk
0
eAsdsBK

I 0




=



 I + (h− τk)BK τkBK

I 0



 (2.26)

In the above, the uncertain parameter is τk (i.e d = 1) and it takes the range 0 ≤ τk ≤

τmax. Using (2.10), the vertices of the system (2.26) can be written as:

H1 =



 1 + (h− τ k)bK τ kbK

1 0



 =



 1 + 0.1K 0

1 0



 and

H2 =


 1 + (h− τ̄k)bK τ̄kbK

1 0


 =


 1 + 0.1K − 100τmaxK 100τmaxK

1 0


 .

where A = 0, B = b = 100, h = 1ms, τ k = 0, τ̄k = τmax and K∈R1×1 .

For above vertices H1 and H2, the LMIs (2.10) can be written as



 P HT
1 P

∗ P



 > 0 and



 P HT
2 P

∗ P



 > 0 (2.27)

where P is LMI variable. Using above (2.27), for given K value the maximum tolerable

delay τmax is calculated.

Case 2 (0 ≤ τmax≤2h). Following Figure 2.2 and (2.3)-(2.4), one can write
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F (τk) =




I +
∫ h

τk
eAsdsBK

∫ τk
τk−1

eAsdsBK
∫ τk−1

0
eAsdsBK

I 0 0

0 I 0




=




I + (h− τk)BK (τk − τk−1)BK τk−1BK

I 0 0

0 I 0


 (2.28)

In the above, the uncertain parameters are τk−1 and τk (i.e d = 2) and it takes the

range 0 ≤ τk−1 ≤ τk ≤ τmax (let τk−1 ≤ τk). Using (2.10), the vertices of the system

(2.28) can be written as:

H1 =




1 + (h− τk)bK (τk − τk−1)bK τ k−1bK

1 0 0

0 1 0


 ,

H2 =




1 + (h− τ̄k)bK (τ̄k − τ k−1)bK τ k−1bK

1 0 0

0 1 0


 ,

H3 =




1 + (h− τk)bK (τk − τ̄k−1)bK τ̄k−1bK

1 0 0

0 1 0


 and

H4 =




1 + (h− τ̄k)bK (τ̄k − τ̄k−1)bK τ̄k−1bK

1 0 0

0 1 0


 .

where A = 0, B = b = 100, h = 1ms, τ k−1 = 0, τ̄k−1 = τk, τ k = τ̄k−1, τ̄k = τmax and

K∈R1×1.
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For above vertices H1, H2, H3 and H4, the LMIs (2.10) can be written as



 P HT
1 P

∗ P



 > 0 ,



 P HT
2 P

∗ P



 > 0


 P HT

3 P

∗ P


 > 0 and


 P HT

4 P

∗ P


 > 0 (2.29)

where P is LMI variable. Using above (2.29), for given K value the maximum tolerable

delay τmax is calculated.

In case of polytopic approach, for case 1, the number of vertices are two (say, τk

and τ̄k) computed from uncertain parameter τk. To guarantee the stability of (2.4)

the LMIs of (2.27) are to be satisfied. For a given value of K, the maximum tolerable

delay (τmax) is found with checking feasibility of two LMIs (2.27) (since there are

two vertices H1 and H2). The corresponding results (range 0 to h) are presented in

Figure 2.3 along with results obtained for constant delay case obtained using eigen

value computations.

Whereas, for case 2, the number of vertices are four (say, combinations of τ k−1, τ̄k−1,

τk and τ̄k) computed from uncertain parameter τk−1 and τk. Similarly case 1, for a

given value of K, the maximum tolerable delay (τmax) can be calculated by checking

feasibility of four LMIs (2.29) (since number of vertices are four H1, H2, H3 and H4).

The corresponding results (range h to 2h) are presented in Figure 2.3 along with results

obtained for constant delay case obtained using eigen value computations.

2.5.1.2 Norm-Bounded Modeling

Case 1 (0 ≤ τmax≤h). The closed loop system (2.26) can be written as:

F (τk) = F0 +∆F (τk)
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where F0 =


 1 + hbK 0

1 0


 and ∆F (τk) =


 −τkbK τkbK

0 0


 .

Therefore, the uncertain system matrix can be written as

∆F (τk) = DF̄ (τk)E

where ∆F (τk) = DF̄ (τk)E

=



 τ̄k

0



 (τk/τ̄k)
[
−bK bK

]

=


 1

0


 (τk/τ̄k)

[
−τ̄kbK τ̄kbK

]

where 0 ≤ τk ≤ τmax and τ̄k = τmax.

For above D and E matrices, the LMI (2.16) can be written as




−P + ǫETE F T
0 P 0

∗ −P PD

∗ ∗ −ǫI


 < 0 (2.30)

where F0 =


 1 + 0.1K 0

1 0


, D =


 1

0


 , E =

[
−100τmaxK 100τmaxK

]
, P > 0

and ǫ > 0 are the LMI variables.

Using above (2.30), for given K value the maximum tolerable delay τmax is calcu-

lated.

Case 2 (0 ≤ τmax≤2h). The closed loop system (2.28) can be written as:

F (τk) = F0 +∆F (τk)
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where

F0 =




1 + hbK 0 0

1 0 0

0 1 0


 and ∆F (τk) =




−τkbK (τk − τk−1)bK τk−1bK

0 0 0

0 0 0


 .

Therefore, the uncertain system matrix can be written as

∆F (τk) = DF̄ (τk−1, τk)E

where

∆F (τk) = DF̄ (τk−1, τk)E

=
[
τ̄k−1

] [
τk−1/τ̄k−1

] [
0 −bK bK

]

+
[
τ̄k

] [
τk/τ̄k

] [
−bK bK 0

]

=



 τ̄k−1 τ̄k

0 0







 τk−1/τ̄k−1 0

0 τk/τ̄k







 0 −bK bK

−bK bK 0



 or

=
[
1
] [

τk−1/τ̄k−1

] [
0 −τ̄k−1bK τ̄k−1bK

]

+
[
1
] [

τk/τ̄k

] [
−τ̄kbK τ̄kbK 0

]

=


 1 1

0 0




 τk−1/τ̄k−1 0

0 τk/τ̄k




 0 −τ̄k−1bK τ̄k−1bK

−τ̄kbK τ̄kbK 0


 or

=




1 1

0 0

0 0






 τk−1/τ̄k−1 0

0 τk/τ̄k







 0 −τ̄k−1bK τ̄k−1bK

−τ̄kbK τ̄kbK 0



 or

=




1 1 0

0 0 0

0 0 0







τk−1/τ̄k−1 0 0

0 τk/τ̄k 0

0 0 0







0 −τ̄k−1bK τ̄k−1bK

−τ̄kbK τ̄kbK 0

0 0 0


 .

where 0 ≤ τk−1 ≤ τk ≤ τmax, τ̄k−1 = τ k and τ̄k = τmax.



2.5 Numerical Examples 43

For above D and E matrices, the LMI (2.16) can be written as




−P + ǫETE F T
0 P 0

∗ −P PD

∗ ∗ −ǫI


 < 0 (2.31)

where F0 =




1 + 0.1K 0 0

1 0 0

0 1 0


, D =




1 1 0

0 0 0

0 0 0


,

E =




0 −100τ̄k−1K 100τ̄k−1K

−100τmaxK 100τmaxK 0

0 0 0


, P > 0 and ǫ > 0 are the LMI vari-

ables.

Using above (2.31), for given K value the maximum tolerable delay τmax is calcu-

lated.

In case of NB approach, for case 1 and case 2, for a given value of K, the maximum

tolerable delay (τmax) is calculated with checking feasibility of LMI (2.30) and (2.31)

(using D and E values) respectively. The corresponding results (range 0 to h) and

(range h to 2h) are presented in Figure 2.3.

In Figure 2.3, the maximum tolerable delay τmax is found with the given value of K

for three different curves. Figure 2.3 shows three stability regions (i.e. area under the

curves) in terms of controller gain K and maximum tolerable delay τmax for variable

delay with polytopic approach, variable delay with NB approach and constant delay

with eigenvalue approach. It is observed that these three stability regions are more for

lesser τmax and larger K (upto around 21) value., and less for larger τmax and lesser

K (upto around 5 for variable delay and 7.5 for constant delay) value. The result

shows that the variable delay with polytopic as well as NB approach yields almost

equal stability region with slight conservativeness (in terms of stability region) for
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Figure 2.3: Stability region in terms of K and τmax.

NB approach. In fact, the stability region is more for constant delay as compared to

variable delay.

2.5.2 Example 2

Next, consider the motor roller example from [12] and given by

ẋ(t) =


 0 1

0 0


 x(t) +


 0

nr
J1+n2J2


 u(t),

with the state vector (i.e. x = [xs, ẋs]
T ) comprises of the sheet position and velocity,

J1 = 1.95× 10−5 kgm2 is the motor inertia, J2 = 6.5× 10−5 kgm2 is the roller inertia,

r = 14×10−3 m is the roller radius, n = 0.2 m is the transmission ratio between motor

and roller and u is the motor torque. The state feedback controller is K = [K1K2].

For this system, the stability region is obtained using both the modeling approaches.

Three cases of controller gain K1(= 1, 50, 1000) are considered.

In case of polytopic approach, for τmax≤h, the number of vertices are four (combina-

tions of τk, τ̄k, τ
2
k and τ̄

2
k computed from uncertain parameters are τk and τ

2
k whereas, for

0 < τmax≤2h, the number of vertices are sixteen (combinations of τ k−1, τ̄k−1, τ
2
k−1, τ̄

2
k−1,
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τk, τ̄k, τ
2
k and τ̄ 2k ) computed from uncertain parameters are τk−1, τ

2
k−1, τk and τ 2k . Se-

lecting different values of K2, the LMIs (2.10) (with d = 2 for τmax≤h and d = 4 for

0 < τmax≤2h) are solved for maximum tolerable delay. The corresponding results are

presented in Figures 2.4–2.6 for different values of K1, along with results obtained for

constant delays case. Stability region for constant delay case is shown in Figure 2.5

only for a comparison.

In case of NB approach, for a given value of K, the maximum tolerable delay

(τmax) is calculated with checking feasibility of LMI (2.16). The corresponding results

are presented in Figure 2.4–2.6.

The result shows that stability region is slightly conservative in NB approach but

computational complexity and simulation time are very less. Similar to example 1,

the vertices of the polytopic model and D, E matrices of NB model are calculated.
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Figure 2.4: Stability region in terms of K2 and τmax when K1 = 1.

2.6 Chapter Summary

A comparison of polytopic and norm-bounded modeling of NCS with variable time-

delays has been made in this chapter. Using numerical examples it is observed that

the latter approach is insignificantly conservative compared to the polytopic approach.
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Figure 2.5: Stability region in terms ofK2 and τmax when τmax ≤ 2h, K1 = 50.
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Figure 2.6: Stability region in terms of K2 and τmax when K1 = 1000.

The stability region is almost same for both the methods in example 1. Whereas for

higher order systems (example 2), the stability region is more when polytopic case

than the NB case. It is also noted that the number of LMIs using polytopic approach

increases exponentially with increase in the multiplicity index d, which may introduce

computational complexities are more for systems with faster sampling period and

larger delays. However, for such cases the norm-bounded approach appears to be

computationally more efficient.



Chapter 3

Stability Performance of a Digital

Smith Predictor for NCSs

This chapter presents a study on stability performance of digital Smith predictor based

networked control systems considering the delays and packet losses in both feedback and

forward channels. For stability analysis, the overall uncertain system is represented as

polytopic model since it has the benefit of less conservativeness as studied in previous

chapter. The digital predictive controller is seen to improve the stability performance

compared to without predictor as validated numerically.

3.1 Introduction

Figure 3.1 describes a block-diagram representation of a general type of an Networked

Control System (NCS). The output measurement data is communicated to the con-

troller via a network. After computation of control input computation, the input of

the plant signal is sent via the same or different network to the plant. Available liter-

ature considers the communications either to be time-driven, i.e., the signals are sent

or updated at constant sampling intervals, or be event-driven in which case a receiver

signal is updated once a new data is received. In general, the sensor signals at the
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transmitting end are time-driven. Based on the protocol used, receivers at both the

controller and actuator ends are either time-driven or event-driven. Both the controller

and actuators are considered an event-driven fashion in [58, 65, 86, 12, 109]. If a node

(controller or an actuator) is time-driven, the fractional delay arises due to arrival

of information in between sampling instants is ceiled to an integer one since data is

updated at sampling instants only. On the other hand, for an event-driven receiver

node, the delay is continuous time-varying.

Controller          Plant

Actuator

Sensor

Delays and
Packet Losses

Network

Figure 3.1: A general representation of NCS

For network delays that are variable integer multiple of sampling interval, typical

for time-driven cases, the system may be represented as a switched one with multi-

ple models corresponding to all possible variable data update on intervals [42, 106,

113]. Then the stability analysis can be carried out employing Lyapunov analysis for

switched systems. However, for event-driven case, delays may take continuous vari-

ations. Approach available to tackle such a case is by discretizing the system and

treating the terms arising out from time-varying delay as uncertainties in the system

[12, 29, 126, 86].

Recently, performances of a class of predictive controllers have been studied to

compensate the effect of delays in NCS [51, 49, 104, 83]. In these, the non-delayed

output is predicted using a Luenberger observer based predictor and then the pre-

dicted output is used for feedback. The classical Smith Predictor (SP) has also been

studied for effect of delay compensation in NCSs. In [9], a robust SP has been used

to compensate the network delay, the predictor delay designed in terms of network

delays that are typically integer multiples of sampling intervals. In [18], a modified SP

combined with generalized predictive control proposed to compensate the delay effect.
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An adaptive SP has been proposed in [39] for delay compensation where the predictor

delay is adopted by using delay measurement information. In [7], model predictive

control is used to compensate the delay while modeling the delay as disturbance to

the system. Moreover, the studies in [9, 18, 39, 7] consider a single delay combining

the feedback and forward channel delays together. The robust stability analysis of dis-

crete predictor-based state-feedback controllers for bounded input-delay systems are

presented in [22].

To this end, in view of using digital networks, it would be convenient if the SP is

implemented digitally. The performance of digital SP based compensator considering

network delays and packet losses in both feedback and forward channels appears to be

not investigated so far. This chapter analyzes the performance of NCS with bounded

uncertain, time-varying delays and packet losses using a digital SP based compensator.

For implementing a digital SP, it is essential that the controller is implemented with

constant sampling interval so that predictor model is certain and therefore the con-

troller is required to be time-driven one. On the other hand, the actuator is considered

to be event-driven since it introduces lesser delay compared to the time-driven case.

For this configuration, the uncertain delays and packet losses are incorporated into an

uncertain model with parametric uncertainties arising out from time-varying delays.

The uncertain system is finally represented in the polytopic form and Lyapunov sta-

bility analysis is carried out in terms of Linear Matrix Inequality (LMI) conditions.

Such an approach for stability analysis of NCS has been already developed in [12]

for static feedback case for which the feedback and forward path network effects are

combined. However, when dynamical controller is in place then the two network ef-

fects can not be combined any more. In addition, how the analysis is affected by the

interaction of time-driven feedback channel and event-driven forward channel is also

an open problem. This chapter addresses these concerns by considering a digital SP

as the controller. The stability region of the system is explored in terms of the con-

troller gain and the controller to actuator delay parameter as in [12]. The efficacy of
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the digital predictive compensator for the NCS is validated with simulation using a

numerical example and TrueTime simulation.

The remaining of the chapter is organized as follows. Next section presents the

system description. Section 3.3 describes the system discretization. Polytopic rep-

resentation and stability analysis are presented in section 3.4. Stability performance

studies are presented in section 3.5. In section 3.6, the TrueTime simulation studies

are presented. Finally, section 3.7 studies summary of the chapter.

3.2 System Description

The NCS structure considered in this chapter is shown in Figure 3.2. The plant is

considered as an LTI one described as:

ẋp(t) = Axp(t) +Bu∗(t),

yp(t) = Cxp(t),
(3.1)

where xp(t) ∈ ℜq, u∗(t) ∈ ℜr and yp(t) ∈ ℜw are the plant state, input and output

respectively. A,B and C are matrices with appropriate dimensions.

The sensor-to-controller communication is considered to be time-driven at both

ends. Moreover, the receiving and sending end, and the control computation are

assumed to be synchronized with interval h (correspondingly kth sampling interval is

denoted as sk , kh).

The plant dynamics (3.1) is utilized in the digital predictor for predicting non-

delayed output. Further, an ad-hoc time-driven controller configuration is considered

(see Figure 3.2) to facilitate equal sampling interval for the predictor model. The

discrete predictor dynamics can be written from (3.1) as:

xm(k + 1) = Adxm(k) +Bdu(k),

ym(k) = Cxm(k),
(3.2)
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where xm(k), u(k) and ym(k) are the discrete state, input and output respectively, and

Ad = eAh and Bd =
∫ h

0
eAsBds.

u* (k) yp(k) 

Controller 

Plant 

Plant Model 

Digital SP with Controller 

Network 

Hold Sampler 

Figure 3.2: Digital predictor based NCS

The network induced delay, i.e. the time taken in delivering a packet data, in the

feedback channel is defined as nsc
d (k) in terms of multiples of h. Since the number of

packet losses (representing more recent data available at receiver end) are also integer

multiples of h, as the delay in the feedback channel is, these can be appended to the

delay. Note that, similar treatment has already been made by several researchers,

e.g. in [49, 84]. Let us define nsc
p (k) represents the number of packet losses. Then

appending the packet loss to the delay, nsc(k) = nsc
d (k) + nsc

p (k), it is assumed to be

bounded as:

nsc ≤ nsc(k) ≤ n̄sc (3.3)

Note that all the network delays and packet losses in this chapter are assumed to

be bounded to fetch benefit from feedback control. On the other hand, the controller-

to-actuator communication is considered to be event-driven. The advantage of event-

driven communication is that the delay is lesser compared to the time-driven one.
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However, the analysis becomes complex since it is now fractional in terms of h. The

τ cad (k) is assumed to be normalized controller to actuator delay, i.e. h−1×(actual delay

value), is bounded as:

nca
d ≤ τ cad (k) ≤ n̄ca

d , (3.4)

where nca
d and n̄ca

d are integers.

Now, since the packet loss is anyway integer multiple of the sampling interval due

to the time-driven sending node at the controller end, the packet loss is considered as:

0 ≤ nca
p (k) ≤ n̄ca

p . (3.5)

Finally, from Figure 3.2), the input to the controller is

v(k) = −ym(k) + ym(k −md)− yp(k − nsc(k)),

where md is a specified delay to be chosen by the designer.

From Figure 3.2), the controller output can be written as:

u(k) = Kv(k) (3.6)

where K is static control gain of appropriate dimensions.

From Figure 3.2), the control input to the plant can be written as:

u∗(k) = u(k − nca
p (k)− τ cad (k)) (3.7)

The objective of this chapter is to analyze performance of the predictor in presence of

the above time-varying delays and packet losses.
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3.3 Sampled-Data System Representation

This section presents the procedure for obtaining a discretized model of the NCS. The

discretized plant dynamics of (3.1) along with (3.6) can be written as:

xp(k + 1) = Adxp(k)− BdKCxm(k − nca
p (k)− τ cad (k))

+BdKCxm(k −md − nca
p (k)− τ cad (k))

−BdKCxp(k − nsc(k)− nca
p (k)− τ cad (k)) (3.8)

Next, considering the input to the predictor in Figure 3.2, (3.2) can be rewritten as:

xm(k + 1) = BdKCxm(k −md)−BdKCxp(k − nsc(k)) + (Ad − BdKC)xm(k) (3.9)

Remark 3.1 (Importance of the digital predictor). Note that, the two channel delays

in the loop appear individually as well as conjugatively in (3.8). Moreover, the term

involving xm(k −md) in (3.9) helps to compensate for the network delay nsc(k). On

the other hand, the term involving xm(k−md−n
ca
p (k)− τ cad (k)) compensates the effect

of the term involving xp(k − nsc(k)− nca
p (k)− τ cad (k)) in (3.8).

In order to represent the system into a form that is conducive to analysis while

taking care of the time-varying delay τ cad (k), one requires to exploit the information flow

process in such NCS. One such exploitation, in line with the developments in [68, 13,

86], follows next. The procedure considers maximum number of change in information

within a sampling interval. For this purpose, it will determine the maximum number

of information levels generated by the different components in (3.8) and (3.9).

Consider a fictitious signal z(k−τ cad (k)) with 0 = nca
d ≤ τ cad (k) ≤ n̄ca

d = 1. Note that

with nca
p (k) = 0, xm(k−n

ca
p (k)−τ cad (k)) could be one such signal. Since 0 ≤ τ cad (k) ≤ 1,

z(k − 1) gets updated by z(k) somewhere in between [sk, sk+1) based on what τ cad (k)

takes at that interval (see Figure 3.3 (a)) for the event-driven actuator. If there is

either an additional delay or a packet loss, then the signal may be represented as
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z(k− 1− τ cad (k)). Figure 3.3 (b) shows the case when the additional delay occurs. Let

consider a packet loss (i.e. z(k) or z(k − 1) is lost): (i). If z(k) is lost then the signal

level z(k − 1) carries through [sk−1, sk), shown in Figure 3.3 (c); (ii). If z(k − 1) is

lost in the previous interval [sk−1, sk) then z(k−2) carries through until z(k) updates,

shown in Figure 3.3 (d). Similarly, if there is two additional delays or two packet

losses, then the signal is represented as z(k − 2 − τ cad (k)) and the same explanation

follows for signal levels. From the above, the conclusion is that maximum two levels

are present in [sk, sk+1) for 0 ≤ τ cad (k) ≤ 1 irrespective of additional uncertain delays

or packet losses. Similarly, it can be shown that at most three levels are present in

[sk, sk+1) for n̄
ca
d = 2. Therefore, in general, for nca

d = 0, there will be at most (n̄ca
d +1)

number of signal levels present in [sk, sk+1). For n
ca
d 6= 0, the number of levels will be

depend on its range [nca
d , n̄

ca
d ] than only on the n̄ca

d . Then it is easy to interpret that

the maximum number of signal levels will (n̄ca
d − nca

d + 1).

In general, out of the maximum number of signal levels in [sk, sk+1), the individual

signals may be represented as z(k+j−n̄ca
d ) for z(k−τ cad (k)), where j ∈ {0, 1, · · · , n̄ca

d −

nca
d }. For example, if nca

d = 0 and n̄ca
d = 1 then j ∈ {0, 1}. For this case, the maximum

two signal levels are z(k − 1) (if j = 0) and z(k) (if j = 1) as discussed above.

Similarly, the individual signals in [sk, sk+1) may be represented as z(k+ j− n̄ca
p − n̄ca

d )

for z(k − nca
p − τ cad (k)), j ∈ {0, 1, · · · , n̄ca

d − nca
d } irrespective of nca

p (k). The above

concept is used on signals present in (3.8) involving τ cad (k).

Now, the following parameter is defined as:

dkj , τ cad (k + j − n̄ca
d ) + (j − n̄ca

d ) (3.10)

where dkj represents the start-time instant of the jth signal level out of j ∈ {0, 1, · · · , n̄ca
d −

nca
d }. Note that, 0 = dk0 ≤ dk1 ≤ dk2 ≤, · · · ,≤ dkn̄ca

d
−nca

d
+1 = 1. Using (3.10), the (3.8)
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can be written as

xp(k + 1) = eAhxp(k)−

n̄ca
d
−nca

d∑

j=0

∫ dkj+1

dkj

eAsBKC
(
xp(k + j − n̄sc + n̄ca

p + n̄ca
d )ds

+xm(k + j − n̄ca
p + n̄ca

d )ds− xm(k + j −md + n̄ca
p + n̄ca

d )ds
)

(3.11)

                                                                                                                                

                                                                                                                                  

 

                                                           

 

 

 

 

 

  

 

 

 

 

 

  

 

 

 

 

 

  

 

 

 

 

 

  

 

 

Figure 3.3: Maximum two number of signal levels within an interval

Now, augmenting (3.11) and (3.9), one can express the closed-loop system as:

x(k + 1) =M(k)x(k) +M(k − n̄sc)x(k − n̄sc) +M(k −md)x(k −md)

+

n̄ca
d
−nca

d∑

j=0

(
M(k + j −md − n̄ca

p − n̄ca
d )x(k + j −md − n̄ca

p − n̄ca
d )

+M(k + j − n̄sc − n̄ca
p − n̄ca

d )x(k + j − n̄sc − n̄ca
p − n̄ca

d )

+M(k + j − n̄ca
p − n̄ca

d )x(k + j − n̄ca
p − n̄ca

d )
)

(3.12)

where

x(k + 1) =


 xp(k + 1)

xm(k + 1)


 , M(k) =


 eAh 0

0 eAh −
∫ h

0
eAsBKCds


 ,
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M(k − n̄sc) =


 0 0

−
∫ h

0
eAsBKCds 0


 , M(k −md) =


 0 0

0
∫ h

0
eAsBKCds


 ,

M(k + j − n̄ca
p − n̄ca

d ) =






 0 −

∫ dkj+1

dkj
eAsBKCds

0 0


 if 0 ≤ j ≤ n̄ca

d − nca
d

0 if n̄ca
d − nca

d < j < 0

,

M(k + j − n̄sc − n̄ca
p − n̄ca

d ) =






 −

∫ dkj+1

dkj
eAsBKCds 0

0 0


 if 0 ≤ j ≤ n̄ca

d − nca
d

0 if n̄ca
d − nca

d < j < 0

,

M(k + j −md − n̄ca
p − n̄ca

d ) =








 0
∫ dkj+1

dkj
eAsBKCds

0 0



 if 0 ≤ j ≤ n̄ca
d − nca

d

0 if n̄ca
d − nca

d < j < 0

.

Note that, in the above, the uncertain terms arise out from the time-varying delays

dkj . Now, (3.12) can be written as:

φ(k + 1) = F (dk)φ(k) (3.13)

where

φ(k) =
[
xT (k), xT (k), · · · , xT (k − n̄sc), xT (k −md), x

T (k), · · · , xT (k − n̄ca
p − n̄ca

d ),

xT (k), · · · , xT (k − n̄sc − n̄ca
p − n̄ca

d ), xT (k), · · · , xT (k −md − n̄ca
p − n̄ca

d )
]T
,

with dk = [dk1, ..., d
k
n̄ca
d
−nca

d
] and F (dk) given in (3.14).
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F (dk) =




M(k) M(k−n̄sc) M(k −md) M(k+j − n̄ca
p − n̄ca

d )
I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I
0 0 0 0

M(k+j − n̄sc − n̄ca
p − n̄ca

d ) M(k + j −md+n̄
ca
p − n̄ca

d )
0 0
0 0
0 0
0 0
I 0



(3.14)

Remark 3.2. If the digital predictor is not used, then the scheme in Figure 3.2 becomes

the simple static output feedback controller. For this case, the system description (3.11)

becomes

xp(k + 1) = eAhxp(k)−

n̄ca
d
−nca

d∑

j=0

[∫ dkj+1

dkj

eAsBKCds

]
xp(k + j − n̄sc − n̄ca

p − n̄ca
d )(3.15)

3.4 Polytopic Representation and Stability Analy-

sis

For stability analysis, the uncertain system (3.13) needs to be represented in a form

that is conducive to analysis. Either of the two well-known approaches for quadratic

stability analysis, of uncertain systems (norm-bound and polytopic approaches) can

be employed for the purpose. Comparison of these two approaches for analysis of

NCS has been studied in [86, 26]. These studies show that both the approaches yield

almost the same result for low-order systems. However, for high-order systems, the
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norm-bounded approach is conservative. In addition, the former one deals with all the

uncertain terms together in the model, whereas in the latter one may break-up the

overall matrix in summation form each of which corresponds to only single uncertain

parameter. Due to this, representing NCSs in norm-bounded form is more rigorous

than the polytopic one. Therefore, in this work, the polytopic modeling approach is

used.

For representing (3.13) in polytopic one requires to evaluate M matrices for which

computation of eAs can be alleviated by transforming the system matrix in Jordan

form [12].

Then the uncertain matrix F (dk) can be represented as:

F (dk) =

n̄ca
d
−nca

d∑

i=1

q∑

ρ=1

fi,ρ(d
k
i )Fi,ρ (3.16)

where Fi,ρ, i = 1, 2, · · · , (n̄ca
d − nca

d ), ρ = 1, 2, · · · , q, are constant matrices.

In view of (3.16), the uncertain matrices F (dk) is convex over fi,ρ(d
k
i ) and its convex

hull can be represented with appropriate parameter mapping following [12] as:

H, co(F (dk)) =

2(n̄
ca
d

−nca
d

)q∑

l=1

αlHl, αl ∈ [0, 1] (3.17)

with
∑2(n̄

ca
d

−nca
d

)q

l=1 αl = 1 , Hl are constant matrices.

Remark 3.3 (Case of data arrival in disorder fashion). Another important aspect of

network communication apart from the delay and packet losses is that the data may

arrive at the receiver nodes in disordered fashion, i.e. the data sent earlier arrives

later. In such circumstances, the uncertain terms M(k − n̄sc),M(k − md),M(k +

j − n̄ca
p − n̄ca

d ),M(k + j − n̄sc − n̄ca
p − n̄ca

d ) and M(k + j − md + n̄ca
p − n̄ca

d ) positions

get disordered in (3.13), but the resultant polytope is same with the case of time-

ordered arrival (shown in Figure 3.3) since the delay bounds are assumed to be same
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for all the cases ({dk1, ..., d
k
n̄ca
d
−nca

d
} ∈ [0, 1]) resulting in the integral limits to be the

same. For example, if the delay τ cad (k) ≤ [0, 2], the maximum number of uncertain

parameters (maximum three signal levels) are dk1 and dk2, when the data is time-ordered

fashion. If the data is disordered, the above uncertain parameter also interchanged

according to corresponding sequence of data received. For both the cases (data time-

ordered and disordered), the parameters are bounded as: {dk1, d
k
2} ∈ [0, 1], and this

bounded uncertain parameters yield the same polytope.

Theorem 3.1. System (3.1) along with digital SP based controller described by (3.2)

and (3.6) is stable if there exists a Q = QT > 0 satisfying the following LMIs.



 Q HT
l Q

∗ Q



 > 0, l = 1, 2, · · · , 2(n̄
ca
d
−nca

d
)q, (3.18)

where Hl are the vertices of H as per (3.17).

Proof. In order to ensure stability of the system, which is a switched one due to the

uncertain delays and packet losses. The switching subsystems corresponds to different

time-delay and packet loss values. The analysis follows the common Lyapunov function

technique (see [46]) V (φ(k)) = φT (k)Qφ(k). Therefore, by defining the stability of

(3.13) is guaranteed if the following LMIs are satisfied [126].

Q = QT > 0 and Q− F (dk)TQF (dk) > 0 (3.19)

Using Schur complement, (3.19) can be written as



 Q F (dk)TQ

∗ Q



 > 0. (3.20)

Replacing the uncertain system matrix in (3.20) is with its polytopic form (3.17), one
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obtains 
 Q

∑2(n̄
ca
d

−nca
d

)q

l=1 αlH
T
l Q

∗ Q


 > 0 (3.21)

Since
∑2(n̄

ca
d

−nca
d

)q

l=1 αl = 1, the above can be written alternatively in the form of (3.18).

This completes the proof.

Remark 3.4 (Case of uncertain system models). The analysis incorporated in this

chapter treat the uncertain delay and packet losses as parametric uncertainties in the

system model (3.16) and (3.17) by appropriate discretization. However, in situations

the plant model might be uncertain demanding incorporation of model uncertainties in

the analysis. Some well known representation of plant model uncertainties are either by

norm-bounded or polytopic representation [86]. A future work would be to systematize

the present technique for uncertain plant model case. A sketch of how consideration of

uncertain plant model can be incorporated in the present framework is given below.

Consider an uncertain plant model that is to be controlled instead of (3.1) described

by

ẋp(t) = A(σ)xp(t) +B(σ)u∗(t), (3.22)

where σ is an uncertain parameter vector. The nominal model (3.1) is still required to

be used for the predictor model. The closed-loop system (3.13) is then dependant on σ

and through appropriate parameter mapping from (3.22) to the matrices M(k),M(k−

n̄sc),M(k − md),M(k + j − n̄ca
p − n̄ca

d ),M(k + j − n̄sc − n̄ca
p − n̄ca

d ) and M(k + j −

md + n̄ca
p − n̄ca

d ) in (3.13) one can represent the system in polytopic form as well. The

remaining analysis would follow similar treatment as in this section.

3.5 Stability Performance Studies

In this section, the performance of the digital compensator is investigated for two nu-

merical examples. Also, the simulation results are validated with TrueTime simulator.
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3.5.1 Example 1

Consider an integrator plant ẋp(t) = u∗(t), yp(t) = xp(t) with a sampling interval

h = 1 ms and 0 ≤ τ cad (k) ≤ 2.

For the above system, the maximum tolerable time-varying delays τ̄ ca, τ cad (k) ∈

[0, τ̄ ca] for different feedback gains as per (3.6) are computed using theorem 1. Noting

that md = 0 represents the NCS without the predictor (see (3.15)). Following (3.13)

and (3.15), if τ cad (k) ∈ [0, 1] then the corresponding uncertain parameter is one, i.e.

f1,1 = dk1; if τ
ca
d (k) ∈ [0, 2] then the corresponding uncertain parameters are two, i.e.

f1,1 = dk1 and f2,1 = dk2. For chosen or given different K and md values, the maximum

tolerable delay τ̄ ca is obtained when considering two cases (i.e. nsc = nca
p = 1 and

2) and are shown in Figure 3.4 and Figure 3.5 respectively, where the regions below

the individual curves are the stable regions. It can be seen that the tolerable delay

range is more for all md 6= 0 cases compared to without the predictor one (md = 0).

For md = 0, 1, 2 and 3 are shown Figure 3.4 and if the delay τ̄ ca ∈ [0, 1], the stability

region is larger when md = 2 since nsc + nca
p = 2, and, on the other hand, if the

delay τ̄ ca ∈ [1, 2] then the stability region is larger for md = 3. The crossover point of

stability curves is at τ̄ ca = 1 corresponding to the md = 2 and md = 3 as expected.

Similarly, for md = 0, 1, 4 and 5 are shown Figure 3.5. The maximum stability region

is obtained for md = 4, 5 when τ̄ ca ∈ [0, 1] and τ̄ ca ∈ [1, 2] respectively with the

crossover point at τ̄ ca = 1. Note that, the stability region is more in Figure 3.4 (since

nsc = 1, nca
p = 1) compared to Figure 3.5 (since nsc = 2, nca

p = 2) when md = 0, 1.

3.5.2 Example 2

Consider system (3.1) with

ẋp(t) =


 0 1

−2 −3


 xp(t) +


 0

1


 u∗(t), yp(t) =

[
0 1

]
xp(t).
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Figure 3.4: Stability region in control gain-delay parameter plane for nsc =
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p = 1 and n̄ca
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Figure 3.5: Stability region in control gain-delay parameter plane for nsc =
2, nca

p = 2 and n̄ca
d = 2

The sampling interval, the delay bound and packet losses are assumed to be h = 1

ms, 0 ≤ τ cad (k) ≤ 2 and nsc(k) = 1, nca
p (k) = 1 respectively. The maximum tolerable

time-varying delay τ̄ ca, τ cad (k) ∈ [0, τ̄ ca] with respect to the varying feedback gain as

per (3.6) is analyzed. If τ cad (k) ∈ [0, 1], the uncertain parameters corresponding to

(3.13) and (3.15) for this system are two i.e. f1,1 = e−dk1 and f1,2 = e−2dk1 , similarly,

if τ cad (k) ∈ [0, 2] the uncertain parameters are four i.e, f1,1 = e−dk1 , f1,2 = e−2dk1 , f2,1 =
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Figure 3.6: Zoomed version of Figure 3.5

e−dk2 and f2,2 = e−2dk2 . The tolerable τ̄ ca computed using theorem 1 for md = 0, 1, 2

and 3 are shown in Figure 3.7. Similar to previous example, the maximum stability

region is obtained for md = 2, 3 when τ̄ ca ∈ [0, 1] and τ̄ ca ∈ [1, 2] respectively with the

crossover point at τ̄ ca = 1. The two examples above show that one need to choose the
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Figure 3.7: Stability region in control gain-delay parameter plane for nsc =
1, nca

p = 1 and n̄ca
d = 2

md appropriately (adaptively if possible) for good performance of the compensator.
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Figure 3.8: Zoomed version of Figure 3.7

3.6 Simulation Using TrueTime

This section presents studies made for the Example 1 using TrueTime simulator.

The network is implemented using the TrueTime 2.0 simulator [8]. TrueTime is a

MATLAB/Simulink-based simulator and resembles as a real-time network environ-

ment. In TrueTime library, the TrueTime network node is set up with a couple of

interface nodes (TrueTime send and TrueTime receive) as shown in Figure 3.9. Indi-

vidually the forward and backward packet losses are set to 2, and the delay is set to

0.5 ms by changing network parameters. In Figure 3.6, indicated one point (8, 0.5)

(i.e. K = 800 and forward delay = 0.5 with respect to axis) when each channel packet

losses are 2 (i.e. nsc = 2, nca
p = 2) and the maximum forward delay is τ̄ ca = 0.5. From

Figure 3.6, it is clear that the system is stable (the point is within the stability region)

when predictor delay md = 4 and the system is not stable (the point is out of the sta-

bility region) when md = 5. For such a case, simulation with TrueTime for this control

gain for the choice of md = 4, 5 are carried out. The simulink diagram is shown in

Figure 3.9 and the corresponding state response is shown in Figure 3.10. It can be seen

in Figure 3.10 that md = 4, the system is asymptotically stable, whereas for md = 5

the system response is arbitrary. This validates the analysis made in Figure 3.6.
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3.7 Chapter Summary

In this chapter, stability analysis of digital SP based NCS with bounded uncertain

delays (integer delay for sensor-to-controller and possibly fractional delay for controller-

to-actuator, both time-varying) and packet losses in both the forward and feedback

channels has been presented. The system with uncertain delay parameters (packet

losses as uncertain integer delays) has been modeled in polytopic form. For this system,

Lyapunov stability criterion has been presented in LMIs to explore the closed-loop

system stability. Finally, the proposed analysis has been verified with numerical studies

and TrueTime simulation. It is observed that the digital SP improves the stability

performance of the NCS considerably compared to without predictor.





Chapter 4

Guaranteed Cost Performance of

Digital SP with Filter for NCSs

This chapter presents a digital Smith predictor with filter based networked control sys-

tems considering uncertain bounded integer delays and packet losses in both feedback

and forward channels. The guaranteed cost controller design and its cost performance

is considered for performance evaluation of the proposed controller. The effectiveness

of the controller is verified with a LAN-based simulation and practical experiment on

an integrator plant.

4.1 Introduction

The same Networked Control System (NCS) configuration is shown in Figure 3.1 is also

considered in this chapter. However, the actuator node is considered to be an time-

driven one, which has been considered as an event-driven one in the previous chapter.

If all the nodes are time-driven then implementation of the controller becomes easier

since one may use available network/software without the requirement of developing

a dedicated one. For time-driven nodes, the delay is ceiled to integer multiples of the

sampling interval since data is received/updated at sampling instants only.
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For network delays that are variable integer multiple of sampling interval, typically

for time-driven case, the system may be represented as a switched system with multiple

models corresponding to all possible variable data update on intervals [42, 106]. Then

the stability analysis can be carried out employing Lyapunov analysis for switched

systems. This is one of the approaches that are used for controller design for NCS be-

sides other approaches like Lyapunov-Krasovskii [41, 108] and Lyapunov-Razumikhin

[30] but these are conservative.

Due to the presence of communication network in an NCS, the effect of delays and

packet losses are inevitable. This limits the performance of the closed-loop system.

One way to alleviate the effect of delay is by using predictors, e.g., the classical Smith

Predictor (SP). However, due to the delay being uncertain in NCS, the classical SP

may not work well, specifically the choice of the delay in the SP is difficult to address.

Different SP based configurations for NCS have been studied to improve performance

of the NCS with uncertainty i.e. the delay [72, 36, 39, 9]. In [72, 36], a continuous-

time modified SP based NCS configurations have been studied to track the set-point

as well as to improve the disturbance rejection. In [39], predictor configuration is used

to improve stability and control performance. In [9], discrete-time robust SP based

controller is used to stabilize the system while compensating the round trip time delay.

To this end, it is understood that digital predictors are easier to implement since

digital information processing is involved in NCS. Regarding implementation of pre-

dictor that involves a dynamic model, one requires a time-driven controller in order to

obtain an equivalent discrete-time certain model. Therefore, design of a digital SP for

NCS is important. A digital SP based configuration is shown in Figure 4.1, in which the

dashed lines show the digital information flow whereas solid lines show the continuous

one. Note that, this configuration is same as represented in Figure 3.2 except that the

delay symbols are changed in order to account for the event-driven actuator. Further

system description for this setup is explained in section 2. An alternative/modified

configuration of the classical SP is obtained by using a filter as proposed in [1]. It has
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been shown in [1] that use of such a filter improves process performance, both in the

set-point response and in the load rejection. In view of uncertainty in network com-

munication, it may be perceived that this modified SP with filter might work well for

NCS compared to the classical SP (or the digital SP). However, such a study appears

to be not investigated earlier in literature.

In this chapter, performance of a digital Smith Predictor with Filter (SPF), similar

as in [1] and shown in Figure 4.2, considering network in both feedback and forward

channels is investigated. For implementing the digital SPF for NCS, it is essential that

the controller is implemented with constant sampling interval so that predictor model

is certain and therefore the controller is required to be a time-driven one. The actuator

is also assumed as a time-driven one. Guaranteed cost performance is considered for

evaluating the the performance of the digital SPF compared to the digital SP without

filter. The guaranteed cost performance are tested on a LAN based NCS setup for an

integrator plant.

The chapter is organized as follows. The next section presents the system descrip-

tion. Section 4.3 describes the uncertain modeling. Designing of the guaranteed cost

controller using a numerical algorithm presented in section 4.4. Simulation and ex-

perimental results are presented in 4.5. Finally, summary of the chapter presented in

section 4.6.

4.2 System Description

An NCS structure considered in this chapter is shown in Figure 4.1 and Figure 4.2.

The plant is considered as an LTI one described as:

ẋp(t) = Axp(t) +Bu∗(t),

yp(t) = Cxp(t),
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where xp(t) ∈ R
n, u∗(t) ∈ R

m and yp(t) ∈ R
p are the plant state, input and output

respectively; A,B,C are constant matrices with appropriate dimensions. The sampling

interval is considered to be h with the kth sampling instant is defined as sk , kh. The

plant dynamics can be represented in discrete-domain as follows

xp(k + 1) = Adxp(k) +Bdu
∗(k),

yp(k) = Cxp(k),
(4.1)

where xp(k), u
∗(k) and yp(k) are the discrete state, input and output respectively, and

Ad = eAh and Bd =
∫ h

0
eAsBds.

The plant dynamics is used in the digital predictor for predicting output without

delay. This predictor dynamics can be written as:

xm(k + 1) = Adxm(k) +Bdu(k),

ym(k) = Cxm(k),
(4.2)

where xm(k), u(k) and ym(k) are the predictor state, input and output respectively for

the predictor.

The digital filter is considered as first order one and decentralized corresponding

to each output. Combinedly this can be described as:

xf(k + 1) = Afxf (k) +Bfe(k),

yf(k) = Cfxf(k) +Dfe(k),
(4.3)

where xf (k) ∈ R
p, e(k) ∈ R

p and yf(k) ∈ R
p are the state, input and output of the filter

respectively, Af , Bf , Cf and Df block diagonal matrices with appropriate dimensions.

The network induced time-varying delays and packet losses are considered to be

dsc(t) and psc respectively for sensor-to-controller channel. The time delay dsc(t) is



4.2 System Description 71

u* (k) yp(k) 

Controller 

Plant 

Plant Model 

Digital SP with Controller 

Network 

Hold Sampler 

Figure 4.1: NCS with digital SP

Controller 

Plant Model 

Digital SPF with Controller 

Network 

Filter 

u* (k) yp(k) 
Plant Hold Sampler 

Figure 4.2: NCS with digital SPF

automatically ceiled to integer multiples of h, since controller is assumed to be time-

driven. For convenience, the minimum and maximum delays are defined as nsc
d =

⌊dsc(t)/h⌋ and n̄sc
d = ⌈d̄sc(t)/h⌉ respectively. Clearly, the minimum packet losses is
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zero whereas a maximum consecutive number of packet losses is finite and defined as

n̄sc
p = ⌈p̄sc/h⌉. Now, the integer delays with packet losses can be appended since the

packet losses are also integer multiples of h in the feedback channel. Note that, similar

treatment has already been made by several researchers, for example [49, 96, 84]. The

necessity of using such formulation is that the system can be represented as a switched

system and powerful Lyapunov analysis for switched systems can be invoked.

The total network induced delays and packet losses can be defined as:

nsc ≤ nsc ≤ n̄sc (4.4)

where nsc = nsc
d and n̄sc = n̄sc

d + n̄sc
p .

In the same way for controller-to-actuator channel, the time-varying delay dca(t)

and packet losses pca can be defined as:

nca ≤ nca ≤ n̄ca (4.5)

where nca = nca
d and n̄ca = n̄ca

d + n̄ca
p . Note that, nsc and nca are integers.

From Figure 4.2, the input to the digital filter is given by

e(k) = yp(k − nsc)− ym(k −md) (4.6)

where nsc, nca and md are integer multiples of sampling period h, and md is a specified

delay that is upto the discretion of the designer.

From Figure 4.2, the controller output can be written as:

u(k) = K(yf(k) + ym(k)) (4.7)

where K is static control gain.
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Note that, the corresponding control input to the plant is

u∗(k) = u(k − nca) (4.8)

The objective of this chapter is to evaluate the guaranteed cost performance of the

closed-loop system in presence of the above uncertain integer time delays and packet

losses introduced by both the feedback and forward channels.

4.3 Switched System Model of an NCS

For stability analysis, the closed-loop system is required to be represented as a discrete-

time system. This section presents the procedure for obtaining a discretized uncertain

model of the NCS.

4.3.1 Digital Smith Predictor with Filter based Model

Now, start the model formulation with Figure 4.2 configuration, which can be particu-

larized to Figure 4.1 configuration easily. Using (4.1)-(4.3), (4.6)-(4.8), the discretized

plant dynamics along with the network delays and packet losses following (4.9), (4.10)

and (4.11) can be described as:

xp(k + 1) = Adxp(k) +Bdu
∗(k)

= Adxp(k) +Bdu(k − nca)

= Adxp(k) +BdKyf(k − nca) +BdKym(k − nca)

= Adxp(k) +BdK (Cxf (k − nca +Dfe(k − nca)) +BdKCxm(k − nca)

= Adxp(k) +BdKCfxf (k − nca) +BdKCxm(k − nca)

+BdKDf(yp(k − nsc − nca)− ym(k −md − nca))

= Adxp(k) +BdKCfxf (k − nca) +BdKCxm(k − nca)
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+BdKDfCxp(k − nsc − nca)− BdKDfCxm(k −md − nca) (4.9)

The corresponding digital predictor model, referring to Figure 4.2 with delays can be

written as:

xm(k + 1) = Adxm(k) +Bdu(k)

= Adxm(k) +BdK(yf(k) + ym(k))

= Adxm(k) +BdK(Cfxf(k) +Dfe(k) + ym(k))

= Adxm(k) +BdKCfxf(k) + BdKDf (yp(k − nsc)− ym(k −md))

+BdKCxm(k)

= (Ad +BdKC)xm(k) +BdKCfxf (k) +BdKDfCxp(k − nsc)

−BdKDfCxm(k −md) (4.10)

In this work, the first order digital filter with unity steady state gain model is consid-

ered as:

xf(k + 1) = Afxf(k) +Bfe(k)

= Afxf(k) +Bf(yp(k − nsc)− ym(k −md))

= Afxf(k) +BfCxp(k − nsc)−BfCxm(k −md)) (4.11)

Now, defining an augmented vector (4.15) and using (4.9), (4.10) and (4.11), one can

express the closed-loop system as

x(k + 1) = Mkx(k) +Mnsc
x(k − nsc) +Mmd

x(k −md) +Mnca
x(k − nca)

+Mnscnca
x(k − nsc − nca) +Mmdnca

x(k −md − nca) (4.12)

where x(k) =
[
xp(k) xm(k) xf (k)

]T
, (4.13)
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Mk =




Ad 0 0

0 (Ad +BdKC) BdKCf

0 0 Af


 ,Mnsc

=




0 0 0

BdKDfC 0 0

BfC 0 0


 ,

Mmd
=




0 0 0

0 −BdKDfC 0

0 −BfC 0


 ,Mnca

=




0 BdKC BdKCf

0 0 0

0 0 0


 ,

Mnscnca
=




BdKDfC 0 0

0 0 0

0 0 0


 and Mmdnca

=




0 −BdKDfC 0

0 0 0

0 0 0


 .

Equation (4.12) may be rewritten as:

φ(k + 1) = Fiφ(k) (4.14)

where i = 1, 2, ..., ((n̄sc − nsc)× (n̄ca − nca)),

φ(k) =
[
xT (k), xT (k − nsc), x

T (k −md), x
T (k − nca), x

T (k − nsc − nca) ,

xT (k −md − nca)
]T
, (4.15)

and

Fi =




Mk Mnsc
Mmd

Mnca
Mnscnca

Mmdnca

I 0 0 0 0 0

0 I 0 0 0 0

0 0 I 0 0 0

0 0 0 I 0 0

0 0 0 0 I 0




. (4.16)

Next, describing the formation of such Fis for a typical example case. Consider the

case that nsc = 0, n̄sc = 2, md = 1, nca = 0 and n̄ca = 1. Correspondingly nsc and nca



76 Guaranteed Cost Performance of Digital SP with Filter for NCSs

may take values 0, 1, 2 and 0, 1., and φk = [xT (k), xT (k − 1), xT (k − 2), xT (k − 3)]T .

The description of Fis are as follows.

Case 1. For nsc = 0 and nca = 0, (4.16) takes the form

F1 =




Γ0 Γ1 0 0

I 0 0 0

0 I 0 0

0 0 I 0




(4.17)

where Γ0 =Mk,Γ1 =Mmd
+Mmdnca

.

Case 2. For nsc = 0 and nca = 1, (4.16) takes the form

F2 =




Λ0 Λ1 0 0

I 0 0 0

0 I 0 0

0 0 I 0




(4.18)

where Λ0 =Mk,Λ1 =Mmd
+Mnca

+Mnscnca
.

Case 3. For nsc = 1 and nca = 0, (4.16) takes the form

F3 =




Ω0 Ω1 0 0

I 0 0 0

0 I 0 0

0 0 I 0




(4.19)

where Ω0 =Mk,Ω1 =Mmd
+Mnsc

+Mnscnca
+Mmdnca

.
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Case 4. For nsc = 1 and nca = 1, (4.16) takes the form

F4 =




∆0 ∆1 ∆2 0

I 0 0 0

0 I 0 0

0 0 I 0




(4.20)

where ∆0 =Mk,∆1 =Mmd
+Mnsc

+Mnca
,∆2 =Mnscnca

+Mmdnca
.

Case 5. For nsc = 2 and nca = 0, (4.16) takes the form

F5 =




Ψ0 Ψ1 Ψ2 0

I 0 0 0

0 I 0 0

0 0 I 0




(4.21)

where Ψ0 =Mk,Ψ1 =Mmd
+Mmdnca

,Ψ2 =Mnscnca
.

Case 6. For nsc = 2 and nca = 1, (4.16) takes the form

F6 =




Υ0 Υ1 Υ2 Υ3

I 0 0 0

0 I 0 0

0 0 I 0




(4.22)

where Υ0 =Mk,Υ1 =Mmd
+Mnca

,Υ2 =Mnsc
+Mmdnca

,Υ3 =Mnscnca
.

4.3.2 Digital Smith Predictor based Model

If the digital filter dynamics is neglected (i.e, Af = 0, Bf = 0, Cf = 0 and Df = 1),

then the scheme in Figure 4.2 is the same as that in Figure 4.1. For this case, the
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system description using (4.9), (4.10) and (4.11) become

xp(k + 1) = Adxp(k) +BdKCxp(k − nsc − nca)− BdKCxm(k −md − nca)

+BdKCxm(k − nca) (4.23)

xm(k + 1) = (Ad +BdKC)xm(k) +BdKCxp(k − nsc)−BdKCxm(k −md) (4.24)

Now, defining an augmented vector (4.28) and using (4.23) and (4.24), one can express

the closed-loop system as the following:

z(k + 1) = Nkz(k) +Nnsc
z(k − nsc) +Nmd

z(k −md) +Nnca
z(k − nca)

+Nnscnca
z(k − nsc − nca) +Nmdnca

z(k −md − nca) (4.25)

where z(k) =



 xp(k)

xm(k)



 , (4.26)

Nk =


 Ad 0

0 (Ad +BdKC)


 , Nnsc

=


 0 0

BdKC 0


 ,

Nmd
=


 0 0

0 −BdKC


 , Nnca

=


 0 BdKC

0 0


 ,

Nnscnca
=


 BdKC 0

0 0


 and Nmdnca

=


 0 −BdKC

0 0


 .

Equation (4.25) may be rewritten as:

ψ(k + 1) = Gjψ(k) (4.27)
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where j = 1, 2, ..., ((n̄sc − nsc)× (n̄ca − nca)),

ψ(k) =
[
zT (k), zT (k − nsc), z

T (k −md), z
T (k − nca), z

T (k − nsc − nca),

zT (k −md − nca)
]T
, (4.28)

and

Gj =




Nk Nnsc
Nmd

Nnca
Nnscnca

Nmdnca

I 0 0 0 0 0

0 I 0 0 0 0

0 0 I 0 0 0

0 0 0 I 0 0

0 0 0 0 I 0




. (4.29)

4.3.3 System Model without Digital Predictor

If the digital SP is not used in Figure 4.1, then Figure 4.1 becomes a simple static

output feedback case. For this case, the system description using (4.23) and (4.24)

becomes

xp(k + 1) = Adxp(k) +BdKCxp(k − nsc − nca) (4.30)

Equation (4.30) may be rewritten as:



 xp(k + 1)

xp(k)



 =



 Ad BdKC

I 0







 xp(k)

xp(k − nsc − nca)





χ(k + 1) = Hlχ(k) (4.31)

where l = 1, 2, ..., ((n̄sc − nsc)× (n̄ca − nca)), χ(k) =
[
xTp (k), x

T
p (k − nsc − nca)

]T
and

Hl =


 Ad BdKC

I 0


.
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4.4 Guaranteed Cost Controller Design

Guaranteed cost is one of the performance index often desired for an NCS. The same

is widely studied in literature. An observer-based guaranteed cost control problem

for NCS presented in [17]. In similar line, dynamic output-feedback guaranteed cost

controllers for continuous-time linear systems presented in [123]. A state-feedback

guaranteed cost controller laws have been presented in [67] based on a modified Riccati

equation approach and Linear Matrix Inequality (LMI) approach in [111]. Guaranteed

cost control for a class of uncertain discrete time-delay systems has been considered in

[59]. In this chapter, the guaranteed cost control designed using a numerical algorithm

that is often used for similar problems.

The control law (4.7) is said to be a quadratically guaranteed cost controller of

system (4.1) with the guaranteed cost function [96] in discrete domain given by

J =

∞∑

k=0

(
xTp (k)Qxp(k) + u∗T (k)Ru∗(k)

)
(4.32)

where Q and R (need to be specified) are positive definite matrices.

4.4.1 Digital Smith Predictor with Filter based Guaranteed

Cost Function

From Figure 4.2, using (4.1)-(4.3), (4.6)-(4.8), one can write

u∗(k) = u(k − nca)

= K(yf(k − nca) + ym(k − nca))

= K(Cfxf (k − nca) +Dfe(k − nca) + ym(k − nca))

= KCfxf (k − nca) +KDf (yp(k − nsc − nca)− ym(k −md − nca))

+Kym(k − nca)
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= KCfxf (k − nca) +KDfCxp(k − nsc − nca)−KDfCxm(k −md − nca)

+KCxm(k − nca)

= K[0 C Cf ]x(k − nca) +K[DfC 0 0]x(k − nsc − nca)

+K[0 −DfC 0]x(k −md − nca)

= KC1x(k − nca) +KC2x(k − nsc − nca) +KC3x(k −md − nca)

= [0 0 0 KC1 KC2 KC3]φ(k)

= K[0 0 0 C1 C2 C3]φ(k)

= KC̄φ(k) (4.33)

where x(k) and φ(k) are as shown in (4.13) and (4.15) respectively,

C1 =
[
0 C Cf

]
,

C2 =
[
DfC 0 0

]
,

C3 =
[
0 −DfC 0

]
and

C̄ =
[
0 0 0 C1 C2 C3

]
are of appropriate dimensions.

Therefore, (4.32) can be written as

J =

∞∑

k=0

(
xTp (k)Qxp(k) + u∗T (k)Ru∗(k)

)

=

∞∑

k=0

(
xT (k)Q̄x(k) + u∗T (k)Ru∗(k)

)

=
∞∑

k=0

(
φT (k)Q̃φ(k) + φT (k)(KC̄)TR(KC̄)φ(k)

)

=
∞∑

k=0

φT (k)
(
Q̃+ R̃

)
φ(k) (4.34)
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where Q̄ =




Q 0 0

0 0 0

0 0 0


 , Q̃ =




Q̄ 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




, Q̃ may be represented as

Q̃ =


 Q 0

0 0


 and R̃ = (KC̄)TR(KC̄).

4.4.2 Digital Smith Predictor based Guaranteed Cost Func-

tion

If the digital filter dynamics is neglected then the scheme in Figure 4.2 becomes equiv-

alent to Figure 4.1. Using (4.1)-(4.3), (4.6)-(4.8), one can write

u∗(k) = u(k − nca)

= K(ym(k − nca) + e(k − nca))

= K(ym(k − nca) + yp(k − nsc − nca)− ym(k −md − nca))

= KCxm(k − nca) +KCxp(k − nsc − nca)−KCxm(k −md − nca))

= K[0 C]z(k − nca) +K[C 0]z(k − nsc − nca) +K[0 − C]z(k −md − nca)

= KC1z(k − nca) +KC2z(k − nsc − nca) +KC3z(k −md − nca)

= K[0 0 0 C1 C2 C3]ψ(k)

= KC̄ψ(k) (4.35)

where C1 =
[
0 C

]
, C2 =

[
C 0

]
, C3 =

[
0 −C

]
and C̄ =

[
0 0 0 C1 C2 C3

]

are of appropriate dimensions.
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Therefore, (4.32) can be written as

J =
∞∑

k=0

(
xTp (k)Qxp(k) + u∗T (k)Ru∗(k)

)

=

∞∑

k=0

(
zT (k)Q̄z(k) + u∗T (k)Ru∗(k)

)

=

∞∑

k=0

(
ψT (k)Q̃ψ(k) + ψT (k)(KC̄)TR(KC̄)ψ(k)

)

=
∞∑

k=0

ψT (k)
(
Q̃+ R̃

)
ψ(k) (4.36)

where Q̄ =


 Q 0

0 0


 , Q̃ =




Q̄ 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




, Q̃ may be represented as

Q̃ =


 Q 0

0 0


 and R̃ = (KC̄)TR(KC̄).

4.4.3 Guaranteed Cost Function for without Digital Predictor

If the digital predictor dynamics is neglected then the scheme in Figure 4.1 becomes

simple static output feedback case. For this case

u∗(k) = u(k − nca)

= Kyp(k − nsc − nca)

= KCxp(k − nsc − nca)

= K[0 C]χ(k)

= KC̄χ(k) (4.37)
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where C̄ =
[
0 C

]
are of appropriate dimensions.

Therefore, (4.32) can be written as

J =
∞∑

k=0

(
xTp (k)Qxp(k) + u∗T (k)Ru∗(k)

)

=
∞∑

k=0

(
χT (k)Q̃χ(k) + χT (k)(KC̄)TR(KC̄)χ(k)

)

=

∞∑

k=0

χT (k)
(
Q̃+ R̃

)
χ(k) (4.38)

where Q̃ =



 Q 0

0 0



 and R̃ = (KC̄)TR(KC̄).

Theorem 4.1. Considering the system (4.14) and cost fuction (4.32), if there exists

P = P T > 0 such that the following LMI holds

F T
i PFi − P + Q̃ + R̃ < 0, (4.39)

with Q̃ > 0 and R̃ > 0, then the guaranteed cost J satisfies the following bound

J ≤ φT (0)Pφ(0) (4.40)

Proof. In order to ensure stability and controller design of the system (4.14), which is a

switched one due to the uncertain delays and packet losses. The switching subsystems

corresponds to different time-delay and packet loss values. The analysis follows the

common Lyapunov function technique (see [46]) V (k) = φT (k)Pφ(k) for system (4.14),

and for which there exists a P = P T > 0 satisfying one minimizes

∆V = V (k + 1)− V (k)

= φT (k + 1)Pφ(k + 1)− φT (k)Pφ(k)

= φT (k)F T
i PFiφ(k)− φT (k)Pφ(k)
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= φT (k)
(
F T
i PFi − P

)
φ(k)

= φT (k)
(
F T
i PFi − P

)
φ(k) + φT (k)(Q̃+ R̃)φ(k)− φT (k)(Q̃ + R̃)φ(k)

< −φT (k)(Q̃ + R̃)φ(k) < 0 (4.41)

If ∆V < 0 then it can be written as:

F T
i PFi − P + Q̃+ R̃ < 0 (4.42)

Also system satisfy the performance upper bound

J =

∞∑

k=0

(
xTp (k)Qxp(k) + u∗T (k)Ru∗(k)

)

= φT (k)(Q̃+ R̃)φ(k)

< V (0) = φT (0)Pφ(0) (4.43)

since V (∞) → 0. Therefore J ≤ φT (0)Pφ(0).

Hence, one has to minimize the RHS of (4.40) to minimize J . Following the pro-

cedure of [96] for solving this through LMIs.

Taking Schur complement and denoting W = P−1, (4.39) can be written as



 −P + Q̃+ F T
i PFi (KC̄)T

∗ −R−1



 < 0 (4.44)

Again taking Schur complement on (4.44) and it can be written as




−P + Q̃ F T
i (KC̄)T

∗ −W 0

∗ ∗ −R−1


 < 0 (4.45)

Let R = R−1 and W = P−1 then WP = I, one requires to consider the additional
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constraint that 
 P I

∗ W


 ≥ 0 (4.46)

And finally for minimizing J (4.40), one may consider minimizing γ subjected to (4.47)

so that φT (0)Pφ(0) = −γ. Taking Schur complement this can be written as



 −γ φT
0

∗ −W



 < 0 (4.47)

Now, one has to design the controller satisfying (4.39). The following algorithm is

used to obtain a guaranteed cost controller.

Algorithm 1. Step (a). Choose a large initial γ value such that there exists a feasible

solution to LMIs in (4.45) - (4.47).

Step (b). Set r = 0. Find the feasible solution Pr, Wr and K satisfying LMIs

(4.45) - (4.47).

Step (c). Solve for the LMI variables P andW while minimizing trace (PrW+PWr)

subject to LMIs (4.45) - (4.47).

Step (d). If conditions (4.45) - (4.47) are satisfied for obtained P with W = P−1,

then return to step (b) after decreasing γ to some extent. Otherwise, set r = r + 1,

Pr+1 = P,Wr+1 = W and go to step (c) till r does not reach an iteration limit. If limit

is reached then exit.

4.5 Simulation and Experimental Results

In this section, the developed controller design in previous section is evaluated by

experimental results and corresponding simulation analysis. For comparison, three

different NCS configurations are considered: (i) NCS without digital SP, (ii) NCS

with digital SP and (iii) NCS with digital SPF.
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4.5.1 Experimental Study

A LAN-based experimental setup is developed to validate the theoretical findings in

this chapter. The experimental setup is shown in Figure 4.3. The plant is an op-

amp based emulated integrator plant (make: Techno instruments). Note that, such

integrator plant represents dynamics of various process models, e.g. temperature con-

trol, chemical liquid level (usually the processes with large time constants). The plant

is interfaced with a computer using data acquisition card (i.e. PCI 1716). Another

computer is used as the digital controller (i.e. without and with digital SP as well as

the digital SPF) and the two computers are connected via LAN using UDP commu-

nication blocks. Note that, since UDP communication is used non-synchronisation of

plant and controller leads to an additional delay in either of the communication. This

is appended with the actual network delay while determining delay introduced by the

network.

4.5.2 Numerical Study

Consider an integrator plant described as:

ẋp(t) = Axp(t) +Bu∗(t),

yp(t) = Cxp(t),

where A = 0, B = 1, C = 1 (i.e. Ad = 1, Bd = h and Cd = 1) and the sampling interval

is chosen as h = 0.1 s. Both the channel delays are calculated using a test signal

(compared with transmitted and received signal via LAN). The measured sensor-to-

controller delay is typically d̄sc(t)=0.2 s (i.e. n̄sc
d = 2) and controller-to-actuator delay

d̄ca(t)=0.2 s (i.e. n̄ca
d = 2). The packet losses are calculated using with clock signal,

the clock signal is transmitted along with system output via LAN to the controller

and controller to the system. The received clock signal at controller and the actuator

compared with the original clock signal, the resultant missed data is equal to packet
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losses, which came out to be n̄sc
p = 1 and n̄ca

p = 1. Resultantly, n̄sc = 3 and n̄ca = 3.

The digital filter (4.3) consider with Af = 0.3, Bf = 0.7, Cf = 1 and Df = 0. This

corresponds to a cut off frequency of 200Hz.

Controller design parameters are chosen as: Q = 0.01I, R = 0.1. For Algorithm

1, maximum number of iterations is chosen as 200 and initial γ = 100. The obtained

control gain values presented in Table 4.1.

4.5.3 Discussions

Now, the effectiveness of the proposed method in terms of the cost function is eval-

uated by both LAN based simulation as well as experiment. Performance of the

three NCS configurations are shown in Figure 4.4, Figure 4.5 and Figure 4.6 respec-

tively. The representative cost function is calculated for one step change cycle i.e.

J =
∑

k

(
xTp (k)Qxp(k) + u∗T (k)Ru∗(k)

)
and are given in Table 4.1. It is clear that the

cost value is more when NCS without digital predictor configuration than NCS with

digital SP configuration for all different md parameter cases. The cost value is lesser

for NCS with digital SPF configuration than NCS with digital SP configuration. When

md = 6, the cost value is less for NCS with digital SPF configuration. The conclusion

is that the NCS with digital SPF configuration provides better performance in terms

of J , provided md is appropriately chosen.

From the above discussion, a suitable md value may be chosen as the sum of

maximum number of delays and packet losses of the both channels (i.e. md=6). At

this value the performance of the system is better than other values as it is clear from

Table 4.1.

4.6 Chapter Summary

A guaranteed cost controller design based digital SPF for NCSs is shown to yield better

performance than the conventional digital SP. The NCS with random but bounded
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Table 4.1: Cost values for Simulation and Experiment
NCS without digital SP

K 1.2009
Sim (J) 0.4717
Exp (J) 0.3757

NCS with digital SP
md 3 4 5 6 7
K 1.2819 1.3728 1.2908 1.5017 1.6813
Sim (J) 0.3942 0.3752 0.3378 0.3302 0.3480
Exp (J) 0.2665 0.2534 0.2228 0.2205 0.2341

NCS with digital SPF
md 3 4 5 6 7
K 1.4132 1.5132 1.4569 1.6912 1.9396
Sim (J) 0.3776 0.3569 0.3243 0.3141 0.3239
Exp (J) 0.2529 0.2380 0.2136 0.2095 0.2166

Figure 4.3: The LAN-based experimental setup
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Figure 4.4: Guaranteed cost control design for LAN-based NCS (without
predictor).
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Figure 4.5: Guaranteed cost control design for LAN-based NCS with digital
SP when (a) md = 4 and (b) md = 7.
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Figure 4.6: Guaranteed cost control design for LAN-based NCS with digital
SPF when (c) md = 4 and (d) md = 7.

delays and packet losses introduced by the network is modeled as a switched system

and LMI based iterative algorithm is used for designing the controller. Finally, the

effectiveness of the proposed method has been verified with LAN-based simulation and

practical experiment on an integrator plant. It is shown that the digital SPF improves

the performance of NCS than with and without digital SP based NCS.





Chapter 5

H∞ Control Framework for Jitter

Effect Reduction in NCSs

This chapter presents design of a digital predictor based H∞ controller for networked

control systems with random network induced delays. The delays considered are integer

multiples of sampling interval assuming the system components are time-driven. The

controller is designed with the objective that the effect of network jitter due to the

variation in the delay is minimized so that the system dynamics has reduced random

variation. For the purpose, the system is modeled corresponding to a nominal delay

whereas the effect of variation of the delay is treated as disturbances in the dynamics.

The controller is designed using quadratic Lyapunov analysis guaranteeing the stability

of the system as well. The effectiveness of the proposed controller is validated through

experiment conducted on an integrator plant.

5.1 Introduction

Robust control plays a key role in controller design for NCSs. H∞ control is one

such design widely used. In [29], H∞ control laws have been derived for disturbance

present in the system model of a class of cascaded NCS with uncertain delays that
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are less than a sampling period. In [100, 32], an H∞ controller has been designed by

solving a set of LMIs for NCSs considering packet loss in the network. Robust H∞

state feedback controllers were designed in terms of LMIs for an NCS with both the

delays and packet losses in [115, 114, 33, 88]. Both the quadratic stability and H∞

disturbance attenuation with time-varying uncertainty using norm-bounded approach

were studied in [14]. However, all these works on design of H∞ controllers is consider

disturbance rejection that is present in the plant model.

To this end, due to the presence of network in an NCS, it suffers from the prob-

lems associated with a real-time communication in the form of random time-delay

and packet losses in information sharing. Typically the randomness in the delays

and packet losses is present in network communication. Due to this, the information

transmitted through a network is often influenced by network jitters due to the ran-

dom variations in the network delay [34]. In [61], different types of network jitters are

discussed. Such jitters highly depends on network switching and degrades the system

performance. Moreover, this causes switching in system dynamics leading to random

variations in its states, nonlinear behavior like chattering, etc. Presence of mechanical

and electrical components in the system demands reduction of jitter effects in NCS

dynamics.

To reduce the effect of randomness in network communication, so called jitter, sev-

eral approaches have been evolved, such as disturbance observer based compensator

[81], adaptive Smith predictor [39], and so on. Alternate approach would be to reduce

the jitter itself by introducing jitter buffer [77]. While the latter approach introduces

more delay in the communication, the former one has been developed to ensure cer-

tain control performances but not to attenuate the effect of the jitter in the system

dynamics. This chapter addresses this concern by designing a digital predictor based

controller whilst minimizing the effect of jitter in H∞ sense.

In this chapter, a robust H∞ controller is designed for NCS with a digital Smith

Predictor (SP). The network jitters due to the random delays are modeled as an
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external disturbances to the system. Then quadratic H∞ design criterion in the form

of LMIs is invoked to minimize the jitter effect. Further, the controller is designed

so that the system stability is guaranteed. In laboratory, a LAN based NCS setup

is developed and the efficacy of the proposed configurations are validated with an

example. The superiority of predictor based controller compared to static gain ones

(without predictor) is shown.

u* (k) yp(k) 

Controller 

Plant 

Plant Model 

Digital SP with Controller 

Network 

Hold Sampler 

Figure 5.1: NCS with digital SP

The next section describes the problem considered. Section 5.3 describes the mod-

eling of network jitter as the noise input to the system. Design of an H∞ controller is

presented in section 5.4 and corresponding experimental studies are presented in 5.5.

Finally, chapter summary presented in section 5.6.
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5.2 Problem Description

Consider an NCS with a digital SP as shown in Figure 5.1. The continuous-time plant

is described as:

ẋp(t) = Axp(t) +Bu∗(t)

yp(t) = Cxp(t)

where xp(t) ∈ R
n, u∗(t) ∈ R

m and yp(t) ∈ R
p are the plant state, input and output

respectively. A,B,C are constant matrices with appropriate dimensions. The sampling

interval is considered to be h with the kth sampling instant is defined as sk , kh.

The plant dynamics in discrete-domain is described as:

xp(k + 1) = Adxp(k) +Bdu
∗(k)

yp(k) = Cxp(k)
(5.1)

where xp(k), u
∗(k) and yp(k) are the discrete-time plant state, input and output re-

spectively, Ad = eAh and Bd =
∫ h

0
eAsdsB.

The plant dynamics is utilized in the digital predictor for predicting output without

delay. This discrete predictor dynamics can be written as:

xm(k + 1) = Adxm(k) +Bdu(k)

ym(k) = Cxm(k)
(5.2)

where xm(k), u(k) and ym(k) are the predictor discrete state, input and output respec-

tively.

The network induced time-varying delays is considered to be dsc(t) for sensor-to-

controller channel. Controller is assumed to be time-driven. The time delay dsc(t)

is automatically ceiled to integer multiples of h. For convenience, define the mini-

mum and maximum integers as nsc = ⌊dsc(t)/h⌋ and n̄sc = ⌈d̄sc(t)/h⌉ respectively.
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Therefore, the network-induced sensor-to-controller delay is defined as:

nsc ≤ nsc ≤ n̄sc (5.3)

In the same way, for the controller-to-actuator channel, the time-varying delay

dca(t) (the actuator is assumed to be time-driven) can be defined as:

nca ≤ nca ≤ n̄ca (5.4)

In this work, it is assumed that the bounds of the delays (nsc, n̄sc, nca, n̄ca) are known.

Note that, nsc and nca are random integers due to the delay variations. This time-

varying random variation introduces the network jitter [34]. Due to this closed-loop

system dynamics also becomes jittery that may be undesirable for many physical

systems.

From Figure 5.1, the controller output can be written as:

u(k) = K(ym(k) + e(k)) (5.5)

where K is the static control gain, e(k) = yp(k−nsc)−ym(k−md) and md (an integer)

is the predictor delay.

The control input to the plant can be written as:

u∗(k) = u(k − nca) (5.6)

The objective of this chapter is to design the controller gain K in order to reduce

the effect of network jitter introduced by both the feedback and forward channels in

the closed-loop system.

Next, model the NCS in discrete domain. The discretized plant and predictor
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dynamics with the network delays can be described as:

xp(k + 1) = Adxp(k) +Bdu
∗(k)

= Adxp(k) +Bdu(k − nca)

= Adxp(k) +BdK(ym(k − nca) + e(k − nca))

= Adxp(k) +BdK(ym(k − nca) + yp(k − nsc − nca)− ym(k −md − nca))

= Adxp(k) +BdKCxm(k − nca) +BdKCxp(k − nsc − nca)

−BdKCxm(k −md − nca) (5.7)

xm(k + 1) = Adxm(k) +Bdu(k)

= Adxm(k) +BdK(ym(k) + e(k))

= Adxm(k) +BdK(ym(k) + yp(k − nsc)− ym(k −md))

= (Ad +BdKC)xm(k) +BdKCxp(k − nsc)− BdKCxm(k −md)(5.8)

The effect of the compensator can be emphasized from (5.7) and (5.8). The term

involving xm(k−md −nca) in (5.7) helps to compensate the effect of xp(k−nsc −nca)

whereas the term involving xm(k−md) does the same in (5.8) but for the term involving

xp(k − nsc).

Now, augmenting (5.7) and (5.8), one can express the closed-loop system as:

x(k + 1) = Mkx(k) +Mnsc
x(k − nsc) +Mmd

x(k −md) +Mnca
x(k − nca)

+Mnscnca
x(k − nsc − nca) +Mmdnca

x(k −md − nca) (5.9)

where

x(k + 1) =


 xp(k + 1)

xm(k + 1)


 , (5.10)
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Mk =


 Ad 0

0 (Ad +BdKC)


 ,Mnsc

=


 0 0

BdKC 0


 ,

Mmd
=



 0 0

0 −BdKC



 ,Mnca
=



 0 BdKC

0 0



 ,

Mnscnca
=


 BdKC 0

0 0


 and Mmdnca

=


 0 −BdKC

0 0


 .

Augmenting the delayed states corresponding to particular delay values, (5.9) can be

written as: The final closed-loop model for stability analysis may be represented as:

φ(k + 1) = Fiφ(k) (5.11)

where φ(k) = [xT (k), xT (k − nsc), x
T (k −md), x

T (k − nca), x
T (k − nsc − nca), x

T (k −

md − nca)]
T ,

Fi =




Mk Mnsc
Mmd

Mnca
Mnscnca

Mmdnca

I 0 0 0 0 0

0 I 0 0 0 0

0 0 I 0 0 0

0 0 0 I 0 0

0 0 0 0 I 0




. (5.12)

Note that, nsc and nca are uncertain in the above. The maximum possible number of

corresponding Fis are based on the different combination of them as i = 1, 2, · · · , (n̄sc−

nsc + 1)(n̄ca − nca + 1).

Remark 5.1. The above modeling consider only the network delay. Apart from delays,

packet loss in the network is another concern to be addressed in NCSs. The Lyapunov

analysis based on switched system framework due to random delays allows one to treat

random packet losses as delays provided the contribution of these in modifying the delay
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is appropriately considered. Similar concept, i.e. appending the delay and packet loss

together as random delays, has earlier been used in [117, 49, 96, 84]. The same can

be adopted in this work as well.

5.3 Noisy Model Representation

Since jitter effect reduction is the control objective in this work, the problem is defined

around a nominal system corresponding to particular delay values, with the delay

variation introduces disturbance in the system that is to be attenuated. Note that,

the total loop-delay in NCS of Figure 5.1 is nsc + nca. Hence, one may consider

the mean-value of the loop-delay as the automatic choice for choosing the nominal

dynamics of the plant. In this work, the predictor delay to be the algebraic mean of

the loop-delay is considered as:

md =
(nsc + n̄sc) + (nca + n̄ca)

2
(5.13)

The closed-loop model (5.9) for jitter effect reduction may be represented as:

φ(k + 1) = Fφ(k) + ∆in(k) (5.14)

where F is the nominal system matrix formulated with nsc and nca taking mean values

of their respective ranges; ∆i = F − Fi denotes input matrix for the disturbance and

n(k) = KCφ(k) that arises from random delay variations. Determination of ∆is from

Fis in (5.11) is illustrated in the following example.

Illustrative Example: Consider nsc = 1, n̄sc = 3, nca = 1, n̄ca = 3. Corre-

spondingly nsc and nca may take values 1, 2, 3 and 1, 2, 3 respectively. Therefore, md

is chosen as 4 following (5.13). φk = [xT (k), xT (k − 1), xT (k − 2), xT (k − 3), xT (k −

4), xT (k − 5), xT (k − 6), xT (k − 7)]T . The nominal system matrix F and uncertain

input matrices ∆is can be obtained as the following.
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Case 1. When nsc =
nsc+n̄sc

2
= 2 and nca =

nca+n̄ca

2
= 2, the nominal system matrix

becomes

F = F1 =




Γ0 0 Γ2 0 Γ4 0 Γ6 0

I 0 0 0 0 0 0 0

0 I 0 0 0 0 0 0

0 0 I 0 0 0 0 0

0 0 0 I 0 0 0 0

0 0 0 0 I 0 0 0

0 0 0 0 0 I 0 0

0 0 0 0 0 0 I 0




(5.15)

where Γ0 = Mk,Γ2 = Mnsc
+ Mnca

,Γ4 = Mmd
+ Mnscnca

, Γ6 = Mmdnca
, note that

F = F1 and ∆1 = 0.

Case 2. For nsc = 1 and nca = 1, F remains the same (for all the following cases) but

the uncertain input matrix ∆i takes the form

∆2 = F − F2 (5.16)

where

F2 =




ℵ0 ℵ1 ℵ2 0 ℵ4 ℵ5 0 0

I 0 0 0 0 0 0 0

0 I 0 0 0 0 0 0

0 0 I 0 0 0 0 0

0 0 0 I 0 0 0 0

0 0 0 0 I 0 0 0

0 0 0 0 0 I 0 0

0 0 0 0 0 0 I 0




,

ℵ0 =Mk,ℵ1 =Mnsc
+Mnca

,ℵ2 =Mnscnca
ℵ4 =Mmd

and ℵ4 =Mmdnca
.
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Case 3. For nsc = 1 and nca = 2, the uncertain input matrix ∆i takes the form

∆3 = F − F3 (5.17)

where

F3 =




Λ0 Λ1 Λ2 Λ3 Λ4 0 Λ6 0

I 0 0 0 0 0 0 0

0 I 0 0 0 0 0 0

0 0 I 0 0 0 0 0

0 0 0 I 0 0 0 0

0 0 0 0 I 0 0 0

0 0 0 0 0 I 0 0

0 0 0 0 0 0 I 0




,

Λ0 =Mk,Λ1 =Mnsc
,Λ2 =Mnca

,Λ3 =Mnscnca
Λ4 =Mmd

and Λ6 =Mmdnca
.

Case 4. For nsc = 1 and nca = 3, the uncertain input matrix ∆i takes the form

∆4 = F − F4 (5.18)

where

F4 =




Ω0 Ω1 0 Ω3 Ω4 0 0 Ω7

I 0 0 0 0 0 0 0

0 I 0 0 0 0 0 0

0 0 I 0 0 0 0 0

0 0 0 I 0 0 0 0

0 0 0 0 I 0 0 0

0 0 0 0 0 I 0 0

0 0 0 0 0 0 I 0




,

Ω0 =Mk,Ω1 =Mnsc
,Ω3 =Mnca

,Ω4 =Mnscnca
+Mmd

and Ω7 =Mmdnca
.
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Case 5. For nsc = 2 and nca = 1, the uncertain input matrix ∆i takes the form

∆5 = F − F5 (5.19)

where

F5 =




Π0 Π1 Π2 Π3 Π4 Π5 0 0

I 0 0 0 0 0 0 0

0 I 0 0 0 0 0 0

0 0 I 0 0 0 0 0

0 0 0 I 0 0 0 0

0 0 0 0 I 0 0 0

0 0 0 0 0 I 0 0

0 0 0 0 0 0 I 0




,

Π0 =Mk,Π1 =Mnca
,Π2 =Mnsc

,Π3 =Mnscnca
,Π4 =Mmd

and Π =Mmdnca
.

Case 6. For nsc = 2 and nca = 3, the uncertain input matrix ∆i takes the form

∆6 = F − F6 (5.20)

where

F6 =




Ψ0 0 Ψ2 Ψ3 Ψ4 Ψ5 0 Ψ7

I 0 0 0 0 0 0 0

0 I 0 0 0 0 0 0

0 0 I 0 0 0 0 0

0 0 0 I 0 0 0 0

0 0 0 0 I 0 0 0

0 0 0 0 0 I 0 0

0 0 0 0 0 0 I 0




,

Ψ0 =Mk,Ψ2 =Mnsc
,Ψ3 =Mnca

,Ψ4 =Mmd
,Ψ5 =Mnscnca

and Ψ7 =Mmdnca
.



104 H∞ Control Framework for Jitter Effect Reduction in NCSs

Case 7. For nsc = 3 and nca = 1, the uncertain input matrix ∆i takes the form

∆7 = F − F7 (5.21)

where

F7 =




Φ0 Φ1 0 Φ3 Φ4 Φ5 0 0

I 0 0 0 0 0 0 0

0 I 0 0 0 0 0 0

0 0 I 0 0 0 0 0

0 0 0 I 0 0 0 0

0 0 0 0 I 0 0 0

0 0 0 0 0 I 0 0

0 0 0 0 0 0 I 0




,

Φ0 =Mk,Φ1 =Mnca
,Φ3 =Mnsc

,Φ4 =Mnscnca
+Mmd

and Φ5 =Mmdnca
.

Case 8. For nsc = 3 and nca = 2, the uncertain input matrix ∆i takes the form

∆8 = F − F8 (5.22)

where

F8 =




Θ0 0 Θ2 Θ3 Θ4 Θ5 Θ6 0

I 0 0 0 0 0 0 0

0 I 0 0 0 0 0 0

0 0 I 0 0 0 0 0

0 0 0 I 0 0 0 0

0 0 0 0 I 0 0 0

0 0 0 0 0 I 0 0

0 0 0 0 0 0 I 0




,

Θ0 =Mk,Θ2 =Mnca
,Θ3 =Mnsc

,Θ4 =Mmd
,Θ5 =Mnscnca

and Θ6 =Mmdnca
.
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Case 9. For nsc = 3 and nca = 3, the uncertain input matrix ∆i takes the form

∆9 = F − F9 (5.23)

where

F9 =




Ξ0 0 0 Ξ3 Ξ4 0 Ξ6 Ξ7

I 0 0 0 0 0 0 0

0 I 0 0 0 0 0 0

0 0 I 0 0 0 0 0

0 0 0 I 0 0 0 0

0 0 0 0 I 0 0 0

0 0 0 0 0 I 0 0

0 0 0 0 0 0 I 0




,

Ξ0 =Mk,Ξ3 =Mnsc
+Mnca

,Ξ4 =Mmd
,Ξ6 =Mnscnca

and Ξ7 =Mmdnca

Remark 5.2. The closed loop model for NCS without digital SP can be found from

(5.7) and (5.8) by neglecting the predictor dynamics (for this case the Figure 5.1 be-

comes simple static output feedback case). For such case, one can write

xp(k + 1) = Adxp(k) +BdKCxp(k − nsc − nca) (5.24)

The closed-loop system (5.24) may be represented as

φ(k + 1) = Fiφ(k)

= Fφ(k) + ∆in(k) (5.25)

where

Fi =


 Ad BdKC

I 0


 , (5.26)

φ(k) = [xTp (k), x
T
p (k−nsc−nca)]

T , n(k) = KCφ(k) = [KCxTp (k), KCx
T
p (k−nsc−nca)]

T ,
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∆i = F − Fi and i = 1, 2, ..., (n̄sc − nsc + 1)× (n̄ca − nca + 1).

Consider the case that nsc = 0, n̄sc = 1, nca = 0, n̄ca = 1. Correspondingly nsc and

nca may take values 0, 1 and 0, 1., and φ(k) = [xT (k), xT (k − 1), xT (k − 2)]T . The

descriptions of the nominal system matrix F and uncertain system matrix ∆is are as

follows.

Case 1. When nsc =
nsc+n̄sc

2
= 0.5 and nca =

nca+n̄ca

2
= 0.5, then assign the next

integer values for nsc and nca, i.e. nsc = 1 and nca = 1 (since nsc and nca are integer

values). The nominal system matrix F becomes

F = F1 =




Ad 0 BdKC

I 0 0

0 I 0


 (5.27)

Note that, F = F1 and ∆1 = 0.

Case 2. For nsc = 0 and nca = 0, F is remains same but the uncertain input matrix

∆i takes the form

∆2 = F − F2 =




−Bd 0 Bd

0 0 0

0 0 0


 , (5.28)

where

F2 =




Ad +BdKC 0 0

I 0 0

0 I 0


 .

Case 3. For nsc = 0 and nca = 1, the uncertain system matrix ∆i takes the form

∆3 = F − F3 =




0 −Bd Bd

0 0 0

0 0 0


 , (5.29)
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where

F3 =




Ad BdKC 0

I 0 0

0 I 0


 .

Case 4. For nsc = 1 and nca = 0, the uncertain system matrix ∆i takes the form

∆4 = F − F4 =




0 −Bd Bd

0 0 0

0 0 0


 , (5.30)

where

F4 =




Ad BdKC 0

I 0 0

0 I 0


 .

Noting that, the stability analysis and control design framework of (5.25) follows

the same procedure of NCS with digital SP and one can obtain the system model (5.11)

and correspondingly compute F and ∆is.

5.4 H∞ Controller Design

Lemma 5.1 ([14]). System (5.14) satisfies H∞ performance of γ̄ if

∞∑

k=0

φT (k)φ(k) ≤ γ̄
∞∑

k=0

nT (k)n(k) (5.31)

The objective of jitter reduction is redefined now as to minimize γ̄. To attain this, the

following theorem is proposed.

Theorem 5.1. System (5.11) represented by (5.14) as well is asymptotically stable

and satisfies H∞ performance of γ̄ in the sense of (5.31) if, for ǫ > 0, there exists,
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P = P T > 0, Q = QT > 0 such that the following LMIs hold:


 −P F T

i

∗ −P̄


 < 0, (5.32)


 P I

∗ P̄


 ≥ 0, (5.33)




−Q̄ F T F T Q̄

∗ −γ(∆i∆
T
i + ǫI)−1 0 0

∗ ∗ −Q 0

∗ ∗ ∗ −I



< 0, (5.34)


 Q I

∗ Q̄


 ≥ 0 (5.35)

where P̄ = P−1, Q̄ = Q−1, γ̄i = γ + λmax(∆
T
i Q∆i), γ̄=max(γ̄i), γ > 0 and i =

1, 2, · · · , (n̄sc − nsc + 1)(n̄ca − nca + 1).

Proof. (I). Stability: For ensuring stability of (5.11), consider a Lyapunov function

V̄ (k) = φ(k)TPφ(k). Then the stability condition based on common Lyapunov func-

tion theory for switched systems, following [46], is

F T
i PFi − P < 0 (5.36)

By taking Schur complement on (5.36) and using cone-complementarity method [89],

it can be written as (5.32) and (5.33).

(II). H∞ Performance: Consider the same system but represented as (5.14) and

a Lyapunov function for it as V (k) = φ(k)TQφ(k). Then one can write

∆V (k) = V (k + 1)− V (k)
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= (Fφ(k) + ∆in(k))
TQ(Fφ(k) + ∆in(k))− φT (k)Qφ(k)

= (φT (k)F T + nT (k)∆T
i )Q(Fφ(k) + ∆in(k))− φT (k)Qφ(k)

= φT (k)F TQFφ(k) + φT (k)F TQ∆in(k) + nT (k)∆T
i QFφ(k)

+nT (k)∆T
i Q∆in(k)− φT (k)Qφ(k) (5.37)

Now, one has to take care of the uncertain terms. For this,

XTY + Y TX ≤ ǫ−1XTX + ǫY TY , ǫ > 0. (5.38)

Using (5.38), (5.37) can be written as

∆V (k) ≤ φT (k)F TQFφ(k) + γ−1φT (k)F TQ∆i∆
T
i QFφ(k) + γnT (k)n(k)

+nT (k)∆T
i Q∆in(k)− φT (k)Qφ(k)

≤ φT (k)F TQFφ(k) + γ−1φT (k)F TQ∆i∆
T
i QFφ(k) + γnT (k)n(k)

+nT (k)∆T
i Q∆in(k)− φT (k)Qφ(k) + φT (k)φ(k)− φT (k)φ(k)

≤ φT (k)(F TQF + γ−1F TQ∆i∆
T
i QF −Q+ I)φ(k)

+γnT (k)n(k) + nT (k)∆T
i Q∆in(k)− φT (k)φ(k) (5.39)

Then, if

F TQF + γ−1F TQ∆i∆
T
i QF −Q+ I ≤ 0 (5.40)

holds, (5.39) can be written as

∆V (k) ≤ γnT (k)n(k) + nT (k)∆T
i Q∆in(k)− φT (k)φ(k) (5.41)

Using Rayleigh’s principle xTPx ≤ λmax(P )x
Tx, λmax is maximum eigen value and
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P > 0. Therefore, the above (5.41) can be written as

∆V (k) ≤ γnT (k)n(k) + λmax(∆
T
i Q∆i)n

T (k)n(k)− φT (k)φ(k)

≤ (γ + λmax(∆
T
i Q∆i))n

T (k)n(k)− φT (k)φ(k)

≤ γ̄in
T (k)n(k)− φT (k)φ(k). (5.42)

where γ̄i = γ + λmax(∆
T
i Q∆i).

From (5.42), the performance index can be written as:

∞∑

k=0

∆Vi(k) =
∞∑

k=0

(Vi(∞)− Vi(0))

≤
∞∑

k=0

(γ̄in
T (k)n(k)− φT (k)φ(k))

≤ γ̄

∞∑

k=0

nT (k)n(k)−

∞∑

k=0

φT (k)φ(k) (5.43)

Since the system is asymptotically stable by virtue of (5.36), V (∞) → 0 and, with

zero initial condition, Vi(0) = 0. Then

γ̄
∞∑

k=0

nT (k)n(k) −
∞∑

k=0

φT (k)φ(k) ≥ 0,

γ̄

∞∑

k=0

nT (k)n(k) ≥

∞∑

k=0

φT (k)φ(k),

∑
∞

k=0 φ
T (k)φ(k)∑

∞

k=0 n
T (k)n(k)

≤ γ̄ (5.44)

Therefore, (5.44) satisfies the H∞ performance (5.31) and the remaining proof lies in

establishing (5.40) is satisfied provided (5.34) and (5.35) hold.
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Taking Schur complement on above (5.40), one can write



 −Q + γ−1F TQ∆i∆
T
i QF + I F TQ

∗ −Q



 ≤ 0, (5.45)

Again taking Schur complement on above, one can write




−Q + I F TQ F TQ

∗ −(γ−1∆i∆
T
i )

−1 0

∗ ∗ −Q


 ≤ 0, (5.46)

Since ∆i∆
T
i ≥ 0, the above may not yield a strict LMI condition. To alleviate this,

the following restricted condition is used




−Q + I F TQ F TQ

∗ −γ(∆i∆
T
i + ǫI)−1 0

∗ ∗ −Q


 < 0, (5.47)

In above one, F in terms ofK (variable) and Q is a variable, to separate these two vari-

ables, express the above as an LMI, pre-and post-multiply (5.47) with




Q−1 0 0

0 I 0

0 0 I


.

This yields




Q−1 0 0

0 I 0

0 0 I







−Q + I F TQ F TQ

∗ −γ(∆i∆
T
i + ǫI)−1 0

∗ ∗ −Q







Q−1 0 0

0 I 0

0 0 I


 < 0, (5.48)
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After multiplication the above one can be written as




−Q−1 +Q−2 F T F T

∗ −γ(∆i∆
T
i + ǫI)−1 0

∗ ∗ −Q


 < 0, (5.49)

Taking Schur complement on above, one can write




−Q−1 F T F T Q−1

∗ −γ(∆i∆
T
i + ǫI)−1 0 0

∗ ∗ −Q 0

∗ ∗ ∗ −I



< 0, (5.50)

which following cone-complementary formulation [89] (i.e. Q̄ = Q−1) is equivalent to

(5.34) and (5.35). This completes the proof

In view of γ̄i = γ+λmax(∆
T
i Q∆i), the objective is chosen as to minimize γ subject

to (5.32) - (5.35). The following algorithm (similar as in [89, 122, 96]) are used to

minimize γ while designing the controller gain K.

Algorithm 2. Step (a). Choose a large initial γ value.

Step (b). Set j = 0. Find a feasible solution Pj, P̄j, Qj, Q̄j and K satisfying LMIs

(5.32) - (5.35).

Step (c). Solve for P , P̄ , Q and Q̄ while minimizing trace (PjP̄+PP̄j+QjQ̄+QQ̄j)

subject to (5.32) - (5.35).

Step (d). If conditions (5.32) - (5.35) are satisfied for obtained P and Q with

P̄ = P−1 and Q̄ = Q−1, then return to step (b) after decreasing γ to some extent.

Otherwise, set j = j+1, Pj+1 = P, P̄j+1 = P̄ , Qj+1 = Q and Q̄j+1 = Q̄ and go to step

(c) till j does not reach an iteration limit. If limit is reached then exit.

Step (e). Plot γ versus γ̄, and find the minimum γ̄ and corresponding control gain

K.
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5.5 Experimental Results

In this section, the effectiveness of the H∞ controller is evaluated with a numerical

example and corresponding experimental results. Further, for comparison of effective-

ness of the compensator, consider the two configurations: (i) NCS without predictor

and (ii) NCS with digital SP.

The same experimental setup discussed (previous chapter) in section 4.5 and in

Figure 4.3 is used to validate the theoretical findings in this chapter.

Consider an integrator plant as

ẋp(t) = Axp(t) +Bu∗(t)

yp(t) = Cxp(t)

with A = 0, B = 1, C = 1 andD = 0. The sampling interval is taken as h = 0.1 s. Both

the channel delays are calculated using with a test signal (compared with transmitted

and received signal via LAN), measured as sensor-to-controller delay d̄sc(t)=0.2 s (i.e.

n̄sc = 2) and controller-to-actuator delay d̄ca(t)=0.2 s (i.e. n̄ca = 2). Therefore,

Ad = 1, Bd = h and md = 2. The lower bounds are taken as nsc = nca = 0.

Algorithm 1 presented in section IV yields a plot of γ versus γ̄ as shown in Fig-

ure 5.2. The minimum γ̄ obtained are 0.5147 and 0.2421 for without and with digital

SP respectively. It can be seen that minimum γ̄ is not attained at minimum γ. Also,

the γ̄ obtained using digital SP is much lesser than when it is not used, which is as

expected. The corresponding control gains corresponding to minimum γ̄ are found as

0.5468 and 0.7488 respectively.

The experimental results for without and with digital SP configurations are shown

in Figure 5.3 and Figure 5.4 respectively. In addition, the results for random controller

gains besides the designed ones shown in Figure 5.3 and Figure 5.4. It can be seen

that the designed control gain yields a smoother response in terms of reduced effect

of network jitter than other control gains. Also, the digital SP controller yields better
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attenuation of the jitter effect than without digital SP one as evident from the two

responses. In addition to time-domain analysis, a comparison of the responses in
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Figure 5.2: γ versus γ̄ for NCS without and with digital SP
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Figure 5.3: Experimental results for NCS without digital SP

frequency domain using power spectral density measure is shown in Figure 5.5 and

Figure 5.6 for without and with digital SP configurations respectively. From Figure 5.5
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Figure 5.4: Experimental results for NCS with digital SP

it is observed that the average powers of the power spectral density are -24.1314dB,

-26.1513 and -23.7048 when K = 0.5468, K = 0.3000 and K = 0.7000 respectively.

Similar to time domain analysis (Figure 5.3), it is concluded that the designed control

gain yields a smoother response in terms of power spectral density than other control

gains.

Similarly in Figure 5.6, the average powers of the power spectral density are -

23.1854dB, -23.7993 and -22.9700 when K = 0.7468, K = 0.6000 and K = 0.9000

respectively. Similar to time domain analysis (Figure 5.4), it is observed that the

designed control gain yields a smoother response in terms of power spectral density

than other control gains.

5.6 Chapter Summary

In this chapter, an H∞ controller is designed using LMIs for NCS without and with

DSP in the presence of random network induced delays in both the feedback and
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Figure 5.5: Experimental results for NCS without digital SP in frequency
domain
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Figure 5.6: Experimental results for NCS with digital SP in frequency domain

forward channels. The H∞ controller is designed with the objective to minimize the

network jitter effect. The proposed method has been verified in the laboratory with a

LAN-based experiment. From the results, it is observed that the designed controllers

effectively regularize the system dynamics from random variations. Also, the DSP
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based controller yields better attenuation of the jitter effect compared to not using it.

However, relation of the proposed controller with transient performance of NCS is not

prevalent from the present study, which could be a future work.





Chapter 6

Conclusions and Future Directions

In this thesis, the stability analysis, design and implementation of digital Smith predic-

tors for networked control systems considering network channels in both forward and

feedback paths are presented. The network uncertainties (i.e. delays and packet losses)

are modeled as uncertain parameters. The NCS with uncertainties is represented as in

both the polytopic model as well as norm-bounded uncertainties and these two methods

have been compared. The polytopic approach has taken less conservativeness in terms

of stability region than the norm-bounded one. Due to this benefit polytopic modeling

approach has been used in remaining of the thesis. Quadratic Lyapunov function based

analysis is used to determine the stability of networked control systems and thereby

to analyze performance of digital predictor in terms of different predictor delays (i.e

md). Also, performances of different predictor configurations are studied. The analysis

results are verified through a LAN-based setup developed in our laboratory.

6.1 Contributions of this work

The contributions of the thesis are the following.

1. A comparison of polytopic and norm-bounded modeling of NCS with variable

time-delays has been made in chapter 2. Using numerical examples it is ob-
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served that the latter approach is insignificantly conservative compared to the

polytopic approach. The stability region is almost same for both the methods

for the case of an integrator plant. Whereas for higher order systems (example

2), the stability region is less conservative using polytopic case than the NB one.

It is also noted that the number of LMIs using polytopic approach increases

exponentially with increase in the multiplicity index d, which may introduce

computational complexities are more for systems with faster sampling period

and larger delays. However, for such cases the norm-bounded approach appears

to be more convenient.

2. In chapter 3, stability analysis of digital SP based NCS with bounded uncer-

tain delays (integer delay for sensor-to-controller and possibly fractional delay for

controller-to-actuator, both time-varying) and packet losses in both the forward

and feedback channels has been presented. The system with uncertain delay

parameters (packet losses as uncertain integer delays) has been modeled in poly-

topic form. For this system, Lyapunov stability criterion has been presented in

terms of LMIs to explore the closed-loop system stability. Finally, the proposed

analysis has been verified with numerical studies and TrueTime simulation. It

is observed that the digital SP improves the stability performance of the NCS

considerably compared to without predictor.

3. A digital SP with an additional filter for NCSs is shown to yield better perfor-

mance than the conventional digital SP in chapter 4. The NCS with random

but bounded delays and packet losses introduced by the network is modeled as

a switched system and LMI based iterative algorithm is used for designing the

controller. Finally, the effectiveness of the proposed method has been verified

with LAN-based simulation and practical experiment on an integrator plant. It

is shown that the digital SPF improves the performance of NCS than with and

without digital SP based NCS.
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4. In chapter 5, an H∞ control is designed using LMIs for NCS without and

with digital SP in the presence of random network induced delays in both the

feedback and forward channels. The H∞ controller is designed with the objective

to minimize the network jitter effect. The proposed method has been verified in

the laboratory with a LAN-based practical experiment. From the results, it is

observed that the designed controllers effectively regularize the system dynamics

from random variations.

5. Developed an NCS experimental setup with the help of two computers. In which,

the plant is interfaced with a computer using data acquisition card. Another

computer is used as the digital controller and the two computers are connected

via LAN using UDP communication protocol. Finally, the theoretical findings

are validated with this setup.

6.2 Suggestions for Future Work

The following open problems may be investigated in future

1. The proposed methods may be applied when the uncertainties (for example noise)

presents in the plant model along with network uncertainties (for example, delays

and packet losses). To develop this framework, the uncertain plant model can

be assumed to be ẋp(t) = A(σ)xp(t) +B(σ)u(t) instead of nominal plant model

ẋp(t) = Axp(t) + Bu(t), where σ is an uncertain parameter vector. A sketch of

how consideration of uncertain plant model can be incorporated in the present

thesis work has been given in remark 3.4 in chapter 3.

2. The present work (chapter wise) for NCSs with uncertain delays and packet losses

may be extended or investigated under asynchronous multi sensors environment.

3. Relation of the proposed H∞ controller in chapter 5 with transient performance
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of NCS is not prevalent from the present study, which would be investigated in

future.

4. In a real network, the network induced delays and packet losses depend on the

network load, which depend on the message size, data rate, and the length of the

network cable, etc. This variation may be modeled in the maximum delay and

packet loss information and correspondingly the predictor delay can be chosen.

However, an adaptive type delay estimator for estimating the md parameters

online may outperform choice of a static md predictor. Performance of such

adaptive predictor may be investigated in future.
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Appendix A: Polytope Generation

The definition of Convex Hull can be written as below [5].

Definition A.1. The convex Hull Co(H) of a set H is the set containing all the convex

combinations of the points in H so that

Co(H) =

{
k∑

j=1

αjHj;αj ≥ 0, j = 1, · · · , k;

k∑

j=1

αj = 1

}
(A.1)

Note that, even though the setH may contain infinite number of points, the number

of Hjs(k) representing the Co(H) is finite. These Hjs are certain and alternatively

called vertices of the polytope representing Co(H). In other way, given a set H , one

may be interested to find Hjs. Below, a procedure is described for finding such Hjs

for matrices with uncertain parameters varying in a range.

Consider a matrix F (d) ∈ ℜn×n with d ∈ ℜm being the uncertain parameter vector

with ith element di satisfying di ∈ [di, d̄i], i = 1, 2, · · · , m. Below is the procedure for

finding out the vertices (or generators) for the polytope set containing all F (d). Let

us define the set containing all F (d)s as:

F =

{
F (d) : F (d) = F0 +

m∑

i=1

diFi, di ∈
[
di, d̄i

]
}

(A.2)
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where Fl, l = 0, 1, 2, · · · , m are constant matrices.

Note that, there exist pi, i = 1, 2, · · · , m, satisfying 0 ≤ pi ≤ 1, so that F can alterna-

tively be represented as:

F =

{
F (d) : F (d) = F0 +

m∑

i=1

(
pidi + (1− pi)d̄i

)
Fi, di ∈

{
di, d̄i

}
}

(A.3)

Next, let us define a matrix U = [uij] ∈ ℜm×2m comprising of non-zero vectors uj ∈

ℜm, j = 1, 2, · · · , 2m, and having full row ranks. The vectors ujs are defined as uj =[
u1j u2j · · · umj

]T
, uij ∈ {0, 1}, i = 1, 2, · · · , m. The columns of U or the ujs are

unique representing the different unique combinations of uij ∈ {0, 1}. Note that, U is

not unique and its row-sum is 2m−1 for each row, i.e. ∀i,
∑2m

j=1 uij = 2m−1. However,

the column sums take integer values in between 0 and m.

Also, consider the scalars αj , j = 1, 2, · · · , 2m, defined as:

αj ∈ [0, 1] and
2m∑

j=1

αj = 1. (A.4)

Then considering

pi =

2m∑

j=1

(
uijαj

)
, (A.5)

and using (A.4), one can write

1− pi = 1−

2m∑

j=1

(
uijαj

)
=

2m∑

j=1

(
vijαj

)
, (A.6)

Note that, for each uncertain d, there exists a set of αj , j = 1, 2, · · · , 2m. Where

vj =
[
v1j v2j · · · vmj

]T
is the complementary vector of uj in the sense that uij 6=

vij ∈ {0, 1}. Consider V as the corresponding complementary matrix of U . Clearly, V

has the same properties as U excepting that vij 6= uij.
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Now, using (A.4), (A.5) and (A.6), (A.3) can be written as:

F =

{
2m∑

j=1

αjF0 +
m∑

i=1

2m∑

j=1

(
uijαjdi + vijαj d̄i

)
Fi

}

=

{
2m∑

j=1

αj

(
F0 +

m∑

i=1

(
uijdi + vij d̄i

)
Fi

)}

=

{
2m∑

j=1

αjHj

}
(A.7)

where Hj = F0 +
∑m

i=1

(
uijdi + vij d̄i

)
Fi, j = 1, 2, · · · , 2m are can be generated con-

sidering one (uj, vj) for the matrix (U ,V). Following Definition A.1 these are the

vertices of the polytope and represent Co(F ). All the possible individual vertices are

given below for all the uij 6= vij ∈ {0, 1} values.

H1 = F0 + d1F1 + d2F2 + · · ·+ dm−1Fm−1 + dmFm

H2 = F0 + d1F1 + d2F2 + · · ·+ dm−1Fm−1 + d̄mFm

H3 = F0 + d1F1 + d2F2 + · · ·+ d̄m−1Fm−1 + dmFm

H4 = F0 + d1F1 + d2F2 + · · ·+ d̄m−1Fm−1 + dmFm

...

H2m−1 = F0 + d̄1F1 + d̄2F2 + · · ·+ d̄m−1Fm−1 + dmFm

H2m = F0 + d̄1F1 + d̄2F2 + · · ·+ d̄m−1Fm−1 + d̄mFm

An Example

Consider an uncertain matrix as:

F =

{
F (d) : F (d) = F0 +

2∑

i=1

diFi, di ∈
[
di, d̄i

]
}

(A.8)
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where d1 ∈ [−2, 1], d2 ∈ [2, 2.5], F0 =


 1 2

0 −1


 , F1 =


 0 1

0 0


 and F2 =


 0 0

3 0


.

Since there are two uncertain parameters the U and V can be taken as:

U =
[
u1 u2

]
=



 u11 u21 u31 u41

u12 u22 u32 u42



 =



 0 0 1 1

0 1 0 1





and V =
[
v1 v2

]
=


 v11 v21 v31 v41

v12 v22 v32 v42


 =


 1 1 0 0

1 0 1 0




Following the U ,V defined above, one can obtain the vertices as:

H1 = F0 + (u11d1 + v11d̄1)F1 + (u21d2 + v21d̄2)F2 =



 1 3

7.5 −1



 ,

H2 = F0 + (u12d1 + v12d̄1)F1 + (u22d2 + v22d̄2)F2 ==


 1 3

6 −1


 ,

H3 = F0 + (u13d1 + v13d̄1)F1 + (u23d2 + v23d̄2)F2 =



 1 0

7.5 −1



 and

H4 = F0 + (u14d1 + v14d̄1)F1 + (u24d2 + v24d̄2)F2 =


 1 0

6 −1


 .
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Appendix B: Linear Matrix

Inequality [4, 82]

Many problems in systems and control can be formulated as optimization problems

involving constraints that can be expressed as LMIs having the following form:

F (x) = F0 +

p∑

i=1

xiFi < 0, (B.1)

where x ∈ ℜp is the variable vector and xi being the ith element of it, Fi = F T
i ∈ ℜq×q,

i = 0, 1, . . . , p are constant known matrices where q is a positive integer. Clearly, a set

of LMIs can easily be expressed as a single LMI. The important property of (B.1) is

that this defines a convex constraint on the variable x. Now, if the objective function of

an optimization problem is convex and the constraints are in LMI form then the whole

problem can be cast as a convex optimization problem in LMI framework. Note that,

convex optimization problems are attractive mainly for two reasons: (a) local minima

is the global minima and it is unique if it exists and (b) computationally attractive

due to available efficient algorithms for solving these. In fact problems associated with

LMI can be classified into three categories:



130 Appendix B: Linear Matrix Inequality

1. Feasibility problem:

Finding if there exists a solution of an LMI (F (x) < 0).

2. Optimization problem:

Minimizing a convex objective f(x) subject to an LMI constraint (F (x) < 0).

3. Generalized eigenvalue problem:

Minimizing λ subject to G(x)− λF (x) < 0, F (x) > 0 and H(x) < 0.

Often, a class of nonlinear matrix inequalities are confronted in systems and control

theory which can be reformulated as LMIs using Schur Complement formula [4]. It

states that for matrices Z1 = ZT
1 , Z2 = ZT

2 and L,

Z2 < 0 and Z1 − LZ−1
2 LT < 0

is equivalent to



 Z1 L

LT Z2



 < 0,




. (B.2)

The LMI Control Toolbox of MATLAB
r[20]

The LMI control toolbox provides an LMI Lab to specify and solve user defined LMIs.

In this thesis, this LMI Lab has been used for solving LMIs. Some commands of this

LMI Lab that are used for producing the numerical results are presented in the fol-

lowing.

SETLMIS : This initializes the LMI system description.

GETLMIS : It is used when all the LMIs are described and returns the internal de-

scription of the defined LMI.

LMIVAR : It is used to declare the LMI variables.

LMITERM: The LMI terms are specified with this command.

FEASP : This is an LMI solver which is used to solve LMI feasibility problems.

MINCX : This LMI solver is used to solve an LMI optimization problem.

GEVP : It is used for solving generalized eigenvalue problem.
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