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ABSTRACT  

Uncertainties are the major concerns in supply chain because existence of 

uncertainties degrades the performance of supply chain. Hence, business executives 

need to seriously focus towards controlling the effect of uncertainty on supply chain 

performance. In this study, a four echelon serial supply chain employed with reorder-

point order-up-to level inventory replenishment (s, S) policy is modeled using system 

dynamics approach. Manufacturing systems adopting make-to-stock (MTS) and 

assemble-to-stock (ATS) manufacturing policy and operating under uncertain 

environment are modelled through system dynamics approach. A serial two-stage MTS 

manufacturing system is modelled through system dynamics approach and the 

behaviour is studied under the influence of uncertainty in demand, lead time, supplier’s 

acquisition rate, processing time and delay due to machine failure. Two different 

improved demand forecasting models are proposed to enhance the forecasting accuracy 

and reduce the bullwhip effect (BWE) and net-stock amplification (NSAmp). The first 

proposed model is the integrated approach of autoregressive integrated moving average 

(ARIMA) and generalized autoregressive conditional heteroskedasticity (GARCH) model 

denoted as ARIMA-GARCH to overcome the problem related to heteroskedastic nature 

of demand series. Second proposed model is the integrated approach of discrete 

wavelet transformation (DWT) and intelligence technique such as artificial neural network 

(ANN), adaptive neuro-fuzzy inference system (ANFIS), least square support vector 

machine (LSSVM) and multi-gene genetic programming (MGGP) to deal with non-linear, 

non-stationary demand series.  

Simulation study of multi-echelon supply chain indicates that target inventory 

significantly influence the BWE and it can be reduced through keeping target inventory at 

low level when there is low uncertainty in demand and lead time. From the analysis of 

manufacturing supply chain, it is observed that backlog at manufacturer’s end is 

significantly influenced by uncertainty in processing time and delay due to machine 

failure. The backup strategy adopted in manufacturing supply chain reveals that 

performance of manufacturing system is highly affected when uncertainty in supplier’s 

acquisition rate increases. The study proves that maintaining high service level at the 

bottom echelon is required to achieve high service level at the upper echelon of a supply 

chain. From the forecasting study, it is found that performance of the ARIMA-GARCH 

model outperforms the ARIMA model. Further, it is proved through case-study examples 
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that intelligent models outperform the ARIMA-GARCH and ARIMA model. Further, the 

robustness of the intelligence models is tested for evaluating their performance for 

different varieties of (R, S) policies.  

The proposed system dynamic model helps to analyse the impact of uncertainties in 

multi-echelon serial supply chain in an efficient manner and generate various scenarios 

to enable the managers to take appropriate decisions. Backup supply strategy is quite 

efficient in reducing stock-out situation at manufacturer’s end. With the help of ARIMA-

GARCH model, an organisation can easily predict the change in demand and properly 

estimate the safety-stock level and order quantity. Similarly, raw material/product 

demand can be accurately estimated through adoption of proposed hybrid forecasting 

techniques to reduce BWE and NSAmp. However, the proposed models consider a 

single retailer, distributor, wholesaler and manufacturer confined to a single product only. 

The proposed model can be further improved with multiple retailers, distributors, 

wholesalers and manufacturers dealing with multiple products. Although proposed 

forecasting models effectively reduce BWE and NSAmp but tested with (R, S) inventory 

control policy only.  

 

 

Keywords: Make-to-stock; Assemble-to-stock; Back-up supply strategy; Bullwhip effect 

(BWE); Discrete wavelet transformation; Net-stock amplification; System 

dynamics.  
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1.1 Introduction  

 International Center for Competitive Excellence in 1994 defines supply chain 

management as integration of business processes from end user through original 

suppliers providing products, services and information in order to add value for customer 

(Cooper et al., 1997). According to Monczka et al. (2011), the supply chain integrates all 

the activities related with the flows and transformation of goods from raw materials stage 

to end user needs. Integration of activities such as systems management, transportation, 

warehousing, operations and assembly, purchasing, production scheduling, order 

processing, inventory management and customer service is emphasized because they 

are closely linked each other and action on any activity influences the profitability of the 

supply chain (Silver et al., 1998). The fundamental issue involved is to reduce the overall 

supply chain cost and satisfactorily meet the demand from the customer so that 

generated revenue can be increased.  

 The supply chain cost includes (i) raw material and other acquisition costs (ii) inbound 

transportation costs (iii) facility investment costs (iv) direct and indirect manufacturing 

costs (v) direct and indirect distribution costs (vi) inventory-holding costs (vii) outbound 

transportation costs (Shapiro, 2007). Different approaches have been applied in 

managing integration and coordination of supply, demand and their relationship in order 

to satisfy customer requirements in an effective and profitable manner (Wong et al., 

2005). In order to improve the performance of supply chain, supply chain management 

practices emphasize on (i) reducing inventory holding costs (ii) providing better medium 

for information sharing between partners (iii) improving customer satisfaction (iv) 

maintaining better trust between partners (v) providing efficient manufacturing strategies 

(vi) improving process integration (vii) increasing cash flow (viii) improving quality and 

profit margin (Monczka et al., 2011). The key issues that can possibly improve the 

performance of the supply chain are product differentiation (Beamon, 1999; Li and 

O’Brien, 2001), lead time management (Christopher, 2004), inventory and cost 

management (Ketzenberg et al., 2000), bullwhip effect (Lee et al., 1997a), information 

sharing and coordination (Lee et al., 1997b), distribution and logistics (Kärkkäinen et al., 

2003). Li et al. (2006) have suggested that few dimensions of supply chain such as 

strategic supplier partnership, customer relationship, level of information sharing, and 

quality of information sharing can substantially improve the performance of supply chain 

analysing data from one hundred ninety six organizations using structural equation 

modelling. The performance of supply chain and typical issues to be addressed in 
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various industrial sectors are reported in (i) automobile (Sánchez and Pérez, 2005) (ii) 

pharmaceutical (Pedroso and Nakano, 2009). (iii) apparel (Palpacuer et al, 2005) (iv)  

electronics industry (Berry et al., 1994) (v) agriculture/food processing industries 

(Cunningham, 2001, Fritz and Schiefer, 2008) (vi) toy (Wong et al., 2005) and (vii) 

aerospace industry (Sinha et al, 2004). Different industries and retail shops in India 

successfully implemented supply chain are Tata Motors, Procter and Gamble, Big 

Bazar, Amazon and Flipkart. To cite an example, different supply chain management 

practices adopted by Flipkart are (i) well distribution network (ii) customer service 

management (iii) inventory management (iv) fast delivery (v) information system 

(http://opepiimraipur.blogspot.in/2011/12/best-practices-at-flipkart.html). 

In real practice, supply chain is associated with different uncertainties along the 

supply network. Many times uncertainties affect adversely on the supply chain activities 

leading to unable to meet the business goals. Three major sources of uncertainty such 

as supplier (late in delivery, insufficient quantity); manufacturing process (machine 

breakdown, transportation reliability) and customer demand (volume and mix) severely 

affect managing the supply chain (Petrovic et al., 1998, 1999; Petrovic, 2001; Hwarng 

and Xie, 2008). Therefore, it is vital that each of these uncertainties must be measured 

and addressed to identify their impact on customer service and improve the supply chain 

performance (Davis, 1993; Petrovic et al., 1998, 1999). For the smooth operation of 

manufacturing process, it is essential that right quantity and quality of raw material must 

be available at right time at manufacturer end. Uncertainties at supplier end may occur in 

terms of variation in supply quantity or delivery time. Delay in delivery or insufficient 

supply quantity causes stock-out situation of finished goods inventory at manufacturer 

end resulting in deterioration of service level. Different uncertainties associated with the 

manufacturer may be listed as occurrence of machine failure, uncertain time to repair the 

machine and variation in time to process raw materials. These uncertainties affect the 

desired production rate leading to stock-out of finished goods. Stock-out situation causes 

increase in backlog which ultimately increases shortage cost and decreases service 

level. Similarly, uncertainty in customer demand leads to stock-out situation at the 

supplier/manufacturer’s end causing increase in backlog. Therefore, the performance of 

the supply chain should be analysed through the service level/fill rate. The service level 

is defined as the probability that customer orders in a given time interval will be 

completely delivered from on-hand stock (Equation 1.1) (Silver et al., 1998).  

http://opepiimraipur.blogspot.in/2011/12/best-practices-at-flipkart.html
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









demand annual Total

annuallystock  of out units of number Expected
-1level Service                  (1.1) 

One of the adverse effects of uncertainty is bullwhip effect (BWE). This is the 

phenomenon of amplification of order in upward direction of supply chain with respect to 

variation in demand (Forrester, 1961). This can be estimated using Equation 1.2. It leads 

to increase in various cost components such as manufacturing cost/purchasing cost, 

inventory holding cost, transportation cost, shipping and receiving cost etc. Thus, it 

causes increase in total cost, replenishment lead time, decrease in fill rate and 

profitability (Chopra et al., 2006).  

 demand of  variance

order of  iancevar
BWE                                                                                       (1.2) 

According to Bout and Lambrecht (2009), moderating BWE does not necessarily 

reflect the inventory fluctuations which influence associated inventory costs. Under the 

fluctuations in inventory, an organisation needs to maintain high safety stock to achieve 

desired service level. This incurs high holding cost. Hence, variation in net stock with 

respect to demand known as net-stock amplification (NSAmp) is treated as another 

major supply chain performance measures. This can be estimated using Equation (1.3). 

demand of iancevar

stock-net of  variance
NSAmp                                                                              (1.3) 

 According to Beamon (1999), total cost is treated as one of the important performance 

measure in supply chain modelling because total cost can address both customer 

demand and service level. Generally, the total cost incurred in an organisation can be 

estimated using Equation (1.4) (Silver et al., 1998). 

otbph CCCCCTC                                                                                       (1.4) 

where,  

cost Holding Ch  ; cost PurchaisngCp  ; cost BacklorderCb   ionTransportaC t 

cost and  cost orderingCo   

The performance of a supply chain under uncertain environment can be analysed 

through estimating backlog, service level, bullwhip effect, net-stock amplification and 

total cost.   

1.2 Need of research  

 From the above discussions, it can be concluded that existence of uncertainties is the 

major issues in supply chain because it affects the planning and decision activities in the 
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supply chain. Existence of uncertainty influences the performance of both supplier and 

manufacturer to meet the customer demand. In this direction, a large number of models 

have been proposed in the literature to study and analyse the effect of uncertainty 

(Petrovic et al., 1998; Petrovic et al., 1999; Petrovic, 2001; Xie et al., 2006; Hwarng and 

Xie, 2008; Mahnam et al., 2009) considering fill rate and total cost as supply chain 

performance measures. The impact of bullwhip effect and net-stock amplification on 

supply chain have been analysed by many researcher to suggest guidelines for the 

practitioner (Hong and Ping, 2007; Geary et al., 2006; Chen et al., 2000a; Fransoo and 

Wouters, 2000; Disney et al., 2003a, 2003b; Lee et al., 1997a, Mason-Jones et al., 2000; 

Dejonckheere et al., 2003; Kim et al., 2006; Croson and Donohue, 2005; Chatfield et al., 

2004; Bout and Lambrecht, 2009). Therefore, it is essential to study and analyse the 

influence of uncertainties on the supply chain performance to make a supply chain more 

effective and efficient. Few research questions, which are not dealt in the literature so 

far, have been identified and needs to be addressed.  

1. How can the influence of uncertainty on supply chain be studied in an efficient and 

effective manner?  

2. How does the manufacturing system, an important subsystem of a supply chain, 

behave under the uncertain environment?  

3. What type of strategy and policy should be adopted to mitigate the effect of 

uncertainty? 

4. How can the adverse effect of uncertainty (bullwhip effect and net-stock amplification) 

be reduced to improve the performance of a supply chain?  

 To address the above research questions, simulation, statistical and artificial 

intelligence approaches have been used as major modelling tools in this research work 

to achieve the following objectives of the study.  

1.3 Research objectives  

 The important theme of this research is to propose efficient modelling tools based on 

simulation, statistical and artificial intelligence approaches to analyse the effect of 

uncertainty on supply chain performance. Based on the above research questions, four 

basic objectives of the study are explored from the literature gap found through 

exhaustive literature review (Chapter 2).    

1. To study and analyse the performance of multi-echelon serial supply chain under 

uncertain environment using system dynamics approach. 
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2. To study and analyse the performance of manufacturing supply chain under the 

influence of uncertainty.  

3. To propose a back-up supply strategy to reduce the adverse effect of supply 

uncertainty in make-to-stock manufacturing supply chain. 

4. To reduce the BWE and NSAmp amplification through improved forecasting 

approaches. 

Each research objective is a step towards addressing a research question (Section 

1.2). The mapping between research objective, research question and the sources of 

literature is shown in Appendix 1. 

1.4 Organisation of thesis  

 To meet the above objectives, the thesis is organized into seven chapters including 

this chapter. A brief outline of each chapter is given as follows:  

 Chapter 2: Literature review 

  The purpose of this chapter is to review related literature so as to provide 

background information on the issues to be considered in the thesis and emphasize 

the relevance of the present study. Literature review provides a summary of the base 

knowledge already available in supply chain management. An exploratory approach is 

adopted for identifying and examining a diverse range of issues in supply chain 

management practices. This chapter highlights the different practices in supply chain 

management such as risk management, supplier management, inventory 

management, managing uncertainty and managing bullwhip effect. Finally, the 

chapter is concluded by summarizing the supply chain management practices, 

implication in industries and possible literature gap so that relevance of the present 

study can be emphasized. 

 Chapter 3: Performance analysis of multi-echelon serial supply chain under 

uncertainty 

  This chapter analyses the performance of four echelon serial supply chain 

employed with reorder-point order-up-to level replenishment policy ((s, S) policy). The 

considered supply chain is modelled through system dynamics approach and the 

performance is analysed through BWE and total cost considering uncertainty in 

demand, lead time and the inventory decision parameter the target inventory. The 

effect of uncertainty and the target inventory is systematically analysed through the 

design of experiments (DOE) approach. The optimal parameter settings to reduce the 

bullwhip effect and total cost are determined. Further, optimal parameter settings are 
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obtained to simultaneously reduce the bullwhip and total cost through grey relational 

analysis.  

 Chapter 4: Performance analysis of manufacturing system under uncertainty  

  The supply chain with make-to-stock (MTS) and assemble-to-stock (ATS) 

manufacturing system is considered in this chapter to analyse the performance of 

manufacturing supply chain under uncertain environment. A single machine, single 

product MTS manufacturing system is modelled through the system dynamics 

approach. Six different scenarios are generated based on the uncertainties in raw 

material supply lead time, processing time and machine availability to simulate the 

MTS system and performance is analysed through estimating the backlog. A DOE 

approach is applied to analyse the influence of considered uncertainties on the 

performance of MTS manufacturing system in a systematic manner. 

  Similarly, an ATS manufacturing system with three machines confined to 

assembling a single product is modelled through the system dynamics approach. 

There are fifteen experimental scenarios are generated using the response surface 

methodology (RSM) considering uncertainty in lead time, assembly time and delay 

due to machine failure. The model is simulated for 365days based on the generated 

scenarios and performance are measured in termed of backlog and work-in-progress 

(WIP) inventory. The influence of uncertainties on the backlog and WIP is analysed. 

Further, empirical relationship is developed between the uncertainties and 

performance parameters through regression analysis. To obtain optimal parameter 

settings both in MTS and ATS systems, a newly proposed meta-heuristic known as 

cuckoo search is applied.  

 Chapter 5: Managing supply uncertainty in a make-to-stock manufacturing 

system 

  This chapter considers a MTS manufacturing system consisting of two machines 

confined to a single product. The system is modelled and simulated through the 

system dynamics approach to analyse the effect of increasing uncertainty in raw 

material supply, lead time, supplier acquisition rate, production rate and machine 

availability. The behaviour is studied through measuring the impact of uncertainty on 

backlog at manufacturer’s end, raw material shortage, WIP level and backlog at 

supplier’s end. Further, a backup supply strategy is proposed to manage the supply 

uncertainty. Through a comparative study, the superiority of adopting a backup supply 

strategy is discussed. It is observed that it is desirable to maintain high service level at 
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the upper stream (raw material supplier) to maintain high service level at bottom 

echelon (manufacturer end). 

 Chapter 6: Improved forecasting methods to deal with bullwhip effect and net-

stock amplification 

  This chapter proposes two improved models to enhance the forecasting accuracy 

to reduce the BWE and NSAmp when (R, S) policy is adopted for inventory 

replenishment. The first model is an integrated approach of autoregressive integrated 

moving average (ARIMA) and generalized autoregressive conditional 

heteroskedasticity (GARCH) process denoted as ARIMA-GARCH to deals with 

heteroskedastic demand series. The second model proposed is the integrated 

approach of the discrete wavelet transformation (DWT) and artificial intelligence (AI) 

models such as artificial neural network (ANN), adaptive neuro-fuzzy inference 

system (ANFIS), least square support vector machine (LSSVM) and multi-gene 

genetic programming (MGGP). Four different intelligence models are denoted as 

DWT-ANN, DWT-ANFIS, DWT-LSSVM and DWT-MGGP. These models are validated 

through an example data taken from the open literature. The performance of the 

proposed models such as ARIMA-GARCH, DWT-ANN, DWT-ANFIS, DWT-LSSVM 

and DWT-MGGP are tested with data from three case-study examples. The 

performance is analysed through estimating order using the predicted demand from 

the proposed model applying base-stock policy. The BWE and NSAmp are estimated. 

From the analysis, it is found that BWE and NSAmp estimated using ARIMA-GARCH 

model is comparatively less to the ARIMA model. Further analysis reveals that the 

intelligence models outperform both the ARIMA and ARIMA-GARCH models. Further, 

the performance of the intelligent models is analysed in different (R, S) policies.  

 Chapter 7: Executive summary and conclusions 

  This chapter presents the summary of the results, recommendations and scope for 

future work in the direction of studies on effect of uncertainty on supply chain 

performance. It also discusses the specific contributions made in this research work 

and the limitations there in. This chapter concludes the work covered in the thesis with 

implications of the findings and general discussions on the area of research. 



 
 

CHAPTER 2 
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2.1 Introduction  

 The current chapter highlights various issues involved in managing supply chain 

and improving its performance. Although the concept of supply chain appeared in the 

literature in the mid-1980s, review of literature begins with research articles published 

after 1985 with maximum attention paid to last twenty years. Table 2.1 provides the 

source and number of citations from each source. The majority of the citations are 

found in peer reviewed journals (95%), two journals namely “European Journal of 

Operational Research” and “International Journal of Production Economics” together 

accounts for 34.6% of the total citations.   

Table 2.1 Summary of publications referred 

Source Citation 

Applied Mathematical Modelling 3 

Applied Mathematics and Computation 1 

Benchmarking: An International Journal 1 

Computers and Industrial Engineering 1 

Computers and Operations Research 1 

Computers in Industry 2 

Engineering Costs and Production Economics 1 

European Journal of Operational Research 19 

Expert Systems with Applications 2 

Fuzzy Sets and Systems 2 

IIE Transactions,  1 

Informs Transaction on Education 1 

Integrated Manufacturing Systems 1 

Integrated manufacturing systems 2 

International Journal of Advanced Manufacturing Technology 2 

International Journal of Business Insights and Transformation 1 

International Journal of Logistics: Research and Applications 1 

International Journal of Operations and Production Management,  2 

International Journal of Physical Distribution and Logistics 
Management 3 

International Journal of Production Economics 17 

International Journal of Production Research 4 

International Journal of Services and Operations Management 2 

International Transactions in Operational Research 1 

Journal of Food Engineering 1 

Journal of Modelling in Management 1 

Journal of Operations Management 2 
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Journal of Productivity Analysis 1 

Journal of Supply Chain Management 3 

Journal of the Franklin Institute 1 

Journal of the Operational Research Society 1 

Logistics Information Management 1 

Management Science 6 

Naval Research Logistics 1 

Omega 3 

Operations Research 1 

Production and Inventory Management Journal 1 

Simulation Modelling Practice and Theory 2 

Sloan Management Review 3 

Supply Chain Management: An International Journal 4 

System Engineering-Theory and Practice 1 

Books 5 

Conference  1 

Total 110 

 

 The literature is classified into an assortment of sections dealing with specific issues 

associated with supply chain management as illustrated in Figure 2.1. Next sections 

provide brief discussion on these issues. Finally, the chapter is concluded by 

summarizing the advancement taken place in supply chain and possible literature gap so 

that relevance of the present study can be emphasized. 

 
Figure 2.1 Percentage of paper surveyed  

2.2 Supply chain risk management  

 Supply chain risk management (SCRM) deals with management of supply chain risks 

through coordination or collaboration among the supply chain partners so as to ensure 

profitability and continuity (Brindley, 2004). The risk in supply chain originates from two 
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sources - supply and demand. Other risk such as environment, political, process and 

security are also equally important. However, supply chain risk can be mitigated through, 

demand management, product management and information management (Blos et al., 

2009; Tang, 2006a). Issues of supply chain risk management can be addressed in two 

dimensions such as supply chain risk which includes operational risks or disruption risks 

and the mitigation approach. Operational risks are referred as the inheritance of 

uncertainties such as uncertainty in customer demand, supply and cost whereas 

disruption risks are the major distractions caused by natural and man-made disasters 

such as earthquakes, floods, hurricanes, terrorist’s attacks or economics crises such as 

currency evaluation or strikes. In the past, many researchers have highlighted the 

importance of risk management in supply chain and proposed models and methods for 

assessment and mitigation. Blos et al. (2009) have suggested three important practices 

in supply chain risk management implementation such as (i) better supply chain 

communication (ii) supply chain risk management and business continuity management 

training program and (iii) creation of chief risk officer to reduce disruption of supply chain 

risk. Giunipero and Eltantawy (2004) have discussed the four situational factors such as 

purchasers’ perceived experience, degree of product technology, security needs and 

relative importance of supplier for determining the level of risk management in supply 

chain. Wu et al., (2006) have proposed an inbound risk analysis methodology to classify, 

manage and assess the risk. They classified the risk factors based on the supplier 

oriented risk factors and applied analytical hierarchy process (AHP) to determine the 

weight for risk factor. A purchasing organisation can be able to focus on the supplier 

quality issues, make improvement in supplier performance and prevent the supply 

disruption through adopting a proactive approach for risk assessment (Zsidisin et al., 

2004). Supply risk can be identified through analysing the effect of purchased item and 

services on profitability, market factors, and supplier characteristics. The risk can be 

managed through understanding the characteristics of supply risk and implementing 

different strategies (Zsidisin, 2003). Uncertainties and supply risk in a supply chain can 

be reduced through different approaches such as risk assessment, contingency plans, 

risk management process improvement and buffer strategies (Zsidisin et al., 2000).  

Zsidisin and Ellram (2003) have proposed agency theory to manage supplier behaviours 

in order to reduce supply risk and the impact of unfavourable events. Tuncel and Alpan 

(2010) have applied failure mode, effects and criticality analysis (FMECA) technique to 

examine the disruption factors in supply chain network. They determined the different 
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uncertainties and risk mitigation action through integrating risk management procedures 

into design, planning, and performance evaluation process using Petrinet simulation 

approach. Lockamy and McCormack (2010) have suggested that suppliers associated 

with high probability of risk have significant impact on the organisation’s revenue. Hence, 

it is essential to analyse the risk associated with supplier of outsourced material. Wu and 

Olson (2008) have proposed three different models such as chance constrained 

programming, data envelopment analysis and multi-objective programming to evaluate 

supply chain risk and different approaches to trade-off among expected costs, quality 

acceptance levels and on-time delivery distributions. Further, it is suggested that these 

tools can be alternatively used to evaluate and improve supplier selection decisions in an 

uncertain environment. Neiger et al. (2009) have proposed value-focused process 

engineering methodology for process-based supply chain risk identification in order to 

increase value to supply chain members and supply chain as a whole. Ellis et al. (2010) 

have examined the importance of buyers’ perceptions on supply disruption risk and 

found out that product and market situational factors impact on the perceptions of risk. 

Goh et al. (2007) have proposed a stochastic model to mitigate the risk in supply, 

demand, exchange and disruption to solve the multi-stage global supply chain network 

problem. Tang (2006b) has proposed two different strategies to mitigate supply chain 

disruption such as supply alliance network, lead time reduction and recovery planning 

systems.  

2.3 Supplier Management  

Supplier management is one of the important activities in supply chain management. 

As good supplier management system helps in achieving competitive advantage, 

organisations are paying increasing attention towards it. Supplier selection is the process 

of finding the right suppliers those are able to provide right quality products/services at 

the right price at right time and in right quantities to the buyer. Different criteria such as 

supplier, product performance, service performance and cost are considered to evaluate 

suppliers of a firm (Burton, 1988; Çebi and Bayraktar, 2003). Supplier selection is one of 

the critical activities for establishing an effective supply chain. It is a hard problem since it 

involves a multi-criteria decision making problem with several conflicting criteria (Boran 

et al., 2009).  

Many authors have highlighted the importance of supplier assessment and proposed 

different techniques for assessment. Ghodsypour and O’Brien (2001) have proposed a 

decision support system based on integrated approach of analytical hierarchy process 
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(AHP) and linear programming to handle both tangible and intangible factors for selecting 

best suppliers to place optimum order quantities among them such that the total value of 

purchasing can be maximized.  Çebi and Bayraktar (2003) have suggested an integrated 

approach of lexicographic goal programming and AHP model for supplier selection for a 

food industry in Turkey considering quality, delivery, cost and utility as the conflicting 

objectives. A combined approach of scoring method and fuzzy expert systems is 

proposed for supplier assessment considering different criteria such as product quality, 

product construction, product safety, quality system, engineering, production and 

planning control (PPC) and research and development by Kwong et al. (2002).  Chan 

and Kumar (2007) have proposed a fuzzy extended analytic hierarchy process (FEAHP) 

to tackle different decision criteria like cost, quality, service performance and supplier’s 

profile including the risk factors involved in the selection of global supplier. Samantra et 

al. (2012) have suggested supplier evaluation model through coupling grey relational 

concept with rough set theory for appropriate supplier selection from among a group of 

feasible suppliers when the decision making criteria are uncertain, imprecise and vague 

in nature.  Mahapatra (2011) have proposed a fuzzy approach for supplier evaluation to 

deal with impreciseness, uncertainty and vagueness in decision criteria, Mishra et al. 

(2012) have proposed a technique based on fuzzy set theory and VIseKriterijumska 

Optimizacija I Kompromisno Resenje (VIKOR) method. Demirtas and Üstün (2008) have 

proposed an integrated approach of analytic network process (ANP) and multi-objective 

mixed integer linear programming (MOMILP) for supplier evaluation in order to maximize 

the total value of purchasing and minimize the budget and defect rate considering both 

tangible and intangible supplier selection criteria. Razmi et al. (2009) have proposed a 

hybrid approach of fuzzy analytic network process model to evaluate the potential 

suppliers and select the suitable one with respect to the vendor related factors. An 

integrated approach of multi-attribute utility theory and linear programming is proposed 

for rating and choosing the best suppliers and defining the optimum order quantities 

among selected ones in order to maximize total additive utility (Sanayei et al., 2008). 

Weber et al. (1998) have applied combined approach of multi-objective programming 

and data envelop analysis for vendor selection and negotiation with the vendors who do 

not get selected. Bayazit, (2006) has applied ANP model to measure the supplier 

performance. Petroni and Braglia (2000) have proposed supplier evaluation model based 

on principal component analysis and validated though considering real-world data set of 

suppliers of a medium-sized firm operating in the bottling machinery industry. A multi-
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objective mixed integer programming approach is proposed to simultaneously determine 

the number of vendors to allocate order quantities in a multiple-product, multiple-supplier 

competitive sourcing environment (Dahel, 2003). Soner (2011) has developed an 

integrated methodology using two-stage stochastic programming model and fuzzy 

technique for order preference similar to ideal solution (TOPSIS) method to solve the 

supplier selection problem in case of multi-product, multi-period and multi-sourcing 

environment where the demand is uncertain in nature.  

2.4 Inventory management  

 According to Davis (1993), inventory acts as a safeguard against the different 

uncertainties existing in the supply chain. Properly controlled inventory helps the 

executives to efficiently meet the customers’ demands to smooth the production plans 

and reduce the operational costs such as purchase cost, order/setup cost, holding cost 

and stock-out cost (Tersine, 1994). Four commonly used inventory control system are (a) 

order-point, order-quantity (s, Q) system, (b) order-point, order-up-to-level (s, S) system, 

(c) periodic-review, order-up-to-level (R, S) system and (d) (R, s, S) system falling under 

two categories of periodic  and continuous review inventory control system (Silver et al., 

1998). The fundamental trade-off that managers come across during inventory decision 

activity is between responsiveness and efficiency. The supply chain responsiveness 

towards the customer can be improved through gradually increasing the inventory 

leading to increase in inventory holding cost (Chopra et al., 2006). A large body of 

literature exist in supply chain highlighting different issues involved in managing 

inventory and suggested models and methods to overcome these issues.  

 Aardal et al. (1989) have studied the relationship between shortage cost and service 

level in a continuous review inventory system where order point and lot sizes are 

computed simultaneously. De Bodt and Graves (1985) have analysed the continuous 

review inventory control policy to minimize expected average cost for multi-stage 

inventory system where demand of the end item assumed as stochastic in nature. Lee 

(2011) has analysed service level under multi-period inventory control dealing a single 

product with multiple (two) prices.  Lee et al. (2006) have studied a periodic review 

inventory model considering a retailer replenishing inventory from a supplier to satisfy 

stochastic demands from customers. Capkun et al. (2009) have analysed the relationship 

between the inventory performance and financial performance of a manufacturing 

company. It is proved that raw material inventory is highly correlated with financial 

performance whereas work-in-process inventory and finished product inventory are 
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highly correlated to gross profit and operating profit respectively. Ioannidis (2011) has 

examined a Markovian single-stage system producing a single item to satisfy demand of 

two different customer classes. The study proposes simple threshold type heuristic policy 

for coordinating production and order admission decisions in the system for joint control 

of inventories and backorders. Cachon and Fisher (2000) have analysed the effect of  

information sharing system considering a supply chain with of n number of identical 

retailer that face stationary stochastic consumer demand with a known distribution. Tiacci 

and Saetta (2009) have applied a design of experiments (DOE) approach to evaluate 

impact of interaction of demand forecasting and stock control policies considering 

multiple suppliers, multiple warehouses, multiple items and time-varying demands with 

seasonality. Zeng and Hayya (1999) have assessed the probability of no stock-out 

situation during lead time and the fill rate in the context of continuous inventory systems. 

Zhang and Bell (2007) have addressed the simultaneous determination of price and 

inventory replenishment in a newsvendor setting when the firm faces demand from two 

or more market segments. Gel et al. (2010) have analysed the impact of inventory 

execution error considering reorder-point order quantity ((Q, r) policy) inventory control 

policy on inventory related cost and risk.  Axsäter and Juntti (1996) have evaluated the 

impact of lead time on different inventory policies in multi-echelon inventory system. 

Axsäter (1997) has proposed a method to compute shortage cost for a two-level 

inventory system (one warehouse and N retailers) employed with continuous review 

echelon stock (R, Q) policy.  

2.5 Managing uncertainty in supply chain  

 Three different sources of uncertainty such as supplier (late in delivery, insufficient 

quantity), manufacturing process (machine breakdown, transportation reliability) and 

customer (volume and mix) exist supply chain. It is essential that impact of each of these 

on supply chain performance should be assessed (Davis, 1993). In the past, various 

researchers have attempted to study the behaviour of supply chain under uncertain 

environment. Petrovic et al. (1998) have applied fuzzy concept to represent the 

uncertainty in customer demand and supply reliability. In order to analyse the 

performance of a serial supply chain under uncertain environment, they have developed 

a simulation model for a serial supply chain consisting of multiple facilities. Each facility 

includes a raw material inventory, production unit, in-process inventory and adopted 

periodic review, order-up-to policy for inventory replenishment. They have determined 

the optimum order-up-to level through simulation to minimise the total cost and increase 
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the fill rate. It is proved that negative impact of unreliable suppliers can be compensated 

by increasing stock level in the supply chain. Further, the proposed model is improved by 

incorporating uncertainty in supply deliveries along the supply chain with two control 

strategies - decentralised control of each inventory and partially coordination in the 

inventories (Petrovic et al., 1999). It is concluded that application of partial coordination 

leads to greater holding costs and smaller shortage cost for the end-product. Further, the 

same model is tested and analysed under the influence of uncertainty in customer 

demand. From the analysis, it is observed that increase in uncertainty increases the 

variation in stock level and orders quantity placed by the entity (Petrovic, 2001). Xie et al. 

(2006) have determined the optimal review period and order-up-to level value to 

minimize the total cost and maximize the fill rate under stochastic demand. Xu and Zhai 

(2010) have considered single period, two stage supply chain consisting of a 

manufacturer and retailer to analyse the benefits of coordination among them when 

uncertainty exist in demand.  Through the fuzzy modelling approach, it has been proved 

that supply chain profit can be maximized when there is coordination between the retailer 

and manufacturer.  Wang and Shu (2005) have considered uncertainty in demand, 

processing time and supply delivery using fuzzy logic approach. A genetic algorithm 

approach based on fuzzy supply chain model is proposed to determine the order-up-to 

levels at all stock-keeping units to minimize the supply chain inventory investment and 

fulfil the targeted fill rate of the finished product. Weng et al. (2003) have evaluated effect 

of supplier-buyer coordination on supply chain performance when uncertainty exists both 

in demand and delivery time. The importance of coordination of various entities of supply 

chain has been highlighted by Dolgui et al. (2002) and Xiao et al. (2008). A dual sourcing 

technique i.e. splitting the order to sources of supply is proposed by Ramasesh (1991) to 

reduce the holding cost.  

Simulation modelling approaches have been found to be convenient tool for analysing 

the behaviour of supply chain under uncertain environment. It has been extensively used 

to focus on inventory decisions, policy formulation, demand amplification and supply 

chain design. De Souza et al. (2000) have examined the supply chain dynamics under 

different causes such as shortage, capacity constraint, information delay, coordination, 

supply delay, demand signalling and order batching by modifying the classical beer 

distribution game. Hwarng and Xie (2008) have studied the influence of dynamic factors 

such as demand pattern, ordering policy, lead time and information sharing on the 

behaviour of a supply chain considering classical beer distribution game model by 
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estimating the system chaos using Lyapunov exponent at all level. Ge et al. (2004) have 

analysed the influence of factors like information delay, demand forecasting and 

information sharing on multi-echelon system using system dynamics and modelling, 

through a case study of supermarket supply chain in UK.  Shukla et al. (2009) have 

investigated the impact of capacity constraint on a four stage supply chain using beer 

distribution game. Georgiadis et al. (2005) have proposed a system dynamics approach 

for analysing a multi-echelon food chain. Kumar and Nigmatullin, (2011) have modelled a 

food supply chain for a non-perishable product adopting system dynamics approach to 

study the behaviour under demand and lead time variability. 

 Williams (1984) has adopted queuing theory approach to analyse one stage 

production system under uncertain environment (stochastic nature of demand and 

manufacturing time). The paper also outlines the quantity of production and capacity 

allocation under manufacturing to stock (MTS) and manufacturing to order (MTO) 

policies. Bera and Sharma (1999) have proposed an analytical model for measuring 

production uncertainty under the different stochastic distributions. Soman et al. (2004) 

have addressed the scheduling and sequencing in a hybrid MTO-MTS food processing 

environment under the influence of stochastic demand. Accurate forecasting of demand 

and achieving high service level are important under MTS situation whereas order 

execution time is important in MTO situation (Soman et al., 2006). Helo (2000) has 

modelled a two echelon supply chain with multiple product manufacturing system using 

MTO production policy based on system dynamics approach to study the relationship 

between capacity utilization with production costs, lead time and the capability to 

respond to changes. Özbayrak et al. (2007) have modelled the MTO manufacturing 

supply chain system through the system dynamics to measure the performance in terms 

of backlog using eight different scenarios. Chakraborty et al. (2008) have proposed 

guidelines on lot sizing decisions considering the effect of process deterioration, machine 

breakdown and repairs (corrective and preventive). Groenevelt et al. (1992a) have 

analysed the effect of exponentially distributed machine failure time on lot sizing decision 

for classical EMQ (economic manufacturing quantity) model.  In another study, lot sizing 

decisions under constant machine failure rate and randomly distributed repair time are 

proposed to avoid lost sales (Groenevelt et al. 1992b). Campuzano et al. (2010) have 

used the system dynamics modelling approach for a two stage supply chain with single 

item, multi-period supply representing demand and order by fuzzy membership functions 

for production planning decision purpose.  
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2.6 Managing bullwhip effect  

One of the adverse effects of uncertainties is bullwhip effect (BWE). The concept of 

amplification of order in upward direction of supply chain is termed as BWE and it is one 

of the major issues in the supply chain as first identified by Forrester (1961). Further, this 

phenomenon is analysed by Sterman (1989) through beer distribution game at 

Massachusetts Institute of Technology. BWE leads to increase in total cost of supply 

chain and decrease fill rate and profitability (Chopra et al., 2006). Hence, it is one of the 

major parameter to analyse the performance of a supply chain. According to Lee et al. 

(1997a), there are five major causes of BWE within the supply chain. These are listed as 

(i) demand forecasting, (ii) order batching, (iii) price fluctuations, (iv) supply shortages 

and (v) non-zero lead-time. BWE can be reduced through moderating these causes.  

Dobos (2011) has analysed the behaviour of BWE in a two stages centralized and 

decentralized supply chain considering a quadratic cost function. Sodhi et al. (2011) 

have analysed effect of operational deviations like misplaced orders, batching and lag in 

sharing demand forecast due to BWE considering auto-correlated demand. Li and Liu 

(2013) have addressed the BWE control problem in respect to different supply chain 

system uncertainties such as demand, production process, supply chain structure, 

inventory policy implementation and vendor order placement lead time and proposed 

inventory control policy for suppression of BWE to improve supply chain stability.  

Fransoo and Wouters (2000) have estimated the BWE in a food supply chain under 

different situations like individual product for specific sales, aggregated products for 

individual sales and aggregated products for aggregated sales.  Agrawal et al. (2009) 

have analysed the impact of information sharing and lead time on BWE and on-hand 

inventory considering a two echelon serial supply chain consisting of warehouse and 

retailer employed with adaptive base-stock inventory policy. The retailer predicts demand 

through autoregressive (AR (1)) process. From the study, it has been proved that lead 

time reduction is more beneficial in comparison to sharing of information to reduce the 

bullwhip effect. Makui and Madadi (2007) have estimated BWE for two cases of supply 

chain (centralised and decentralised case) using Lyapunov exponent. Lee et al. (1997a; 

1997b) have applied statistical approach to quantify the BWE. Disney and Towil (2003b) 

have quantified the BWE using discrete control theory for Deziel and Eilon - Automatic 

Pipeline Inventory and Order Based Production Control System (DE-APIOPBCS) model.  
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Dejonckheere et al. (2003) quantify the BWE employing order-up-to policy from a control 

engineering perspective using z-transforms and proved that order-up-to level policy is 

always associated with BWE whatever forecasting techniques are adopted. Kim et al. 

(2006) have extended the work of Dejonckheere et al. (2003) and Chen et al. (2000a) 

incorporating stochastic lead and information sharing to quantify bullwhip effect. 

Geary et al. (2003) have proposed different approaches to measure the BWE using 

mathematical and simulation approaches. Kelepouris et al. (2008) have used simulation 

approach to examine the impact of replenishment parameters and information sharing on 

the BWE. Wangphanich et al. (2010) have proposed simulation approach based on 

system dynamics modelling and an adaptive network-based fuzzy inference system for 

quantifying and reducing BWE in a multi-product, multi-stage supply chain. Using system 

dynamic approach, Hussain and Drake (2011) have analysed the effect of order batching 

on BWE for a multi-echelon supply chain with information sharing and analysed the 

relationship between order batching and demand amplification. Sterman (2000) first 

proposed system dynamics and modelling (SDM) approach to develop a model for four 

level supply chains popularly known beer distribution game model to analyse the BWE.  

O’donnell et al. (2006) have used beer distribution model and computational intelligent 

technique to obtain the optimal ordering policy for supply chain members to reduce the 

BWE and cost in a supply chain. Fan et al. (2010) have used SDM approach to study the 

causes for BWE in military weapons maintenance supply system.  

Improper forecasting is one of the reasons for BWE. Therefore, various time series 

models have been proposed to reduce the BWE through controlling the different supply 

chain parameters. Luong (2007) has examined the effect of autoregressive coefficient 

and lead time on BWE for a two stage supply chain (one supplier and one retailer) where 

retailer employs base-stock policy for inventory management using first order 

autoregressive model AR(1). Further, the model is modified for the higher order 

autoregressive model AR (p) (Luong and Phien, 2007). Chen et al. (2000a) have 

analysed BWE for a simple two stage supply chain based on lead time and information 

sharing considering single retailer and a manufacturer where retailer demand is 

predicted through moving average (MA) time series model. It is found that BWE 

increases with increasing in lead time at lower level of information sharing. Further, Chen 

et al. (2000b) have analysed the same model and obtained similar results employing 

exponential smoothing forecasting technique for retailer’s demand forecasting. Duc et al. 

(2008a) have considered two stage supply chain (one supplier and a retailer). The 
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retailer employs base-stock policy and demand is predicted through ARMA (1, 1) 

demand process.  Under this model setting, they have analysed the BWE considering 

the autoregressive coefficient and the moving average parameter.  From analysis, it has 

been found that BWE does not exist always within the supply chain. It occurs only when 

the autoregressive coefficient is higher than the moving average coefficient. It is not 

always true that BWE increases with increase in lead time. Further, the same model is 

considered to analyse the effect of lead time on BWE considering two case - forecasting 

retailer’s demand using AR (1) and ARMA (1, 1) forecasting model (Duc et al., 2008b). It 

is proved that BWE increases either increase in mean demand or standard deviation of 

lead time occurs. Duc et al. (2010) have examined the effect of existence of a third-party 

warehouse on the BWE in a supply chain assuming retailers use the demand process 

AR (1) model and downstream member(s) implement the base stock policy for 

replenishment. From the analysis, it is found that third-party warehouse has no effect on 

BWE. Hong and Ping (2007) have studied the influence of different forecasting 

techniques MA, exponential weighted moving average (EWMA) and mean square error-

optimal (MSE-optimal) for two stage supply chain employed with order-up-to policy on 

BWE. It is proved that MA model performs better than MSE-optimal model when lead 

time is short. Jakšič and Rusjan, (2008) have analysed the effect of different 

replenishment policies ((R,
^

D ), (R, O ), (R, S), (R, IP ) and (R, IP,O  )) on the bullwhip 

effect assuming the retailer demand is forecasted through simple exponential smoothing. 

Bandyopadhyay and Bhattacharya (2013) have derived generalized expression to 

quantify BWE for five different replenishment policies like, (R,
^

D ), (R, O ), (R, S), (R,

IP ) and (R, IP,O  ) using ARMA (p, d) considering fixed lead time. They have also 

studied the BWE under the influence of changing demand process parameters. Gilbert 

(2005) has proposed generalized expression for quantifying the BWE representing the 

demand with ARIMA time series process for a multistage supply chain. It is proved that 

BWE is high when the lead time is long and demand is auto-correlated. It has also been 

reported that BWE depends only on the total of lead times; not on number of stages in a 

multistage supply chains. Further, the model is extended by Gilbert (2006). Bout and 

Lambrecht (2009) have tested the different demand forecasting methods like MA, 

exponential smoothing (ES) and minimum mean square error (MMSE) for order-up-to 

policy in a two stage supply chain to quantify BWE and NSAmp value.  
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2.7  Summary  

 This chapter highlights different issues involved in supply chain management and 

approaches to manage these issues. For the sake of simplicity, the surveyed literature is 

classified into five main areas. In section 2.2, the importance of risk management in 

supply chain is dealt. Section 2.3 describes existing methods for supplier assessment. 

Section 2.4 discusses the different issues involved in managing inventory. It emphasizes 

on various approaches to improve the responsiveness of the supply chain and reduce 

different inventory related costs. Section 2.5 deals with studies on behaviour of supply 

chain under the influence of various uncertainties. It also discusses various ways and 

methods to analyse the supply chain uncertainty in order to improve its performance. 

One of the adverse effects of uncertainty is bullwhip effect which is major area of 

research in supply chain management. It accounts for 31% of the literature studied in this 

thesis. Section 2.6 deals with various methods to manage the bullwhip effect. Critical 

review of literature suggests that existence of uncertainty is one of the major concerns 

for managing supply chain in an efficient manner. Therefore, avenue exists for research 

to study the effect of uncertainty on the performance of a multi-echelon supply chain 

operating with various inventory replenishment policies. The influence of uncertainty 

must also be evaluated in various manufacturing policies. Plenty of scope exists for 

research to develop forecasting techniques that can address bullwhip effect in an 

effective manner. In this direction, the present work explains the effect of uncertainties on 

supply chain performance and different approaches to manage the uncertainty. In the 

next section (Chapter 3), the performance of multi-echelon serial supply chain under 

uncertainty in lead time and demand is presented.   
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3.1 Introduction  

 Although there are contrasting views on definition of supply chain management, many 

researchers agree to view supply chain management as various managerial activities to 

manage supply chain so as to produce and distribute right quantities of products/goods 

to the right location and at right time in order to minimize system-wide cost and satisfy 

service level requirement (Cooper and Ellram, 1993; La and Masters, 1994; Lambert et 

al., 1998; Monczka et al., 2011; Christopher, 1992).  However, many a time, it becomes 

difficult to manage supply chain as there are various uncertainties inherent in it (Simchi-

Levi et al., 2003). In the past, numerous researchers have proposed integrated approach 

of fuzzy logic and simulation modelling to analyse the impact of uncertainty on the 

performance of supply chain considering multiple echelon with periodic-review, order-up-

to level replenishment policy. The performance of supply chain under the influence of 

uncertainty in demand, supplier reliability and supply deliveries is analysed and 

determined the optimum order-up-to level i.e. the target inventory level to reduce the total 

cost and increase the fill rate (Petrovic et al, 1998; 1999; Petrovic, 2001; Xie et al., 

2006). 

 One of the adverse effects of uncertainty is bullwhip effect (BWE). In section 2.6 (in 

Chapter 2) the concept and its adverse effect has been discussed. BWE is one of the 

major issues in supply chain management as it adversely affects the supply chain 

performance through increasing various costs and decreasing service level. According to 

Bout and Lambrecht (2009), reduction of BWE not necessarily reduces the inventory 

holding cost because reduction of BWE smoothen the order resulting in reduction of 

ordering cost/switching cost. Fluctuation of inventory can be managed with increasing 

safety stock resulting in increase of holding cost. Therefore, both BWE and total cost are 

two important measures to analyse the performance of supply chain under uncertain 

environment. In reorder point order-up-to level ((s, S) policy) inventory replenishment 

policy, target inventory plays an important role in order quantity decision. Therefore, 

impact of target inventory along with uncertainties in demand and lead time on BWE and 

total cost need to be analysed. Many approaches have been proposed by different 

authors to analyse and reduce the BWE. Lee et al. (1997a), Lee et al. (1997b) and Chen 

et al., (2000a) have adopted statistical approach to quantify the BWE. Disney and Towil 

(2003) and Dejonckheere et al. (2003) have applied control theory approach to quantify 

BWE. Kim et al. (2006) have analysed the effect of variation in lead time and demand on 

BWE for four level serial supply chains. The complexity of study of a system through 
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mathematical modelling can be reduced through simulation modelling approach. To 

study and analyse the BWE in a realistic manner, many researchers have proposed 

simulation modelling approaches. System dynamics and modelling (SDM) is one of the 

powerful computer-aided approaches that facilitate a set of conceptual tools to 

understand the structure and dynamics of a complex system. Earlier, many authors have 

applied SDM approach for modelling and simulation of supply chain to study and analyse 

the behaviour (Hwarng and Xie, 2008; Ӧzbayrak et al., 2007; Minegishi and Thiel, 2000; 

Kumar and Nigmatullin, 2011; Georgiadis, 2005; Ge et al., 2004; Helo, 2000; Owens et 

al., 2002; Vlachos et al., 2007; Lee and Chung, 2012). Sterman (2000) has proposed 

classical beer distribution game model to analyse the BWE considering order decision 

based on anchoring and adjustment algorithm. Further, the classical beer distribution 

game model is adopted by many others to analyse the behaviour of supply chain under 

the influence of dynamic factors (Hwarng and Xie, 2008; O’donnell et al., 2006; Coppini 

et al., 2010).  

 This chapter studies the behaviour of a multi-echelon serial supply chain consisting of 

a retailer, distributor, wholesaler and factory employed with (s, S) inventory 

replenishment policy operating under uncertain environment. The system dynamics 

approach has been adopted to model the system. Each echelon of the supply chain is 

associated with order processing and receiving delay called lead time that varies with 

normally distributed pattern. Although SDM approach enables to study the behaviour of a 

supply chain in a realistic manner under the influence of different uncertainties, it is 

difficult to determine the impact of factors in more systematic fashion. The design of 

experiments (DOE) is used to efficiently obtain relevant information with less number of 

experimental runs. The well-known full factorial design is one of the DOE tool used in 

different area of research to design experimental runs to analyse the influence of factors 

on the system response (Bingol et al., 2010; Seki et al., 2006; Veličković et al., 2013). In 

this study, a full factorial experimental design is used to generate different simulation 

scenario considering uncertainty in demand and lead time and the inventory decision 

parameter i.e. the target inventory. Although DOE is one of the most widely used 

statistical tool, its use is limited to optimize a single performance measure (response). 

When multiple responses are desired to be simultaneously optimized in a DOE 

paradigm, the multiple responses are converted into an equivalent single response using 

multi-attribute decision making approaches such as analytical hierarchy process (AHP) 

(Ghodsypour and O’Brien, 1998), desirability function approach (DFA) (Datta et al., 
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2006), utility theory (Walia et al., 2006) and grey relational analysis (Ranganathan and 

Senthilvelan, 2011; Çaydaş and Hasçalık, 2008; Kuo et al. 2008; 2011). Therefore, the 

multi-response optimization technique such as grey relational analysis is combined with 

DOE approach to analyse the effect of uncertainties on combined objective of total cost 

and BWE. 

3.2 Methodology  

 From the above section, it is found that system dynamics is one of the useful 

simulation modelling approaches through which a complex system can be studied in a 

realistic manner. To study the behavior of a multi-echelon serial supply chain under the 

influence of uncertainty, system dynamics approach has been adopted in the present 

study. A brief introduction of system dynamics is given in Section 3.2.1. The performance 

characteristics of a multi-echelon serial supply chain can be measures by BWE and total 

cost. In order to analyses both the characteristics of the supply chain, grey-relational 

analysis is adopted to convert multiple performance characteristics into an equivalent 

characteristic. Grey-relational approach is presented in Section 3.2.2. 

3.2.1 The system dynamics approach  

System dynamics, initially termed as Industrial Dynamics, is a computer-aided 

approach for analyzing and solving complex problem with a focus on policy analysis and 

design (Forrester, 1961). The system dynamics is a method which involves the study 

how a system can defend against or make benefit from the shocks which fall upon it. 

System dynamics is a part of system theory and an approach to understand the structure 

and dynamic behavior of the complex system influenced by different parameters over 

time (Coyle, 1977). It is a rigorous modelling method that facilitates to build formal 

computer simulations of complex systems and use them to design more effective 

policies. It is a perspective and set of conceptual tools that enable us to understand the 

structure and dynamics of a complex system (Sterman, 2000).  

The system dynamics extensively use elements such as feedback loops, stocks and 

flows to study the behavior of complex system. There are two types of flows: physical 

flows and information flows. Physical flow is conserved flow as it reduces or increases 

the value of the level variable whereas information flows are not conserved flow. One 

rate variable is subdivided into various auxiliary variables. Stocks and levels are used 

interchangeably used in system dynamics; similarly as flows and rates. The level/stock 

variable represents the accumulations and it holds the current state of the system. Levels 

do not change instantaneously; it changes gradually over a period of time. Flow/rate 
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represents the instantaneous flow rates and it causes to increase or decrease the stock 

in every unit of time (Mohapatra et al., 1994). The different elements used in system 

dynamics are shown in Figure 3.1. In order to combine the multiple performance 

measures into single equivalent parameter grey relational analysis can be used.   

 
Level variable 

 

 

Rate variable 

 

 

 

Auxiliary variable 

 
Physical flow 

 
Information flow 

 Constants 

Figure 3.1. Different elements of system dynamics 

3.2.2 Grey relational analysis  

 Multi-attribute decision making (MADM) or multi-criteria decision analysis (MCDA) is 

one of the sub-discipline of operations research which helps decision maker for solving 

decision and planning problem involving with multiple criterion. MADM helps the decision 

maker to select the best from the existing alternatives or options considering multiple 

attribute, goals or criteria, which are frequently in conflict with each other. It is a difficult 

problem to make trade-off between these conflicting attributes and make decision. 

Through the following paragraph, the MADM method - grey relational analysis (GRA) is 

briefly introduced. It has been successfully applied in solving a variety of MADM 

problems. GRA is based on the grey system theory. According to concept grey system 

theory, the situation with no information is defined as black and those with perfect 

information as white.  However, neither of the idealized situations occurs in real world 

problem. In fact, the situations between these extremes can be defined as grey, hazy or 

fuzzy. Hence, a grey system means a system in which part of information is known and 

part of information in unknown. GRA reduce the original MADM problem into a single 

attribute decision making problem through combining the entire range of performance 

attribute considered for every alternative. Hence, the alternatives with multiple attributes 

can be easily compared after the GRA process.  
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 The method consists of four steps such as (1) grey relational generating (2) reference 

sequence definition (3) grey relational coefficient calculation (4) grey relational grade 

calculation as discussed below.  

a. Grey relational generating 

 When the measurement unit are different for different responses, it is necessary to 

convert all responses into same scale through the process of normalization (Huang and 

Liao, 2003). If there are m experimental scenarios and n responses, the i th scenario can 

be expressed as  inij2i,1ii y,...,y...yyY   where i jy is the performance value of response 

j at scenario i. The term iY can be translated into the comparability sequence 

 inij2i1ii x,...,x...x,xX   using of one of Equation 3.1-Equation 3.3 where  

 m,...,,i,yMaxy ijj   and  m,...,2,1i,yMiny ijj  . Equation 3.1 and Equation 3.2 are 

used for larger-the-better and smaller-the-better type of response respectively. Equation 

3.3 is used for nominal-the-better i.e. closer-to-the-desired-value,
*
iy . Through the grey 

relational generating procedure, the values of the responses will be scaled into [0, 1].    
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 where,  i = 1, 2, 3, . . ., m;              j = 1, 2,3, . . . ,n 

b. Reference sequence definition 

After the grey relational generating procedure, the response values are scaled into [0, 

1]. If the grey relational generating value ijx ( thj  response value of thi  experimental 

scenario) is equal to 1 or nearer to 1 then the performance of the thi scenario is best 

among the response j. If all the values are closest to or equal to 1 then the scenarios are 

considered as best choice. The aim is to find the experimental scenario whose 

comparability sequence is the closest to reference sequence 
X  as 

   .,...,,...,,x,...,x,...,x,x noj   
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c. Grey relational coefficient calculation 

The grey relational coefficient is used to define the closeness between i jx and j0x i.e. 

how much i jx is closer to 1. The grey relational coefficient can be calculated by using the 

Equation 3.4 where  ijj x,x  is the grey relational coefficient between j0x and i jx . 

   
 

n,...,2,1j     m,...,2,1i    
 

 
x,x

maxij

maxmin

ijj0 





                                 

(3.4) 

 where  is known as distinguishing coefficient lies in between 0 to 1. 

ijj0ij xx   

 n,...,2,1j;m,...,2,1i,Min ijmin   

 n,...,2,1j;m,...,2,1iMax ,ijmax   

d. Grey relational grade calculation 

Grey relational grade characterizes the degree of correlation between reference 

sequence j0x and i jx .It can be calculated using Equation 3.5 where  ijj0 X,X
 
is the 

grey relational grade between 
0X and iX , and jw is the weight of response j which 

depends on the judgement of the decision makers.  

    n,...,j       m,...,,i        ; x,xwX,X
n

j
ijjji  


                             (3.5) 

where, 




n

j
jw  

 Now, grey relational grade value can be treated as an equivalent response for multiple 

responses and possible best solutions can be obtained using DOE approach.  

3.3 A model of multi-echelon serial supply chain 

In a multi-echelon serial supply chain, the distinct entities/facilities (e.g. retailer, 

distributor, wholesaler and manufacturer) are linked to each other in a serial fashion to 

satisfy the demand from end customer. To study the performance of a serial supply chain 

under the influence of uncertain environment, demand data for an automotive component 

(gaskets for a two-wheeler) is collected from a retail shop located at the Eastern part of 

India from the year 2009-2011. The mean demand observed by the retail shop is 20 units 

per a day. To satisfy its demand, it depends on a local distributor and similarly, the 
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distributor depends on the wholesaler in another city and wholesaler to a manufacturer 

located in another state. Delay is associated between the two adjacent entities and it is 

sum of the time taken to process the order and receive the order. A single period delay is 

involved between retailer and distributor. Similarly, two time period delay between 

distributor and wholesalers and three time period delay between wholesaler and factory. 

The raw material is supplied by external supplier to the factory for the production 

requirement. The manufacturer produces it at a constant rate of 25 units per period. The 

general structure for the considered supply chain is shown in Figure 3.2. The purchasing 

cost of the component for the wholesaler is Rs10 whereas it is Rs15 and Rs20 

respectively for the distributor and retailer. Transportation charge is 15% of the value of 

the items purchased. The ordering cost is Rs. 100 and independent of ordering quantity.  

 

 

 

 

 Inventory carrying cost is 13% of the value of items held by inventory for a period. The 

calculation for transportation cost, ordering cost, inventory holding cost and backorder 

cost is similar to all levels. The sales rate or the dispatch quantity from one echelon to 

other depends on the availability of stock and quantity of order placed i.e.  tt INV,QMin  

where tQ denotes the amount of order placed by ith echelon to (i+1)th echelon  and tINV

represent available stock at echelon (i+1)th in period t. The continuous review policy is 

implemented by each stage for the replenishment of inventory. According this policy, 

when inventory position IPt (Equation 3.6) become less than or equal to the reorder point 

(ROP) then an order quantity tQ is placed by the echelon. The replenishment quantity 

tQ is estimated through the Equation 3.7 where S represents the target inventory level 

and s is the ROP (Silver et al., 1998; Dejonckheere et al., 2003; Campuzano et al., 

2010).   
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Figure 3.2 Block diagram of multi-echelon serial supply chain model 
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backorder transit in  order stock hand onIPt                                                         (3.6)










sIP if ,0

sIP If,IPS
Q

t

tt

t                                                                                                       (3.7) 

There are different amount of safety stock is maintained at each stage. The value of 

safety stock and reorder point (ROP) s is calculated using Equation 3.8 and Equation 3.9 

respectively (Silver et al., 1998). The unfilled quantity is considered as backorder and it 

incurs penalty to the echelon which is 25% of the value of the products backordered per 

period.  






 

LTddLT
zStock(SS)Safety                                                             (3.8) 

dLTSSs 
                                                                                                  

        (3.9) 

where, z represents service level, LT is the mean value of lead time, d is the mean 

demand, LT is the standard deviation of lead time and d represents the standard 

deviation of demand.  

The performance of a supply chain can be measured through the two parameters-

BWE and total cost throughout the supply chain. The amplification of orders with respect 

to the demand is known as BWE. It can be calculated using Equation 1.2 (in Chapter 1). 

Total cost includes all the expenses to bring a product from the supplier end to buyer 

end. It includes purchasing cost, ordering cost, inventory holding cost, backorder cost 

and transportation cost. Purchasing cost is the amount paid to supplier for purchasing. 

Ordering cost includes all the expenses to place an order. Transportation cost is the 

shipping charge to bring the product/material from the one echelon to other. Inventory 

holding cost includes all the expenses to hold a unit of product for a period. Backorder is 

the extra penalty to be borne by the echelon if there is some unfilled demand/order. Total 

cost ( iTC ) can be calculated from Equation 3.10 and Equation 3.11. 

otbphi CCCCCTC                                                                                       (3.10)
                



i iTCSC_TC

                                                                                                    
(3.11)

 

where,  

product of priceunitinventory_Average. Ch 
   

tp Qproduct of priceunitC   

quantity orderback .Cb   
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product of  priceunitQ.C tt   

order/.RsCo   

where hC denotes the holding cost, similarly pC : purchase cost, bC : backorder cost, tC : 

transportation cost, oC : ordering cost, iTC : total cost of echelon i (i=1, 2, and 3), 

TC_SC: total cost of supply chain.  

 To study and analyse the behavior of above described multi-echelon serial supply 

chain model in realistic and systematic manner under the influence of uncertainty 

environment, the model is modelled through system dynamics approach and behavior is 

studied using DOE approach.  

3.4 The simulation procedure  

 The system dynamics approach is one of the useful approach for simulation modelling 

as discussed in section 3.2.1. Hence, the four echelon serial supply chain model as 

shown in Figure 3.2 is modelled through system dynamics approach using the software 

STELLA 0.5 as shown in Figure 3.3. Various notations used in system dynamics model 

are given as follows: 

Notations: 

i. R – Retailer 

ii. D – Distributor 

iii. W – Wholesaler 

iv. F – Factory/Manufacturer  

v. INV – Inventory  

vi. R INV – Amount of inventory available at Retailer at a particular period.  

vii. demand – demand generated from the customer  

viii. R ROP – retailer’s Reorder Point 

ix. R target INV – Retailers Target Inventory similarly  

x. Order placed by R – amount of order placed by Retailer 

xi. R projected on hand INV – Retailer’s projected on – hand inventory. 

xii. Customer demand – demand from the customer. 

xiii. Sales rate – amount product sales to the customer. 

xiv. Total demand at R – sum of customer demand and backlog quantity at retailer end. 

xv. Dispatch to R – quantity dispatch from the distributor to retailer against the order 

placed.  

xvi. R order received – Retailer’s order received. 
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xvii. R backorder per period – unsatisfied demand to the lower level at period t. 

xviii. R backorder acquisition – accumulation of backorder 

xix. Total backorder – total backorder at period t to satisfied. 

All these notations are similar in case of distributor (D), wholesaler (W) and factory (F). 

 
Figure 3.3 The system dynamics model for multi-echelon serial supply chain 

 There are certain assumptions are made for the modelling and simulation purpose of 

the considered a multi-echelon serial supply chain, these are as follows:  

Assumptions: 

1. Once order placed, it cannot be cancelled and received shipment cannot be returned. 

2. Once order placed by lower echelon, it cannot be discarded by upper echelon. 

3. The unit variable cost of the product does not depend on the replenishment quantity 

i.e. there is no discount in either the unit purchase cost or transportation cost. 

4. Cost factors do not change with time. 

5. At time period t, the backorder from t-1 period is given higher priority than the 

demand at t. 

6. Each echelon has to maintain 99% service level. 

Initial condition for the model: 

 For the simulation purpose following are the initial conditions taken for the planned 

model. 
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1. Inventory position at each echelon is equal i.e. 100 units. 

2. Initially there is no backlog. 

3. Initially there is no outstanding order from the lower echelon. 

4. There is no order in transit. 

The equation for stock-flow diagram (Figure 3.3) is shown in Appendix 2. There are 

various sources of uncertainties which adversely influence on the performance of supply 

chain. Among them, uncertainty in demand and supply lead time is two major parameters 

having impact of the performance of a supply chain. The target inventory plays major role 

in ordering decision activity in (s, S) inventory replenishment policy. Hence, in this study, 

in addition to uncertainty in demand and lead time, the modelling parameter - target 

inventory is taken as one of the important parameter to examine the behaviour of 

considered multi-echelon serial supply chain employed with (s, S) policy. DOE approach 

is one of the best approaches to determine the experimental setup to carry out the 

experiment or to simulate the models. It also helps in determining the behaviour of 

different influencing factor of the system (Montogomory, 2001). Therefore, to examine 

the influence of uncertainty in demand, lead time and target inventory on supply chain 

performance, different simulation setup are designed to simulate the system dynamics 

model (Figure 3.3) based on full factorial design. Increase in rate of uncertainty for the 

considered parameter is presented through increasing the standard deviation of the 

parameter. In the experimental settings to generate simulation scenarios, each 

parameter is considered in three levels - low (L), medium (M) and high (H). Levels values 

are based on the variation in parameters. For representing the increasing uncertainty in 

lead time between retailer and distributor, the standard deviation of 0.1, 0.2 and 0.3 is 

taken representing low, medium and high level of variation respectively as summarized 

in Table 3.1. This is same for distributor, wholesaler and manufacturer case.   

Table 3.1  Parameters and their levels 

Factors 
(Parameters) 

Echelons 

LEVELS 

Low (L) Medium (M) High (H) 

mean 
Standard 
Deviation 

mean 
Standard 
deviation 

Mean 
Standard 
Deviation 

Lead Time 
(in days) 

Retailer 1 0.1 1 0.2 1 0.3 

Distributor 2 0.2 2 0.4 2 0.6 

Wholesaler 3 0.3 3 0.6 3 0.9 

Factory 4 0.4 4 0.8 4 1.2 

Demand 
(in units) 

 20 2 20 4 20 6 

Target 
Inventory 
(in units) 

 ROP+1x demand ROP+2xDemand ROP+3xDemand 
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 Similarly, the parameter - target inventory at low level is sum of ROP and single 

period demand and medium and high level is set as summarized in Table 3.1. Mean 

demand is 20units and low, medium and high level of uncertainty is represented as 

standard deviation of 2, 4, and 6 respectively. There are three parameters - each at three 

levels. Hence, twenty seven numbers  factors 3 and levels 3  2733   of experimental 

scenarios are generated based on full factorial design using software Minitab16. This is 

summarized in Table 3.2. Each row of this column represents the experimental scenario. 

Different model parameters are set according to these experimental scenarios and the 

model Figure 3.3 is simulated for 104 weeks (2-year) time period. At the end of each run, 

different parameters are estimated to study the behaviour of the considered supply 

chain. To analyse the warm-up period, the time series plot is plotted for the retailer’s 

inventory as shown in Figure 3.4. From the figure, it can be observed that first 14-weeks 

are under transient phase. Hence, these periods are considered as warm-up period and 

discarded from the total simulation runs. The rest periods are considered as steady state 

period to estimate different parameters.  

 
Figure 3.4 Time series plot for retailer inventory level  

3.5 Results and discussions 

 The system dynamics model shown in Figure 3.3 is simulated for two-year time 

period. Based on the simulation scenarios, the mean and standard deviation of the order 

quantity placed by each echelon is estimated at the end of each simulation run 

considering steady period as summarized in Table 3.2.  The variance of order quantity at 

each stage is estimated from each experimental run is plotted to visualize the 

amplification of order from one stage to others in Figure 3.5. From the Figure 3.5, it can 

be observed that variation in order increases from retailer to wholesaler end for the all 
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experimental scenarios. This signifies the existence of BWE within supply chain 

whatever may be the scenario. 

 

Table 3.2 Summary of estimated order quantity at different echelon 

Experiment 

scenario 

number 

  

  

Simulation scenario 
Orders Values For Different Echelon 

Retailer Distributor Wholesaler 

Lead 

Time 
Demand 

Target 

Inventory 
Mean 

Standard 

deviation 
Mean 

Standard 

deviation 
Mean 

Standard 

deviation 

1 L L L 19.75 14.70 19.62 14.89 19.73 15.07 

2 L L M 19.72 25.08 19.96 25.46 20.51 25.66 

3 L L H 19.71 31.38 20.25 32.65 21.15 41.88 

4 L M L 20.06 15.12 19.94 15.47 20.08 15.55 

5 L M M 20.01 25.31 20.26 25.77 20.83 27.22 

6 L M H 19.99 31.71 20.55 33.15 21.48 44.86 

7 L H L 20.41 15.96 20.33 18.56 20.59 18.46 

8 L H M 20.34 25.75 20.61 26.13 21.20 29.53 

9 L H H 20.53 31.91 20.53 39.72 21.13 40.14 

10 M L L 19.77 14.61 19.65 15.07 19.80 15.33 

11 M L M 19.74 25.10 19.99 25.52 20.56 26.51 

12 M L H 19.73 31.41 20.27 34.05 21.22 44.55 

13 M M L 20.07 15.09 19.97 17.69 20.17 17.58 

14 M M M 20.02 25.32 20.30 26.66 20.91 27.39 

15 M M H 20.00 31.73 20.56 34.36 21.53 45.53 

16 M H L 20.52 31.89 20.71 31.52 21.24 31.56 

17 M H M 20.35 25.76 20.63 26.17 21.23 28.09 

18 M H H 20.54 31.92 21.13 37.50 33.84 66.43 

19 H L L 19.79 14.27 19.69 14.20 19.87 14.33 

20 H L M 19.76 25.07 19.66 24.97 20.21 25.16 

21 H L H 19.75 31.44 20.31 34.00 20.86 36.35 

22 H M L 20.09 15.57 20.01 16.29 20.22 16.17 

23 H M M 20.04 25.37 20.34 26.63 20.95 28.35 

24 H M H 20.02 31.75 20.60 32.01 26.57 56.25 

25 H H L 20.44 16.36 20.38 18.61 20.63 18.51 

26 H H M 20.37 25.78 20.68 27.98 21.37 31.36 

27 H H H 20.56 31.95 20.58 38.82 33.78 65.83 

Similarly, the mean and standard deviation of the inventory level at each echelon is 

estimated to present the inventory status as summarised in Table 3.3. The estimated 

mean inventory quantity is pictorially shown in Figure 3.6. It can be observed that 

inventory quantity held by each stage increases in upward direction as a result of 

variation in order. Similarly, from Figure 3.7 it can be observed that variation in inventory 

quantity increases in upward direction of the supply chain for all scenarios. In fact, Figure 
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3.6 and Figure 3.7 describe the fluctuation in inventory level due to variation in demand, 

lead time and change in target inventory quantity.  

 

Figure  3.5 Order quantity variations at different echelon 

Table 3.3 Summary of estimated inventory quantity 

Experiment 
scenario 
number 

Inventory level at each echelon 

Retailer Distributor Wholesaler 

Mean 
Standard 
deviation 

Mean 
Standard 
deviation 

Mean 
Standard 
deviation 

1 24.71 15.83 47.83 16.25 52.74 16.97 

2 32.60 19.78 84.69 21.20 94.69 21.81 

3 42.18 23.04 112.64 34.75 180.90 92.91 

4 26.45 15.47 49.46 17.25 54.58 19.41 

5 34.29 19.20 85.06 21.35 93.99 23.98 

6 43.38 22.77 113.63 35.19 190.58 98.22 

7 28.58 16.06 51.58 19.90 67.61 23.46 

8 36.19 19.43 86.57 21.83 100.18 36.81 

9 45.88 22.65 103.12 40.84 146.13 87.54 

10 26.10 15.60 48.96 18.15 57.18 21.19 

11 34.06 19.15 85.55 24.24 97.75 27.79 

12 43.76 22.54 111.15 36.67 172.56 90.35 

13 27.35 16.32 50.33 20.37 63.00 23.36 

14 34.97 18.88 86.71 24.83 105.54 33.02 

15 44.13 22.51 112.15 36.89 185.00 93.64 

16 45.13 22.87 78.03 34.59 99.58 42.31 

17 36.92 19.17 88.43 23.15 108.17 42.23 

18 46.73 22.48 110.71 39.51 213.83 118.70 

19 26.74 15.38 52.04 20.52 58.11 21.60 

20 33.90 18.31 53.23 25.55 96.59 29.18 

21 44.94 22.53 112.67 38.05 127.85 68.49 

22 27.28 16.51 52.44 21.90 62.25 25.25 

23 35.88 18.73 89.24 25.38 103.65 37.52 

24 45.52 22.48 116.89 34.05 215.56 124.04 

25 29.42 16.12 54.86 24.31 67.83 27.09 

26 37.99 19.19 89.63 29.24 113.76 44.92 

27 47.80 22.63 110.61 42.52 211.95 116.59 

0

1000

2000

3000

4000

5000

6000

7000

8000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

O
rd

e
r 

v
a
ri

a
n
c
e
(i

n
 u

n
it
s
)

scenarios

Retailer Distributor Wholesaler



35 
 

 

Figure 3.6 Estimated mean inventory level at different echelon 

 

Figure  3.7 Variance of inventory level at different echelon 

 The supply chain performance measures such as BWE and total cost are estimated 

from each simulation run by applying the Equation 1.1 (in Chapter 1) and Equation 3.10-

Equation 3.11 respectively as summarized in Table 3.4. Unlike, variation in order and 

inventory quantity, the total cost incurred at each stage increases in reverse direction i.e. 

from wholesaler to the retailer as observed Figure 3.8. This is due to the fact that retailer 

is subjected to high backorder quantities, high unit price, and frequency of placing 

orders. Figure 3.9 depicts backorder per period for each echelon. Comparatively, 

backorder quantity is more in case of retailer than rest of other echelons.  
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Table 3.4 Estimated total cost and bullwhip effect at each simulation run 

Experiment 

number 

 

Lead 

time 
demand 

Target 

inventory 

 

Total cost 

of 

retailer 

Total  

cost of 

distributor 

Total cost 

of 

wholesaler 

Total cost 

of 

supply 

chain 

Bullwhip 

effect 

1 L L L 58347.50 44814.83 32580.63 135742.95 1.02 

2 L L M 54946.50 44204.90 31930.10 131081.50 0.99 

3 L L H 53911.55 45039.56 33897.05 132848.16 1.58 

4 L M L 58996.15 45385.45 33044.20 137425.80 1.00 

5 L M M 55600.90 44758.18 32085.88 132444.95 1.09 

6 L M H 54659.15 45624.04 34505.00 134788.19 1.75 

7 L H L 59860.80 45801.45 33766.58 139428.83 0.98 

8 L H M 56336.60 45455.71 32543.68 134335.99 1.24 

9 L H H 55841.15 44561.70 33192.03 133594.88 0.99 

10 M L L 58182.10 44980.10 32793.78 135955.98 1.03 

11 M L M 54851.30 44300.04 31990.95 131142.29 1.05 

12 M L H 53894.15 44898.50 33560.45 132353.10 1.63 

13 M M L 59034.60 45076.08 32783.90 136894.58 0.98 

14 M M M 55525.05 44811.03 32579.70 132915.78 1.02 

15 M M H 54633.50 45466.70 34549.00 134649.20 1.68 

16 M H L 55838.10 44480.06 42528.80 142846.96 0.98 

17 M H M 56284.00 45584.79 33078.25 134947.04 1.12 

18 M H H 55862.00 46316.33 51810.85 153989.18 1.96 

19 H L L 58491.65 45523.85 33190.48 137205.98 1.01 

20 H L M 54831.90 43012.55 31665.13 129509.58 0.99 

21 H L H 54040.10 45044.53 32747.20 131831.83 1.11 

22 H M L 58986.05 45506.08 33391.05 137883.18 0.98 

23 H M M 55487.80 45008.24 32492.00 132988.04 1.10 

24 H M H 54663.10 45976.04 42260.35 142899.49 2.39 

25 H H L 59557.00 46281.19 33966.55 139804.74 0.98 

26 H H M 56332.15 45639.23 33043.08 135014.45 1.22 

27 H H H 55995.15 45217.71 51428.48 152641.34 1.75 

 

 
Figure  3.8 Estimated total cost at different echelon  
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Figure 3.9  Estimated backlog at each echelon from the simulation runs 

 To measure the impact of increasing uncertainty in lead time and demand, and 

changes in target inventory level on total cost, analysis of variance (ANOVA) is 

performed for the estimated total cost at 5% significance level and the summary is 

described in Table 3.5. From this table, it can be observed that the p-Value for demand 

and target inventory is less than 0.05. This signifies that uncertainty in these two 

parameters (factors) significantly influence on total cost. Although no significant 

interaction effect is observed, influence of interaction effect of the factors such as 

demand and target inventory may impact moderately on total cost. The main and 

interaction plots are shown in Figure 3.10 and Figure 3.11 respectively. From the main 

effect plot (Figure 3.10), it can be concluded that total cost can be minimised through 

keeping medium target inventory level i.e. (ROP + two period demands) while there is 

low variation in demand and lead time. 

Table 3.5 Summary of ANOVA for total cost 
Source DF Seq SS Adj SS Adj MS F P 

Lead time 2 51174814 51174814 25587407 1.88 0.215 

Demand 2 270314682 270314682 135157341 9.91 0.007 

Target inventory 2 202673177 202673177 101336588 7.43 0.015 

Lead time * Demand 4 81172908 81172908 20293227 1.49 0.293 

Lead time * Target inventory 4 74797081 74797081 18699270 1.37 0.325 

Demand * Target inventory 4 107084236 107084236 26771059 1.96 0.193 

Error 8 109101531 109101531 13637691   

Total 26 896318429     

S = 3692.92   R-Sq = 87.83% 
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Figure 3.10 Individual effect of demand, lead time and target inventory on total cost 

 
Figure 3.11 Effect of interaction of lead time, demand and target inventory on total cost 

 Similarly, ANOVA for the response parameter BWE has been performed at 5% 

significance level. The resulting ANOVA table is shown in Table 3.6. From the table, the 

estimated p-Value for target inventory is less than 0.05 which indicates that it has 

significant effect on BWE. No interaction has strong effect on BWE. The main effect and 

interaction effect of uncertainty in demand, lead time and the target inventory on BWE 

can be pictorially observed from the Figure 3.12 and Figure 3.13 respectively. From the 

ANOVA table and interaction plot, it can be observed that interaction of demand and 

target inventory has mild influence on BWE. From the main effect plot (Figure 3.12), it 

can be observed that BWE can be reduced when the lead time and demand vary with 

low value and target inventory is kept at low level i.e. ROP + single period demand.     
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Table 3.6. Summary of ANOVA for bullwhip effect 

Source DF Seq SS Adj SS Adj MS F P 

Lead time 2 0.05413   0.05413   0.02707    0.40 0.680 

Demand 2 0.13941   0.13941   0.06971    1.04 0.396 

Target inventory 2 2.25955   2.25955   1.12977   16.94 0.001 

Lead time * Demand 4 0.26981   0.26981   0.06745    1.01 0.457 

Lead time *Target inventory 4 0.14761   0.14761   0.03690    0.55 0.704 

Demand *Target inventory 4 0.32050   0.32050   0.08013    1.20 0.382 

Error 8 0.53478   0.53478   0.06685   

Total  26 3.72580     

S = 0.258549   R-Sq = 85.65%    

  

 
Figure 3.12 Individual effect of lead time, demand and target inventory on BWE 

 
Figure 3.13 Interaction effect of lead time, demand and target inventory on BWE 
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 From the above analysis, it is observed that uncertainty in demand and inventory 

decision parameter target inventory has significant effect on the total cost while the factor 

target inventory significantly influence to supress BWE. However, optimum settings for 

both the performance measures happen to be different. If it is desired to minimize both 

the performance measures simultaneously, then it is required to convert both the 

responses into an equivalent single response. To determine the optimal parameter 

settings to simultaneously reduce the BWE and total cost, grey relational analysis has 

been used in this study. The different steps for grey relational grade outlined in section 

3.2.2 are followed to convert the BWE and total cost into an equivalent single response 

considering distinguishing coefficient as 0.5 and weighting both the responses equally. 

The summary of the grey relational grades analysis is described in Table 3.7. 

Table 3.7  Summary of grey relational analysis 

Experiment 
number 

Grey relational 
generation 

Grey relational 
coefficient 

Grey relational 
grade 

Total Cost BWE Total Cost BWE 
 

1 0.745368 0.970077 0.662571 0.943533 0.803052 

2 0.935787 0.99019 0.886189 0.980757 0.933473 

3 0.863619 0.577081 0.785691 0.541759 0.663725 

4 0.676624 0.979968 0.607253 0.96148 0.784366 

5 0.880091 0.922408 0.806567 0.865663 0.836115 

6 0.78437 0.452426 0.698682 0.477293 0.587988 

7 0.594801 0.998653 0.552361 0.997314 0.774838 

8 0.802842 0.812308 0.717195 0.72707 0.722132 

9 0.833116 0.987668 0.749753 0.97593 0.862842 

10 0.736666 0.962594 0.655018 0.930396 0.792707 

11 0.933304 0.947698 0.882306 0.905303 0.893804 

12 0.883843 0.534912 0.811479 0.518088 0.664783 

13 0.698324 0.998151 0.62369 0.996316 0.810003 

14 0.860857 0.965359 0.782296 0.935206 0.858751 

15 0.790047 0.505763 0.704269 0.502898 0.603584 

16 0.455171 0.998118 0.478544 0.996251 0.737397 

17 0.777881 0.897985 0.692404 0.830545 0.761474 

18 1.37E-05 0.306388 0.333333 0.418897 0.376115 

19 0.685604 0.976159 0.613948 0.954488 0.784218 

20 1 0.991082 1 0.982477 0.991238 

21 0.905137 0.90255 0.840527 0.836891 0.838709 

22 0.65794 1 0.593779 1 0.796889 

23 0.857906 0.911815 0.778699 0.850073 0.814386 

24 0.453025 0 0.477563 0.333333 0.405448 

25 0.579445 0.998557 0.543147 0.997122 0.770135 

26 0.775127 0.830443 0.689773 0.746762 0.718268 

27 0.055073 0.45255 0.346035 0.47735 0.411692 

  To identify the optimal parameter settings that minimises both total cost and BWE, 

ANOVA is performed at 5% significance level for the obtained grey relational grade 

(Table 3.8). The resultant ANOVA table is described in Table 3.8.  
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Table 3.8  Analysis of variance for grey relational grade 

Source DF Seq SS Adj SS Adj MS F P 

Lead time 2 0.01531 0.01531 0.00765    0.66 0.543 

Demand 2 0.08889   0.08889   0.04445    3.84 0.068 

Target inventory 2 0.27349 0.27349 0.13674   11.80 0.004 

Lead time*demand 4 0.05919 0.05919 0.01480    1.28 0.355 

Lead time*target inventory 4 0.03290 0.03290 0.00823    0.71 0.607 

Demand* target inventory 4 0.04296   0.04296   0.01074    0.93 0.494 

Error 8 0.09267   0.09267   0.01158   

Total  26 0.60541     

S = 0.107627   R-Sq = 84.69%    

 From the table, p-Value of target inventory is found to be less than 0.05. Hence, it is 

the most significant parameter for controlling both total cost and BWE. Next, significant 

influencing parameter on grey relational grade is uncertainty in demand. From the main 

effect plot shown Figure 3.14, it can be observed that best setting for reducing BWE and 

total cost is low variation in lead time and demand and medium level of target inventory. 

From the analysis, it can be concluded that the BWE and total cost can be 

simultaneously reduced when there is low variation in demand and lead time and target 

inventory level is kept at medium level (i.e. ROP + two periods demand from immediate 

lower echelon). From Table 3.8 and interaction plot (Figure 3.14), it can be observed that 

no strong interaction effect exists. But the interaction of lead time and demand has minor 

effect on simultaneous minimization of both the responses. 

 
Figure 3.14 Individual effect of lead time, demand and target inventory on grey relational 

grade 
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Figure 3.15 Interaction effect of factor lead time, demand and target inventory on grey 

relational grade 

3.6 Summary 

 In this work, a four echelon serial supply chain employed with (s, S) policy is modelled 

through the system dynamics approach. Using full factorial design, different scenarios 

are generated and the model is simulated to estimate the impact of uncertainty in 

demand, lead time and the target inventory on BWE and total cost. Further, from the 

statistical analysis, it has been determined that target inventory level has significant 

effect on the BWE whereas total cost is affected due to increase in uncertainty in 

demand and increase in target inventory level along the supply chain. BWE can be 

minimised when there is low variation in demand and lead time and target inventory level 

is kept at low level (i.e. ROP + single period demand). Similarly, the total cost can be 

minimised while there is low variation in demand and lead time and target inventory kept 

at medium level (ROP + two periods demand). An integrated approach of DOE and grey 

relational analysis is adopted to minimise the BWE and total cost simultaneously. Both 

the performance parameters can be minimised if low variation in demand and lead time 

is encountered while target inventory is kept at medium level (i.e. ROP + two periods of 

demand). From the study, it can be concluded that target inventory decision is one of the 

most important parameter. Hence, proper decision for target inventory along the supply 

chain can help in moderating the BWE and total cost under uncertain environment. 

However, the methodology is quite generic and simulation of the supply chain in this 

work relates to the case study example. The managers can gain insight into real 
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applications using the proposed methodology. In future, the study can be extended to 

include supply chain network with multiple suppliers and multiple products. The next 

chapter analyses the performance of manufacturing supply chain under uncertain 

environment. 
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4.1  Introduction 

 In Chapter 3, performance of the multi-echelon serial supply chain employed with 

reorder-point order-up-to-level inventory policy is studied under the influence of 

uncertainty in demand and lead time and target inventory, an inventory decision 

parameter. Manufacturing system is one of the sub-systems of a supply chain in which 

different manufacturing policies such as (i) make-to-stock (MTS), (ii) make-to-order 

(MTO), (iii) assemble-to-stock (ATS) and (iv) assemble-to-order (ATO) are adopted to 

manufacture a product depending on its type. The classic structure of a manufacturing 

system encompasses raw material supplier(s), raw material stock(s), raw material 

processing unit(s) and finished goods inventory.  In MTO or ATO manufacturing system, 

items are manufactured or assembled based on customer demand. In a MTS production 

system, a finished goods inventory is maintained to fulfil the market demand based on 

forecasted data or production capacity. Similarly, an ATS manufacturing system 

combines multiple components into a single product which is stocked in an inventory to 

satisfy the customer demand. Therefore, accurate demand forecasting in both MTS and 

ATS manufacturing policy is important to achieve high service level whereas order 

execution time is important in MTO situation (Silver et al., 1998). Existence of uncertainty 

in demand, supply of raw material, production process and machine repair time due to 

random occurrence of failure severely affect the finished goods stock and hence, service 

level gets affected. Previously, researchers highlight the effect of uncertainty on the 

manufacturing/production process (Bera and Sharma, 1999; Williams, 1984). However, 

behaviour of supply chain under the influence of various uncertainties has not been 

addressed adequately when MTS and ATS manufacturing system is adopted. Hence, in 

this chapter, an attempt has been made to analyse the behaviour of MTS and ATS 

manufacturing supply chain operating under the stochastic environment using system 

dynamics approach.  

 For this purpose, six different scenarios are generated considering uncertainties in 

raw material supply lead time, processing time, machine availability, market demand and 

raw material acquisition from the supplier. Based on these generated scenarios, the 

stochastic behaviour of the manufacturing supply chain is studied in terms of unfilled 

demand (total backlog). The impact of dynamic factors on system behaviour is studied 

using design of experiment (DOE) approach. Further, relationship between the backlog 

and uncertainty factors is determined for obtaining optimal setting for the system.  
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To study the behaviour of ATS manufacturing system under uncertain environment, a 

serial ATS system is modelled through the system dynamics approach.  Different 

simulation scenarios are generated using response surface methodology (RSM) 

considering uncertainty in lead time for supply of components, assembly time and repair 

time due to occurrence of machine failure. The performance of the simulated model is 

measured in terms of backlog and work-in-progress inventory. Further, relationship 

between theses response parameters and uncertainty factors are determined to optimise 

the system.  

4.2  Model description  

 In MTS and ATS manufacturing system, the demand is fulfilled from the finished 

goods inventory. Hence, maintaining high service level (or minimizing backlog situation) 

is one of the important parameter. The following paragraph describes the model for MTS 

and ATS manufacturing system to analyse the effect of uncertainty in manufacturing 

supply chain.   

4.2.1  Model description for make-to-stock manufacturing system  

 A production system based on the make-to-stock (MTS) production policy considered 

here is confined to a single product. The basic structure of the production system is 

shown in Figure 4.1. The production system is a continuous production system having 

three-shift (8x3) working hours. Single raw material is required for its production 

operation supplied by a sole supplier. The supplier has limited capacity which is normally 

distributed with ~N (20, 1) units. Delay is allied between manufacturer and its raw 

material supplier. The delay includes order processing and material shipment delay i.e. 

raw material supply lead time is normally distributed ~N (4,1) days. The external 

customer demand is probabilistic in nature and it is normally distributed ~N (19, 1) units. 

The raw material inventory at manufacturer end is replenished through reorder point 

order-up-to level ((s, S) policy) inventory control policy where s is the reorder point (ROP) 

and S denotes the target inventory level. The safety stock quantity is estimated through 

Equation (3.8) (section 3.3, in Chapter 3) and based on this value, the ROP is estimated 

using Equation (3.9) (section 3.3, in Chapter 3).  Generally, the target inventory level is a 

fixed quantity which is set by the executives of the firm and it can be estimated using 

Equation (4.1). The raw material order quantity ( tQ ) placed by the manufacturer to the 

supplier is decided based on the Equation (3.7) (section 3.3, in Chapter 3).  
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1: Supplier’s raw material inventory 2: Manufacturer’s raw material inventory 3: Raw 

material processing unit 4: Finished goods inventory RM: Raw material. 

 demand period singleROPS)inventory( Target                                                      (4.1) 

 To convert raw material into finished product, time taken by the machine is normally 

distributed with ~N (32, 4) hrs. The machine has limited capacity is 50 units/day. 

However, production runs at normal production rate is 40units/day and the rate may vary 

depending on backlog quantity. The desired production rate in a period depends on the 

backlog quantity generated from previous period given by Equation (4.2). Raw material 

input decision depends on the desired production rate and availability of raw material in 

the inventory as given by Equation (4.3). The external market demand for the product is 

fulfilled from the finished product inventory. The sales rate depends on the available 

finished goods stock and the current demand as described in Equation (4.4). While 

machine failure occurs, the raw material remaining at the processing unit is removed 

from the machine and taken as input. Time to machine failure and time to repair the 

machine follow exponential distribution. While machine failure occurs, the production 

delay is the sum of the delay to repair machine time and production delay. 

   

  

 

rate production Normal

25%  rate production Normal ELSE rate production Normal

 15%  rate production Normal THEN 10 Backlog AND 3  BacklogIF

ELSE rate production NormalTHEN3  Backlog IF  Rate Production Desired









 RM_INVRate, Production DesiredMin  Production for  RM_Input                            (4.3) 

 Demand  NV,Finished_I Min  Rate Sales                                                                  (4.4) 

4.2.2 Model description for assemble-to-stock manufacturing system  

 The model considered here is confined to single product, multiple shops and a 

continuous production system. The production system is a continuous production system 

having three-shift (24x7) working hours. The production process goes through a three 

assembly processes in a serial manner where each next process depends on the 
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Figure 4.1. Block diagram of make-to-stock manufacturing system 
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completion of previous process. Each assembling process starts with semi-finished 

product from previous stage and a new assembly component. Three different assembly 

components/raw materials are used to assemble the product. All three machines have 

equal in capacity and limited in nature. The maximum capacity of each machine is 200 

lots whereas normal production rate is 150 lots. It is assumed that a lot contains 25 units. 

The time taken by each machine to assemble a lot is normally distributed with ~N (5, 

0.167) days. Machine failure occurs exponentially with a failure rate of 0.0001. Three raw 

materials are supplied from three different external suppliers and each supplier has 

limited capacity which varies randomly. A random supply delay is associated between 

manufacturing unit and individual raw material supply unit. The lead time between 

manufacturer and suppliers to supply assembly components is normally distributed with 

~N (5, 0.5) days. Customer demand is normally distributed with ~N (25, 0.5) lots per day 

and satisfied from the finished product inventory. Three raw material/assembly 

component inventories are maintained. Each raw material inventory is controlled through 

(s,S) inventory control policy i.e. reorder-point order-up-to level. The order quantity tQ  for 

each assembly component is decided using the Equation (3.7) (section 3.3, in Chapter 

3). The occurrence of machine failure follows an exponential distribution and it takes 

random amount of time to repair the machine.  The desired production rate depends on 

the product backlog quantity and the normal production rate that can be decided through 

Equation (4.5). Similarly, raw material/assembly component input decision depends on 

desired production rate and availability of assembly component in stock and decided 

through Equation (4.3). Similarly, the sales rate is decided through availability of product 

in finished good inventory and the external demand from the customer (Equation (4.4)). 

The schematic block diagram of the ATS manufacturing system is shown in Figure 4.2. 

   

  

  

 

 rate production Normal 30%  rate production Normal

 ELSE rate production Normal25%rate production Normal

 THEN 20 backlog AND 10 BacklogIF ELSE rate production Normal

20%  rate production Normal THEN 10 Backlog AND 3  BacklogIF

ELSE rate production Normal THEN3  Backlog IF  Rate Production Desired











 (4.5) 
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Figure 4.2 Block diagram for multi-shop assemble-to-stock manufacturing system 

4.3 Cuckoo search algorithm 

 Nature inspired optimization techniques are being adopted these days for solving hard 

and complex optimization problems (Rajendran and Ziegler, 2004; Tasgetiren et al., 

2007; Tasgetiren et al., 2011). Recently, a nature inspired algorithm based on the brood 

parasitism of cuckoo species is developed known cuckoo search algorithm is one of the 

efficient optimization techniques. Cuckoos are charming birds - not only because of the 

beautiful sounds they can make but also because of their aggressive reproduction 

strategy. The cuckoo species select recently spawned nests of other host bird (mostly 

other species) to lay their eggs and remove the existing eggs for increasing the hatching 

probability of their eggs.  Alternatively, some of the birds fight for this parasitic behavior 

of cuckoos and discard the discovered stranger eggs or build their new nest in new 

locations. Based on this distinct life style and aggressive reproduction strategy of cuckoo 

species, a meta-heuristic algorithm has been developed by Yang (2011). This algorithm 

contains a population of nests or eggs. Different steps in cuckoo search are as follows: 

Initialize the Cuckoo search algorithm parameters: The different parameters are number 

of nests (n), step size parameter   , discovering probability (pa) and maximum number 

of analysis as stopping criteria. 

1. Generate initial nest or eggs of host bird: Initial locations of the nests are determined 

by the set of values assigned to each decision variable randomly as:  
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                                                              (4.8) 

where, 
)(

j,inest 
 determine the initial value of the jth variable for the ith nest, 

min,j
x

and 
max,j

x are the minimum and maximum allowable values for the jth variable, 

rand is the random number in the interval [0,1].  

2. Generate new cuckoo by Lévy flights: In this step, all the nests except for the best 

one so far are replaced by new cuckoo eggs produced with levy fights from their 

position as:  

       
rt

best
nestt

i
nestS t

i
nestt

i
nest 





                                               (4.9) 

where, t
i

nest is the ith nest current position, is the step size parameter which is 

considered to be 0.1, S is the Lévy flight vector as in Mantegna’s algorithm, r is a 

random number from a standard normal distribution and 
t
best

nest is the position of 

the best nest so far.  

3. Alien eggs discovery: The alien eggs discovery is performed for all of the eggs using 

the probability matrix for each component of each solution. Existing eggs are 

replaced considering quality by newly generated ones from their current position by 

random walks with step size such as: 

      j i2permutenestsj i1permutenestsrandS                                          (4.10) 

   
Psize_steptnest1tnest 

                                                                          (4.11) 
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pa  rand if              1

ij
p

                                                                                  (4.12) 

where permute 1 and permute 2 are different rows permutation function applied to 

the nests matrix and P is the probability, pa in the range of [0,1]. 

4. Termination Criterion: The generation of new cuckoos and the discovery of the alien 

eggs steps are performed alternately until a termination criterion satisfied. 

The cuckoo search is one of the popular meta-heuristic optimization technique used in 

different field of research for optimization the system parameters (Moravej and Akhlaghi, 

2013; Yang and Deb, 2010; 2013; Chandrasekaran and Simon, 2012; Yildiz, 2013; 

Burnwal and Deb, 2013). The above described steps are coded using software MATLAB 

2013 version.  
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4.4 Simulation procedure  

 To analyse the performance of MTS and ATS manufacturing systems, modelling 

based on system dynamics approach has been adopted. The system dynamics is one of 

the useful computer aided approaches helps in developing model and studying the 

behaviour of a system under the influence of various internal and external factor in a 

realistic manner (section 3.2.1, in chapter 3). 

4.4.1 Simulation procedure for make-to-stock manufacturing system model  

 The model as described in Figure 4.1 is modelled through the system dynamics 

approach using the software STELLA 0.5 as shown in Figure 4.3. The figure describes 

the MTS production system without machine failure.  The various symbols and notations 

used in the system dynamic models are defined in Table 4.1. Followings are the certain 

assumption made to model and simulate the considered MTS manufacturing system 

(Figure 4.3).  

 
Figure 4.3  Make-to-stock manufacturing system without machine failure 

Assumptions 

1. Once the order for raw material is placed by the production unit, it cannot be 

discarded by the supplier and it cannot cancelled by the production unit. 

2. Once order received at production end, it cannot be returned back. 
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3. The unmet demand is counted as backorder and immediately fulfilled when sufficient 

stock is available.  

4. Backorders during previous periods are given higher priority than the current 

demand. 

5. Machine setup time is not considered. 

6. Production time is independent of raw material input for production. 

7. During the occurrence of machine failure, the in-process material is removed from 

machine and later it is taken as fresh raw material to continue the production 

process. 

8. No cost components are considered here. 

9. The raw materials and finished goods are not perishable. 

Table 4.1 Notations used in system dynamics model for MTS manufacturing system 

1. M RM INV – Manufacturer’s raw material inventory 
2. M project on hand stock – Estimated projected on hand stock for raw material 

at  manufacturer end 
3. ROP – Reorder point for raw material inventory of manufacturer  
4. Target INV – Raw material target inventory at manufacturer  
5. RM order Qty –Quantity of raw material order  by manufacturer 
6. S RM INV – Supplier’s raw material inventory  
7. Acquisition rate – raw material acquisition rate for supplier 
8. RM order backlog Qty to satisfied – Total backlog for raw material order that is 

to be satisfied  by supplier  
9. RM backlog accumulation – Accumulation for backlogged raw material  
10. RM backlog per period – Amount of raw material backlog in current period  
11. RM dispatch rate – Quantity of raw material dispatch from supplier to  

  manufacturer  
12. Raw material received – Raw material received at manufacturer end 
13. RM supply lead time –  Lead time between raw material supplier and        

  manufacturer  
14. Total RM demand at S – Total raw material demand at supplier end  
15. Normal production rate – Normal production rate of manufacturing unit 
16. Desired production rate – Total amount of product need to produce  
17. Production input – Raw material input for production  
18. Occurrence of failure – Occurrence of machine failure 
19. Production delay – Time taken by machine to convert raw material into finished    

  product 
20. Production completion rate – Finished product produced per period  
21. Delay due to machine failure –Delay in production completion due to machine 

  failure 
22. Leakage – Raw material remove from machine while machine get shut down 
23. F INV – inventory for finished product 
24. Sales rate – Amount of product sale in a period 
25. Total demand of product – Total demand for product 
26. Prod backlog per period – Unmet product demand quantity in current period  



52 
 

27. Prod backlog acquisition – Accumulation product backlog quantity 
28. Prod backlog to satisfied – Amount of backlog product  to be satisfied  
29. Market demand – external market demand  

 Different scenarios are considered to analyse the sustainability and behaviour of 

production system under the different dynamic factors. Six different scenarios have been 

generated for comparative study as described below: 

i. Scenario 1: Base model  

 The production system without machine failure is simulated so that performance of 

the production system can be compared with the rest of the scenarios. Scenario 1 has 

been taken as the base model to compare the rest of the scenarios.  

ii. Scenario 2: Variation in lead time  

 The time taken by supplier to deliver an order may vary from order to order. The 

variation in raw material supply lead time affects the raw material stock level at 

manufacturer’s end and impacts on production process leading to influence on 

finished goods inventory. Scenario 2 describes the effect of increase in variation of 

raw material supply lead time on the manufacturer’s performance. 

iii. Scenario 3: Variation in production delay  

 The time taken to process a unit of raw material and converting it into finished 

product take some amount of time called production delay (processing time). The 

variation in processing time affects the finished goods inventory. In this scenario, the 

dynamic behaviour of the manufacturing unit is studied under the effect of increasing 

variation in production delay. 

iv. Scenario 4: Delay due to machine failure  

 The occurrence of machine failure causes interruption in production process. It 

takes a random time to repair the machine and hence, random delay to restart the 

production process. Random delay in production operation affects the production rate 

and impacts on service level. Here, the performance of production system is studied 

under varying the delay due to machine failure.  

v. Scenario 5: Variation in lead time and processing delay 

 Under this scenario, the performance of the manufacturer is studied under 

simultaneously increasing in the variation of both raw material supply lead time and 

processing delay. 

vi. Scenario 6: Variation in lead time, processing delay and delay due to machine failure  
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 This scenario describes the behaviour of the production system under the 

simultaneous increase in variation of all the three uncertainty factors - raw material 

supply lead time, processing delay and delay due to machine failure.  

Initial conditions  

1. There is no outstanding order for raw material. 

2. There is no raw material in transit. 

3. There is no raw material in processing. 

4. There is no backlog for raw material and product. 

5. S_RM_INV = 200 units, M_RM_INV = 100 units and F INV = 100 units. (S, M, F, RM 

and INV represent supplier, manufacturer, finished product, raw material and finished 

goods inventory respectively).The ROP value taken here is 135 units and target 

inventory level is set at 154 units. 

 The equations for the stock-flow diagram (Figure 4.3) are shown in Appendix 3. The 

initial condition for supplier’s raw material inventory, manufacturer raw material inventory 

and finished goods inventory remains same for all scenarios. The other parameters of 

the model like ROP, target inventory, demand and acquisition rate also remain same for 

all scenario. The models are simulated for 365 days (1year) time period. The total 

unfilled demand (backlog) quantity is taken as the performance measure and estimated 

at the end of each simulation run.  

4.4.2 Simulation procedure for assemble-to-stock manufacturing system model  

 In order to simulate the purposed ATS manufacturing system (Figure 4.2), it is 

modelled through system dynamics approach as shown in Figure 4.4. The different 

notations for the system dynamics model are described in Table 4.2. In order to simulate 

the model (Figure 4.4), certain assumptions and initial conditions are considered as 

described in the followings.  

Assumptions 

i. Once the order placed by manufacturing system, it cannot be discarded by the 

supplier nor gets it cancelled.  

ii. Once the order for assembly components is received, it cannot be discarded. 

iii. Each assembly component is essential to the production process. 

iv. Backorders are allowed and is given higher priority than the current demand.  

v. Product defects or assembly component defects has not been considered. 

vi. No setup time is considered. 

vii. No cost components are taken care of. 
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Figure 4.4 System dynamics model for assemble-to-stock manufacturing system  

Table 4.2 Notations used in system dynamics model for ATS manufacturing system 

 
1. RM1: raw material1 
2. RM1 BKLG ACC at S1: Raw material1 backlog accumulations occur at supplier1. 
3. RM1 to satisfy: raw material1 needed to be satisfied in next period. 
4. RM1 BKLG PER PERIOD: raw material1 backlog occurs at each period 
5. TOTAL RM1 Demand at S1: total raw material1 demand at supplier1 
6. S1: target inventory for raw material1 
7. ROP1: reorder-point for raw material1 
8. ORD RM1: order quantity for raw material component1 
9. PRJ OH STK RM1: projected on-hand stock for raw material1 
10. DSPR1:desired production decision input for machine1 
11. NPR1: normal production rate for machine1 
12. ASQR1:acquisition rate for machine1 
13. S1 INV: supplier1 raw material component inventory 
14. Dispatch1: raw material1 dispatch from supplier1 
15. LT1: raw material supply lead time between supplier1 and manufacturing unit 
16. RM1 received: raw material1 received at manufacturer inventory 
17. RM1 INP: raw material input to machine1 
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18. PRD delay1: assembly time taken by machine1 
19. Lekage1: raw material remove after machine fails  
20. Delay due failure1: delay due to the failure of machine1 
21. PR1: normal production completion rate 
22. PR11: production completion rate after machine failure of machine1 
23. WIP1: work-in-process inventory1 

 

Initial conditions  

i. No raw material component in transit. 

ii. No product backlog. 

iii. No raw material component under process. 

iv. No raw material component in WIP inventory.  

v. No raw material backlog. 

vi. S1_INV = 800 lots, S2_INV = 800 lots, S3_INV = 800 lots, RM1_INV = 800 lots, 

RM2_INV = 800 lots, RM3_INV = 800 lots, F_INV = 800 lots.  

 The equations for stock-flow diagram (Figure 4.3) are shown in Appendix 4. To 

analyse the performance of the ATS manufacturing system, three different uncertainties 

such as lead time, assembly time and delay due to repairing the machine when break 

down occurs are considered. To measure the influence of the uncertainty, the standard 

deviation of the uncertainties is varied. The uncertainty factors are considered with three 

levels (low, medium and high) as described in Table 4.3. A response surface 

methodology (RSM) approach is adopted to generate experimental scenarios and 

examine the relationship between performance measures and uncertainty factors (Zabeti 

et al., 2009; Kansal et al., 2005). Using the Box-Behnken design of RSM, different 

experimental scenarios are generated and the model is simulated for 364 days. 

Table 4.3 Experimental setting for identified factors level 

Factors 

 

Level (in days) 

Low (L) Medium (M) High (H) 

Lead time (A) 0.5 (-1) 1 (0) 1.5 (1) 

Assembly delay (B) 0.333 (-1) 0.667 (0) 1 (1) 

Delay due to machine failure (C) 0.333 (-1) 0.667 (0) 1 (1) 

 The figures in the bracket indicate coded level for the factor 

4.5 Performance analysis of manufacturing system  

 Following paragraphs contain the performance analysis for MTS and ATS 

manufacturing system under uncertain environment.  
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4.5.1 Performance analysis of make-to-stock system under uncertain environment  

a. Scenario 1: Base model 

 This scenario has been considered as the benchmark to compare rest of the 

scenarios. Under this scenario, production system without machine failure (Figure 4.3) is 

simulated for 365 days when lead time is considered as ~N(4,1) days and the processing 

time as ~N(32,4) hrs. i.e.  ~N (1.33, 0.167) days as described in Table 4.4. Backlog is 

estimated at the end of each simulation run. To identify the warm-up period, the finished 

goods inventory level is estimated and the time series plot is shown in Figure 4.5. From 

the figure, it can be observed that initial 80-periods are under transient phase. Hence, 

these periods are removed from the simulation runs considering as warm-up period and 

rest of the periods are considered as steady state. The estimated backlog is 379units 

considering only the steady state period (from Table 4.4).  

 
Figure 4.5 Time series plot for the finished goods inventory for MTS manufacturing 

system 

Table 4.4 Estimated values for scenario 1 

Factors 
Total 

backlog 

(in units) 

Total 

demand 

(in units) 

Lead time  

(in days) 

(mean, std. dev.) 

Processing 

(time in hours)  

(mean, std. dev.) 

(4, 1) (32, 4) 379 5377 

b. Scenario 2 

 The backlog quantities are estimated by simulating the base model through 

gradually increasing the standard deviation of raw material supply lead time at 10% 

from the base model keeping all other parameters constant. The results are 

summarized in the Table 4.5. From the table, it can be observed that backlog 
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quantity increases as standard deviation (uncertainty) of supply lead time increases 

from the base value. 

Table 4.5 Estimated backlog from scenario 1 and scenario 2 

scenario 

Standard deviation 

of supply lead Time 

( in days) 

Total backlog 

(in units) 

Total demand 

(in units) 

Scenario 1 1 379 

5377 
Scenario  2 

1.1 391 

1.2 485 

1.3 510 

c. Scenario 3 

 Under this scenario, the backlog quantities are estimated by simulating the base 

model by increasing the standard deviation of processing time at 10% keeping all other 

parameters to base model case and the results are summarized in Table 4.6. From the 

table, it can be observed that backlog increases with increase in uncertainty in 

processing time.  

Table 4.6 Estimated values from scenario 1 and scenario 3 

Scenario 
Standard deviation 
of processing time 

(in days) 

Total 
backlog 
(in units) 

Total 
demand 
(in units) 

Scenario 1 0.167 379 

5377 
Scenario 2 

0.183 656 

0.200 661 

0.217 685 

d. Scenario 4 

 Under this scenario, uncertainty in repair time of machine if a machine fails is 

introduced in the base model (Figure 4.3) as shown in Figure 4.6. Equations for the 

stock-flow diagram are shown in Appendix 5. The mean failure rate of the machine is 

considered as 0.0001. Initially, mean repair time for machine is taken as 8 hours and 

then it is increased by 33% (4 hrs.) keeping all other parameters at the base model case. 

The estimated backlog quantities from the simulation runs are summarized in Table 4.7. 

From the table, it can be observed that the backlog quantity increases with increase in 

time taken to repair the machine. 
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Figure 4.6 MTS manufacturing system with machine failure  

Table 4.7 Estimated values for scenario 4 

Mean repair time  

(in days) 

Total 

backlog 

(in units ) 

Total 

demand 

(in units) 

0.333 (8hrs) 1605 5377 

0.5 (12hrs) 1851 5377 

0.667 (16hrs) 2018 5377 

0.833 (20hrs) 2307 5377 

e. Scenario 5 

 Under this scenario, effect of uncertainties in raw material supply lead time and 

processing time on backlog is analysed. For this purpose, standard deviation in lead time 

and processing time is varied as shown in Table 4.8. The model shown in Figure 4.3 is 

simulated. From the table, it can be observed that backlog increases with increase in 

uncertainty in lead time and processing time. 
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Table 4.8 Estimated values from scenario 5 

Scenario 
Standard  

deviation of lead 
time ( in days) 

Standard deviation 
of processing 
time (in days) 

Total 
backlog 

(in units ) 

Total 
demand 
(in units) 

Scenario 1 1 0.167 379 

5377 
Scenario 2 

1.1 0.183 677 

1.2 0.2 709 

1.3 0.217 733 

f. Scenario 6                                                                                                                         

 In this scenario, simultaneous effect of uncertainty in lead time, processing time and 

repair time on backlog is analysed. For this purpose, the two levels of uncertainty are 

considered as shown Table 4.9.       

Table 4.9 Levels of factors 

Factors 

Levels 
(standard deviation 

values in days) 

Low High 

Lead time (LT) 1.1 1.3 

Processing time (PT) 0.183 0.217 

Repair time (delay due to machine failure) (DMF) 0.5 0.833 

 

 Using the factors and their levels, eight different experimental scenarios are 

generated through full factorial design as shown in Table 4.10. Parameters are set based 

on these scenarios and the system dynamics model (Figure 4.6) is simulated keeping 

rest of the parameter at their base level case. The estimated backlog from simulation 

runs is summarised in Table 4.10. From table, it can be observed that the backlog 

quantity estimated in experiment number 4 and 8 is much higher than other experimental 

runs. It signifies that high uncertainty in processing time and delay due to machine failure 

cause frequent stock-out situation at finished goods inventory leading to increase in 

backlog. 

Table 4.10 Estimated values for different experimental scenarios for scenario 6 

Exp. 
No. 

Lead 
Time 

(in days) 

Processing time 
(in days) 

Repair time 
(in days) 

Total 
backlog 
(in units) 

1 1.1 0.183 0.500 2087 

2 1.1 0.183 0.833 2174 

3 1.1 0.217 0.500 2193 

4 1.1 0.217 0.833 2563 

5 1.3 0.183 0.500 2171 

6 1.3 0.183 0.833 2258 

7 1.3 0.217 0.500 2271 

8 1.3 0.217 0.833 2642 
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To identify the influencing factor on backlog, an analysis of variance (ANOVA) is 

conducted (Table 4.11). From the table, it can be observed that uncertainty in lead time, 

processing time and delay due to machine failure have significant effect on backlog at 

significance level of 0.05. From the main effect plot shown Figure 4.7, it can be identified 

that backlog can be reduced when variation in lead time, processing time and machine 

repair time is minimized. Similarly, from Table 4.11, it can be observed that interactions 

of processing time and delay due to machine failure have strong effect on the backlog at 

significance level of 0.05. This can be observed from the interaction plot shown in Figure 

4.8.   

Table 4.11 Summary of analysis of variance for backlog  
Source DF Seq SS Adj SS Adj MS F P 

Lead time 1 13203 13203 13203 105625 0.002 

Processing time  1 119805 119805 119805 958441 0.001 

Delay due to machine failure  1 104653 104653 104653 837225 0.001 

Lead time× Processing time 1 15 15 15 121 0.058 

Lead time× Delay due to machine 
failure 1 0 0 0 1 0.5 

Processing time ×Delay due to 
machine failure 1 40186 40186 40186 321489 0.001 

Error 1 0 0 0     

Total 7 277863         

S = 0.353553   R-Sq = 100.00%   R-Sq(adj) = 100.00% 

 
Figure 4.7  Main effect plot for backlog estimated from scenario 6 

M
e

a
n

 o
f 

t
o

t
a

l 
b

a
c
k
lo

g

21

2400

2350

2300

2250

2200

21

21

2400

2350

2300

2250

2200

lead time production delay

delay due machine failure

Main Effects Plot (data means) for total backlog



61 
 

 
Figure 4.8 Interaction effect for estimated backlog from scenario 6 

A generalized regression equation is developed to relate input factors with backlog 

are shown in Equation (4.13).  

DMFPT.DMFLT.PTLT.

DMF.PT.LT..Backlog



                                  (4.13) 

 To obtain the best minimum value for the backlog, the above derived equation is 

optimized through the cuckoo search algorithm. Based on the steps described in section 

4.3, the parameter settings for optimization are number of nests, n=30, maximum 

iteration=1500, pa=0.89 and tolerance value=2087units (minimum backlog value shown 

in Table 4.10). Under these parameter settings, the optimal backlog obtained is 1968 

units with optimal factorial values of LT=1.1, PT=0.183 and DMF=0.5957. The obtained 

optimal backlog (1968 units) is less than minimum value estimated from experimental 

scenarios (Table 4.10). The convergence curve for optimizing backlog through cuckoo 

search is shown in Figure 4.9.  From the figure, it can be observed that optimal minimum 

value for backlog is obtained after 600 iterations. 

lead time

21 21

2600

2400

2200

production delay

2600

2400

2200

delay due machine failure

lead

time

1

2

production

delay

1

2

Interaction Plot (data means) for total backlog



62 
 

 
Figure 4.9 Convergence plot for optimized backlog for MTS manufacturing system 

4.5.2 Performance analysis of assemble-to-stock manufacturing system under 

uncertain    environment  

To analyse the performance of ATS manufacturing system under the influence of 

uncertainty in lead time, assembly time and repair time, fifteen different experimental 

scenarios are generated using experimental setting shown in Table 4.3. The complete 

experimental runs are shown in Table 4.12. Figure 4.4 is simulated for 1-year (364days) 

time period. To analyse the warm-up period, the finished goods inventory is estimated 

and time series plot is shown in Figure 4.10. From the figure, it is identified that initial 90-

periods are under transient phase. Hence, these periods are considered as warm-up 

period and eliminated from the total simulation time period. From the simulation runs, the 

estimated backlog and WIP values considering the steady state period are summarised 

in Table 4.12. 
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Figure 4.10 Time series plot for finished goods inventory 

Table 4.12 Summary of the experimental scenarios generated for Box-Behnken design 
and estimated parameters 

Design 
points Lead time (A) 

Assembly 
 Time (B) 

Delay due to 
machine failure (C) 

Product 
Backlog 
(in lots) 

WIP1 
(in lots) 

WIP2 
(In lots) 

Coded in depended variable levels  

1 -1 -1 0 4491 447.369 184.404 

2 1 -1 0 4691 458.369 223.404 

3 -1 1 0 4857 481.895 313.549 

4 1 1 0 4897 492.895 343.549 

5 -1 0 -1 4706 432.193 216.288 

6 1 0 -1 4816 452.193 206.288 

7 -1 0 1 5047 539.087 196.736 

8 1 0 1 5447 589.087 206.736 

9 0 -1 -1 2711 278.004 179.468 

10 0 1 -1 4681 493.433 364.672 

11 0 -1 1 4564 509.933 181.319 

12 0 1 1 4857 504.793 341.798 

13 0 0 0 5047 524.227 208.172 

14 0 0 0 5049 642.494 211.284 

15 0 0 0 5016 472.866 310.878 

 The mathematical model obtained from the regression analysis for backlog is 

expressed in Equation (4.14). The coefficient of determination ( R ) obtained is 90.1% 

signifying best fitting of the model.  From the ANOVA, it is found that uncertainty in 

assembly time (B), delay due to machine (C) and interaction of these two factors have 

significant effect on backlog. Figure 4.11 describe simultaneous effect of assembly time 

(B) and delay due to machine (C) on backlog.  

       CB 3769.48CA.BA.C.B.    

A.C.B.A..logBack 









    (4.14) 

14:45    12 Nov  2012Page 1

0 73 146 219 292 365

Day s

1:

1:

1:

0.00

300.00

600.00

1: F INV
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Figure 4.11 Surface plot of backlog vs. delay due machine failure and assembly time 

 Similarly, the estimated regression model for WIP1 is shown in Equation (4.15). The 

R value obtained is 80.1% signifying good fitting of the model. From the ANOVA, it is 

found that factor C has significant effect on the WIP1 inventory at significance level of 

0.05. Interactions do not have strong effect on the WIP1. Figure 4.12 indicates that WIP1 

increases rapidly with increase in assembly time. However, it increases slowly with 

increase in delay due to machine failure.  

CB.CA.C.              

B.A.C.B.A..WIP









          (4.15) 

 
Figure 4.12 Surface plot of WIP1 vs. assembly time and delay due to machine failure 

 Similarly, the estimated regression model or WIP2 is shown in Equation (4.18) and 

estimated R value is 86.5%. From ANOVA, it is found that factor B has significant effect 

on the WIP2 whereas no interaction has strong effect on WIP2. Increase in uncertainty in 

assembly time (B) leads to increase in WIP2 level as shown in surface plot Figure 4.13.  
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CB.CA.BA.C.               

B.A.C.B.A..WIP









          (4.16) 

 
Figure 4.13 Surface plot of WIP2 vs. lead time and assembly time 

4.6 Summary 

 The performance of MTS and ATS manufacturing system is analysed under the 

influence of uncertainty in lead time, processing time/assembly time and repair time. For 

this purpose, the MTS production system employed with (s, S) is modelled through 

system dynamics approach. The performance of the system is analysed in terms of 

backlog under the influence of considered uncertainties and found that increase in 

uncertainty in lead time, processing time and delay due to the machine failure have 

significant effect on backlog. However, simultaneous increase in production delay and 

delay due to machine failure exhibits higher influence on backlog. Further, the cuckoo 

search optimization technique is applied to determine the optimal parameter settings to 

reduce the backlog.  

 Similarly, an ATS manufacturing is modelled through system dynamics approach. 

Different scenarios are generated using RSM methodology considering uncertainty in 

lead time, assembly time and delay due to machine failure. The impact of uncertainties 

on backlog and WIP is investigated through RSM analysis. From the analysis, it is 

observed that assembly time and delay due to machine failure has significant effect on 

backlog whereas assembly time has significant effect on the WIP2 and delay due to 

machine failure has significant effect on the WIP1. Further, relationship between 

uncertainty and performance measures is derived and represented through empirical 

equation. These equations may help the practitioners in predicting performance 

measures when uncertainty in various model variables is known. The next chapter deals 

with study on managing uncertainties through adopting strategic plan.  
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5.1 Introduction  

 Previously, many researchers have identified the significance of analysing the 

uncertainties in the context of supply chain management using various modelling 

approaches (Petrovic et al., 1998; 1999; Petrovic, 2001; Mahnam et al., 2009; Wang and 

Shu, 2005; Xie et al., 2006; Vorst and Beulens, 2002; Prater, 2005; Koh and Tan, 2005). 

The manufacturing unit is one of the important subsystems of a supply chain getting 

severely affected due to uncertainties associated along the supply chain typically when it 

operates on a MTS policy (Bera and Sharma, 1999; Williams, 1984; Silver et al., 1998). 

Studies have been carried out to propose mathematical models for economic 

manufacturing quantity (EMQ) considering random machine failure (Groenevelt et al., 

1992a; Groenevelt et al., 1992b; Chakraborty et al., 2008). However, it is difficult to 

analyse mathematically even a simple two stage supply chain when many kinds of 

uncertainties act upon a system. Therefore, simulation approaches like system dynamics 

modelling is a viable method for analysing complex systems. Recently, researchers have 

applied this approach to analyse the behaviour of complex supply chains (Vlachos et al., 

2007; de Souza et al., 2000; Ge et al., 2004; Owens et al., 2002; Hwarng and Xie , 2008; 

Campuzano et al., 2010; Hussain and Drake, 2011; Helo, 2010). 

 Helo (2010) has modelled a two level supply chain capable of manufacturing multiple 

products operating under make-to-order (MTO) policy using system dynamics approach 

to study the relationship between capacity utilization with lead time and demand 

variation. Özbayrak et al. (2007) have adopted system dynamics approach to analyse 

the behaviour of four level supply chains operating with MTO policy through different 

scenarios considering uncertainties in demand, production time, manufacturing reliability, 

supplier reliability and information sharing. Different strategic plans are considered to 

tackle different issues in supply chain. Huang et al. (2012) have studied the impact of 

backup strategy on supply disruption for a supply chain with one retailer and two 

independent suppliers (major and backup supplier) through the SDM approach. 

Georgiadis et al. (2005) have adopted system dynamics tool for proposing a framework 

to tackle the strategic issues in food supply chain. Ramasesh (1991) has proposed dual 

sourcing strategy to minimize the inventory holding cost under uncertain lead time. 

 However, limited number of studies focus on analysing the performance of two stage 

supply chain operating with MTS policy under the influence of various uncertainties in 

demand, raw material supply quantity, lead time, random occurrence of machine failure, 

processing time and repair time. Therefore, a simulation modelling framework is 
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proposed in this chapter to analyse the performance measures of the MTS 

manufacturing system expressed in terms of system outputs such as work-in-progress 

(WIP) inventory, backlog and raw material shortage under the influence of various 

uncertainties like demand, lead time, processing time, delay due to machine failure, 

acquisition rate of the supplier and random occurrence of machine failure. The model is 

confined to a single product processed through two machines and raw materials supplied 

from an external suppliers. Further, a backup supply strategy is suggested to improve the 

service level at manufacturer end by enhancing the service level at the raw material 

supplier end under the uncertain environment.  

5.2 Model description  

In MTS manufacturing system, a finished goods stock is maintained in anticipation to 

meet the fluctuations in customer requirements. The schematic block diagram of a serial 

manufacturing supply chain confined to a single product is depicted in Figure 5.1. For the 

analysis purpose, a gear manufacturing process has been considered in this study. 

Gears are manufactured through hobbing process. The production system consists of 

two processes - hobbing and finishing. Two machines are involved in production process 

having equal and limited capacity. The production system is a continuous process 

(24×7hrs). Three types of inventories such as raw material (blanks), work-in-progress 

(WIP) and finished goods inventory are maintained in the production process. The 

demand for gears is probabilistic in nature and satisfied from finished goods inventory. 

The raw material (RM) is supplied from a single external supplier. The raw material 

inventory is replenished through reorder-point, order-up-to-level inventory control policy 

i.e. (s, S) inventory control policy. The replenishment quantity tQ is decided based on the 

Equation 3.6 and Equation 3.7 (section 3.3, in Chapter 3).   
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1: Supplier’s raw material inventory 
2: Manufacturer’s raw material inventory 
3: Machine 1 
4: WIP inventory 
5: Machine 2  

6: Finished goods inventory 

RM: Raw material 

The dotted lines represent flow of information for order and solid line represents the 

flow of raw material/goods.  

Data related to demand, supply lead time, machine break down and repair time are 

collected from the past records of the manufacturer. Statistical analysis of data leads to 

(i) demand is normally distributed with ~N (27, 1) in lots per day (ii) supplier’s lead time is 

normally distributed with ~N(5,1) in days (iii) processing time in both the machines is 

equal and normally distributed with ~N (5,1) in days (iv) raw material acquisition rate of 

the supplier is normally distributed with ~N(26,1) lots per day (v) failure of machine 

occurs exponentially with a rate of 0.0001 failures per day (vi) repair time for each 

machine is exponentially distributed with ~Exp(20hrs). 

The demand for gears is normally distributed with ~N (27, 1) lots per day is satisfied 

from the finished goods stock. Any unfilled demand is considered as backlog and fulfilled 

when sufficient stock becomes available. The total demand at time period t is sum of 

current demand and backlog from previous period (t-1). The sales rate at time period t 

depends on finished goods stock and total demand as described in Equation (5.1).  

 demand Total NV,Finished_I Min  rate Sales                                                             (5.1) 

The finished goods stock level depends on the production rate. There are two 

machines involved in the production process. Both the machines have equal processing 

time and normally distributed with ~N (5, 1) in days. The normal production rate of the 

machines is 150 lots and the maximum production rate is 200 lots. The production 

decision depends on backlog generated from previous periods. Hence, production rate 

get fluctuated between normal production rate and maximum production rate. If backlog 

from t-1 period is less than or equal to 5 lots then the production is run with normal 

production rate. While backlog is more than 5 lots and less than 10 lots, the production 

rate increases with 10%. Similarly, the production rate is increased by 20% or 30% 

based on the generated backlog from previous period as descried in Equation (5.2). The 

production process may get interrupted due to occurrence of failure. The machine failure 

occurs exponentially with a rate of 0.0001 failures per day. The repair time for each 

machine is exponentially distributed with ~Exp (20 hrs).  The raw material input for 
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production is decided based on the availability of raw material quantity and the desired 

production rate estimated through the Equation (5.3).  The raw material inventory at the 

manufacturer end is replenished through reorder-point order-up-to level i.e. (s, S) policy. 

While the raw material inventory position falls below the re-order point (s) i.e. 200 lots, an 

order of tQ  is placed to the external supplier. The supplier has limited capacity and its 

acquisition rate is normally distributed with ~N (26, 1) lots per day. 

   

  

  

 

  rate ptoduction Normal % rate production  Normal 

ELSE rate production Normal 20%  rate production  Normal

 THEN 25 Backlog AND 10 Backlog IF ELSE rate production Normal

10%  rate production Normal THEN10 Backlog AND 5  BacklogIF ELSE

rate production Normal THEN5 Backlog IF rate production Desired











   (5.2) 

 RM_INV rate, production Desired Min  production for input RM                                   (5.3) 

5.3 The simulation procedure  

 The system shown in Figure 5.1 is modelled through system dynamics approach 

using the software STELLA 5.0 as shown in Figure 5.2.  This figure describes the two 

stage MTS manufacturing supply chain without backup supply. Different notations for the 

system dynamics model are defined in Table 5.1. For modelling and simulation purpose, 

certain assumptions and initial conditions are considered as described below.  

Assumptions: 

1) Backorders are allowed. Backorder keeps higher priority than the current demand. 

2) Occurrence of failure is not consecutive for same machine.  

3) Both machines do not fail simultaneously. 

4) Machine setup time is not considered. 

Initial conditions: 

1) No raw material under processing in machine 1 and machine 2. 

2) No raw material order in transit. 

3) No material in work-in-progress inventory. 

4) No backlog at manufacturer’s end. 

5) No backlog at supplier’s end. 

6) No shortage of raw material at the manufacturing unit. 

7) S INV = 600 lots, M RM INV = 600 lots, F INV = 700 lots, ROP = 200 lots, M RM 

TINV = 350 lots (S INV: supplier inventory, M RM INV: manufacturer raw material 

inventory; F INV: finished goods inventory; ROP: reorder-point, M RM: manufacturer 

raw material inventory and TINV: target inventory). 
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Figure 5.2 System dynamics model for serial manufacturing supply chain without backup 

supplier 

Table 5.1 Notations 

1. SAR:    Supplier’s acquisition rate 

2. S INV:  Supplier’s raw material inventory 

3. RM dispatch rate: Raw material dispatch rate of supplier 

4. RM order BAKLG: Raw material order backlog at supplier end 

5. M RM order: Manufacturer raw material order quantity 

6. M RM Target INV: Target inventory of manufacturer 

7. M RM ROPI : Reorder-point of manufacturer’s raw material inventory 

8. RM shortage: Raw material shortage at manufacturer’s end 

9. M POHS: Manufacturer’s on-hand stock 

10. RM in transit : Raw material in transit 

11.  RM received : Raw material received at manufacturer’s end 

12. M RM INV: Raw material inventory level of manufacturer 

13. RM input 1: Raw material input to machine 1 

14. PD 1 and PD 2: Raw material processing delay at machine 1 and machine 2 

15. Leakage 1and leakage 2: Raw material removal rate from  machine1 and machine 2 
respectively when the machine fails  

16. Delay DMF 1 and delay DMF 1: Delay due to failure at machine1 and machine2 
respectively. 

17. CR 1 and CR 2: Production completion rate of machine 1and machine 2 respectively 

18. CR 11 and CR 22: Production completion rate after the occurrence of failure at 
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machine 1 and machine 2 respectively 

19. NPR 1and NPR 2: Normal production rate of machine 1 and machine2 

20. WIP: Work-in-progress inventory 

21. MDPR 1 and MDPR 2: Desired production volume for machine 1 and machine 2 

22. RM input 2: Material input from WIP to machine 2 

23. Occurrence of  failure 1 and failure 2: Time of failure for machine 1 and machine 2 

24. F INV: Finished product inventory 

25. M SR: Sales rate  

26. PRD: Demand 

27. T PRD: Total demand 

28. PRD BPR: Backlog per period  

29. PRD BPA: Backlog accumulated per period 

30. PRD BTS: Amount of backlog to satisfy  

31. M RM order to S: Order placed by manufacturer to major supplier 

32. M RM required : Total raw material requirement at manufacturer’s end  

33. RM in transit 1and RM in transit 2 : Raw order in transit while supplied by major 
supplier and backup supplier respectively  

34. BS INV: Inventory at backup supplier 

35. BS AR: Backup supplier’s acquisition rate. 

36. BS dispatch: Dispatch rate of backup supplier 

37. RMR FRM BS : Raw material received from backup supplier 

 

 Equations for the system dynamics model shown in Figure 5.2 are presented in 

Appendix 6. To analyse the behaviour of MTS manufacturing system under uncertainty, 

uncertainty in demand, raw material supply lead time, supplier’s acquisition rate, 

processing time, occurrence of machine failure and time taken to repair the machine are 

considered. To analyse the effect of above described uncertainties on the performance 

of MTS manufacturing supply chain, the system dynamics model (Figure 5.2) is 

simulated for one year (364 days) time period. To determine the warm-up period, the 

time series plot for finished goods inventory is analysed (Figure 5.3). From the figure, it 

can be observed that initial 119-periods can be considered as warm-up period. 

Therefore, data from simulation is collected under steady state condition.  In order to 

examine the effect of uncertainty on manufacturing supply chain, performance 

parameters such as backlog, raw material shortage at manufacturer’s end and supplier’s 

end, and work-in-progress (WIP) are estimated at the end of each simulation run during 

steady state period.  
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Figure 5.3 Time series plot for finished goods inventory 

5.4 Results and discussions 

 To analyse the performance of MTS manufacturing system under the influence of 

uncertainty, different cases are considered here.  

1. Base case  

In order to set a benchmark for making comparative study, the system dynamics 

model (Figure 5.2) is simulated considering the demand ~N (27, 1), supplier’s lead time 

~N (5, 1), processing time for both machines ~ N (5, 1) and supplier’s acquisition rate ~N 

(26, 1) with initial parameter settings as described in section 5.3. The different output 

parameters are estimated from the simulation runs during steady state period is 

described in Table 5.2. The service level at the manufacturing end is estimated using 

Equation (1.1) (in Chapter 1). 

Table 5.2 Estimated performance measures for base case 

Demand 
(in lots) 

Backlog 
(in lots) 

Average 
WIP 

inventory 
(in lots) 

Raw material 
backlog at 

supplier’s end 
(in lots) 

Raw material 
shortage at 

manufacturer’s 
end 

(in lots) 

Service 
level 
( %) 

6639 3605 97.629 0 185 46 

2. Uncertainty in demand 

 To analyse the effect of uncertainty in demand on the performance of considered 

system, the system dynamics model shown in Figure 5.2 is simulated by gradually 

increasing the standard deviation of demand with 4, 5 and 6 lots per day keeping rest of 

the parameters at base case level. The estimated values of parameters from the 

simulation runs are described in the Table 5.3.  
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Table 5.3 Summary of the estimated values by increasing standard deviation of demand  
Standard 
deviation 

of 
demand 
(in lots) 

Demand 
(in lots) 

Backlog at 
manufacturer’s 

end (in lots) 

Average 
WIP 

inventory 
(in lots) 

Backlog 
at 

supplier’s 
end 

(in lots) 

Raw material 
shortage at 

manufacturer’s 
end (in lots) 

Service 
level 
(%) 

4 6699 3931 94.873 0 185 41 

5 6727 4266 152.155 0 195 37 

6 6751 4493 152.094 0 200 33 

From Table 5.3, it can be observed that increase in uncertainty in demand leads to 

increase in backlog at manufacturer’s end. In fact, increase in demand uncertainty 

affects the finished goods inventory leading to stock-out situation. As a result, backlog 

gets increased causing decrease in service level. At base case, the service level is 46% 

whereas service level is gradually decreased to 41%, 37% and 33% as standard 

deviation of demand increases to 4, 5, 6 respectively (from Table 5.3). Equation (5.2) is 

used to find out production quantity needed as a function of backlog. As backlog 

increases, production quantity increases leading to increase of average WIP at shop 

floor. Demand variation also leads to increase in raw material shortage at manufacturer’s 

end.  

3. Uncertainty in supply lead time  

 To analyse the effect of uncertainty in raw material supply lead time, the model shown 

in Figure 5.2 is simulated by gradually increasing the standard deviation of supply lead 

time (supplier unreliability) at 10%, 50% and 60% (i.e. 1.1, 1.5, 1.6 in days) from the 

original standard deviation value as described in base case keeping all other parameters 

at their base case level. From the simulation runs, different performance measures are 

estimated as presented in Table 5.4. It can be observed that the service level gradually 

falls (38%, 35% and 34%) due to gradually increasing uncertainty in lead time. 

Table 5.4 Summary of the estimated values by increasing standard deviation of lead time 
Standard 
deviation 

of 
supplier’s 
lead time  
(in days) 

Demand 
(in lots) 

Backlog at 
manufacturer’s 

end (in lots) 

Average 
WIP 

inventory 
(in lots) 

Backlog 
at 

supplier’s 
end  

(in lots) 

Raw material 
shortage at 

manufacturer’s 
end (in lots) 

Service 
level 
(%) 

1.1 6639 4083 122.359 0 170 38 

1.5 6639 4306 124.310 0 195 35 

1.6 6639 4353 121.747 0 240 34 

4. Uncertainty in supplier’s acquisition rate  

 To analyse the effect of uncertainty in supplier’s acquisition rate on the performance 

of manufacturing supply chain, the mean value of supplier’s acquisition rate is decreased 
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by 4% (i.e. 24, 23, 22 and 21days) from its base value in a sequential manner and the 

model shown in Figure 5.2 is simulated keeping other parameters at base case level. 

The different parameters are estimated from the simulation runs are presented in Table 

5.5. Decrease in mean acquisition rate leads to increase in raw material shortage at the 

supplier’s end and insufficient quantity of raw material is supplied to manufacturer. 

Therefore, the raw material orders get backlogged at supplier’s end. This leads to 

increase in raw material shortage at the manufacturer’s end. Hence, there is decrease in 

WIP as shown in Table 5.5. As the production rate is adversely affected, there is 

increase in backlog at manufacture’s end. Hence, service level is adversely affected as 

evident from Table 5.5.  

Table 5.5  Summary of the estimated values by decreasing supplier's acquisition rate 

5. Processing time variation of machine 1 and machine 2 

 To study the effect of increase in production uncertainty due to machine (machine 1 

and machine 2), the standard deviation of material processing time is gradually 

increased with 10%, 50% and 60% from the base case value and the model in Figure 5.2 

is simulated keeping other parameters at base case level. The estimated performance 

measures from the simulation runs are described in the Tables 5.6 and Table 5.7.  

Table 5.6 Summary of the estimated values by varying processing time of machine 1 
Standard 

deviation of 
processing 

time 
of machine 1 

(in days) 

Demand 
(in lots) 

Backlog 
at 

manufacturer’s 
end (in lots) 

Average 
WIP 

(in lots) 

Backlog at 
Supplier’s 

end 
(in lots) 

Raw material 
shortage at 

manufacturer 
end (in lots) 

Service 
level 
(in %) 

1.1 6639 3845 99.416 0 160 42 

1.5 6639 4385 144.988 0 280 34 

1.6 6639 4776 149.800 0 460 28 

 Increase in uncertainty in processing time affects the production rate leading to 

stock-out at finished goods inventory and hence, backlog increases at the manufacturer’s 

end. Therefore, service level is decreased as shown in Table 5.6. From the Table 5.6, it 

can be observed that increase in backlog causes increase in total demand and this 

Mean value 
for supplier’s 
acquisition 

rate 
(in lots/day) 

Demand 

(in lots) 

Backlog at 

manufacturer’s 

end  

(in lots) 

Average 

WIP 

inventory 

(in lots) 

Backlog 

at 

supplier’s 

end   

(in lots) 

Raw material 

shortage at 

manufacturer’s 

end (in lots) 

Service 

level 

(in %) 

24 6639 3717 95.073 0 200 44 

23 6639 4252 92.367 5471 388 36 

22 6639 5072 90.376 11093 1192 24 

21 6639 5755 84.698 22975 1604 13 
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ultimately increases the raw material input as evident from Equation (5.2) and Equation 

(5.3). Increase in raw material input causes increase in raw material shortage at the 

manufacturer’s end. The WIP inventory level is severely affected by processing time of 

machine 2 due to blocking effect. Due to increase in variation in processing time of 

machine 2, the finished goods inventory gets affected leading to occurrence of stock-out 

situation. This leads increase in backlog and decrease in service level as shown in Table 

5.7. 

Table 5.7 Summary of the estimated values by varying the processing time of machine 2 
Standard 

deviation of 
processing 

time  
of machine 2  

(in days) 

Demand 

(in lots) 

Backlog 

at 

manufacturer’s  

(in lots) 

Average 

WIP 

inventory 

(in lots) 

Backlog at 

supplier’s 

 end  

(in lots) 

Raw material 

shortage at 

manufacturer’s 

end (in lots) 

Service 

level 

(in %) 

1.1 6639 3893 130.65 0 145 41 

1.3 6639 4391 127.91 0 185 34 

1.5 6639 4515 160.60 0 195 32 

 

6. Repair time variation of machine 1 and machine 2 

For determining the effect of uncertainty in machine repair time on the performance of 

manufacturing supply chain, the standard deviation of repair time of machine 1 and 

machine 2 is increased by 24 hrs. 36 hrs. and 40 hrs. and the model in Figure 5.2 is 

simulated keeping all other parameters at their base case level. The estimated values 

are described in Table 5.8 and Table 5.9.   

Table 5.8 Summary of the estimated values by varying the repair time for machine 1 

Standard 

deviation of 

repair time of 

machine 1 

 (in hrs) 

Demand 

(in lots) 

Backlog 

at 

manufacturer’s 

end (in lots) 

Average 

WIP 

inventory 

(in lots) 

Backlog 

at 

supplier’s 

end 

(in lots) 

Raw material 

shortage at 

manufacturer’s 

end (in lots) 

Service 

level 

(in %) 

24 6639 3717 95.29 0 200 44 

36 6639 3891 129.64 0 200 41 

40 6639 4597 116.40 0 185 31 

Table 5.9 Summary of the estimated values by varying the repair time for machine 2 
Standard 

deviation of 

repair time of 

machine 2  

(in hrs) 

Demand 

(in lots) 

Backlog 

at 

manufacturer’s 

end 

(in lots) 

Average 

WIP 

(in lots) 

backlog at 

Supplier’s 

end 

(in lots) 

Raw material 

shortage at 

Manufacturer’s 

end (in lots) 

Service 

Level 

(in %) 

24 6639 4083 122.36 0 170 38 

36 6639 4221 150.08 0 145 36 

40 6639 4822 144.27 0 160 27 
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 From Tables 5.8 and Table 5.9, it can be observed that backlog at manufacturer’s end 

increases with increase in repair time as the production process is stopped for the 

duration from the time of occurrence machine failure till it gets repaired. Increase in 

backlog causes decrease in service level.  

 From the above study, it is found that the performance of MTS manufacturing system 

is severely influenced by demand variation, unreliable machine and unreliable supplier. 

However, variability in demand and machine unreliability is vital uncontrollable 

parameters. Although it is difficult to achieve the zero failures, frequency and time of 

occurrence of failure can be managed to some extent through an effective engineering 

and maintenance strategy. The product demand depends on the external customer 

demand and is an uncontrollable parameter. This can be controlled through a good 

forecasting technique. The above analysis also highlights that supplier reliability is vital 

for improving the performance of supply chain. The backlog estimated considering 

uncertainty in supplier’s acquisition rate is higher than backlog estimated considering any 

other uncertainty factors. Uncertainty in raw material supply to manufacturing system can 

be avoided through adopting a backup supply strategy for raw materials and information 

sharing system to minimize shortage of raw materials at manufacturer’s end.  In other 

words, it is vital to have high service level at the supplier’s end in order to achieve high 

service level at customer level. In order to incorporate these two conditions in the 

existing system, the model shown in Figure 5.2 is extended with a backup supplier as 

shown in Figure 5.4 and the equations are shown in Appendix 7. 

In the above model (Figure 5.4), the information sharing is adopted to keep the 

information on supplier’s inventory status by the manufacturer. The aim is to keep 90% 

lots of total raw material required for the period so the production process runs smoothly 

and service level can be improved under uncertain environment. When the major 

supplier is unable to fulfil 90% lots of raw material order placed by the manufacturer, the 

complete order is shifted to the backup supplier. Although backup supplier has enough 

capacity, manufacturer cannot place each order to backup supplier due to fact that unit 

cost of the raw material is higher in case of the backup supplier than the major supplier. 

To study the performance of the MTS manufacturing system with backup supply strategy 

under major supplier’s acquisition uncertainty, the model Figure 5.4 is simulated for 364 

days. 
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Figure 5.4 System dynamics model for MTS manufacturing system with backup supply 

For the simulation purpose, certain assumptions have been made including all the 

assumptions described in section 5.3 as follows: 

1) Backup supplier has infinite capacity. 

2) The inventory status of major supplier is shared with the manufacturer.  

3)  In the perspective of maintaining 90% lots at manufacturer’s raw material inventory, 

it places complete order to backup supplier while the major supplier is not capable to 

meet the 90% of the total order quantity.  

 The model shown in Figure 5.4 is simulated by decreasing the mean acquisition rate 

of the major supplier with 23 lots/day, 22 lots/day and 21 lots/day keeping all other 

parameters at base case level and the estimated backlog quantities are described in 

Table 5.10. From Table 5.10, it can be observed that the estimated backlog with backup 

supplier is comparatively less than the backlog estimated without backup supplier. 

Hence, it can be concluded that manufacturer’s service level can be improved with 

backup supplier under the raw material supply uncertainty. The service level estimated 

from base level (Table 5.2) is 46% which is lower than the service level achieved through 

backup supply strategy. From this analysis, it can be concluded that high service level at 

the high end of supply chain is required to achieve high service level at customer end. 



78 
 

Table 5.10 Estimated backlogs with and without backup supply environment 
Mean  

acquisition rate 
of 

supplier 
(in lots/day) 

Demand 
(in lots) 

Estimated 
backlog  at 

manufacturer’s 
end with backup 
supply strategy 

(in lots) 
 

Estimated 
Backlog at 

manufacturer’s 
end without 

backup supply 
strategy 

Service level 
(in %) 

With 
backup 
supply 

strategy 

Without 
backup 
supply 

strategy 

23 6639 3207 4252 51.69 35.95 

22 6639 3243 5072 51.15 23.60 

21 6639 3583 5755 46.03 13.31 

5.5 Summary 

 A simulation modelling framework using system dynamics approach is proposed to 

examine the performance of the MTS manufacturing system under the influence of 

different uncertainties such as processing time, machine failure, supplier’s acquisition 

rate, demand and raw material supply lead time. The performance of the manufacturing 

system is analysed through estimating various performance measures such as WIP 

inventory, raw material shortage and backlog. The effect of each kind of uncertainty on 

performance measures has been studied. From the analysis, it is found that increase in 

demand uncertainty affects the performance measures like finished goods inventory, 

WIP level and raw material inventory. Uncertainty in raw material supply lead time leads 

to stock-out at manufacturer’s end and all interrelated measures like raw material input, 

production rate and finished goods inventory are affected. This ultimately results in 

increase of backlog. Processing time variability, one of the other issues, causes adverse 

effect on WIP level and the finished goods inventory and ultimately on service level. Due 

to random occurrence of machine failure, uncertain amount of time is required to repair 

the machine. Machine failures cause adverse effect on WIP and finished goods 

inventory. It has been found from the study that uncertainty in supplier’s raw material 

acquisition rate has strong impact on the performance measures because uncertainty at 

higher level propagates to lower end. Variations in acquisition rate of the supplier causes 

stock-out at supplier’s raw material inventory and manufacturer’s raw material inventory 

gets reduced. As the raw material input to production process gets affected, there is a 

decrease in the WIP level and production rate. Decrease in production rate causes 

depletion in finished goods inventory leading to decrease in service level. In this way, the 

adverse effect of uncertainty at single entity propagates to other interrelated entities 

existing within the manufacturing supply chain. Uncertainty in demand, processing time, 
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repair time and supply lead time are difficult to control but effective management and 

engineering practices can reduce the variations. However, supplier capacity is a 

convenient controllable parameter to improve the performance of MTS manufacturing 

system under uncertain situation. From the study, it is found that uncertainty in supplier’s 

capacity causes high degradation in supplier’s service level ultimately reflecting on 

degradation of service level at customer. However, it has been demonstrated that service 

level at customer’s end can be improved through a strategic backup plan for raw material 

supply. The study proposes a system dynamic approach which can be modified by the 

managers to generate if-then scenarios to get insight into the operational behaviour of 

supply chains. Many policies and strategies can be tested to improve the service level at 

customer’s end. However, a simple two machine serial manufacturing system dealing 

with only one kind of product is simulated in this work. The work can be extended to deal 

with a complex manufacturing system with multiple machines and dealing with variety of 

products. The model can be further improved by incorporating products requiring more 

than one raw material and seeking multiple sourcing options. Although there are various 

adverse effect of uncertainties on supply chain performance, bullwhip effect and net-

stock amplification happens to be two major adverse effects. The next chapter deals with 

proposed forecasting models to reduce bullwhip effect and net-stock amplification.  
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6.1 Introduction  

 In previous chapters (Chapter 3 and Chapter 4), the adverse effect of uncertainty in 

demand, raw material supply lead time and quantity and manufacturing process on the 

performance of supply chain has been discussed. In Chapter 5, a strategic plan is 

proposed to cope up the adverse effect of uncertainty in raw material supplied from the 

supplier. In section 2.6 (Chapter 2), it has been discussed that bullwhip effect (BWE) is 

one of the negative influences of uncertainties in supply chain. It leads increase in 

different cost component such as manufacturing cost, inventory holding cost, 

transportation cost, shipping and receiving cost giving rise to increase in total cost and 

replenishment lead time and decrease in fill rate and profitability (Chopra et al., 2006).  

Therefore, it is necessary to pay proper attention to reduce/eliminate BWE.  According to 

Lee et al. (1997a), there are five major causes attributed to BWE such as demand 

forecasting, order batching, price fluctuations, supply shortages and non-zero lead-time. 

Inaccurate forecasting of demand leads to inaccurate estimation of order. It causes 

amplification of order with respect to variation in demand (BWE). Hence, demand 

forecasting is one of the essential tasks in the area of supply chain. Typically, demand 

follows a time series pattern. Therefore, different time series forecasting models like 

autoregressive (AR) (Luong, 2007; Luong and Phien, 2007), moving average (MA) 

(Chen et al., 2000a; Hong and Ping, 2007; Ma et al., 2013), exponential moving average 

(EMA) (Chen et al., 2000b), exponentially weighted moving average (EWMA) (Hong and 

Ping, 2007) autoregressive moving average (ARMA) (Zhang, 2004; Duc et al., 2008a; 

2008b; Bandyopadhyay and Bhattacharya, 2013) and autoregressive integrated moving 

average (ARIMA) (Gilbert, 2005; Gilbert and Chatpattananan, 2006)  are proposed for  

demand prediction in order to reduce the BWE through regulating the model parameters 

such as AR or MA coefficient including the  lead time. However, it is difficult to control 

these model parameters (AR and MA coefficient and lead time) in practice. 

 The time series ARIMA model is one of the popular models for demand prediction. 

However, there are two limitations associated with this model. First it follows assumption 

of homoscedastic for demand variation in which variance is assumed to be constant over 

forecasting period. In practice, demand variance is heteroskedastic in nature i.e. 

variance of demand varies with time. To deal with the variation in demand, supply or 

manufacturing process, a buffer stock (safety stock) is maintained by the organisation. 

Safety stock serves as a safeguard against the stock-out situation. Hence, proper 

estimation of safety stock is vital to manage the not only the inventory but also demand. 
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The safety stock quantity is estimated considering the variation in demand (Equation 3.8, 

Chapter 3). Since, the time series ARIMA model is homoscedastic in nature, it is not 

possible to predict the changing demand variance. This leads inaccurate estimation of 

the safety stock level causing inaccurate estimation of order quantity. This problem can 

be overcome if the model has the ability to predict the demand variance. The 

generalized autoregressive conditional heteroskedasticity (GARCH) model can be used 

to predict the changing demand variance. To overcome the problem associated to the 

first limitation of the ARIMA model, a new forecasting approach is proposed in this study 

through integrating the ARIMA model with GARCH model and it is denoted as ARIMA-

GARCH model.  

 Addressing second limitation, ARIMA model is applicable to linear and stationary 

demand series. In real practice, the demand pattern is non-linear and non-stationary in 

nature. To make prediction from non-stationary demand series, it must be first 

transformed into stationary form. This process causes loss of some useful information 

about the demand series. Hence, predicted demand values are not always satisfactory to 

estimate of order quantity. These issues can be resolved by adopting artificial 

intelligence (AI) techniques for developing the forecasting model applied to nonlinear 

data series. Different AI models have been successfully applied in various discipline of 

research for prediction purpose like artificial neural network (ANN) (Zhang et al., 2001; 

Doganis et al., 2006; Patnaik et al., 2008), adaptive neuro-fuzzy inference system 

(ANFIS) (Subasi, 2007; Sahu and Mahapatra, 2013; Sahu et al., 2011), least square 

support vector machine (LSSVM) (Chauchard et al., 2004; Lu et al., 2009; Kim, 2003; Li 

et al., 2011; Hong et al., 2013; Sudheer et al., 2013; Sudheer et al., 2013; Zhiqiang, 

2013), genetic programming (GP) (Kaboudan, 1999; Salcedo-Sanz et al., 2005) and 

multi-gene genetic programming (MGGP) (Gandomi and Alavi, 2012; Garg et al., 2013).  

These models have the ability of self-learning and self-adapting the data pattern and do 

not require any statistical information related to a given data series for prediction. 

Therefore, AI models are used as a suitable predictive model for a data series exhibiting 

either linear/non-linear or stationary/non-stationary pattern. The prediction accuracy of AI 

models can be substantially improved when the data series contains adequate 

information relevant to its past pattern. The wavelet transformation (WT) theory is one of 

the powerful mathematical tools which provide data information based on time and 

frequency domain. Many studies address the application WT for extracting the data 

information (Aggarwal et al., 2009; Partal and Cigizoglu, 2009; Khan and Shahidehpour, 
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2009; Wei et al., 2012; Zhang and Tan, 2013). Therefore, in this study, four different 

hybrid models are proposed by integrating the discrete wavelet transformation (DWT) 

analysis with the AI models such as ANN, ANFIS, LSSVM and MGGP to predict the 

demand. The models are defined as DWT-ANN, DWT-ANFIS, DWT-LSSVM and DWT-

GP. These models are validated using an example data set from open literature and 

performing a comparative study with ARIMA model by estimating forecasting error. 

According to Bout and Lambrecht (2009), moderating BWE does not necessarily 

reflect the inventory fluctuations which influence associated inventory costs. In order to 

deal with fluctuation in inventory, organisations must maintain high safety stock to 

improve service level. This leads high holding cost. Hence, variation in net stock with 

respect to demand known as net-stock amplification (NSAmp) is treated as another 

major supply chain performance measures. Therefore, accuracy of demand forecasting 

must be enhanced in such a manner that both the important performance measures of 

supply chain such as BWE and NSAmp must be reduced. Once the models are 

validated, three case studies are considered to estimate the BWE and NSAmp by 

predicting the demand using the proposed models and estimating the order through the 

base-stock policy. The order quantities estimated based on predicted demand using the 

ARIMA and the proposed models ARIMA-GARCH, DWT-ANN, DWT-ANFIS, DWT-

LSSVM and DWT-GP are analysed. From the analysis, it has been proved that the 

intelligence models (DWT-ANN, DWT-ANFIS, DWT-LSSVM and DWT-GP) outperform 

the ARIMA and ARIMA-GARCH process. Hence, further, the performance of the 

intelligence models are studied for different (R, S) policies like (R, S),  S,R  ,    ,D,R  

  O,R  and  SO,R,  suggested by Jakšič and Rusjan (2008) and Bandyopadhyay 

and Bhattacharya (2013). 

6.2 Methodology  

 In order to develop the model and validate the model, following approaches are 

adopted in this study.  

6.2.1 Time series forecasting models 

 The mathematical representation of the time series model can be express as follows 

(Equation (6.1)):  

 1Nt1tt1t Y...YYfY                                                                                         (6.1) 
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where Yt+1 is the unknown value to be predicted from the current and past value of the 

variable Y. Following paragraphs contains the brief introduction on different time series 

models.  

6.2.1.1 Autoregressive integrated moving average (ARIMA) model  

 The autoregressive process (AR) is one of the time series models which can be used 

for demand forecasting. The AR model of order p denoted as AR (p) is presented in 

Equation (6.2) where Yt is the forecasted demand for period t and Y 1t , Y 2t ,…, Y pt   

are the time lagged values of the demand variable (Y). Another time series model is 

moving average (MA) model. The MA model of order q can be expressed by the 

Equation (6.3). The combination of AR and MA process is known as ARMA (p, q). A 

typical ARMA model known as ARMA (1, 1) can be mathematically represented by 

Equation (6.4).  The time series ARMA model has the limitation that it can be applied to 

predict stationary data series only. In order to make prediction from non-stationary data 

series, the ARMA model is extended allowing differencing to convert the data series into 

stationary form and known as Autoregressive Integrated Moving Average (ARIMA) model 

(Box and Jenkins, 1976; Box et al., 1994). ARIMA model is a univariate time series 

model. A data series may contain seasonality effect. The non-seasonal ARIMA process 

can be denoted as ARIMA (p, d, q) whereas seasonal version is represented as ARIMA 

(p, d, q)(P,D,Q)s. Equation (6.5) shows the  ARIMA(1,1,1) process whereas 

ARIMA(1,1,1)(1,1,1) is given in Equation (6.6). 

tptp2t21t1t eY...YYcY                                                                         (6.2) 

tqtp2t21t1t ee...eecY                                                                             (6.3)      

tqtq2t21t1ptp2t21t1t ee...eeY...YYcY                                     (6.4) 

1t1t2t11t1t eeYY)1(cY                                                                         (6.5) 

13t1112t11t1t26t1125t11124t114t

11113t111112t12t11t1t

eeeeYY)(YY 

)( Y)1(Y)1(YY)1(cY








               (6.6)                                                                                          

where, 

p = non-seasonal order of the autoregressive part 

d = non-seasonal degree of differencing involved 

q = non-seasonal order of moving average part 

P = seasonal order of the autoregressive part 

D = seasonal degree of differencing involved 
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Q = seasonal order of moving average part 

s = number of periods per season  

c = constant term 

ϕj = non-seasonal jth autoregressive parameter 

θj = non-seasonal jth moving average parameter  

et-q = error term at t-q 

et = error term at time t  

Φj = seasonal jth autoregressive parameter  

Θj = seasonal jth moving average parameter 

 To make prediction using this model, it is assumed that the considered data series is 

linear and stationary. There are five general steps such as (i) data preparation (ii) model 

selection (iii) estimation (iv) diagnostic checking and (v) forecasting are followed to 

identify ARIMA model and make prediction (Makridakis et al., 1998). In this research 

work, the software STATISTICA 9 has been used to identify ARIMA model to predict the 

demand. 

6.2.1.2 Generalized autoregressive conditional heteroskedasticity (GARCH) 

model  

 A fundamental assumption made while ARIMA model is that variance of the data 

series remains constant throughout the forecasting period. However, this assumption is 

relaxed by introducing a time series model known as autoregressive conditional 

heteroskedasticity (ARCH) model proposed by Engle (1982) to capture the changing 

variance in the financial time series data. The general mathematical expression for the 

ARCH model of order q (ARCH (q)) can be expressed as Equation (6.7) and Equation 

(6.8). 

 1,0N~  ere        wh,r tttt                                                                            (6.7) 

2
qtq

2
1t10

2
t r...r                                                                                             (6.8) 

Further, it is extended with a valid proof that conditional variance of the error process not 

only related to squares of the past error but also to the past conditional variance through 

the Generalized Autoregressive Conditional Heteroscedasticity (GARCH) process 

(Bollerslev, 1986). The standardized mathematical expression of GARCH (p, q) process 

is shown in Equation (6.9) with restriction q1,2,...,i  ,0i  , ,j  p,...,2,1j  and

1ji   . 
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

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







  ptptqtqtt ...r...r

where  tr  is the mean correlated return, 
2

pt is the past conditional variance, t  is the 

Gaussian white noise with mean zero and unit variance and p and q are the positive 

integer representing the order of GARCH process, t > max (p, q). GARCH process is a 

part of solution and is applied to the return series. GARCH prediction process follows 

different statistical processes for model selection as described below:  

i. Data transformation to obtain the return series. 

ii. Testing of ARCH effect and serial correlation in the return series.  

iii. Model estimation and analysis.  

iv. A comparison of fitted model.  

v. Diagnostic checking for the selected model.  

vi. Forecasting with the selected model.    

 In this study, software MATLAB 2013 has been used for determining the GARCH 

model to predict the demand variance. 

6.2.2 Artificial intelligence (AI) models 

 To make prediction using time series models (AR, MA, ARMA and ARIMA), the 

demand data needs to be linear and stationary. To make prediction using ARIMA model 

for non-stationary demand series, it must be first transform into stationary form. This 

process causes loss of information. However, artificial intelligence (AI) models make 

prediction based on learning the pattern of data series. Hence, AI models do not require 

any statistical information related to the data series for prediction and make prediction 

from non-linear and non-stationary data series. In this study, four different AI techniques 

such as artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS), 

least square support vector machine (LSSVM) and genetic programming (GP) are 

considered to develop an improved forecasting model to overcome the limitation of 

ARIMA model so as to reduce BWE and NSAmp. Following paragraphs contain brief 

introduction on these intelligent models.  

6.2.2.1  Artificial neural network (ANN) model  

 A structure of an ANN model comprises of interconnected operating elements named 

as neurons (also called nodes) stimulated by the biological nervous system (Kumar, 

2011). An ANN model has the capability to recognize and acquire the past data pattern 

to perform prediction. The feed-forward multilayer perceptron (FFML) network is one of 

the most commonly used types of ANN for forecasting. The ANN architecture generally 
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comprises with three different layers called input, hidden and output layer. The model 

can be represented with l-m-n where l denotes the numbers of neurons at input layer 

which depends on the external input. The number of neurons in the hidden layer m is 

optimized through experimentation and n represents the number of output neurons. The 

number of neurons in the output layer depends on the desired number of outputs. Here, 

the desired number of outputs is one i.e. the predicted demand. Two processes called 

training and testing are involved in the prediction process. The process of training a 

neural network involves tuning the values of the weights and biases of the network to 

optimize network performance. Hence, a specific training function is used to train the 

network model. Training function maps the input and output for the supplied training data 

set through the weight value jiw and kjw during the training process where jiw and kjw

are the connection weights between 
thi input neuron to thj hidden neuron and thj hidden 

neuron to thk  output neuron respectively. In this study the training function called 

gradient descent with momentum has been carried out the network training process. The 

general structure of the ANN is shown in Figure 6.1.  

Input Layer Hidden Layer Output Layer 

jiw kjw

1pI

1po

2pI

.

.

.

plI

1po

pko

1j 

2po

plo

1k 

2po

3po

4po

pmo

.

.

.

 
Figure 6.1 General structure of ANN model 
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 Let  pl2p1pp I,...,I,II  , p= 1, 2 …. N is the thp pattern among N input patterns. Output 

from neurons in input layer  piO is given by Equation (6.10) whereas output from the 

hidden layer  pjO and output layer  pkO  are given by Equation (6.11) and Equation 

(6.12) respectively. 

l,...,,i ,IO pipi                                                                                                (6.10) 

  m1,2,...,j ,OwfO
l

0i pijipj  
                                                                                     (6.11) 

  n1,2,...,k ,OwfO pj

m

0j kjpk   
                                                                                      (6.12) 

 The supplied input data set is modified using the connecting weights to generate sum 

of modified value (x) and again this is modified by sigmoidal transfer function f using 

Equation (6.13). In training process, the predicted output is compared with the desired 

output through estimating the error in terms of the mean square error  pE  using 

Equation (6.14). If pE is more than the defined limiting value, it is back propagated from 

output to input and weights are further modified using Equation (6.15) till the error or 

number of iteration reaches a prescribed limit. In this study, absolute mean square error 

of 0.10 is considered. 

 
xe1

1
xf


                                                                                                                (6.13) 

 



n

1i

2

pipip OD 
n

1
E                                                                                                (6.14)

     1twtEtw p                                                                                     (6.15) 

10   ,  t  coefficien  momentum

10  rate,  learning





 

t = iteration number (epochs) 

n=number of training data set 

The software MATLAB 2013 is used to develop the ANN model to make prediction.  

6.2.2.2  Adaptive neuro-fuzzy inference system(ANFIS) 

 The adaptive neuro-fuzzy inference system (ANFIS) is a hybrid intelligent model that 

combines the feature of ANN and fuzzy inference system (FIS) together (Jang, 1993). 

ANN has the ability of self-learning and self-adapting the data pattern for prediction. 

However, it is a difficult task to understand the learning procedure followed by ANN 

model. However, fuzzy logic models are easy to realize as it uses linguistic terms in the 
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form of IF-THEN rules. Since ANFIS learns through the fuzzy inference system, it 

becomes easy to understand its learning procedure. A classical structure of the ANFIS 

model consists of five layers and each layer comprises numbers of nodes interconnected 

through the directional links. These nodes are described by the node function with fixed 

or adjustable parameters. The output from nodes in previous layer is taken as input to 

the present layer. To explain the working principle of ANFIS model in a simplistic way, 

two inputs x and y and a single output f is considered for the fuzzy inference system. A 

one degree of Sugeno’s function is adopted to represent the rule (Jang, 1993). The rule 

can be described as: 

Rule 1: if x is A1 and y is B1 then 1111 ryqxpf   

Rule 2: if x is A2 and y is B2 then 2222 ryqxpf   

If if is the output within the fuzzy region specified by fuzzy rule, iA and iB are the 

linguistic variables, iii r and q,p are the design parameters determined during the training 

process. The ANFIS structure to implement these two rules is represented by the 

classical structure as shown in Figure 6.2. The square nodes in the Figure 6.2 are the 

adaptive nodes and the circle nodes are the fixed nodes in the system. Nodes present in 

each layer perform a particular function to carry out the prediction process for a given 

data series. The output of each layer is symbolized by L
iO i.e. output of ith node of layer L 

(where L=1, 2,…, 5). The different layers are:  

A

B

B

A

x

y

N

N







Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 

1W

2W

1W

2W

x   y

    x    y

11fW

22fW

f

 
Figure 6.2 General structure of ANFIS model 



89 
 

Layer 1: Nodes present in this layer generates a membership grade of the linguistic 

label.  

 xO
iA

L
i           i=1, 2                                                                                              (6.16) 

 yO
2iB

L

i 
        i=3, 4                                                                                              (6.17)  

where x and y are the input to the node i, iA and iB  are linguistic label and     y and x 

are the membership function typically described by a bell-shape with maximum and 

minimum values equal to 1 and 0 respectively. The output of this layer is defined through 

Equation (6.18). 

 
    ii b2

ii

A
L
i

acx1

1
xO


                                                                           (6.18) 

where  iii c,b,a  are the parameter sets that changes the shape of the membership 

function. These parameter set is also termed as “premise parameters”.  

Layer 2: This layer calculates the firing strength iw of each node through multiplication 

using Equation (6.19). 

   yxwO
ii BAi

2
i              i=1, 2                                              (6.19) 

Layer 3:  The ith node present in this layer calculates “normalized firing strengths” using 

Equation (6.20). 

21

i
i

3
i

ww

w
wO


                   i=1, 2                                                    (6.20)  

Layer 4: Nodes in this layer are adaptive nodes and the node function can be defined 

as: 

 iiiiii
4
i ryqxpwfwO                         i=1, 2                                                    (6.21)  

 where iw  is the normalized firing strengths generated as output from third layer and  

ii,i r and qp  are the parameter set. Parameters in this layer are referred to as “consequent 

parameter”. 

Layer 5: The overall output of the system is evaluated by the single node present in this 

layer through adding all incoming signals as described by Equation (6.22). 













2

1i i

2

1i ii
2

1i

ii
5
i

w

fw
fwO                                                                                      (6.22) 
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 Similar to feed forward neural network, the ANFIS model also follows the back 

propagation gradient descent learning principle. The task of the learning algorithm in 

ANFIS structure is to adjust all the regulating parameters  iii c,b,a and  iii r,q,p to make 

the output fit to the training data set. When the premise parameters iii c and b,a of the 

membership function are fixed, the output of the ANFIS model can be explained through 

Equation (6.23). 

2

21

1
1

21

1 f
ww

w
f

ww

w
f 

























                                                                                    (6.23) 

By substituting Equation (6.20) into Equation (6.23), the obtained equation can be given 

as:  

2211 fwfwf                                                                                                            (6.24) 

Substituting the fuzzy if-then rules into Equation (6.24), it becomes  

  )ryqxp(wryqxpwf 22221111                                                                   (6.25) 

After rearranging, the output can be written as:  

            121212111111 rwqywpxwrwqywpxwf                           (6.26) 

 This represents the linear combination of adjustable parameters 222111 r and q,p,r,q,p . 

Optimal values for these parameters are determined through least square method.  

While the premise parameters values are not fixed, the search space becomes larger 

and convergence of training becomes slower. Hybrid learning algorithm combines the 

back propagation gradient descent and least squares methods. In this study, the hybrid 

learning process is adopted to obtain optimal parameter setting of ANFIS. The software 

MATLAB 2013 has been used to develop the ANFIS model.  

 6.2.2.3    Least square support vector machine (LSSVM)  

The support vector regression (SVR) is one of the AI tools based on statistical 

learning theory having the capability to develop a predictive model for a given data 

series. The origin of SVR lies in support vector machine (SVM) which has been 

developed for data classification problem. If  ii y,x represents the training data set 

where, Rx i  is the input data series and Ry i  is the output for i=1, 2… N where N 

represents number of observations then a regression model is built through non-linear 

mapping function  x  and the predictive model can be defined by Equation (6.27).  

  bxwy T                                                                                                              (6.27) 
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 An advanced version of SVR is least square support vector machine (LSSVM) where 

the prediction error is minimized through the least square method. The major difference 

between SVR and LSSVM is that SVR uses an inequality constraint which is 

burdensome for solving the optimization problem whereas LSSVM use quadratic loss 

function for goal optimization and inequality constraints are converted into equality 

constraints. The optimization problem can be expressed through the cost function as 

described using Equation (6.28) and the constraint function by Equation (6.29). 

  













N

i

i
T ewwew,C min                                                                                (6.28) 

subject to equality constraints: 

  ii
T ebxwy     i =1, 2… N                                                                                 (6.29)  

where w  is the weight vector and b is the bias term,  is  penalty factor and ie is the loss 

function (regression error).  

The cost function (Equation (6.28)) consists of a penalized regression error and is 

minimized by LSSVM. The first part of the cost function is a weight degeneration process 

used to regularize weight sizes and penalize large weights to converge the weights to 

fixed values. The second part is the regression error for training data and the 

regularization parameter,  , which has to be optimized by the user. The regression error 

is defined through the constraint using Equation (6.29). In order to solve this optimization 

problem, it is converted into Lagrange function as defined by Equation (6.30):   

    iii
T

i

i

N

i

i yebxWew,e,b,wL 



 




                                        (6.30) 

where i are the Lagrange multipliers, 0 , i , b can be calculated based on 

Karush-Kuhn-Tucker (KKT) conditions. Now, LSSVM model for nonlinear system 

becomes: 

   



k

i
bx,

i
xk

i
bx.w

i
y                                                                    (6.31) 

where      i
T

i xxx,xk   is the kernel function.  

 The kernel function plays an important role in learning the hyperspace from the trained 

data set. There are different types of kernel functions are available. In this study, radial 

basis function (RBF) kernel function is chosen as it is well known for its shorter training 
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mechanism and imparting high generalization ability to the model. The RBF kernel can 

be mathematically represented as:  

 




















sv

ji

ji

xx
expx,xK                                                                                       (6.32) 

where 2

sv  is the squared variance of the Gaussian function. To obtain support vectors, it 

should be optimized by user. In order to achieve good generalized model, it is very 

important to make a careful selection for the tuning parameters like and  . The 

parameters  and  of the RBF are estimated through a combination of coupled 

simulated annealing (CSA) and a grid-search method. Firstly, the CSA determines the 

good initial value of   and  then these are passed to the grid-search method which 

uses cross-validation to fine tune the parameters. The code for LSSVM model is 

developed in MATLAB 2013. 

6.2.2.4 Genetic programming (GP) model  

 Genetic programming (GP) is an extension of the conventional genetic algorithm (GA) 

and grounded on the principle of GA as proposed by Koza (1992). Although GP is based 

on the working principle of the GA, there exists a major difference. GP model gives 

solutions defined by a model or weighted sum of coefficients i.e. in the form of tree 

structure whereas GA model provides solution in the form of real or binary number. Thus, 

it can be said that GP is a structure optimization method whereas GA is a parametric 

optimization method. GP uses symbolic regression technique for automatically invoking 

both the structure and parameter of the mathematical model for a data set acquired from 

a process or system. Symbolic regression is usually performed in GP to evolve 

population trees, each of which encodes a mathematical equation that predicts a (N ×1) 

vector of output y using a corresponding (N × M) matrix of inputs where N is the number 

of observations of the response variable and M is the number of input (predictor) 

variables. In multi-gene symbolic regression, each symbolic model (i.e. each member of 

the GP population) is a weighted linear combination of the outputs from a number of GP 

trees where each tree may be considered to be a “gene” in the overall genome. Initial 

population of model or the tree structure is randomly created consisting of function and 

terminal nodes as shown in Figure 6.3. The mathematical form of the multi-gene can be 

express as Equation (6.33): 
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Figure 6.3 GP model   y15xcos25   
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0ii dGdy                                                                                                      (6.33) 

where y is the predicted output, iG is the value of the 
thi gene (generally a function of one 

or more of the input variables), id is the 
thi  weighting coefficient, n is the number of genes 

and 0d is a bias/offset term. To control the complexity of the evolved models, the user 

needs to specify the maximum number of gene maxG and the maximum tree depth maxD . 

The fitness function generally used root mean square error (RMSE) given by Equation 

(6.34) based on which performance of initial population is evaluated on the training data.   


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



 






N

i
ii AY

N
RMSE                                                                                          (6.34)          

where iY is defined as the predicted value generated from GP model, iA is the actual 

value of the ith data sample and N is the number of training samples. The member of the 

population is selected based on the fitness function value for the genetic operations 

(crossover, mutation and reproduction) to reproduce new generation till the termination is 

not achieved. In crossover operation, sub-trees are randomly selected from two 

members and swapped to generate two new children (tree) as shown in Figure 6.4. In 

mutation operation, the terminals or the functional nodes are randomly selected from the 

tree to produce a new child as described in Figure 6.5.  
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Figure 6.4 Crossover operation in GP 

The mutation operation helps in avoiding local minima. This evolutionary process is 

continues till the termination criterion is met. The termination condition may be the 

maximum number of generation and the threshold error of the GP model set by the user. 

The best predictive model is selected based on minimum error on training data from 

entire set of generations. Unlike traditional GP, each model participating in the 

evolutionary process is made of several set of tree/genes combined together in multi-

gene genetic programming (MGGP) method. The MGGP model formed is a weighted 

linear combination of output values from the number of trees/genes as shown in Figure 

6.6. Two point high level crossovers allow the acquisition of new genes for both 

individuals but also allow genes to be removed. If an exchange of genes results in any 

individual containing more gene than maxG  then genes are randomly selected and 

deleted until the individuals contains maxG genes. In this research work, an open source 

MATLAB toolbox called GPTIPS has been used for performing this multi-gene genetic 

programming (https://sites.google.com/site/ gptips4matlab /file-cabinet).  

https://sites.google.com/site/%20gptips4matlab%20/file-cabinet
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Figure 6.5  Mutation operation in GP 
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Figure 6.6 Formulation of MGGP model using least square method 

6.2.3 Wavelet theory  

 Any forecasting model should have the capability to capture the existing pattern of the 

data series to make prediction. The AI models (ANN, ANFIS, LSSVM and MGGP) can 

make prediction based on learning the pattern of the past data series. Performance of 

these models can be improved through pre-processing the data series. Hence, in order 

to pre-process the data series for extracting the pattern, a mathematical tool known as 

wavelet theory (WT) has been applied. It has the ability to extract the data information in 
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time and frequency domain. Wavelets are generally small waves located in different time 

and frequency domain and mathematically it is represented as:   

  




dt t                                                                                                                (6.35)                                       

where  t is the basic wavelet also known as mother wavelet. 

Based on the sample data, WT deals with two types: continuous wavelet 

transformation (CWT) while the data series is in continuous form and discrete wavelet 

transformation (DWT) while sample data series is discrete in nature. When the 

scaling/frequency factor and shifting/time factor are denoted by ‘a’ and ''  respectively, 

the mother wavelet is defined by  ,a .The wavelet analysis becomes efficient and 

proficient of retaining the accuracy when ‘a’ and ''  are selected as discrete values and 

this process known as DWT. It is one of the efficient tools to extract information (Khan  

and Shahidehpour 2009; Zhang and Tan 2013; Zhao et al., 2014). By selecting the 

discretized scaling parameter ‘a’ by taking power of fixed scaling step 1a0   and j
0aa   

with adopting discretized shifting step 
0

j
0ka  where j, k = 0,1,2,…, Zm  then  t,a   

can be written as (Kim et al., 2006; Daubechies, 1990): 

      0
j

0
2/j

0
j
0

 j
0

2/j
k,j ktaakataat

00
                                             (6.36) 

Similarly, DWT can be expressed through Equation (6.37) 

     dt kta tfak,jW 0
j

0
2/j

0f  







                                                                           (6.37) 

One of the most efficient and simplest ways of selecting scale and position value is 

dyadic form i.e. power of two where .1,2a 00   Based on this, the DWT is 

transformed to binary form as given in Equation (6.38).  

     dt kt2 tf2k,jW j2/j
f  







                                                                               

(6.38) 

where    k,jW and ,aW ff   are the wavelet coefficients replicating the features of 

original time series in frequency (a or j) and in time domain (   or k). When the discrete 

time series input  tf , occurs at discrete integer time steps t then the dyadic form of 

DWT can be represented using Equation (6.39) and the  tf  can be reconstructed using 

Equation (6.40). 
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     


 
zk,j

j2/j
f kt2 2tk,jW f                                                                              (6.39) 

     



z  k ,j

k,jf t k,jWtf                                                                                            (6.40) 

 Through a low pass filter   tl k,i  and a high-pass filter   th k,i , the wavelet 

coefficient  k,jWf  is separated into an approximation (or low frequency) coefficient 

 ncA  at level n and the detail (or high frequency) coefficients  n21 cD,...,cD,cD  at 

different levels of 1,2,…,n.  tcAn . Hence, the original signal can be expressed by 

Equation (6.41). 

       



1n

k,ink,in thcDt lcAtf                                                                         (6.41) 

The simplified form of Equation (6.41) can be represented as: 

      tDtAtf nn
                                                                                                     (6.42) 

where  tAn  is the approximation subseries at level n and  tDn  are the detailed 

subseries at different levels (1,2,3,…,n) of the original signal. Daubechies wavelet family 

is usually written as ‘dbN’ where db is the ‘surname’ and N is the order of wavelet (Wei, 

2012). In this study, db4 wavelet family is used for wavelet transformation using the 

software MATLAB 2013. 

6.3 The proposed forecasting models  

 In this study, two different types of forecasting models are proposed to overcome 

the limitation associated with the time series ARIMA model and improve the 

forecasting model to reduce BWE and NSAmp so that performance of a supply chain 

can be improved.  The proposed models are described in the following sections. 

6.3.1 Forecasting model to deal with heteroskedastic demand series  

 An organisation needs to maintain a safety stock for raw material or final product to 

cope with stock-out situation due to uncertainty in demand, supply and processing 

unit. For safety stock estimation, variance of demand is one of the important 

parameter to be used in Equation (3.8) (Chapter 3) and it changes with time (i.e. 

heteroskedastic). When demand series is heteroskedastic in nature, it is essential to 

predict the changing variance of demand for the estimation of order. Since ARIMA 

model is homoscedastic in nature, the changing variance cannot be estimated.  This 

problem can be overcome through the GARCH model. Therefore, ARIMA process is 

incorporated with the GARCH process for improving the accuracy of the forecasting 



98 
 

model. Initially, the past demand data are collected to identify the ARIMA and GARCH 

model following different statistical procedure as described in section 6.2.1.1 and 

section 6.2.1.2. From the identified GARCH model, the variations in demand are 

predicted and mean demands are predicted through ARIMA. Further, the predicted 

demand variation and the mean demand used to estimate the safety stock and the 

order quantity. The schematic block diagram of the proposed model is shown in 

Figure 6.7.  The model denoted as ARIMA-GARCH process.  

 

ARIMA 

model

GARCH 

Model 

Past demand data 

series

Predicted mean 

demand

Predicted variance of 

demand

Order 

estimation 

Order quantity

 
Figure 6.7 Schematic block diagram of ARIMA-GARCH model 

6.3.2 Forecasting models to deal with non-stationary demand series   

 ARIMA model assumes that demand series is linear and stationary in nature. 

Therefore, the non-stationary demand series is first transformed into the stationary 

form using ARIMA model. In this process, the actual pattern of the demand series 

gets distorted. This limitation can be addressed through use of AI techniques for 

forecasting. The forecasting accuracy of the AI models can be improved if the pattern 

of the data series is identified. In section 6.2.3, it has been highlighted that wavelet 

analysis has the capability to extract the data pattern based on time. Therefore, in this 

study forecasting models are proposed through integrating the discrete wavelet 

transformation (DWT) analysis and AI approaches (ANN, ANFIS, LSSVM and MGGP) 

to deal with non-linear and non-stationary demand series. Initially, the demand data 

series are analysed through DWT analysis to capture the pattern. The DWT analysis 

decomposes the original demand series into different subseries called approximation

 nA  and detailed data subseries  n21 D,...,D,D . These subseries provide information 

about variation in demand series according to time. The whole data in the subseries 
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are further divided into training and testing data set. The training set is applied to AI 

model to train the model. After successful training of the model, the testing set is 

applied to make prediction. Figure 6.8 describes the schematic block diagram of the 

proposed model and its operations.  In this study, DWT is integrated with four AI 

models such as ANN, ANFIS, LSSVM and MGGP. The proposed four hybrid models 

are named as DWT-ANN, DWT-ANFIS, DWT-LSSVM and DWT-MGGP. These 

proposed models are further validated through an example data set. The next section 

discusses the procedure for validation of proposed models.  

DWT

Analysis

AI Model

(ANN/ANFIS/

LSSVM/MGGP)

Past demand 

data

Predicted 

demand

ncA

1cD

2cD

ncD

.

.

.

Figure 6.8 Schematic block diagram of DWT-AI model 

6.4 Model Validation   

 To validate the proposed models, the performance in terms of forecasting error is 

tested in respect to the ARIMA model. An example data set (monthly sales data for 

printing and writing paper between the year 1963 and 1972) is taken from open literature 

(Makridakis, 1998). The ARIMA model is identified for the example data set following 

different steps as described in section 6.2.1.1. Initially, the time series plot for this data 

series is made as shown in Figure 6.9. From the figure, it can be observed that the sales 

data series is non-stationary in nature since the data points are not horizontally scattered 

around a constant mean. To check the existence of stationary in the data series, the 

Augmented Dickey-Fuller (ADF) t-tests is conducted at significance level of 0.05. ADF 

test for the example data set results in H=0 and p-Value = 0.2363 (fail to reject the null 

hypothesis) signifying non-stationary nature of data set. Further, statistical analysis is 

carried to identify the nature of the data series. The autocorrelation function (ACF) and 

partial autocorrelation function (PACF) plot is shown in Figure 6.10 and Figure 6.11 

respectively.  
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Figure 6.9 Time series plot  for example dataset 

 
Figure 6.10  ACF plot for example dataset 

 
Figure 6.11 PACF plot of for example dataset 
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 From the figures, it is found that values are not dropped to zero indicating non-

stationary nature of the data series. From ACF plot analysis (Figure 6.10), it is found that 

nearly all autocorrelations are positive and significant spikes are observed at lag-12, lag-

24 and lag-36 indicating presence of seasonality in the series. Therefore, the data series 

is initially differenced with lag-12 (i.e. seasonal difference D=1) then differenced by lag-1 

to convert the data series into stationary form as shown in Figure 6.12. From the ADF 

test, the resultant series is identified as stationary because H=1 and p-Value = 0.001 at 

significance level of 0.05. The ACF and PACF plots for resultant data are shown in 

Figure 6.13 and Figure 6.14 respectively.  

 
Figure 6.12 Time series plot of the transformed data series for example dataset 

 
Figure 6.13 ACF plot of the transformed data series for example dataset 
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 Figure 6.14 PACF plot of the transformed data series for example dataset  

 By examining the ACF and PACF plots, it is found that good number of 

autocorrelation and partial autocorrelation values are significant. Therefore, it is difficult 

to define the seasonal or non-seasonal AR and MA coefficients. Hence, the identified 

model can be represented as ARIMA (p, 1, q) (P, 1, Q) 12 where p and q represents the 

non-seasonal AR and MA coefficients and P and Q are the seasonal AR and MA 

coefficients. Alternately, varying these coefficient values, fourteen different models are 

developed as listed in Table 6.1. Using these models, 24-months ahead demands are 

predicted and forecast errors are estimated in terms of mean square error (MSE) using 

Equation (6.43) and described in Table 6.1.  

 
period forecasted of Number

demand Forecasted-demand Actual
MSE

2

                                                    (6.43) 

 In order to extract the data pattern, the original sales data series is analysed using 

DWT analysis.  By applying db4 wavelet family, it is decomposed into five levels and six 

different sub-series are obtained in the form of an approximation  5A and five detail data 

subseries  521 D,...,D,D  as shown in Figure 6.15. The whole data in this subseries is 

divided into two sets as training set i.e. 80% of whole data (96 months) and rest 20% (24 

months) as testing date set. Initially, the training set is used as input to train the AI 

models (ANN, ANFIS, LSSVM and MGGP). After successful training of the models, the 

obtained optimal model parameter setting is shown in Table 6.1. The automatically 

generated predictive model from the GPTIPS toolbox after successful training of the 

MGGP model is represented in Equation (6.44) where xtest is the array for testing data 

set. 
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Figure 6.15 Decomposed data series for example dataset 

            001775.06 :,xtest5 :,xtest4 ,:xtest,3 :xtest2 ,:xtest1 :,xtestypred      (6.44) 

 Next, the testing data set is fed to the AI models and 24-months ahead demands are 

predicted. Using the predicted demand values from the AI models, the forecast error in 

terms of MSE values are estimated using Equation (6.43) (Table 6.1). From Table 6.1, it 

can be observed that the MSE values of the proposed models (DWT-ANN, DWT-ANFIS, 

DWT-LSSVM and DWT-MGGP) are less as compared to the identified time series 

ARIMA models in all cases. This analysis concludes that the accuracy of the proposed 

model is reasonably good compared to the ARIMA model. The performance of the 

proposed models is tested with demand data from three case study examples as 

described in the next section. 

Table 6.1 Performance of ARIMA and DWT-AI model for example dataset 
MODELS MSE MODELS MSE 

ARIMA(0,1,1)(0,1,1)12 5248.20 ARIMA(0,1,1)(1,1,0)12 9587.80 

ARIMA(1,1,1)(0,1,1)12 5477.94 ARIMA(1,0,1)(0,1,2)12 5792.23 

ARIMA(0,1,2)(0,1,1)12 5490.43 ARIMA(1,1,1)(1,1,0)12 9979.24 

ARIMA(0,1,1)(0,1,2)12 5262.05 ARIMA(1,1,0)(0,1,1)12 7963.26 

ARIMA(0,1,1)(1,1,1)12 5272.20 ARIMA(0,1,1)(0,1,0)12 13884.48 

ARIMA(0,1,3)(0,1,1)12 5416.39 ARIMA(1,1,0)(1,1,0)12 15529.24 

ARIMA(1,1,1)(1,1,1)12 5505.86 ARIMA(1,1,0)(0,1,1)12 25091.38 

 
DWT 

db4, 5 layer 
decomposition 

ANN 
η =0.02, α = 0.1, epochs = 50000 

Goal=10-3, l=6, m=6, n=1 
620.54 

ANFIS 
number of MF each input: 2 2 3 3 3 2, MF type: trimf; Error 

Tolerance=0.1; Epochs=15; output MF type: linear 

 
4950.48 

 
LSSVM 

 =576676.98, 09.63731542   

 
7.27 

 

MGGP 
Gmax=4, Dmax=5, population size=100 

Number of generation=100, probability of crossover  =0.85 
mutation events=0.1 and direct reproduction=0.05 

 
 

0.0000031 

trimf: Triangular-shaped membership function; MF: membership function 
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6.5  Case studies  

 To analyse the performance of the proposed model like ARIMA-GARCH and the 

intelligence models (DWT-ANN, DWT-ANFIS, DWT-LSSVM and DWT-GP) against the 

ARIMA model, three different case study examples have been considered in this section.  

6.5.1 Case 1: PQR Pvt. Ltd.  

PQR Pvt. Ltd. is located in the Eastern part of India dealing with automotive parts and 

supplies to different automobile companies in India. The annual turnover of the company 

is 871000 USD. Fan shroud is one of the major products for this company. For the study, 

96-months (April 2005-March 2013) of demand data for fan shroud are collected from the 

firm. The steps described in section 6.2.1.1 are followed to identify the ARIMA model. 

The time series plot of this data set is presented in Figure 6.16. From the ADF test, it is 

found that demand series is non-stationary in nature as p-value = 0.08 is obtained at 

significance level of 0.05. Again ACF and PACF plots are identified as shown in Figure 

6.17 and Figure 6.18 respectively. 

 
Figure 6.16 Time series plot of the fan shroud demand data 

From the analysis of ACF plot (Figure 6.17) and PACF plots (Figure 6.18), it is 

observed that demand data does not contain seasonality. In order to convert the demand 

series into stationary, it is differenced by lag-1 (hence d=1) and plotted in Figure 6.19. 

The resultant demand series is tested using ADF test to examine the stationary nature of 

the demand series and found that it exhibits stationary in nature (H=1 and p-Value= 

0.001). To identify the ARIMA model, ACF and PACF plot are plotted as shown in Figure 

6.20 and Figure 6.21 respectively are used. From the ACF plot (Figure 6.20), significant 

spike are observed at lag-1 and lag-4. Similarly, significant spikes are observed at lag-1 

and lag-4 in PACF plot (Figure 6.21). It results in the parameter values of p=2, q=2 and 
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d=1 (differenced with lag-1) and the model is identified as ARIMA (2, 1, 2). Using these 

parameter settings, 12-months ahead demands are predicted. 

 
Figure 6.17 ACF plot for the fan shroud demand data 

 
Figure 6.18  PACF plot for the fan shroud demand data 

 
Figure 6.19 Time series plot for the differenced fan shroud demand data  
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Figure 6.20 ACF plot of the differenced fan shroud demand data  

 
Figure 6.21  PACF plot of the differenced fan shroud demand data  

 Next to identify the GARCH model to predict the time varying demand variance, 

different steps for developing GARCH model as described in section 6.2.1.2 are 

followed. To define GARCH model for a data series, there must be correlation within 

series and influenced by ARCH effect. Initially, the differenced demand series (return 

series) as shown in Figure 6.19 is tested for existence of heteroskedasticity in the data 

series. This can be verified by conducting Ljung-Box-Pierce Q-test and ARCH test on the 

transformed data series termed as return series. According to Ljung-Box-Pierce Q-test, 

H=0 implies that no significant correlation exist whereas H=1 indicates the existence of 

correlation. Similarly, in case of Engle ARCH test, H=1 means presence of ARCH effect 

and H=0 means there is no ARCH effect. From Table 6.2 and Table 6.3, it can be 

observed that there is significant correlation exist in raw returns and squared returns of 

the demand data of fan shroud when tested for up to 10 and 20 lags of the ACF at 

significance level of 0.05. The ARCH test performed at lag 10 and 20 as summarized in 
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Table 6.4. In Table 6.4, H=0 at p-Value > 0.05 signifies that there is no ARCH effect 

present in the demand series. Hence, there is no GARCH model is possible for the fan 

shroud demand.  

Table 6.2 Summary of Ljung-Box-Pierce Q-Test for return series data of fan shroud 

Lag H p-Value Stat Critical Value 

10 1 0.0178 21.5178 18.307 

20 1 0.0248 34.2014 31.4104 

Table 6.3 Summary of Ljung-Box-Pierce Q-Test for squared return of fan shroud demand 

Lag H p-Value Stat Critical Value 

10 1 0.0178 21.5178 18.307 

20 1 0.0248 34.2014 31.4104 

Table 6.4 Summary of Engle ARCH test for return series data of fan shroud demand  

Lag H p-Value Stat Critical Value 

10 0 0.0802 16.7449 18.307 

20 0 0.0987 28.4693 31.4104 

 To make prediction from the AI models, DWT analysis is carried out for the original 

fan shroud demand series applying 4-level decomposition with db4 wavelet family. From 

the analysis, an approximation (A4) and four detailed subseries (D1, D2, D3 and D4) are 

obtained as shown in Figure 6.22. The whole data series contained in this subseries are 

divided into two parts 88% (84-months) as training and rest 12% (12-months) as testing 

data set. The AI models (ANN, ANFIS, LSSVM and MGGP) are trained with the training 

data set.  

 
Figure 6.22 Decomposed data series of fan shroud demand  

 The predictive model obtained after successful training of MGGP is presented in 

Equation (6.45). After successful training of the models, the testing data set is applied to 

the AI models and 12-months ahead demand data are predicted.  
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           0.0001614 - 9.181) -

 ) xtest(:,4+ ) xtest(:,3+ ) xtest(:,2+ )(xtest(:,19.673) - )(xtest(:,19-1.42e -

 )xtest(:,2) ) xtest(:,1+ )) xtest(:,4+ )(xtest(:,3) xtest(:,5- xtest(:,4)2 

- )(xtest(:,39.673) + ) xtest(:,3- )(xtest(:,212-6.818e - xtest(:,5)1.0 

+ xtest(:,4)1.0 + xtest(:,3)1.0 + xtest(:,2)1.0 + xtest(:,1)1.0=ypred









       (6.45)                   

6.5.2 Case 2: XYZ Pvt. Ltd.   

 XYZ Pvt. Ltd. is a major cement manufacturing company located in the Eastern part of 

India having an annual turnover is 310 million dollars. To compare the performance of 

ARIMA-GARCH process against ARIMA process, six years (April 2006-March 2013) 

demand data for a specific zone is collected from the company in metric ton (MT). 

Different steps as described in section 6.2.1.1 are followed to develop ARIMA model. 

The time series plot of the collected cement demand data is shown in Figure 6.23. 

 
Figure 6.23 Time series plot for cement demand data 

 To identify the pattern of demand, the ADF test is conducted and it is found that 

demand series exhibits non-stationary pattern (H=0 and p-Value=0.3906). The ACF and 

PACF plots are studied for 18-lag period (Figure 6.24 and Figure 6.25 respectively). 

From the ACF plot (Figure 6.24), there is significant spike at lag-12 is observed. This 

signifies that demand series is seasonally affected. Therefore, it is seasonally differenced 

with lag-12 (hence D=1) and the resultant time series is again non-seasonally 

differenced with lag-1 (hence d=1). The resultant time series plot is shown in Figure 6.26.  
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Figure 6.24  ACF plot of cement demand data  

 
Figure 6.25  PACF plot of cement demand data  

 
Figure 6.26  Seasonal and non-seasonal differenced cement demand data  
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 The resultant transformed data series is tested with ADF test and found stationary in 

nature (H=1 and p-Value=0.001). To identify the ARIMA model, the ACF and PACF plots 

of the resultant series are plotted as shown in Figure 6.27 and Figure 6.28 respectively.  

From the ACF plot (Figure 6.27), it can be identified that there is significant spikes at lag-

1 and lag-12 representing q=1 and Q=1. Similarly, from the PACF plot (Figure 6.28), 

most significant spikes can be observed at lag-1 and lag-3 (hence p=2). Under this 

identified parameters setting, the model selected is ARIMA (2, 1, 1) (0, 1, 1)12. Using this 

model, 12-months ahead data are predicted. 

 
Figure 6.27 ACF plot for the transformed cement demand series 

 
Figure 6.28 PACF plot transformed cement demand series  

Similar to Case 1, Ljung-Box-Pierce Q-test and ARCH test are conducted on the 

transformed data series termed as return series to identify the GARCH model. The 

summary of the test is described in Tables 6.5-6.7. From Table 6.5 and 6.6, it can be 

concluded that there is significant correlation in raw returns and squared returns when 

tested for up to 10, 15 and 20 lags of the ACF at significance level of 0.05. In Table 6.7, 

H=1 and p-Value < 0.05 at significance level of 0.05 at lag 10, 15 and 20 signifies 

presence of ARCH effect.  
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Table 6.5  Ljung-Box-Pierce Q-Test for return of cement demand data  

Lag H p-Value Stat Critical Value 

10 1 0.0178 21.5178 18.307 

15 1 0.0456 23.4199 24.9958 

20 1 0.0248 34.2014 31.4104 

Table 6.6 Ljung-Box-Pierce Q-Test for squared return of cement demand data   

Lag H p-Value Stat Critical Value 

10 1 0.0006 31.132 18.307 

15 1 0 67.3172 24.9958 

20 1 0 71.5217 31.4104 

Table 6.7 Engle ARCH test for return of cement demand data 

Lag H p-Value Stat Critical Value 

10 1 0.0093 23.411 18.307 

15 1 0.0227 27.8242 24.9958 

20 1 0.0397 32.3486 31.4104 

 In order to select the suitable model from competing models, the statistical Akaike 

information criterion (AIC) and the Bayesian information (BIC) tests are performed. 

Usually, the simple GARCH model captures most of the variability in most stabilized 

series. Small lags for p and q are common in applications. Typically, GARCH (1, 1), 

GARCH (1, 2) or GARCH (2, 1) models are suitable for modelling volatilities even over a 

long sample periods (Bollerslev et al., 1992). However, Table 6.8 includes GARCH (0, 1), 

GARCH (0, 2) and GARCH (2, 2) to check appropriate model for the time varying 

variance data. The idea is to have a parsimonious model that captures most data series 

as possible. Small value of AIC and BIC make the model favourable. The calculated AIC 

and BIC values for six different models are described in Table 6.8. From the Table 6.8, it 

can be found the AIC and BIC value of the GARCH (2, 1) model is comparatively less 

and suggested as suitable model to predict the variance of cement demand. 

Table 6.8 Comparison of suggested GARCH models for cement demand  

 

  

 To test the model fitting, statistical test has been performed for all the models shown 

in Table 6.8 to estimate different parameters. From the statistical analysis, it is found that 

Model AIC BIC 

GARCH(1,1) 1382.1 1391.2 

GARCH(1,2) 1384.1 1395.5 

GARCH(2,1) 1380.1 1391.1 

GARCH(2,2) 1382.1 1395.7 

GARCH(0,1) 1502.9 1509.7 

GARCH(0,2) 1394.2 1403.3 
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GARCH (2, 1) satisfies the necessary conditions of 111  , 11  , 

0  and  0 11   (Table 6.9). Hence, GARCH (2, 1) can be selected as an appropriate 

model for further analysis.  

Table 6.9 Parameter estimates for GARCH (2, 1) 

Parameters Value Standard Error T-Statistic 

C -312.05 3489.5 -0.0894 

K 1.45E+08 0.006448 2.25E+10 

GARCH(1) 0 0.23521 0 

GARCH(2) 0.47633 0.25504 1.8677 

ARCH(1) 0.38916 0.2018 1.9285 

 

 According to Takle (2003), goodness of fit of the ARCH-GARCH model depends on 

the residuals and more specifically the standardized residuals. In GARCH model 

selection, if the residual follow normal distribution the model is said to be a good fitted 

model. The relationship between residual series (innovations) from the identified GARCH 

(2, 1) model and corresponding conditional standard deviations and return series is 

shown in Figure 6.29. From the figure, both the returns series and innovation series 

exhibit volatility clustering.  

 
Figure 6.29  Plot of return, estimated volatility and innovation (residual) 

The standardized innovation (i.e. innovation divided by its conditional standard 

deviation) is shown in Figure 6.30. This figure signifies standardized innovation series is 

stable with little clustering. The normal probability plot for residual from GARCH (2, 1) is 

shown in Figure 6.31 which signifies residuals follow normal distribution. For diagnostic 

check, ACF plot of the standardized residuals are shown in Figure 6.32 which indicates 

that there is no correlation left. Further, Ljung-Box-Pierce Q-test and ARCH test are 
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performed on standardized innovation. The estimated parameters from the Ljung-Box-

Pierce Q-test and ARCH test are shown in Table 6.10 and Table 6.11. From the tables, it 

can be observed that there is neither correlation nor ARCH effect is left in the residual 

series (H=0 p-Value >= 0.05). Hence, GARCH (2, 1) can be selected as best fitted 

model. Using this identified model, 12-months ahead changing cement demand 

variations are forecasted from data.  

 
Figure 6.30 Time series plot of residuals from GARCH (2, 1) 

 
Figure 6.31 Normal probability plot of residuals from GARCH (2, 1) 
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Figure 6.32 ACF of the squared standardized residuals 

Table 6.10 Ljung-Box-Pierce Q-test on the standardized innovations 

 

 

 
 

Table 6.11  ARCH test on standardized innovations 

Lag H p-Value Stat Critical Value 

10 0 0.2225 13.0206 18.307 

15 0 0.258 18.0898 24.9958 

20 0 0.4497 20.1317 31.4104 

To predict the demand from AI models, cement demand series is decomposed into 5-

level applying the db4 wavelet family as shown in Figure 6.33.  The subseries is divided 

into two parts, 83% (60-months) of whole data set as training and rest 17% (12-months) 

as testing set. The AI models are trained using the training set. The optimal 

mathematical model generated from training of MGGP model is expressed in Equation 

(6.46).   

 

10.43 - xtest(:,6)1.0 + xtest(:,5)1.0 +

 ) xtest(:,4+ xtest(:,3)1.0 + xtest(:,2)1 :,xtestypred




                                   (6.46) 

Lag H p-Value Stat Critical Value 

10 0 0.2403 12.7111 18.307 

15 0 0.2733 17.7998 24.9958 

20 0 0.4491 20.1415 31.4104 
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Figure 6.33 Decomposed data series of cement demand 

6.5.3  Case 3: LMN Pvt. Ltd.  

 In this case, a steel processing industry is selected to analyse the performance of the 

proposed models. LMN Pvt. Ltd. is one of the well-known steel processing industries of 

India and its plants are situated in different parts of the country. The demand data in 

terms of quantity of steel (MT) required to manufacture different parts is collected during 

January 2009 to February 2013 (50-months) from a plant located in Southern part of 

India. The annual turnover of the company is 335 million dollars. The time series plot for 

the steel demand is shown in Figure 6.34. From the ADF test, it is identified that steel 

demand is non-stationary in nature (H=0 and p-value =0.3292). From ACF and PACF 

plot (Figure 6.35 and 6.36 respectively), it is identified that there is no seasonal effect. 

Therefore, the steel demand series double differenced at lag -1(hence d=2) to convert 

the data into stationary form (Figure 6.37). 

 
Figure 6.34 Time series plot for the steel demand  
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Figure 6.35  ACF plot of the steel demand data  

 
Figure 6.36  PACF plot of the steel demand data  

 From ADF test, it is found that resultant series is stationary in nature (H=1 p-

value=0.0001). From the ACF and PACF plot (Figures 6.38 and 6.39 respectively) 

analysis, the model is identified as ARIMA (2, 2, 1). Using this selected model, 12-

months ahead steel demands are forecasted. 
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Figure 6.37 Non-seasonally double differenced time series plot of the steel demand  

 
Figure 6.38 ACF plot for the double differenced steel demand data 

 
Figure 6.39 PACF plot for the double differenced steel demand data  

 Similar to Case 2, Ljung-Box-Pierce Q-test is performed on the obtained stationary 

steel demand series in order to identify the GARCH model (Tables 6.12 and 6.13). The 

tables signify that there is significant correlation exist in raw returns and squared returns 

when tested for up to 10, 15 and 20 lags of the ACF at significance level of 0.05 (as H=1 
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and p-Value < 0.05). Engle ARCH test performed at lag 10, 15 and 20 (Table 6.14)  

signifies that no ARCH effect (H=0 and p-Value > 0.05) exist in the steel demand series.  

Hence, there is no GARCH model is possible for this case.  

Table 6.12 Ljung-Box-Pierce Q-Test for return of steel demand data  

Lag H p-Value Stat Critical Value 

10 1 0.0042 17.1463 11.0705 

15 1 0.0004 31.7298 18.307 

20 1 0.0031 34.2875 24.9958 

Table 6. 13 Ljung-Box-Pierce Q-Test for squared return of steel demand data  

Lag H p-Value Stat Critical Value 

10 1 0.0042 17.1463 11.0705 

15 1 0.0004 31.7298 18.307 

20 1 0.0031 34.2875 24.9958 

 
Table 6.14 Engle ARCH test for return of steel demand data  

Lag H p-Value Stat Critical Value 

10 0 0.1349 8.4131 11.0705 

15 0 0.5017 9.3233 18.307 

20 0 0.738 11.204 24.9958 

 To make prediction from steel demand series using AI model, the demand series is 

analysed through DWT and decomposed into 3-levels to obtain different subseries as 

shown in Figure 6.40. The whole data set contained in the subseries is divided into 

training set as 76% (38-months) of whole data set and rest 24% (12-months) as testing 

set. The AI models such as ANN, ANFIS, LSSVM and MGGP are trained using the 

training set. The forecasting model obtained after successful training of MGGP model is 

expressed in Equation (6.47). After successful training of the AI models, testing data set 

is presented to the models and 12-months ahead demand data are predicted.   

       
        5-e 249.3-4:,xtest3:,xtest8-e396.24:,xtest2:,xtest

8-e07.14:,xtest3:,xtest2:,xtest1:, xtestypred




            (6.47) 

The model parameters settings for successful training of ANN, ANFIS, LSSVM and 

MGGP models for Case 1, Case 2 and Case 3 are summarized in Table 6.15.  
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Figure 6.40 Decomposed data series of the steel demand data 

Table 6.15 Model parameter settings for the ARIMA and proposed intelligent models  

Models Tuning parameters 
Case-I 

PQR Pvt. Ltd. 
Case -II 

XYZ Pvt. Ltd. 
Case-III 

LMN Pvt. Ltd. 

ARIMA  ARIMA(2,1,2) ARIMA(2,1,1)(0,1,1)12 ARIMA(2,2,1) 

DWT Decomposition level 4 5 3 

ANN 

l 5 6 4 

m 6 8 6 

n 1 1 1 

α 0.1 0.1 0.1 

η 0.06 0.01 0.01 

epochs 500000 50000 500000 

goal 10-5 10-3 10-5 

ANFIS 

Number of  MF for each input 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

MF type gauss2mf trimf gaussmf 

Error Tolerance 0.1 0.1 0.1 

epochs 6 8 6 

output MF type linear linear linear 

LSSVM 


 3778865.67 6.97235e-13 1286899.32 
2  265043.383 2630.2743 7145220.115 

MGGP 

Gmax 4 4 4 

Dmax 5 4 5 

Population size 100 100 100 

Number of generation 100 100 100 

Probability 
values 

Crossover event 0.85 0.85 0.85 

Mutation event 0.1 0.1 0.1 

Direct 
reproduction 

0.05 0.05 0.05 

*gauss2mf: two side Gaussian membership function; trimf: Triangular-shaped 
membership function; gaussmf: Gaussian curve membership function; MF: membership 
function 

6.6  Performance analysis of proposed models   

 Considering 12-month ahead prediction of demand from identified ARIMA model and 

AI models (DWT-ANN, DWT-ANFIS, DWT-LSSVM and DWT-MGGP) in Case 1, Case 2 

and Case 3, the MSE values are estimated using Equation (6.43) (Table 6.16).  From the 
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table, it can be observed that MSE values in case of intelligent models are low as 

compared to the ARIMA model signifying high accuracy of the intelligent models. From 

Table 6.16, it can also be observed that accuracy of the DWT-LSSVM is comparatively 

better than the DWT-ANN and DWT-ANFIS model. 

Table 6.16 Summery of estimated MSE values 

Cases Parameters 
Forecasting Models 

ARIMA DWT-ANN 
DWT-
ANFIS 

DWT- 
LSSVM 

DWT- 
MGGP 

Case 1: 
PQR Pvt. Ltd. 

MSE 

178544.01 4.392 28.469 0.0007 0.000000028 

Case  2: 
XYZ Pvt. Ltd 

228018346.7 77274529.83 64741185.4 234.664 97.670 

Case 3: 
LMN Pvt. Ltd. 

12046.768 229.552 761.496 0.003 0.000000007 

 According to Lee et al. (1997), a proper forecasting model always reduces the BWE. 

To campare the performance of the proposed forecasting models (ARIMA-GARCH and 

intelligent models) with ARIMA model, the BWE are estimated through estimating the 

order quantities ( tQ ) using a simple review period order-up-to level (R, S) replenishment 

policy i.e. base-stock policy using Equation (6.48) and Equation (6.49) considering lead 

time (L) and review period (R) equals to one time period.  

      t
L
t

L
t

L
t

L
tt DˆzD̂ˆzD̂Q                                                                             (6.48) 

    t
L
t

L
tt DD̂D̂Q                                                                                               (6.49) 

where the variable 1tD  is the actual demand for (t-1) period. z represents the service 

level (assumed as 95% service level resulting a z value of 1.96). The parameter L

t̂ is the 

forecasted demand variation during the lead time while L

1tˆ  is the forecasted demand 

variation during the just previous period t-1. L
tD̂  is the forecasted demand during the lead 

time at time period t. Similarly, L
1tD̂   is the forecasted demand during the lead time just 

the previous period, (t-1). The Equation (6.48) is applicable for heteroskedastic demand 

series (i.e. demand variance changes with time) for which the forecasting model should 

have the ability to predict the changing demand variance whereas Equation (6.49) is 

applied to homoscedastic demand series. Since Case 1 and Case 3 do not exhibit 

heteroskedastic demand, 12-months ahead changing demand variance is predicted 

using the identified GARCH (2, 1) model only in Case 2 and mean demand are predicted 

using the identified ARIMA (2, 1, 1) (0, 1, 1)12. Using the predicted demand variance and 

mean demand, the safety-stock quantities ( L
tˆz / L

1tˆz  ) are updated in each 

replenishment period to estimate the order quantities using Equation (6.48). When 
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changing variation in demand is not considered, the order quantities are estimated using 

Equation (6.49). Through the estimated order quantities and actual demand observed in 

Case 2, the BWE and NSAmp are estimated from ARIMA (without considering demand 

variance) and ARIMA-GARCH (considering demand variance) model using Equations 

(1.2) and (1.3) (in Chapter 1) respectively (Table 6.17). 

 Table 6.17 Estimated BWE and NSAmp using ARIMA and ARIMA-GARCH model 

Model (Case 2) BWE NSAmp 

ARIMA 0.881 1.041 

ARIMA-GARCH 0.953 1.024 

From the Table 6.17, it can be observed that BWE approaches to one in case of 

ARIMA-GARCH model signifying less BWE. When BWE is estimated using ARIMA 

model, it is less than one indicating the damping scenario (i.e. variation in order is low 

compared to variation in demand). The NSAmp value estimated in case of ARIMA-

GARCH model is less as compared to ARIMA model. From the above analysis, it has 

been verified that proposed ARIMA-GARCH model can estimate the order quantity with 

relatively high degree of accuracy through updating safety stock using predicted demand 

variance.  

 From Table 6.16, it has been verified that accuracy of the proposed intelligent models 

is better as compared to the ARIMA model in three cases. To analyse the performance 

of the intelligent models, BWE and NSAmp values are estimated. For this purpose, order 

quantities are estimated using Equation (6.49) based on predicted demand from 

identified ARIMA models for various cases and BWE and NSAmp are calculated using 

Equation (1.2) and Equation (1.3) (Chapter 1). Similarly, BWE and NSAmp are 

calculated using intelligent models for all cases. The results are summarised in Table 

6.18. 

Table 6.18 Estimated BWE and NSAmp using ARIMA and intelligent models  

Cases Parameters 
Forecasting Models 

ARIMA DWT-ANN DWT-ANFIS DWT-LSSVM DWT-MGGP 

Case 1: 
PQR Pvt. Ltd. 

BWE 

1.27 0.99 1.062 0.999 0.999 

Case  2: 
XYZ Pvt. Ltd 

0.881 1.005 1.033 0.999 0.999 

Case 3: 
LMN Pvt. Ltd. 

1.182 1.006 1.079 0.999 1 

Case 1: 
PQR Pvt. Ltd. 

NSAmp 

1.02 0.024 0.021 0.0004 7.33E-06 

Case  2: 
XYZ Pvt. Ltd 

1.041 0.46 0.778 0.021 0.007158 

Case 3: 
LMN Pvt. Ltd. 

0.8701 0.577 0.269 0.007 1.25E-06 
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 From the table, it can be observed that the BWE estimated from the intelligent models 

are either equal to one or approaches to one. This signifies that there is no BWE or less 

BWE.  However, BWE is more than  one in case of ARIMA model for Case 1 and Case 3 

and less than one in Case 2. This signifies high BWE in Case 1 and Case 3 and damping 

case (high variation in demand with respect to order) in Case 2. From Table 6.18, it can 

be observed that NSAmp values estimated using intelligent models are less compared to 

the ARIMA model. In other words, less variation is inventory is observed when demand is 

predicted through the intelligent models and hence holding cost can be reduced. From 

the above analysis, it can be concluded that proposed intelligent models outperform the 

ARIMA model. Hence, it has been verified that proposed intelligent models help in 

accurate demand forecasting to reduce the BWE and NSAmp to enhance the 

performance of supply chain under uncertainty.  From the Table 6.18, it can be observed 

that DWT-LSSVM and DWT-MGGP is better than the DWT-ANN and DWT-ANFIS 

model. It is to be noted that BWE and NSAmp value estimated for Case 2 considering 

ARIMA-GARCH is higher than the intelligent models. Hence, it can be concluded that 

intelligent models (DWT-ANN, DWT-ANFIS, DWT-LSSVM and DWT-MGGP) 

outperforms the ARIMA-GARCH model also. Further, the performance of the proposed 

intelligent models is tested for different varieties of (R, S) policy to test the robustness of 

the approach.  

Based on different smoothing parameters for demand, order and inventory position, 

there are five replenishment policies such as         O,R ,D,R,S,R,S,R  and  SO,R,     

(Jakšič and Rusjan, 2008; Bandyopadhyay and Bhattacharya, 2013). For (R, S) policy, 

the analysis has already been made in the previous sections. In (R, D) policy if 1tt DQ 

results in BWE=1. Therefore, these two policies are excluded from further analysis. To 

study the performance of the intelligence models with respect to ARIMA model for 

 S,R  policy, the tQ  values are estimated using the predicted demand from identified 

ARIMA and intelligence models using Equation (6.50) through increasing the inventory 

smoothing parameter   from 0.1 to 0.9. Based on the estimated order quantities, the 

BWE are estimated using Equation (1.2) (in Chapter 1) for Case 1, Case 2 and Case 3 

and shown in Figures 6.41, Figure 6.42 and Figure 6.43 respectively. 

  1t
L

1t
L
tt DD̂D̂Q                                                                                              (6.50) 
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Figure 6.41 Estimated BWE employing 

 S,R   policy for Case 1 

 
Figure 6.42 Estimated BWE employing 

 S,R  policy for Case 2 

 From the figures, it can be observed that BWE is either equals to one or approaches 

to one when   assumes a value at 0.2 for Case 1, 0.1 or 0.9 for Case 2 and 0.1 to 0.2 or 

0.9 for Case 3. BWE is either more than or less than one when demand is predicted 

using ARIMA model for any value (0.1 to 0.9) is selected for  to estimate the order. This 

proves that performance of intelligent models is better than the ARIMA model for  S,R   

policy. To analyses the performance of the intelligence model for   O,R  inventory 

replenishment policy, the order smoothing parameter  is varied from 0.1 to 0.9 and tQ

values are estimated from Equation (6.51) using the predicted demand from the 

intelligence models and ARIMA model. Based on tQ , the BWE are computed using 

Equation (1.2) (Chapter 1) for three cases (Figure 6.44, 6.45 and 6.46 for Case 1, Case 

2 and Case 3 respectively).  

 1t
L
t1tt QD̂QQ                                                                                                 (6.51) 

 From the Figure 6.44, it can be observed that BWE approaches to one when   

approaches to any value from 0.4 to 0.6 if demand is predicted using intelligent models. 

However, BWE is always more than one for any value of   when demand is predicted 

using ARIMA model. 
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Figure 6.43 Estimated BWE employing 

 S,R   policy for Case 3 

 
Figure 6.44 Estimated BWE employing 

 O,R  policy for Case 1 

From Figure 6.45, it can be observed that the BWE is same for any value (0.1 to 0.9) 

of   whether demand is predicted using ARIMA or intelligence models. The BWE can be 

reduced while   value is selected at 0.1 for order estimation. From Figure 6.46, it can be 

observed that ARIMA model can help in reducing the BWE when   selected at 0.1 and 

0.2. When demand is predicted through intelligent models and   is selected between 0.1 

and 0.3 for order estimation, the BWE can be reduced. 

 
Figure 6.45 Estimated BWE employing 

 O,R  for Case 2 

 
Figure 6.46 Estimated BWE employing 

 O,R  policy for Case 3 

To analyse the performance of the intelligent models for   S,O,R   replenishment 

policy, three values such as 0.1, 0.5 and 0.9 are considered for the smoothing 

parameters  and . Using predicted demand from identified ARIMA model and 
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Figure 6.47 Estimated BWE employing  by varying  at constant  value for Case 1 

intelligent models, the tQ  values are estimated using Equation (6.52) by varying the   

for a constant value of  . 

   L
1t

L
t1t1t1tt D̂D̂DQDQ                                                                            (6.52) 

Based on the tQ  value, the BWE is estimated. The behaviour of BWE under the 

influence of  and  and forecasting models are shown in Figures 6.47- 6.49 for three 

cases. Figure 6.47 described the behaviour of BWE for Case 1. From the figure, it can be 

observed that for any value of   when   varies, the BWE is always more than one (high 

BWE) when demand is predicted through the ARIMA model. The BWE can be reduced 

when the demand is predicted using intelligent models and tQ are estimated using 

 S,O,R   policy considering   and  at 0.1. This analysis concludes that intelligent 

models can be used as suitable forecasting model when  S,O,R   policy used for 

inventory replenishment. Figure 6.48 describes the behaviour of BWE when order is 

estimated using  S,O,R  policy (Equation 6.52) for Case 2. From the figure, it can be 

observed that BWE is less than one when demand is predicted through the ARIMA 

model whereas BWE approaches to one when demand is predicted through intelligent 

models and order quantities are estimated using  S,O,R   policy selecting   value at 

0.1 and  value at 0.9 

Figure 6.49 shows the behaviour of BWE for Case 3. From the figure, it can be 

observed that BWE can be reduced when demand is predicted either using ARIMA 
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Figure 6.48 Estimated BWE employing  by varying  at constant  value for Case 2 

model or intelligent models and orders are estimated using  S,O,R  policy (Equation 

(6.52)) selecting  value at 0.1 and   value 0.9. From the study, it is found that BWE can 

be reduced when the smoothing parameter  and   are properly selected to estimate 

the order quantity using the predicted demand from intelligent models. 

 

 

 

6.7  Summary 

In this chapter, two types of forecasting models are proposed. First model is the 

integrated approach of ARIMA-GARCH to deal with heteroskedastic demand series. This 

model predicts the changing demand variance to update the safety stock at each 

replenishment period for proper estimation of order quantity to reduce the BWE and 

NSAmp. Second model is a relatively new approach proposed through embedding the 
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Figure 6.49 Estimated BWE employing  by varying  at constant  value for Case 3 
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DWT analysis with AI techniques (DWT-ANN, DWT-ANFIS, DWT-LSSVM and DWT-GP) 

to improve the forecasting accuracy to reduce the BWE and NSAmp. The proposed 

intelligence models are validated by analysing an example data set from open literature 

through estimating MSE value.   

 In order to evaluate the performance of the proposed forecasting models, demand 

data from three cases is used to estimate BWE and NSAmp considering the base-stock 

inventory replenishment policy. Through judicious selection of GARCH model, the 

variation in cement demand is forecasted for 12-months ahead and mean demand is 

estimated from the selected ARIMA model to estimate the safety stock quantity for 

estimating the order (from Case 2). A comparative analysis has been carried out through 

estimating BWE and NSAmp considering ARIMA only (i.e. without considering predicted 

demand variation) and ARIMA-GARCH model (i.e. considering forecasted demand 

variation to estimate the order). From the analysis, it is found that BWE and NSAmp 

values are less if forecasted demand variance is considered.  

 Similarly, predicted demand from the intelligent models is used to estimate the order 

quantity using base-stock policy to calculate BWE and NSAmp. From the analysis, it is 

found that BWE and NSAmp are comparatively less when demand is predicted using the 

intelligent models. From further analysis, it has been observed that DWT-MGGP model 

outperforms the other proposed models. However, DWT-LSSVM is equally a competing 

method with DWT-MGGP as far as forecasting accuracy is concerned. The DWT-ANN 

and DWT-ANFIS are definitely better than ARIMA model but their performance seems to 

be poor as compared to DWT-MGGP. Further, it is found that intelligent models 

outperform the ARIMA-GARCH model. Further, different variants of order-up-to policies 

like      SO,R, and O,R ,S,R   are tested by changing the smoothing parameters. 

From the study, it is observed that BWE is either greater than one (existence of BWE) or 

less than one (damping scenario) when demand is predicted using ARIMA model and 

order quantities are estimated using      SO,R, and O,R ,S,R  replenishment policies. 

BWE can possibly be reduced when demand is predicted through intelligent models and 

order quantities are estimated using      SO,R, and O,R ,S,R   policies through 

appropriate selection of smoothing parameters. In future, the proposed models can be 

tested for other order replenishment policy and filtering techniques instead of DWT. The 

Chapter 7 concludes the work covered in the thesis including practical and managerial 

implication, limitation and future scope of the work.  
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7.1 Introduction  

 Dealing with uncertainties in supply chain management for improving its performance 

is a major issue these days. Existence of uncertainty in demand, supply lead time, 

supplier acquisition rate, processing time taken by machine, delay due to machine failure 

and random occurrence of machine failure adversely affects the performance of supply 

chain through increasing the backlog, decreasing the service level and increasing the 

total cost. Uncertainties also lead to bullwhip effect and net-stock amplification. Bullwhip 

effect (BWE) causes increase in ordering/production switching cost. Net-stock 

amplification (NSAmp) results in increase in holding cost and decrease in service level. 

In this direction, the present work emphasises on study of impact of uncertainties on 

supply chain performance and different approaches to reduce the adverse effect of 

uncertainties. 

7.2 Summary of findings 

 System dynamics is one of the useful approaches to study the behaviour of multi-

echelon serial supply chain employed with reorder point order-up-to level ((s, S)) 

inventory control policy performing under uncertainty.  From the analysis, it is found that 

the order variance and variation in inventory level increases in the upward stream of the 

SC (towards wholesaler). The bottom echelon (retailer) accumulates higher backorder 

than the upper echelon in a supply chain. Through design of experiments (DOE) 

approach, the influence of uncertainty in demand and lead time and target inventory on 

BWE and total cost is investigated. From the analysis, it is found that uncertainty in 

demand and the target inventory has significant effect on supply chain cost. The supply 

chain cost can be reduced through keeping target inventory at medium level when there 

is low variation in demand and lead time. Target inventory has significant effect on BWE 

and it can be reduced through keeping target inventory at low level when there is low 

uncertainty in demand and lead time. Through the grey relational analysis, it is found that 

BWE and total cost can be simultaneously reduced keeping low target inventory when 

there is low variation in demand and supply lead time. 

Next the behaviour of manufacturing system is analysed considering make-to-stock 

(MTS) and assemble-to-stock (ATS) manufacturing system. The performance of the 

serial MTS manufacturing system is analysed through generating six different scenarios 

based on uncertainty in supply lead time, processing time and delay due to machine 

failure using system dynamics approach. From the study, it is found that backlog 

increases when uncertainty in various parameters acts upon the system. From DOE 
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approach, it is determined that uncertainty in lead time, processing time and delay due to 

machine failure has significant effect on backlog. Interaction of processing time and 

delay due to machine failure largely influence backlog. The backlog can be reduced 

through reducing the uncertainty. A regression model is developed to represent the 

relationship between the backlog and uncertain parameters. Through the cuckoo search 

algorithm, the optimal parameter setting is obtained to reduce backlog. To analyse the 

performance of serial multistage ATS manufacturing system, the system is modelled 

using system dynamics approach. Various scenarios are generated using response 

surface methodology approach. The performance of the ATS manufacturing system is 

analysed in terms of backlog and work in progress (WIP) inventory. From the analysis of 

variance (ANOVA), it is found that backlog is significantly affected due to uncertainty in 

processing time and delay due to machine failure. Similarly, interaction of these two 

factors has significant effect on backlog.  

Similarly, the behaviour of serial two-stage MTS manufacturing system under the 

influence of uncertainty in (i) demand (ii) lead time (iii) supplier’s acquisition rate (iv) 

processing time and (v) delay due to machine failure through system dynamics approach 

is studied. Effect of uncertainty on raw material shortage, WIP, and backlog at 

manufacturer’s end and supplier’s end is analysed. From the analysis, it is found that 

performance of manufacturing system is highly affected when uncertainty in supplier’s 

acquisition rate increases. This study also analyses the benefits of a backup supply 

strategy. From the study, it is found that high service level should be maintained at the 

upper echelon of the supply chain in order to maintain high service level at the bottom of 

the echelon. 

Under the uncertain environment it is very hard to predict accurate demand to reduce 

BWE and NSAmp. Therefore, to enhance the forecasting accuracy and reduce BWE and 

NSAmp, different improved forecasting models are proposed such as ARIMA-GARCH 

and intelligence models (DWT-ANN, DWT-ANFIS, DWT-LSSVM and DWT-MGGP). The 

models are successfully validated using an example from open literature. The 

performance of models are analysed through data obtained from three different case-

study examples. From the analysis, it is found that the ARIMA-GARCH model is a 

suitable model for demand forecasting when demand exhibits heteroskedastic nature 

and supply chain is employed with (R, S) policy. Similarly, from the analysis, it is found 

that demand forecasting using AI models helps in reducing BWE and NSAmp when 

demand series is linear/non-linear or stationary/non-stationary in nature. Further to check 



130 
 

the robustness of the intelligence models, their performance is tested for different 

varieties of (R, S) policies.   

7.3 Contribution of the research work  

 The behaviour of multi-echelon serial supply chain employed with (s, S) policy is 

studied under the influence of uncertainty in demand and lead and inventory decision 

parameter the target inventory. The impact of uncertainty in demand and lead time and 

the target inventory on supply chain performance such as BWE and total cost is 

investigated. Optimal parameter settings are determined to simultaneously reduce the 

BWE and total cost under uncertainty. Further, the behaviour of MTS and ATS 

manufacturing system is studied under the influence of uncertainty in raw material supply 

lead time, production delay and delay due to machine failure considering backlog as 

performance parameter. The impact of uncertainty on MTS and ATS system is 

systematically analysed through the DOE approach. Cuckoo search algorithm is 

proposed to find the optimal parameter setting to reduce the effect of uncertainty.  

A Backup supply strategy is proposed to cope with uncertainty in supplier’s acquisition 

rate in a two stage MTS manufacturing system. Different improved forecasting methods 

are proposed to overcome the problem associated with time series ARIMA model for 

prediction of accurate demand to reduce BWE and NSAmp. The ARIMA-GARCH model 

is proposed to make prediction when demand series is heteroscedastic in nature and 

order quantity estimated using base-stock policy in a supply chain. The intelligence 

models DWT-ANN, DWT-ANFIS, DWT-LSSVM and DWT-MGGP are proposed to make 

prediction when demand series is followed linear/non-linear or stationary/non-station 

pattern and order is estimated using base-stock policy and different varieties of (R,S) 

policies like      SO,R, and O,R ,S,R   to reduce BWE and NSAmp. 

7.4 Research implications  

 In Chapter 3, system dynamics approach is proposed to analyse the impact of 

uncertainty in demand and lead time, and target inventory decision on the behaviour of 

multi-echelon serial supply chain is studied. This idea can be adopted to study the 

behaviour of multi-echelon serial/network supply chain under the influence of 

uncertainties. Through the proper decision of target inventory level, the BWE and total 

cost throughout the supply chain can be moderated. Similarly, in Chapter 4, a framework 

is proposed to study the behaviour of manufacturing system under the influence of 

uncertain conditions. This idea can be implemented by an organisation to identify the 

impact of different uncertainties on the behaviour of a manufacturing system. Based on 
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which different strategies can be developed to control the adverse effect of uncertainties 

associated with the supply chain activities. The importance of backup supply strategy 

under uncertain environment is analysed in Chapter 5. Through adopting backup supply 

strategy, an organisation can avoid stock-out situation. In Chapter 6, the advantages of 

forecasting techniques such as ARIMA-GARCH, DWT-ANN, DWT-ANFIS, DWT-LSSVM 

and DWT-MGGP over the time series ARIMA model is analysed. The ARIMA-GARCH 

model can be used to apply to predict when demand pattern is heteroskedastic in nature. 

With the help of ARIMA-GARCH model, an organisation can predict the changing 

demand variation to update the safety-stock level. Similarly, intelligence forecasting 

techniques (DWT-ANN, DWT-ANFIS, DWT-LSSVM and DWT-MGGP) can be applied to 

predict the demand when the demand pattern exhibits non-linear and non-stationary 

pattern. The intelligence forecasting techniques can be used as a suitable forecasting 

technique to reduce BWE and NSAmp when order quantities are decided through order-

up-to level inventory control policy.   

7.5 Limitations of the study and directions for future research  

 The model proposed for multi-echelon serial supply chain in Chapter 3 is consist of 

single retailer, distributor, wholesaler and manufacturer and confined to a single product. 

This model can be further improved with multiple retailers, distributors, wholesalers and 

manufacturers dealing with multiple products. The MTS and ATS manufacturing supply 

chain model proposed in Chapter 4 is confined to a single product and raw material 

supplied from a single supplier. The model can be further improved with multiple 

products requiring more than one type of raw material for production. In Chapter 5, 

backup supply strategy is proposed to cope with raw material supply uncertainty at the 

manufacturing end. There is no remedial approach or strategy is proposed for the 

uncertainty in production process. Hence, different strategies can be explored to reduce 

the uncertainty in production process.  In Chapter 6, proposed forecasting models are 

tested for the (R, S) policy. These models can be tested for different inventory control 

policies like (s, S) inventory control policy. 
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Appendix 2 

Equations for stock-flow diagram shown in Figure 3.3 
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Appendix 3 

Equations for stock-flow diagram shown in Figure 4.3 
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Appendix 4 

Equations for stock-flow diagram shown in Figure 4.4 
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Appendix 5 

Equations for stock-flow diagram shown in Figure 4.6 
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Appendix 6  

Equations for stock-flow diagram shown in Figure 5.2 
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Appendix 7 

Equations for stock-flow diagram shown in Figure 5.4 
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