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Abstract 

 The prime focus of this thesis is to report control strategies to improve the performance of 

single phase shunt Active Power Filter (APF). Basically, Sliding Mode (SM) control strategy and 

Feedback Linearization based control strategy have been applied considering their ease of 

implementation and robustness under external disturbances. An low cost analog SM controller is 

presented to reduce the steady state current error. In this method a band pass filter is used for 

calculating the reference source current which makes source current Total Harmonic Distortion 

(THD) independent of source voltage THD. Multisim based simulation method and results are 

presented to report the method of low cost analog implementation. To overcome the drawbacks 

caused by varying switching frequency, a fixed switching frequency SM controller is presented, 

in which Artificial Neural Network (ANN) is used to generate the reference source current. In this 

control strategy, a proper combination of fixed frequency sliding mode current control, ANN based 

fundamental source current extraction circuit and unipolar PWM increases the dynamic response 

of APF system and makes it adaptive under variable load and source conditions.  

As feedback linearization based controller improves the performance of the power 

electronic systems by analysing stability of the complete system, a straight forward Partial 

Feedback Linearization (PFL) based control strategy is presented to reduce the source current THD 

of single phase shunt APF. The nonlinear system dynamics of the APF has been partially feedback 

linearized using its average dynamic model. New control input to the linearized system is obtained 

considering the stability of the complete APF system. After that, control input to APF is derived 

by nonlinear transformation. Stability of the internal dynamics of the system is analysed 

considering zero dynamics of the system. A prototype of the APF system is built and the proposed 

controller is implemented using dSPACE 1104. Both experimental and simulation results of the 

PFL based control strategy are compared with exact feedback linearization of APF via SM control 

for validation of performance improvement. Finally the application of PFL based control strategy 

is extended to three phase APF by considering it as Multiple Input Multiple Output (MIMO) 

system and MATLAB/Simulink based simulation results are presented to validate the theory. 
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CHAPTER 1 

INTRODUCTION 

1.1. Background 

Now a days people are extremely dependent on use of nonlinear loads. All the power 

electronic devices can be considered as nonlinear loads.  Controlled/uncontrolled rectifiers, 

inverters, uninterruptable power supplies, switched mode power supplies, televisions, 

refrigerators, printers, fax machines, fluorescent lamps, adjustable speed drives, air conditioners 

are some examples of nonlinear loads. The use of nonlinear loads causes harmonic distortion. 

Harmonics of a sinusoidal waveform are sinusoidal waveforms having frequency integral multiple 

of frequency of the original sinusoidal waveform. In electrical engineering, voltage and current 

waveforms plays an important role in the reliability of electrical devices. In India the fundamental 

frequency of voltage waveform is 50Hz, while in some of the foreign countries fundamental 

frequency of voltage signal is 60 Hz. When fundamental frequency is 50 Hz, the 2nd harmonic is 

100 Hz, 3rd harmonic is 150 Hz and so on. The presence of these harmonics in voltage or current 

waveforms is known as harmonic distortion. A major term related to harmonics is Total Harmonic 

distortion (THD). THD of a signal is calculated as the square root of sum of squares of all the 

harmonics present in that signal.  There are several problems caused due to voltage and current 

harmonic distortion, such as: overheating of motors, transformers and capacitors, increase in 

conduction losses and eddy current losses, premature damage of electrical equipment, important 

data loss from computers used in offices, meter readings with higher percentage of error, etc. 

Therefore mitigation of harmonics from voltage and current wave forms has become a major 

concern of power and control researchers. Including harmonic distortion, there are also several 

other factors, such as voltage sag, voltage swell, voltage flicker, etc., which hampers the power 

quality.  

Passive filters have been used to improve the power quality by compensating voltage and 

current harmonics, but these are no longer used due to high cost, large size and resonance effect. 
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Also there is no possibility of using same passive filter for different loads. These problems can be 

overcome by use of active power filter (APF). 

1.1.1. Active Power Filter 

APF not only mitigates harmonics from voltage and current waveforms but also improves 

power factor, reduces neutral current of three phase AC supply, compensates the reactive power, 

adapts itself to different load and source conditions and reduces the impact of voltage sag, swell 

and flicker. All these simultaneous work can be possible only due to closed loop switching control 

application of APF. 

APF is a power electric equipment connected either in series or in parallel or combination 

of both in between source and load. Depending on its connection it is classified into three 

categories, namely: 1) series APF; 2) shunt APF; 3) universal APF or unified power line 

conditioner. Series APF is used to compensate voltage harmonics, while shunt APF is used to 

compensate current harmonics. Universal APF is used to compensate voltage harmonics as well 

as current harmonics. Sometimes a combination of both APF and passive filter is used for better 

result. This type of filter is known as hybrid active power filter. Due to requirement of current 

harmonic compensation in most of the industrial applications, performance improvement of shunt 

active power filter has become the choice of many researchers. 

1.1.2. Shunt Active Power Filter 

Nonlinear Load

Active power 

filter

AC Source

Source Current Load Current

F
ilter C

u
rren

t

 

Fig.1.1 Block diagram of shunt active power filter 
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Shunt APF is connected in parallel at the Point of Common Coupling (PCC) in between 

source and nonlinear load. Main focus of shunt APF design is to compensate current harmonics 

caused by nonlinear load by supplying equal amount of harmonics at PCC but with opposite 

polarity. Block diagram of shunt APF is shown in Fig.1.1. APF is an inverter with some 

controllable switches. A voltage source inverter (VSI) or a current source inverter (CSI) can be 

used as an APF.  

In CSI based APF, a CSI is connected at PCC through second order low pass filter made 

up of FL and FC as shown in Fig. 1.3. Current source of the inverter is replaced by a high DC side 

inductor [36]. In CSI all the semiconductor switches must support unipolar current and bipolar 

voltage. Earlier researchers were using Gate Turn-Off (GTO) thyristor with reverse blocking 

capabilities. But now a days to enhance research on CSI, Insulated Gate Bipolar Transistor (IGBT) 

with a series diode are available in market. 

 

 

 

                                      

 

 

 

 

In VSI, the AC side of the inverter is connected at PCC through a coupling inductor. In the 

DC side of VSI, DC source of inverter can be replaced by a large capacitor as there is no resistive 

element used in the AC side of the inverter. As all the circuit elements are not ideal, some steps 

should be taken to overcome the internal resistance of the circuit elements while using VSI as APF. 

This is discussed in latter parts of the thesis. All switches must support bipolar current and unipolar 

voltage. So semiconductor switches with anti-parallel diode are generally used. Block diagram of 

VSI based shunt APF is shown in Fig. 1.2.  

Nonlinear 

load
AC Source

Coupling 

Inductor

VSI

L

C

PCC

 

Nonlinear 

load
AC Source

CSI

FC

F
L

1
L

PCC

 

Fig. 1.2 Block diagram of VSI based shunt active 

power filter 
Fig. 1.3 Block diagram of CSI based shunt active 

power filter 
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Coming into the benefits and drawbacks of both VSI and CSI based shunt APF, CSI fed 

APF is very efficient in low power conditions. But it is comparatively heavier than the VSI fed 

APF. Also CSI fed APF has high DC link losses due to use of large inductor in the DC side of CSI. 

The major drawback associated with VSI fed APF is that there is switching ripple in the source 

current after compensation. There is no such significant difference in harmonic compensation 

characteristics of both VSI and CSI fed APF.  But considering ease of implementation of VSI fed 

APF, its performance development is considered in this thesis.  

Depending on the AC source and load, APF configuration is also changed. For a single 

phase source, single phase shunt APF is used and for a three phase source a three phase APF is 

used. Generally for household and office applications such as: computers, fax machines, printers, 

etc, single phase supply is used. So single phase shunt APFs are widely used to eliminate current 

harmonics in this field [1-5]. A single phase shunt APF is shown in Fig. 1.4. As shown in Fig.1.4, 

the variable and,  S O LI I I are used to present the source current, output current and inductor current 

respectively. SV and CV presents the source voltage and capacitor voltage respectively. Resistance         

‘ R ’is used to demonstrate all the internal resistances of the circuit elements. In [2] and [4] this 

resistance R is considered in the analysis of control strategy of APF, whereas in [29] this resistance 

is neglected.  A single phase diode bridge rectifier with RC  load used as a nonlinear load as shown 

in Fig. 1.4. 

  

 Fig. 1.4 Typical structure single phase of shunt active power filter 
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Similarly for industry applications to eliminate current harmonics three phase shunt APF 

is required. A typical structure of three phase shunt APF is shown in Fig 1.5 as per [38]. Three 

phase bridge rectifier with RCL  load used as nonlinear load. A three phase VSI with large DC 

capacitor, coupled to the AC mains through coupling inductors acts as a three phase APF. Circuit 

elements are named as in Fig. 1.4 and Fig. 1.5. 

           

Nonlinear Load

Three phase APF

Three phase AC 

source

1

3

2

1
L

2
L

3
L

C L
R

C
V

sourceI load
I

compI

6
S

5
S

4
S

3
S

2
S

1
S

S
R

 

 

1.1.3. Design of the circuit of APF 

The design of the APF circuit mainly includes the following factors: 

 Choosing controlled switches  

 Selecting the Value of DC link filter capacitor 

 Choosing the value(s) of coupling inductor (s) 

 Taking a reference DC capacitor voltage.  

Metal Oxide Semiconductor Field Effect Transistor (MOSFET) or IGBT switches with a 

antiparallel diode across it can be used as switches in shunt APF. The voltage and current rating 

Fig. 1.5 Typical structure three phase of shunt active power filter 
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of the switches must be higher than peak DC link Filter capacitor voltage and peak coupling 

inductor current respectively. The peak of coupling inductor current can be determined easily by 

knowing nonlinear load model [1]. Coupling inductor current is for a single phase shunt APF 

L Source loadI I I          (1.1) 

where LI  is the coupling inductor current. As per literature [1], SourceI  can be calculated as follows: 

2
sin( )load

Source

rms

P
I t

V
        (1.2) 

loadP  is real power consumed by nonlinear load and t is the instantaneous phase of the source 

voltage. The current rating of the APF semiconductor switches is taken higher than the peak of the 

inductor current considering inductor current ripples and other factors. The smaller is the inductor, 

the higher is the ripple and vice versa. But inductor with high inductance does not allow the 

compensating current to flow within it. Considering these two aspects, the value of inductor is 

chosen suitably. 

 To shape the line current at any instant of time, the reference DC capacitor voltage must 

be higher than the peak of the source voltage for a single phase shunt APF [1]. Similarly for a three 

phase shunt APF the reference DC capacitor voltage must be greater than two times to that of 

source voltage as per [15]. As this DC reference capacitor voltage does not have any impact on 

THD of source current, it can be taken randomly satisfying the above said conditions. But to make 

APF work properly under sudden load change, one has to consider another point for choosing the 

reference DC capacitor voltage. In this case for a single phase shunt APF the DC reference 

capacitor voltage must be greater than sum of peak value of source voltage and real power 

difference in step load changes. Similar steps should be taken for three phase APF. The DC 

capacitor is used for two important purposes, such as: 1) to maintain DC voltage level higher than 

the peak of source voltage. 2) to supply the real power difference during sudden load changes. 

Considering these two aspects a large value of capacitor is selected as follows [39]:

 

MAX

DC DC MIN

E
C

V V



        (1.3)

MAXE is max real power difference during step load changes, that capacitor has to supply during 
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transient condition. DCV is chosen as the reference capacitor voltage and  DC MINV is the minimum 

reference capacitor voltage, which can be taken.  

 Considering capacitor voltage ripple, the voltage rating of the semiconductor controllable 

switches must be higher than sum of reference DC capacitor voltage and real power difference in 

step load changes. 

 The switching frequency of the controlled switches has a large impact on source current 

THD. The higher is the switching frequency, the lower is the THD of source current. To 

compensate a particular harmonic, the switching frequency must be higher than 10 times of that 

harmonic frequency. To compensate up to 20th harmonic, the switching frequency required is 

20*10*50 10kHz . But if the purpose is only to compensate the reactive power without 

considering harmonics, one can switch at a frequency of 500 Hz. 

1.2. Literature review on control strategies applied to shunt Active Power 

Filter and other power electronic circuits 

 As discussed before APF can perform many simultaneous work due to the closed loop 

switching control application. Therefore the study of control strategies of APF is very important. 

APF control techniques mainly divided into three categories, such as: 

 Control of DC capacitor voltage along with generation of reference source current 

 Switching scheme 

 Current control of APF 

1.2.1. Control of DC capacitor voltage along with generation of reference 

source current 

 Mostly a Proportional- Integral (PI) controller is used to control the DC link capacitor 

voltage as well as to estimate peak value of reference source current for both single phase and 

three phase APF [1-4]. The output of PI controller is multiplied with unit vector of source voltage 

to generate reference source current. Unit vector implies a sine wave having unit peak value with 

phase same that of source voltage. As PI controller has large impact on source current harmonics, 

a low pass filter is connected at the output of PI controller to reduce the source current THD. Some 

advance technologies, such as fuzzy logic, artificial neural network (ANN) and genetic algorithm 
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has been used in [40-44] to generate reference source current. In [45] P. Kumar and A. Mahajan 

compared different soft computing techniques for generating reference source current. They found 

that APF give very good response under frequent load variation by application of soft computing 

techniques. In [48] comparison of PI controller and fuzzy logic controller has been carried out for 

controlling the DC voltage of capacitor. The generation of reference current using the combination 

of ANN and fuzzy logic is explained in [46]. In this literature all the analysis are done in discrete 

time domain. The main benefit of this controller is that it can handle nonlinearity.  In [15], 

harmonics are estimated using neural network and real power loss by circuit elements of APF is 

estimated using PI controller. Both PI controller and neural network are used to generate reference 

source current. A three phase shunt active power filter was proposed by H. Akagi using 

instantaneous active and reactive power theory [49]. In this control strategy, reference source 

currents are calculated instantaneously using instantaneous source voltages and load currents. 

Further development in this strategy was done by S. Bhattacharya, who calculated d-q (direct-

quadratic) components of instantaneous three phase currents [50]. This paper gives concept about 

synchronous reference frame and the procedure to calculate reference source current 

instantaneously without sensing the source voltage. In [52], a modified reference current extraction 

method is proposed using both p-q(active –reactive) and d-q theory . In [5], reference source 

current is calculated using real power balance of the system. The peak value of source current 

required to balance the real power loss of the circuit elements is calculated. The peak value of 

source current required to provide real power to nonlinear load is also calculated. Finally both the 

peak values are added to give the peak value of reference source current.  

1.2.2. Switching scheme 

 Modulation scheme plays an important role in reducing the source current THD. Mostly 

two types of switching modulation schemes are applied to active power filter, hysteresis 

modulation (HM) and pulse width modulation (PWM). But for a single phase APF both HM and 

PWM switching schemes are further classified into two types, unipolar modulation and bipolar 

modulation. In [13] unipolar PWM based switching scheme is applied, whereas in [29] bipolar 

PWM based switching scheme is applied. Similarly unipolar hysteresis modulation based 

switching scheme is applied in [3], whereas bipolar hysteresis modulation scheme is applied in 

[2]. A brief description of unipolar and bipolar modulation schemes is given below. As shown in 
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Fig. 1.6 for positive source current, unipolar modulation employs V and 0 , and for negative 

source current it employs V and 0 . But bipolar modulation scheme only employs V and V

both for positive and negative current.  
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In unipolar modulation, even harmonics are found to be absent, so THD of source current in bipolar 

modulation is twice that of unipolar modulation scheme. In PWM switching scheme, switching 

frequency remains constant, where as in HM switching scheme, switching frequency may varies 

as the load changes. To control the switching frequency, an adaptive hysteresis band based current 

controller for APF is presented in [53]. In this control strategy hysteresis band width changes with 

change of load. But it requires complicated mathematical calculations. B. Mazari proposed a 

method of updating hysteresis band using fuzzy logic to avoid mathematical calculation [55]. All 

the above discussed hysteresis band controllers are based on two level hysteresis band. In [54] a 

three level hysteresis band based current controller is presented. THD of source current reduced 

significantly in three level hysteresis band based controller of APF. 

 

 

Fig. 1.6 Switching scheme. (a) Source current, (b) Unipolar Modulation, (c) Bipolar Modulation 
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1.2.3. Current control of APF 

 Although most of the research on APF is based on reference current extraction method and 

switching schemes, current control of APF also plays a significant part in analyzing stability of the 

complete system, providing robustness under external disturbances and reducing THD of the 

source current. Current of APF can be controlled directly or indirectly. In direct current control 

method, the sensed coupling inductor current used directly in the controller of APF. In indirect 

current control method sensed source current is used in the controller to generate switching pulses. 

In [1-3], [6] and [38] indirect current controller is implemented, whereas [4] and [15] are based on 

direct current controller. Mostly indirect current control techniques are applied as it is easier to 

implement. A resonant current controller is presented in [6]. A Lyapunov stability based current 

control strategy is presented in [4]. The concept of equilibrium points and linearization of single 

phase shunt APF is explained in literature [29]. Both model reference adaptive current controller 

[29], Lyapunov based current controller [4] are very good method for analyzing stability of the 

system. It is noticed that transient response of the system is significantly improved in [29]. The 

sliding mode (SM) control is applied to three phase shunt APF in [38]. Also in both literature [1] 

and [2] SM current control strategy is applied to single phase shunt APF. SM controller via 

feedback linearization is applied to shunt APF in [3]. Coming into the SM current control strategy 

and feedback linearization based current control strategy, it is found that these two control 

strategies are frequently applied to improve the performance of other power electronics devices.   

 To avoid the drawbacks of variable switching frequency, a PWM based constant switching 

frequency SM controller of DC-DC converter is reported in [10]. Similarly fixed switched 

frequency SM controller for single phase VSI is developed in [13]. To make the boost converter 

robust under variation of input voltage and load, an adaptive SM controller is presented in [56]. A 

variable sliding surface based position control of DC motor is presented in [58]. Maximum power 

point tracking method of photovoltaic system using SM controller is analyzed in [57]. In this paper 

instead of sensing voltage of the capacitor connected across the photovoltaic system, current 

flowing through the capacitor is used in the SM controller. In [59], dynamic stability of the 

photovoltaic system connected to grid is analyzed using zero dynamic of the system. This process 

is nothing but the feedback linearization of grid connected photovoltaic system. A robust Partial 

Feedback Linearization (PFL) scheme of the photovoltaic system for maximum power point 
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tracking is presented in [60]. This control algorithm is mainly robust under parameter uncertainties. 

Also an Exact Feedback Linearization (EFL) based controller design of boost converter is reported 

in [30]. The complete description of SM control strategy is explained in [11]. Similarly a detail 

explanation of feedback linearization method is given in [34]. A brief explanation of both SM 

control method and feedback linearization control method is given below.  

1.2.3.1. Sliding mode control 

 SM control is one of the nonlinear control strategy. It is mostly applied to variable structure 

system. The basic principle for applying SM control strategy is to design a sliding surface or 

switching function. Then the switches of power electronic device are controlled in such a way that 

the system trajectory will be directed towards the sliding surface, slides along the surface and 

eventually reach the equilibrium point. More detail about equilibrium point is given in [29]. The 

system performance depends on the design of sliding surface. In [10], the sliding surface taken is 

given by 

1 1 2 2 3 3S p p p            (1.4) 

Where 1 2 3, ,   are positive constant and 1 2 3, ,p p p are state variable of the DC-DC converter. In 

[12] the sliding surface taken is given by 

( )(x x )d

d
S

dt
           (1.5) 

Where  is a positive constant and x xd is the error between state variable to be controlled and 

desired reference variable. After designing of the sliding surface, the next step is to define a control 

law based on three conditions. These conditions are given as follows: 

(1) Reaching condition or hitting condition 

(2) Existence condition 

(3) Stability condition 

The aim of reaching condition is that regard less of initial position, the trajectory of the system 

will be directed toward the sliding surface. Once it reaches the sliding surface, to maintain the 

trajectory on the surface is the objective of existence condition. The existence condition can be 
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treated as local reachability condition. As shown in Fig. 1.7 (E) the trajectory reaches the sliding 

regime at point (a), slides along the surface (existence condition) and finally settles at the 

equilibrium point. The inequality which makes the system satisfy the reaching and existence 

condition is given as follows: 

  

E

Initial 

Condition

S=0

S=0

Initial 

Condition

a

Equilibrium 

Point Equilibrium 

Point

a

(E)
(F)  

0
lim . 0
S

dS
S

dt
          (1.6) 

The above inequality is based on lyapunov stability theorem, of which the lyapunov energy like 

function is  

21
( )

2
V S S          (1.7) 

The stability condition is for ensuring system trajectory to reach the equilibrium point and to settle 

there for the rest of the time. The sliding coefficients must be chosen carefully to ensure the 

stability of the system. As shown in Fig. 1.6 for a stable system the system trajectory slides along 

the surface and finally settles at the equilibrium point. But for an unstable system the trajectory 

crosses the equilibrium point and move towards infinity. 

1.2.3.2. Feedback linearization control 

 This is also one of the nonlinear control strategy, in which the nonlinear dynamics of the 

system is transformed into a linear dynamics and then linear control methods are applied to control 

the complete nonlinear system. This linearization method is better than the conventional Jacobian 

linearization method as there is no approximation of the dynamics took place in the linearization 

Fig. 1.7 Sliding conditions (E) stable system (F) unstable system 
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process. Feedback linearization of a system can be done by two different methods, input-state 

linearization and input-output linearization. 

  All the nonlinear systems are not input-state linearizable.  Diffeomorphism condition must 

be satisfied for a system to be input- state linearizable. Diffeomorphism in detail is explained in  

[61]. Sometimes even state equations are completely linearizable, the controllability of the system 

becomes difficult as the output variable to be controlled takes complicated form by state co-

ordinate transformation. In this case better controllability can be achieved by input-output 

linearization. All the dynamics of the nonlinear system may not be taken into consideration in 

input-output feedback linearization. Sometimes some dynamics remain unobservable in input-

output linearization. These dynamics are known as internal dynamics of the system. Stability of 

the internal dynamics must be checked to know about stability of the complete system. In general 

three steps must be followed in input- output linearization. These steps are given below: 

 Differentiate the output until input appears in the output equation 

 Choose input considering the stability of the system, so that  it can cancel the 

nonlinearity 

 Check the stability of the internal dynamics of the system 

Relative degree of a system plays a vital role in input- output linearization method. Relative degree 

of a system is defined as the no of times the output of a system to be differentiated, for the input 

to appear in the output equation. The nonlinear system have internal dynamics, when the relative 

degree of a system is less than the order of the system. The conclusion about stability of the internal 

dynamics can be obtained by considering the zero dynamics of the system. The zero dynamics is 

nothing but the internal dynamic of the nonlinear system when the output of the system is made 

zero by the input of the system. The nonlinear system can also be said partially linearizable when 

part of the system dynamics remains unobservable. This is the case for consideration of stability 

of internal dynamics. But by use of Tellegen’s theorem the system can be exact feedback 

linearizable and there is no need to consider internal dynamic stability. More about Tellegen’s 

theorem is explained in [3]. Lie derivative is the mathematical term generally used in feedback 

linearization process for calculation of relative degree and control input co-ordinate 

transformation, etc. in latter chapters lie derivative is used for related calculation in feedback 

linearization process. 
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1.3. Research motivation 

 From the review made, the following points are observed and motivate for further 

consideration. 

 In general unit vector of source voltage is used in the reference current extraction 

process. This is why the APF source current THD increases to an unacceptable level as 

the source voltage THD increases. So it is required to make reference source current 

THD independent of source voltage THD. 

 Dynamic response of the system improves by separating harmonic extraction circuit 

from filter capacitor voltage controller. 

 As high and varying switching frequency causes switching losses, conduction loses and 

even damage of the system, it is required to keep the switching frequency constant. 

 Sliding mode (SM) control is well known due to its ease of implementation and 

robustness. 

 Feedback linearization based controller improves the performance of power electronic 

systems by analyzing stability of the complete system.  

 The literatures connected to PFL based control technique reveals benefits of applying 

of PFL based control techniques over EFL based control technique. Therefore it is 

required to apply PFL based control technique to shunt APF and performance should 

be compared with EFL based control technique. 

1.4. Thesis objective 

 The objectives of the thesis sare as follows: 

 To develop an analog SM controller for APF to reduce steady state current error and to 

make source current THD independent of Source voltage THD by use of band pass filter. 

 To present Multisim simulation results for showing the method of analog low cost 

implementation. 

 To design a PWM based constant switching frequency SM controller for single phase 

shunt APF. 

 To generate the reference source current combining both ANN based modified 

extraction circuit and PD controller. 
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 To apply PFL control technique to single phase shunt APF using averaged dynamic 

model of APF. 

 To develop an experimental prototype of PFL technique based single phase shunt APF 

using dSPACE 1104. 

 To extend the application of proposed PFL technique to three phase APF. 

 To validate the theory of proposed control strategies using MATLAB/Simulink. 

1.5. Thesis organization 

The thesis consists of six chapters, these are organized as follows: 

 Chapter 1 covers the introductory concepts of nonlinear load, harmonics, and APF. 

Literature review on reference source current generation methods, switching schemes, and current 

control techniques of shunt APF is explained in detail in this chapter. A brief introduction of 

feedback linearization control and SM control is also given. Eventually motivation, objective and 

organization of the thesis is reported. 

 Chapter 2 presents a low cost analog SM controlled single phase shunt APF. In this control 

strategy, THD of source current becomes independent of source voltage THD by use of band pass 

filter. MATLAB/Simulation results are presented to check the performance of integral SM current 

controller and band pass filter based reference current generation method. Finally Multisim 

simulation diagram and simulation results are presented to reveal low cost analog implementation 

methods. 

 Chapter 3 presents a constant frequency SM controller for shunt APF. Combined control 

strategy using ANN based fundamental source current extraction circuit and PD controller is used 

for reference source current calculation. Reference current extraction method is explained properly 

and finally MATLAB/Simulink simulation results are presented to validate the theory. 

 Chapter 4 presents the application of PFL control techniques to single phase shunt APF. 

The internal dynamics stability is analyzed in this chapter. The switching scheme used in [3] is 

explained. MATLAB simulation results are presented to reveal the effectiveness of theory. Finally 

an experimental prototype of the proposed method is developed using dSPACE 1104. 

Experimental results are also presented. 
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 Chapter 5 presents the extension of proposed PFL technique in chapter 4 to three phase 

shunt APF. Evaluation of this control strategy is done using MATLAB/Simulink software. 

 Chapter 6 focuses on the conclusory remarks of this thesis. It also suggests some future 

directions of this research work. 
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CHAPTER 2  

DESIGN OF AN ANALOG SLIDING MODE 

CONTROLLER FOR SINGLE PHASE SHUNT ACTIVE 

POWER FILTER 

2.1. Introduction 

From the literature review made on active power filter , it is clear that a lot of active power 

filtering methods have been proposed in the literatures to reduce THD of source current and to 

improve the power factor on the electrical network. But most of the control strategies are based on 

some advance technologies such as fuzzy logic, neural network and genetic algorithm. These 

control strategies gives high performance and flexible designs. But the cost of implementation of 

these control algorithms is very high. 

To reduce the cost of implementation some analog control implementations have also 

been evaluated in the literature [1], [4], [14]. These controllers provide good performance at 

nominal source conditions. However, in distorted sources, additional analog circuitry is required 

to fulfill the expected features. Considering these problems, this chapter reports a SM controlled 

active filter, which is applicable under both nominal source and distorted source.  

2.2. Chapter objectives 

The main goal of this chapter is to design a low cost active filter with low THD and high 

robustness under external disturbances. A band pass filter is used in the generation of reference 

source current, which makes active power filter to be applicable for both nominal source and 

distorted source. An integral sliding surface is chosen to reduce the steady state current error. 

Unipolar hysteresis modulation switching scheme is chosen to get the desired active power filter 

performance. A complete analysis of sliding mode control theory is given and MATLAB/Simulink 

based simulation results are reported to verify the theory. LABVIEW (Multisim) based simulation 

circuits and corresponding results are also presented to report the low cost design method. 
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2.3. Dynamic model of single phase shunt APF   

In this section dynamic model a single phase shunt APF as shown in Fig. 1.4 is reported. 

The filter capacitor voltage (
CV ) must be maintained at a high value than the peak of the ac source 

in order to shape inductor current ( LI ) as required at any instant point in the line cycle. During the 

positive half cycle of the source voltage, LI  can be made more positive by making 0xv  and LI

can be driven toward zero by making
x Cv V . During negative half cycle of the source voltage, 

LI

can be made more negative by making 0xv  and LI can be driven toward zero by making x Cv V 

[1]. In order to analyze the operation mode of the APF, we define the switching function 1iU  if 

iT is ON and 0iU  if iT  is OFF, where 1, 2,3, 4i   denoting the switch number. Here we note two 

switches from the same inverter leg must operate complementary. This gives  

1 2 1U U   and 3 4 1U U                (2.1) 

Also: 

1 4 2 3( )x Cv U U U U V               (2.2) 

Using (2.1) and (2.2) one gets 

1 4( 1)x Cv U U V                                                 (2.3) 

The current flowing through filter capacitor ( CI ) can be expressed as: 

1 4( 1)C LI U U I                                    (2.4) 

With analytic expressions of vx and CI , the dynamic state equations for the inductor current and 

capacitor voltage are as follows: 

1 4( 1)L
S L C

dI
L V I R U U V

dt
                              (2.5) 

1 4( 1)C
L

dV
C U U I

dt
                                        (2.6) 

where SV is the source voltage.  
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Assuming 
1 4 1U U   asU , the state dynamic model of shunt APF becomes: 

1
( )L

S L CL

dI
V I R V U

dt
                             (2.7) 

1
( )C

LC

dV
I U

dt
                                        (2.8) 

2.4. Development of the control algorithm 

This basic approach consists of two control loops. Outer voltage loop regulates the 

capacitor voltage and inner current loop tracks the reference current signal. PI controller is used to 

control the DC side capacitor voltage. Inductor current is controlled using SM control strategy. 

2.4.1. Sliding mode current control of APF 

 In order to improve the performance of the controller, in this chapter a control mode is 

proposed based on sliding surface which involves source current ( SI ). Let (
*, SDCV I ) be the 

reference values of filter capacitor voltage and source current. These reference values of filter 

capacitor voltage and source current are also known as equilibrium points of the system. The error 

function *

1 0S Se I I   represents the sliding surface in [1] and [2]. However, in this situation the 

system has steady state current error. In order to reduce steady state error an integral term 2 1e e dt 

is introduced. 

The proposed sliding surface can be written as follows: 

1 2S e e                        (2.9) 

where is a control parameter known as sliding coefficient. Positive value sliding surface 

coefficients  ensures the stability of the APF.  As explained before the existence condition  

Table 2.1 

Switching scheme used in analog SM controller  

 0SV   0SV    0S   0S   

3U  0 1 
1U  1 0 

4U  1 0 
2U  0 1 
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0

lim . 0
S

S S


 must be satisfied to bring the dynamics of the system on to sliding surface and to 

maintain it on the surface. In SM controller in order to satisfy the existence condition we usually 

determine U  as following: 

1      0

0     0

-1    0

if S

U if S

if S










 



              (2.10) 
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 The sign of S should be controlled to satisfy the existence condition. This can happen by 

application of control law defined in (2.10). A unipolar HM based switching scheme is applied to 

implement the proposed SM control strategy. The applied switching scheme is shown in Table 2.1. 

Switches of one leg of the APF ( 3 4,T T ) operate at source voltage frequency and that of other leg (

1 2,T T ) operate at high frequency.  For 0SV   ( 4T is ON), if 1T is ON, the state variable trajectory S 

increases ( 0S  ) and becomes positive. If 1T is OFF, S decreases ( 0S  ). For 0SV  , the situation 

is similar. Switches 3 4 and T T are used to force 0xv  and 0xv  respectively, while Switches 

1 2 and T T  are used to actively shape LI . The control law U  makes the state trajectory to reach the 

sliding surface in finite time, and then slides along the surface toward equilibrium point 

exponentially. The complete analog SM controller for single phase shunt APF is shown in Fig. 

2.1. 

Fig.2.1 Analog sliding mode controller for shunt APF 
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 With the proposed controller switching frequency varies during the source period, due to 

the inherent behavior of the sliding mode control. The maximum frequency is expected at zero 

voltage crossing points and the minimum frequency is obtained at peak source voltage values. In 

the proposed controller the maximum switching frequency  S MAXf is fixed by using D flip flop at 

the output of the comparator. Note that maximum switching frequency is always one-half of the 

clock/decision frequency. One benefit of constant decision frequency is that the maximum 

switching frequency of the switches is bounded.  

2.4.2.  Reference source current calculation 

 Fundamental component of the gate pulses to switch 
4T is in same phase to that of source 

voltage ( SV ). So a band pass filter can be used to generate the fundamental component of gate 

pulse by filtering its harmonics. The characteristics of bandpass filter have a significant effect on 

the active power filter performance. The bandwidth should be small enough to sufficiently 

attenuate the harmonic components of the reference current. 

 The capacitor voltage is put through a RC lowpass filter which yields the average capacitor 

voltage. This quantity is compared to the reference capacitor voltage, with the difference driving 

the PI controller. The output of the PI controller is a slow varying variable. This is the peak value 

of reference source current. This implies that the output of PI controller gives sum of peak value 

of fundamental load current and the peak value of source current required to compensate the real 

power loss in filter capacitor. As a result this slow varying variable is multiplied with the output 

of band pass filter to generate the desired reference source current.  

As band pass filter is used to calculate reference current, small variation in amplitude of 

source voltage does not affect reference source current. This is why this active filter is applicable 

for both distorted and nominal source. 

2.5. MATLAB/Simulink based simulation results 

To check the robustness and effectiveness of the proposed analog SM controller, the 

complete shunt APF system is simulated using MATLAB/Simulink. The nonlinear load used is a 

diode bridge rectifier having 500-µF capacitor in parallel with a 45-Ω resistor at its output side. 

The system parameters used in the simulation are given in Table 2.2. Cutoff frequency of RC 
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lowpass filter has been set as 80 Hz. Cutoff frequency and bandwidth of bandpass filter have been 

set as 50 Hz and 6 Hz respectively. 

Table 2.2 

System parameters used for MATLAB/Simulation in analog SM controller 

L- 5 mH  RMS

SV - 110 V  -  2000 S-1 

CrefV - 200 V 
SVf   - 50 Hz 

PK - 0.5 

C- 1100 µF 
Clockf -40 kHz 

iK -10 

 

The THD of the source voltage under ideal condition is found to be 0.19%. Similarly the 

THD of the load current considering up to 30th harmonics is calculated as 82.9%. Simulated load 

current and source voltage waveforms are shown in Fig. 2.2. By application of proposed controller, 

the source current THD is reduced to 4.51%. Fig. 2.3 shows source current and source voltage 

waveforms of the proposed analog SM controller.  
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Fig. 2.2. Source voltage (bottom). Load current 

(top). Analog SM controller 

Fig. 2.3. Nominal voltage source. Source voltage (bottom). 

Source current (top). Analog SM controller 

 

Fig. 2.4. Distorted voltage source. Source current 

(top). Source voltage (bottom). Analog SM controller 

 

Fig. 2.5.Filter Capacitor voltage (top). Inductor 

current (bottom). Analog SM controller 
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In practical application, the source voltage waveform is normally distorted. To check the 

performance of the proposed controller in such situation, a distorted source voltage with a THD 

10.32% has been employed. The waveforms of source current for distorted source is shown in 

Fig.2.4 and THD of source current under this condition is calculated as 4.93%. It is clear that 

source current THD is almost independent of source voltage THD. 

The actual source current ( SI ) and reference source current ( *

SI ) for sliding surfaces 

without integral term and with integral term are shown in Fig. 2.6 and Fig.2.7 respectively. It is 

observed that there is reduction in steady state current error by introduction of integral term in the 

sliding surface. After looking at Fig. 2.5, it is observed that the filter capacitor voltage is 

maintained approximately at required constant voltage of 200 volts. Also Fig. 2.5 shows inductor 

Fig. 2.6.Source current ( S
I

) and reference Source 

current ( Sref
I

) with sliding surface 1  S S ref
S e I I 

 

Fig. 2.8. Filter capacitor voltage (bottom). Source current (top), Dynamic response for step load change 

 

 

Fig. 2.7.Source current ( S
I

) and reference Source 

current ( Sref
I

) with sliding surface 1 2
S e e 
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current waveforms. This inductor current is equal to sum of all the harmonics present in load 

current but with opposite polarity. 

 The dynamic response of the proposed analog SM controller is checked by changing the 

load suddenly. Fig. 2.8 shows the transient response of the source current and capacitor voltage of 

the proposed controller. It is noticed that a small deviation from steady state value is occurred 

during step load change and time taken to settle is also very small.  

2.6. MULTISIM based simulation results  

The complete schematic of low cost analog SM controlled shunt APF is shown in Fig. 2.9. 

Multisim based circuit simulation diagram shows the method of low cost implementation of 

proposed controller. As shown in Fig. 2.9, a 20:1 transformer and a voltage controlled voltage 

source are used for sensing the source voltage and voltage of the filter capacitor respectively. The 

sensed filter capacitor voltage is passed through a RC lowpass filter to reduce source current THD. 

The output of lowpass filter is fed through a difference amplifier with unit gain to get the error 

between filter capacitor voltage and its reference value. This error output is fed to a PI controller, 

which comprises of three operational amplifier. Out of three operational amplifiers two are used 

for providing proportional gain and integral gain and the other is a summing amplifier. The output 

of PI controller is multiplied with the output of bandpass filter by a multiplier (part number 

AD633AN) to generate the reference source current. Suitable resistances are connected at the 

output of the multiplier to give the proper multiplication of the inputs as per datasheet 

specifications of AD633AN. A Junction Field Effect Transistor (JFET) based operational amplifier 

(part number TL084CN) is used in PI controller, bandpass filter and all other arithmetic operation. 

The sliding surface is also developed by using operational amplifiers as per the theory. A high 

frequency comparator (part number LM 710AMJ) is used for generating gate pulses of APF. Two 

comparators are used in the controller. The output of one comparator is connected to a NOT gate 

(part number 4009BD_5V) to provide inverting gate pulses to one leg of the APF. The other leg 

of the APF is operated at high switching frequency to maintain the required sliding surface 

trajectory. As explained before the switching frequency of the proposed APF is controlled by a D 

flipflop (part number 74LS74D). This fliflop integrated circuit comprises of two D flipflops. Out 

of these two D flipflops only one is used in the proposed controller. The present and clear input of 

D flipflop is connected to ground. 
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Fig. 2.9. The schematic of analog SM controller for shunt APF 
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The clock pulse to the D flipflop is generated by LM 555 timer. The frequency of the clock pulse 

is determined by the resistance values connected to LM 555 timer. The bandpass filter circuit and 

the clock pulse generator circuit are made by the application of Multisim circuit wizards. Circuit 

wizard is one of the tools of Multisim circuit simulation platform for making some popular circuits 

such as filter, timer, adder, etc. All the integrated circuits are given proper supply voltages as per 

their data sheet specifications. At first, all the components used in the controller are checked 

separately for conformation regarding their working nature. Then they are used in the proposed 

controller. The total cost of all the components used in the analog sliding mode controller is within 

one thousand rupees. Thus, the practical implementation cost of the proposed controller is very 

cheap.  

Fig. 2. 10. Multisim based simulation results. 

Nominal source. Source voltage (bottom). Load 

current (top). Analog SM controller 

Fig. 2. 12. Multisim based simulation results. 

Distorted source. Source voltage (bottom). Source 

current (top). Analog SM controller 

Fig. 2. 13. Multisim based simulation results. 

Nominal source. Filter capacitor voltage (bottom). 

Inductor current (top). Analog SM controller 

Fig. 2. 11. Multisim based simulation results. 

Nominal source. Source voltage (bottom). Source 

current (top). Analog SM controller 
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 Fig. 2.10 shows Multisim based simulation results of source voltage and load current for 

the nonlinear load as shown in Fig. 2.9.  After implementing the proposed controller using anlog 

integrated circuits in Multisim platform, the resulting source voltage and source current waveforms 

are shown in Fig. 2.11. Source current is found to be approximately sinusoidal and in same phase 

to that of source voltage. This conforms the appropriateness of the Multisim implemented 

simulation circuit of the proposed controller. The source voltage and source current waveforms for 

distorted source condition is shown in Fig. 2.12. Source current waveforms are found sinusoidal 

and independent of source voltage waveforms. This verifies that bandpass filter, designed by 

Multisim circuit wizard tool is working properly. Finally in Fig. 2.13 the filter capacitor voltage 

and inductor current are shown. 

2.7. Chapter summary 

In this chapter a modified low cost analog SM controller for single phase shunt APF is 

presented. Basically two modifications have been carried out. One is the introduction of integral 

term in the sliding surface and another is the application of bandpass filter in the reference current 

generation process. A brief explanation of SM current controller of APF and reference current 

generation method is reported. It is noticed from MATLAB/Simulink based simulation results that 

introduction of bandpass filter in the reference current calculation method of APF makes THD of 

source current independent of THD of source voltage. MATLAB/Simulink based simulation 

results also verifies the reduction of steady state current error due to introduction of integral term 

in the sliding surface design. Finally the analog implementation of proposed controller is carried 

out in Mulisim circuit simulation platform. The schematic of the complete APF is presented to 

report the low cost implementation of the proposed controller. A brief explanation of Multisim 

based simulation process is reported and simulation results are also presented. 
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CHAPTER 3    

A CONSTANT SWITCHING FREQUENCY ADAPTIVE 

SLIDING MODE CONTROL DESIGN FOR SHUNT 

ACTIVE POWER FILTER SYSTEM 

3.1. Introduction 

As per the discussion in the previous chapters, SM control is well known due to its ease of 

implementation and robustness. SM controllers have a property of operating at infinite and varying 

switching frequency such that the state variables of the system follow the required trajectory. 

However high and varying switching frequency causes losses and even damage of the system. 

Various techniques have been proposed in sliding mode controlled APFs to control the switching 

frequency [1]-[3]. These are mainly based on hysteresis modulation. So the maximum switching 

frequency can only be controlled in these control strategies. But in PWM based SM controller of 

any system, the switching frequency remains constant. 

 From the literature review, it has been found that APF control techniques mainly divided 

into two categories such as current control of APF and control of filter capacitor voltage along 

with generation of reference source current. A PI controller can be used to control the filter 

capacitor voltage as well as to generate the reference source current. The output of the PI controller 

gives the peak value of the reference source current. The peak value of source current depends on 

the load current harmonics and real power loss in the APF circuit. By making harmonics extraction 

method separate from the estimation of real power loss in the APF, the transient response of the 

complete APF system will be improved. Artificial Neural Network (ANN) can be used to extract 

the load current harmonics.  By the application of ANN, the APF becomes adaptive to various load 

currents and source voltages. The weight update method plays a vital role in ANN to extract the 

source current harmonics. By adapting suitable weight update technique, the extraction of load 

current harmonics as well as the transient response can be made further faster. The use of Phase 

Locked Loop (PLL) in deriving the unit vector of source voltage makes APF applicable under both 

nominal source and distorted source.  
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3.2. Chapter objectives 

The main focus of this chapter is to design and simulate a fixed switching frequency PWM 

based adaptive sliding mode current control for single phase shunt APF. ANN based modified 

control strategy is being used to control the DC capacitor voltage as well as to generate reference 

source current. The instantaneous phase of the source voltage is extracted by a phase locked loop. 

The same phase is used by ANN for calculating the reference source current. The application of 

ANN and PLL enhances the source current convergence rate of APF and also makes it adaptive 

under variable load and source conditions. This proposed APF is applicable under both nominal 

and distorted voltage source. The complete non-linear system is analyzed and simulated using 

MATLAB/Simulink software. Simulation results are presented to validate the theory. 

3.3. Development of the control algorithm 

In this section both constant switching frequency SM current controller design and the 

application of ANN and PD controller for controlling the DC capacitor voltage  along with 

calculating reference source current  is described. The typical configuration of APF is considered  

  Table 3.1 

              Switching states and control input  

T1 T4 T2 T3 U  

ON ON OFF OFF 1 

OFF OFF ON ON -1 

OFF OFF OFF OFF 0 

 

for analysis is shown in Fig. 1.4, which is same as that of used in chapter 1. The dynamic model 

of APF used for analysis is already derived in chapter 1. But for ease of understanding and for 

convenience, the dynamic model of shunt APF is again given below: 

 
1

( )L
S L CL

dI
V I R V U

dt
                             (3.1) 

1
( )C

LC

dV
I U

dt
                                        (3.2) 
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For all possible values of U the switching state of shunt APF is shown in Table 3.1.  

3.3.1.  Fixed frequency SM current controller 

As the APF system is a nonlinear system and the control of APF is completely based on 

control of the switches, SM control can be applied to bring the system’s state trajectory onto a user 

defined surface called sliding surface and to maintain the trajectory on that surface for the rest of 

the time. To reduce steady state current error and to make the source current follow reference 

source current a sliding surface is defined as  

* *

1 2 ( ) ( )S S S SS e e I I I I               (3.3) 

                                                   

 

After design of the sliding surface, the next important aspect is to check for existence 

condition for sliding mode to exist in the vicinity of the sliding surface which is possible only 

when the tangent to the state trajectory is made to direct towards the sliding surface. As shown in 

Fig. 3.1 for 0S  the actual trajectory lies above the sliding surface 0S  . When 0S  , SI  is 

greater than
*

SI . To bring the trajectory on to the sliding surface the extra amount of current must 

be used to charge the capacitor. Similarly when 0S   to make actual source current follow the 

reference source current capacitor must supply the adequate amount of current. With proper 

control of the switches of the APF the reaching of the trajectory on to the sliding surface and 

maintaining the trajectory on the surface is possible, which are known as reaching and existence 

of sliding mode control strategy respectively. As explained before, the SM control exists only if 

Fig. 3.1. Existence condition 
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local reachability condition 
0

lim . 0
S

S S


  was satisfied. Again the discrete control law which 

maintains the system state trajectory on the sliding surface 0S   can be expressed as  

1      0

0     0

-1    0

if S

U if S

if S










 



          (3.4) 

For ideal SM control to exist the switches of APF must be operated at infinitely high 

frequency. Different techniques have been applied to limit the switching frequency of the single 

phase APF to a maximum value in the literature [1]-[3], which causes chattering in the vicinity of 

the sliding surface. As shown in Fig. 3.1 the actual trajectory has two component, one is 

perpendicular to sliding surface and another along the sliding surface pointing towards the 

equilibrium point. The component along the sliding surface is responsible for both sliding motion 

and stability of the system. Since the movement of the trajectory is due to appropriate control of 

the switches, which is governed by the discrete control law as in equation (3.4), the continuous 

switching action responsible for horizontal component of the trajectory must lie between 0 and 1. 

This continuous switching action known as equivalent control input ( eqU ) of the system, which can 

be found by using the condition 0S  as per literature [10]. 

From Fig. 1.4    

S L OI I I             (3.5) 

Also we can write   

* *

S L OI I I             (3.6) 

Where 
*

LI is the reference compensating current.  

Considering (3.1), (3.3), (3.5) and (3.6) and making 0S  one gets 

 
*

*1
( ) 0L

S L C S S

dI
V I R V U I I

L dt
             (3.7) 

From (3.7) we can obtain  
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*

*1
( )L

eq S L S S

C

dI
U V I R L L I I

V dt


 
     

 
       (3.8) 

As per [2], eqU  is continuous and lies between 0 and 1. Considering (3.8), we obtain 

*
*1

0 ( ) 1L
S L S S

C

dI
V I R L L I I

V dt


 
      

 
       (3.9) 

In classical PWM based APF as in [14] duty ratio ( d ) can be expressed as  

ref

tri

U

d
V

            (3.10) 

Where refU is the control modulating signal and 
tri

V is the peak amplitude of triangular signal. 

Also ‘ d ’ can again be expressed as    

ONT
d

T
            (3.11) 

Where ONT  is on time and  T   is total time period in which switches operates, which is constant 

in PWM. From (3.11) we can write  

0 1d             (3.12) 

Comparing duty ratio control of classical PWM based APF and equivalent control input of 

proposed SM control based APF and considering (3.9) and (3.12) and taking 1
tri

V    one can 

obtain  

*
*1

( )L
S L S S

C

ref

dI
U V I R L L I I

V dt


 
     

 
       (3.13) 

The above calculated ref
U is used as modulating signal for unipolar PWM as per [12]. The 

switches of the APF operate at constant frequency which is nothing but the frequency of the 

triangular wave used as a carrier wave in unipolar PWM. The difference in PWM technique 

proposed in [14] and this chapter is only with the modulating control signal used for PWM.  
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3.3.2. Modified ANN based control strategy 

sin( )k t

cos( )k t

 

  Fig.3.2. Fixed frequency adaptive sliding mode controller 

The discretized instantaneous nonlinear load current can be represented by 

1

sin( )n

n

noI I kn  




            (3.14) 

where oI is the load current, nI is the peak value of various components of load current, n is the 

phase angle difference between source voltage and various components of load current,   is the 

discrete sampling time interval and k  is the instantaneous phase of source voltage, where  

0,1,2...k  The load current can be further expressed as 

1 1 1 1

2

sin( )cos( ) cos( )sin( ) sin( )n

n

noI I k I k I kn        




          (3.15) 

From (3.15) one can obtain 



A constant switching frequency adaptive sliding mode  

                                                                                             control design for shunt active power filter system 

 

34 
 

1 1

1 2 1 2

2

sin( ) cos( ) [ sin( ) cos( )]n n

n

oI W k W k W nk W nk       




          (3.16) 

Where 
 1  1   

1 2 1 2, ... ,n n
W W W W  are constants.

 1

1 sin( )W k  is the fundamental source current and 

1

2 cos( )W k   is the fundamental quadrature current, which is 090 out of phase to that of 

fundamental source current. In [8] and [13], (17) is used by ANN for extracting the fundamental 

source current from load current. This is a lengthy process as all 2n  number of weights have to be 

updated to slow varying variables to get the fundamental source current. 

     

 

In this chapter modified ANN based fundamental source current extraction circuit is presented 

which reduces weight updating time from 2 to 3 cycle to almost half cycle of source voltage signal. 

Considering (3.16) one can obtain 

1 1

1 2sin( ) cos( )  o W WI k k periodic signal             (3.17) 

In this chapter instead of updating 2n  weights only 2  weights 
 1

1W and 
 1

2W are updated to slow 

varying variables to get the fundamental source current. As shown in Fig.3.3 the input vector is 

taken as a matrix 
sin( )

cos(

k
X

k

 

 

 
  

 
 and the weight vector is taken as a matrix 

1

1

1

2

W
W

W

 
   
 

. A 

Fig.3.3. Modified ANN based extraction circuit  
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modified Widrow-Hoff delta rule based weight updating algorithm is being used to update the 

weights 
 1

1W and
 1

2W . The algorithm can be stated as follows 

( 1) ( )W k W k W            (3.18) 

where
( ) ( )

( ) ( )T

e k X k
W

X k X k


  ,  is the learning rate which is always greater than zero. 

The error between actual load current and estimated load current ( )e k  instead of converging close 

to zero converges to a periodic signal almost equal to sum of all harmonic components of load 

current put together. As discrete sampling time interval (  ) in which updating process is carried 

out is much less than that of period of variation of ( )e k , updating process takes place easily. 

Learning rate is an important factor in the weight updating process. Lower value of learning rate 

takes a long time to update the weights to their desired value. While higher value of learning rate 

causes oscillation of the weights around their desired value. A suitable value of learning rate is 

chosen by taking care of amplitude of oscillation of weights and updating time. 

 As combination of real power loss in APF and estimation of load current harmonics is used 

in calculating the reference source current, real power loss in APF can be calculated separately. 

The peak value of the source current required to compensate the real power loss in the APF is 

given below [5]: 

1

2 DC
p

p

CfV
k

V
            (3.19) 

Where C is the capacitance value, f is the frequency of the source voltage, DCV is the reference 

filter capacitor voltage, and pV  is the peak value of source voltage. As derivative controller 

improves the transient response and reduces the peak overshoot, a Proportional-Derivative (PD) 

controller is used to get the peak value of source current. Proportionality gain of PD controller is 

set using (3.19) and derivative constant is properly adjusted by heat and trial for a better capacitor 

voltage regulation.The output of the PD controller gives the peak value of the filter capacitor 

charging current and the value of the weight 
1

1W  of ANN based extraction circuit gives peak value 

of the fundamental source current. The peak value of the reference source current is calculated as 
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sum of weight 
1

1W  and the output of the PD controller. The peak value of the reference source 

current is then passed through the low pass filter to remove the high frequency component, which 

helps in reducing the harmonic content in the source current. After getting reference source current 

SM current control strategy is being applied to control the switches of the APF. 

 The overall controller of the APF is shown in Fig. 3. The combination of PLL, PD 

controller, SM current control, ANN based extraction circuit and unipolar PWM makes the APF 

applicable under different load conditions and distorted voltage source with reduced harmonic 

content in the source current. 

3.4. Result analysis 

To validate the system performance overall APF model is computer simulated using 

MATLAB/Simulink software version 2013 (a). The solution method chosen was runga-kutta 

(order 4) with fixed step size 061e . The simulation was carried out in discrete time domain with 

sampling time interval 061e .  The ANN based fundamental source current extraction circuit is 

implemented using MATLAB level-2 S function with inputs as load current ( oI ) and 

instantaneous phase ( k  ) of source voltage (output of PLL) and outputs as weight 
1

1W and 

sin( )k  . The code for MATLAB level-2 S function block is as follows: 

function ANN(block) 
setup(block); 
function setup(block) 

  
[1] % Register the number of ports. 

 

[2] block.NumInputPorts  =3; 
[3] block.NumOutputPorts = 3; 
 
[4] % Set up the port properties to be inherited or dynamic. 

 

[5] block.SetPreCompInpPortInfoToDynamic; 
[6] block.SetPreCompOutPortInfoToDynamic; 
 

[7] % Override the input port properties. 
[8] block.InputPort(1).DatatypeID  = 0;  % double 
[9] block.InputPort(1).Complexity  = 'Real'; 
[10] block.InputPort(1).Dimensions   = 1; 
[11] block.InputPort(1).SamplingMode = 'Sample'; 
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[12] block.InputPort(2).DatatypeID  = 0;  % double 
[13] block.InputPort(2).Complexity  = 'Real'; 
[14] block.InputPort(2).Dimensions   = 1; 
[15] block.InputPort(2).SamplingMode = 'Sample'; 
[16] block.InputPort(2).DirectFeedthrough = true; 
 

[17] block.InputPort(3).DatatypeID  = 0;  % double 
[18] block.InputPort(3).Complexity  = 'Real'; 
[19] block.InputPort(3).Dimensions   = 1; 
[20] block.InputPort(3).SamplingMode = 'Sample'; 
 
[21] % Override the output port properties. 

 

[22] block.OutputPort(1).DatatypeID  = 0; % double 
[23] block.OutputPort(1).Complexity  = 'Real'; 
[24] block.OutputPort(1).Dimensions   = 1; 
[25] block.OutputPort(1).SamplingMode = 'Sample'; 
 

[26] block.OutputPort(2).DatatypeID  = 0; % double 
[27] block.OutputPort(2).Complexity  = 'Real'; 
[28] block.OutputPort(2).Dimensions   = 1; 
[29] block.OutputPort(2).SamplingMode = 'Sample'; 
 

[30] block.OutputPort(3).DatatypeID  = 0; % double 
[31] block.OutputPort(3).Complexity  = 'Real'; 
[32] block.OutputPort(3).Dimensions   = 1; 
[33] block.OutputPort(3).SamplingMode = 'Sample'; 
 

[34] % Register the parameters. 

 

[35] block.NumDialogPrms     = 1; 
[36] block.DialogPrmsTunable = {'Tunable'}; 
 

[37] block.SetAccelRunOnTLC(true); 
 

[38] block.SimStateCompliance = 'DefaultSimState'; 
 

[39] block.RegBlockMethod('CheckParameters', @CheckPrms); 
[40] block.RegBlockMethod('PostPropagationSetup', @DoPostPropSetup); 
[41] block.RegBlockMethod('Start', @Start);   
[42] block.RegBlockMethod('Outputs', @Outputs); 
 

[43] function CheckPrms(block) 
[44] mu = block.DialogPrm(1).Data; 
 

[45] if mu <= 0 || mu > 1 
[46] error(message('simdemos:neural:stepSize')); 
[47] end 
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[48] block.AutoUpdateRuntimePrms; 
 

[49] function DoPostPropSetup(block) 
[50] block.NumDworks = 1; 
 

[51] block.Dwork(1).Name            = 'w'; 
[52] block.Dwork(1).Dimensions      = 2; 
[53] block.Dwork(1).DatatypeID      = 0;      % double 
[54] block.Dwork(1).Complexity      = 'Real'; % real 
[55] block.Dwork(1).UsedAsDiscState = true; 
 

[56] % Register all tunable parameters as runtime parameters. 

 

[57] block.AutoRegRuntimePrms; 
 

[58] function Start(block) 
 

[59] block.Dwork(1).Data = [2;1];    
 

[60] function Outputs(block) 
[61] mu = block.RuntimePrm(1).Data; 
[62] a = block.InputPort(1).Data; 
[63] b = block.InputPort(2).data; 
[64] e = block.InputPort(3).data; 
[65] w =  block.Dwork(1).Data; 
[66] x = [a;b]; 
[67] w = w + (mu*e*x); 
[68] block.Dwork(1).Data = w; 
[69] block.OutputPort(1).Data = w(1)*a; 
[70] block.OutputPort(2).Data = w(2)*b; 
[71] block.OutputPort(3).Data = e 

 

 

 

MATLAB level-2 S function block uses MATLAB code to make Simulink block, which 

can handle any type of signal generated in a Simulink model during the run time of simulation. 

The first step to write the code of the block is to define the number of input and output ports 

followed by their data-type, complexity, and dimension. Then the number of parameters required 

to be tuned during the runtime of the simulation is mentioned. All the required function to be 

carried out by the S-function block are registered and defined properly. The number of weight to 

be updated during the simulation process along with their dimension and complexity to fulfil the 
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requirement of ANN in the proposed controller is defined in function DoPostPropSetup(block) of 

S function. Function Start(block) is used to initialize the weights randomly. Eventually in the 

function Outputs(block), the proposed weight updating algorithm is implemented and the required 

output to be taken is defined. 

The parameters used for simulation are given in Table- 3.2. RS is the source resistance. 

Derivative constant  dk  is taken with filter coefficient as 1. The cut-off frequency of low pass filter 

is set as 80Hz. System performance is analyzed on two different load condition, such as: 1) high 

load (real power and reactive power consumed by non-linear load is 975 watts and -309 watts 

respectively); 2) low load (real power and reactive power consumed by non-linear load is 663 

watts and -183 watts respectively).  Fig.3.4 shows the source voltage and load current waveforms 

under high load conditions when the source is nominal. The Total Harmonic Distortion (THD) of 

all voltage and current wave forms are measured up to 50th harmonic to validate the theory. 

Table 3.2 

System parameters used for MATLAB/Simulation in fixed frequency adaptive SM controller 

L- 5 mH  RMS

SV - 110 V  -  20000 

DCV - 200 V 
SVf   - 60 Hz 

1PK - 0.24 

C- 1100 µF 
Switchf -20 kHz iK -10 

SR -2Ω R - 0.7Ω  =0.00002 
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Fig.3.4 Source voltage (top). Load current (bottom). 

Nominal source. Fixed frequency adaptive SM 

controller 

Fig. 3.5 Source voltage (top). Source current 

(bottom). Nominal source. Fixed frequency adaptive 

SM controller. 
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Fig.3.6. Source voltage (top). Load current (bottom). 

Distorted source. Fixed frequency adaptive SM 

controller 

 

Fig.3.7. Source voltage (top). Source current 

(bottom). Distorted source. Fixed frequency 

adaptive SM controller 

 

Fig.3.8. Load real power (top). Source voltage (middle). 

Load current (bottom). High to low nonlinear load. Fixed 

frequency adaptive SM controller 

 

 

Fig.3.9. Load real power (top). Source voltage (middle), 

Load current (bottom). Low to high nonlinear load. 

Fixed frequency adaptive SM controller 

 

Fig.3.10. Source voltage frequency (top). Source 

voltage (middle). Source current (bottom). High to 

low frequency variation. Fixed frequency adaptive 

SM controller 

 

 

Fig.3.11. Source voltage frequency (top). Source voltage 

(middle). Source current (bottom). Low to high 

frequency variation. Fixed frequency adaptive SM 

controller 
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The THD of source voltage and load current is found to be 0% and 52.92 % respectively. 

Fig. 3.4 shows the waveforms of source voltage and load current. After the application of proposed 

APF, harmonics are compensated to give the shape of source current same as that of source voltage 

as shown in Fig. 3.5. THD of the source current is found to be 2.87% measured at time 0.06 second 

for 2 cycles. In reality voltage source waveforms are found to be distorted. APF proposed in [2] is 

applicable for both distorted and nominal voltage source, but it is not suitable when frequency of 

the source voltage is varied more than 2%. The APF proposed in this literature is suitable in wide 

variation of amplitude and frequency of the source voltage. 

Fig.3.6 shows the source voltage and load current waveforms when source is distorted and 

load is high. Source voltage and load current THD are found to be 7.05% and 59.30% respectively. 
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Fig.3.12. Compensating current (top). Error signal 

(bottom). Nominal source. Fixed frequency adaptive 

SM controller 

 

Fig. 3.13. Response of APF capacitor voltage. Nominal 

source. Fixed frequency adaptive SM controller 
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Fig. 3.15. Power delivered by non-linear load. Real power 

(top). Reactive power (bottom). ). Nominal source. Fixed 

frequency adaptive SM controller 
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After compensation, the source voltage and source current waveforms are shown in Fig.8. THD in 

the source current is reduced to 2.88% which is very close to the THD in the source current under 

nominal source and same load conditions. From this it is clear that proposed control strategy is not 

much affected by source voltage distortion. 

Table 3.3 

 

Fig. 3.8 and Fig.3.9 verifies the adaptive behavior of the proposed control strategy under 

step load changes. The variation of the source current with high to low nonlinear load variation is 

shown in Fig.3.8. Similarly source current waveforms for low to high nonlinear load variation is 

shown in Fig.3.9. From both the Figures it is clear that proposed control strategy gives good 

transient response and adaptive behavior under step load changes. As shown in table-3.3, there is 

little variation in source current THD for step load changes. This is because of fixed frequency 

operation of the proposed APF. Load change causes the change in hysteresis band of the source 

current under fixed frequency operation. 

 Fig. 3.10 and Fig. 3.11 show the behavior of the proposed control strategy under wide range 

of frequency variation. It is clear that proposed APF adopts itself to different frequencies within 

very short interval of time, so that there is no significant phase difference between source voltage 

and source current. As shown in Fig. 3.13 the filter capacitor voltage is maintained at desired 

reference level of 200 V. It is found that there is small deviation from reference filter capacitor 

voltage at 0.01sect   due to the step load changes. Thus, one can tell the transient response of the 

 THD%  

High Load and 

nominal source 

THD%  

Low Load and 

nominal source 

THD% 

High Load and 

distorted source 

THD%  

Low Load and 

distorted source 

S
V  O

I  S
I  S

V  O
I  S

I  S
V  O

I  S
I  S

V  O
I  S

I  

Controller 

[1] 

0.00 52.9 6.22 0.00 68.06 7.22 7.05 59.30 9.44 7.05 76.95 11.23 

Controller 

[2] 

0.00 52.9 4.89 0.00 68.06 5.91 7.05 59.30 5.11 7.05 76.95 6.23 

Controller 

[4] 

0.00 52.9 3.51 0.00 68.06 4.52 7.05 59.30 7.97 7.05 76.95 8.74 

Proposed 

controller 

0.00 52.9 2.87 0.00 68.06 3.59 7.05 59.30 2.88 7.05 76.95 4.31 

Comparative performance analysis of fixed frequency adaptive SM controller 
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proposed controller is quite good. Fig. 3.12 shows the compensating current for compensating the 

harmonics from the source current and the error signal ( )e k which instead of converging to zero 

converges to a periodic wave. 

Active and reactive power consumed by nonlinear load is shown in Fig.3.14. Active and 

reactive power delivered by source is shown in Fig.3.15. As shown in Fig.3.15 reactive power 

almost compensated by the proposed control strategy. Performance of the proposed APF is 

compared with different control strategies presented in [1],[2], and [4] under both nominal and 

distorted voltage source for different load conditions. Comparative THD analysis is shown in 

Table 3.3. Proposed APF gives reduced harmonic content in the source current for every source 

and load conditions. 

3.5. Chapter summary 

In this chapter a different control strategy for single phase shunt APF for current harmonic 

elimination is presented. A proper combination of fixed frequency sliding mode current control, 

ANN based fundamental source current extraction circuit and unipolar PWM increases the 

dynamic response of APF system with reduced harmonic content in the source current. Fixed 

frequency SM current control strategy is explained properly. Reference current calculation using 

ANN and PD controller is explained. Simulation results are analyzed under different load and 

source conditions. System performance is compared with 3 different control strategies. Hardware 

implementation of the proposed circuit will be done in the near future.  
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CHAPTER 4   

A PARTIAL FEEDBACK LINEARIZATION BASED 

APPROACH TO SINGLE PHASE SHUNT ACTIVE 

POWER FILTER DESIGN 

4.1. Introduction 

Several control strategies have been proposed in the literature to control the power 

electronic systems. Among these control strategies, feedback linearization based control of power 

converters is an effective means to analyze stability of the complete nonlinear system. Thus, the 

application of feedback linearization to shunt APF control design can be a good choice [3], [30]. 

As per discussion in chapter 1, relative degree of a system is the determining factor whether the 

system is partially feedback linearizable or completely feedback linearizable. 

The nonlinear system having relative degree lower than the order of the system can be 

partially linearizeable. However by application of Tellegen’s theorem, the system can be exactly 

linearizable [3]. Single phase shunt APF, DC-DC boost converters are examples of second order 

system and they have relative degree one [3],[32]. Partial Feedback Linearization (PFL) method 

has been applied to DC-DC boost converter in [32], whereas Exact Feedback Linearization (EFL) 

technique has been applied to boost converter in [33]. Due to difficulties in practical 

implementation of EFL based control of APF system, EFL technique via SM control has been 

proposed in [3] to control the single phase shunt APF system for improving the performance. In 

this method authors used an alternating switching scheme to implement the control algorithm. Due 

to this switching scheme, original property of feedback linearization control technique is lost. Also 

different output function, can be derived using Tellegen’s theorem to control the compensating 

current in EFL based controller of APF. As shunt APF falls under the category of systems having 

relative degree one, the straightforward PFL based controller can be applied to shunt APF system. 

Using PFL based controller in APF, compensating current can be controlled directly by 

considering it as the output function. Also practical implementation of PFL based controller of 

APF is easier than the EFL based controller of APF. As discussed before, it is required to ensure 
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the stability of the internal dynamics of the system in PFL based controller. The dynamics of the 

system which are not linearized or remains unobservable during feedback linearization are treated 

as internal dynamics of the system. The averaged dynamic model of shunt APF is used for PFL 

and internal dynamic stability analysis of APF system. The average model of the active power 

filter system is obtained by averaging the filter capacitor voltage and coupling inductor current 

over a complete switching cycle. The usual unipolar pulse width modulation based switching 

scheme [13] is applied in the proposed PFL based controller of shunt APF. Thus the switching 

frequency of the APF remains constant. As a result the drawbacks of varying switching frequency 

can also be overcome with this proposed controller [13]. 

4.2. Chapter objectives 

This chapter exploited PFL technique to control deign of a single phase shunt APF. The 

nonlinear system dynamics of the APF has been partially feedback linearized using its average 

dynamic model. New control input to the linearized system is obtained considering the stability of 

the complete APF system. After that, control input to APF is derived by nonlinear transformation. 

Stability of the internal dynamics of the system is analyzed considering zero dynamics of the 

system. This chapter also briefly explains EFL of APF via SM control in which the original 

property of feedback linearization is lost due to the employed alternative switching scheme. A 

prototype of the APF system is built and the proposed controller is implemented using dSPACE 

1104. Both MATLAB/Simulink based simulation results and experimental results are presented to 

validate the performance of the controller by comparing it with the controller reported in [3]. 

4.3. Averaged dynamic model of shunt APF 

Structure of a single phase shunt APF, used for analysis of the proposed controller is shown in 

Fig. 1. A high resistance is connected across the filter capacitor signifies the leakage current flow 

from positive plate to negative plate of the capacitor throughout the switching cycle. Equivalent 

circuit of shunt APF for positive inductor current is shown Fig. 2. u is the duty ratio and T is the 

total switching period. The internal resistance R of the inductor is neglected in the equivalent 

circuit. Applying Krichoff’s voltage law and Krichoff’s current law to the equivalent circuit of 

shunt APF as shown in Fig. 4.2, the state space averaged model of the shunt APF can be written 

as follows: 
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         ( )a                 ( )b  

 

                                               

1 ( ) ( )(1 )S C C S

dx
L V V u V V u

dt
             (4.1) 

2 ( ) ( )(1 )C C
L L

L L

V Vdx
C I u I u

dt R R
             (4.2) 

The average values of inductor current and capacitor voltage over a switching cycle are 

respectively chosen as state variables 1x and 2x . Thus 1x and 2x can be expressed as  

LR
LR

Fig. 4.1. Single phase shunt active power 

filter 

Fig. 4.2. Equivalent circuit of active power filter. (a) 0 t uT  (b) uT t T   

 

(a) (b)  
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1

1
( )

t T

L

t

x I k dk
T



            (4.3) 

2

1
( )

t T

C

t

x V k dk
T



 

Equations (4.1) and (4.2) can be put to a SISO nonlinear system equation as 

( ) ( )X f X g X u            (4.5) 

where

2

1 2

( )

SVx

L L
f X

x x

C RC

 
 

  
   
 

,

2

1

2

( )
2

x

L
g X

x

C

 
 

  
 
 
 

and 1 2[  ]TX x x . Consider the inductor current as the 

output function is taken as 1( )y h x x  .    

4.4. Feedback linearization based controller design for APF 

This section presents internal dynamics stability analysis of the APF system and derivation 

of control input of APF in proposed PFL based controller design considering stability of the 

complete system. This section also presents EFL of APF via sliding mode control technique, in 

which the property of feedback linearization is lost due to the employed alternation switching 

scheme 

4.4.1. Partial feedback linearization  

Differentiating output function y with respect to time one can get 

( ) ( )f gy L h x L h x u            (4.6) 

where ( )fL h x and ( )gL h x are Lie derivatives of ( )h x with respect to f and g respectively. The 

relative degree of the system can be obtained by finding the values of ( )fL h x and ( )gL h x .

2

( ) 1
( ) ( ) S

f

Vh x
L h x f x x

x L L


  


        (4.7)

22( )
( ) ( )g

xh x
L h x g x

x L


  


         (4.8) 

As ( ) 0gL h x  , the second order system has relative degree one [61]. Hence, the system can be 

partially linearizable. The stability of the internal dynamics must be verified to ensure 
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the stability of the APF system. The internal dynamics of the APF system can be expressed as 

( , )f              (4.9) 

where is a vector such that ( ) 0gL x  and 1y x  . 

One can write   

2 1

1 2

2 2( ) ( ) ( )
( ) ( ) - 0g

x xx x x
L x g x

x L x C x

  


  
   

  
     (4.10) 

One solution of (4.10) is as follows: 

2 2

1 2( )
x x

x
C L

             (4.11) 

Differentiating (4.11) with respect to time and using (4.5) one obtains  

2

2
1

2 2
( ) S

L

V x
x x

LC LCR
            (4.12) 

As 1y x  , using (4.11) and (4.12) one can get 

Nonlinear 

transformation

                           Fig.4.3. Proposed PFL based controller 
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22 2
( ) { ( ) }S

L

V
x x

LC CR C

 
            (4.13) 

The stability of the internal dynamics of APF system can be ensured by considering the zero 

dynamics of the system, which can be obtained by substituting 0  in (4.13). The zero dynamics 

of the system is given by 

2

LR C


              (4.14) 

There are different solutions of (4.10), but all the solutions lead to an expression similar to that of 

expression in (4.14). The phase plot of the zero dynamics moves through origin having negative 

slope as shown in Fig.4.4. This conforms the stability of the internal dynamics of the system. 

 After analyzing the internal stability of the system, the next step is derive a control input 

using the proposed PFL based control of shunt APF. By taking the control input u of expression 

in (4.6) as  

( )

( )

f

g

L h x v
u

L h x

 
           (4.15) 

the expression for the output can be written as 

y v             (4.16) 

where v is the new control input to the feedback linearized system in Fig. 4.3.  In order to ensure 

the stability of the complete APF system, the new control input is taken as 

*

1 1 1 1 1( ) ( ), 0ref ref ref ref S Sv x ke x k x x x k I I k              (4.17) 

1refx is reference inductor current. Here ' 'k determines the convergent speed of the source current. 

With positive ' 'k the reference source current will track the actual source current exponentially. 

The proposed PFL based controller is shown in Fig. 3.  The peak value of reference source current 

is taken as the output of the proportional-integral (PI) controller. It is multiplied with the unit 

vector of source voltage ( sin( )t ) to generate the reference source current. 2refx is the reference 

value of filter capacitor voltage .  
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4.4.2. Exact feedback linearization  

 In EFL of APF via SM control a different control output function is chosen to control the 

compensating current indirectly by the application of Tellegen’s theorem. The output function

( )y x  must satisfy the following condition 

( )
( ) ( ) 0g

x
L x g x

x





 


         (4.18) 

From (4.18), one output function can be derived as follows: 

2 2

2 1

1 1
( )

2 2
y x Cx Lx            (4.19) 

With the above output function ( )x the system can be transformed to equivalent linear system by 

nonlinear transformation. After finding 
2 ( )fL x and ( )g fL L x , the control input of shunt APF by 

EFL method can be derived using the control law given below [61]:  

2 ( )

( )

f

g f

L x v
u

L L x





 
           (4.20) 

v is the new control input to the shunt APF. 
2 ( )fL x and ( )g fL L x are Lie derivatives of ( )fL x

with respect to f and g respectively. The control law in (4.20) can establish a unique relationship 

between the output function y and new control input as  

y v             (4.21) 

 The output function will track the reference output function, if v is taken as follows [11]: 

1 2refv y k e k e             (4.22) 

-10 -8 -6 -4 -2 0 2 4 6 8 10
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-2

-1

0

1

2

3





Fig. 4.4. Phase plot of zero dynamics of APF in PFL based controller 
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where refy is the reference output function and refe y y  . 

Using the assumption for v in (21) we can obtain an expression given below: 

1 2 0e k e k e             (4.23) 

The constants
1k and 

2k are chosen suitably, so that the Routh’s characteristic polynomial 

2

1 2s sk k  is Hurtwitz. 

In [3], in order to avoid calculation and problems related to practical implementation, EFL based 

control technique is applied to APF via sliding mode control. In this simplified control strategy the 

expression (4.23) is compared with sliding mode control invariant condition for system trajectory 

to slide on the sliding surface, which can be stated as follows: 

1 2 0e k e k e S              (4.24) 

where S is sliding surface. Using the averaged model of shunt APF as stated in (5) and neglecting 

LR as in [3], one can get 

1

( )
S

d x
V x

dt


            (4.25) 

Integration of the above expression leads to 

1( ) Sx y V x              (4.26) 

From (4.24) and (4.26) one obtains 

1 1 1 1 1 2 1 1( ) ( ) ( )S ref S ref S refS V x x k V x x k V x x                (4.27) 

As *

1 1( ) ( )ref S Sx x I I   one can define sliding surface as follows: 

* * *

1 2( ) ( ) ( )S S S S S S S S SS V I I k V I I k V I I                   (4.28) 

Controller along with switching scheme used in EFL of APF via sliding mode control is shown in 

Fig. 5. 2DC refV x is the reference value of filter capacitor voltage. Two types of switching control 

schemes are generally being applied to control the switching frequency of APF in sliding mode 

control strategy. One is unipolar switching scheme and another is bipolar switching scheme. 
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Unipolar modulation based switching scheme applied in [1] is given in Table 4.1. In this switching 

scheme, sliding surface is taken as *

S SI I . For further analysis, three variables namely R , P  and Q 

are assumed as follows: 

*

*

1     if 0

0     if 0

S S

S S

I I
R

I I

  
 

 
,

1     if V 0 

0     if V 0

S

S

Q


 


,  

*

*

1     if ( ) 0

0     if ( ) 0

S S S

S S S

I I V
P

I I V

  
 

 
 

                         

Low pass 

filter

PI 

Controller
Sliding 

Surface

eq. (4.28)

S XOR Gate

Unit vector 

generation

( )sin t

( )sin t

S
V

*
S

I S
IS
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Table 4.1 

Switching scheme used in [1] 

 0SV   0SV    * 0S SI I   * 0S SI I   

3T  0 1 
1T  1 0 

4T  1 0 
2T  0 1 

 

Table 4.2 

Switching scheme used in [3] 

 0SV   0SV    0S   0S   

3T  0 1 
1T  0 Q  1 Q  

4T  1 0 
2T  1 Q  0 Q  

     Fig. 4.5. Controller implemented in [3] 
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The alternate unipolar switching scheme used in EFL of APF via sliding mode control is given in 

Table 4.2. As shown in Fig. 4.5 an XOR gate is used in the switching scheme employed in [3]. In 

the Table 4.3, the concept behind the use of XOR gate is explained. In Table 4.3, when 0SV   and

* 0S SI I  , *( ) 0S S SV I I  andQ , R , P  take their corresponding assumed values. SimilarlyQ , R , P  

values for all possible conditions are given in Table 4.3. Observing all the columns of Table 4.3, 

one can easily verify that R P Q P Q   . The multiplication of 
SV with *( )S SI I becomes 

meaningless by use of XNOR gate. As inverting pulses are given to the switches of one leg of an 

APF, XNOR gate can be replaced by XOR gate by feeding inverting pulses to switches 
1T and 2T . 

As shown in Table 4.2, similar switching scheme is applied in [3]. 

Table 4.3 

0, 1SV Q   * 0, 1S SI I R    *( ) 0, 1S S SV I I P    

0, 1SV Q   * 0, 0S SI I R    *( ) 0, 0S S SV I I P    

0, 0SV Q   * 0, 1S SI I R    *( ) 0, 0S S SV I I P    

0, 0SV Q   * 0, 0S SI I R    *( ) 0, 1S S SV I I P    

  Thus, with this alternate explained switched scheme the sliding surface *( )S S SV I I is same 

as that of sliding surface *( )S SI I . Similarly the sliding surface in (4.28) is same as that of sliding 

surface given below: 

* * *

1 2( ) ( ) ( )S S S S S SS I I k I I k I I               (4.29) 

This implies the output function, 1( ) Sx V x   derived using Tellegen’s theorem in EFL of APF via 

sliding mode control is not taking part in the sliding surface design . Thus, the property of feedback 

linearization is almost lost in this control strategy. 

4.5. Results and discussions 

4.5.1. Simulation results 

  In this section performance of EFL of APF via sliding mode control proposed in [3] is 

compared with performance of PFLbased controller proposed in this chapter. Simulations are 

carried out in discrete time domain using MATLAB/Simulink. The solver chosen as Dormand-
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Prince (ode45) in variable step with discrete time interval 065e . Reference current is being generated 

in both PFL and EFL techniques by using a PI controller. Cut off frequency of low pass filter, used 

in both the techniques before PI controller to reduce harmonic content in source current is taken as 

80Hz. The parameters used for simulation are given in Table 4.4. THD is measured up to 50th 

harmonics at 0.3 second for 2 cycles to verify the performance of both the techniques. 

Table 4.4 

System parameters used for Simulation for comparative analysis of both PFL and EFL based 

controller 

L- 5 mH  RMS

SV - 110 V 10000k   

DCV - 200 V 
SVf   - 60 Hz .25Pk   

C- 1100 µF 
1

4500k   iK -10 

Switchf -20 kHz 
2

15000k   10LR k   
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Fig. 4.6. Source voltage (bottom). Load 

current (top). PFL based controller 

 

Fig. 4.7. Source voltage (bottom). Source current 

(top). PFL based controller 

 

Fig. 4.8. Source voltage (bottom). Source 

current (top). Controller reported in [3] 

 

Fig.4. 9. Response for load change. Load current 

(bottom). Source current (top). PFL based controller 
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 Maximum switching frequency ( f
s
) is taken constant for both PFL and EFL techniques.

pk and ik  are proportional and integral gains of the PI controller. THDs of load current and source 

voltage are found to be 52.93% and 0% respectively. The waveforms of source voltage and load 

current are shown in Fig. 4.6. With the PFL based controller source current THD has been reduced 

to 1.63% (shown in Fig. 4.7). Further it can be seen that source current is found to be in same 

phase to that of source voltage, whereas source current THD in EFL of APF via sliding mode 

control is 5.12%. The wave forms of source voltage and source current for EFL via sliding mode 

controller are shown in Fig. 4.8.  

  To compare the transient responses of both the controllers, simulations are carried out for 

a sudden load change from 100% to 75% of full load at 0.4 sec. From Fig. 4.9 and Fig.4.10, it is 
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Fig. 4.10. Response for load change. Load current 

(bottom). Source current (top). Controller reported in 

[3] 

 

 

 

     Fig. 4.12. Filter capacitor voltage. PFL based controller. 

 

  Fig. 4.13. Inductor current. PFL based controller 

 

Fig. 4.14. Variation of THD with parameter inductance. 

PFL based controller 

 

Fig.4.11. Tracking of sliding surface trajectory, ‘S’ 

as per (4.28) top, ‘S’ as per (4.29) bottom. Controller 

reported in [3] 
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clear that there is no significant difference is observed between the transient responses of PFL 

based controller and EFL via sliding mode controller as transient response mostly depends on how 

the reference source current is generated. The filter capacitor voltage is maintained approximately 

at a constant value of 200V in PFL based controller as shown in Fig. 4.12. The inductor current or 

the compensating current required to compensate the harmonics from source current is shown in 

Fig.4.13. This inductor current is equal to the sum of the harmonic components of load current but 

with opposite polarity. 

  Performance of the proposed PFL based controller is tested under coupling inductance 

variation. As shown in Fig. 4.14, there is not much difference in THD for 20% up/down variation 

of inductance. Thus, the proposed controller is robust against inductance variations. 

  Fig. 4.11 shows the variation of sliding surface trajectory ‘ S ’with respect to the surface

0S  . It is found that there is larger variation of sliding surface (Fig. 4.11, top) as defined in eq. 

(4.28) than the surface (Fig. 4.11, bottom) as defined in eq. (4.29). Sliding in the vicinity of the 

sliding surface 0S   occurs by the sliding surface as stated in (30). This implies that the output 

function ( )x has no role in the design of the sliding surface. This conforms the loss of property 

of feedback linearization in [3]. 

4.5.2. Experimental results 

In this section selected experimental results are provided to verify the performance of the 

proposed controller. The block diagram of complete hardware structure is shown in Fig. 4.15. The 

prototype of experimental setup is shown in Fig. 4.16. A bridge rectifier (SQL100A1600V) with 

a 470 F  electrolytic capacitor and a rheostat are used as a nonlinear load. An auto transformer is 

used to vary the input source voltage. A SEMIKRON make inverter is connected in parallel in 

between source and load at the point of common coupling through a ferrite core inductor having 

inductance 5mH. Out of three legs of the three phase inverter, only two legs have been used in this 

experiment. The SEMIKRON inverter comprises of dual Insulated Gate Bipolar Transistor (IGBT) 

drivers (SKHI 22 AR), IGBT switches (SKM 75 GB 123 D) and filter capacitor of capacitance

1100 F .Two voltage sensors LV 25-P are used for sensing the source voltage and filter capacitor 

voltage. Two current sensors LA 55-P are used for sensing the desired currents. Sensor circuits are 

made as per datasheet specifications. The output of the sensors are fed to the dSPACE 1104 control  
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Fig. 4.15. Block diagram of Hardware structure  

 

 

 

Fig. 4.16. The prototype of the experimental setup 
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board through analog to digital converter port. The proposed PFL based controller and the 

controller reported in [6] are implemented using this dSPACE 1104 control board. The required 

controlled pulses are fed to the IGBT driver input through digital to analog converter port of 

dSPACE with proper amplification. Waveforms are taken by oscilloscope through digital to analog 

converter port of dSPACE to avoid noises. 

The source voltage and load current waveforms obtained from experimental studies are 

shown in Fig.4.17. THD of load current is calculated as 73.2%. After implementing the proposed 

PFL based controller, source voltage and source current waveforms are shown in Fig.4.18. It is 

found that source is approximately sinusoidal and in same phase to that of source voltage. THD of 

the source current is found to be 3.96%, which implies the proposed control strategy is exhibiting 

improved performance. 
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Fig. 4.18. Source voltage (bottom). Source current (top). 

Experimental results. PFL based controller 

 

Fig. 4.17. Source voltage (bottom). Load current 

(top). Experimental results 

 

Fig. 4.19. Filter capacitor voltage. Experimental results. 

PFL based controller. 

 

Fig. 4.20. Source voltage (bottom). Source current (top). 

Experimental results. Controller reported in [3] 
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Fig.4.19 shows the maintenance of the filter capacitor voltage at desired level of 200 volts 

in PFL based controller. This is because the reference capacitor voltage in the design of the 

controller is taken as 200 volts. Source voltage and source current waveforms obtained from 

experimental studies using the controller reported in [3], are shown in Fig. 4.20. THD of source 

current in this controller is found to be 6.33%. Thus it is clear that PFL based controller is more 

suitable than EFL based sliding mode controller for designing APF. 

4.6. Chapter summary 

In this chapter, a PFL based controller design of shunt APF is reported in which its 

averaged dynamic model is used. Stability of internal dynamics of APF system in PFL based 

controller is analyzed. Usual unipolar pulse width modulation based switching scheme is employed 

for implementation of the proposed control algorithm in both simulation and experimental studies. 

Analysis of alternate switching scheme of EFL via sliding mode control has been carried out. It is 

found that with this alternate switching scheme, the property of feedback linearization is almost 

lost in EFL of APF via sliding mode control. Finally both MATLAB/Simulink and experimental 

results are provided to compare the results of proposed controller with the controller reported in 

[3]. It is found that PFL based controller is a better choice because it provides complete stability 

of the APF system and reduces the source current THD. 
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CHAPTER 5  

A PARTIAL FEEDBACK LINEARIZATION BASED 

CONTROL DESIGN AND SIMULATION FOR THREE 

PHASE SHUNT ACTIVE POWER FILTER  

5.1. Introduction 

As discussed before, a three phase shunt APF is required to eliminate the current harmonics 

in industry applications. In three phase systems such as three phase UPS inverter [35] and three 

phase grid connected photo voltaic system [59], PFL based control technique has been applied to 

improve their performance. Authors of [35] applied PFL based control technique by considering 

the system as both single input single output (SISO) and multiple input multiple output (MIMO) 

system. Similarly authors of [60] considered grid connected photovoltaic system as MIMO system 

for applying PFL based control technique.  

Unlike single phase shunt APF, a three phase shunt APF can be considered as a MIMO 

system. Compensating currents of three phases can be assumed as three outputs of the system for 

implementing the PFL based control method. A typical structure of three phase APF is shown in 

Fig.1.5.  But for making the system analysis using PFL based control technique easier, a little 

modification has been carried out in the basic structure of three phase shunt APF. As discussed in 

chapter 4, a high resistance, connected across the filter capacitor signifies the leakage current flow 

from positive plate to negative plate of the capacitor throughout the switching cycle. The 

configuration of three phase shunt APF, taken for consideration in this chapter is shown in Fig. 

5.1. 

5.2. Chapter objectives 

This chapter exploited partial feedback linearization technique to design control of a three 

phase shunt active power filter (APF) by considering it as a MIMO system. The averaged dynamic 

model of the three phase APF is derived considering the single phase equivalent circuit of the 
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system. This averaged dynamic model is used to partially feedback linearize the MIMO nonlinear 

system dynamics. New control input to the linearized system is obtained considering the stability 

of the complete APF system. After that, control input to APF is derived by nonlinear 

transformation. Stability of the internal dynamics of the system is analyzed considering zero 

dynamics of the system. MATLAB/Simulink based simulation results are provided to validate the 

performance of the controller. 

5.3. Averaged dynamic model of three phase shunt APF 

Fig.5.2 shows the equivalent circuit for phase 1 of three phase APF. Similar equivalent 

circuits can also be obtained for other two phases. 
1LI is the compensating current in phase 1. 

Similarly 
2LI and

3LI are taken as the compensating currents of phase 2 and 3 respectively. For 

analysis 1V , 2V and 3V are assumed as the phase to neutral voltages of phase 1, 2 and 3 respectively. 

The averaged dynamic model of three phase APF can be obtained by averaging the inductor 

currents and capacitor voltage over a complete switching cycle.  Consider
1u ,

2u and
3u are the duty 

ratios or the control inputs to legs of APF which are coupled to phase 1,2 and 3 respectively 

through coupling inductor and  T is the total switching period, which remain constant for all legs 

of APF.                               
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 Fig. 5.1. Three phase shunt active power filter 
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The coupling inductance value for all three phases is kept same for making the analysis easier. So 

one can write 1 2 3L L L L   . Considering the equivalent circuit of all three phases and 

proceeding as in chapter 4, one can get the averaged dynamic model of three phase shunt APF as 

follows: 

11
1 1 1 1( ) ( )(1 )

2 2

C CV Vdx
L V u V u

dt
            (5.1) 

12
2 2 2 2( ) ( )(1 )

2 2

C CV Vdx
L V u V u

dt
            (5.2) 

13
3 3 3 3( ) ( )(1 )

2 2

C Cdx V V
L V u V u

dt
            (5.3) 

1 2 3

1 2 3

14
1 1 1

1 2 3

1
( ) ( ) ( )

2 2 2 2

             ( )(1 ) ( )(1 ) ( )(1 )
2 2 2

{

}

C C C

L L L

C C C

L L L

L L L

L L L

V V Vdx
C I u I u I u

dt R R R

V V V
I u I u I u

R R R

      

          

   (5.4) 

The average values of compensating currents for phase 1,2,3 and capacitor voltage over a 

switching cycle are respectively chosen as state variables 11x , 12x , 13x and 14x . Thus, 11x , 12x , 13x and

14x can be expressed as  

111

1
( )

t T

t

Lx I k dk
T



            (5.5) 

Fig. 5.2. Equivalent circuit for phase 1 of three phase active power filter. 

(a) (b)  
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212

1
( )

t T

t

Lx I k dk
T



            (5.6) 

313

1
( )

t T

t

Lx I k dk
T



            (5.7) 

14

1
( )

t T

C

t

x V k dk
T



 

Rearranging (5.1), (5.2), (5.3) and (5.4), one can get the expressions as follows: 

11 1 14
1(1 2 )

2

dx V x
u

dt L L
            (5.9) 

12 2 14
2(1 2 )

2

dx V x
u

dt L L
            (5.10) 

13 3 14
3(1 2 )

2

dx V x
u

dt L L
            (5.11) 

1314 11 12 14
1 2 3

3
(2 1) (2 1) (2 1)

2 2 2 4 L

xdx x x x
u u u

dt C C C R C
            (5.12) 

Equations (5.9), (5.10), (5.11) and (5.12) can be put to a MIMO nonlinear system equation as 

1 1 2 2 3 3( ) ( ) ( ) ( )X f X g X u g X u g X u           (5.13) 

where

14 1

14 2

314

1311 12 14

2

2
( )

2
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2 2 2 4 L

x V

L L

x V

L L
f X
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L L

xx x x
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 
 

 
 
 
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 
 
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1311 12

-          0          0

  0         -         0
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  0           0         -  
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g X
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 
 
 
 

  
 
 
 
 
 

and

11 12 13 14[    ]TX x x x x . Consider the compensating currents of three phases as the output functions. 

Thus, the output functions are as follows: 

1 1 11( )y h x x  .             (5.14) 

2 2 12( )y h x x            (5.15) 

3 3 13( )y h x x            (5.16) 
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5.4. PFL based controller design for three phase APF 

The first step in designing the controller of a system using feedback linearization technique 

is to find the relative degree of the system. For a MIMO system, relative degree should be found 

out separately for each output function of the system. Total relative degree of the system is the 

sum of the relative degrees associated with every output functions of the system. Consider
1r ,

2r

and
3r are the relative degrees associated with outputs 1y , 2y  and 3y  respectively. Differentiating 

output function 1y with respect to time one can get 

11 1 1 1( ) ( )f gy L h x L h x u           (5.17) 

where 1( )fL h x and
1 1( )gL h x are Lie derivatives of 1( )h x with respect to f and 1g respectively. The 

relative degree of the system can be obtained by finding the values of 1( )fL h x and
1 1( )gL h x .

1 1
1 14

( ) 1
( ) ( )

2
f

h x V
L h x f x x

x L L


  


        (5.18)

1

1 14
1 1

( )
( ) ( )g

h x x
L h x g x

x L


  


        (5.19) 

As
1 1( ) 0gL h x  , the relative degree 1r =1 [61]. Similar procedure can be followed to find the relative 

degrees 2r and 3r . It is found that 2r = 3r =1. Thus, the total relative degree of the MIMO system is

1 2 3 3r r r r    . The total order of the system 4n  . As r n , the system can be partially 

linearizable. The stability of the internal dynamics must be verified to ensure the stability of the 

three phase APF system. The internal dynamics of the three phase APF system can be expressed 

as 

1 2 3( , , , )f y y y            (5.20) 

Where  is a vector such that 
1 2 3

( ) ( ) ( ) 0g g gL x L x L x      

The above condition will be satisfied if  

 2 2 2 2
11 12 13 14

1
( )

2
x Lx Lx Lx Cx             (5.21) 

Differentiating (5.21) with respect to time and using (5.13) one obtains  
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2

14
1 11 2 12 3 13

3

4
( )

L

x
x x x

R C
x V V V            (5.22) 

As
1 11y x , 

2 12y x and
3 13y x using (5.21) and (5.22) one can get 
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The stability of the internal dynamics of APF system can be ensured by considering the zero 

dynamics of the system. As per discussion in chapter 1, zero dynamics of the system can be 

                           Fig.5.3. PFL based controller for three phase APF 
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obtained by substituting 1 2 3 0y y y   in (5.23). Thus, the zero dynamics of the system is given 

by 

2

3

2 LR C
             (5.24) 

The phase plot of the zero dynamics will move through origin having negative slope. This 

conforms the stability of the internal dynamics of the system. After analyzing the internal dynamics 

stability of the system, the next step is to derive a control input using the proposed PFL based 

control of three phase shunt APF. By taking the control input 1u of expression in (5.17) as  

1

1 1

1

1

( )

( )

f

g

L h x v
u

L h x

 
           (5.25) 

the expression for the output of phase 1 can be written as 

1 1y v             (5.26) 

where 1v is the new control input of the feedback linearized system corresponding to output 1y . In 

order to ensure the stability of the complete APF system, the new control input is taken as 

1 11 11 11 11 11 11( ), 0ref ref refv x ke x k x x k             (5.27) 

11refx is reference compensating current for phase 1. As explained earlier, 11' 'k determines the 

convergent speed of the compensating current. With positive 11' 'k the actual compensating current 

will track the reference compensating current exponentially. Similarly considering the stability of 

the whole system the new control inputs 2v and 3v  of the linearized system corresponding to outputs 

2y and 3y respectively are assumed as follows: 

2 12 12 12 12 12 12( ), 0ref ref refv x ke x k x x k            (5.28) 

3 13 13 13 13 13 13( ), 0ref ref refv x ke x k x x k            (5.29) 
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12refx and 13refx are the reference compensating currents of phase 2 and 3 respectively. After that, 

the original control inputs
2u and

3u of the three phase APF system can be found out by nonlinear 

transformation as follows: 

2

2 2

2

2

( )

( )

f

g

L h x v
u

L h x

 
           (5.30) 

3

3 3

3

3

( )

( )

f

g

L h x v
u

L h x

 
           (5.31) 

The proposed PFL based controller for three phase APF is shown in Fig. 5.3. Reference source 

currents for all three phases are generated by using PI controller (see Fig.5.3) as in [38]. 
1SrefI , 

2SrefI and 
3SrefI are reference source current of phase 1. 2 and 3 respectively. After that reference 

compensating currents for all three phases are calculated by subtracting load currents from 

corresponding reference source currents. 
1OI ,

2OI and 
3OI are the load currents of phase 1, 2 and 3 

respectively. 14refx is reference capacitor voltage. 

5.5. Results and discussions 

  In this section simulation results are reported to validate the performance of PFL based 

controller for three phase APF. Simulations are carried out in discrete time domain using 

MATLAB/Simulink. The solver chosen as Dormand-Prince (ode45) in variable step with discrete 

time interval 065e . Cut off frequency of low pass filter, used in this techniques before PI controller 

to reduce harmonic content in source current is taken as 80Hz. The parameters used for simulation 

are given in Table 5.1. THD is measured up to 50th harmonics at 0.06 second for 2 cycles to verify 

the performance of the proposed technique. 

Table 5.1 

System parameters used for Simulation in PFL based controller for three phase APF 

L- 8mH  RMS

SV - 110 V iK -10 

DCV - 500 V 
SVf   - 50 Hz 10LR k   

C- 1100 µF 
1

10000k    

Switchf -20 kHz .25Pk    
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Fig. 5.4. Source voltage (bottom). Load current (top). PFL based controller for three phase APF 

 

Fig. 5.5. Source voltage (bottom). Source current (top). PFL based controller for three phase APF 

 

Fig.5.6. Response for load change. Load current (bottom). Source current (top). 

 PFL based controller for three phase APF 

 

     Fig. 5.7. Filter capacitor voltage (bottom). Compensating current (top). PFL based controller for three phase APF 
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THDs of load current and source voltage are found to be 25.76% and 1% respectively. The 

waveforms of source voltage and load current for three phase APF are shown in Fig. 5.4. With the 

PFL based controller source current THD has been reduced to 2.79% (shown in Fig. 5.5).  Further, 

it can be seen that source currents of all three phases are found to be in same phase to that of source 

voltages of the same phase. To examine the transient response of the proposed controller, 

simulations are carried out for a sudden load change from peak load current 4A to 8A at 0.1 sec. 

From Fig. 5.6, it is observed that the settling time of the proposed controller is small. The filter 

capacitor voltage is maintained approximately at a constant value of 500V in PFL based controller 

as shown in Fig. 5.7. The inductor current or the compensating current required to compensate the 

harmonics from source current is also shown in Fig.5.7. 

5.6. Chapter summary 

In this chapter, a PFL based controller design of three phase shunt APF is reported using 

its averaged dynamic model. Three phase APF is considered as a MIMO system. Total relative 

degree of the MIMO system is found by considering the relative degree of each input output pair 

separately. Stability of internal dynamics of the complete system in PFL based controller is 

analyzed. Usual pulse width modulation based switching scheme is employed for implementation 

of the proposed control algorithm in both simulation studies. Finally both MATLAB/Simulink 

based simulation results are provided to check the performance of the proposed controller. It is 

found that PFL based controller is a better choice because it provides complete stability of the APF 

system and reduces the source current THD. 
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CHAPTER 6  

CONCLUSIONS AND SUGGESTIONS FOR FUTURE 

WORK 

6.1. Conclusions 

This section reports the overall conclusions of the thesis. In this thesis, three control 

strategies namely “Analog Sliding Mode Controller”, “Fixed Switching Frequency Adaptive 

Sliding Mode Controller” and “Partial Feedback Linearization based Sliding Mode Controller for 

single phase shunt APF and one control strategy for three phase shunt APF have been proposed. 

In all the control strategies, compensating current is controlled using SM control or PFL based 

control. SM control strategy is applied to APF considering the dynamic model of APF similar to 

that of model reported in [1]. But PFL based control is applied to shunt APF considering its 

averaged dynamic model. The averaged dynamic model of both single phase and three phase shunt 

APF is obtained by averaging coupling inductor current and filter capacitor voltage over a 

complete switching cycle. Both SM current control strategy and PFL based current control strategy 

are found robust and easy to implement. But PFL based controller is found more suitable than the 

SM controller as it improves the performance of APF by analysing the stability of the complete 

system. It is also observed that reference source current calculation method has an important role 

in improving the performance of APF. Use of bandpass filter or ANN in the reference source 

current calculation process makes APF applicable under both nominal source and distorted source. 

Simulations are carried out to verify the theory in both MATLAB and Multisim platform. 

Experimental results for PFL based controller has also been carried out and it is found that 

simulation results agree with experimental results. 

6.2. Contributions of the thesis 

 An analog sliding mode controller is developed in which a band pass filter is used for 

reference source current generation. Multisim based simulation is carried out to report the 

method of analog implementation. 
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 A fixed switching frequency adaptive sliding mode controller is developed in which 

combination of ANN and PD controller is used to generate the reference source current 

and control the filter capacitor voltage. 

 Averaged dynamic model of both single phase and three phase systems are derived and 

using these models, PFL based control technique is applied to both the systems considering 

their stability. 

 Experimental prototype of PFL based controller for single phase APF is built and results 

are compared with exact feedback linearization of APF via SM control. 

6.3. Suggestions for future work 

 In ANN weight updating algorithm, a constant value of learning rate is taken. In future step 

should be taken to vary the learning rate, so that the updating process becomes more fast 

and accurate. 

 All the works have been done considering VSI as APF. In future these works can further 

be extended to CSI as APF. 
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