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Abstract 

High strength work materials have tremendous applications in the field of aerospace, 

nuclear, biomedical, automotive, etc. It is a challenging task to machine these high 

strength materials. Costly cutting tools are required to machine those materials. Hot 

machining is another alternative approach for hot machining those hard material using 

low cost cutting tools. Basic concept behind the hot machining is to soften the material 

by heating technique which reduces the shear strength of the workpiece as well as 

reduces the forces required to machine the workpiece at the time of machining. In the 

present investigation, experimental investigation of hot machining operation has been 

carried out using flame heating for machining high manganese steel using ordinary 

carbide insert.  

Hot machining operation has been investigated to study the advantages of hot 

machining operation over conventional machining operation. Tool wear, surface 

roughness, chip reduction coefficient, tool life and power consumption have been 

measured as per the design of response surface methodology technique. This 

technique has been used to determine the optimum conditions for the desired 

responses (minimum tool wear, minimum surface roughness, minimum chip reduction 

coefficient, minimum power consumption and maximum tool life). Principal 

component analysis (PCA) coupled with Grey relational analysis (GRA) and weighted 

principal component analysis (WPCA) have been used for optimizing the multi-

performance characteristics. WPCA has been proved to provide better results as 

compared to PCA coupled with GRA with the help of confirmatory test. Fuzzy 

TOPSIS approach has been used for optimizing performance characteristics namely, 

tool life and power consumption. It has been proved that Fuzzy TOPSIS is an 

alternative approach for practical based problems using the decisions that have been 

taken by decision maker based on experience and skill. FEM modelling has been 

carried out to determine temperature at the chip/tool interface and validated by 

experimental results. 
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Chapter 1 

Introduction 

 

 

1.1 Background 

The materials having high tensile strength and wear resistance such as temperature 

resisting alloys, high manganese steel, Inconel, quenched steels, etc., which have wide 

applications in aerospace, nuclear industries, missile industries, etc., are usually 

difficult to machine. Machining of these high strength materials by conventional 

methods has to face many problems such as high tool wear, low surface finish, and 

high power consumption. As a result it increases the cost of manufacturing. To avoid 

mentioned problems, the costly cutting tools such as ceramic, cubic boron nitride, 

cermet, etc. are used. The cost of machining increases because of costly tools. 

Softening of workpiece by heating the workpiece is another alternative approach. The 

machining can be carried out using low costly cutting tools. The machining becomes 

economical. 

From industrial point of view, the most important aspect of metal cutting is 

machinability and its influence on the economics of the manufacturing [1]. There are 

many methods to enhance the machinability of difficult to cut the materials by 

employing ramping technique, high pressure coolant supply technology, cryogenic 

machining, use of self-propelled rotary tooling and hot machining [2]. Researchers 

focussed on improved cutting tools for enhancing machinability of such high strength 

materials, smoothness of the product, cost of operation and performances.  

Hot machining is a suitable method to machine hard workpiece material with high 

surface quality and good machinability. The main aim of hot machining is to facilitate 

an effective and easier machining method. The machining of workpiece at elevated 

temperature using ordinary tool is more effective approach than machining with high 

strength cutting tools [3]. The basic principle behind hot machining is the reduction in 

hardness of workpiece material leading to reduction in the component force, with 

improvement in surface finish and tool life [2]. In hot machining operation workpiece 

(S355) has been heated above recrystallization temperature where the yields stress of 
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materials decreased rapidly [2]. The heating gas flame is used to raise the temperature 

of the workpiece material.  

 

Figure. 1.1 A schematic view of the turning operation [3] 

There are many heating techniques such as gas flame heating, arc heating, electric 

resistance heating, etc. for hot machining operation having their own importance for 

softening of workpiece material. In different ways these heating techniques affect 

properties such as micro structure, micro hardness, etc. The use of heating techniques 

depends on the shape and size of the workpiece materials, cost restriction and 

accuracy requirement. There are many processes used by industries, among them 

plasma heating and gas flame heating are the most used methods instead of induction 

heating, electric resistance heating, etc. [4]. The special features of different heating 

techniques are given as follows: 

(a) Gas flame heating: In this technique, oxygen and LPG is used in an appropriate 

ratio for concentrated flame on the workpiece material. The set up required for 

this technique is inexpensive for small jobs. Transfer of energy is also low. But it 

will be inappropriate for the large size workpiece for large shear zone.  

(b) Arc heating: Arc heating can supply high specific heat input. The heat produced 

is not very constant. It may be hazardous for operator. Its initial set up cost is very 

high. Maximum temperature range is upto 20,000 K can be generated. Due to 

high supply of heat, the machining of high speed and depth of cut are possible.  

(c) Furnace heating: It is the simplest and cheapest technique with respect to other 

heating techniques. For machining, a furnace is required at a constant temperature 
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and the workpiece material is heated inside it, until the workpice attains same 

temperature. Then the workpiece material is kept out for machining.  

(d) Resistance heating: In this heating technique, the workpiece and tool is connected 

to anode and cathode respectively. The current is supplied to the workpiece 

material. The potential difference between the tool and workpiece produces same 

amount of heat for heating the workpiece material.  The temperature obtained is 

limited which is not damaging the bulk material. 

(e) Inductive heating: The workpiece materials should be magnetic and is based on 

transformer action concept. Localisation of heat is not difficult except intrinsic 

shape workpiece. The set up used for induction heating is relatively costly.  

(f) Friction heating: This heating technique is very useful for large shape of 

workpiece but cannot used for intricate workpiece. Its initial set up cost and 

maintenance cost are low.  

(g) Radio-frequency resistance heating: This heating technique used over a small 

area. It provides high specific heat and fast temperature rise. Its initial cost as well 

as maintenance cost is high. 

1.2 Working principle of hot machining operation 

Hot machining is a process in which workpiece has to be heated below recrystalization 

temperature [5] but in some cases it has been also heated above recrystalization 

temperature [6]. High manganese steel and other high wear resistance alloys which are 

widely used for various applications are having high strain hardening property. The 

work hardening works on the dislocation phenomenon, which seizes further 

dislocations and makes the material hard. Hot machining delivers good surface finish 

with hardening property.  

The hot machining operation is based on the softening phenomenon at the vicinity of 

shear zone (deformation zone). Softening of workpiece at the deformation zone makes 

the material ductile (reduces shear strength) which helps to reduce cutting force and 

increment in surface integrity. Heating gas flame used for operation should be in a 

constant manner, which delivers same temperature throughout the workpiece material. 

Heating can be done prior or at the time of machining. For constant temperature, the 

blowpipe should move with the tool holder [7]. The blowpipe direction should be 

opposite to tool holder for better heating as shown in following Figure 1.1.  
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There are many controlling factors such as workpiece temperature, cutting speed, feed 

rate, depth of cut, nose radius, cutting time, etc. which contribute on the performance 

characteristics. The problem arises may be due to the use of incorrect levels of control 

parameters such as feed, depth of cut and cutting velocity, etc. Tool life and power 

consumption have much contribution in cost of manufacturing. Surface finish is the 

most desired characteristic for good performance of product. Chip reduction 

coefficient is also an effective measure which evaluates the machinability. The 

appropriate selection of machining parameters has to be made to achieve the above 

machinability criteria.  

1.3 Applications of hot machining (HM) operation 

In general, hot machining can be applied to machine any hard material to manufacture 

industrial products. Due to external heat supply, the hot machining operations can be 

applied for different operations such as turning and milling operations [8]. High 

manganese steel is a potential material for hot machining operation. High manganese 

steel  are, often used for gears,  spline shafts, axles, rifle barrels, mining equipment, 

grinding and crushing machinery, railway track work, cement plants kiln and mill 

liners, stone crushers jaw and gyratory crushers and ore processing. 

1.4 Objectives of the present work 

1) Experimental investigation of hot- machining operation of high-manganese steel 

using gas flame heating. 

2) Modelling of optimization criteria of hot-machining operation using response 

surface methodology. 

3) Modelling of hot-machining operation using PCA and WPCA operation. 

4) Modelling of hot-machining operation using fuzzy-TOPSIS. 

5) FEM modelling for prediction of temperature distribution and validated with 

experimental result. 

1.5 Organization of the thesis 

The thesis consists of seven chapters. The introduction of thesis and literature is 

briefly described in Chapter 1. The experimental details have been described in 

Chapter 2. Chapter 3 discuss the study of influence of the process parameters on the 

performance characteristics (tool wear, surface roughness, chip reduction coefficient, 
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tool life and power) with the help of ANOVA test and modelled equations. The 

influence of the process parameters using the PCA and WPCA in achieving the 

machinability criteria has been discussed in Chapter 4. The influence of the process 

parameters has been discussed using Fuzzy TOPSIS in Chapter 5. The prediction of 

interface temperature using FEM modelling with validations has been described in 

Chapter 6. Summary of the present work and points to possible directions for future 

work have been mentioned in Chapter 7.  

1.6 Literature Survey 

Shah and Gelot [9] have presented a review on the hot machining operation and 

mentioned application for hot machining operation. They mentioned importance to 

study the temperature at chip/tool interface. Dawami and Zadshakoyan [2] have 

conducted experiment on AISI 1060(45 HRC) material with uncoated TNNM 120608 

SP10 tool by keeping all the cutting parameters constant. He analysed better surface 

finish at 300 °C compared to machining at room temperature. Secondly, they analysed 

the temperature variation on tool by varying the cutting speed at 300 °C and at room 

temperature. Baili et al. [9] have applied induction heating in hot machining operation 

for heating Ti-5553 material for reducing mechanical properties which reduces cutting 

forces. They focused to enhance the machinability of Ti-5553. He observed that there 

is 13% reduction in cutting force at 500°C where as it reduces to 34% at 700°C. 

Madhavulu and Basheer Ahmed [1] investigated hot machining operation using 

plasma as heat source. Stainless steel 410 and other alloys are considered as work 

material.  Kitagawa and Maekawa [10] used plasma heating technique for improving 

machinability of material such as pyrex, mullite, alumina, zirconia, etc. Plasma 

heating has been used for converting discontinuous chips to continuous chips. The tool 

wear was also found to be reduced. Rajopadhye et al. [11] developed an experimental 

set up for hot machining operation to improve the cutting tool life as well as to reduce 

the manufacturing cost. Fui [5] studied about hot machining operation for high 

manganese steel with electric heating. Prediction of tool wear has been done for 

evaluating tool life. The best combination of process parameters has been taken to 

provide improved tool life. Wang et al. [12] adopted a new approach to the machining 

system called hybrid machining. In this technique cryogenic cooling technique was 

used to reduce tool temperature. The plasma heating technique was used to heat the 
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workpiece material. Inconel 718 was machined using ceramic inserts (WG-308 and 

WG 300). There was reduction in surface roughness by 250% and improvement in 

tool life by 170% than that of the conventional machining operation. Liliana Popa [13] 

investigated turning operation by using plasma heating for heating workpiece material 

and observed enhancement in productivity. It was concluded that productivity 

increased upto 10-15 times and tensile stress was reduced about 60-70%. Deshmukh 

and Borkar [14] developed mathematical equation for tool life in turning operation on 

AISI 304 material using carbide cutting inserts. The tool life was predicted using FEM 

software (ANSYS) and validated with experimental result. Raczkovi [15] studied the 

mechanism of tool wear on the cutting tool in hard turning over grinding operation. 

PCBN (Poly Crystalline Boron Nitride) cutting tool has been used and modelling has 

been carried out for evaluation of tool life. Talib [16] investigated the effect of cutting 

velocity and feed rate on tool life for turning operation without using any lubricant. 

Tool wear is based on direct normal load occurred due to interaction between tool and 

workpiece. Pal and Basu [17] investigated hot machining operation of austenitic 

manganese steel by shaping. They developed the relationship between tool life and 

cutting forces with process parameters. Kuljanic [18] presented the comparisons 

among the tool grades and their geometries for machining high wear resistance 

materials. Surface roughness, chip formation and tool life were studied for special 

tools. Ti(C, N) was dispersed to enhance the wear resistance properties of hadfield 

steel. Kopac [19] discussed about the hardening phenomenon for austenitic manganese 

steels (12% Mn). Due to the hardening effect, microhardness in cutting zone 

extremely increases and influences tool life. Jeon et al. [20] discussed about different 

energies used for machining such as thermal machining, plasma machining, laser 

machining, gas/induction/furnace preheating method and cryo machining. They 

focussed mainly on vibration assisted machining for different types of operations. 

Ranganathan et al. [21] investigated the influence of cutting parameters using Taguchi 

technique on tool wear for AISI 316 stainless steel at 200°C, 400°C and at 600°C. 

They found different parameters are significant at different levels of temperature. At 

200°C cutting speed and depth of cut are significant factors, at 400°C feed and depth 

of cut are significant and at 600C cutting speed and depth of cur are significant. They 

found low value of error at 200°C and at 400°C and high value for R
2 

shows 

significance of ANOVA table for optimization. Ranganathan and Senthilvelan [22] 
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conducted experiment using Taguchi design on stainless steel 316 for tool wear by 

varying temperature keeping other at constant level. Interaction between input factors 

has been discussed for tool wear using orthogonal array and ANOVA test.  Regression 

equation has been developed for establishing the relationship between input variables 

and tool wear. Maity and Swain [23] used half factorial design for conducting 

experiments for tool life using carbide cutting tool on high manganese steel. 

Expression for tool life has been established from statistical technique. They 

concluded that the temperature is the most significant factor followed by cutting 

velocity, feed and depth of cut for tool life. Sahoo and Mohanty [24] applied 

Taguchi’s quality loss function for investigating cutting force and chip reduction 

coefficient in turning operation. Optimal combination for process parameters has been 

obtained with satisfying both of the performance characteristics.  Lajis et al. [25] 

conducted experiment in end milling of AISI D2 hardened steel for coated carbide 

cutting insert. They established regression equation for tool life. Mainly they focussed 

on machinability by avoiding catastrophic damage of tool by using coated tools and 

obtained overall enhancement in machinability at higher level of cutting velocity and 

feed. Lo and Chen [26] applied response surface methodology in hot machining 

operation for tool life by considering four input parameters named as speed, feed, 

depth of cut and direct current were applied. Finally, they mentioned that RSM 

provides highly precision equation for tool life which shows good co-relation between 

them. Fnides et al.  [27] have used full factorial design for conducting experiments on 

AISI H11 using a mixed ceramic tool for cutting forces (axial, tangential and radial 

direction). Optimum condition has been obtained by using ANOVA test for the 

responses. It was concluded that depth of cut was the most influencing factor on the 

cutting forces.  L. Ozler et al.[28] applied factorial regression analysis for 

accomplishing the experimental work for tool life of sintered carbide inserts with 

austenitic manganese steel. They considered the cutting parameters named as surface 

temperature, cutting speed, feed and depth of cut for investigation. It was noticed that 

as the cutting speed increased tool life decreased. At 600 °C surface temperature, tool 

life was found maximum as the workpiece material became ductile. It was noticed that 

as the feed rate increased tool life decreased. Nihat Tosun et al. [29] evaluated 

mathematical equation for tool life by using regression analysis method and tool life 

was also estimated by Artificial neural network with back propagation algorithm. Both 
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experimental result and estimated ANN result was compared. It was found that ANN 

result was better. Rai et al. [30] conducted experiment on end milling in CNC machine 

for investigating the effect of cutting parameters on the AISI D2 hardened steel of (52-

62 HRC) with TiAlN coated carbide inserts. They found less tool wear and good 

surface finish at the preheating condition and improvement in machinability by 

preventing catastrophic damage to tool at higher levels of cutting speed and feed. 

They predicted surface roughness model by the use of artificial neural network 

(ANN). They concluded that ANN predicted accurate results. Lajis et al. [31] 

investigated the effect of induction heating on the surface integrity (microhardness and 

work hardening). For analysis they varied feed, velocity and pre heating temperature 

while keeping depth of cut constant. Ranganathan et al. [32] conducted experiments 

on AISI 316 using carbide tool for surface roughness at 200 °C, 400 °C and at 600 °C. 

The good fitting has been obtained between the RSM and ANN predicted results with 

experimental results. Ranganathan et al. [33] accomplished their experiment in hot 

machining in order to determine tool life and material removal rate of stainless steel 

(type 316). They applied grey relational analysis (GRA) with Taguchi technique. It 

was revealed that feed and cutting speed were the dominating factors on multi 

performance analysis. GRA improved the grey relation of the optimal combination of 

cutting parameters. Chakravorty et al.[34] discussed about PCA with many different 

approaches such as GRA, PQLR, TOPSIS and WPC over PCA. They compared the 

optimal setting for different cases with mentioned approaches. Pradhan [35] 

investigated tool wear, materials removal rate and radial overcut on AISI D2 tool steel 

using GRA coupled with PCA. Confirmation test has been done for validating the 

optimal setting obtained from analysis. Siddique et al.[36] used GRA coupled with 

PCA for optimizing the cutting parameters in centerless cylindrical grinding. They 

used L9 orthogonal array for designing the experimental runs. Confirmation test had 

been done for validating the optimal combination obtaining from the analysis. Lu et al. 

[37] had optimised the cutting parameters for high speed end milling using GRA 

coupled with PCA. Confirmation test was carried out for validating the optimal 

combination obtained for cutting parameters using proposed approach. Tosun and 

Ozler [38] used the S/N ratio features for obtaining the optimal combination for tool 

life and surface roughness simultaneously. They used M20 as cutting tool with high 

manganese steel as workpiece. Olson [39] gave comparison between the results 
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obtained from weights given in TOPSIS with that of the results obtained from multi 

attribute technique Sequential Multiple Assignment Randomized Trial (SMART). 

Wimatsari et al. [40] studied on FMADM (Fuzzy Multi Attribute Making Decision) 

with TOPSIS on system of scholarships selection for the best alternative. The four 

criteria considered are as Grade Point Average, income of parents, usage of electrical 

power and student activities. The maximum value of closeness coefficient is 1 which 

shows the selected alternative. Jiang et al.[41] used TOPSIS with Group Brief MCDM 

approach for best alternative and compared with Evidential reasoning approach. 

Chamodrakas et al. [42] implemented a new class of Fuzzy TOPSIS approach to 

handle the problem of uncertainty in customer evaluation field.  The best solution was 

having the least distance from ideal solution and the farthest distance from negative 

ideal solution. Holland [43] described the basics of principal component analysis 

(PCA). He discussed about the uncorrelation between two axes/vectors which was due 

to the rotation of the axes. Reduction of data concept was based on the variation of the 

data. 

Xu et al. [44] investigated the effect of cutting parameters on cutting forces using AISI 

52100-type bearing steel of hardness 61 HRC in hot machining operation  using 

electric heating technique. The experimental results have been compared with the 

simulation results in ANSYS. The simulation results have been validated with the 

experimental results. Tamizharasan et al.[45] investigated the effects of different types 

of tool geometry for turning operation with multi-responses such as interface 

temperature, interface pressure, wear depth and cutting forces through FEM analysis. 

Insert DCMG 15 04 08 with 7
0
relief angle and 0.8 mm nose radius was the most 

optimum condition for workpiece material AISI 1045 steel. Tanase et al. [46] 

optimized the process parameters on the responses such as productivity, tool wear and 

residual stresses in turning operation. It was discussed that temperature generation at 

the cutting operation and so considered thermal phenomenon in the FEM analysis. The 

flank wear will be less at higher cutting velocity with low feed. Coefficient of friction 

between chip and rake face depended on the cutting speed, feed and depth of cut. 

Dissipation of heat generation in primary shear zone was responsible of the less 

temperature of workpiece material compared to the chip temperature. Bhoyar et al. 

[47] studied about the cutting force, specific energy and adequate temperature 

occurring at the chip/tool interface and coating boundary. J. G. Hendri et al. [48] 
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studied cutting process and chip formation in turning operation. The effect of tool 

geometry and cutting speed has been studied on the stress and temperature variation in 

turning operation of AISI 1045 through FEM simulation. Ezilarasan et al. [49] used 

the FEM software for analysing thermal and mechanical loads such as tangential 

cutting force, stress, strain, temperature at tool tip at the time of machining for 

Nimonic C-263super alloy. Simulations have been done according to the designed 

runs of orthogonal array. Validations of the simulated results have been done with the 

experimental results by considering 6% error in result. Ghodam [50] used FEM 

analysis for predicting temperature at the tool chip interface and validated with 

experimental result. He used thermocouple for measuring temperature at the tool chip 

interface. Komanduri and Hou [51] discussed some of the temperature measuring 

techniques while heating the workpiece material such as embedded thermocouple, 

dynamic thermocouples, thin film thermocouple, transverse thermocouple technique 

and infrared photographic technique with their applications. Huang and Liang [52] 

studied for temperature distribution at chip tool interface according to the designed 

runs. The study has been done by assuming uniform heat partition for the primary 

shear zone and non-uniform heat partition for secondary shear zone. Adiabatic 

boundary condition was assumed along chip back side and tool flank face. The 

validation of the simulated results was done with experimental result. The effects of 

the interaction between primary and secondary boundary condition on the chip –tool 

interface was studied.  Klocke and Kratz [53] used FEM analysis to determine cutting 

force and temperature distribution at the tool edge. It resulted that the tool edge 

modification is an effective approach to obtain surface finish and high materials 

removal rate. Comparison has been done for validating simulations with the 

experimental result. Uhlmann et al. [54] studied about segmented chip occurred in 

Inconel 718 in turning operation by using FEM software. They investigated about 

stress, strain, temperature distribution. The results obtained from 2D and 3D 

simulations are well correlated with the experimental results.  Yaseen [55] used FEM 

software for study of temperature distribution and heat flux for transient condition in 

turning operation. The effect of cutting variables on responses has been investigated. 

The analysis has been done according to designed runs and the simulated results were 

validated with the experimental results. Abhang and Hameedullah [56] predicted chip 

tool interface temperature by using FEM analysis and validated result with 
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experimental work. Cutting speed, feed and depth of cut are considered for analysis. 

The temperature measurement was calibrated by using thermocouple technique. The 

analysis has been done by using factorial design technique. Kawi [57] carried out 3D 

model for temperature behaviour on AISI 1045, AISI 1030, AISI 4340 and AISI 4140. 

Polynomial models of third, fourth and fifth orders were studied and studied that 

maximum temperature at nodes for any operating condition. The validation has been 

done by comparing simulated result with experimental results. Grzesik et al. [58] 

determined cutting forces, specific cutting energy and temperature distribution using 

Thirdwave Advant Edge FEM software for coated and uncoated tools. They also 

discussed about how friction is effecting temperature distribution at the interface zone. 

Comparison has been done for simulation result with the experimental result.  

Petru et al. [59] have done investigation on micro-structure and micro-hardness for 

high speed steel ASP 2023 in high speed milling operation. It was noticed that 

microhardness value increases in high speed milling. Che-Haron and Jawaid [58-4] 

investigated surface integrity (surface roughness, microhardness and workhardening) 

of rough machining of Titanium alloy with uncoated tools. Machining is carried out at 

four different cutting speeds, at constant depth of cut 2.0mm and feed rates at 0.35 and 

0.25mm/rev. It has been concluded that higher microhardness at distance 0.01mm 

from machined surface than at 0.02mm. The highest microhardness obtained at 

0.005mm from machined surface. Thakur et al. [60] conducted experiments to study 

the effect of the process parameters on the microhardness and microstructure of the 

Inconel 718 in dry turning operation on machinability. Autenrieth et al. [61] studied 

about properties of AISI 1045 steel with the use of X-ray diffraction, microscopy and 

microhardness testing. The effect of cutting tool edges concluded to addition of 

process inherent to the machining processes such as built up edges. Sarikaya [62] used 

spraying distance, substrate temperature and coating thickness with Al2O3 coatings 

for analysing the effects of properties of the coatings (hardness, porosity and surface 

roughness). It was concluded that with increase in the coating layer of Al2O3 the 

hardness value for material as well as its porosity decreases. Jaiswal [63] investigated 

for microhardness affected from process parameters in submerged arc welding 

(SAW). It was concluded that with the increase in number of passes of welding, it 

would decrease the microhardness of the weld metal area as well as heat affected 

zone. Alrabi and Zumot [64] investigated about microhardness for medium carbon 
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steel using HSS tools effecting with cutting parameters. It was found that 

microhardness of chip increases with increase in depth of cut. Microhardness 

increases upto a certain level with increase in speed and feed rate after that it 

decreases. Krolczyk et. al., [65] investigated about microhardness DSS after turning 

operation at different cutting speeds. It was concluded that with the increase in speed 

microhardness of the material is going to be decreased. Increasing the roundness of 

the cutting tool increases the microhardness of the material. 

It is evident from the literature review that the different aspects of the hot machining 

have been investigated. It seems that inadequate work has been reported in the field of 

multi response optimization, multi response optimization has been carried out to 

determine optimum process parameters in hot machining operation.  
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Chapter 2 

Experimental investigation 

 

2.1 Introduction 

High manganese steel is a high strength material. It is very difficult to machine this 

material at room temperature. The costly cutting tool of high hardness is required to 

machine this material. By heating the material to elevated temperature, the material 

can easily be machined. The temperature acts as an additional variable with other 

cutting variables. In the present investigation, the experimental investigation of hot 

machining operation of high manganese steel has been carried out with gas flame 

heating using response surface methodology (RSM). The optimization of the process 

parameters has been carried out to enhance tool life and to reduce the tool wear, 

surface roughness, chip reduction coefficient and cutting power.  

2.2 Experimental Set up for hot machining 

The experiments were accomplished on a three jaw chuck centre lathe machine at 

Central Workshop of NIT Rourkela. The schematic diagram of the experimental set-

up is shown in Figure 2.1.  The diameter and length of workpiece are taken as 50mm 

and 450 mm respectively. The hardness of the workpiece material was measured to be 

42 HRC. The insert SNMG 120MG120408 of grade TTR 08 was used as cutting tool 

for machining. The photograph of the experimental set-up is given in Figure 2.2. The 

oxygen and LPG are combinedly used for heating. A heating arrangement with 

automatic temperature controller has been retrofitted with the lathe machine. A 

mechatronic system has been developed to control the heating arrangement. 

The temperature of the workpiece was controlled by automatic movement of the flame 

torch. The temperature of the workpiece is set to a fixed temperature in a temperature 

controlling unit. The experiment was performed by keeping 20 mm distance between 

the gas nozzle and workpiece for heating the workpiece.  When the temperature of the 

workpiece falls below the set temperature, flame torch moves towards to the 

workpiece. When temperature of workpiece material will reach to the set value, gas 

nozzle will automatically moves away from the workpiece so that it can maintain the 



 

 

temperature of workpiece. The maximum movement of the torch is controlled by the 

limit. The turning operation has been sequentially run for each run. Measurement of 

tool wear was examined by measuring the flank wear using the Tool maker 

Microscope. The roughness of the workpiece was measured by Talysurf (Model- 

Taylor Hobson, Surtronic 3+). The chip reduction coefficient was evaluated by ratio 

of deformed chip thickness to undeformed chip thickness as described earlier. All the 

measured values are given in Table 2.7 and Table 2.8. The temperature of the 

workpiece is sensed by the thermocouple (Nickel – Chromel). The thermocouple is 

connected to the digital display unit (Figure 2.7). The composition of the workpiece 

(Figure 2.3) and the specification of insert (Figure 2.4) with holder are given in Table 

2.1 and Table 2.2 respectively. The geometry of the cutting insert is shown in Table 

2.3.  

 

Figure 2.11 Schematic diagram for experimental setup 

(a) Lathe head stock (b) Chuck (c) Cutting tool (d) Workpiece (e) Thermocouple 

wire  (f) Tail stock (g) Temperature indicator (h) LPG pipe (i) LPG cylinder(j) 

Oxygen cylinder (k) Oxygen flow valve (l) Oxygen pipe 

 



 

 

 

Figure 2.12 Experimental Set up for hot machining 

 

 

Figure 2.13Workpiece (High manganese steel) 

Table 2.3 Composition of high manganese steel by weight percentage (All elements 

are analysed: Normalized) 

Constituents O P S Cr Mn Fe Mo W 

% 25.21 0.18 0.02 0.21 10.47 63.26 0.15 0.50 

 

Table 2.4 Properties of cutting insert and tool holder 

Cutting insert SNMG 120408  

Nose radius 0.8 

Edge geometry Chamfered  

Chamfer width 25° 

Grade TTR 08 

Tool holder PSBNR 2525 M12 

Approach angle 75° 

 



 

 

The tool geometry is shown in Table 2.3.  

 

Figure 2.14 Uncoated carb0ide insert (TTR 08) 

Table 2.5 Tool geometry of uncoated carbide 

Inclination angle  -6° 

Orthogonal rake angle -6° 

End relief angle 6° 

Side relief angle 6° 

Auxiliary cutting edge angle 15° 

Principal cutting edge angle 75° 

Nose radius  0.8 Mm 

 

2.3 Instruments for measuring performance characteristics 

The experiments have been conducted to measure tool wear, surface roughness, chip 

thickness, tool life and cutting power. The tool wear was measured by using Tool 

maker’s microscope. In order to determine the tool life, the machining continued till 

the tool wear limit reached a critical limit of 0.3mm.  

Tool maker microscope: It isa precision Optical Microscope that consists of single or 

multiple objective lenses, which magnifies the object and by the help of eyepiece lens 

the object is focused. Tool wear and chip thickness were measured by using Tool 

maker microscope (Figure 2.5).  

 



 

 

 

Figure 2.15 Tool maker microscope 

Talysurf instrument: It measures the average/mean value for surface roughness 

(Model- Taylor Hobson, Surtronic 3+) (Figure 2.6). The Talysurfinstrument is 

facilitated with 2CR ISO (Corrected Phase). 

 

Figure 2.16Talysurf (Model: Taylor Hobson, Surtronic 3+) 

Digital power indicator: Power consumed by the lathe machine for accomplishing 

operation, is indicated digitally on screen (Figure 2.7).  

Knob for moving 
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rotation 
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Figure 2.17  Digital energy meter 

Digital display unit: Digital display unit for measuring temperature using 

temperature thermocouple is given in Figure 2.8. The temperature of the workpiece 

near the tool tip is measured by the thermocouple.  

 

Figure 2.18 Digital display unit 

Microhardness tester: The basic principle, for measuring microhardness, is to 

observe the material's ability to resist plastic deformation from a standard source.  The 

hardness number can be determined by applying load over the surface area of the 

indentation (Figure 2.9).  



 

 

 

Figure 2.19Microhardness tester 

Infra-red Pyrometer:It is also called as laser thermometers or non-contact 

thermometers or temperature guns or radiation thermometers. It measures the 

temperature at a spot by knowing the quantity of infrared energy of the object and its 

emissivity (Figure 2.10). 



 

 

 

Figure 2.20 Infra-red Pyrometer 

 

2.4 Results and discussion 

Prior to the experiment, the temperature was set to three levels i.e., 200°C, 400°C, 

600°C and performed with the three different levels of the cutting speed, feed rate and 

depth of cut. The material of the workpiece was the high manganese alloy clamped 

over a chuck and supported using the centre of the tailstock. The experiment was 

performed by keeping the distance 20mm between gas nozzle and workpiece for 

heating the workpiece. Afterwards heating is done upto the set temperature in 

thermocouple.  

The tool wear, surface roughness and chip reduction coefficient are measured by 

heating the workpiece at fixed temperatures 200°C, 400°C and 600°C respectively 

keeping other parameters at constant level ( V= 40m/min, d= 0.5mm). The experiment 

has been repeated at room temperature. In every case, the machining has been carried 

out for two minutes. The tool wear for different temperature of workpiece is given in 

Table 2.4.   

 

 

 



 

 

Table 2.6 Tool wear (mm) at different feed at four temperatures 

Run 

No. 

Feed 

(mm/rev.) 

At 

15°C 

200°C 400°C 600°C % Variation 

15°C-

200°C 

15°C-

400°C 

15°C-

400°C 

1 0.05 0.272 0.199 0.138 0.122 23.75 46.36   53.26 

2 0.10 0.272 0.218 0.18 0.16 19.85 33.82 41.18 

3 0.20 0.367 0.305 0.29 0.25 16.89 20.98 31.88 

Similarly, surface roughness and chip reduction coefficient are given in Table 2.5 and 

Table 2.6 respectively. Referring to Table 2.4 it is evident that tool wear decreases 

with increase in temperature.  It is also observed that tool wear increases with increase 

in feed rate. It can be noted that there is maximum reduction of tool wear (53.26%) 

obtained corresponding to feed 0.05mm/rev. and 600°C temperature.  

Table 2.7 Surface roughness (µm) at different feed at four temperatures 

Run 

No. 

Feed 

(mm/rev.) 

At 15°C 200°C 400°C 600°C % Variation 

15°C-

200°C 

15°C-

400°C 

15°C-

400°C 

1 0.05 3.16 1.9 1.6 1 39.87 49.37 68.35 

2 0.10 3.76 2.4 1.9 1.46 36.17 49.47 53.79 

3 0.20 5.46 3.6 2.79 3.05 34.07 48.90 44.14 

 

Referring to Table 2.5 it is also observed that the surface roughness decreases with 

increase in temperature. But some deviations are observed that at high temperature 

and at high feed, where there is increase in surface roughness. This may be due to 

change in shape of tool because of high temperature and feed, which induces poor 

surface finish. Maximum reduction of surface roughness obtained was 68.35% at 

0.05mm/rev. and temperature 600°C.  

Table 2.8 Chip reduction coefficient at different feed at four temperatures 

Run 

No. 

Feed 

(mm/rev.) 

At 

15°C 

200°C 400°C 600°C % Variation 

15°C-

200°C 

15°C-

400°C 

15°C-

400°C 

1 0.05 3.93 3.30 2.44 2.16 15.93 37.91 45.04 

2 0.10 3.6 2.34 1.76 1.17 35.06 51.11 67.50 

3 0.20 3.05 1.74 1.02 0.85 43.14 66.56 72.13 

Referring to Table 2.6, it is observed that chip reduction coefficient decreases with 

increase in temperature. Minimum chip reduction coefficient is obtained at 600°C 

temperature and 0.2mm/rev. of feed. It is evident from the above experiment that there 

is reduction of tool wear, surface roughness and chip reduction coefficient at hot 

machining operation on comparison to machining at room temperature.  



 

 

 
Figure 2.21 Tool wear vs. Feed 

 
Figure 2.22 Surface roughness vs. Feed

 
Figure 2.23 Chip reduction coefficient vs. Feed 
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The variation of tool wear with respect to feed are given Figure 2.11. It is observed 

that tool wear increases with increase in feed and decreases with increase in 

temperature.  

In order to optimise the process parameters for hot machining operation the 

experiments have been carried out as per central composite design. The cutting speed, 

feed rate, depth of cut and temperatures are taken as the variables. The tool wear, 

surface roughness and chip reduction coefficient are taken as the responses. The 

temperature is varied at three levels (200°C, 400°C and 600°C). The cutting speed is 

varied at three levels (24m/min. 45m/min. and 66m/min.). The feed is varied at three 

levels (0.05mm/rev., 0.125 mm/rev. and 0.2mm/rev.). The depth of cut is also varied 

at three levels (0.5mm, 1.25mm and 2.0mm). The machining is carried out for two 

minutes for each run. Experimental results are tabulated in Table 2.7. The chip 

produced with worn out tool for each combination of cutting variables are given in 

Figure 2.15. Average flank wear was measured in each case. The chips obtained for 

each run are collected for determining the effect of the cutting parameters on the chip 

morphology. It is observed that temperature of the workpiece plays a predominant role 

influencing the machinability criteria in hot machining operation. The chips 

morphology obtained with respect to different cutting parameters in hot machining 

operation have been studied. The chips obtained for each run are collected for 

determining the effect of the cutting parameters on the chip morphology. It was found 

that the chips obtained at high speed and low feed rate are mostly continuous. Most of 

the continuous chips were found at 600°C temperature with range of cutting speed 

analysed. Continuous chips with tangled shape were also found at medium level of 

cutting parameters (400°C, 45m/min, 0.125mm/rev and 1.25mm depth of cut). The 

discontinuous chips were found at 0.5mm depth of cut at 0.05 mm/rev and 

0.125mm/rev at any level of temperature and cutting velocity. Formation of built up 

edge was also found at 600°C, 66m/min, 0.2 mm/rev and for any level of depth of cut.  

 

 

 

 



 

 

 

Table 2.9 Experimental values for tool wear, surface roughness and chip reduction 

coefficient 

Run 

Order 

T V f d TW Ra t2 Ξ 

1 600 24 0.050 0.50 0.140 1.600 0.097479 2.01840 

2 200 66 0.050 0.50 0.280 0.016 0.108760 2.25200 

3 200 24 0.200 0.50 0.050 5.350 0.243407 1.26000 

4 600 66 0.200 0.50 0.378 5.350 0.414757 2.14700 

5 200 24 0.050 2.00 0.132 2.600 0.335843 6.95400 

6 600 66 0.050 2.00 0.090 3.200 0.078982 1.63540 

7 600 24 0.200 2.00 0.140 3.000 0.377889 1.95615 

8 200 66 0.200 2.00 0.301 6.100 0.255964 1.32500 

9 400 45 0.125 1.25 0.220 1.800 0.144957 1.20060 

10 400 45 0.125 1.25 0.062 0.990 0.186612 1.54560 

11 200 24 0.050 0.50 0.076 2.500 0.136675 2.83000 

12 600 66 0.050 0.50 0.290 1.000 0.157635 3.26400 

13 600 24 0.200 0.50 0.070 4.000 0.195498 1.01200 

14 200 66 0.200 0.50 0.098 4.300 0.326667 1.69100 

15 600 24 0.050 2.00 0.130 1.400 0.095962 1.98700 

16 200 66 0.050 2.00 0.300 1.000 0.114966 2.38050 

17 200 24 0.200 2.00 0.327 6.250 0.232009 1.20100 

18 600 66 0.200 2.00 0.393 6.500 0.627835 3.25000 

19 400 45 0.125 1.25 0.220 1.440 0.168284 1.39380 

20 400 45 0.125 1.25 0.210 1.740 0.214104 1.77330 

21 200 45 0.125 1.25 0.196 1.400 0.149232 1.23600 

22 600 45 0.125 1.25 0.180 1.460 0.141625 1.17300 

23 400 24 0.125 1.25 0.062 0.990 0.166618 1.38000 

24 400 66 0.125 1.25 0.340 1.700 0.141625 1.17300 

25 400 45 0.050 1.25 0.190 1.600 0.175948 3.64319 

26 400 45 0.200 1.25 0.280 6.000 0.377889 1.95615 

27 400 45 0.125 0.50 0.044 1.560 0.306673 2.54000 

28 400 45 0.125 2.00 0.178 2.200 0.702813 5.82100 

29 400 45 0.125 1.25 0.183 1.980 0.127028 1.05210 

30 400 45 0.125 1.25 0.062 0.990 0.316574 2.62200 
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Figure 2.24 Tool wear with their respective chip morphology 

The optimization of the process parameters has been carried out to determine optimum 

process parameters for maximizing tool life and minimizing cutting power. The 

temperature, cutting velocity, feed and depth of cut are taken as the process 

parameters. Tool life and power are taken as the response variables. 0.3 mm tool wear 

was taken as the criteria for tool life. The flank wear was measured under a tool maker 

microscope after machining for two minutes. The experiment is repeated till the flank 

wear limit reached 0.3mm. The power is measured from power meter. All the process 

parameters are varied at three levels. The temperature is varied at three levels (200°C, 

400°C and 600°C). The cutting speed is varied at three levels (8m/min., 21.5m/min. 

and 35m/min.). The feed is varied at three levels (0.05mm/rev., 0.075mm/rev. and 

0.10mm/rev.). The depth of cut is varied at three levels (0.5mm, 0.75mm and 1.0mm).  

The tool life and power as per layout of experimental design has been given in Table 

2.8. The variations of flank wear with respect to time for different combinations of 

process parameters are shown in Figure 2.15. The tool life in each case is determined 

for taking the limit of flank wear as 0.3mm.  

 



 

 

Table 2.10 Experimental results for tool life and power consumption 

Runs T(˚C) V(m/min.) f(mm/rev.) d(mm) tl(min.) Power(W) 

1 600 8.0 0.050 0.50 39 603 

2 200 35.0 0.050 0.50 9 719 

3 200 8.0 0.100 0.50 25 558 

4 600 35.0 0.100 0.50 8 782 

5 200 8.0 0.050 1.00 29 562 

6 600 35.0 0.050 1.00 12 732 

7 600 8.0 0.100 1.00 24 599 

8 200 35.0 0.100 1.00 5 839 

9 400 21.5 0.075 0.75 38 694 

10 400 21.5 0.075 0.75 35 695 

11 200 8.0 0.050 0.50 31 570 

12 600 35.0 0.050 0.50 19 664 

13 600 8.0 0.100 0.50 23 588 

14 200 35.0 0.100 0.50 11 760 

15 600 8.0 0.050 1.00 24 578 

16 200 35.0 0.050 1.00 12 714 

17 200 8.0 0.100 1.00 23 574 

18 600 35.0 0.100 1.00 7 824 

19 400 21.5 0.075 0.75 53 708 

20 400 21.5 0.075 0.75 62 716 

21 200 21.5 0.075 0.75 5 678 

22 600 21.5 0.075 0.75 28 715 

23 400 8.0 0.075 0.75 40 554 

24 400 35.0 0.075 0.75 42 727 

25 400 21.5 0.050 0.75 52 709 

26 400 21.5 0.100 0.75 35 712 

27 400 21.5 0.075 0.50 7 684 

28 400 21.5 0.075 1.00 5 701 

29 400 21.5 0.075 0.75 43 720 

30 400 21.5 0.075 0.75 39 724 
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Figure 2.25 Flank wear (mm) vs Time (sec.) 

 

 Measurement of chip/tool interface temperature 

The chip/tool interface temperature has been measured by using infrared pyrometer 

having a maximum limit of measurement of temperature uptu 1250°C. The experiment 

(Figure 2.16) has been conducted by varying the temperature, cutting speed, feed and 

depth of cut as per L9 orthogonal array. The machining was done for one minute for 

each experimental run. The parameters are varied at three levels. The temperature is 
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varied at three levels (23°C, 200°C and 400°C). The cutting speed is varied at three 

levels (11m/min., 32m/min. and 55m/min.). The feed is varied at three levels 

(0.05mm/rev., 0.07mm/rev. and 0.1mm/rev.). The depth of cut is also varied at three 

levels (0.5mm, 0.7mm and 1.0mm). The temperature measured for different 

combinations of input parameters is mentioned in Table 2.9. The results are validated 

with FEM modelling.  

 

Figure 2.26 Measurement of temperature 

Table 2.11 Taguchi Design for temperature distribution with their experimental values 

Run Order T(°C) V(m/min.) f(mm/rev.) d(mm) Temperature 

measured(°C) 

1 23 11 0.05 0.5 255 

2 23 32 0.07 0.7 264 

3 23 55 0.10 1.0 306 

4 200 11 0.07 1.0 469 

5 200 32 0.10 0.5 476 

6 200 55 0.05 0.7 435 

7 400 11 0.10 0.7 558 

8 400 32 0.05 1.0 615 

9 400 55 0.07 0.5 524 

 

The micro-hardness is a measure of surface integrity of the workpiece. The micro-

hardness of the workpiece has been determined experimentally under hot machining 

condition. For this case, the operation was carried out at feed rate 0.05mm/rev., 



 

 

0.10mm/rev. and 0.2 mm/rev. at a cutting velocity of 35m/rev. and depth of cut of 

0.5mm with workpiece heated at constant temperature of 400°C. The diameter of the 

workpiece is 30mm. The samples are prepared for analysis with axial thickness of 

5mm. The cross-sectional plane obtained for each sample after cutting has been 

polished by using polishing papers of decreasing grades.  

 

Figure 2.27 Three samples of workpiece at three different feed rates 

The measurements are taken at the distance interval at 0.5mm between the points. 

Measurements of hardness were made by hardness tester with a Vicker indenter on the 

material. Vickers indenters are more symmetric and better suited for particle hardness 

measurements [66]. The diamond indenter is pressed on the workpiece material with 

load 100gms with 10s loading time. D1 (horizontal length) and D2 (vertical length) of 

the impression were measured using optical microscope with 400× magnification. 

Samples are shown in Figure 2.17. The hardness, HV, is defined as the maximum 

applied load using the indentation test, P, divided by the maximum contact area of the 

indentation immediately before unloading. 

P
HV

A
           (1)  

The values of micro-hardness at three cutting velocity are given in Table 2.10.It can 

be observed from Figure 2.19 that values of D1and D2 going to be reduced as the 

distance increased from the centre and value of D1 and D2 are shown in Table 2.7. 

The size of impression of indentation on the workpiece shows the value of the 

hardness (resistance for load). It is observed that the hardness decreases with increase 



 

 

in distance from the centre. This is due to softness of the surface because of heating 

the workpiece material.  

Table 2. 12 Micro-hardness values at three feed rates 

Feed rate (mm/rev.) D1 D2 HV 

0.05 13.64 15.79 532.6 

18.24 18.66 544.8 

18.66 18.66 537.6 

0.15 18.69 18.69 530.9 

18.68 18,68 531.4 

17.56 17.56 601.4 

0.2 12.04 12.94 600.3 

17.86 17.23 602.4 

17.23 16.77 641.7 

 

It is reported that maximum hardness obtained at 0.15 mm/rev among all the 

microhardness measured and lowest at 0.1 mm/rev. It is observed that with the 

increase in feed rate the microhardness value is increasing. It may be due to excess 

increase in the heat at the machined surface material due to plastic deformation. As the 

heat input increases, the grain refinement occurs and which increases the 

microhardness at the layers near to machined surface.  

 

Figure 2. 28 Microhardness variation at different feed rate 
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     (i) At centre of the workpiece              (ii) At distance of 0.5mm from centre  

 
(iii)At the distance of 1.0mm from the centre 

(a) Sample 1 

 

 
(i) At centre of the workpiece             (ii) At distance of 0.5mm from centre 

 
(iii)  At the distance of 1.0mm from the centre 

(b) Sample 2 

 



 

 

 
            (i) At centre of the workpiece                  (ii) At distance of 0.5mm from centre  

 
(iii)  At the distance of 1.0mm from the centre 

(c) Sample 3 

Figure 2. 29 Optical microhardness images of indentations on the workpiece (a) at 24 

m/min cutting velocity (b) at 45 m/min cutting velocity and (c) at 66 m/min cutting 

velocity by keeping other factors at constant level 

The variation of microhardness with distance from centre (mm) is shown in Figure 

2.18. It is observed that the hardness increases with increase in distance from the 

centre. It is also observed that microhardness obtained is maximum at feed rate 

0.15mm/rev. this is may be due to increase in plastic deformation. As the heat input 

increases, the grain refinement occurs and which increases the microhardness at the 

layers near to the machined surface. The optical microhardness images of indentations 

on the workpiece are shown in Figure 2.19 for different locations from the centre of 

the workpiece. There is a change in responses while varying the process parameters. 

So, it is necessary to study about the trend of variation of responses while varying 

parameters at different levels.  

Trend analysis refers to predict trend of responses while varying the levels of the 

cutting parameters.   

 

 



 

 

 

Table 2. 13  Tool wear, surface roughness, chip thickness and chip reduction 

coefficient 

Run No. TW Ra t2 ξ 

At 

200C 

At 

600C 

At 

200C 

At 

600C 

At 

200C 

At 

600C 

At 

200C 

At 

600C 

1 Low V 

(8m/min.) 

Low 

f(0.05mm/rev.) 

Low 

d(0.5mm) 

0.076 0.140 2.500 1.600 0.137 0.097 2.830 2.018 

2 Low 

V(8m/min.) 

Low 

f(0.05mm/rev.) 

High 

d(1.0mm) 

0.132 0.130 2.600 1.400 0.336 0.096 6.954 1.987 

3 Low 

V(8m/min.) 

High 

f(0.05mm/rev.) 

Low 

d(0.5mm) 

0.050 0.070 5.350 4.000 0.243 0.195 1.260 1.012 

4 Low 

V(8m/min.) 

High 

f(0.05mm/rev.) 

High 

d(1.0mm) 

0.327 0.140 6.250 3.000 0.232 0.378 1.201 1.956 

5 High 

V(66m/min.) 

Low 

f(0.10mm/rev.) 

Low 

d(0.5mm) 

0.280 0.290 0.016 1.000 0.109 0.158 2.252 3.264 

6 High 

V(66m/min.) 

Low 

f(0.10mm/rev.) 

High 

d(1.0mm) 

0.300 0.090 1.000 3.200 0.115 0.079 2.381 1.635 

7 High 

V(66m/min.) 

High 

f(0.10mm/rev.) 

Low 

d(0.5mm) 

0.098 0.378 4.300 5.350 0.327 0.415 1.691 2.147 

8 High 

V(66m/min.) 

High 

f(0.10mm/rev.) 

High 

d(1.0mm) 

0.301 0.393 6.100 6.500 0.256 0.628 1.325 3.250 

 

Some experiments have been done for analysing the trends of tool wear, surface 

roughness and chip reduction coefficient by varying temperature. The setting for 

cutting velocity, feed and depth of cut are shown in Table 2.11. Figure 2.20 (i) shows 

the trend for responses when the cutting parameters have been changed.  The changes 

came in responses due to increase in temperature from 200°C to 600°C.  As the 

temperature increases from 200°C to 600°C the tool wear increases from 0.076 to 0.14 

mm. it shows that the effect of temperature is not more effective at less cutting 

velocity, less feed and less depth of cut. In case of surface roughness, same setting the 

surface roughness decreases from 2.5 to 1.6 µm, it indicates that temperature is 

significant for surface roughness. Similarly in case of deformed chip thickness and 

chip reduction coefficient, the experimental value changes from 0.13668 to 0.09748 

and from 2.83 to 2.0184 respectively. At low cutting velocity, feed and at high depth 

of cut when temperature is increasing from 200°C to 600 °C. The trend of tool wear, 

surface roughness, chip thickness and chip reduction coefficients are shown in Figure 

2.20 (ii). The slope of chip reduction coefficient is more compared with surface 

roughness, chip thickness and tool wear. It indicates that as the temperature increases 

from 200 to 600°C the tool wear, surface roughness, deformed chip thickness and chip 



 

 

reduction coefficient tends to decrease. Figure 2.20 (iii) shows the trend of changing 

for tool wear, surface roughness, deformed chip thickness and chip reduction 

coefficient. It was noticed that at high feed and other parameters are at low levels 

there is a high slope in surface roughness while other tool wear, deformed chip 

thickness and chip reduction coefficient are slightly decreasing. Figure 2.20 (iv) shows 

the change in tool wear, surface roughness, deformed chip thickness and chip 

reduction coefficient. At high feed and depth of cut surface roughness is decreasing 

fast and followed by chip reduction coefficient and tool wear. It was observed that 

there is no remarkable change in deformed chip thickness. At high cutting velocity 

with low feed and depth of cut, the trend of changing of tool wear, surface roughness, 

deformed chip thickness and chip reduction coefficient are shown in Figure 2.20 (v). It 

was observed that there is high decrease in chip reduction coefficient and surface 

roughness while no change observed in tool wear and deformed chip thickness. Figure 

2.20 (vi) shows the change in tool wear, surface roughness, deformed chip thickness 

and chip reduction coefficient at high velocity, depth of cut and low feed rate.  

 

 
Figure (i) 

 
(Figure (ii) 

 
Figure (iii) 

 
Figure (iv) 
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Figure (v) 

 
Figure (vi) 

 
Figure (vii) 

 
Figure (viii) 

 

Figure 2. 30 Variation of tool wear, surface roughness and chip reduction coefficient 

while varying temperature 

It was observed that trend of changing of tool wear, surface roughness and chip 

reduction coefficient are decreasing while increasing the temperature. It may possibly 

due to reduction in hardness of the workpiece.  

2.5 Conclusions 

It is observed that the temperature plays a significant role in reducing tool wear, 

surface finish and cutting power in hot machining operation.  
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Chapter 3 

Single optimization techniques for performances 

characteristics using response surface methodology 

(RSM) 

 

3.1 Introduction 

There is a growing trend to use appropriate design for conducting experimentsto attain 

optimal combination of process parameters.In recent decades many methods have 

been used such as Taguchi, Response surface methodology, Factorial design, etc. for 

many experimental works. Ranganathan et al. [1] compared the tool wear at three 

different temperatures (200°C, 400°C and 600°C) by applying Taguchi technique for 

stainless steel. They modelled equations for tool wear. Wenji et al. [2] used 

L16orthogonal array for modelling of hot machining operation to determine surface 

roughness. The highest temperature obtained at chip formation zone. Tosun et al. [9] 

applied Taguchi method for tool life and surface roughness for high manganese steel 

in hot machining. They concluded that cutting speed and feed rate were the 

dominating factors followed by depth-of-cut and workpiece temperature for both of 

responses. Maity and Swain [23] modelled an equation for tool life by employing 

regression analysis. 

In present investigation, a statistical model were developed for performance 

characteristics (tool wear, surface roughness, chip reduction coefficient, tool life and 

power consumption) usingresponse surface methodology. 

3.2 Methodology 

Response surface methodology (RSM) consists of a group of mathematical and 

statistical techniques used in the development of an adequate functional relationship 

between a response of interest, y, and a number of associated control (or input) 

variables denoted by x1, x2, ... , xk [67].  The most widespread application of the RSM 

is in situation where input variables potentially influence some quality characteristics 

of a process. RSM was used to analyse the main medium constituents influencing 

process parameters of the hot machining operation on the performances 



 

 

characteristics. The relationship between process parameters and performance 

characteristics are represented in form of equations. 

RSM consists of a group of mathematical and statistical techniques that can be used to 

define the relationships between the response and the independent variables. In 

addition to analysing the effects of the independent variables as well as interactions of 

the process parameters (independent parameters), this experimental methodology also 

generates a mathematical model.  The relation between process parameters with 

response parameters can be shown by using second order equation as follows: 

i

k k k
2

0 i i ii ij i j

i=1 i=1 i,j=1,i¹j

Z=λ + λ A + λ + λ A A +μA        (3.1) 

where, Z is the respective response, λ0, λi, λii and λij are the regression coefficients, 𝐴i, 

is the process variable, 𝐴𝑖
2, 𝐴𝑖𝐴𝑗are the square and interaction terms for respective 

process variables and µ is the error in the model. µ was considered as having zero 

mean and zero variance. 

Central composite rotatable design has been divided into three parts: 

 Factorial points (2
k
) 

 Star points positioned at a distance α from origin on both sides of the co-ordinate 

axes. Star points are evaluated by 2k. For k < 5, α can be evaluated by 2 
k/4

, value 

of α is evaluated as 2. 

 Some more points are added at the centre known as centre points (n) to give rough 

equal precision to response Z. For four parameters, six additional runs are 

required at the origin. 

The total number of runs required as 4+16+8+6 = 30. 

ANOVA test is a statistical tool used to understand the experimental data, and it is 

extensively used to set up the performance of a number of parameters under analysis. 

In this study, ANOVA was assessed for inspecting the significant factors and their 

effects on the responses.  Probability (p-value) was used for recognising the 

significant factors and pattern of related interactions among process parameters. The 

smaller p-value reveals a very significant correlation coefficient. The fitting of the 

model was determined by the coefficient of determination (R-sq.) and its statistical 

significance was analysed by using F test. The R-sq. value shows the amount of 

variation observed in valuesthat is explained by input factors. 

In the present investigation, Response surface methodology (RSM) is applied to 



 

 

optimize the process parameters to reduce the tool wear, surface roughness and chip 

reduction coefficient in hot machining of high manganese steel using carbide insert. 

The tool wear for different combination of process parameters as per RSM are 

obtained from experimental investigation as shown in Table 2.7. 

3.3 Results and discussion 

The high manganese steel tested in the experimentation section. The tooling and the 

hot machining cutting conditions were described in same section. The test showed 

some results on the basis of RSM. 

3.3.1 Effects of process parameters on tool wear (TW) 

The corresponding ANOVA test for tool wear is represented in Table 3.1 with their 

percentage contributions. The main effect plot for tool wear is shown in Figure 3.1. 

The peak tool wear is obtained at 600°C, 66m/min, 0.2 mm/rev. and 2 mm depth of 

cut. The tool wear value increases with the increase in cutting velocity, feed rate and 

depth of cut. All the interaction factors affecting tool wear are shown in Figure 3.2. 

The interaction between feed and depth of cut is found to be the significant term 

among all parameters at 95% confidence level. The effects of temperature on tool 

wear are nominal. Tool wear first decreases then it starts to increase after 400°C.The 

minimum tool wear was obtained at 400°C. It may possibly be due to increase in 

temperature at shear zone which reduces the shear strength of material that intends to 

reduce tool wear. The tool wear appears as an incremental function of cutting velocity. 

With cutting velocity tool wear is increasing because of more abrasion at rake face 

with respect to time. The tool-chip contact area decreases with increasing cutting 

speed and contact time in conventional cutting region. It was observed that tool wears 

out more at the nose area with increase in cutting velocity. The minimum tool wear 

was obtained at 24m/min. Further tool wear slightly decreased up to 0.125mm/rev. It 

increased after 0.125mm/rev. due to built-up-edge formation at the nose area. The tool 

wear also increased with increase in depth of cut due to increase in the contact area at 

interface. 

 

 

 

 



 

 

Table 3. 1 ANOVA test for tool wear 

Source DF Seq SS Adj SS Adj 

MS 

F p % 

Contribution 

T 1 0.000144 0.000144 0.000144 0.02 0.883 0.04519 

V 1 0.100203 0.100203 0.100203 15.69 0.002* 31.445 

f 1 0.009293 0.009293 0.009293 1.46 0.249 2.9163 

d 1 0.017735 0.017735 0.017735 2.78 0.120 5.56548 

T×T 1 0.002185 0.000328 0.000328 0.05 0.824 0.685682 

V×V 1 0.001489 0.001507 0.001507 0.24 0.635 0.467268 

f×f 1 0.004532 0.008647 0.008647 1.35 0.265 1.422201 

d×d 1 0.010936 0.010936 0.010936 1.71 0.213 3.43186 

T×V 1 0.004796 0.004796 0.004796 0.75 0.402 1.50505 

T×f 1 0.007353 0.007353 0.007353 1.15 0.303 2.30747 

T×d 1 0.028985 0.028985 0.028985 4.54 0.053 9.09588 

V×f 1 0.000638 0.000638 0.000638 0.10 0.757 0.200213 

V×d 1 0.007877 0.007877 0.007877 1.23 0.287 2.471906 

f×d 1 0.030538 0.030538 0.030538 4.78 0.048* 9.583225 

Lack-of-

Fit 

10 0.063162 0.063162 0.006316 0.95 0.586  

Total 29 0.318661      

S = 1.00176                          R-Sq = 75.33%             R-Sq(adj) = 44.96% 

*  = Significant term 
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Figure 3. 11 Main effect plot for TW 
 

The second order model for tool wear shown by Equation 3.2.: 

TW = 0.170327 + 0.002833 T+ 0.074611 V+ 0.022722×f + 0.031389×d+ 0.011364×T×T + 

0.024364×V×V + 0.058364×f×f -0.065636 d×d + 0.017313 ×T×V+ 0.021438×T×f - 0.042563×T×d + 

0.006313 ×V×f - 0.022188×V×d + 0.043688 ×f×d  (3.2) 

The value of R-sq for tool wear is 75.33% which shows model ability to predict the 

response. The standard deviation of errors (S) for tool wear is 1.00176. This shows the 

significance of model for tool wear. The percentage contribution of each parameter 

affecting responses is shown in Table 3.1. It can be seen that V is the most significant 

factor with 31.445%.  
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           (v)          (vi) 

Figure 3. 12 Interaction plots for tool wear 
 

Observation values are shown in Figure 3.3. Residual plot for TW is shown in Figure 

3.4. Residual plots utilised for descriptions of the data which analysed for determining 

whether the model fits the data to meet the assumptions of the analysis.  The data 

points obtained appearance as an approximate straight line which shows the 

consistency of the data. The shape of normal probability looks like Long tails (Figure 

3.5). 
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Figure 3. 13 Run order plot 
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Figure 3. 14 Fit value plot 
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Figure 3. 15 Normal probability plot 

 

3.3.2 Effects of process parameters on Surface roughness (Ra) 

In order to see the effects of process parameters on Surface roughness, lower-the-

better criterion is adopted. ANOVA test for surface roughness shows that feed and 

depth of cut are the two most significant factors for surface roughness as shown in 

Table 3.2 with 54.672% and 2.317% contribution respectively. Among the 

interactions temperature and cutting velocity, temperature and feed rate, velocity and 

feed and between feed and depth of cut are the significant interactions terms which 

effects Ra in an influensive manner at 95% confidence level. The effects of the 

process parameters can be seen from Figure 3.6. Due to increase in temperature, strain 

hardening ability and flow stress of material decreases which reduces the strength of 

material and requires less cutting force to cut material. Minimum Ra is obtained at 

400°C. Ra is decreasing with increase in cutting velocity upto 45 m/min and further 

increases with cutting velocity. Minimum Ra is obtained at 45 m/min.  Figure 3.7 

shows effects of interactions between process parameters on Ra. The percentage 

contributions of process parameters for surface roughness are shown in Table 3.2. The 

value of R-sq for surface roughness is 97.26%. This indicates good predictability for 

response through presented model. The value of standard deviation of errors (S) is 

0.467136. This shows insignificance of S factor and therefore indicates adequacy of 

model. 

 



 

 

 

Table 3. 2 ANOVA test for Surface roughness 

Source DF Seq SS Adj SS Adj 

MS 

F p % 

Contribution 

T 1 0.224 0.2236 0.2236 1.02 0.330 0.216162 

V 1 0.121 0.1210 0.1210 0.55 0.470 0.116766 

f 1 56.654 56.6545 56.6545 259.63 0.000* 54.67161 

d 1 2.401 2.4010 2.4010 11.00 0.006* 2.316986 

T×T 1 5.087 0.1075 0.1075 0.49 0.495 4.909 

V×V 1 1.127 0.2147 0.2147 0.98 0.339 1.087565 

f×f 1 13.609 11.8893 11.8893 54.48 0.000* 13.1328 

d×d 1 0.151 0.1514 0.1514 0.69 0.420 0.145716 

T×V 1 8.029 8.0287 8.0287 36.79 0.000* 7.748056 

T×f 1 1.120 1.1204 1.1204 5.13 0.041* 1.08081 

T×d 1 0.167 0.1669 0.1669 0.76 0.398 0.161156 

V×f 1 2.668 2.6683 2.6683 12.23 0.004* 2.574643 

V×d 1 2.507 2.5075 2.5075 11.49 0.005* 2.419277 

f×d 1 0.003 0.0034 0.0034 0.02 0.902 0.002895 

Total 29 103.626      

S = 0.467136                                 R-Sq = 97.26%                        R-Sq (adj.) = 93.89% 

* = Significant terms 

 

Feed was noticed as the most pronounced factor on Surface roughness. Surface 

roughness slightly decreases with increase in feed to the value of 0.15 mm/rev, it tends 

to increase after that. Vibration was also observed as a cause which enhances the 

roughness of surface due to increase in feed. Surface roughness decreases upto depth 

of cut of 1.25mm and after that it increases. Minimum surface roughness is observed 

at depth of cut 1.25mm. Depth-of-cut interaction effect on surface roughness is more 

effective than its individual effect.   



 

 

 

(i)                   (ii) 

 

(iii)                         (iv) 

Figure 3. 16 Main effects plot for Surface Roughness 

 

The second order equation is modelled for Ra is shown in Equation 3.3. 

Ra = 1.52016 - 0.11144×T + 0.08200×V + 1.77411×f + 0.36522×d - 0.20582×T×T - 0.29082×V×V + 

2.16418×f×f + 0.24418×d×d + 0.70838×T×V - 0.26462×T×f - 0.10213×T×d + 0.40838×V×f + 

0.39588×V×d - 0.01462×f×d     (3.3) 

Run order plot for each Ra is shown in Figure 3.8. Residual versus observation data 

reveals that the data are normally distributed and variables are influencing the Ra 

(Figure 3.9). It is concluded from normal probability plot that the points lie closer to 

straight line, indicates the data following a normal distribution as shown in Figure 

3.10.   
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Figure 3. 17 Response surface plots representing the effects on Surface roughness 
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Figure 3. 18 Run order plot 
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Figure 3. 19 Fit value plot 
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Figure 3. 20 Normal probability plot 

 

3.3.3 Effects of process parameters on Chip reduction coefficient (ξ) 

ANOVA test for chip reduction coefficient (ξ) is shown in Table 3.3. This table shows 

that the most significant factor as temperature followed by cutting velocity, feed and 

depth of cut. Value of R
2
 is 75.33% which shows the better fitting of data with 

modelled equation. The value of S is 1.00176 which shows S as an insignificant 

factors for analysis. 

Figure 3.11 shows the main effect plot for chip reduction coefficient which shows the 

optimum combination for minimum chip reduction coefficient. It is clearly observed 

that feed has the biggest factor on chip reduction coefficient. The optimum 

combination is 600°C, 66 m/min, 0.2 mm/rev and 1.25 mm depth of cut. 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

Table 3. 3 ANOVA test for chip reduction coefficient (ξ) 

Source DF Seq SS Adj SS Adj 

MS 

F p % Contribution 

    T 1 0.4010 0.4010 0.4010 0.40 0.538 0.758374 

    V 1 0.1218 0.1218 0.1218 0.12 0.733 0.230349 

f 1 6.9269 6.9269 6.9269 6.90 0.021* 13.1002 

d 1 3.1214 3.1214 3.1214 3.11 0.101 5.903212 

    T×T 1 0.0730 2.2434 2.2434 2.24 0.159 0.138058 

    V×V 1 0.0482 1.9129 1.9129 1.91 0.191 0.091156 

    f×f 1 3.9622 1.0894 1.0894 1.09 0.316 7.493338 

    d×d 1 10.5218 10.5218 10.5218 10.48 0.006 19.8989 

    T×V 1 3.9198 3.9198 3.9198 3.91 0.070* 7.413151 

    T×f 1 4.4098 4.4098 4.4098 4.39 0.056 8.339842 

    T×d 1 0.7398 0.7398 0.7398 0.74 0.406 1.399115 

    V×f 1 3.2773 3.2773 3.2773 3.27 0.094 6.198051 

    V×d 1 2.0598 2.0598 2.0598 2.05 0.176 3.895507 

    f×d 1 0.0588 0.0588 0.0588 0.06 0.812 0.111203 

Total 29 52.8763      

S = 1.00176                                   R-Sq = 75.33%                          R-Sq(adj) = 44.96% 

* = Significant factor 
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   (iii)                                                               (iv) 

Figure 3. 21 Main effect plot for chip reduction coefficient 

 

The mathematical model for chip reduction coefficient is shown by Equation 3.4. This 

developed model was used to understand the hot machining process in terms of cutting 

parameters.  

ξ = 1.65941- 0.14925×T - 0.08226×V - 0.62034×f + 0.41642×d - 0.94008×T×T - 0.86809×V×V + 

0.65509×f×f + 2.03592×d×d + 0.49496×T×V + 0.52499×T×f - 0.21502×T×d + 0.45258×V×f - 

0.35880×V×d - 0.06065×f×d     (3.4) 

All interaction factors plotted for chip reduction coefficient are shown in Figure 3.12. 

From Equation 3.4 we can conclude that the interaction between temperature and feed 

as the most significant factor followed by interaction between temperature and 

velocity and between cutting velocity and feed. The percentage contribution for each 

term is shown in Table 3.3 where cutting velocity has the maximum contribution 

percentage. Response value for each run is shown in Figure 3.13. Fit order plot has 

been given in Figure 3.14. Normal probability plot shown in Figure 3.15 indicates 

good normality distribution.      
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Figure 3. 22 Response surface plots representing the effects on Chip reduction 

coefficient 
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Figure 3. 23 Run order plot 
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Figure 3. 24 Fit value plot 
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Figure 3. 25 Normal probability plot 

 

3.3.4 Effects of process parameters on tool life (tl) 

ANOVA test for tool life is shown in Table 3.4. It reveals the cutting velocity as the 

most significant factor. The percentage contribution of the process parameters and 

their interactions for tool life is shown in Table 3.4.  

The influence of the cutting parameters on tool life is shown in Figure 3.16. In the 

present investigation, the tool life was determined by taking flank wear as the 

extension of flank wear. The tool life was determined by considering 0.3 mm as a 

flank wear limit. Present study reveals that cutting velocity is the most significant 

factor for effecting tool life. Maximum tool life obtained at 21.5 m/min of cutting 

velocity.  The maximum tool life was obtained at medium temperature (400°C), low 

cutting velocity (8 m/min), low feed (0.05 mm/rev.) and medium level of depth of cut 

(0.75 mm). All the significant interaction between processes parameters on tool life 

are shown in Figure 3.17. 

The second order equation mentioned for tool life (tl) is shown in Equation 3.5. 

tl =  43.7273 +  2.7222×T - 7.8333×V - 4.5000×f - 2.5556×d - 18.1364×T×T + 9.8636×V×V + 

8.8636×f×f - 28.6364×d×d - 0.5000×T×V -  1.8750×T×f - 1.8750×T×d + 1.3750×V×f + 1.3750×V×d + 

1.7500×f×d                 (3.5) 

 

 

 



 

 

 

Table 3. 4 ANOVA test for tool life (tl) 

Source DF Seq SS Adj SS Adj 

MS 

F p % Contribution 

T 1 133.39 133.39 133.39 1.30 0.275 1.59965 

V 1 1104.50 1104.50 1104.50 10.77 0.006* 13.24547 

F 1 364.50 364.50 364.50 3.55 0.082 4.371185 

D 1 117.56 117.56 117.56 1.15 0.304 1.409812 

T×T 1 2745.63 834.97 834.97 8.14 0.014* 32.92636 

V×V 1 21.06 246.97 246.97 2.41 0.145 0.252557 

f×f 1 3.64 199.43 199.43 1.94 0.187 0.043652 

d×d 1 2081.64 2081.64 2081.64 20.29 0.001* 24.9636 

T×V 1 4.00 4.00 4.00 0.04 0.847 0.047969 

T×f 1 56.25 56.25 56.25 0.55 0.472 0.674566 

T×d 1 56.25 56.25 56.25 0.55 0.472 0.674566 

V×f 1 30.25 30.25 30.25 0.29 0.596 0.362766 

V×d 1 30.25 30.25 30.25 0.29 0.596 0.362766 

f×d 1 49.00 49.00 49.00 0.48 0.502 0.587622 

Total 29 8338.70      

S = 10.1283                           R-Sq = 84.01%                               R-Sq(adj) = 64.32% 

*  = Significant factor 

 

The value of R-sq for tool life is 84.01% indicates good prediction for response from 

the presented model. The value of standard deviation of errors (S) for tool life is 

10.1283 shows insignificance of the S factor indicates good prediction by model. Run 

order plot, fit value plot and normal probability plot are shown in Figure 3.18, 3.19 

and 3.20 respectively. 
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Figure 3. 26 Main effect plots for tool life 
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Figure 3. 27 Response surface plot representing effects on tool life 
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Figure 3. 28 Run Order plot 
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Figure 3. 29 Fit value plot 
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Figure 3. 30 Normal probability plot 

 

 

3.3.5 Effects of process parameters on Power consumption (P) 

The power consumption was calculated with the use of digital energy meter as shown 

in Figure (2.7). The power consumed to cut the workpiece is calculated as power 

consumption. ANOVA test for power consumption is shown in Table 3.5. It indicated 

that cutting velocity, feed and depth of cut are the significant parameters for power 

consumption having contribution of 76.7192%, 4.584347% and 1.175731% 

respectively. The second order equation for Power consumption is shown in Equation 

3.6. Main effect plot for power consumption is shown in Figure 3.21. The minimum 



 

 

power required at 200°C, 8 m/min, 0.05 mm/rev and at 0.5 mm for present 

investigation. The variation in Power with varying interactions between processes 

parameters are shown in Figure 3.22. Figure 3.23, 3.24 and 3.25 shows Run order plot, 

Fit order plot, and Normal probability plot respectively. 

Table 3. 5 ANOVA test for power consumption (P) 

Source DF Seq SS Adj SS Adj 

MS 

F P % Contribution 

T 1 684 685 685 2.09 0.172 0.380776 

V 1 137813 137813 137813 421.63 0.000* 76.7192 

F 1 8235 8235 8235 25.19 0.000* 4.584347 

D 1 2112 2112 2112 6.46 0.025* 1.175731 

T×T 1 2475 6 6 0.02 0.897 1.377809 

V×V 1 7825 7540 7540 23.07 0.000* 4.356104 

f×f 1 602 610 610 1.87 0.195 0.335128 

d×d 1 16 16 16 0.05 0.829 0.008907 

T×V 1 1122 1122 1122 3.43 0.087 0.624607 

T×f 1 156 156 156 0.48 0.501 0.086844 

T×d 1 12 12 12 0.04 0.849 0.00668 

V×f 1 8556 8556 8556 26.18 0.000* 4.763045 

V×d 1 2256 2256 2256 6.90 0.021* 1.255894 

f×d 1 870 870 870 2.66 0.127 0.484321 

Total 29 179633      

S = 18.0793                                      R-Sq = 97.63%  R-Sq (adj) = 94.72% 

*  = Significant factor 

Analysis of variance (ANOVA) was carried out on the experimental power 

consumption to identify significant factors.  

The second order equation for power consumption is shown in Equation 3.6. 

P = 704.100+ 6.167×T+  87.500×V+  21.389 ×f+10.833×d +  1.500×T×T -54.500×V×V+ 15.500×f×f -

2.500×d×d -8.375×T×V +3.125×T×f+ 875×T×d + 23.125×V×f + 11.875×V×d + 7.375×f×d  

                   (3.6) 

The value of standard deviation of error (S) is 18.0793 which shows S factor as 

insignificant. The value for R-sq is 97.63% indicates as the predicted model for power 

consumption is significant for analysis.  
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Figure 3. 31 Main effect plot for Power consumption 
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Figure 3. 32 Response surface plot representing the effects on for power 

30282624222018161412108642

2

1

0

-1

-2

Observation Order

S
ta

n
d

a
rd

iz
e

d
 R

e
s
id

u
a

l

 
Figure 3. 33 Run order plot 
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Figure 3. 34 Fit order plot 
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Figure 3. 35 Normal probability plot 

 

3.4 Conclusion 
The optimum setting for parameters as per RSM for minimum tool wear, minimum 

surface roughness, minimum power consumption and minimum chip reduction 

coefficient with maximum tool life were obtained. The optimum parameters are given 

as: 

 Tool wear: 400°C, 24m/min., 0.125mm/rev. and 0.5mm depth of cut. 

 Surface roughness: 400C, 45m/min., 0.125mm/rev. and 1.025mm depth of cut 

 Chip reduction coefficient: 600C, 66m/min., 0.2mm/rev. and 1.25mm depth of cut 

 Tool life: 400C, 8m/min., 0.05mm/rev. and 0.75mm depth of cut 

 Power consumption: 200C, 8m/min, 0.05mm/rev and 0.5mm depth cut. 
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Chapter 4 

 PCA Based Multi-Response Optimization 

4.1. Introduction 

Previously, Taguchi method, response surface methodology, factorial design, etc. 

were used for designing experiments and for single response optimization. But, 

researchers focussed less on multi-response optimization techniques such as Grey 

relational analysis, Regression analysis method, artificial neural network, etc. In 

recent decades, grey relational analysis has become a good optimization technique to 

analyse the processes for multi response problems. GRA approaches are used for 

measuring the distance between response coefficients in a discrete manner. In GRA, 

white indicates the full information of the data and black represents the nil information 

of the data while grey represents incomplete information. When experiments is in 

ambiguous condition, then GRA approach is very helpful for satisfying the 

shortcomings. In present work, grey relational analysis (GRA) coupled with principal 

component analysis (PCA) based on response surface methodology (RSM) is applied 

for optimizing multi-performance characteristic which had not been applied in hot 

machining on uncoated carbide insert. It was noticed that in hot machining multi-

response problems were solved by considering the equal weights to all the response 

for obtaining optimal combination. GRA-based solution is estimated by adopting non-

weighted (equally weighted). PCA technique have property to transform several 

related variable to smaller number of uncorrelated principal components, which are in 

linear combination with original variables. Therefore, researchers found more 

beneficial to find optimal setting based on principal component instead of the on the 

original experimental data [34]. The problem is that equally weighted response will 

downgrades the performance [4, 60]. So, different weights assigned to all response 

which may cause a biased consideration and could be affecting response performance. 

Finally, determining the weights for each of the response variables become a research 

issue. 

4.2. Optimization Procedure 

The present work is accomplished by using two types of PCA based approaches i.e., 

PCA coupled with GRA and weighted principal component analysis (WPCA). PCA is 



 

 

used for converting multi-responses into one response by using the concept of 

correlation between the responses and the multi-responses. The single response 

obtained is known as Process Performance Index (PPI). The steps for obtaining PPI 

values and MPI values are described in section 4.2.1 and 4.2.2 respectively. The 

experimental responses used were shown in Table 2.7. 

4.2.1 PCA coupled with GRA 

The evaluated PPI value in PCA coupled with GRA approach is known as Overall 

Quality Performance Index (OQPI). Higher the better criterion gives the optimal 

setting for the OQPI. The procedure for the optimization of multi-performance 

characteristics with grey relational analysis coupled with principal component analysis 

is shown as follows [34]: 

1. Obtain the results for performance characteristics (tool wear, surface roughness 

and chip reduction coefficient). 

2. Find the S/N ratio for all the three responses for jth response variable and ith trial. 

Basically, there are three types of S/N ratios – lower-the-better, higher-the- better 

and nominal-the-better. Equation used for respective S/N ratios are expressed as 

follows: 
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where, this equation used for lower-the-better performance characteristics 
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where, this equation used for higher-the-better performance characteristics 

n

ij ij

j=1

1
η =-10log y 2

ns

 
 
 

                     (4.3) 

where, this equation used for nominal-the-better performance characteristics. 

(ηij)is the S/N ratio, yth is the experimental value of the jth response variable in ith 

trial. and s is the standard deviation.  

3. Conduct PCA on S/N ratios. The uncorrelated principal component scores are 

formulated as in Equation 4.4. 



 

 

il l1 i1 l2 i2 lp ipPCS =a η +a η +.....+a η                                 (4.4) 

where, ilPCS  is uncorrelated principal component score corresponding to ith 

experimental run and lth eigen value. 2 2 2

l1 l2 lp
+ =1a a +......+a , where al1, al2…., alp is 

the elements of eigen vectors for corresponding to the lth eigen values of the 

correlation matrix of the response variables. 

4. Normalizing the principal component score. 

It provides a comparable sequence. There are three different types if 

normalizations depends on the target of response, whether the lower is better 

(LB), higher is better (HB) and nominal is better (NB). 

i i
ij

i i

PCS (k)-minPCS (k)
X =

maxPCS (k)-minPCS (k)

                               (4.5)

 

where, this Equation (4.5) used for lower-the-better performance characteristic. 
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                              (4.6)

 where, this Equation (4.6) used for higher-the-better performance 

characteristics 
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where, this Equation (4.7) used for nominal-the-better performance 

characteristics. Xi
∗(k) represents the normalized value for the run of responses.  

5. Evaluating the grey relational coefficients. Grey relational coefficient ( γ ) can be 

evaluated as follows: 

min max
il

0,i max

Δ +ξΔ
γ =

Δ (k)+ξΔ
                             (4.6) 

where, 𝛥0,𝑖(𝑘) is the deviation sequence. This is the absolute value of the 

difference between 
*

0
(k)x  and

*

i
(k)x . ξ  is known as distinguishing coefficient 

and its value range is between 0 1  . In this study its value is taken as 0.5. 

max and min  are the maximum and minimum values of deviation.  



 

 

6. The grey relational grade 0( , )ix x  which can be evaluated by the following 

expression (4.7): 

n

i l il

l=1

OQPI = w γ                                            (4.7) 

where,
n

k il

k=1

w γ =1 , kw is the percentage contribution given to the corresponding 

kth grey relational coefficient, ilγ  is the corresponding grey relational coefficient 

for lth response. 

4.2.2 Weighted Component Analysis (WPCA) 

The evaluated PPI value in WPC approach is known as Multi performance index 

(MPI). In this WPC method, all components are taken into consideration in order to 

completely explain variation in all responses. The WPC method uses the explained 

variation as the weight to combine all principal components in order to form a multi-

response performance index (MPI) [40].   The procedure of WPCA based on RSM to 

compute the optimal arrangements of the process parameters for hot machining of high 

manganese steel is described as follows [34]: 

1. Data obtained from experimental investigation.  

2. S/N ratio for each performance characteristics to be evaluated by Equation 4.1 

which is based on lower the better criteria. Larger value of S/N ratio is desired for 

better performance.  

3. All sequenced S/N ratio is substituted for normalization and evaluated by using 

Equation (4.5) and ranged between (0-1) intervals. Larger value of normalized 

result is desired for better performance.  

4. The outcomes of the normalized values is then processed for principal component 

analysis (PCA) denoted by βj. It can be obtained by using Equation (4.4). 

5. The MPI values for each run are evaluated from Equation (4.8). 

p
i l ill=1

MPI = w ×β                                                                                         (4.8) 

where,
p

ll=1
w 1 . For present work, the weights considered for three responses 

is as MPI = 0.79322×β1 + 0.15616× β2 + 0.05062×β3.                                                                                         



 

 

4.3 Results and discussion 

The results obtained from the algorithm of grey relational analysis coupled with 

principal component analysis and weighted principal component analysis is discussed. 

4.3.1 PCA coupled with GRA  

All the original sequences of S/N ratios and principal component scores (PCS) are 

shown in Table 4.1. 

 

Table 4.1: S/N ratio for responses with evaluated PCS 
Run Order SN1 SN2 SN3 PCS1 PCS2 PCS3 

1 17.0774 -4.0824 -6.1001 3.9546 -14.3589 11.1293 

2 11.0568 35.9176 -7.0514 -24.3482 -24.9071 -15.8276 

3 26.0206 -14.5671 -2.0074 16.4416 -18.1025 17.1997 

4 8.4502 -14.5671 -6.6366 7.5010 -2.3033 16.3195 

5 17.5885 -8.2995 -16.8447 -0.6281 -13.7844 21.7175 

6 20.9151 -10.1030 -4.2725 10.3394 -15.3525 14.6796 

7 17.0774 -9.5424 -5.8280 7.6488 -12.1586 14.5105 

8 10.4287 -15.7066 -2.4443 11.7870 -3.4063 14.5328 

9 13.1515 -5.1055 -1.5880 6.4631 -10.0868 7.6259 

10 24.1522 0.0873 -3.7819 5.1929 -22.3611 8.4268 

11 22.3837 -7.9588 -9.0357 6.1358 -17.8397 17.0413 

12 10.7520 0.0000 -10.2750 -3.6257 -10.4546 9.9369 

13 23.0980 -12.0412 -0.1036 15.1885 -16.3244 13.4817 

14 20.1755 -12.6694 -4.5629 11.5443 -13.6666 16.3920 

15 17.7211 -2.9226 -5.9640 3.5144 -15.4036 10.4258 

16 10.4576 0.0000 -7.5334 -1.8190 -10.0207 7.9008 

17 9.7090 -15.9176 -1.5909 12.2802 -2.6122 13.8871 

18 8.1121 -16.2583 -10.2377 5.9774 -1.5336 19.9284 

19 13.1515 -3.1672 -2.8840 4.3193 -10.9398 7.2856 

20 13.5556 -4.8110 -4.9756 4.0547 -10.7775 9.9585 

21 14.1549 -2.9226 -1.8404 5.2136 -11.8931 6.6168 

22 14.8945 -3.2871 -1.3859 6.0041 -12.3968 6.7065 

23 24.1522 0.0873 -2.7976 5.8760 -22.3020 7.7210 

24 9.3704 -4.6090 -1.3859 5.0519 -6.8135 6.2521 

25 14.4249 -4.0824 -11.2296 -0.4699 -12.2396 14.1732 

26 11.0568 -15.5630 -5.8280 9.5513 -4.2415 17.0151 

27 27.1309 -3.8625 -8.0967 5.7053 -23.7656 14.8195 



 

 

28 14.9916 -6.8485 -15.3000 -1.3342 -11.8959 19.0388 

29 14.7510 -5.9333 -0.4411 8.3118 -11.1503 7.7281 

30 24.1522 0.0873 -8.3726 2.0069 -22.6365 11.7184 

 

Table 4.2: Grey coefficients with normalized values for responses with OQPI values 
Run Order NORM1 NORM2 NORM3 GRC1 GRC2 GRC3 OQPI 

1 0.3061 -0.5502 0.1804 0.4188 0.2439 0.3930 0.3916 

2 1.0000 1.0000 0.9813 1.0000 1.0000 1.0000 0.8210 

3 0.000 -0.0000 0.000 0.3333 0.3333 0.3458 0.3337 

4 0.2192 -2.3219 0.0262 0.3904 0.1308 0.3519 0.3500 

5 0.4185 -0.6346 -0.1342 0.4623 0.2342 0.3174 0.4235 

6 0.1496 -0.4041 0.0749 0.3703 0.2626 0.3639 0.3538 

7 0.2156 -0.8735 0.0799 0.3893 0.2107 0.3652 0.6200 

8 0.1141 -2.1598 0.0792 0.3608 0.1366 0.3651 0.3271 

9 0.2446 -1.1780 0.2845 0.3983 0.1867 0.4267 0.3672 

10 0.2758 0.6258 0.2607 0.4084 0.5720 0.4185 0.4334 

11 0.2527 -0.0386 0.0047 0.4009 0.3250 0.3469 0.3987 

12 0.4920 -1.1239 0.2158 0.4960 0.1906 0.4039 0.4471 

13 0.0307 -0.2613 0.1105 0.3403 0.2839 0.3733 0.3328 

14 0.1201 -0.6519 0.0240 0.3623 0.2324 0.3514 0.3424 

15 0.3169 -0.3966 0.2013 0.4226 0.2636 0.3994 0.3979 

16 0.4477 -1.1877 0.2763 0.4751 0.1860 0.4238 0.4299 

17 0.1020 -2.2765 0.0984 0.3577 0.1324 0.3701 0.3240 

18 0.2565 -2.4350 -0.0811 0.4021 0.1271 0.3280 0.3584 

19 0.2972 -1.0526 0.2946 0.4157 0.1959 0.4303 0.3829 

20 0.3037 -1.0765 0.2152 0.4180 0.1941 0.4037 0.3837 

21 0.2753 -0.9125 0.3144 0.4083 0.2073 0.4375 0.3788 

22 0.2559 -0.8385 0.3118 0.4019 0.2138 0.4365 0.3745 

23 0.2590 0.6172 0.2816 0.4029 0.5664 0.4257 0.4283 

24 0.2792 -1.6590 0.3253 0.4096 0.1583 0.4415 0.3726 

25 0.4146 -0.8616 0.0899 0.4607 0.2117 0.3678 0.4203 

26 0.1689 -2.0370 0.0055 0.3756 0.1414 0.3470 0.3394 

27 0.2632 0.8323 0.0707 0.4043 0.7488 0.3629 0.4551 

28 0.4358 -0.9121 -0.0546 0.4698 0.2073 0.3336 0.4261 

29 0.1993 -1.0217 0.2814 0.3844 0.1983 0.4256 0.3575 

30 0.3539 0.6663 0.1629 0.4363 0.5998 0.3879 0.4595 

 



 

 

 

The PCS values are further normalized and normalized values along with grey 

coefficients (GRC) are shown in Table 4.2. The grey relational coefficient is 

expressed as shown in Equation 4.6. 

The Eigen values for respective Eigen vectors are listed in Table 4.3. The square of 

the Eigen value signifies the contribution of the corresponding responses to the 

principal component [35].  

Table 4.3: Eigen vectors for corresponding Eigen values 

Variables Eigen 

values 

Proportion Eigen vectors 

PC1 PC2 PC3 

TW  1.1087 0.370 0.326 -0.915 0.239 

Ra 0.9932 0.331 -0.642  -0.400 -0.655 

Ξ 0.8981 0.299 0.694 0.060  -0.717 

 

4.3.1.1 Effects on OQPI values 

The effects of the process parameters on PPI can be seen from the main effects plot 

for OQPI shown in Figure 4.1.  Highest point for the OQPI shows the optimal setting.  
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Figure 4.1: Main effect plots for OQPI 

The predicted mean values obtained for each process parameters are shown in Table 

4.4. The highest among all values shows the optimal parametric combination as the 

maximum value which is shown in bold. The ANOVA table for OQPI is shown in 

Table 4.5. ANOVA test reveals that feed is the most significant factor for OQPI 

whereas among interactions all interactions are significant except velocity with feed. 

Table 4.4: Mean values for OQPI 

Levels T V f d 

1 0.422 0.406 0.456 0.433 

2 0.406 0.397 0.401 0.391 

3 0.407 0.423 0.364 0.407 

 

Table 4.5: ANOVA for OQPI 

Source DF Seq SS Adj SS Adj MS F P 

T 1 0.001300 0.001300 0.001300 0.91 0.358 

V 1 0.001280 0.001280 0.001280 0.90 0.361 

f 1 0.031770 0.031770 0.031770 22.24 0.000* 

d 1 0.002489 0.002489 0.002489 1.74 0.210 

T×T 1 0.000157 0.000751 0.000751 0.53 0.481 

V×V 1 0.001099 0.000110 0.000110 0.08 0.786 

f×f 1 0.000006 0.000498 0.000498 0.35 0.565 

d×d 1 0.005542 0.005542 0.005542 3.88 0.071 

T×V 1 0.028344 0.028344 0.028344 19.84 0.001* 

T×f 1 0.041685 0.041685 0.041685 29.18 0.000* 

T×d 1 0.022483 0.022483 0.022483 15.74 0.002* 

V×f 1 0.028291 0.028291 0.028291 19.80 0.0018 

V×d 1 0.040003 0.040003 0.040003 28.00 0.000* 

f×d 1 0.032741 0.032741 0.032741 22.92 0.000* 

Lack-

of-Fit 

10 0.011182 0.011182 0.001118 0.45 0.849 

Total 29 0.275835     

*= These factors are significant at 95% of confidence level 

 

The second order equation for OQPI is shown by Equation 4.11.  

OQPI = 0.394450- 0.008497×T + 0.008431×V -0.042012×f -0.011759×d -0.017198×T×T + 

0.006579×V×V  -0.014008×f×f + 0.046725×d×d  -0.042089×T×V + 0.051043×T×f + 0.037486×T×d  -

0.042050×V×f  -0.050002×V×d  + 0.045236×f×d                                                         (4.11) 

 

 



 

 

4.3.1.2 Confirmatory test 

After obtaining the optimal combination for responses, it is important to verify that 

obtained result is improved or not. There is a comparison of results given in Table 4.6 

from initial setting to the optimal setting. It was analysed that value of tool wear 

decreased by 25.532%, surface finish increased by 98.56 % and chip reduction 

coefficient get reduced by 0.495%. 

Table 4.6: Confirmation Table for OQPI 

Levels Initial setting 

T-3, V-1, f-1, d-1 

Optimal setting 

T-1, V-3, f-1, d-1 

Predicted Experimental Gain (%) 

TW(mm) 0.14 0.28 0.188 -25.532 

Ra(µm) 1.6 0.016 0.023 98.56 

ξ 2.02 2.252 2.01 0.495 

OQPI 0.392 1.00   

 

4.3.2 Weighted principal component analysis 

The computed S/N ratio and normalized values are listed in Table 4.5.  The evaluated 

principal component score and the multi performance index (MPI) values are shown 

in Table 4.6.  

Table 4.5: S/N ratio and Normalized values 

Run Order SN1 SN2 SN3 NORM1 NORM2 NORM3 

1 17.0774 -4.0824 -6.1001 0.47139 0.23336 0.64181 

2 11.0568 35.9176 -7.0514 0.15483 1.00000 0.58499 

3 26.0206 -14.5671 -2.0074 0.94162 0.03241 0.88628 

4 8.4502 -14.5671 -6.6366 0.01777 0.03241 0.60976 

5 17.5885 -8.2995 -16.8447 0.49826 0.15254 0.00000 

6 20.9151 -10.1030 -4.2725 0.67318 0.11797 0.75098 

7 17.0774 -9.5424 -5.8280 0.47139 0.12872 0.65806 

8 10.4287 -15.7066 -2.4443 0.12180 0.01057 0.86018 

9 13.1515 -5.1055 -1.5880 0.26497 0.21375 0.91134 

10 24.1522 0.0873 -3.7819 0.84338 0.31328 0.78028 

11 22.3837 -7.9588 -9.0357 0.75039 0.15907 0.46646 



 

 

12 10.7520 0.0000 -10.2750 0.13880 0.31161 0.39243 

13 23.0980 -12.0412 -0.1036 0.78795 0.08082 1.00000 

14 20.1755 -12.6694 -4.5629 0.63428 0.06879 0.73363 

15 17.7211 -2.9226 -5.9640 0.50524 0.25559 0.64994 

16 10.4576 0.0000 -7.5334 0.12332 0.31161 0.55620 

17 9.7090 -15.9176 -1.5909 0.08396 0.00653 0.91116 

18 8.1121 -16.2583 -10.2377 0.00000 0.00000 0.39466 

19 13.1515 -3.1672 -2.8840 0.26497 0.25090 0.83392 

20 13.5556 -4.8110 -4.9756 0.28622 0.21940 0.70898 

21 14.1549 -2.9226 -1.8404 0.31772 0.25559 0.89626 

22 14.8945 -3.2871 -1.3859 0.35662 0.24861 0.92340 

23 24.1522 0.0873 -2.7976 0.84338 0.31328 0.83908 

24 9.3704 -4.6090 -1.3859 0.06616 0.22327 0.92340 

25 14.4249 -4.0824 -11.2296 0.33192 0.23336 0.33541 

26 11.0568 -15.5630 -5.8280 0.15483 0.01333 0.65806 

27 27.1309 -3.8625 -8.0967 1.00000 0.23758 0.52255 

28 14.9916 -6.8485 -15.3000 0.36172 0.18035 0.09227 

29 14.7510 -5.9333 -0.4411 0.34907 0.19789 0.97984 

30 24.1522 0.0873 -8.3726 0.84338 0.31328 0.50606 

 

Table 4.6: PCS values on normalised values with MPI values 

Run Order PCS1 PCS2 PCS3 MPI 

1 0.449269 -0.486160 -0.50037 0.255122 

2 -0.185544 -0.506571 -1.03743 -0.278798 

3 0.901236 -0.821370 -0.43165 0.564763 

4 0.408158 0.007358 -0.45418 0.301918 

5 0.064504 -0.516927 0.01917 -0.028587 

6 0.664897 -0.618086 -0.45484 0.407866 

7 0.527733 -0.443326 -0.44348 0.326930 

8 0.629885 -0.064068 -0.59457 0.459536 

9 0.581616 -0.273269 -0.73011 0.381718 

10 0.615332 -0.850184 -0.56309 0.326825 

11 0.466227 -0.722250 -0.25929 0.189000 

12 0.117546 -0.228103 -0.45230 0.034724 

13 0.898983 -0.693305 -0.58162 0.575383 

14 0.671758 -0.563866 -0.41948 0.423565 

15 0.451677 -0.525531 -0.51267 0.250261 

16 0.226153 -0.204110 -0.57342 0.118489 



 

 

17 0.655526 -0.024770 -0.63751 0.483838 

18 0.273894 0.023679 -0.28297 0.206632 

19 0.504040 -0.292773 -0.69893 0.318715 

20 0.444483 -0.307108 -0.58364 0.275071 

21 0.561491 -0.339179 -0.73409 0.355260 

22 0.597493 -0.370342 -0.73968 0.378668 

23 0.656138 -0.846657 -0.60525 0.357610 

24 0.519069 -0.094440 -0.79251 0.356872 

25 0.191160 -0.376931 -0.31401 0.076875 

26 0.498615 -0.107517 -0.44355 0.356269 

27 0.536124 -0.978678 -0.29128 0.257689 

28 0.066174 -0.397576 -0.09784 -0.014547 

29 0.666759 -0.339761 -0.74873 0.437929 

30 0.425024 -0.866638 -0.36648 0.183252 

 

4.3.2.1 Effects of process parameters on MPI 

The main effect plot for MPI value is shown in Figure 4.2. The highest value reveals 

the optimal setting for cutting parameters as T1 V1 f3 d2.  
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Figure 4.2 Main affects plots for MPI 
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The mean values for the cutting parameters are shown in Table 4.7.  

ANOVA test for MPI is shown in Table 4.8. ANOVA test reveals that feed is the most 

significant factor. 

Table 4.7 Mean values for MPI 

Levels T V F d 

1 0.262 0.341 0.110 0.281 

2 0.281 0.281 0.300 0.322 

3 0.330 0.223 0.421 0.230 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Table 4.8 ANOVA test for MPI 

The second order equation for MPI is as follows: 

MPI = 0.314641 + 0.025024×T  -0.052418×V + 0.148549×f  -0.006275×d + 0.086094×T×T + 

0.076371×V×V  -0.064298×f×f -0.159299×d×d + 0.001854×T×V -0.091794×T×f  -0.006888×T×d  -

0.010984×V×f + 0.078934×V×d -0.058542×f×d                  (4.12) 

4.3.2.2 Confirmatory test 

Confirmation test compared the results of optimal setting (T3, V1, f3, d2) for MPI 

with the initial setting (T3, V1, f1, d1) of process parameters is shown in Table 4.9. 

The final changes obtained from confirmation test are decrease in tool wear is about 

35.71%, surface roughness increment about 56.16% and chip reduction coefficient 

decreases about 18.32%.  

 

 

 

 

 

 

Source DF Seq SS Adj SS Adj MS F P 

    T 1 0.01127 0.011272 0.011272 0.96 0.345 

    V 1 0.04946 0.049457 0.049457 4.22 0.061 

    f 1 0.39720 0.397202 0.397202 33.87 0.000* 

    d 1 0.00071 0.000709 0.000709 0.06 0.810 

    T×V 1 0.00006 0.000055 0.000055 0.00 0.946 

    T×f 1 0.13482 0.134819 0.134819 11.50 0.005* 

    T×d 1 0.00076 0.000759 0.000759 0.06 0.803 

    V×f 1 0.00193 0.001930 0.001930 0.16 0.692 

    V×d 1 0.09969 0.099689 0.099689 8.50 0.012* 

    f×d 1 0.05484 0.054835 0.054835 4.68 0.050* 

  Lack-of-Fit 10 0.11755 0.117550 0.011755 1.01 0.563 

Total 29 1.00057     

*= These factors are significant at 95% of confidence level 



 

 

 

Table 4.9 Confirmation Test for MPI 

Levels Initial setting 

T-3, V-1, f-1, 

d-1 

Optimal setting 

T-3, V-1, f-3, d-2 

Predicted  Experimental Gain (%) 

TW(mm) 0.14 0.07 0.09 35.71 

 Ra(µm) 1.60 4.00 3.65 -56.16 

ξ 2.02 1.012 1.65 18.32 

MPI 0.255 0.575383   

  

4.4 Conclusions 

 In this study, the application of grey relational analysis coupled with principal 

component analysis was used for optimizing the multiple performance characteristics 

on hot machining operation. The   results are concluded as follows: 

1. Grey relational analysis is used to solve the multi-performance characteristics 

optimization problems while principal component analysis was coupled to give 

weightage to the performance characteristics to analyse the relative importance to 

each characteristics. 

2. The feed rate is the most significant factor which affects performance 

characteristics with its contribution percentage 12.819%.  

3. The optimal setting of the process parameters obtained from applying principal 

component analysis coupled with grey analysis is T1-V3-f1-d1. Confirmation 

experiment has been done to verify the reduction in tool wear by 0.048, decrease 

in surface roughness by 1.577 and chip reduction coefficient by 0.01.  

4. For optimizing multiple variables, it is not necessary that all the responses could 

get their desired values. Statistical techniques provide best combination for all the 

process parameters simultaneously. 

5. The statistical technique which provide more desired values. In present case, 

WPCA found to give better result as it provide less tool wear. Both methods are 

suitable for multi optimization depends on the desired values obtained. 
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Chapter 5 

Optimization of process parameters using Fuzzy TOPSIS 

 

5.1  Introduction 

Many efforts have been done by researchers to predict and to optimise the cutting 

parameters for consistent response. An operator has to decide the appropriate tool and 

cutting parameters on the basis of skill, intuition and experience. Many Multiple 

Attribute Decision Making (MCDM) methods have been proposed and used, the 

Technique for Order Performance by Similarity to Ideal Solutions (TOPSIS) gains 

much attraction because of its simplicity and easy to access. 

Fuzzy model consists of a number of conditions for fuzzy regulations-called fuzzy 

rules that establish the relationship between a value in the underlying domain and 

fuzzy space. The basic function of rules is to represent the strategically adopted for 

optimizing the problem. Making of rules is the most difficult task in fuzzy system as 

there are no systematic tool based rules. In fuzzy sets, the information is in uncertain 

manner, therefore, the application of fuzzy set theory for multi-objective evaluation 

methods proven to be an effective approach. First state the membership function for 

the decision matrix to weighted normalized decision matrix of fuzzy numbers and then 

defuzzyfy for crisp values. Then it extends from fuzzy group decision making to the 

TOPSIS Method for determining the rank order for all strategies by evaluating the 

distance to both ideal solution and anti-ideal solution based on ordering of the 

numbers simultaneously. TOPSIS method is a popular approach for multiple criteria 

decision making (MCDM) and has been widely used by the researchers.  Fuzzy 

TOPSIS is a method that can help in objective and systematic evaluation of 

alternatives on multiple criteria. TOPSIS is based upon the concept that the chosen 

alternative should have the shortest distance from the Positive Ideal Solution (PIS), 

i.e., the solution that maximizes the benefit criteria and minimizes the cost criteria; 

and the farthest from the Negative Ideal Solution (NIS), i.e., the solution that 

maximizes the cost criteria and minimizes the benefit criteria. 

In fuzzy TOPSIS, the fuzziness in the decision data and group decision-making 
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process is considered. First, linguistic values are expressed in triangular membership 

function to assess weights and ratings of selection criteria. Second, a hierarchy 

multiple-model based on fuzzy set theory is expressed and fuzzy positive-ideal and 

negative-ideal solutions are used to evaluate each closeness coefficient. In addition, 

mathematical model is established for tool life and power consumption using fuzzy 

TOPSIS based RSM method. 

5.2  Methodology 

The approach was utilised positive and negative ideal concept for decision making in 

the fuzzy environment. In fuzzy sets theory, it is applied for transformation of 

linguistic terms into fuzzy numbers. It is a common practice in literature to initiate the 

ratings scale from 1 to 10. Here, a scale of 1 to 9 is applied for rating the criteria and 

the alternatives as shown in Table 5.1. Intervals are selected, to have a constant 

representation between 1 and 9 for the fuzzy triangular numbers applied for the five 

linguistic variables. Narrow interval indicates lower fuzziness in the data for 

evaluation.  Ratings are assigned for the linguistic terms. The ratings assigned to the 

alternatives corresponding to respective criterion for decision matrix is denoted by D. 

Best alternative is that which has less distance from ideal solution(maximises benefit 

criteria and minimizes cost criteria) and farthest from negative ideal solution 

(maximises cost criteria and minimises benefit criteria). Here, ideal solution is which 

gives maximum tool life and minimum power consumption. TOPSIS method is a 

technique used for order preference by similarity to ideal solution and proposed by 

Hwang and Yoon (1891).  

Table 5.1: Linguistic terms for ratings 

Fuzzy number Alternative assessment QA weights 

(1, 1, 3) Very poor Very low 

(1, 3, 5) Poor Low 

(3, 5, 7) Fair Medium 

(5, 7, 9) Good High 

(7, 9, 9) Very good Very high 

 

Linguistic terms were denoted by using triangular fuzzy set called as membership 

function. The output of the experimental data has been fed as input in Fuzzy Inference 
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System (FIS). The Fuzzy Inference System (FIS) consist of four input variables and 

two output variables as shown in Figure 5.1. 30 fuzzy rules have been explored for 

fuzzy reasoning as listed in Table 5.2. The output in form of crisp value has been 

defined as Multi-Performance Characteristic Index (MPCI). Lastly, the optimal 

combination for process parameters found out by optimizing relative closeness 

coefficient index (C+) in RSM. For evaluating MPCI value, three membership 

functions are assigned for the input variables and five membership functions assigned 

for output variables as shown in Figure 5.2 and 5.3 respectively. 

 

 
Figure 5.1: Assigned Fuzzy model 

 

 
Figure 5.2: Membership functions for inputs 

 

Five membership functions have been assigned for MPCI as shown in Figure 5.3. 

 
Figure 5.3: Membership functions for outputs 
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An algorithm for solving the MCDM problem using our proposed fuzzy TOPSIS 

model is as follows: 

Steps 1: Construct Fuzzy matrix, Subjective assessments are to be made by decision        

maker to determine the decision matrix D = {Xij, I = 1,2,…..m; j = 

1,2,………..n}, using the linguistic terms. The decision matrix is expressed by 

Equation 5.1:  

30 2 ijD x                                   (5.1) 

where, 
ijx    are the actual values of experiments. i and j shows the number 

of experimental runs and number of attributes respectively. 

Step 2: Normalize the fuzzy decision matrix using Equation 5.2. However, the purpose 

of linear scales transform normalization function used in this study is to 

preserve the property that the ranges of normalized triangular fuzzy numbers to 

be included in [0-1]. 

ij

ij
30

2
ij

i 1

x
R

x






                     (5.2) 

where, 
ijR  is the normalized decision matrix. The normalized weighted fuzzy 

decision matrix  
ijR  is constructed as shown in Table 32. 

Step 3: Evaluate the weighted normalised matrix using Equation 5.3. weighted 

normalised matrix is obtained by multiplying the normalized decision matrix 

with the weight assigned to the corresponding responses: 

30 2 ijV v    
                (5.3(a)) 

where, ijv ij jwR 
 

The weights are obtained by using standard deviation method. The standard 

deviation method calculates the weights (Eq. 5.3(b)) 





M

1k
k

j

j

σ

σ
w

              (5.3(b))

 where, σ j
is the standard deviation. 
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Step 4: Establish FPIS ( A
 ) and FNIS ( A

 )  

 1 2,v vA
                       (5.4) 

where, 
jv
 = max { ijv }, I = 1, 2, 3….30; j= 1, 2 

 1 2,v vA
                       (5.5) 

where,
j ijmin{ }v v
  , i = 1,2,….30; j = 1,2  

Step 5: Determination of the distance measures. 

The distance from the FPIS can be computed form following Equation 5.6. 

 
n 2

i ij j
j 1

S v v 



 
                    (5.6) 

The distance from the FNIS can be computed from following Equation 5.7. 

 
n 2

i ij j
j 1

S v v 



 
                   (5.7) 

where, i =1, 2…..30 

Step 6: Closeness coefficient index value can be evaluated for each alternative from 

Equation 5.8. 

i
i i

i i

S
C , i 1,2,...,m; 0 C 1

S S


 

 
   


                 (5.8) 

Step 7: Ranking for alternatives 

The rank has been given according to the increasing value of the C+. Highest 

value for C+ has the higher ranking and the lower value for the C+ has the 

lower ranking. The highest value for C+ shows best alternative and closest to 

FPIS and farthest from FNIS.  

Weighted normalized values obtained from Equation 5.3 are listed in Table 5.3.The 

FPIS and FNIS values are shown in Table 5.4. The distance of each value from the 

FPIS and FNIS are evaluated and listed in Table 5.5. The closeness coefficients for all 

the runs are evaluated by using Equation 5.8 and listed in Table 5.6. 
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Table 5.2 30 Fuzzy based rules  

Run Order T V f d MPCI1 MPCI2 

1 H L L L 0.5000 0.196 

2 L H L L 0.0876 0.822 

3 L L H L 0.7500 0.804 

4 H H H L 0.5000 0.500 

5 L L L H 0.0966 0.804 

6 H H L H 0.5000 0.500 

7 H L H H 0.2500 0.500 

8 L H H H 0.1030 0.209 

9 M M M M 0.5020 0.500 

10 M M M M 0.5020 0.500 

11 L L M L 0.5450 0.483 

12 H H M L 0.5000 0.500 

13 H L H L 0.5000 0.500 

14 L H H L 0.5000 0.500 

15 H L L H 0.5000 0.500 

16 L H L H 0.5000 0.500 

17 L L H H 0.2500 0.209 

18 H H H H 0.0800 0.837 

19 M M M M 0.5020 0.500 

20 M M M M 0.5020 0.500 

21 L M M M 0.5280 0.500 

22 H M M M 0.4150 0.398 

23 M L M M 0.4910 0.491 

24 M H M M 0.0946 0.808 

25 M M L M 0.5020 0.500 

26 M M H M 0.6110 0.808 

27 M M M L 0.5020 0.500 

28 M M M H 0.0946 0.808 

29 M M M M 0.5020 0.500 

30 M M M M 0.5020 0.500 
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Table 5.3 Weighted normalized matrix 

v1 v2 

0.114324 0.005537 

0.020030 0.097389 

0.171486 0.093171 

0.114324 0.036034 

0.022087 0.093171 

0.114324 0.036034 

0.057162 0.036034 

0.023551 0.006296 

0.114782 0.036034 

0.114782 0.036034 

0.124613 0.033625 

0.114324 0.036034 

0.114324 0.036034 

0.114324 0.036034 

0.114324 0.036034 

0.114324 0.036034 

0.057162 0.006296 

0.018292 0.100976 

0.114782 0.036034 

0.114782 0.036034 

0.120726 0.036034 

0.094889 0.022831 

0.112266 0.034748 

0.021630 0.094100 

0.114782 0.036034 

0.139704 0.094100 

0.114782 0.036034 

0.021630 0.094100 

0.114782 0.036034 

0.114782 0.036034 
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Table 5.4 Ideal and negative ideal solution for tool life and power consumption 

 V+ V- 

Tool life 0.171486 0.020030 

Power 0.100976 0.005537 

Table 5.5 Evaluated distance measures       Table 5.6 Closeness coefficients

S+ S- 

0.057162 0.135391 

0.177132 0.003986 

0.087634 0.153393 

0.064788 0.115930 

0.173204 0.008679 

0.064788 0.115930 

0.118322 0.075686 

0.147937 0.094826 

0.064385 0.116309 

0.064385 0.116309 

0.054644 0.125859 

0.064788 0.115930 

0.064788 0.115930 

0.064788 0.115930 

0.064788 0.115930 

0.064788 0.115930 

0.114326 0.102348 

0.180491 0.000000 

0.064385 0.116309 

0.064385 0.116309 

0.059216 0.121286 

0.078525 0.109424 

0.066032 0.114967 

0.174069 0.007644 

0.064385 0.116309 

0.094093 0.121607 

0.064385 0.116309 

0.174069 0.007644 

0.064385 0.116309 

0.064385 0.116309 

 

Run  Order C+ 

1 0.703137 

2 0.022006 

3 0.636415 

4 0.641496 

5 0.047719 

6 0.641496 

7 0.390120 

8 0.390611 

9 0.643679 

10 0.643679 

11 0.697267 

12 0.641496 

13 0.641496 

14 0.641496 

15 0.641496 

16 0.641496 

17 0.472360 

18 0.000001 

19 0.643679 

20 0.643679 

21 0.671936 

22 0.582201 

23 0.635179 

24 0.042064 

25 0.643679 

26 0.563778 

27 0.643679 

28 0.042064 

29 0.643679 

30 0.643679 



86 

 

 

5.3 Results and Discussion 

5.3.1 Effects of process parameters on closeness coefficient index (C+) 

The alternative having the largest closeness coefficient is the best choice and 

according to that the ranking has been given in the descending order of the closeness 

coefficient. The maximum value of C+ shows the optimal setting for process 

parameters. ANOVA Table 5.8 shows the significant factors and interactions of 

process parameters for both the performance characteristics simultaneously. The 

significant terms are temperature (T), depth of cut (d) and interaction between 

temperature (T) and feed rate (f). Among them cutting velocity (V) and feed (f) are the 

insignificant parameters which do not affect performance in an influensive manner. 

The preferred alternative having the highest ranking have maximum value 0.697267 

of closeness coefficient. The main effect plot for C+ is shown in Figure 5.4. It is 

clearly indicated that the optimal setting for machining parameters for present 

experiment is T = 600°C (level 3), V = 21.5m/min (level 2), f = 0.075mm/rev (level 2) 

and d = 0.05mm (level 1). Table 5.7 represents optimal parametric setting and 

maximum mean value for each process parameters. Optimal result has been validated 

by accomplishing confirmatory test.   
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                               (i)         (ii) 

    

                            (iii)         (iv) 

Figure 5.4: Main effects plot for Closeness coefficient index (C+) 

Table 5.7: Response values for mean of Closeness coefficient index 

Levels T V f d 

1 0.4682 0.5312 0.5043 0.5622 

2 0.5253 0.5641 0.5273 0.5613 

3 0.5322 0.4324 0.4632 0.3582 

Present work represents the selection of optimal level of process parameters in hot 

machining by considering the experimental results in terms of linguistic variables 

(based on experience and skills) in respect to avoid vagueness in data for maximizing 

tool life and reducing power consumption. Fuzzy TOPSIS favours to convert multi-

response to single response optimization which makes ease to obtain optimal level for 

performances characteristics. Confirmation test (Table 5.9) reveals that there is an 

improvement in responses simultaneously. 
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Table 5.8: ANOVA for C+ 

Source DF Seq SS Adj SS Adj 

MS 

F p 

    T 1 0.16475 0.164755 0.164755 8.73 0.011* 

    V 1 0.02701 0.027007 0.027007 1.43 0.253 

    f 1 0.04793 0.047928 0.047928 2.54 0.135 

    d 1 0.14144 0.141438 0.141438 7.50 0.017* 

    T×T 1 0.01059 0.013019 0.013019 0.69 0.421 

    V×V 1 0.08915 0.054908 0.054908 2.91 0.112 

    f×f 1 0.00467 0.015151 0.015151 0.80 0.387 

    d×d 1 0.04523 0.045229 0.045229 2.40 0.146 

    T×V 1 0.00050 0.000499 0.000499 0.03 0.873 

    T×f 1 0.23479 0.234794 0.234794   12.44 0.004* 

    T×d 1 0.00000 0.000002 0.000002 0.00 0.991 

    V×f 1 0.00061 0.000608 0.000608 0.03 0.860 

    V×d 1 0.01154 0.011543 0.011543 0.61 0.448 

    f×d 1 0.02836 0.028358 0.028358 1.50 0.242 

Total 29 1.08562     

*= These factors are significant at 95% confidence level 

 

Table 5.9: Confirmation table for closeness coefficient index (C+) 

Levels Initial setting 

T-3, V-1, f-1, d-1 

Optimal setting 

T-3, V-2, f-2, d-1 

Predicted  Experimental Gain (%) 

tl (min) 54 31 40 25.926 

P(W) 603 570 538 10.779 

C+  0.703137 0.697267   

 

 



89 

 

5.4 Conclusion 

1. The multi responses have been converted into single optimum setting of the 

process parameters which is known as relative closeness coefficient (C+). Highest 

level value of the C+ gives the optimum setting.  

2. It was noticed that the optimal combination for the process parameters obtained as 

T= 600°C (level 3), V= 21.5m/min (level 2), f = 0.075 mm/min (level 2) and d= 

0.5 mm (level 1).  

3. Confirmation test has been done, and it is revealed that there is increase in tool 

life and decrease in power consumption by 25.926% in tool life and 10.779 % in 

power consumption. 
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Chapter 6 

Prediction of temperature distribution using Finite Element 

Analysis 

 

6.1 Introduction 

Traditionally, the turning operation has been used to reduce the diameter of cylindrical 

work piece. This is done by rotating the work piece about the machine’s spindle and 

cutting the workpiece material with the cutting tool which is fed in the perpendicular 

direction. Repetition of such type of experiments require more initial investment, 

therefore Finite element method (FEM) is the only solution to overcome this high 

cost. In consequence, temperatures in the tool, chip and work piece, as well as cutting 

forces, plastic deformation (shear angles and chip thickness), chip formation can be 

determined faster by using FEM than using costly and time consuming experiments. 

FEM analysis is widely used for calculating stress, strain, cutting forces, temperature 

distributions in the primary, secondary and at tertiary cutting zones, etc.  

From the past fifty years metal cutting researchers have developed many modelling 

techniques including analytical techniques, slip-line solutions, empirical approaches 

and finite element techniques. In recent years, the finite element analysis has 

particularly become the main tool for simulating metal cutting processes. The 

modelling and simulation of metal cutting have become very important in order to 

decrease the cost of experimental investigations. Plasticity based analytical modelling 

are used in predicting the mechanics of temperatures at the interface zone. These 

methods utilize and rely on work material constitutive models to simulate deformation 

conditions in metal cutting. Therefore, identification of constitutive material model 

parameters considering high-strain rate deformation characteristics is crucial.  

In addition, this research includes the analysis for the results and graphs from 

simulation machining such as temperature versus time. The comparison has been 

made between simulation and experimental result. 

6.2 FEM Description 

DEFORM 3D is used for present analysis and the major input requisites is shown in 



 

 

Appendice C. FEM consists of mainly three sections: 

i. Pre-processor: The input data for materials and its conditions are fed into pre-

processor. 

ii. Simulator: Simulation done according to the data feeding for numerical 

calculations for turning operation. 

iii. Post- processor: Used to view simulation data after the simulation has been run. 

Basic function is to read the database files from the simulation engine and 

representing the results in graphical and pictorial forms. It facilitates to view 

geometry field data such as temperature, stress, strain, forces direction, etc.  

The procedure to achieve interface temperature is shown as flow chart represented by 

Figure 6.1.  

 

 

6.2.1 Pre- processor 

6.2.1.1 Cutting conditions 

 

 

 

 

 

 

 

 

 

Figure 6.1 Process flow chart for FEM simulation  
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For analyzing the effects of the cutting parameters on the temperature at chip tool 

interface Taguchi design was used. According to Taguchi design, nine runs have been 

done to which cutting parameters has to vary at different levels. The experimental runs 

are represented by Table 2.9. The initial data, namely, the process parameters and 

conditions, work and cutting tool material properties, cutting speed, depth of cut, feed 

rate, environment temperature before modelling and simulation, other assumptions, 

etc. are to be fed as input in pre-processor.  

6.2.1 Material models/design and methodology 

Environment: 

 Temperature-20 °C 

 Convective coeffcieint-0.4 W /m
2
°C 

 Tool workpiece interface: shear friction factor- 0.6 

 Heat transfer coefficient: 10000 W/m
2
°C 

 Tool – SNMG 120408 TTR 08 (Uncoated Tungsten Carbide P 30 Insert)  

The geometry for SNMG is not available in DEFORM software. Therefore, geometry 

for cutting insert has been made in SOLID WORKS modelling software and then it 

was imported by converting it into .stl file. The shape of the tool is specified in a 

special sequence, called tool signature. According to Orthogonal Rake System (ORS):

0 00 e
' r                           (6.1) 

  (Inclination angle)     : 6˚  

0
  (Orthogonal rake angle)    : 6˚  

 
e
  (End clearance angle)    : 6˚  

  (Side clearance angle )   : 6˚  

0  (Auxiliary cutting edge angle)   : 15˚  

0 '  (Principal/ side cutting edge angle)  :  75˚  

r  (Nose radius)     :  0.8 mm 

PSBNR 2525 M12 right hand tool holder has been used for turning operation.  

Side cutting edge angle (SCEA) =6 ˚ 

Back rake angle (BR) = -6 ˚ 

Side rake angle (SR) = -6 ˚ 



 

 

 

 

 

Figure 6.2 Solid works fig of tool with measurement 

Table 6.1 Commercially available high manganese steel: Plastic type [68] 

Properties  Units 

Thermal conductivity 46.8 W/m-K 

Hardness  42 HRC 

Specific heat capacity 0.502 J/g-°C 

Density 7.75 g/cc 

Modulus of elasticity 201-209 GPa 

Poisson Ratio 0.27-0.30 - 

Shear Modulus  81.0-82.0  GPa 

Tensile strength  1678 MPa 

 

Here, in simulation SI unit conversion is used. Due to severe deformation at shear 

zone the Lagrangian formulation was used for thermo-mechanical finite element 

model of the plane-strain orthogonal metal cutting with a continuous chip formation 

produced by plane-faced uncoated carbide tools.  

Here, a FE model of the whole workpice is used to evaluate temperature distribution 

in workpiece. Therefore, the time for an individual rotation of workpiece is less and 

simultaneously feed travel for one rotation is less. The rotational workpiece forces are 

significantly less than the cutting forces and therefore cutting forces are neglected for 

deformation in simulation. To facilitate the removal of material, it is meshed with 

respect to the tool path. Two kinds of shapes are available such as curved model and 

simplified model. As a circular shape is made up of infinite straight lines same as 

circular cylindrical shape is also made up of infinite straight paths having L length for 

4.5mm 

4.5mm 
2.5mm 



 

 

movement. In present work, simplified model is used for turning operation. The solid 

model of the insert is shown in Figure 6.2. The cutting tool material is taken as 

uncoated tungsten carbide (WC). Isometric view of the initial tool/workpiece mesh 

configuration, where +Y is the cutting direction, X is the feed direction and Z is the 

depth of cut direction.  

It is very important to build the material models in order to get accuracy in simulation 

results. Material properties are further essential inputs to FEM analysis. The  available 

mechanical  and physical  properties  of  work  piece  and  tool  materials are fed to  

pre-processor and  finally develop the FE model. The unsteady state three-dimensional 

heat-conduction equation can be written as [69]: 

 2 2 2

22 2
T T

q x,y,z, tT T T 1 T

tyx z k


   

  

  


   (6.2) 

where, KT  is the thermal conductivity, T the temperature, T  the thermal diffusivity 

coefficient, ρ the density, Cp the heat capacity, t the time and T∞ the medium 

temperature. This equation is subjected to the following boundary conditions in the 

regions exposed to the environment: [70]. 
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where, h is the heat transfer coefficient.  

FE model assumptions: 

1. Due to less temperature difference between tool and chip, therefore the value 

considered for h (heat transfer coefficient) should be constant. 

2. The end boundaries far from the heat affected zone (HAZ) remains at room 

temperature (20°C). 

Methodology adopted for simulation of hot machining operation is L9 orthogonal 

array for analysing temperature distribution. The flow stress, σ, depends on effective 

strain ε, strain rate 
0  &, and temperature, T, of the high strain rate deformations 



 

 

exerted in the cutting zone [71]. The workpiece material is considered to be modelled 

by the Johnson Cook (JC) model as shown in equation below: 

0

ln 1

m

n
R

m R

p
A B Cp  

  

    
       

        

                (6.5) 

where, p designates the equivalent strain, 
0

p equivalent strain rate and A, B, C, n, m are 

the constants yield strength (MPa), hardening modulus (MPa), strain rate sensitivity 

coefficient, hardening coefficient and thermal softening coefficients respectively. The 

properties of the materials are entered in the programme as per Table 6.1.  

During meshing tool insert has 30000 elements and number of elements for workpiece 

has been taken as 25% of feed. The tool is considered as rigid body and its material is 

taken as Tungsten carbide (WC). The automatic generation for the mesh was not 

adopted due to constant meshing gives impreciseness in predicted result. A finer 

meshing obtained at the insert tip and in the workpiece where tool comes first with 

contact to workpiece. Therefore, a fine meshing is required to obtain accurate result. 

Initially, the workpice was meshed equally throughout the material by 1401 ISO-

parametric quadrilateral elements. For  all  cutting simulations conducted  in  this  

study,  the Coulomb  friction  law  is  used. The friction modelling used can be 

represented by Equation 6.6. 

n
                      (6.6) 

where,  denotes frictional stress,  and 
n  denotes coefficient of friction and 

normal stress respectively.  

6.2.4   Boundary condition 

The displacement and thermal boundary conditions are applied to the work piece and 

cutting tool.  

Workpiece: For a consistent cutting operation the workpiece material is fixed from all 

sides (X, Y, Z directions). 

Tool:  Cutting tool is considered as a rigid body and movement in +Y direction. The 

position of the tool with respect to workpiece is shown in Figure .... 



 

 

 

Figure . Tool position  

6.3 Result and discussion 

It was noticed that maximum temperature was found at the interface. The highest 

temperature of the workpiece surface, about 470°C, was located at a distance nearby 

the interface, this was due to high heat generation in the contact region between tool 

and work piece. Figure 6.3 reveals the simulated graphics for each run. It shows that 

the maximum temperature obtained at the interface of the tool and workpiece. The 

temperature far from interface has low temperature compared to the interface due to 

high heat generation at the interface. The largest deformation was occurred at the 

primary shear zone followed by the secondary shear zone. It causes high stress and 

heat generation. Effects of cutting parameters at chip tool interface temperature are 

discussed as follows: 

(i) Effect of the workpiece temperature on temperature distribution 

Workpiece temperature is the most important factor for analysing temperature 

distribution. Due to heating the workpiece at elevated temperature the resistance 

power for machining get reduced.  

(ii) Effect of the cutting speed on Temperature distribution 

Chip-tool interface temperature is directly related to cutting speed. It may possibly due 

to increase of cutting speed friction increases and this induces an increase in 

temperature in the shear zone.  

(iii) Effect of the cutting feed on Temperature distribution 

The increase in feed rate, section of chip increases and consequently increases friction. 

Due to increase in friction temperature also increases. 

(iv) Effect of the depth of cut on Temperature distribution 



 

 

It was observed that by increasing depth of cut, the cutting temperature also increases. 

With increase in depth of cut, the section of chip increases which increases friction at 

chip-tool increases that what leads to increase in temperature. 

Result obtained from the simulation for high manganese in hot turning operation are 

summarised as follows: 
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Figure (ix) 

Figure 6.3 Temperature vs Time  

6.4 Comparison of Simulated results with experimental results 

Tool surface nodes are continuously tracked for chip tool interface. For validation, 

comparison has been done between predicted result and experiment result for 

temperature distribution. Experimental values obtained are shown in Table 2.9. The 

error between the experimental result and predicted results are evaluated using 

Equation 22. Error present in the temperature measurement is shown in Table 6.2. 

Percentage of error = 
exp

exp

100
defX X

X


                 (6.7) 

where, 
defX  is the DEFORM simulated value and

expX is the experimental value. 

The percentage errors between the experimental and predicted results are less than 

8.44 %, except in case of run 4 and 9 having 13.43% and 20.99% error respectively.  

Table 6.2 Comparison of temperature distribution at chip tool interface for L9 

experiments 

Runs Simulated 

temperature (ᵒC) 

Experimental 

temperature(ᵒC) 

Percentage error 

% 

1 244 225 8.44 

2 269 264 1.89 

3 328 306 7.12 

4 532 469 13.43 
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5 492 476 3.36 

6 455 435 4.59 

7 559 558 0.18 

8 633 615 2.93 

9 634 524 20.99 

 

 

6.6 Conclusion 

3D turning is simulated by using FEM code of DEFORM 3D software. The following 

conclusions can be made from the present study: 

1. FEM predicted temperature is found to be well validated with the experimental 

interface temperature.  

2. The maximum temperature was found at the vicinity (primary shear zone) of the 

shear zone.  

Proposed model may give better accurate results if h was considered because it 

depends on pressure and temperature. 
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Chapter 7  

Conclusion and Scope for Future  

 

7.1 Conclusions 

The following conclusions are made from the present work: 

1. Experimental investigation of hot machining operation of high manganese steel 

has been carried out using gas flame heating technique. The temperature of 

workpiece is varied from 200°C to 600°C. 

2. It is observed that tool wear, surface roughness, chip reduction coefficient and 

power decreases with increase in temperature of workpiece in heated condition.  

3. It is observed that there is maximum reduction of 53.26% tool wear, 68.35% 

surface roughness and 72.13% of chip reduction coefficient at 600°C compared 

to machining at room temperature for high manganese steel. 

4. It is also observed that microhardness increases from the centre to the edge of 

the sample. It is also seen that mocrohardness increases with increase in cutting 

velocity. 

5. Experimental investigation has been carried out to predict tool wear, surface 

roughness, chip reduction coefficient, tool life and power consumption using 

response surface methodology.  

6. From response surface methodology it is evident that cutting velocity is 

significant factor for tool wear, tool life and power consumption, while feed and 

depth of cut is significant for surface roughness and feed is significant for chip 

reduction coefficient.  

7. The performance characteristics (tool wear, surface roughness and chip 

reduction coefficient) has been analysed with the use of statistical technique 

such as principal component analysis (PCA) coupled with grey relational 

analysis (GRA) and weighted principal component analysis (WPCA) approach 

is found to be more efficient.  

8. The best combination of process parameters has been obtained using Fuzzy 

TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) for 

tool life and power consumption simultaneously as 600°C, 21.5m/min, 

0.075mm/rev and 0.5mm depth of cut. 



 

  

9. Finite element analysis based on DEFORM 3D was used successfully to analyse 

interface temperature at tool and workpiece. Maximum 615°C is obtained at 

400°C, 32m/min, 0.05mm/rev. and 1.0mm depth of cut and 633°C interface 

temperature is obtained from FEM modelling. 

7.2 Scope for future work 

1. Experimental investigation of hot-machining operation of other hard materials 

can be carried out. 

2. FEM modelling of the process can be carried out to determine cutting forces for 

hot machining operation. 

3. Experimental investigation can be carried out using other heating techniques. 
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Figure A1 Flow chart for RSM design 
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Appendice B 

ANOVA test 
 

The purpose of finding sum of squares (SS) is to find out variation which is explained 

by each factor. The sources of variation were obtained by finding its “sum of squares”. 

The sum of all the “sums of squares” is equals to the total sum of squares for all the 

variations. The test works by comparing the variation due to each factor to the 

’common cause variation’. Sum of Squares (SS) is the sum of squared distances. SSTotal 

is defined as the total variation in the data and SS Regression is defined as the portion 

of the variation explained by the model, while SS Error is defined as the portion not 

explained by the model and is attributed to error. The calculations are: 

2
Regression

2
Error

ˆ= (y-y)

ˆ= (y-y)

SS

SS



                              (B.1) 

 

2 2

2

SSTotal=SSregression+SSError

ˆ ˆ              =(y-y) +S(y-y)

ˆ              =S(y-y)

                                    (B.2) 

where, y = observed response,  ŷ = fitted response, and y = mean response. The 

sequential sums of squares depend on the order of the terms that are entered into the 

model.  

Degree of Freedom (DOF) 

 

DOF indicate the number of independent part of information involved in the response 

data needed to calculate the sum of squares. The degrees of freedom for each 

component of the model are shown by the following equations: 

   

DFRegression=p-1

DF Error = n-p

Total=n-1
                    (B.3) 

 

where, n = number of observations and p = number of terms in the model.  

 

 

 



 

  

 

 

Mean Square 

 

From ANOVA test, the term Mean Square (MS) refers for estimation of population 

variance based on the variability among a given set of measures. The calculation for the 

mean square for the model terms is defined by following equation: 

AdjSS
MS=

DF                 (B.4) 

 

 F-value 

F-value gives the distance measurement between the individual distributions. The 

increment in F-value gives decrement in p-value. F-test is a test used to determine the 

significant factors and significant interactions. The formula of F for the model terms is 

defined as in following equation: 

MS
F=

MS(Error)                   (B.5) 

Larger values of F support rejecting the null hypothesis that there is not a significant 

effect. 

 

 p-value 

The p-value is used for hypothesis testing to decide whether to reject or to fail to reject 

a null hypothesis. Generally, the cut-off value for the p-value is considered as 0.05. The 

null hypothesis is rejected when the p-value of a test statistic is less than 0.05 

 

 Model Adequacy 

The adequacy of model should be checked before concluding the result. The adequacy 

of model is checked by following steps: 

 Verify that none of the least square regression assumptions are violated. The 

ordinary R
2

 is 

  
regression2

total

R =
SS

SS                 (B.6) 

 

 R
2 

(R-sq): Coefficient of determination 



 

  

It indicates the variation in the response explained by the model. The higher the 2
R

value, the better the model fits the data. It can be evaluated by following Equation 

(B.7): 

  
2 SS Error
=1-

SS Total
R                   (B.7) 

                           

Adjusted R
2

 (R-sq (adj)): 

Adjusted R
2
 accounts for the number of factors in the model. It can be evaluated by 

Equation (B.8). 

2 MS(Error)
=1-

SS total
DF Total

R
                   (B.8) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  

Appendice C 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C 1 Flow chart for FEM analysis 
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