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Abstract 

 
 The vibration analysis of rotating systems is pronounced as a key function in all the 

fields of engineering. The behavior of the rotor systems are mainly resulting from the 

excitations from its rotating elements. There are several numerical methods present to 

analyze the rotor-bearing systems. Finite element method is a key tool for dynamic analysis 

of rotor bearing system. The current study describes a multi disk, variable cross section 

rotor-bearing system with transverse crack on axisymmetric elements supported on 

bearings in a fixed frame. The shaft in the rotor-bearing system is assumed to obey Euler-

Bernoulli beam theory.  The equation of motion of the rotor-bearing system is derived by 

Lagrangian approach along with finite element method. Finite element model is used for 

vibration analysis by including rotary inertia and gyroscopic moments with consistent 

matrix approach. The rotor bearing system consists of two bearings and two rigid disks. 

One disk is overhung and the other one is placed between the bearings. Internal damping of 

the shaft and linear stiffness parameter of the bearings are taken into account to obtain the 

response of the rotor-bearing system. The rotor has variable cross-section throughout the 

configuration. The disks are modeled as rigid and have mass unbalance forces. The critical 

speed, unbalance response and natural whirls are analyzed for the typical rotor-bearing 

system with transverse crack. Analysis includes the effect of crack depths, crack location 

and spin speed. The results are compared with the results obtained from finite element 

analysis. The bearing configurations are undamped isotropic and orthotropic. The natural 

whirl speeds are analyzed for the synchronous whirl for both the uncracked and cracked 

rotor bearing system using Campbell diagrams. The effect of transverse crack over the 

starting point of the system instability regions in the rotating speed axis with zero 

asymmetric angle is examined. Further, Houbolt’s time integration scheme is used to 

obtain the phase diagrams and frequency response for both the bearing cases to study the 

stability threshold. Analyses are carried out by using numerical computing
 
software.  

 

Keywords: Finite Element Method, Rigid disk, Transverse crack, Unbalance response,    

         Whirl speeds. 

             

             



vii 
 

 

 

List of Tables 

 

Sl. No.                                              Table caption                                                  Page No. 

 
   

1.  Table 4.1 Rotor element configuration data .............................................. 48 

2.  Table 4.2 Physical and mechanical properties of shaft and disk ............... 49 

3.  Table 4.3 Natural whirl frequencies of isotropic bearing .......................... 50 

4.  Table 4.4 Natural whirl frequencies of orthotropic bearing ...................... 50 

5.  Table 4.5 Comparison of critical speeds for isotropic and orthotropic  

       bearings ...................................................................................... 52 

6.  Table 4.6 Natural whirl speeds for isotropic bearing ................................. 53 

7.  Table 4.7 Natural whirl speeds for orthotropic bearing ............................. 54 

8.  Table 4.8 Natural whirl speeds for isotropic bearing ( Hη = 0.0002) .......... 56 

9.  Table 4.9 Natural whirl speeds for orthotropic bearing ( Hη = 0.0002) ...... 57 

10.  Table 4.10 Natural whirl speeds for isotropic bearing ( Vη = 0.0002s) ........57 

11.  Table 4.11 Natural whirl speeds for orthotropic bearing ( Vη = 0.0002s) ... 59 

12.  Table 4.12 Natural whirl speeds for isotropic bearing ............................... 60  

13.  Table 4.13 Natural whirl speeds for orthotropic bearing ........................... 60  

14.  Table 4.14 Natural whirl speeds for λ = 0, ¼, ½ and 1 for isotropic  

  bearing ........................................................................................................ 63  

15.  Table 4.15 Natural whirl speeds for λ = 0, ¼, ½ and 1 for orthotropic  

  bearing ........................................................................................................ 63  

16. Table 4.16 Natural whirl frequencies with µ = 0.1, 0.2 and 0.3 for isotropic 

bearings ...................................................................................................... 65 

17. Table 4.17 Natural whirl frequencies with µ = 0.1, 0.2 and 0.3 for 

orthotropic bearings ................................................................................... 66 

 

   

       



viii 
 

 

List of Figures 

 

Sl. No.                                                 Figure caption                                              Page No. 

 
   

1.  Figure 1.1 Rotor model (a) Rankine model (b) Jeffcott rotor model ........... 6 

2.  Figure 3.1 Typical Rotor-bearing-disk system configurations ................... 26 

3.  Figure 3.2 Cross section rotation angles .................................................... 27 

4  Figure 3.2.1 Relationship between slope and displacements.......................28 

5.  Figure 3.3 Finite rotor element and coordinates ........................................ 29 

6.  Figure 3.4 Displaced position of the shaft cross-section ........................... 30 

7.  Figure 3.5 Sub-elements assemblage ......................................................... 35 

8.  Figure 3.6 Relative positions of the shaft and transverse crack in   

  circumference ............................................................................................. 42 

9.  Figure 3.7 Rotor-bearing system with SOLID273 axisymmetric elements 46  

10.  Figure 4.1 Rotor elements with variable cross section ............................... 47 

11. Figure 4.1.1. Finite models of the system (a) Undamped system without 

crack (b) Damped system without crack, (internal dampings 
H

η = 0.0002 & 

V
η = 0.0002s), (c) Undamped system with crack ....................................... 49 

12.  Figure 4.2 Mode shapes at 0 and 30000 rpm (a) First mode shape (b)  

  Second mode shape (c) Third mode shape ................................................. 51 

13.  Figure 4.3 Unbalance response of rotor with isotropic and orthotropic  

  bearings ...................................................................................................... 52 

14.  Figure 4.4 Campbell plot for rotor-bearing system with both bearings...... 53  

15.  Figure 4.5 The starting points of instability regions related to I and II FW  

  whirl modes .................................................................................................55 

16.  Figure 4.6 Natural whirl frequency of rotor with hysteretic damping on  

  isotropic bearing ......................................................................................... 55 

17.  Figure 4.7 Natural whirl frequency of rotor with hysteretic damping on  

  orthotropic bearings .................................................................................... 56 

 



ix 

 

Sl. No.                                                Figure caption                                               Page No. 

 

 

18.  Figure 4.8 Natural whirl frequency of rotor with viscous damping on  

  isotropic bearings ....................................................................................... 58 

19.  Figure 4.9 Natural whirl frequency of rotor with viscous damping on  

  orthotropic bearings..................................................................................... 58 

20.     Figure 4.10 Rotor bearing system with variable cross sections and crack...59 

21.     Figure 4.11 Mode shapes for spin speed 0 and 30000 rpm (a) first mode  

  shape (b) second mode shape (c) third mode shape ................................... 61 

22.     Figure 4.12 Unbalance response of rotor with transverse crack (h/R = 0.3)  

  for isotropic and orthotropic bearings ........................................................ 62 

23.     Figure 4.13 Campbell plot for rotor-bearing system with transverse crack  

  for isotropic and orthotropic bearings ........................................................ 63 

24.     Figure 4.14 Campbell plot for rotor-bearing system with µ = 0.1, 0.2 and  

  0.3 on natural whirl frequencies for isotropic bearing ............................... 64 

25.     Figure 4.14 (a). Magnified view of II FW and II BW whirls for rotor- 

  bearing system with µ = 0.1, 0.2 and 0.3 on natural whirl frequencies for  

  isotropic bearing ......................................................................................... 64 

26.     Figure 4.15 Campbell plot for rotor-bearing system with µ = 0.1, 0.2 and  

  0.3 on natural whirl frequencies for orthotropic bearing ............................ 65 

27.     Figure 4.15 (a). Magnified view of II FW and II BW whirls for rotor- 

  bearing system with µ = 0.1, 0.2 and 0.3 on natural whirl frequencies for  

  orthotropic bearing ..................................................................................... 65 

28.     Figure 4.16 The starting points of instability regions related to I and II FW 

  whirl modes with non dimensional crack depth ......................................... 66 

29.     Figure 4.17 Response and phase-plane diagrams of disk 1 and 2 for spin  

  speed 1000 rpm with eccentricity of 1mm for isotropic bearing ............... 68 

30.     Figure 4.18 Response and phase-plane diagrams of disk 1 and 2 for spin  

  speed 5000 rpm with eccentricity of 1mm for isotropic bearing ............... 68 

31.     Figure 4.19 Response and phase-plane diagrams of disk 1 and 2 for spin  

  speed 1000 rpm with eccentricity of 1mm for orthotropic bearing ............ 69 

32.     Figure 4.20 Response and phase-plane diagrams of disk 1 and 2 for spin  

  speed 5000 rpm with eccentricity of 1mm for orthotropic bearing ............ 69 



x 

 

Sl. No.                                                 Figure caption                                              Page No. 

 
 

33.     Figure 4.21 Response and phase-plane diagrams of disk 1 and 2 for spin  

  speed 1000 rpm with eccentricity of 1mm for isotropic bearing with  

  hysteretic damping ..................................................................................... 70 

34.     Figure 4.22 Response and phase-plane diagrams of disk 1 and 2 for spin  

  speed 5000 rpm with eccentricity of 1mm for isotropic bearing with  

  hysteretic damping ..................................................................................... 71 

35.     Figure 4.23 Response and phase-plane diagrams of disk 1 and 2 for spin  

  speed 1000 rpm with eccentricity of 1mm for orthotropic bearing with  

  hysteretic damping ..................................................................................... 71 

36.     Figure 4.24 Response and phase-plane diagrams of disk 1 and 2 for spin  

  speed 5000 rpm with eccentricity of 1mm for orthotropic bearing with  

  hysteretic damping ..................................................................................... 72 

37.     Figure 4.25 Response and phase-plane diagrams of disk 1 and 2 for spin  

  speed 1000 rpm with eccentricity of 1mm for isotropic bearing with viscous 

  damping ...................................................................................................... 72 

38.     Figure 4.26 Response and phase-plane diagrams of disk 1 and 2 for spin  

  speed 5000 rpm with eccentricity of 1mm for isotropic bearing with viscous 

  damping ...................................................................................................... 73 

39.     Figure 4.27 Response and phase-plane diagrams of disk 1 and 2 for spin  

  speed 1000 rpm with eccentricity of 1mm for orthotropic bearing with  

  viscous damping ......................................................................................... 73 

40.     Figure 4.28 Response and phase-plane diagrams of disk 1 and 2 for spin  

  speed 5000 rpm with eccentricity of 1mm for orthotropic bearing with  

  viscous damping ......................................................................................... 74 

41.     Figure 4.29 Response and phase-plane diagrams of disk 1 and 2 for spin  

  speed 1000 rpm with eccentricity of 1mm for isotropic bearing with  

  transverse crack .......................................................................................... 74 

 

 

 



xi 
 

Sl. No.                                                 Figure caption                                              Page No. 

 
 

42.     Figure 4.30 Response and phase-plane diagrams of disk 1 and 2 for spin  

  speed 5000 rpm with eccentricity of 1mm for isotropic bearing with  

  transverse crack .......................................................................................... 75 

43.     Figure 4.31 Response and phase-plane diagrams of disk 1 and 2 for spin  

  speed 1000 rpm with eccentricity of 1mm for orthotropic bearing with  

  transverse crack .......................................................................................... 75 

44.     Figure 4.32 Response and phase-plane diagrams of disk 1 and 2 for spin  

  speed 5000 rpm with eccentricity of 1mm for orthotropic bearing with  

  transverse crack .......................................................................................... 75 

45.     Figure 4.33 Bearing reaction forces – Transient analysis .......................... 77 

 



1 

 

Nomenclature 

 

 

��  Overall cracked element cross-sectional area 

 

C��  Bearing damping coefficient, i, j = V, W  

[C]  Bearing damping matrix 

�             Young’s modulus of the shaft material 

e             Centroid location of �� in y-axis 

��	
  Element gyroscopic matrix 

h  crack depth in the radial direction 

�  Second moment of inertia of the shaft 

��  Constant quantities during the rotation of the cracked shaft, i = 1, 2 

[I]  Identity matrix 

�
�(t)  time-varying area moments of inertia of the cracked element about X axis 

���(t)  time-varying area moments of inertia of the cracked element about Y axis 

�
  Area moments of inertia of the overall cross sectional area of the cracked  

  element about (��) X axis 

��  Area moments of inertia of the overall cross sectional area of the cracked  

  element about (��) Y axis 

�ℐ� , �ℐ�  Diameter and polar mass moments of inertia of the shaft per unit length 

�	  Kinetic energy of the element 

 [K]  Stiffness matrix 

( )tkoc
  Time varying stiffness matrix of the open cracked element   

ko1
, ko2

 secondary stiffness matrices due to the open crack 

���  Bearing stiffness coefficient, i, j = V, W 

l  Length of the shaft element in the finite element model 

[M]  Mass matrix 
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��  Disk mass 

���(s)  One dimensional quadratic Lagrangian shape function 

���  Translational shape function, i = 1, 2, 3, 4 

���  Rotational shape function, i = 1, 2, 3, 4 

�	  Potential energy of the element 

��	�  Nodal displacement vector 

�� �  Unbalance response associated with cos (Ωt) 

��!�  Unbalance response associated with sin (Ω"#) 

R  shaft radius 

s  axial distance within an element  

T  Kinetic energy of the disc 

$%                    Total kinetic energy of the system 

t  time 

&%  Total potential energy of the system 

(V, W)  Translational displacements in Y and Z directions 

X Y Z  fixed reference frame 

�'	�  External force vector relative to fixed reference frame  

�' 	�  Unbalance force respect to cos (Ωt) 

�'!	�  Unbalance force respect to sin (Ω"#) 

 

Greek 

 

[ ]Ψ   Matrix of translational displacement functions 

[ ]Φ   Matrix of rotational displacement functions 

φ   angle between the major axes of the crack and the shaft  

ε� � spin�angle�
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Ω� � spin�speed�=�45�
ω� ��������������whirl speed 

µ  Element mass per unit length 

µ  Non-dimensional crack depth��
78 � � Hysteretic damping coefficient of the shaft material�
79 � � Viscous damping coefficient of the shaft material 

( )ζθ , � � Small�angle�rotations�about�Y�and�Z�axes�
λ� ��������������whirl ratio�
γ � � Proportional�damping�coefficient�
�
Superscripts 

 

T�  Transpose 

.  Dot, differentiation with respect to time 

′  prime, differentiation with respect to axial distance s����
d,�e,�b,�s� refers to disk, element, bearing, and system��
j  cracked element   

�
Subscripts 

 

T, R, B  refers to translational, rotational and bending 
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Chapter-1 

 
 

Introduction 

 

 

The subject rotor dynamics is called an idiosyncratic branch of applied mechanics which 

deals with the performance and detection of spinning structures. The predictions of the 

system dynamic aspect are meticulously essential in the design of rotating structures. 

Generally it analyzes the behaviour of rotating structures which ranges from fans, gear 

trains to turbines and aircraft jet engines. Rotating systems generally develop instabilities 

which are excited by unbalance and the internal makeup of the rotor system and must be 

corrected. This is the prime area of interest for the design engineers who model the rotating 

systems.  

 

1.1.  Background and Significance  
 
From ISO definition, rotor can be defined as a body which is suspended through a set of 

cylindrical rest or bearings that grants the system to rotate freely about an axis secured in 

space. In the basic level of rotor dynamics, it is related with one or more mechanical 

structures (rotors) supported by bearings that rotate around a unique axis. The non spinning 

structure is called a stator. When the spin speed increases the amplitude of vibration 

increases and is maximum at a speed called critical speed. This amplitude is often elevated 

by unbalance forces from disk of the spinning system. When the system reaches excessive 

amplitude of vibration at the critical speed, catastrophic failure occurs. Normally turbo 
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machineries frequently develop instabilities which are mainly due to the internal 

configuration, and should be rectified. 

 Often rotating structures originates vibrations depending upon the complexity of 

the mechanism involved in the process. Even a small misalignment in the machine can 

increase or excite the vibration signatures. System vibration behaviour due to imbalance is 

the main aspects of rotating machinery, and it must be measured in detail and reviewed 

while designing. Every object including rotating structures shows natural frequency 

depending on the complexity of the structure. The critical speed of these rotating structures 

arises when the rotational speed meets with its natural frequency. The first critical speed 

can be encountered at the lowest speed. However as the speed increases further critical 

speeds can also be spotted. It is very essential to reduce the rotational unbalance and 

excessive external forces to minimize the overall forces which actuate resonance. The 

major concern of designing a rotating machine is, avoiding the vibration in resonance 

which creates a destructive energy. Situations involving rotation of shaft near critical speed 

must be avoided. When these aspects are ignored it might results in wear and tear of the 

equipment, failure of the machinery, human injury and sometime cost of lives.  

 

1.2.  Basic principles   
 
To model the actual dynamics of the machine theoretically is a cumbersome task. Based on 

the simplified models, the calculations are made to simulate various structural components. 

The dynamic system of equations have interesting feature, in which the off-diagonal 

elements are stiffness, damping, and mass. These three elements can be called as, cross-

coupled stiffness, cross-coupled damping, and cross-coupled mass. Although there is a 

positive cross-coupled stiffness, a deflection will originate a reaction force opposite to the 

direction of deflection, and also the reaction force can be in the direction of positive whirl. 



 

When these forces are large compared 

unstable. If a rotor is unstable it typically 

avoid breakdown. 

 

1.3.  History of Rotor Dynamics

Rotor dynamics has been 

particularly related to the 

dynamics spells at least 14 decades.

 

1.3.1.  From Rankine to Jeffcott Rotor systems
 
The history of rotordynamics 

analysis of a rotating shaft

speed, the shaft is appreciably

speed as the whirling speed of the

a.                                                               

Figure 1.1 Rotor model

 

 Whirling of the shaft

position from a plane perpendicular to the bearing axis

depends on the stiffness and damping of the rotor

6 

large compared to the direct damping and stiffness, the rotor will be 

a rotor is unstable it typically needs a prompt shutdown of the machine to 

History of Rotor Dynamics 

Rotor dynamics has been steered further by its practice than by its theory. This 

to the initial history of rotor dynamics. History 

s at least 14 decades.  

From Rankine to Jeffcott Rotor systems 

The history of rotordynamics begins with W. J. M. Rankine [1], who 

ing shaft (Figure 1.1a) in 1869. He concludes that beyond a certain spin 

appreciably bent and whirls around the bent axis. He 

speed as the whirling speed of the spinning shaft.  

                                                              b.    

Rotor model (a) Rankine model (b) Jeffcott rotor model

of the shaft refers to the shift of the disk’s centre of mass 

a plane perpendicular to the bearing axis. Whirl f

stiffness and damping of the rotor and the amplitude becomes a function of 

the direct damping and stiffness, the rotor will be 

shutdown of the machine to 

by its practice than by its theory. This remark is 

history of rotor dynamics. History and research on rotor 

who first performed an 

hat beyond a certain spin 

. He illustrates that, this 

  

Jeffcott rotor model 

centre of mass in the deflected 

frequency ‘v’ mainly 

becomes a function of 
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the frequency ω, (excitation force) and magnitude. Critical speed�, ωIJ,��of the system exists 

when the excitation frequency coincides with a natural frequency, ωKL, and this can lead to 

the enormous vibration amplitudes.      

 

  De Laval [1] (Swedish Engineer) in 1883 succeeds with a single-stage steam 

impulse turbine for marine applications which operates at 0-42000 rpm. He first decided to 

use a rigid rotor, but later he came with a flexible rotor and unveils that it was feasible to 

operate above the critical speed by operating at a spin speed closely about seven times the 

critical speed. A flexible shaft of negligible mass with a rigid disc at its midspan is called 

as a Jeffcott [1] rotor (Figure 1.1b). The fundamental theory of rotor dynamics first 

recorded which can be found in a masterly article of Jeffcott in 1919. However Jeffcott 

confirmed Föppl's [1] prediction that a stable supercritical solution occurs and decided to 

continue with Föppl's study. Föppl used an undamped model to show that an unbalanced 

disc would whirl synchronously with the heavy side flying out when the rotation is 

subcritical and with the heavy side flying in when the rotation is supercritical  

1.4.  Research Goals and Analysis Approach 

By the beginning of the twentieth century, the developments in the field of rotor dynamics 

was summarised in the classic book written by Stodola [1] in 1924. Then turbine 

manufacturers around the world started to design, analyze and operate rotors at super 

critical level. On the contrary Rankine’s model neglects the Coriolis [1] acceleration and 

states that the system cannot be stable if it operated over the critical speed. 

 

The proposed research study aims to find out the behaviour of the dynamic rotor-

bearing system supported on two rolling element bearings. There have been much 

investigations related to the field of rotordynamics during the past few decades. By looking 

in to all the previous published works, the part of literatures on rotor dynamics is most 
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concerned with diagnosis of imbalance response, critical speeds, natural whirl frequencies 

and instability analysis. The presence of transverse crack on the rotor has been a keen 

attention for researchers. Presence of crack in the rotating systems will lead to the time-

varying stiffness (parametric inertia) and causes instability and gives severe vibration 

signatures under specified operating limits. Few researchers speculated on the opportunity 

of Rotor Internal Damping (RID) or Material Damping (MD).  

     The following analyses are carried out for the current research work; 

1.   Dynamic analysis of an undamped rotor-bearing system without transverse crack. 

2.   Dynamic analysis of a damped rotor-bearing system without transverse crack. 

3.   Dynamic analysis of an undamped rotor-bearing system with transverse crack 

All the above three analyses are carried out for two bearing cases; case (a) isotropic 

and case (b) orthotropic for the speed range of 0-30000 rpm. Finite element method is used 

to model the rotor-bearing system by incorporating internal damping with crack. By using 

Lagrangian formulation the equation of motion is developed for the discrete elements and 

shaft. The effect of transverse crack is studied over its stability region in the spin speed 

axis. From the finite element stiffness matrix of the cracked element, it is observed that, the 

cracked element stiffness matrix has time-periodic components with the frequency of 2Ω. 

The analysis is presented in detail for the uncracked and cracked rotor-bearing system in 

subsequent chapters.  

The shaft is modelled as Euler-Bernoulli beam incorporating translational inertia, 

rotary inertia, bending deformation, gyroscopic effects and internal damping. Natural 

frequencies of the cracked rotor-bearing system also carried out. The results obtained for 

the dynamic analysis of the uncracked rotor-bearing system by using numerical analysis.  
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Chapter-2 

 

 

Literature Review 

 

 
2.1.  Introduction 
 

 

The dynamic analysis of high-speed rotating machinery on rolling element bearings has 

been always a challenging task. The most interesting part is the design of rotating 

machineries. In general all the spinning structures show vibration signatures and need 

frequent analysis to stretch their performances. The rotating machines have great 

engineering applications when it’s come to industries. Accurate analysis and prediction of 

dynamic characteristics is prime objective in the design of rotating structures. 

 

2.2. Dynamic analysis of rotor-bearing systems  
 
There have been several investigations related to the topic of rotor dynamics for the past 

few decades. The flexible rotor-bearing systems have been analyzed with many 

mathematical methods. The use of finite element methods in the dynamic analysis of rotor-

bearing systems provides better results. Several researchers have done their extensive 

investigations on the spinning rotors since the last four decades. Here some of the 

literatures were studied for their contribution on the field of rotor dynamics that concerns 

with prediction of critical speeds, mass imbalance, natural whirl frequencies and stability 

thresholds. 
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 The author mainly discussed about the basic concepts and methods of rotordynamic 

systems. The analysis of various types of rotors are discussed and presented by Genta [1]. 

 An important modelling and analysis method to obtain exact solutions for multi-

stepped rotor-bearing systems with distributed parameters was carried out by Hong and 

Park [2]. In first example the system was compared with FEM model for validation. In 

second example a parametric study was carried out for two shafts with different lengths 

and diameters. In the final example, an unbalance response analysis was performed to 

show the applicability of the proposed method. 

 A new method was introduced by Joshi and Dange [3] for calculating the critical 

speeds of a general flexible rotor supported on flexible or rigid bearings which includes the 

effect of distributed mass and inertia of the shaft along with the transverse shear effect. 

Bearing mass, damping, coupling flexibilities and external loads are also considered to find 

the effect of coupling flexibilities in critical speeds.  

 Modal analysis for continuous rotor systems with various boundary conditions was 

presented by Lee and Jei [4]. The mode shapes, backward and forward whirl speeds of a 

rotating shaft are presented as spin speed and boundary conditions vary. Boundary 

conditions with the effects of asymmetry on the system dynamic characteristics are 

investigated by them. 

 Rao et al. [5] used the finite element technique to obtain the eigenvalue and 

stability analysis of rotors by considering the distributed bearing stiffness and damping. 

Two models with uniform and parabolic distribution were analyzed. The stability limits 

were studied for rotor supported on cylindrical, tilting pad and offset and three lobe journal 

bearings.  
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 A method of dynamic reduction procedure which does not require either sub 

structuring or lumping was performed by Kim and Lee [6]. The method of modal 

transformation was derived from the isotropic undamped static part of the rotor equation, 

and a comprehensive study of the effects of varying the number of retained modes and the 

bearing properties was elaborated. 

 Zhao et al. [7] have established for symmetrical single-disk flexible rotor-bearing 

system. The motions of journal and disk have been simulated with fourth-rank Runge-

Kutta method. Non-linear transient simulation and unbalanced responses are also 

investigated.  

 Shih and Lee [8] presented a new method for estimating unbalance distributions of 

flexible shafts and constant eccentricities of rigid disks based on the transfer matrix 

method for analyzing the steady-state responses. 

 Tiwari and Chakravarthy [9] used an identification algorithm based estimation of 

unbalances and dynamic parameters of bearings by using impulse response measurements 

for flexible rotor–bearing systems. The identification algorithm has been tested with the 

measured noise in the simulated response.  

 The effects of bearing support flexibility on the rotor dynamic analysis for the first 

forward and a backward critical speed was studied numerically and experimentally by 

Sinou et al. [10]. They discussed the measured FRF for various rotational speeds, 

eigenfrequencies and the associated Campbell diagram from the numerical model and the 

experimental results.    

 The dynamic modeling of rotor-bearing system with rigid disks and discrete 

bearings were analyzed with finite element method by Nelson and Mc Vaugh [11].  
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The effect of rotatory inertia, gyroscopic moments, axial load and internal damping was 

included by Nelson [12]. He has not included the shear deformation or axial torque in the 

observation. He generalizes the present study with his previous published paper by 

utilizing the Timoshenko beam theory for obtaining the shape functions. He has compared 

the results obtained from FEA with the classical Timoshenko beam theory (closed form) 

for both the rotating and nonrotating shaft systems. 

 The analysis of Jeffcott rotor-bearing model is presented by Greenhill and Cornejo 

[13] to predict the critical speed produced by the unbalance excitation of a backward 

resonance mode. Prediction of the critical speed was given with the test data. Their study 

shows that the resonance occurs due to the backward mode with the recommendation to 

avoid the unique critical speed situation. 

 Nandi and Neogy [14] studied the stability analysis of asymmetric rotors in a 

rotating frame using finite element method. It shows the efficiency of their method which 

indicates that, only the non-zero terms and their respective rows and columns positions of 

all the related matrices can be stored and carried forward for the analysis. 

 The non-linear dynamic analysis of a horizontal rigid rotor with unbalance is 

studied by Tiwari et al. [15]. The concept of higher order Poincare map and interpolation 

technique were applied to find out the fixed point and stability of the system.   

 To identify the fault in a rotor bearing system, Sudhakar and Sekhar [16] used the 

equivalent load minimization method. Two approaches namely equivalent loads 

minimization and vibration minimization method are used to identify the fault. Finally the 

unbalance fault was identified for only one location by measuring transverse vibrations. 
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 Bachschmid et al. [17] presented a model-based method for multiple faults 

identification. They had done this by least-square fitting approach in the frequency domain. 

To validate the identification procedure they presented numerical applications for two 

parallel faults and some experimental results which are obtained on a test-rig. 

 A method proposed by Sinha et al. [18] is to estimate the rotor unbalance and 

misalignment from a single machine run-down. From the identification they assumed that, 

the source of misalignment is at the couplings of the multi-rotor system. Finally they 

demonstrated the method by using experimental data from a machine with two bearings. 

 Arun and Mohanty [19] described a model based method to analyze the rotor–

bearing system with misalignment and unbalance. The experimental results were obtained 

by the residual generation technique. They also obtained the residual forces due to 

presence of faults. Finally with the help of this model based technique, the condition of 

fault and the fault locations were identified. 

 Vania and Pennacchi [20] suggested a model-based diagnostic technique that can 

be used for the rotor health analysis. To identify the faults in rotating machines they 

developed a method to measure the accuracy of the results that are obtained with model-

based techniques. By using both the machines responses simulated with mathematical 

models and experimental data on a real machine, the authors tested the capabilities of these 

methods. 

 By representing the equivalent force system, the effect of the faults is modelled by 

Pennacchi et al. [21]. The model is fully assembled by the sub models of the rotor discrete 

elements like bearings and foundation. Some identification techniques such as the least 

squares identification are used in frequency domain to increase the accuracy. 
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 Lees et al. [22] overviewed the recent evaluation in the field of rotor dynamics 

which has a significant practical importance. The models assists the complex turbo-

machinery monitoring which includes rotor balancing, rotor bow, rotor misalignment, rotor 

crack and bearing parameter estimations.  

 The goal of Isermann [23] is to generate the several symptoms indicating the 

difference between nominal and faulty status in the model-based fault detection. He 

determined the faults by applying inference methods based on the different symptoms in 

the fault diagnosis procedures. 

 Complete theoretical models of a motor-flexible coupling-rotor system was given 

by Xu and Marangoni [24]-[25] to understand the dynamic characteristics of the faults 

such as, shaft misalignment and rotor unbalance. They derived the equation of motion from 

component mode synthesis method and conducted an experimental study to verify the 

theoretical results with a simple flexible coupling and a helical coupling. 

 Forced response of undamped rotating shaft with distributed parameter are analysed 

by Lee et al. [26] by using modal analysis technique. The analysis includes various 

boundary conditions to analyze the undamped gyroscopic systems with Galerkin's method 

for the forced response. Numerical examples for both the methods are illustrated and the 

results are compared and discussed by them. 

 The study of a misaligned rotor-ball bearing systems driven by a flexible coupling 

is done by Lee et al. [27]. They carried out the experiments extensively to distinguish the 

difference between experimental and theoretical results. From their observation, they found 

that the natural frequency of the misaligned rotor system increases largely with the 

misalignment direction.   
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 Sakata et al. [28] carried out finite element analysis of a lightweight rotor system, 

which has discrete elements like flexible disk with flexible blades and a flexible shaft with 

rigid bearings. In order to reduce the dimension of matrices, they considered the shaft and 

blades as beam elements, and the disk as annular elements. They conducted the test on a 

model rotor to compare the results with the experimental data.  

 Khulief and Mohiuddin [29] developed a dynamic rotor-bearing system by using 

finite element method. Their model includes the gyroscopic moments and anisotropic 

bearings. They obtained the reduced order model by using modal truncation for dynamic 

response analysis and presented with two types of modal truncations; (i) with planar 

(undamped) modes and (ii) with complex (damped) modes. 

 A finite element model is presented by Ku [30] to study the whirl speeds and 

stability of the rotor-bearing systems. He combined the effects of transverse shear 

deformations; internal viscous dampings and hysteretic dampings in the formulation in 

addition to the effects of translational and rotatory inertia and the gyroscopic moments. He 

compared the results of whirl speeds and damped stability analysis with other previously 

published works. 

 The dynamic stability of a rotating shaft is studied by Chen and Ku [31] with finite 

element method. Bolotin’s method is used to obtain the dynamic instability diagrams for 

the various rotating speeds for Timoshenko beam. They conclude that the sizes of these 

regions increases as the spin speed of the system increases. 

 Flexible rotor having unbalance, and supported by ball bearings was studied by 

Villa et al. [32] for non-linear dynamic analysis. The bearings are modelled as two degree 

of freedom system by considering the kinematics of the rolling elements. They analyzed 
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the system stability in the frequency-domain by using a perturbation method which is 

applied to known harmonic solutions in time domain. 

 Finite element model of Timoshenko beam supported on hydrodynamic bearings 

including internal damping were studied by Kalita and Kakoty [33]. By using Campbell 

diagrams they calculated the critical speeds for synchronous whirl in different operating 

conditions. They observed that in addition to the natural whirl frequencies, another 

whirling frequency appears for every spin speed, and they also found that, this happens 

when the spin speed is half.  

 The study of the flexural dynamic behaviour of a general rotating system, based on 

the use of complex co-ordinates and finite element method is elaborated by Genta [34]. 

The study includes the non-rotating parts of the machine and two types of dampings, 

namely viscous and hysteretic. 

 Thomas et al. [35] presented the formulations of three degrees of freedom system at 

each of two nodes of Timoshenko beam theory. They studied the convergence rates and 

compared with the calculated natural frequencies of two cantilever beams. 

 A complex rotor-bearing-support system was taken for the general analysis by 

Adams [36]. Proper handling of various non-linear effects is a main feature of his analysis. 

The study presents the developments of the analysis, comparison with experiment study 

and examples and its use in the industrial applications. 

 A finite element model of non-axisymmetric rotors on non-isotropic spring support 

in a rotating frame is presented by Nandi [37]. In his work he shows that the proposed 

reduction technique works well for a rotor supported on non-isotropic (orthotropic) 

springs. 
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 Murphy and Vance [38] describe the modelling procedures for the rotor-bearing 

systems which includes the effects of damping, gyroscopic effects. In addition to the 

characteristic polynomial, stability prediction and critical speeds are also estimated with 

good accuracy without missing any modes. 

 Lee and Choi [39] proposed an optimum design approach to show the speed and 

load dependent stiffness effect on the system dynamic behaviour to demonstrate the 

effectiveness of a multi-stepped rotor-bearing system supported on two angular contact 

ball bearings. Transfer matrix method is used to obtain eigenvalue of the system and as an 

optimization technique the augmented Lagrange multiplier (ALM) method is used. From 

the results, they show the effect of stiffness on the system dynamic behaviour. 

 Dynamic behaviour of a complex flexible rotor-bearing system is studied by 

Wenhui et al. [40]. The unsteady oil-film force model was described by three functions. In 

addition to that the bifurcation and chaos behaviours were found by calculating the 

maximum Lyapunov exponent of the system. They carried the experimental analysis to 

compare the calculated results. 

 Patel and Darpe [41] studied the use of forward or backward whirl (full spectra), 

and showed the possibility of misalignment. The information yields an important tool to 

unconnected faults that generate the same frequency spectra (e.g. crack and misalignment) 

and lead to a more definite misalignment diagnosis.  Finally full spectra and orbit plots 

were efficiently used to reveal the unique nature of misalignments.  

 Zorzi and Nelson [42] analyzed rotor system with internal damping. The model 

consisted of viscous as well as hysteretic damping. It is shown that the material damping in 

the rotor shaft introduces rotary dissipative forces. 

 Rao [43] explained the theory of computational aspects and applications of 

vibrations in a simple manner with computational techniques. 
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  Papadopoulos [44] presented the theory of strain energy release rate combined 

with linear fracture mechanics approach to study rotating shafts with cracks. The main goal 

of his research is to give the engineer an early identification of the crack in the rotor.  

 Chasalevris and Papadopoulos [45] investigated a stationary shaft with two cracks 

with coupled bending vibrations. They used Euler–Bernoulli beam theory to define the 

equations for natural frequencies and coupled response of the shaft. Their study focused on 

the horizontal and vertical planes of a cracked shaft. Finally they presented the 

experimental analysis for coupled response and eigen frequencies measurements of the 

corresponding planes. 

 Dimarogonas and Papadopoulos [46] investigated an open cracked de Lava1 rotor 

with dissimilar moments of inertia. Furthermore, under the assumption of large static 

deflections, the analytical solutions are obtained for the closing crack. They found the local 

flexibility function by experiments and a solution is developed for the same.  

 Shudeifat et al. [47] investigated the effect of crack depth and verified with 

experiments through a general harmonic balance technique of a rotor-bearing-disk system. 

They considered the breathing and open crack models in their analysis. FEM and general 

harmonic balance solutions were derived for the two types of cracks which are valid for 

damped and undamped rotor systems. 

 Chen et al. [48] studied a cracked rotor system with asymmetrical viscoelastic 

supports to develop nonlinear governing equations of motion. The effects of crack and 

other system parameters on the dynamic stability of spinning rotor system were also 

investigated by them.  

 Darpe et al. [49] studied a simple Jeffcott rotor with two transverse cracks. The 

effect of two cracks on the breathing mechanism and unbalance response of the rotor 
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system were also studied by them. They studied in detail, the effect of orientation of the 

breathing crack with respect to open crack on the dynamic response. 

 Fu et al. [50] studied a rotating shaft with a transverse crack for the nonlinear 

dynamic stability. They constructed the deflections of the system with a crack by using the 

equivalent line-spring model. They found the unstable regions using Runge–Kutta method 

and Floquet theory. The effects of crack depth, crack position, disk position, disk thickness 

and spinning speed on the principal unstable regions were also discussed by them. 

 Gasch [51] - [52] provided a comprehensive analysis for a cracked rotor system to 

predict its stability behaviour and forced vibrations due to unbalance of the crack and the 

disk. He mentioned that his study is restricted to the Laval rotor and established the early 

crack detection on the rotor. 

 Sekhar [53] studied the finite element analysis of a rotor system for the flexural 

vibrations by including two transverse open cracks. His study also carries the eigenvalue 

analysis and stability study of the system including two open cracks. The eigenfrequencies 

are calculated for the influence of one crack over the other and the mode shapes for the 

threshold speed limits. 

 Sekhar and Dey [54] focused on the stability threshold of a rotor-bearing system 

having a transverse crack by using finite element method, considering various crack 

parameters, shaft internal damping (viscous and hysteretic) and geometric parameters. 

They showed that the instability speed has reduced considerably with increase in crack 

depth and influenced more with hysteretic damping compared to viscous damping. 

 Sekhar [55] summarized different kinds of application on double/multi-cracks to 

note the influences and identification methods in vibration structures such as beams, rotors, 

pipes, etc. He brings out the multiple cracks effect and their identification by the state of 

his research. 
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 Sinou [56] analyzed a rotor system for its stability with a transverse breathing crack 

by considering the effects of crack depth, crack location and the shaft’s spin speed. The 

harmonic balance method used by him is to calculate the periodic response of a non-linear 

cracked rotor system. He also investigated the system for the effects of some other system 

parameters on the dynamic stability of non-linear periodic response. 

 The free vibrational analysis of a multi-cracked rotor is studied by Tasi and Wang 

[57]. The cracks are assumed to be in the first mode of fracture, i.e. the opening mode. 

Based on the Timoshenko beam theory, the frequency equations are constructed and 

assembled with each segment of the multi-step and multi-cracked rotor. The effects of both 

relative distances of cracks are taken into account for free vibration analysis. 

 A boundary tracing method is given by Turhan [58] for the construction of stability 

charts for non-canonical parametrically excited systems. This method is used as an 

extension to cover the combination resonances of the well known Bolotin’s method. The 

proposed method reduces the boundary tracing problem into an eigenvalue analysis 

problem of some special matrices. 

 Darpe et al. [59] studied a rotating cracked shaft for the coupling between 

longitudinal, lateral and torsional vibrations. The elemental stiffness matrix of a 

Timoshenko beam got modified due to presence of crack. Two analyses were included in 

their study (i) coupled torsional–longitudinal vibrations and (ii) coupled torsional–bending 

vibrations with a breathing crack model. 

 A rotating shaft is analysed for the influences of transverse cracks by Sinou and 

Lees [60]. Two main issues such as the changes in modal properties and the influence of 

breathing cracks on dynamic response are addressed by them. The resulting orbits during 

transient operations of a cracked rotor are also examined by the authors. 
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 A simple rotor with a breathing crack is studied by Jun et al. [61]. The equations of 

motion and the breathing crack model is further simplified to a switching crack model. The 

conditions for crack opening and closings are derived by using the switching crack model 

for crack identification. They observed that the vibration characteristics of a cracked rotor 

can be identified from the second horizontal harmonic components measured near to the 

second harmonic resonant speed. 

 Finite element analyses of a rotor-bearing system having a slant crack were studied 

for flexural vibrations by Sekhar and Prasad [62]. A developed flexibility matrix and 

stiffness matrix of a slant crack are used in the analysis subsequently to find frequency 

spectrum and steady state response of the cracked rotor. 

 A model based method was proposed by Sekhar [63] for the on-line identification 

of cracks in a rotor. He accounted the equivalent loads and fault-induced to the system in 

his mathematical model. Identification of the cracks are carried for their depths and 

locations on the shaft. Finally the nature and the symptoms of faults are found by fast 

Fourier transform analysis. 

 Online identification of malfunctions in the rotor systems was discussed by Jain and 

Kundra [64] with a model based technique. The fault model of the system is referred for 

study by the mathematical representation of equivalent load. Identification of unbalance 

response is validated with basic principle of the technique, through numerical simulations 

as well as by experiments. 

 A rotating shaft with a breathing crack was studied by Georgantzinos and Anifantis 

[65].  They considered the cracked area with the effect of friction and by applying the 

energy principles a portions of crack surfaces were found. The direct and the cross-coupled 

flexibility coefficients were also determined by them.  
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 A new method was proposed by Binici [66] to obtain the eigenfrequencies and 

mode shapes of beams for multiple cracks which are subjected to axial force. The effects of 

crack and axial force levels on the eigenfrequencies of the beam were studied. He 

considered two cases in his analysis (i) simply supported and (ii) cantilever beam. During 

the investigation the author found that the eigenfrequencies are strongly affected by crack 

locations. The conclusion from his study shows that, the proposed method can be used to 

predict the critical load for damaged structures. 

 Non-linear behaviour of a rotor with a breathing crack was analysed by Sinou [67]. 

The relative orientation between the cracks and the unbalance of the rotor system were 

studied. The study indicates the emerging of super-harmonic frequency components which 

provides useful information on the presence of cracks. 

 A Jeffcott rotor with a crack was studied for critical speed and sub harmonic 

resonances by Darpe et al. [68]. The study includes three crack models; (i) breathing crack, 

(ii) switching crack and (iii) open crack. The experimental investigations were performed 

for the peak response variations and change in orbit orientation. Their experimental 

investigation shows that, the orbit orientation changes through the sub harmonic 

resonances. 

 A rotating shaft with an open transverse surface crack was investigated for the 

coupling of longitudinal and bending vibrations by Papadopoulos and Dimarogonas [69]. 

The effects of unbalance and gravity are also included in their study.  

 Vibration and stability analysis of cracked hollow-sectional beams were carried by 

Zheng and Fan [70]. Their analysis includes influences of sectional cracks and deeper 

penetration on the stability of the beam. Hamilton’s principle is used by them to derive the 

governing equations. 
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 Hwang and Kim [71] developed a method to detect the damages of structures by 

using frequency response function. The method uses only a subset of vectors from the full 

set of frequency response functions, and calculates the stiffness matrix and reductions in 

explicit form. A simple helicopter rotor blade was numerically demonstrated for the 

verification of the proposed method. 

 A cracked beam is analyzed for the natural frequencies and mode shapes by Zheng 

and Kessissoglou [72] using finite element method. The study results are compared with 

the analytical results obtained from local additional flexibility matrix. 

 Sekhar and Prabhu [73] studied the transient vibration of a cracked rotor which is 

passing through the critical speed. The study confirmed that the model can be analyzed for 

the further results like, time histories with harmonics, and frequency spectrum.   

 On the remark of “The determination of the compliance coefficients at the crack 

section of a uniform beam with circular cross-section”, Abraham et al. [74] studied 

analytically the double integrals which are commonly encountered when the crack depth 

exceeds beyond the radius of the cracked section.  

 Analysis of a rotating cracked shaft to identify the crack depth and crack location 

with the application of a new method was carried by Gounaris and Papadopoulos [75]. A 

rotating Timoshenko beam is modelled as a shaft with the gyroscopic effects and axial 

vibration. The method is used by the authors to find the axial vibration response. 

 A dynamic study of multi-beams with a transverse crack was carried by Saavedra 

and CuitinNo [76]. Based on the LFM theory, the additional flexibility of the crack was 

evaluated by using strain energy density function. The dynamic response of a cracked free-

free beam and a U-frame was studied with a harmonic force.  

 Nayfeh and Mook [77] emphasized the physical aspects of non-linear systems in 

detail. 
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2.3. Summary 

With the help of web-based tool, research articles related to dynamics of rotor-bearing 

systems are studied and found that most of them are focused on the rotation of shaft of 

uniform cross-section with and without crack. The area involving rotations of shaft with 

variable cross section are less explored. There is a wide scope of research in the area of 

dynamics of rotor-bearing system with variable cross section with and without crack. The 

study of the proposed system is carried with mathematical model to understand the system 

behaviour. Convergence study is done to ensure the system natural whirl frequencies. 

Besides, Houbolt’s implicit time integration scheme is used to study the effect of spin 

speed with disk eccentricity. The objective of the present work is to obtain the critical 

speed, unbalance response, natural whirls and stability thresholds for the multi disk, 

variable cross section rotor-bearing system with transverse crack.  
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Chapter-3 

 

 
Theoretical analysis 

   
The dynamic analysis of rotating machineries is generally carried out with the help of 

vibration measurements and through continuous monitoring of the system. However, some 

issues are difficult to identify and evaluate purely through measurement based analysis. 

There are several mathematical methods available to analyse the dynamic behaviour of the 

rotor bearing system. Out of these methods finite element method plays an important role 

for the rotating system analysis. The current chapter incorporates the modelling of a rotor-

bearing system with Finite Element Method. 

 

Rotor system configuration and interrelate segments  

By using Lagrangian formula the finite equation of motion of the rotor shaft element, 

bearings and rigid disks are developed. Shape functions are derived by using Euler-

Bernoulli beam theory. The mathematical expressions for the system with damping and 

transverse crack are also presented in the following topics.   

 

3.1  System Equation of Motion without crack 

The flexible rotor-bearing system is analyzed by finite element method for a typical 

configuration. The system consists of rotor and collection of discrete disks. Rotor sections 

are represented with distributed mass and elasticity with discrete bearings. Fig. 3.1 shows 

the system along with two reference frames (fixed and rotating) that are utilized to describe 

the systems equation of motion.  



 

Figure 3.1

 The rotating frame of reference and 

xyz and XYZ triad respectively. The

axes are collinear and coincident. 

of reference by a single rotation 

            A typical cross section of the rotor in a deformed state is defined

frame (XYZ) by the translations 

to locate the elastic centreline. The small angle rotation 

axis represents the position of plane of the cross

attached with the axis ‘a

The angular velocities related to the fixed reference frame XYZ 
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3.1 Typical Rotor-bearing-disk system configurations

rotating frame of reference and fixed frame of reference

respectively. The undeformed rotor, which is represented by

coincident. The rotating frame of reference is defined to fixed frame 

by a single rotation ‘ωt’ about X with ω denoting the whirl speed. 

A typical cross section of the rotor in a deformed state is defined

by the translations V (s, t) and W (s, t) in the Y and Z directions respectively 

the elastic centreline. The small angle rotation θ (s, t) and ζ

axis represents the position of plane of the cross-section respectively. The 

a’ normal to the plane cross-section represented

The angular velocities related to the fixed reference frame XYZ can be given as
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system configurations. 

references are represented by 

which is represented by X and x 

The rotating frame of reference is defined to fixed frame 

whirl speed.   

A typical cross section of the rotor in a deformed state is defined relative to fixed 

) in the Y and Z directions respectively 

ζ (s, t) about Y and Z 

section respectively. The triad abc is 

represented in Fig. 3.2. 

can be given as 

          (3.1) 
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After the first and the second derivatives of the equation (3

obtained as, 
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Figure 3.2 Cross section rotation angles 

For small deformations, the rotations θ, ζ are approximately collinear with the Y, Z 

axes respectively. The spin angle ε is constant for a spin speed system 

Ωt, where, Ω denotes rotor spin speed. The displacements (

) of a typical cross section related to fixed reference frame

corresponding displacements (v, w, β, γ) related to rotating reference frame

orthogonal transformation  
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and the second derivatives of the equation (3.3) with respect to time can be 

 

collinear with the Y, Z 

speed system with negligible 

The displacements (V, W, θ, 

reference frame are transformed to 

rotating reference frame by the 
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) with respect to time can be 
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The shaft is considered as 

beam before bending is assumed to remain plane after bending and remain norm

elastic axis. Therefore, the

The shaft is assumed to have uniformly distributed mass an

displacements are the function of time q(t). Four boundary conditions are needed to obtain 

the shape functions.  
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The shaft is considered as an Euler-Bernoulli type of beam. Any transverse plane

beam before bending is assumed to remain plane after bending and remain norm

elastic axis. Therefore, the beam cross section has not only translation but also rotation. 

is assumed to have uniformly distributed mass and elasticity. The nodal 

displacements are the function of time q(t). Four boundary conditions are needed to obtain 

                               XST, "U = �YS"U 

                                XSV, "U = �ZS"U 

Figure 3.2.1. Relationship between slope and displacements

         (a) 

         (b) 

                             (3.4)     

 

         (c) 

transverse plane of the 

beam before bending is assumed to remain plane after bending and remain normal to 

beam cross section has not only translation but also rotation. 

d elasticity. The nodal 

displacements are the function of time q(t). Four boundary conditions are needed to obtain 

 

Relationship between slope and displacements 
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3.1.1  Undamped flexible finite rotor shaft element 

A typical finite rotor element is shown in Fig. 3.3. Here it is assumed that the nodal cross 

sectional displacements (V, W, θ, ζ) are assumed to be time dependent and also the function 

of position (s) throughout the element axis. The rotations (θ, ζ) are related with translations 

(V, W).  

 
 

Figure 3.3 Finite rotor element and coordinates 

 

The relation between these two can be expressed by the equation as  

 

                    (3.5) 

. 

 

 The coordinates (q�\ , q#\ …… . qZ\ ) are time dependent end point displacements 

(translations and rotations) which are shown in Fig. 3.3. A spatial shape function is used to 

express the displacement of each node by using Euler-Bernoulli beam theory. The nodal 

displacement is a function of time, q(t). The translation of a typical point internal to the 

element is chosen to obey the relation  

 

{ } [ ]{ })()( tqs
W(s,t)
 V (s,t) eΨ=                  (3.6) 
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 Figure 3.4 illustrates

area of radial thickness ‘

angle d(Ωt). Ω is the rotational speed of the system in rad/sec and ‘

angle varies from 0 to 2π

Figure 3.4
 

The spatial constraint matrix for translation 
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By using equations (3.5) & (
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Where, 
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illustrates the shaft cross section at displaced position

‘dr’ at a distance r (0 ≤ r ≤_̀ ) is considered which is 

is the rotational speed of the system in rad/sec and ‘

2π.  

 
 

Figure 3.4 Displaced position of the shaft cross-section

he spatial constraint matrix for translation can be written as [11] 
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) & (3.6) the rotations for the system can be expressed as,
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at displaced position. An infinitesimal 

is considered which is subtending an 

is the rotational speed of the system in rad/sec and ‘Ωt’ is the subtended 

section 

                   

(3.7) 

can be expressed as, 

          (3.8) 

           (3.9)                 
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3.1.2  Energy equations 

Lagrange’s equation provides a general formulation for the equation of motion of a 

dynamical system. The Hamilton’s principle can be used to derive the Lagrange’s equation 

in a set of generalized coordinates�′��′.� The coordinates are selected as the variables that 

determine the position of the system. The Lagrange equation for a system can be expressed 

with kinetic and potential energies as 

S S S
i

i i i i

d T T U D
Q

dt q q q q

       ∂ ∂ ∂ ∂
− + + =       ∂ ∂ ∂ ∂       ɺ ɺ

                         (3.10) 

Where i=1, 2...n., ‘
S

T ’
 
is the total kinetic energy, ‘

S
U ’ is the total potential energy, D’ is 

the Rayleigh’s dissipation function and ′'�′�is the virtual work done on the system.  

 

(3.11) 

 

The Lagrangian equation gives a group of second order ordinary differential equations. 

These equations are non-linear and non-homogeneous. For the differential disk which is 

located at the position (s) along the axial direction, the elastic bending and kinetic energy is 

expressed as  

 

 P.E:  d�b	 = 
�
# c9dd

eddfg h�� TT ��i c9
dd

eddf��ds     and                                                  

    (3.12) 

 K.E: d�	 = 
�
# c95e5 f

g jμ TT μl c95e5 f ds+ 
�
# 45#ℐ��mn�+ 

�
# co5p5 f

g j�� TT ��l co
5
p5 f�ds - 45X5qℐ���mn��.��� 

 

Using equations (3.6), (3.8) & (3.12) the potential and kinetic energies of the shaft 

elements can be written as, 

P.E:  d�b	 = 
�
#EI ��	�g�Ψ��
g�Ψ��
��	��mn        and                                         

  (3.13) 

K.E:  d�	 = 
�
#µ��5 	�g�Ψ
g�Ψ
��5 	�mn + 

�
#s5 #ℐ��mn+  

�
# �ℐ���5 	��Ф
g�Ф
��5 	��mn             

�����������������������������������������������������������������−�s5 ℐ���5 	�gvФpwg�Фo
��	��mn��.��� 

i

n

i
i

qQW ∑
=

=
1

δδ
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The total potential and kinetic energies of the complete element is obtained by integrating 

the equations (3.13) over the length of the shaft element which is obtained as, 

 

�b	 +��	 = 
�
# ��	�g�yb	
��	��+��# ��5 	�g (�zg	
+�z{	
 )��5 	� + 

�
# ��	45#+ ��5 	�g��	
��5 	�    (3.14) 

Where 

 

�zg	
 = | μ�Ψ
g}
` �Ψ
�ds                                                                                            (a) 

�z{	
 = | ℐ��Ф
g}
` �Ф
 ds                                                                                          (b) 

��	
= | ℐ�}
` vФpwg�Фo
 ds                                                                                        (c) (3.15)                                                                     

�yb	
 = | ��}
` �Ψ′′
g�Ψ′′
 ds                                                                                      (d) 

��	
 = S��	
 − ��	
gU                                                                                            (e) 

 The Lagrangian equation of motion for the finite rotor shaft element using the 

equation (3.14) and the constant rotational speed restriction, 45 = Ω  can be written as 

S�zg	
 + �z{	
U��~ 	� − Ω��	
��5 	� + S�yb	
U��	� = �'	�                          (3.16) 

   

 The force vector �'	� includes the unbalance mass, interconnection forces, and 

other element external effects. For the shaft element with distributed mass center 

eccentricity S7SnU, XSnUU , the equivalent unbalance force using the consistent matrix 

approach can be expressed as [11] 

�'	�Z�� = �' 	� cos (Ωt) + �'!	� sin (Ωt)                                           (3.17) 

 

 

3.1.2.1  Rigid Disk 
 
The disk for the analysis is assumed to be axisymmetric and rigid with rotational and 

translational motion. The total kinetic energy of the system is represented by the sum of the 

rotational and translational kinetic energies. Using the Lagrange method the kinetic energy 

is given by the following expression, 
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By using equation (3.1), equation (3.18) becomes,  
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 �
�� ��g��5� − ��g��� = �z�
��~ � – Ω ���
��5 �                                    (3.20) 

 The Lagrangian equation of motion of the rigid disk for the constant spin speed 

restriction ( Ω=εɺ ) equation (3.20) will become 

 S�zg�
 + �z{�
U��~�� − Ω���
��5�� = �'���������������������������������       (3.21) 

 

  

 The equation (3.21) is the equation of motion of the rigid disk referred to the fixed 

frame of reference with the forcing term including mass unbalance, interconnection forces, 

and other external effects on the disk. By using the equations (3.2-3.4) and pre-multiplying 

by [ ]TR , equation (3.21) is transformed to the form of, 

[ ] [ ]( ){ } [ ] [ ]( ) [ ]( ){ } [ ] [ ]( ) [ ]( ){ } { }dddd

R

d

T

ddd

R

d

T

dd

R

d

T PpGMMpGMMpMM =++−−+++ ˆˆˆ2 2 λωλω ɺɺɺ       
 

 

    (3.22) 

For the case of thin disc ( )DP II 2=  equation (3.22) become,  

 

[ ] [ ]( ){ } [ ] ( )[ ]( ){ } [ ] ( )[ ]( ){ } { }ddd

R

d

T

ddd

T

dd

R

d

T PpMMpGMpMM =−+−−+++ λωλω 211ˆ2 2
ɺɺɺ

 

    (3.23) 

The equations (3.22) and (323) are the equation of motion of a rigid disc referred to 

rotating frame with whirl ratio ωλ Ω= . 
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3.1.2.2  Bearings 

The virtual work of the forces acting on the shaft can be written as, 

 

δW =−��99� R�R −��9e� ��R −��ee� ��� −��e9� R�� −�Q99� R5 �R–�Q9e� �5 �R 

 −�Qee� �5 �� −�Qe9� R5 ��������������(3.24) 

The equation (3.24) can be expressed by the following relation, 

                                      

δW = �9�9 +��e�e�����������������������������������������������������������������������        (3.25) 

 

By neglecting the influence of slopes and bending moments the main characteristic link 

forces will become  

�9 = −��99� �R −��9e� � −�Q99� R5 − �Q9e� �5                                                     (3.26) 

�e�= −��ee� �� −��e9� R −�Qee� �5 −�Qe9� R5                                                (3.27) 

 

Representing in matrix form, the equation (3.26) and (3.27) can be expressed as 
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                                  (3.28) 

 The system is subjected to only one type of interconnecting component which is the 

bearings. These bearings are linearized and the stiffness only considered in the analysis. 

The equation of motion of the bearings as follows, 

 

�����5� + 
��
��  = ���
��5�� + �y�
����������������������������������������������������������                  (3.29) 

 

 ���
��5�� + �y�
���� = �'�������������������������������������������������������                   (3.30) 

 

Where,      

�y�
 =��99� �9e��e9� �ee� � and ���
 = �Q99� Q9e�Qe9� Qee� �. 
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3.1.3  Rotor element with variable cross section 

Figure 3.5 shows the variable cross sectional properties of a typical rotor shaft element. For 

these elements the equation of motion can be obtained by either evaluating the integrals of 

the equations (3.15) and (3.17) by using the variable properties of the system.  

 

 
Figure 3.5 Sub-elements assemblage  

 

 

 Then the set of assembled sub elements possesses [4 x (total number of sub element 

stations)] coordinates which can be reduced by following procedure.  

The sub element equations in the assembled form, in fixed frame coordinate can be 

represented as 
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                                 (3.31) 

 

 The internal displacements { }b

eq  and the end point displacements of the element

{ }a

eq  and{ }c

eq are having the displacement dependency between them. Thus, this can be 

adopted by considering the static, homogeneous case of the previous equation (3.31). 
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                                                                        (3.32)     

From the second row of equation (3.32), the internal displacement vector { }b

eq  can be 

written as 
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−−=                                   (3.33) 

The following constraint of equation can be written by using the equation (3.33) 
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 From the equation (3.34), the elements in the columns of the constraint matrix 

represents the static mode shapes. By applying the equation (3.34) to the equation (3.31) it 

reduces the number of coordinates and associated components of force to eight, and this 

provides the same element equation form as the equation (3.16). In this research work, 

reduction of co-ordinates technique [11] is used to model the rotor elements having 

variable cross section.  

 

3.1.4  Undamped system equation of motion  

The undamped system equation of motion in the assembled form which consisting of the 

component equations form the equation (3.16), (3.21), and (3.30), is of the form, 

[ ]{ } [ ]{ } [ ]{ } { } 14 ×=+Ω− n
SSSSSSS QqKqGqM ɺɺɺ   .                                   (3.35) 

 

Where  

 

[ ]SM = [ ]eM + [ ]dM ; [ ]SG = [ ]eG + [ ]dG ; [ ]SK = [ ]e
BK + [ ]bK ; [ ] [ ] [ ]e

R
e
T

e MMM +=
 
and 

 

[ ] [ ] [ ]d
R

d
T

d MMM += ; { } { }T
Niiiiiiii

S WVWVq 11111 ...........       +++++= ζθζθ
. 
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3.1.5  Damped flexible finite rotor shaft element 

The previous study is extended to incorporate the internal damping in the finite element 

formulation. In their finite element formulation Zorzi and Nelson [42] have considered the 

combined effects of both viscous and hysteretic internal damping of the rotor-bearing 

system. By using the both 79 and�78, which denotes the viscous damping coefficient and 

the hysteretic loss factor of the shaft Material.  

 The potential energy 
eU  and kinetic energy eT  of the element, can be given by the 

nodal displacement vector{ }eq  as respectively, 
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Here, the stress-strain relationship can be expressed as [42], 
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                                  (3.38) 

  

 It is evident from the equation (3.38, b) that, when the system spin speed and the 

whirl speed (synchronous state) matches (Ω = ω), and when the orbit is in circular shape, 

the term ( )( ) ,02

0

2 =∂∂∂∂ xRt  besides the component of viscous damping which provides 

no variation of the axial stress σ of equation (3.38, a). Hence, for the synchronous circular 

orbits, the component of internal viscous damping can’t produce any out of phase loading 

to reduce the critical speed orbit.  

The bending moments at any instant about Y and Z -axes can be expressed as, 

(b) 

(a) 

(3.36) 

(3.37) 
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                                        (3.39) 

The above equations (3.39) for bending moment becomes by substituting the appropriate 

values and by integrating on the limits, 
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 It is observed that, the strain energy d��	 and the dissipation function d��	 for an 

infinitesimal element, by neglecting the shear deformations which can be expressed in the 

form of  
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 By integrating the equations (3.41) and (3.42) over the whole length of the element, 

the strain energy, ‘ eP ’ and the dissipation function, ‘ eD ’ with internal viscous and 

hysteretic damping of the shaft element, gives the following set of equations 

{ } [ ]{ } { } [ ]{ }ee
D

Te
b

ee
B

Te
a

e qKqqKqP ηη
2

1

2

1
+=                                        (3.44) 

{ } [ ]{ }ee

B

Te

V

e qKqD ɺɺη
2

1
=     .                                                     (3.45) 

(3.41) 

(3.42) 

(a) 

(b) 

(c) 

(a) 

(b) 

(3.43) 
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Where 

[ ] [ ] [ ][ ]dsEIK
T

l
e
D Ψ ′′ΨΨ ′′= ∫

0

 

3.1.6 Damped system equation of motion  
 
Through the use of Hamilton’s principle, the Lagrangian equation of motion obtained for 

the damped finite rotating shaft element in the following matrix form as, 

 

[ ] [ ]( ){ } [ ] [ ]( ){ } [ ] [ ]( ){ } { }eee
cb

e
Ba

eee
BV

ee
R

e
T QqKKqGKqMM =−+Ω−++ ηηη ɺɺɺ

                
(3.46) 

 

 From the equation (3.46) all the matrices are symmetric, except the gyroscopic 

matrix [ ]eG and the circulation matrix [ ]e
cK which are skew symmetric. Here the instabilities 

resulting from internal dampings are characterized by this circulation matrix [ ]e
cK . The 

material damping which is in the form of viscous, contributes to the circulation effects and 

also providing a dissipation term [ ]e
BV Kη { }eqɺ .  Due to this nature, it can provide a rotor 

system in the stable condition, providing that this dissipation term dominates. This form 

can be achieved, when the rotor system with the undamped isotropic supports and the spin 

speed is less than the first forward critical speed. 

Hence for the damped system equation of motion can be expressed as, 

 

[ ] [ ]( ){ } [ ] [ ] [ ]( )( ){ } [ ] [ ]( ){ } { }SSe

cb

e

Ba

Sdee

BV

Sde QqKKqGGKqMM =−++Ω−++ ηηη ɺɺɺ
   

(3.47) 

 

3.1.7  System instability regions  
 
Instability regions can be divided into two types: first one is primary instability regions 

(PIRs) and the second is combination instability regions (CIRs). The starting points of 

these instability regions for the periodically time-varying system could be expressed in the 

spinning (rotating speed) axis as [77] 
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 Where iω  and jω are the whirling frequencies of i
th

 and j frequencies of the system. 

The results from the literatures show that the iω  and jω in the equation (3.48) includes 

only the forward whirling frequencies. Here n = 1 and m = 1 has taken for the PIR and CIR 

respectively. The results for these instability regions are computed for the first and second 

forward whirling frequencies. The system rotating speed lines are plotted with 

12, bii ωωω −Ω=Ω= and 12 fi ωω −Ω=  for the both uncracked and the cracked rotor 

systems which are presented in the results chapter to figure out the instability regions 

related to the first two forward natural whirl modes.  

3.1.8  Whirl speed analysis 
 
Generally when the rotor shaft is in rotation, the shaft enters into transverse oscillations. 

The centrifugal force due to the shaft unbalance is responsible for vibration. If the shaft 

speed matches with the natural frequency of the transverse oscillations, the system 

vibration behaviour raises and indicates the whirling of the shaft. This shaft whirling will 

damage the rotating systems. So, it is essential to balance the system very carefully to 

reduce this effect and to design the system natural frequency for the different spinning 

speeds. For the computational purpose of the system equation of motion, the eigenvalues 

can be obtained from the following equation, 

 

[ ] [ ]

[ ] [ ] [ ] [ ]( ) { } { }
0011

10
hh

GKMK

I

SSSS α
=













Ω−
−−

 

 The equation (3.49) represents the conjugative pairs of the pure imaginary with the 

magnitude for the orthotropic bearing which is equal to the system natural whirl speeds.  

n = 1, 2,...     for PIRs 

i ≠ j, m = 1, 2,... for CIRs 

 (3.49) 
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3.2  Fault modelling in the rotor system  
 
In this research study, two types of faults are considered. First one is unbalance in the rotor 

rigid disk and the other is transverse crack at the rotor shaft element j. The asymmetric 

angle s, non-dimensional crack depths µ and location of crack are investigated to identify 

the effects on the instability regions of the system. The modelling of fault is carried as the 

same way the rotor system was modelled in the previous sessions. This is done by using 

Lagrangian method. 

 

3.2.1  Linear mass unbalance in rotor  
 

Unbalance in rotor system is unavoidable and it cannot be completely eliminated. It 

happens when the mass centre of the shaft is misaligned with the rotation centre or bearing 

centre axis. This makes the rotor to the wobbling motion and major source of vibration. To 

correct these unbalance, first it is essential to determine the unbalance. The presence of 

unbalance changes the dynamic behaviour of the rotor system. Linear mass unbalance 

distribution can be expressed by using the mass center eccentricity.  

 

3.2.1.1 Unbalance Response 
  
When the speed of the rotor bearing system increases, the amplitude is commonly excited 

by the unbalance forces presents in the system. These vibration amplitudes frequently 

passes through the maximum speed is called critical speed. When a constant speed is 

considered the unbalance force for equation (3.39) in the fixed frame coordinates, the 

equation for the system unbalance force can be given in the relation as [11] 

 

{ } { } ( ) { } ( )tQtQQ S
s

S
c

S Ω+Ω= sincos                                              (3.50) 

The steady state form of the solution will be, 

 

{ } { } ( ) { } ( )tqtqq S
s

S
c

S Ω+Ω= sincos                                                                                 (3.51) 
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By substituting the above equations (3.50) and (3.51) in the equation (3.35) yields, 
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From the equation (3.52), the solution can be obtained by the back substitution to the 

equation (3.51), which gives the undamped rotor system unbalance response. 

 

3.2.2  Transverse crack modelling 

The present study proposes the vibration analysis of the rotor-bearing system with 

transverse crack based on the finite element approach. The dynamic behaviour of the rotor-

bearing system with periodically time varying stiffness and various crack depths are 

investigated. The effect of transverse crack on the starting point of instability regions of the 

rotor-bearing system is also carried out in the analysis. The following section elaborates 

the finite element equations of motion of the rotor-bearing system with transverse crack. 

 The transverse crack appears at the shaft element j (Fig. 4.10). The relative position 

of the crack in the circumference is illustrated in the Fig. 3.6.  

 

Figure 3.6. Relative positions of the shaft and transverse crack in circumference 
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 The angle between the major axes of the crack and the shaft is shown by ‘�s ’. ‘s’ 

is called as the asymmetric angle, which is equal to�s �S�s = sU. The asymmetric angle , 
is an important factor for parametric instability of rotor system. The element matrices for 

the transverse crack are introduced and derived for the assemblies of the FEM model of the 

rotor system. In addition to this, a case of transverse crack: an open crack is taken in the 

derivation. The crack is assumed to be present at an angle of s relative to the fixed 

negative Z-axis at t = 0, as shown in Figure 3.6. As the shaft starts to rotate the crack angle 

with respect to the negative Z-axis changes with time to (s�+ Ωt). 

 

3.2.2.1 Transverse crack element modelling 
 
For an open crack case, the stiffness matrix of the cracked element in a generalized form 

similar to that of the asymmetric rod can be written as [47] 
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 From equation (3.53), l represents the element length, E is the elastic modulus. The 

expressions for the time-varying quantities ��� (t) and ��� (t) are given in the following 

consequent sections. 

3.2.2.2 Open crack  

The factors ���(t) and ���(t) are put to the time-varying quantities of the open crack. The 

expressions for the time-varying quantities ���(t) and ���(t) are considered as [47], 

 (3.53) 
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Where 1I =��# �S�� + �� − ���#U and 2I =���# �S�� − �� − ���#U. These variables are constant 

quantities throughout the time of the shaft rotation. By considering the profile of the 

cracked element cross-section, the following quantities can be obtained by deploying the 

non-dimensional crack depth (µ =�ℎ �� ), and the shaft radius (R) as, 
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Where ( )µµγ −= 2  . Hence the finite element stiffness matrix for the j
th

 element with 

open crack can be given as,  

( ) ( )( )φ+Ω+= t2cost kkk
j

o2

j

o1

j

oc  
 

The equation (3.59) represents the time-periodic stiffness matrix with frequency of 2Ω. 

 

 

3.2.2.3   Equation of motion of the system with transverse open  

      crack 

 
The global equation of motion for the rotor-bearing system with the transverse open crack 

can be written in fixed frame coordinates by neglecting the unbalance force as 

[ ] ( ){ } [ ] ( ){ } [ ] ( )[ ]( ) ( ){ } 0
~

=++Ω− tqtKKtqGtqM SSSSSS
ɺɺɺ                             (3.60) 

Where,  [ ]SM  = global mass matrix  

              [ ]SG   = global gyroscopic matrix  

                 [ ]SK  = global stiffness matrix of the un-cracked rotor-bearing system equal tok
j

o1
 

(a) 

(b) 

(3.54) 

(3.55) 

(3.56) 

(3.57) 

(3.58) 

(3.59) 
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                ( )[ ] [ ] ( )φ+Ω= tKtK o 2cos
~~

 

                 [ ]oK
~

  = global stiffness matrix of the cracked element, equal tok
j

o2
.  

             ( ){ } { }Te
N

e
i

eS qqqtq 11 ,................... += is the global displacement vector.  

 

 The matrices [ ] [ ] [ ]SSS KGM ,,  and ( )[ ]tK
~

 are having the dimensions of 4(N+1) x 

4(N+1). The equation of motion of the system is a second order differential equation with 

frequency of 2Ω for the open crack. This system is periodically time-varying.  

 

3.3.3 Lateral displacement responses of bearing using ANSYS 

 
The variable cross-section rotor-bearing system is modelled with axisymmetric elements 

(SOLID273) to determine the bearing response. These elements possess the variable cross 

sections of rotor sections with impulse excitations along the X-axis at a node situated in the 

left overhung part of the rotor. Translational and rotational DOFs about the axis of rotation 

at the bearing locations are constrained. Fixed support conditions are applied to the nodes 

of the bearing elements. The rotor-bearing system of axisymmetric elements is given in 

Figure 3.7 which is developed in ANSYS-v13. The analysis was carried out using the 

commercial ANSYS software package. The axisymmetric rotor was modelled as a 

configuration of eight master plane nodes. Two undamped linear bearings were located at 

nodes nine and fifteen respectively as shown in Figure 4.1.1 (c). Modal analysis is 

performed on rotor bearing system with multiple load steps to determine the natural 

frequencies and mode shapes. 

 SOLID273 is used to model axisymmetric solid structures. The element has 

quadratic displacement behaviour on the master plane and is well suited to modelling 

irregular meshes on the master plane. The plane on which quadrilaterals or triangles are 



46 

 

defined is called the master plane. It is defined by eight nodes on the master plane, and 

nodes created automatically in the circumferential direction based on the eight master 

plane nodes. The element has plasticity, hyper elasticity, stress stiffening, large deflection, 

and large strain capabilities. The proposed system under considered for analysis is 

overhung. 

 

     Figure 3.7 Rotor-bearing system with SOLID273 axisymmetric elements  
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Chapter-4 

 

 

Numerical Analysis and Discussions 

 

For numerical analysis a rotor bearing system is considered which is represented in Fig. 

4.1. The system has variable cross sections along longitudinal direction and is modelled as 

seven stations which have eighteen sub elements. The rotating shaft is supported by two 

linear identical bearings which are located at stations four and six respectively. Two disks 

are placed at stations three and five for analysis.     

 

 

 

Figure 4.1 Rotor elements with variable cross section 

 The natural whirl frequencies, mode shapes, unbalance response, critical speeds, 

natural whirl speeds and frequency responses with phase-plane diagrams of the system are 

analysed by using finite element method. The effects of hysteresis damping and viscous 

damping on the above parameters are also discussed. The design variables for the various 
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cross sections of rotor elements are listed in Table. 4.1. The total length of the typical rotor 

bearing system is taken as 353 mm. The relative positions of disk-1 and disk-2 are 0.28 and 

0.66 respectively from the left end of the system. 

Table 4.1 Rotor element configuration data 

Station No.   Node No.  
Axial Dist 

(cm)  

Inner Dia. 

(cm)  

Outer Dia. 

(cm)  

1 
1 0.00   0.51 

2 1.27   1.02 

2 
3 5.08   0.76 

4 7.62   2.03 

3 

5 8.89   2.03 

6 10.16   3.30 

7 10.67  1.52  3.30 

8 11.43  1.78  2.54 

9 12.70   2.54 

10 13.46   1.27 

4 
11 16.51   1.27 

12 19.05   1.52 

5 

13 22.86  1.52 3.30 

14 23.62  1.52 

15 27.43  1.27 

6 

16 29.46  1.27 

17 31.24  3.81 

18 32.26  2.03 

19 35.30 1.52  2.03 

 

 

 The physical and mechanical properties of the shaft and the disk are represented in 

Table 4.2. The bearings are modelled as linear springs. Two types of bearings are 

considered for the analysis. First one is isotropic bearing for which the stiffness values of 

the bearings in Y and Z axes are KVV  = KWW  = 4.378e7 N/m
 
and the second one is 

orthotropic bearing for which the stiffness values are KVV  =  KWW  = 3.503e7 N/m, KVW  =  

KWW  = - 8.756e7 N/m. Isotropic bearings have physical properties such as stiffness same in 

all directions, whereas orthotropic bearings have physical properties such as stiffness 

independent in three mutually perpendicular directions [11]. 
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Table 4.2 Physical and mechanical properties of shaft and disk [11] 

Notation Description Value  

ρ Density 7860�kg m��  

E Modulus of elasticity 2.1 x 1T�� N/m# 

μ	} Element mass per unit length 0.3 

Ω Spin speed 0-30000 rpm 

I� Diametric inertia of disk 0.0136 kg-m# 

I� Polar inertia of disk 0.0020 kg m��  

�m�� = �m�# = Disk mass 1.401 kg 

 

The analysis is carried out by considering the following three cases of the rotor bearing 

system.  

Case 1: Undamped rotor bearing system without crack.  

Case 2: Damped rotor bearing system without crack. 

Case 3: Undamped rotor bearing system with crack. 

 

a. 

 

 

 

 

b. 
 

 

 

 

c. 

      
Figure 4.1.1. Finite models of the system (a) Undamped system without crack (b) Damped 

system without crack, (internal dampings 
H

η = 0.0002 & 
V

η = 0.0002s), (c) Undamped 

system with crack. 
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4.1  Undamped rotor bearing system without crack 

The undamped rotor bearing system without crack is analyzed for natural whirl 

frequencies, mode shapes, unbalance response and critical speeds. The starting point of the 

instability regions related to first two forward whirling modes are determined. Two types 

of bearings i.e. isotropic and orthotropic are considered for the analysis.  

4.1.1 Natural whirl frequencies and mode shapes 
 
The natural whirl frequencies for the first three modes of the uncracked rotor bearing 

system with variable cross sections supported on isotropic and orthotropic bearings for the 

speed range of 0-30000 rpm in the fixed frame coordinates are found for the 18 elements in 

first trial. Due to the complexity of the system configuration, convergence study is done 

with three sets of elements which are 18, 25, and 30 respectively. It is observed that the 

frequencies of the first three mode shapes are converged with 30 numbers of elements. The 

convergence results for natural whirl frequencies of isotropic and orthotropic bearings are 

listed in Table 4.3 and 4.4 respectively. 

Table 4.3 Natural whirl frequencies of isotropic bearing. 

 

  

 

 

 

Table 4.4 Natural whirl frequencies of orthotropic bearing. 

 

 

   

 

 

Modes    
Natural whirl frequencies in (Hz) 

(No. of elements) 

(18) (25) (30) 

I 61.70 61.39 61.35 

II 247.36 247.18 247.01 

III 402.27 402.01 401.9 

Modes    

Natural whirl frequencies in (Hz) 

(No. of elements) 

(18) (25) (30) 

BW FW BW FW BW FW 

I 60.78 61.70 60.55 61.5 60.42 61.48 

II 241.82 247.36 241.63 247.22 241.45 247.15 

III 373.64 402.28 373.38 402.15 373.25 402.04 
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 The first three mode shapes are obtained for spin speed of 0 and 30000 rpm and are 

represented in the Figs. 4.2 (a), (b) and (c). 

a.  

     

b.  

 

c.  

 
 

Figure 4.2. Mode shapes at 0 and 30000 rpm (a) First mode shape (b) Second mode shape  

(c) Third mode shape. 
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4.1.2  Unbalance response 

The element with linear mass unbalance distribution is considered for unbalance response 

analysis. The disk with mass center eccentricity of 0.001m with ( )
LL

ζη   ,  and ( )
RR

ζη   ,  are 

calculated and plotted for the two cases of bearing stiffness. The undamped system 

unbalance response for the fixed frame co-ordinates from the equation (3.52) for the rotor 

speed range of 0 – 30000 rpm is plotted in Figure 4.3 with isotropic and orthotropic 

bearings respectively.  

 
      Figure 4.3 Unbalance response of rotor with isotropic and orthotropic bearings 

 

The results are validated with the single disc system [11] for the speed range of 0 – 30000 

rpm. The differences for the present study with single and multi disc are listed in the Table 

4.5. 

 

Table 4.5 Comparison of critical speeds for isotropic and orthotropic bearings 

Types 
Speed range 

(rpm) 

Ref. [11] 

(rpm) 

Present work 

(rpm) 
Difference 

Isotropic  

bearing 
0 – 30000  1.71 x 1TY 1.688  x 1TY 2.2 %   

Orthotropic 

bearing 
0 – 30000  1.65 x 1TY  1.632 x 1TY   1.80%   
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4.1.3  Natural whirl speeds 

The undamped natural whirl speeds associated with the eigenvalue problem of the equation 

(3.49) for the spin speed of 0-30000 rpm are computed and plotted for the natural whirl 

ratio of 0, ±1/4, ±1/2 and ±1 in Fig. 4.4 for isotropic and orthotropic bearings respectively.  

 
Figure 4.4 Campbell plot for rotor-bearing system with both bearings 

                    

The first three natural whirl speeds for each whirl ratio are listed in Table 4.6 for isotropic 

bearings. 

Table 4.6 Natural whirl speeds for isotropic bearing. 

Natural whirl ratio 
Natural whirl speeds (RPM) 

Positive Negative 

1 
3855 3558 

16164 13974 

27396 21828 

1/2 
3783 3643 

15456 14358 

25626 22920 

1/4 
3743 3672 

15126 14610 

24858 23514 

0 
3702 

14841 

24136 
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 The natural whirl speeds of the undamped system by using equation (3.49) for three 

sets of spin speeds 10000, 20000 and 30000 rpm are obtained for orthotropic bearing. The 

first three natural whirl speeds for forward and backward cases are presented in table 4.7. It 

is observed that as the spin speed increases there is an increase in forward speeds and 

decrease in backward speeds for all modes of vibration. 

 

Table 4.7 Natural whirl speeds for orthotropic bearing. 

Spin speed (rpm) 
Natural whirl Speeds (rpm) 

Forward Backward 

10000 

4065 3303 

15469 13994 

24707 21902 

20000 

4416 2962 

16356 13441 

25764 21009 

30000 

4851 2656 

17371 12970 

26955 20095 

 

4.1.4  System instability regions 

The starting points of these instability regions for the periodically time-varying system 

could be expressed in the spinning (rotating speed) axis by using equation (3.48) related to 

the first two forward whirl modes. In order to find the system instability regions, the 

rotating speed lines are plotted which is shown in Fig. 4.5. The initial points of instability 

regions which are related to the first two forward whirl modes are determined. These 

instability regions can be given as pΩ  = 3799.8 rpm for PIR and cΩ  = 9690 rpm for CIR.  
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Figure 4.5 The starting points of instability regions related to I and II FW whirl modes 

. 

4.2  Damped rotor bearing system without crack 
 
4.2.1  System with hysteretic damping 

The multi disk rotor bearing system which is supported on the two identical linear bearings 

at stations four and six are analyzed with hysteretic damping loss factor Hη = 0.0002.  

 
Figure 4.6 Natural whirl frequency of rotor with hysteretic damping on isotropic bearing. 
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 For the synchronous natural whirl, the frequencies of the first three modes are 

plotted with the speed range of 0 – 30000 rpm for isotropic bearing and shown in Fig. 4.6. 

Table 4.8 represents the comparison of natural whirl speeds for damped and undamped 

isotropic bearings for first three modes. From the table it is observed that due to hysteretic 

damping the natural whirl speed decreases as compared to undamped system.  

Table 4.8 Natural whirl speeds for isotropic bearing. 

 

MODES 
Damped (rpm) 

( Hη = 0.0002) 
Undamped 

(rpm) 

I FW 3822 3855 

I BW 3536 3558 

II FW 16116 16164 

II BW 13932 13974 

III FW 27360 27396 

III BW 21798 21828 

  

 Similarly the frequencies of first three modes with hysteretic damping are plotted 

for orthotropic bearing in Fig. 4.7. The comparison between the hysteric damped and 

undamped system for orthotropic bearing are represented in Table 4.9. 

 
Figure 4.7 Natural whirl frequency of rotor with hysteretic damping on orthotropic bearings. 
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Table 4.9 Natural whirl speeds for orthotropic bearing 

 

MODES 
Damped (rpm) 

( Hη = 0.0002) 
Undamped 

(rpm) 

I FW 3795 3831 

I BW 3508 3544 

II FW 15966 15990 

II BW 13752 13788 

III FW 26502 26538 

III BW 20898 20922 

 

 Figure 4.9 shows the natural whirl frequencies of the uncracked rotor bearing 

system supported on orthotropic bearing with damping coefficient Hη = 0.0002. Form 

tables 4.8 and 4.9 it is observed that due to hysteretic damping the natural whirl speed is 

decreased for both isotropic and orthotropic bearings.    

 

4.2.2  System with viscous damping 
 

The effect of viscous damping with damping coefficient Vη = 0.0002s on natural whirl 

speeds for isotropic bearing is analysed. From Table 4.10 the first three natural whirl 

speeds are obtained and is compared with the undamped case. It is observed the 

frequencies decreased due to the viscous damping in all cases.  

 

Table 4.10 Natural whirl speeds for isotropic bearing 

 

MODES 
Damped (rpm) 

( Vη = 0.0002s) 
Undamped 

(rpm) 

I FW 3822 3855 

I BW 3536 3558 

II FW 22128 16164 

II BW 13920 13974 

III FW 27486 27396 

III BW 21738 21828 
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Figure 4.8 shows the variation of rotation speeds with first three natural whirl frequencies 

for isotropic bearing.  

 
Figure 4.8 Natural whirl frequency of rotor with viscous damping on isotropic bearings. 

  

 Similarly for orthotropic bearing the natural whirl frequencies for the first three 

modes is shown in Table 4.11 and is compared with undamped natural whirl frequencies. 

The Fig. 4.9 represents the variation of rotational speed with natural whirl frequencies for 

orthotropic bearing with viscous damping Vη = 0.0002s. From Table 4.10 and 4.11 it is 

observed that by considering the viscous damping in the system the whirl speed decreased 

for orthotropic bearing.  

 
Figure 4.9 Natural whirl frequency of rotor with viscous damping on orthotropic bearings 
  



 

Table 4.11 Natural whirl speeds for orthotropic bearing.

 

MODES 
Damped (rpm)

( Vη

I FW 

I BW 

II FW 

II BW 

III FW 

III BW 

 

4.3  Undamped rotor bearing system with transverse crack

The undamped rotor bearing system

shown in Fig 4.10. The transverse crack is assumed to present with relative position of 0.73 

and non dimensional crack depth of 0.3. Crack is assumed at an angle of 

to the negative fixed Z axis with the time t

Figure 4.10 Rotor bearing system with variable cross sections and crack

 When the rotor shaft rotates the transverse crack angle keep changing with time 

+ Ωt with respect to the negative Z axis

whirl frequencies, mode shapes, unbalance response and critical speeds for 

periodic stiffness matrix with

effect of the various non

Z 
X 

Y 
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Natural whirl speeds for orthotropic bearing. 

Damped (rpm) 

= 0.0002s) 
Undamped 

(rpm) 

3795 3831 

3509 3544 

15972 15990 

13752 13788 

26592 26538 

20838 20922 

Undamped rotor bearing system with transverse crack

rotor bearing system with transverse crack is analyzed for the system 

shown in Fig 4.10. The transverse crack is assumed to present with relative position of 0.73 

and non dimensional crack depth of 0.3. Crack is assumed at an angle of 

to the negative fixed Z axis with the time t = 0.  

Rotor bearing system with variable cross sections and crack

When the rotor shaft rotates the transverse crack angle keep changing with time 

with respect to the negative Z axis. The system with crack is analysed for the natural 

whirl frequencies, mode shapes, unbalance response and critical speeds for 

periodic stiffness matrix with frequency of 2Ω. The starting point of the instability regions, 

effect of the various non-dimensional crack depth (µ) on the system natural whirl 

Undamped rotor bearing system with transverse crack 

is analyzed for the system 

shown in Fig 4.10. The transverse crack is assumed to present with relative position of 0.73 

and non dimensional crack depth of 0.3. Crack is assumed at an angle of s which is related 

 
Rotor bearing system with variable cross sections and crack 

When the rotor shaft rotates the transverse crack angle keep changing with time s 

The system with crack is analysed for the natural 

whirl frequencies, mode shapes, unbalance response and critical speeds for the time-

. The starting point of the instability regions, 

) on the system natural whirl 
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frequencies, frequency response and phase-plane diagrams are plotted for the system with 

transverse crack for isotropic bearings and orthotropic bearings.   

 
4.3.1 Natural whirl frequencies and mode shapes 
 
The natural whirl speeds for the first three modes of the cracked rotor bearing system with 

variable cross sections supported on isotropic and orthotropic bearings for the speed range 

of 0-30000 rpm in the fixed frame coordinates with the non-dimensional crack depth µ = 

0.3 are computed and listed in Tables 4.12 and 4.13 for isotropic and orthotropic bearings 

respectively for the three sets of spin speeds. 

 

Table 4.12 Natural whirl speeds for        Table 4.13 Natural whirl speeds for 

isotropic bearing.               orthotropic bearing. 

 

Spin speed 

(rpm) 

Natural whirl speeds (rpm) 

Forward Backward 

10000 

3979 3243 

15862 13894 

24734 23265 

20000 

4366 2919 

16968 13063 

25630 22676 

30000 

4752 2629 

18096 12316 

26641 22236 

 

Spin speed 

(rpm) 

Natural whirl speeds (rpm) 

Forward Backward 

10000 

3833 3085 

15447 13395 

24661 23190 

20000 

4204 2779 

16533 12591 

25552 22605 

30000 

4579 2502 

17712 11862 

26559 22108 

 

The first three mode shapes of the cracked system are computed at the spin speed of 0 and 

30000 rpm and are shown in the Figs. 4.11 (a), (b) and (c).  
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a.  

 
 

b.  

 
 

c.  

 

 

Figure 4.11 Mode shapes for spin speed 0 and 30000 rpm (a) first mode shape (b) second 

mode shape (c) third mode shape. 
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4.3.2  Unbalance response with transverse crack 
 

 
The element with linear mass unbalance distribution is considered for the unbalance 

response analysis. The disk with mass center eccentricity of 0.001m with ( )
LL

ζη   ,  and 

( )
RR

ζη   ,  are calculated and plotted for isotropic and orthotropic bearing stiffness. The 

unbalance response of the undamped rotor bearing system with a transverse crack in fixed 

frame co-ordinates from the equation (3.52) for the rotor speed range of 0 – 30000 rpm 

with the non-dimensional crack depth µ = 0.3 is computed and plotted in Fig. 4.13. 

 

Figure 4.12 Unbalance response of rotor with transverse crack (h/R = 0.3) for isotropic and 

orthotropic bearings. 

 

4.3.3  System natural whirl speeds with transverse crack 

The undamped natural whirl speeds associated with the eigenvalue problem for spin speeds 

of 0-30000 rpm are computed by using equation (3.49). The variation of rotational speeds 

with natural whirl frequencies for whirl ratio of 0, ±1/4, ±1/2 and ±1 are shown in Fig. 4.13 

for isotropic and orthotropic bearings. The non-dimensional crack depth of 0.3 is 

considered for the analysis. 
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Figure 4.13 Campbell plot for rotor-bearing system with transverse crack for isotropic and 

orthotropic bearings. 

 

 Tables 4.14 and 4.15 represents the natural whirl speeds of the cracked rotor system 

for the natural whirl ratio of 0, ±1/4, ±1/2 and ±1. It is observed from table that, as the 

natural whirl speed ratio decreases, there is decrease in whirl speeds. 

      

Table 4.14 Natural whirl speeds for 

isotropic bearing. 

 

Natural 

whirl ratio 

Natural whirl speeds 

(rpm) 

Positive Negative 

1 

3742 3470 

16584 13584 

26256 22542 

1/2 

3679 3530 

15642 14154 

24948 23172 

1/4 

3647 3554 

15240 14460 

24420 23538 

0 

3633 3567 

14976 14689 

23950 23945 

Table 4.15 Natural whirl speeds for 

orthotropic bearing. 

 

Natural 

whirl ratio 

Natural whirl speeds 

(rpm) 

Positive Negative 

1 

3673 3352 

16326 13332 

26190 22482 

1/2 

3626 3389 

15414 13878 

24882 23106 

1/4 

3610 3403 

15054 14148 

24354 23466 

0 

3605 3407 

14859 14304 

23947 23815 
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4.3.4  Effect of crack depths on natural whirl frequencies  

The transverse crack with the asymmetric angle s = 0 for three non-dimensional crack 

depth, µ = 0.1, 0.2 and 0.3 on the rotor are investigated with the isotropic and orthotropic 

bearings. The corresponding frequencies for the crack depths for isotropic and orthotropic 

bearings are shown in Figs. 4.14 and 4.15.   

 
Figure 4.14 Campbell plot for rotor-bearing system with µ = 0.1, 0.2 and 0.3 on natural 

whirl frequencies for isotropic bearing. 

 

Figure 4.14 (a). Magnified view of II FW and II BW whirls for rotor-bearing system with 

µ = 0.1, 0.2 and 0.3 on natural whirl frequencies for isotropic bearing. 
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 Similarly for orthotropic bearing the Campbell plot for rotor bearing system of non 

dimensional crack depths 0.1, 0.2 and 0.3 are plotted in Fig. 4.15.  

 
Figure 4.15 Campbell plot for rotor-bearing system with µ = 0.1, 0.2 and 0.3 on natural 

whirl frequencies for orthotropic bearing. 

 
Figure 4.15 (a). Magnified view of II FW and II BW whirls for rotor-bearing system with 

µ = 0.1, 0.2 and 0.3 on natural whirl frequencies for orthotropic bearing. 

 

Table 4.16 Natural whirl frequencies with µ = 0.1, 0.2 and 0.3 for isotropic bearings. 

 

 

 

 

 

 

 

 

 

 

Modes 

Natural whirl Frequency in (Hz) 

µ = 0.1 µ = 0.2 µ = 0.3 

FW BW FW BW FW BW 

I 60.67 60.45 60.63 60.03 60.55 59.45 

II 250.18 249.16 249.99 247.28 249.60 244.82 

III 399.18 399.16 399.17 399.12 399.17 399.09 
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Table 4.17 Natural whirl frequencies with µ = 0.1, 0.2 and 0.3 for orthotropic bearings. 

 

 

 

 

 

 

 

 

 

 

     
 From the Tables 4.16 and 4.17 it is observed that as the crack depth increases there 

is decrease in natural whirl frequencies for both forward and backward conditions for 

isotropic and orthotropic bearings. Again for orthotropic bearing the natural whirl 

frequency is less as compared to isotropic bearing for a given non dimensional crack depth.  

 

4.3.5  System instability regions with transverse crack 

For computing the starting points of instability regions related to the first two forward whirl 

modes equation (3.49) is used. In order to find the system instability regions, the rotating 

speed lines are plotted which is shown in Fig. 4.16 with non-dimensional crack depth 0.3. 

These instability regions can be given as pΩ  = 3742 rpm for PIR and cΩ  = 9774 rpm for 

CIR.  

 
Figure 4.16 The starting points of instability regions related to I and II FW whirl modes with 

non dimensional crack depth. 

Modes 

Natural whirl Frequency in (Hz) 

µ = 0.1 µ = 0.2 µ = 0.3 

FW BW FW BW FW BW 

I 60.57 57.35 60.36 57.13 60.08 56.78 

II 249.69 240.54 248.77 239.71 247.65 238.41 

III 399.17 397.03 399.16 396.99 399.13 396.93 
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4.4  Frequency domain and phase - plane diagrams 
 

The frequency domain and phase – plane diagrams are obtained by using the Houbolt 

method. This method is an implicit integration scheme, which gives the solutions to 

coupled second order differential equations. In this, the standard finite difference equations 

are used to approximate the acceleration and velocity components. This will be in terms of 

displacement components. This method helps to avoid the critical time step limit, and the 

time step ∆t can be generally used as large as the value given for central difference method 

[43]. The method utilized here to study the effect of the system spin speed at 1000 rpm and 

5000 rpm with disk eccentricity of 0.001m respectively. The responses are analyzed at 

various nodes in the system.   

 

 The following configurations of the systems are analyzed with both the bearing 

cases to obtain the frequency domain and phase – plane diagrams for the above mentioned 

parameters,  

 

1.   Undamped system without transverse crack 

2.   Damped system without transverse crack 

3.   Undamped system with transverse crack 

 

4.4.1  Undamped system without transverse crack 
 
The responses for undamped rotor system with isotropic and orthotropic bearing without 

transverse crack are shown in Figs. 4.17 - 4.20. The analysis is carried out for spin speeds 

of 1000 and 5000 rpm with disk eccentricity 0.001m.    
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Figure 4.17 Response and phase-plane diagrams of disk 1 and 2 for spin speed 1000 rpm 

with eccentricity of 1mm for isotropic bearing. 

 

 
Figure 4.18 Response and phase-plane diagrams of disk 1 and 2 for spin speed 5000 rpm 

with eccentricity of 1mm for isotropic bearing. 

 

 For undamped rotor bearing system without crack at 1000 rpm for isotropic 

bearing, the amplitude is 1.10e-5 dB for disk-1. Whereas for the same condition, for 

orthotropic bearing the amplitude is 1.65e-5 dB. The difference in amplitude is due to 

variation in stiffness of the bearing. When the speed is increased to five times the 

amplitude for isotropic bearing is 1.13e-5 dB. For orthotropic bearing when the speed 

increases to 5000rpm, the amplitude is 1.56e-5 dB.   
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Figure 4.19 Response and phase-plane diagrams of disk 1 and 2 for spin speed 1000 rpm 

with eccentricity of 1mm for orthotropic bearing. 

 

 
Figure 4.20 Response and phase-plane diagrams of disk 1 and 2 for spin speed 5000 rpm 

with eccentricity of 1mm for orthotropic bearing. 

 

 
 For disk-2, at 1000rpm for isotropic bearing the amplitude is 6.62e-5 dB. For 

orthotropic bearing at same speed, the amplitude increased to 19.6e-5 dB. When the speed 

increases to 5000rpm, the amplitude changes from 6.69e-5 dB for isotropic to 20.45e-5 dB 

for orthotropic bearing. 

 



70 

 

4.4.2  Damped system without transverse crack  

 

The effects of damping on frequency response without considering the transverse crack of 

isotropic and orthotropic bearings are discussed. Two types of dampings are considered for 

the analysis. First is hysteretic damping where the energy dissipated is independent of 

frequency of oscillation. Second one is viscous damping in which energy dissipated per 

cycle depends linearly on frequency of oscillation. The frequency responses along with 

phase-plane diagrams are shown in Figs. 4.21 – 4.28.  

     

 

4.4.2.1  Hysteretic Damping without transverse crack   

 

For hysteretic damping the response for frequency with isotropic and orthotropic bearings 

are shown in Figs. 4.21 – 4.24. Two spin speeds i.e. 1000 rpm and 5000 rpm are considered 

for the analysis. The disk eccentricity is assumed to be constant as 0.001 m.  

 
 
Figure 4.21 Response and phase-plane diagrams of disk 1 and 2 for spin speed 1000 rpm 

with eccentricity of 1mm for isotropic bearing with hysteretic damping. 
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Figure 4.22 Response and phase-plane diagrams of disk 1 and 2 for spin speed 5000 rpm 

with eccentricity of 1mm for isotropic bearing with hysteretic damping. 

 

 For hysteretic damped rotor bearing system without crack at 1000 rpm with 

isotropic bearing, the amplitude is 1.79e-5 dB. Whereas for orthotropic bearing the 

amplitude is 2.64e-5 dB at same speed. When speed increased to five times the amplitude 

for isotropic is 1.86 e-5 dB and that for orthotropic is 2.61e-5 dB for disk-1. Similar 

characteristics are obtained for isotropic and orthotropic bearings with hysteretic damping 

for disk-2.   

 
Figure 4.23 Response and phase-plane diagrams of disk 1 and 2 for spin speed 1000 rpm 

with eccentricity of 1mm for orthotropic bearing with hysteretic damping. 
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Figure 4.24 Response and phase-plane diagrams of disk 1 and 2 for spin speed 5000 rpm 

with eccentricity of 1mm for orthotropic bearing with hysteretic damping. 

 

 
4.4.2.2  Viscous Damping without transverse crack 
 
Figures 4.25 - 4.28 represents the effect of viscous damping on frequency response for 

isotropic and orthotropic bearings without consideration of transverse crack.  

 
Figure 4.25 Response and phase-plane diagrams of disk 1 and 2 for spin speed 1000 rpm 

with eccentricity of 1mm for isotropic bearing with viscous damping. 
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Figure 4.26 Response and phase-plane diagrams of disk 1 and 2 for spin speed 5000 rpm 

with eccentricity of 1mm for isotropic bearing with viscous damping. 

 

 For viscous damped rotor bearing system the amplitude for isotropic bearing is 

1.40e-5 dB whereas for orthotropic bearing the amplitude is 3.24e-5 dB for disk-1. When 

the spin speed increases to 5000 rpm the amplitude is 1.39e-5 dB for isotropic bearing and 

3.27e-5 dB for orthotropic bearing. It is observed that the difference in amplitude is 

negligible when the spin speed increases for both isotropic and orthotropic viscous 

damping. This is due to very small change in frequency for isotropic and orthotropic 

bearings. 

 
Figure 4.27 Response and phase-plane diagrams of disk 1 and 2 for spin speed 1000 rpm 

with eccentricity of 1mm for orthotropic bearing with viscous damping. 



74 

 

 
Figure 4.28 Response and phase-plane diagrams of disk 1 and 2 for spin speed 5000 rpm 

with eccentricity of 1mm for orthotropic bearing with viscous damping. 

 
 
4.4.3  Undamped system with transverse crack 

The responses for undamped rotor system with isotropic and orthotropic bearing with 

transverse crack are shown in Figs. 4.29 - 4.32. The analysis is carried out for spin speeds 

of 1000 and 5000 rpm with disk eccentricity 0.001m.    

 
Figure 4.29 Response and phase-plane diagrams of disk 1 and 2 for spin speed 1000 rpm 

with eccentricity of 1mm for isotropic bearing with transverse crack. 
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Figure 4.30 Response and phase-plane diagrams of disk 1 and 2 for spin speed 5000 rpm 

with eccentricity of 1mm for isotropic bearing with transverse crack. 
 

 
Figure 4.31 Response and phase-plane diagrams of disk 1 and 2 for spin speed 1000 rpm 

with eccentricity of 1mm for orthotropic bearing with transverse crack. 

 
Figure 4.32 Response and phase-plane diagrams of disk 1 and 2 for spin speed 5000 rpm 

with eccentricity of 1mm for orthotropic bearing with transverse crack. 
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 Similar characteristics are observed for isotropic and orthotropic bearings for 

undamped cracked rotor (h/R = 0.3, x/L = 0.73) for 1000 and 5000 rpm. For a cracked rotor 

with isotropic bearings the amplitude is more compared to uncracked rotor. However for 

orthotropic bearings   between cracked and uncracked rotor the change in amplitude is 

negligible. This is due to very small change in natural frequency between cracked and 

uncracked rotor. 

 

4.5 Bearing reaction force  
 

The shaft is modelled with SOLID273 axisymmetric elements by using ANSYS
®

 - v13 

software. The element has quadratic displacement behaviour on the master plane and is 

well suited for modelling irregular meshes on the master plane. The element has plasticity, 

hyper elasticity, stress stiffening, large deflection and large strain capabilities. It has also 

mixed-formulation capability for simulating deformations. The disc is modelled with 

MASS21 element. This element is defined by a single node, concentrated mass 

components (f. "# �� ) in the element coordinate directions and rotary inertias (f. � "#� ) about 

the element coordinate axes.  

 

 COMBIN14 is taken for modeling the bearing elements. The element represents a 

2-D element and lies in a constant plane.  This gives the longitudinal spring-damper option 

in a uniaxial tension-compression element. The mass for spring-damper element is 

negligible. Masses are added by using the appropriate mass element. 

 

 The system is analysed for transient response for the spin speed range of 0 - 30000 

rpm. Bearing reactions for the three time stage period of 0.01 sec with the force of 1 KN is 

found and plotted in Figure 4.33. 
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Figure 4.33 Bearing reaction forces – Transient analysis 

 

 Figure 4.33 shows the bearing reaction forces performed by transient analysis   for 

the time period of 0.01 sec, which acts in the left and right bearings in both X and Z 

directions.  
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4.6. Observations  
 

The flexible multi disk rotor-bearing system is analyzed by finite element method 

for a typical configuration as shown in Fig. 4.1, which includes a transverse crack and 

internal damping. The formulation for the crack and internal dampings are made by using 

finite element method. The analysis carried for three different cases. The effect of crack 

depths, crack location and rotor speeds are considered as vital parameters in the analysis. 

As shown in Figs. 4.3 & 4.12, the critical speeds of the rotor-bearing system for the 

cracked and uncracked system on orthotropic bearings reveals that the critical speed is 

reduced for the cracked system with increased value of crack depth. The system shows the 

behavior due to the effect of shaft bending and the time periodic stiffness change. Figs. 4.4 

and 4.13 shows the natural whirl frequencies of cracked and uncracked rotor-bearing 

systems. The natural whirl frequency is less in case of orthotropic bearing due to the fact 

that they have different stiffness along three mutually perpendicular directions which are 

independent of each other. 

         The starting points of the instability regions for the periodically time-varying 

system are found out and they are shown in Figs. 4.5 and 4.16. It is seen that the starting 

points of the instability regions are close for the cracked system as compared to the 

uncracked system. This is due to the whirling speed of the shaft. The frequency response 

and phase-plane diagrams were carried out by using Houbolt’s implicit time integration 

scheme to study the effect of spin speed with 1000 rpm and 5000 rpm. When the spin 

speed is increased from 1000 rpm to 5000 rpm the data series in the phase – plane 

diagrams are disturbed and the frequency domain has a single influenced frequency. The 

increments of spin speed of the system results in the chaotic motion. The results observed 

from the finite element approach are compared with the results obtained by Nelson and 

Vaugh [11] as shown in Table. 4.5. They are found to be in good agreement.  
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Chapter-5 

 

 

Conclusions and Future scope 

 

5.1 Conclusions 

The present study simulates the dynamics of a multi disk, variable cross section rotor 

system supported on two bearings at stations four and six, respectively. The theoretical 

analysis is carried out using FEM approach which offers significant benefits in 

understanding the dynamic behaviour of rotor-bearing systems. Generally, analysis of 

higher order sets of equations formulated with finite element approach clearly 

demonstrates the power of the method and understanding. For the complex rotor system, 

formulation of the equation of motion, natural whirl frequencies, unbalance response, and 

the effect of crack depths, crack location and rotor speed are carried for the analysis. The 

conclusions drawn from the results and discussions are depicted below. 

(a) Unbalance response for the uncracked rotor bearing system with variable cross 

sections supported on isotropic and orthotropic bearings for the spin speed range of 

0-30000 rpm has been found, and the results are validated with the single disc 

system [11] for the same speed range.  

(b) The natural whirl frequencies for the first three modes of the uncracked rotor 

bearing system with variable cross sections were found and the convergence study 

made with three sets of elements. It is observed that the frequency of the first three 

modes converges with 30 numbers of elements. 
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(c) Natural whirl speeds are calculated with the help of 6 station finite element model 

which includes the 19 sub elements. The forward and the backward whirl modes are 

obvious due to the gyroscopic effect at all the natural frequencies.   

(d) The critical speeds of the system were found with isotropic bearings at 1.621 x 1TY 

rpm and orthotropic bearings at 1.5885 x 1TY rpm respectively. It concludes that, 

the rotor bearing system should surpass at these critical speeds to avoid the 

catastrophic failure.  

(e) The open crack on the rotor-disk-bearing system seems to have greater impact on 

the system instability. The instability region frequently raises when the crack depth 

grows, and the parametric instability swing to fall in minor rotating speed domain.  

(f) The starting points of the system instability regions which is related to the first two 

forward whirl modes for the system without transverse crack were found and given 

as pΩ = 3799 rpm and cΩ = 9690 rpm, and for the system with transverse crack 

were found and given as pΩ = 3742 rpm and cΩ = 9774 rpm. 

(g) The analysis of open crack with the asymmetric angle (s=TU,� the non dimensional 

crack depth µ and the crack locations on the rotor systems are investigated to show 

their effects on the system instability regions. The interest rotating speed ranges 

were found for the PIR SU�U with speed [3470, 3742] and CIR (U ) with speed 

[9660, 9774] rpm.  

(h) The frequency response and phase-plane diagrams were carried out by using 

Houbolt’s implicit time integration scheme to study the effect of spin speed with 

1000 rpm and 5000 rpm. When the spin speed is increased from 1000 rpm to 5000 

rpm the data series in the phase – plane diagrams were disturbed and the frequency 

domain has a single influenced frequency and the increments of spin speed of the 

system will result in the chaotic motion. 
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(i) Transient response analysis was performed for the spin speed range of 0 - 30000 

rpm with the help of ANSYS
®

 – v13. Bearing reactions for the three time stage 

period of 0.01 sec with a force of 1 kN was found and plotted in two directions for 

the left and right bearings.  

 

 The frequency response was derived from Houbolt’s implicit time integration 

scheme using an interactive script written in MATLAB
®

 numerical computing software. 

The frequency response and phase diagrams were obtained at a two specified operating 

speeds with disc eccentricity of 1x10
-3 

m. The presence of transverse crack in the system 

has a greater impact in the starting point of the system instability regions and when the 

non-dimensional crack depth ‘µ’ increases the system natural whirl frequencies falls in the 

minor rotating speed domain. The results obtained for the rotor system indicates that it can 

be analysed further with various forms of internal dampings and shear deformation.  
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5.2 Future scope 

The dynamic simulations of a linear system can be analyzed further by incorporating active 

magnetic bearing (AMB)/fluid film bearings and external dampings into the system 

configuration. This work can be extrapolated to deal with a non-linear system with the 

above mentioned systems for the bearing nonlinearities and other factors influenced by the 

viscous medium. The crack is taken as open in nature here. A breathing crack with time 

varying function can be used to study the various dynamic behaviour of the system. Multi-

disc rotor with disks of asymmetrical inertia and shapes can also be studied. The effects of 

various disc eccentricities and the operating speeds on the system frequencies and global 

system vibration response can be properly speculated. 

 

 There is a wide scope of analysis on open and breathing transverse cracks for the 

rotor system. Various effects such as disc eccentricities and operating speeds on the 

frequencies and overall vibration response can be studied. For the detection of cracks, this 

can be done inversely with the help of cracked excitation frequencies, crack location and 

the crack depths by adopting suitable methods. 
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