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Abstract

In most of the cryptological methods, the encrypted data or the cipher texts

maintain same statistics of the plain texts, whereas matrix encryption method

does not keep the statistics of individual cipher texts. However, it maintains the

statistics of block of characters of size m where m is the size of the key matrix. One

of the important features of the cipher matrix in Residue Number System (RNS)

is that it is highly difficult and time consuming to obtain its inverse by standard

inverse algorithms. Matrix in RNS does not have all the eigen values as defined

in complex field. The eigen factors of a matrix is defined as the irreducible factors

of the characteristic equation(eigen function). All the above properties are valid

for cipher matrix in Galois Field. The public key is generated by using two types

of matrices. One of these matrices is a self-invertible matrix or an orthonormal

matrix in Galois field whereas the other matrix is a diagonally dominant matrix.

Matrix inversion is very difficult and time consuming when size of matrix and

modulo number are large. The computational overhead in generalized Hill cipher

can be reduced substantially by using self-invertible matrices. Self-invertible ma-

trices uses less space compared to invertible matrices. In order to overcome this

problem, p(modulo) is made very large so that there would be at least pn/2 possible

matrices making it extremely difficult for the intruder to find the key matrix. In

this thesis several methods of generating self-invertible matrix are proposed.

Orthogonal Transform is used in signal processing. Modular Orthogonal Trans-

form such as Walsh, Hadamard, Discrete Cosine Transform, Discrete Sine Trans-

form, Discrete Fourier Transform have been used for encryption of image. The

orthogonal matrices can be used as asymmetric key for encryption. In this work

various methods of generating orthogonal matrices have been proposed. Matrix

having primitive polynomial as eigen factors is used resulting in robust encryp-

tion.

A novel operation called exponentiation and its inverse has been defined in this

thesis. All the properties of this new operation have been analyzed in Zp. This

operation is used for encryption of image. The original image can be obtained by



using the same exponentiation operation.

Chaotic sequence and chaotic signal generation is widely used in communica-

tion. Two stages of image encryption scheme using chaotic sequence is proposed

in this work. First stage of encryption by chaotic sequence generated in GF (p)

and the second stge of encryption is carried out by one of the encryption methods

discussed in the previous chapters.

Standard images have been used for encryption during simulation.

Keywords: Encryption, Decryption, Cipher matrix, Public key, Private key,

Residue number system, Eigen function, self-invertible matrix, Orthogonal, Ga-

lois Field, Exponentiation, Chaotic sequence.
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Chapter 1

Introduction

Cryptology is the branch of science that deals with the hiding of information

and protection of important information from the intruder. In World War II,

there was a need to secure the information on weapons, strategy and movement

of military from the enemy. Presently in the era of information technology the

security of information has become increasingly important. Since information is

sent from sender to receiver through public communication channel, it is necessary

to secure the information from other parties. Moreover, popular application of

multimedia technology and increasing transmission ability of network gradually

lead us to acquire information directly and clearly through images which should

be protected from public. As e-governance is the present trend of administration

and management, encryption of data has become a necessity. Image encryption

has widespread applications including Government, military, financial institution,

hospitals and private business.

1.1 Elementary Cryptosystems

A cryptosystem involves mapping of information from one domain to the same

domain. The algorithm of mapping is called encryption and its inverse is called

2



Chapter 1 Introduction

decryption. The messages are enciphered by applying mathematical operations

and the resulting messages are known as cipher texts. So the symbols that are

encrypted will have the same kind of mathematical structure as the encrypted

symbols. Since the number of symbols is finite, symbols must belong to finite

group, ring or field. The algebraic manipulation of the symbols belonging to

finite group, ring or field is used for encryption. Hence, it is also called algebraic

cryptosystem. Specifically, the principle of linear algebra can be applied over the

finite field, ring or group [1–4].

Cryptography can be broadly classified into symmetric (private-key/single-key)

and asymmetric (public-key/two-key) cryptography. The symmetric cryptography

involves the use of private-key encryption algorithm where the sender and the

receiver share a closely related key. The decryption key corresponds to the inverse

operation of the encryption key which can easily be formulated as there is no

secrecy between the sender and the receiver in the cryptosystem. Asymmetric

cryptography involves the use of two keys. One of the keys is a public-key, which

may be known to anybody can be used to encrypt messages with signature. The

private-key, known only to the recipient is used to decrypt messages and verify

signatures. The inverse of the public key will be very difficult to obtain as some

hidden parameters are only known to the recipient.

Encryption or information scrambling technology is an important security tool.

Properly applied, it can provide a secure communication channel even when the

underlying system and network infrastructure is not secure. This is particularly

important when data passes through shared systems or network segments where

more people may have access to the information. In these situations, sensitive

data and especially passwords should be encrypted in order to protect it from

unintended disclosure or modification. Encryption involves a mathematical trans-

3



Chapter 1 Introduction

formation of information into scrambled text, called “cipher text”. The compu-

tational process (an algorithm) uses a key, actually just a big number associated

with a password or pass phrase to compute or convert plain text into cipher text

with numbers or strings of characters. The resulting encrypted text is decipherable

only by the holder of the corresponding key. This deciphering process is called

decryption.

E-governance and business transactions require several information security

services. The information security services are confidentiality, integrity, avail-

ability, non-repudiation, authentication, etc. Confidentiality property is achieved

through encryption. The authentication and integrity of message are normally

achieved through biometric, digital signature and message authentication codes.

Network security is another major aspect of security service. It consists of security

in application layer, transport layer and the network layer [8].

1.2 Image Encryption

Rapid evolution of the internet in the digital world today has led to the security

of digital images a very important feature attracting considerable attention in

different image encryption methods. For example, medical diagnostic information

in form of EEG, ECG, MRI, Sonograph of a particular patient have to be stored

confidentially in the hospital. It is highly illegal to disclose the diagnostic data

of a person to unauthorized person. There are various image encryption systems

to encrypt and decrypt data. Due to large data size and real time constrains,

algorithms that are good for textual data may not be suitable for multimedia

data. In most of the natural images, the neighboring pixels are highly correlated.

In order to dissipate the high correlation among pixels and increase the entropy,

complex and efficient image encryption algorithm is necessary [10].

4



Chapter 1 Introduction

Protection of image data from unauthorized access is very important. Image

encryption plays a significant role in the field of information hiding. Generally

there are two levels of security for digital image encryption: low level and high

level. In low level security encryption, the encrypted image has a degraded visual

quality compared to that of the original one, but the content of the image is still

visible and understandable to the viewers. In the high level security, the content

is completely scrambled and the image appears as random noise. In such case, the

visual characteristic of the image is not understandable to the viewers [11]. The

proposed techniques of image encryption in this thesis can be categorised under

high-level security encryption.

1.3 Background

In most of the cryptographic methods, the encrypted data or the cipher texts

maintain same statistics of the plain texts, whereas matrix encryption method do

not maintain the statistics of individual cipher texts. However, it maintains the

statistics of block of characters of size equivalent to the size of the key matrix.

The method of substitution is one of the oldest techniques of encryption. In

this technique, units of plaintext are replaced with ciphertext. The “units” may

be single letters, pairs of letters, triplets of letters and mixtures of the above.

A monoalphabetic substitution uses fixed substitution over the entire message,

whereas a polyalphabetic substitution uses a number of substitutions at different

positions in the message [10]. Several other algorithms based on permutation

have been developed for encryption. The cipher matrix for encryption have been

implemented in GF(p), GF(2n), GF(pn) and finite ring in Residue Number System

modulo (p1p2).

5



Chapter 1 Introduction

1.3.1 Galois Field

A ring is an algebraic structure defined over two operations. The first operation

satisfies all the properties of an abelian group i.e. closure, associativity, commu-

tativity, existence of an identity element, existence of an inverse element. But

the second operation satisfies only the closure and associativity property [3]. A

Galois Field is a ring where the second operation satisfies all the properties of an

abelian group and the number of elements are finite. As the number of elements

are finite, GF is a finite field. Galois fields are denoted by GF(pn). Here p is a

prime number. Depending upon the value of p and n Galois fields can be broadly

divided into the following categories.

I. GF(p) : This field has maximum p elements. Example : Zp = 0, 1 · · · p− 1.

II. GF(2n) : This field has maximum 2n elements. If set Zp is used , p ∈ [0, 2n−1]

and p must be prime. Moreover, the value of n is usually 8, 16, 32 and so on. In

this work, we have taken the value of n as 8.

III. GF(pn) : This field has maximum pn elements and p must be prime. In this

work, we have taken the value of n as 2 and value of p as 13 [3].

1.3.2 Irreducible Polynomials

Polynomials are represented as n bit words where the coefficients are defined

over GF(2). Here, finite field GF (p) is not used. Rather the polynomial is rep-

resented as a n bit word for which the degree of the polynomial ∈ [0, n − 1].

During multiplication of two polynomials, the degree of the resulting polynomial

can become greater than n − 1 which cannot be represented by the same field.

For this reason, prime polynomials or irreducible polynomials are required. De-

gree of irreducible polynomial should be n so that when we divide the product of

two polynomials by the irreducible polynomial, resulting polynomial can always

6
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be defined over GF(2n). Some examples of irreducible polynomials are (x + 1),

x2 + x+ 1, x3 + x+ 1, x4 + x3 + 1 and so on [3].

1.3.3 Residue Number System(RNS)

In Residue Number System (RNS) arithmetic, an integer z is uniquely repre-

sented by an n-tuple of integers (x1, x2, · · · , xn), called the residue representation

of z. The integers xi, i = 1, 2, · · · , n are called the residues and are obtained as

remainders when the number x is divided by a set of distinct and relatively prime

integers, mi = 1, 2, · · · , n called the moduli of the residue number system. Thus,

xi = xi mod (mi), denoted by |xi|mi
, where 0 < xi < mi [6]. In RNS, arithmetic

operations are performed concurrently on a number of smaller integers. The addi-

tion of two numbers x and y is given by: x+y = (x1, x2, · · · , xn)+(y1, y2, · · · , yn) =

(z1, z2, · · · , zn) = z, where zi = |xi + yi|mi
. In a similar manner, multiplication

is accomplished by taking the products of the corresponding residues modulo mi.

Thus, in each modulo channel, arithmetic can be performed on a pair of smaller

integers thereby speeding up the whole operation. The actual speed depends on

the number of bits used in each channel. In order to increase the speed the moduli

must be kept small, but this in turn reduces the overall range of numbers that

can be used. One of the important features of the cipher matrix in RNS is that

it is very difficult and time consuming to obtain its inverse by standard inverse

algorithms. In this work, one tuple RNS has been used.

1.4 Motivation

Remote sensing data (photographs taken by satellite) contain lot of information

regarding natural resources like mines and agriculture. These photographs or

images should be encrypted and protected from the intruder. There has been

7
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a lot of research on image compression and image encryption. However, very

little research has been done on image encryption using cipher matrix based on

symmetric or asymmetric keys. Here it is intended to introduce a novel method

of cipher matrix encryption utilizing the asymmetric key concept. Moreover, the

method of encryption is made more robust by using two stage encryption. In

the first stage, each pixel of the image is modified using integer chaotic sequence

and in the second stage the novel asymmetric key encryption technique is used to

encrypt the modified image.

1.5 Objective of the Thesis

The objective of present research work is to investigate on different techniques

of encryption in asymmetric cryptosystems. In summary, the main objectives of

the research work can be listed below.

• To generate self-invertible cipher matrix in GF(p), GF(28) and GF(pn).

• To develop Orthogonal cipher matrix for image encryption in GF(p), GF(28)

and GF(pn).

• To introduce Exponentiation operation in GF(p) for encryption of image.

• A novel concept of Image Encryption by Chaotic sequence in GF(p).

1.6 Thesis Layout

Rest of the thesis is organised as follows-

8
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Chapter 2: Self-invertible matrix and Image Encryption Inversion of

a matrix is extremely difficult and time consuming when size of matrix and mod-

ulo number are large [12–15, 22]. The computational overhead in generalized Hill

cipher can be reduced substantially by using self-invertible matrices. Using self-

invertible matrices instead of invertible matrices decreases the key space. In order

to overcome this problem, p(modulo) is made very large so that there would be

at least pn/2 possible matrices making it nearly impossible for the intruder to find

the key matrix. Here, several methods of generating self-invertible matrix are pre-

sented. In order to make encryption more robust, another matrix B is multiplied

with A to generate the public key matrix.

Chapter 3: Discrete Orthogonal Transform and Image Encryption

Orthogonal Transform is a very popular technique in signal processing. Modular

Orthogonal Transform such as Walsh, Hadamard, Discrete Cosine Transform, Dis-

crete Sine Transform, Discrete Fourier Transform have been used for encryption of

image [11,17,28–32,39,42,43]. The orthogonal matrices can be used as asymmetric

key (similar to self-invertible matrices discussed earlier) for encryption. Several

methods for generating orthogonal matrices have been proposed. A matrix having

primitive polynomial as eigen factors is used to make the encryption more robust.

Chapter 4: Use of Exponentiation to Encrypt an Image A novel operation

called exponentiation has been defined as

A ∗ ∗B = C

where Cij =
n∏
k=1

aik ∗ ∗bkj for i = 1,· · · ,n and j = 1,· · · ,m.

The exponentiation inverse of matrix has also been defined.

All the properties of this new operation have been analyzed in Zp. This operation

9
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is used for encryption of image. If B is m×m key matrix and A = m× 1 image

pixel vector, then cipher text C is obtained as A ∗ ∗B = C. It is shown that ob-

taining the original image requires the same exponentiation operation.

Chapter 5: Image Encryption by Integer Chaotic Sequence Large num-

ber of researchers have used chaotic sequence and chaotic signal generation in

communication [23–27]. In this chapter, we have introduced two stages of encryp-

tion. First encryption is done using chaotic sequence followed by any one of the

encryption methods as discussed in the previous chapters. The proposed scheme

utilizes the chaotic sequence generated in GF (p).

Chaotic sequence y in GF(p) can be generated as

x(i) = x(i− 1)× µ× (1− x(i− 1))

zi = (x(i) ∗Q)

z = round(zi ∗N)

y(i) = mod(z, p)

where 1 ≤ i ≤ 256 and initial value of x i.e. x(1) = 0.2, µ=3.8, Q=105, N = 105

and p = 251. Since different chaotic sequence can be generated by varying initial

value x(1)[0,1], µ [3.6,4) and Q[104,106] these can be considered as private keys.

Chapter 6: Conclusion and Future Work This chapter reports overall contri-

butions of the thesis. Different methods of generating self-invertible matrix have

been proposed. In order to make encryption robust, a sparse matrix is defined

whose inverse can be obtained easily. The self-invertible matrix and sparse matrix

are used as private keys in the asymmetric key cryptosystem. Several methods of

generating orthonormal matrices has been proposed and used in combination with

10
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the sparse matrix for encryption of images. Exponentiation operation on matri-

ces is introduced and used for image encryption. Finally, a two-stage encryption

technique based on chaotic sequence followed by any one of the cipher matrix

technique proposed earlier is used to make encryption more robust. Also future

research problems are outlined for further investigation on the same/related topics

which include:

• Generating self-invertible and othonormal matrices over Zn and using them for

encryption.

• Application of chinese remainder theorem in GF(pn) for encryption.

• Encryption by representing data by variable radix number system and quantum

number system.

• Introduction of error correcting codes for making cryptography more secured

and immune to channel noise.

11
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Chapter 2

Self-Invertible Matrix and Image

Encryption

A poly-alphabetic cipher is a block cipher where the plain text character is

encrypted in such a way that the corresponding cipher text character will not

be same each time. Hill cipher is a poly-alphabetic cipher developed by Lester

Hill and the method of encryption is one of the oldest methods of encryption. In

this method, the message is first converted into blocks of equal size (say n) which

constitutes the matrix of the plain text. A key matrix of order n × n is chosen

such that its inverse exists. The cipher text matrix is obtained by multiplying the

plain text matrix with the key matrix. If Hill cipher is used for encryption, the

intruder has to test maximum of pn
2

combination of characters in order to guess

the key matrix correctly by using brute force attack. Here, p represents the size of

the domain of characters. If we consider only the set of lower case alphabets, then

p = 26 and the maximum number of trials will be 26n
2
. In generalized Hill cipher,

the key matrix is a combination of a n× n matrix and a vector of length n. The

inclusion of the vector in the key matrix results in a higher level of security than

the original Hill cipher encryption method. This is due to the fact that the brute
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force attack becomes extremely difficult, as the intruder has to test maximum

of pn
2+n characters instead of pn

2
characters. The increase in security is quite

substantial which is evident from the following example. If n = 5 and generalized

Hill cipher is used for encryption, the increase in number of trials to guess the key

matrix will be 265 = 1, 18, 81, 376. Hence, an extension of generalized Hill cipher

method is proposed that yields a higher level of security than the generalized Hill

cipher method [5].

2.1 Proposed methods of generating self-invertible

matrices in GF(p)

The computational overhead in generalized Hill cipher can be reduced substan-

tially by using self-invertible matrices. A matrix D is self-invertible if D2 = I or

D = D−1. Using self-invertible matrices instead of invertible matrices decreases

the key space as the number of self-invertible matrices of a particular order say

n × n is very less compared to the number of invertible matrices of the same or-

der. In order to overcome this problem, p(modulo) is made very large so that

there would be at least pn/2 possible matrices making it nearly impossible for

the intruder to find the key matrix. Several methods of generating self-invertible

matrices are presented here. In this analysis, l,m, n are chosen to be integers.

2.1.1 Generation of self-invertible matrix from another self-

invertible matrix

a) Method 1

Let A be a (l+m+ n)× (l+m+ n) self-invertible matrix expressed in terms

14
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of partition matrices

A =


A11 A12 A13

A21 A22 A23

A31 A32 A33

 (2.1)

where A11, A12, A13, A21, A22, A23, A31, A32 and A33 are the partition matrices of

size (l× l), (l×m), (l× n), (m× l), (m×m), (m× n), (n× l), (n×m) and (n× n)

respectively.

Since A is self-invertible, A = A−1

i.e. A.A = I, which can be written as

A2 =


A11A11 + A12A21 + A13A31 A11A12 + A12A22 + A13A32 A11A13 + A12A23 + A13A33

A21A11 + A22A21 + A23A31 A21A12 + A22A22 + A23A32 A21A13 + A22A23 + A23A33

A31A11 + A32A21 + A33A31 A31A12 + A32A22 + A33A32 A31A13 + A32A23 + A33A33



=


I11 0 0

0 I22 0

0 0 I33

 (2.2)

Here, I is an identity matrix of order (l +m+ n)× (l +m+ n) and hence can be

represented in terms of partition matrices similar to A.

If a matrix B is generated by multiplying A12 and A32 by k (any integer) and

dividing A21 and A23 by k, then the matrix B also becomes self-invertible.

Proof - As per the above procedure,

B =


A11 kA12 A13

1
k
A21 A22

1
k
A23

A31 kA32 A33

 (2.3)

15
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Then,

B2 =


A11A11 +A12A21 +A13A31 k(A11A12 +A12A22 +A13A32) A11A13 +A12A23 +A13A33

1
k (A21A11 +A22A21 +A23A31) A21A12 +A22A22 +A23A32

1
k (A21A13 +A22A23 +A23A33)

A31A11 +A32A21 +A33A31 k(A31A12 +A32A22 +A33A32) A31A13 +A32A23 +A33A33


Using (2.2) in above equation

B2 =


I11 0 0

0 I22 0

0 0 I33


orB2 = I

(2.4)

Example (Modulo 13) :

Let A =



8 10 4 10 2

2 1 8 6 9

8 7 11 2 3

3 11 9 7 9

12 3 7 8 0


The matrix A consists of the following partition matrices.

A11 =

8 10

2 1

 , A12 =

4 10

8 6

 , A13 =

2

9


A21 =

8 7

3 11

 , A22 =

11 2

9 7

 , A23 =

3

9


A31 =

12

3

 , A32 =

7

8

 , A33 =
[
0
]

For k = 2

B =



8 10 8 7 2

2 1 3 12 9

4 10 11 2 8

8 12 9 7 11

12 3 1 3 0
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B2 mod(13) =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


Thus, B is self-invertible in modulo(13).

b) Method 2

Let A be a (m+n)× (m+n) self-invertible matrix expressed in terms of partition

matrices.

A =

A11 A12

A21 A22

 (2.5)

where A11, A12, A21 and A22 are the partition matrices of size (m×m), (m×n), (n×

m) and (n× n).

andB =

−A11 A12

A21 −A22

 (2.6)

then B becomes self-invertible.

Proof of above method is self evident.

Example (Modulo 13) :

Let A =



5 3 8 7 2

11 12 3 12 9

4 10 2 11 5

8 12 4 6 2

12 3 12 10 0



Let m = 3 and n = 2. Then the matrix A consists of the following partition

matrices.

17



Chapter 2 Self-Invertible Matrix and Image Encryption

A11 =


5 3 8

11 12 3

4 10 2

 , A12 =


7 2

12 9

11 5


A21 =

 8 12 4

12 3 12

 , A22 =

 6 2

10 0



Now B =

−A11 A12

A21 −A22


Substituting the values of A11, A12, A21 and A22 in the above matrix,

B =



−5 −3 −8 7 2

−11 −12 −3 12 9

−4 −10 −2 11 5

8 12 4 −6 −2

12 3 12 −10 0



B mod(13) =



8 10 5 7 2

2 1 10 12 9

9 3 11 11 5

8 12 4 7 11

12 3 12 3 0



B2 mod(13) =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


Thus, B is self-invertible in modulo(13).
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c) Method 3

Let A and B be self-invertible matrices of size (m×m) and (n× n) respectively.

Then C will be self-invertible if

C =



a11 ×B a12 ×B . . . a1m ×B

a21 ×B a22 ×B . . . a2m ×B

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

am1 ×B am2 ×B . . . amm ×B


(2.7)

or

C =



b11 × A b12 × A . . . b1n × A

b21 × A b22 × A . . . b2n × A

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

bn1 × A bn2 × A . . . bnn × A


(2.8)

Proof - Case 1 (equation (2.7)):

C2 =



(a11
2 + a12a21 + · · ·+ a1mam1)B

2 . . . (a11a1m + a12a2m + · · ·+ a1mamm)B2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(am1a11 + am2a21 + · · ·+ ammam1)B
2 . . . (am1a1m + am2a2m + · · ·+ a2mm)B2



=



B2 0 0 · · · 0

0 B2 0 · · · 0

0 0 B2 · · · 0

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

0 0 0 0 B2


= I
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Hence, C is self-invertible.

Proof - Case 2 (equation (2.8)):

Similarly, C generated by equation (2.8) can be proved to be self-invertible.

d) Method 4

Let A be a matrix of size (m×m) and

B =

B11 B12

B21 B22

 (2.9)

if B11 = A3, B22 = −A3 and B12 ×B21 = I − A6

then, B will be self-invertible. Therefore, B12 can be any factor of the expression

I − A6. By using above method, we can get several self-invertible matrices. The

proof is self evident.

Example (Modulo 13) :

Let A =


3 6 5

2 9 10

4 7 11

 so A3 =


12 0 1

6 6 9

4 6 8


Case I -

LetB12 = I, thenB21 = I − A6 =


9 7 6

12 2 11

1 7 9

 , soB =



12 0 1 1 0 0

6 6 9 0 1 0

4 6 8 0 0 1

9 7 6 1 0 12

12 2 11 7 7 4

1 7 9 9 7 5


Case II -

LetB12 = I − A, thenB21 = (I + A)(I + A2 + A4), soB =



12 0 1 11 7 8

6 6 9 11 5 3

4 6 8 9 6 3

9 2 2 1 0 12

7 9 2 7 7 4

7 0 6 9 7 5
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Case III -

LetB12 = I + A, thenB21 = (I − A)(I + A2 + A4), soB =



12 0 1 4 6 5

6 6 9 2 10 10

4 6 8 4 7 12

12 6 10 1 0 12

6 1 3 7 7 4

11 11 0 9 7 5


Case IV -

LetB12 = I − A2, thenB21 = (I + A2 + A4), soB =



12 0 1 12 10 0

6 6 9 1 7 11

4 6 8 8 5 11

4 4 6 1 0 12

0 5 9 7 7 4

9 12 3 9 7 5


Case V -

LetB12 = I − A3, thenB21 = (I + A3), soB =



12 0 1 2 0 12

6 6 9 7 8 4

4 6 8 9 7 6

0 0 1 1 0 12

6 7 9 7 7 4

4 6 9 9 7 5


Case VI -

LetB12 = (I − A)(I − A+ A2), thenB21 = (I + A+ A2), soB =



12 0 1 0 7 2

6 6 9 1 4 1

4 6 8 11 9 3

10 5 11 1 0 12

8 0 7 7 7 4

9 10 11 9 7 5
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All other cases are transpose of all the matrices cited above. This method can

also be extended by taking any value of n, i.e. by assuming B11 = An, for n > 3.

e) Method 5

I. If A is a self-invertible matrix and B is defined as below for any value of m

and n such that modulo square root of m2 + n2 exists.

B =
1√

n2 +m2

nA mA

mA −nA

 (2.10)

then B is self-invertible.

Example (Modulo 13) :

Let A =


6 6 7

9 4 10

4 10 4


putting n=6 and m=2 in (2.10)

B =



10 10 3 12 12 1

2 11 8 5 8 7

11 8 11 8 7 8

12 12 1 3 3 10

5 8 7 11 2 5

8 7 8 2 5 2


which is self-invertible.

II. If A is a self-invertible matrix, then for any integer values of m1,m2, ...,m6;

B =
1√

m2
1 +m2

2 +m3m5 +m4m6

m1A+m2I m3A+m4I

m5A+m6I −(m1A+m2I)

 (2.11)

B will be a self-invertible matrix provided

2m1m2 +m4m5 +m3m6 = 0 (2.12)
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and modulo square root of m2
1 +m2

2 +m3m5 +m4m6 exists.

One of the solutions of the above equation is

m1 = 3, m2 = 4, m3 = 5, m4 = 6, m5 = 7, andm6 = 5

The above solution satisfies equation (2.12) as

2m1m2 +m4m5 +m3m6 = 24 + 42 + 25 = 91mod(13) = 0

m2
1 +m2

2 +m3m5 +m4m6 = 9 + 16 + 35 + 30 = 90 mod13 = −1 mod13

and
√
−1 mod(13) = 5 or 8

Example (Modulo 13) :

Let A =


6 6 7

9 4 10

4 10 4


substituting modulo square root of m2

1 +m2
2 +m3m5 +m4m6 = 8 in equation

(2.11)

B =
1

8



9 5 8 10 4 9

1 3 4 6 0 11

12 4 3 7 11 0

8 3 10 4 8 5

11 7 5 12 10 9

2 5 7 1 9 10



=



6 12 1 11 7 6

5 2 7 4 0 3

8 7 2 9 3 0

1 2 11 7 1 12

3 9 12 8 11 6

10 12 9 5 6 11
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This resulting matrix is self-invertible.

Again substituting modulo square root of m2
1 +m2

2 +m3m5 +m4m6 = 5 in equa-

tion(2.11)

B =
1

5



9 5 8 10 4 9

1 3 4 6 0 11

12 4 3 7 11 0

8 3 10 4 8 5

11 7 5 12 10 9

2 5 7 1 9 10



=



7 1 12 2 6 7

8 11 6 9 0 10

5 6 11 4 10 0

12 11 2 6 12 1

10 4 1 5 2 7

3 1 4 8 7 2


This matrix is also self-invertible.

f) Method 6

If A is a matrix such that A× A = 0, then for any integer values of m1,m2, ...,m6;

B =
1√

m2
2 +m4m6

m1A+m2I m3A+m4I

m5A+m6I −(m1A+m2I)

 (2.13)

B will be a self-invertible matrix provided

2m1m2 +m4m5 +m3m6 = 0 (2.14)

and m2
2 +m4m6 is a perfect square. One of the solutions of the above equation is:

m1 = 2, m2 = 6, m3 = 5, m4 = 6, m5 = 7 andm6 = 5

This solution satisfies equation (2.14) as

2m1m2 +m4m5 +m3m6 = 24 + 42 + 25 = 91mod(13) = 0

24



Chapter 2 Self-Invertible Matrix and Image Encryption

and

m2
2 +m4m6 = 36 + 30 = 66 = 1mod(13) and

√
1 = 1

Example (Modulo 13) :

Let A =


6 12 11

1 2 4

11 9 5


then A× A = 0

Substitutingm1 = 2,m2 = 6,m3 = 5,m4 = 6,m5 = 7,m6 = 5 and√
m2

2 +m4m6 = 1.

B =



5 11 9 10 8 3

2 10 8 5 3 7

9 5 3 3 6 5

8 6 12 8 2 4

7 6 2 11 3 5

12 11 1 4 8 10


This matrix is self-invertible.

2.1.2 Generation of self-invertible matrix from a random

matrix in GF(p)

If A is a m×m self-invertible matrix partitioned as A11(1× 1), A12(1× (m− 1)),

A21((m − 1) × 1) and A22((m − 1) × (m − 1)), then it can be generated from a

random matrix B by the following method.

1. Generate a random matrixB of size (m−1)×(m−1) with bij = i×s×rj−1mod(p)

where r and s are any numbers in GF(p). Since all the row vectors of B are linearly

dependent, all eigen values except one will be zero and the non-zero eigen value

will be equal to the trace of the matrix.

2. Generate A22 by adding I (Identity matrix) to B, or A22 = B + I

3. A22 will have one eigen value λ1 = trace(A22)−m+2 and all other eigen values
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will be 1.

4. Let A11 = −λ1
5. Then, A12 and A21 are consistent solutions of I −A22

2 i.e. A21.A12 = I −A22
2.

6. If A is generated in the following way, it will be self-invertible.

A =

A11 A12

A21 A22


Proof :

If A is a self-invertible matrix, then

A12.A21 = 1− λ12 (2.15)

A21.A12 = I − A22
2 (2.16)

A12(−λ1I + A22) = 0 (2.17)

and (−λ1I + A22)A21 = 0 (2.18)

A12 and A21 are consistent solutions of I − A22
2 as stated above which satisfies

(2.16).

Moreover,

A12 × A21 = trace of {I − A22
2}

Therefore,

A12.A21 = 1− λ12

If both (2.15) and (2.16) are satisfied, then (2.17) and (2.18) will be automatically

satisfied as A12
T and A21 are left and right eigen vectors of A22. Thus, it is proved

that A is self-invertible.

Example (Modulo 13) :

Let B be a 4× 4 partition matrix with s = 2 and r = 6

B =


2 12 7 3

4 11 1 6

6 10 8 9

8 9 2 12
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Since A11 = −λ1 = −8 = 5

A22 = B + I =


3 12 7 3

4 12 1 6

6 10 9 9

8 9 2 0



I − A22
2 =


8 9 2 12

3 5 4 11

11 1 6 10

6 10 8 9


On solving (2.15) and (2.16), we get one of the consistent solution A21 and A12,

whose values are
[
1 2 3 4

]T
and

[
8 9 2 12

]
respectively. Thus, the self-

invertible matrix will be

A =



5 8 9 2 12

1 3 12 7 3

2 4 12 1 6

3 6 10 9 9

4 8 9 2 0


2.2 Generation of self-invertible matrix in GF(pn)

2.2.1 Generation of 2 × 2 self-invertible matrix

If q(x) is a primitive polynomial of degree n, and matrix A is defined as

A =

a11 a12

a21 a22

 (2.19)

then A will be self-invertible provided that

a12(x)[a11(x) + a22(x)] = 0 (2.20)

and a211(x) + (a12(x)a21(x)) = 1 (2.21)
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Equations (2.20) and (2.21) imply that

a11(x) = −a22(x) (2.22)

and a21(x) = (1− a211(x))(a−112 (x)) (2.23)

2.2.2 Generation of m×m self-invertible matrix

Let A be a m×m matrix mod q(x), where q(x) is the primitive polynomial in

GF (pn).

If B11 = A3, B12 = I + A2, B21 = I + A2 + A4 and B22 = −B11

thenB =

B11 B12

B21 −B11

 (2.24)

Here, B is a self-invertible matrix mod q(x).

The methods enumerated in the previous section 2.1.2 for obtaining self-invertible

matrix in GF(p) are also applicable for generation of self-invertible matrix in

GF (pn).

So,

B =
1√

n2(x) +m2(x)

 n(x)A(x) m(x)A(x)

−m(x)A(x) n(x)A(x)


provided m2(x) +n2(x) equals to a complete square in GF(p). This can be gener-

ated by the following relation as

m =
m2

1(x)−m2
2(x)

m2
1(x) +m2

2(x)
×K (2.25)

n =
2m1(x)m2(x)

m2
1(x) +m2

2(x)
×K (2.26)

where K is any number.

2.3 Eigen value problem of matrices in GF(p)

In section 2.1.2, generation of higher order self-invertible matrices depend on

eigen values of lower order matrices. The conventional definition of eigen value
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of matrices in GF(p) is just not sufficient as the characteristic equation of matrix

does not always possess roots in GF(p) [20–22]. The characteristic equation can

be factorized (if not irreducible) into a set of irreducible polynomial factors. We

call these factors as eigen factors of a matrix. The conventional eigen vectors of

matrix in GF(p) can be defined as long as the eigen factor of the matrix is linear.

Therefore, the modal matrix of the original matrix can only be defined provided

that all the eigen factors of the matrix are linear. If λn + an−1λ
(n−1) + · · · + a0

is a characteristic equation(eigen function) of a matrix, one of the corresponding

matrices in GF(p) will be



−an−1 1 0 0 0 · · · 0

−an−2 0 1 0 0 · · · 0
...

...
...

...
... · · ·

...

−a1 0 0 0 0 · · · 1

−a0 0 0 0 0 · · · 0


or 

0 1 0 0 0 · · · 0

0 0 1 0 0 · · · 0
...

...
...

...
... · · ·

...

0 0 0 0 0 · · · 1

−a0 −a1 −a2 −a3 −a4
... −an−1


2.3.1 Proposed theorem on eigen factor of a matrix in

GF(p)

THEOREM 2.1

If eigen function of an r×r matrix A is a primitive polynomial in Zp then An = I,

where n is the smallest integer that equals to pr − 1.

Proof - Since r×r matrix A is defined over Zp, the eigen factor belongs to GF(pr).

As per the definition of primitive polynomial if ‘a′ is a primitive polynomial then

an = 1. By Sylvster theorem the eigen function satisfies the matrix equation and
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therefore, the primitive polynomial will be replaced by the matrix A. Therefore

An = I

Corollary- If the eigen function equals to the product of two primitive polyno-

mials of degree r1 and r2, then the minimum integer n can be defined as below.

n = (pr1 − 1)(pr2 − 1) (2.27)

Since An = I in Zp, one can obtain the inverse of a matrix by determining An−1.

Thus, the inversion process becomes easier as one can obtain the inverse of a

matrix A by multiplying A with itself (n− 1) times.

2.3.2 Proposed method to obtain inverse of a matrix

If B is a matrix generated by the following method

B =


B11 B12 B13

B21 B22 B23

B31 B32 B33


whereB12, B13, B21, B23, B31andB32 are matrices with all zero elements andB11, B22, B33

may be either diagonal matrices or matrices similar to matrices defined in section

2.3.

thenB−1 =


B−111 B12 B13

B21 B−122 B23

B31 B32 B−133


The inverse of a diagonal matrix is also diagonal with elements equal to the inverse

of the diagonal elements of the matrix. Therefore. decryption matrix can be easily

obtained.

The inverse of matrices defined in section 2.3 can be found out by the following

method.

Let A be a matrix of the form defined in section 2.3 and B be its inverse i.e
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B = A−1

A =



−an−1 1 0 0 0 · · · 0

−an−2 0 1 0 0 · · · 0
...

...
...

...
... · · ·

...

−a1 0 0 0 0 · · · 1

−a0 0 0 0 0
... 0


(2.28)

B =



0 0 · · · 0 bn−1

1 0 · · · 0 ·

0 1 · · · · · · ·

· · · · · · · · · · · · 1

0 · · · · · · · · · b0


(2.29)

Since, B = A−1 =⇒ AB = I and using this relation, the elements of B can be

found out in the following way.

−an−1bn−1 + bn−2 = 0 (2.30)

−an−2bn−1 + bn−3 = 0 (2.31)

−an−3bn−1 + bn−4 = 0 (2.32)

...

−a1bn−1 + b0 = 0 (2.33)

and − a0bn−1 = 1 (2.34)

From equation (2.34)

bn−1 =

(
−1

an−1

)
Substituting bn−1 =

(
−1
an−1

)
in rest of the equations

b0 =
(
−a1
an−1

)
, b1 =

(
−a2
an−1

)
· · · bn−3 =

(
−an−2

an−1

)
and bn−2 =

(
−an−1

an−1

)
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2.4 Proposed theorem on eigen function of a ma-

trix in GF(pn)

THEOREM 2.2

If the eigen function of an r × r matrix A(x) having the elements in GF(pn) is a

primitive polynomial, then Ak(x) = I, where k = nr − 1.

Proof - The eigen function of r × r matrix is a polynomial of degree r. Since,

the matrix is defined in GF(pn), the polynomial belongs to the extended field.

As per the definition of primitive polynomial, it divides xn
r − 1. By Sylvester

theorem, the eigen function satisfies the matrix equation An
r
(x) = 1

2.5 Proposed algorithm for encryption and de-

cryption

(a) Encryption

Step 1. Generate a self-invertible matrix ‘A’ by any one of the methods mentioned

in section 2.1 and section 2.2.

Step 2. Select ‘n’ degree polynomials with non-zero roots arbitrarily.

Step 3. Generate a matrix ‘B’ with eigen factors derived from Step 2 and using

the method discussed in section 2.3.

Step 4. Determine the key matrix ‘C’ for encryption by the relation C = A.B.A.

Step 5. Divide the image into 8 × 8 blocks.

Step 6. Encrypt each block by the key matrix.

Step 7. Combine these blocks to form the encrypted image.

(a) Decryption

Step 1. Divide the encrypted image into 8 × 8 blocks.

Step 2. Generate decryption matrix ‘D’ by the relation D = A.B−1.A as discussed

in section 2.3.2.

Step 3. Decrypt each block using the decryption matrix.

Step 4. Form the decrypted image by combining these blocks.
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2.6 Cryptanalysis

Number of 2 × 2 invertible matrices that exist in Zp is equal to (p − 2)(p −

1)3. If Hill cipher is used for symmetric key encryption, the intruder has to test

(p − 2)(p − 1)3 number of matrices in order to find the key matrix. When the

dimension of the key matrix is increased and p is taken as a large number, the

number of matrices that the intruder needs to test increases exponentially. In this

method the computation time of finding the inverse of key matrix (by Gauss-Seidel

method) is very large. So, it becomes very difficult for the intruder to find the key

matrix. But the receiver also needs to find the inverse of the key matrix which will

take a considerable amount of time. In order to decrease the computational time

of decryption and maintain the robustness of the encryption, a new asymmetric

key encryption technique using self-invertible matrix is proposed.

Number of 2 × 2 self-invertible matrices that exist in Zp can be analytically

found out to be (p−2)2
2

. As mentioned earlier, when dimension of the matrix is

increased to N and p is taken a large number, the intruder has to test (p−2)N
2

number of matrices, which is very large. The proposed algorithm uses asymmetric

key technique for encryption. So, in order to decrypt the image, the intruder

has to find the inverse of public key which is very difficult to find as explained

previously. But the computation time of decryption reduces considerably by the

proposed decryption algorithm.

It is also difficult to predict the key by cipher-text-attack as the image is com-

pletely scrambled leaving no trace of the original image. The statistical property

of the image is also lost which is demonstrated in the histogram of the encrypted

image.

From the above analysis it is evident that one cannot find the key by plain-

text/cipher-text attack. Moreover image encryption by block transformation tech-

nique increases the difficulty level.

Above cryptanalysis also holds good for encryption in GF(28) and GF(132).
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2.7 Results

The proposed algorithm for encryption and decryption is validated using sim-

ulation technique. In the simulation studies, image of 256× 256 pixels with 8 bit

encoding for each pixel is considered.

2.7.1 Simulation result of encryption in GF(p) (p = 251)

Let A be a self-invertible matrix selected randomly in GF(p).

A =



83 48 155 157 231 91 43 47

231 138 119 173 49 123 113 2

136 79 191 226 89 7 105 215

82 57 197 146 150 191 203 45

133 44 158 6 153 3 17 83

112 211 28 70 155 35 227 181

45 147 204 162 6 81 86 212

189 6 23 152 45 183 41 170


The private key matrix B (in GF(p)) has been generated by taking eigen factors

x− 31, x− 7, x− 191, x3 + x2 + 1, x− 47 and x− 127 as defined in section 2.3.

So, the private key B can be presented as

B =



31 0 0 0 0 0 0 0

0 7 0 0 0 0 0 0

0 0 191 0 0 0 0 0

0 0 0 −1 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 −1 0 0 0 0

0 0 0 0 0 0 47 0

0 0 0 0 0 0 0 127
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The public key matrix C (in GF(p)) is generated by using the relation C = A.B.A

C =



45 95 198 73 140 150 16 25

147 22 181 104 147 57 165 240

29 202 104 205 70 228 153 74

98 196 173 107 23 97 9 188

68 150 78 25 213 4 88 12

201 214 113 70 210 173 81 27

129 44 100 120 129 189 161 156

8 63 52 165 12 56 77 79


The inverse of public key D (in GF(p)) is generated by using the relation D =

A.B−1.A

D =



131 224 48 1 225 161 127 133

106 184 221 181 25 41 145 248

158 189 81 212 65 197 6 44

88 195 40 103 146 52 38 234

185 58 41 174 104 131 187 157

4 132 177 54 138 51 136 10

213 245 225 122 180 149 43 173

221 146 173 191 226 131 133 120
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256 × 256 cameraman image and lena image shown in Figure 2.1 are considered

to carry out the simulation. Their histograms are presented in Figures 2.2 and 2.3

respectively.

Figure 2.1: Original cameraman and lena image used for encryption

Figure 2.2: Histogram of original cameraman image
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Figure 2.3: Histogram of original lena image

Since encryption is done in GF (p) with p = 251, pixels of original image beyond

250 are rounded to 250. The images rounded to 250 pixels and their corresponding

histograms are shown in Figures 2.4, 2.5 and 2.6 respectively.

Figure 2.4: Cameraman and lena image with pixels ≤ 250
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Figure 2.5: Histogram of cameraman image with pixels ≤ 250

Figure 2.6: Histogram of lena image with pixels ≤ 250

The encryption algorithm proposed in section 2.5 is used to encrypt the cam-

eraman and lena images which are rounded to 250 pixels. After encryption, the

images of cameraman and lena and their corresponding histograms are shown in

Figures 2.7, 2.8 and 2.9 respectively. On comparing the encrypted images with

the original images, it can be seen that the encrypted images and their histograms
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do not bear any resemblance with the original images and their histograms.

Figure 2.7: Encrypted image of cameraman and lena in GF (p)

(where p = 251) using encryption algorithm in section 2.5

Figure 2.8: Histogram of encrypted image of cameraman in GF (p)

(where p = 251) using encryption algorithm in section 2.5
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Figure 2.9: Histogram of encrypted image of lena in GF (p)

(where p = 251) using encryption algorithm in section 2.5

The encrypted images are decrypted by using the decryption algorithm pre-

sented in section 2.5. The decrypted images and their corresponding histograms

are shown in Figures 2.10, 2.11 and 2.12 respectively which are same as the origi-

nal images(rounded to 250 pixels) and their corresponding histograms.

Figure 2.10: Decrypted image of cameraman and lena image in GF (p)

(where p = 251) using decryption algorithm in section 2.5
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Figure 2.11: Histogram of decrypted image of cameraman in GF (p)

(where p = 251) using decryption algorithm in section 2.5

Figure 2.12: Histogram of decrypted image of lena in GF (p)

(where p = 251) using decryption algorithm in section 2.5
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2.7.2 Simulation result of encryption in GF (28)

The primitive polynomial for 8-bit data encryption in GF(28) is D8 +D4 +D3 +

D2 + 1 = 285.

Let A be a self-invertible matrix selected randomly in GF(28) whose decimal equiv-

alent is given here.

A =



126 44 206 129 243 125 136 167

6 171 226 67 181 12 32 52

84 182 159 42 244 72 112 132

217 227 104 172 75 172 192 232

145 187 60 100 137 229 231 72

244 180 162 231 62 165 53 94

64 47 28 148 133 234 4 1

20 154 139 181 173 55 238 206


The private key matrix B (in GF (28)) has been generated by taking eigen factors

x− (D + 1), x− (D2 +D + 1), x− (D3 +D2 + 1), x− (D4 +D3 + 1), x− (D4 +

D3 + D2 + D + 1) and x3 − x2 − x − D3 as defined in Section 2.5. So, decimal

equivalent of the private key B can be presented as

B =



3 0 0 0 0 0 0 0

0 7 0 0 0 0 0 0

0 0 13 0 0 0 0 0

0 0 0 1 1 0 0 0

0 0 0 1 0 1 0 0

0 0 0 8 0 0 0 0

0 0 0 0 0 0 25 0

0 0 0 0 0 0 0 31
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The public key matrix C (in GF (28)) is generated by using the relation C =

A.B.A. The decimal equivalent of C is given as below.

C =



100 65 30 107 19 171 106 150

28 230 67 19 79 204 218 30

114 10 231 226 210 72 36 112

104 91 169 104 72 187 61 111

208 232 83 103 244 125 249 181

109 128 89 106 255 241 161 212

110 139 119 245 120 169 46 251

101 229 186 144 160 217 53 40


The inverse of public key D (in GF (28)) is generated by using the relation D =

A.B−1.A. The decimal equivalent of D is given as below.

D =



191 95 113 197 203 54 130 120

13 133 48 68 175 18 68 67

57 39 191 219 236 45 92 5

144 174 66 229 250 128 27 230

53 239 41 246 106 56 20 69

73 159 67 2 46 144 145 198

252 154 195 233 107 167 146 140

57 116 197 42 235 13 13 181


The encryption algorithm proposed in section 2.5 is used to encrypt the camera-

man and lena images in GF (28). The encrypted images and their corresponding

histograms are shown in Figures 2.13, 2.14 and 2.15 respectively. On comparing

the encrypted images with the original images, it can be seen that the encrypted

images and their corresponding histograms do not bear any resemblance with the

original images and their histograms.
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Figure 2.13: Encrypted images of cameraman and lena in GF (28)

using encryption algorithm in section 2.5

Figure 2.14: Histogram of encrypted image of cameraman in GF (28)

using encryption algorithm in section 2.5
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Figure 2.15: Histogram of encrypted image of lena in GF (28)

using encryption algorithm in section 2.5

The encrypted images are decrypted by using the decryption algorithm pre-

sented in section 2.5. The decrypted images and their histograms are shown in

Figures 2.16, 2.17 and 2.18 respectively which are same as the original images and

their histograms.

Figure 2.16: Decrypted image of cameraman and lena in GF (28)

using decryption algorithm in section 2.5
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Figure 2.17: Histogram of decrypted image of cameraman in GF (28)

using decryption algorithm in section 2.5

Figure 2.18: Histogram of decrypted image of lena in GF (28)

using decryption algorithm in section 2.5
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2.7.3 Simulation result of encryption over GF(pn)

Encryption of cameraman and lena images in GF(28) is presented in previous

section. In this section, encryption in GF(pn) is presented considering p = 13

and n = 2, the primitive polynomial over GF(pn) D2 + D1 + 2 = 184 has been

considered for encryption. Let A be a self-invertible matrix selected randomly in

GF(pn) whose decimal equivalent is given here.

A =



24 97 79 1 15 40 14 144

76 159 71 13 11 157 40 65

74 78 143 91 117 19 0 168

0 162 129 16 110 37 94 8

24 110 134 130 70 70 8 118

108 81 166 90 25 80 26 68

0 92 14 151 89 76 142 73

0 15 107 70 140 114 64 83


The private key matrix B (in GF (pn)) has been generated by taking eigen factors

x− 1, x− (10D+ 1), x− (9D+ 1), x3−x2−x− 8, x− (4D+ 1) and x− (6D+ 1)

as defined in Section 2.5. So, decimal equivalent of the private key B can be

presented as

B =



1 0 0 0 0 0 0 0

0 131 0 0 0 0 0 0

0 0 118 0 0 0 0 0

0 0 0 1 1 0 0 0

0 0 0 1 0 1 0 0

0 0 0 8 0 0 0 0

0 0 0 0 0 0 53 0

0 0 0 0 0 0 0 79


The public key matrix C (in GF (pn)) is generated by using the relation
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C = A.B.A. The decimal equivalent of C is given as below.

C =



94 121 160 120 4 110 25 156

17 108 42 121 55 33 94 59

147 36 34 79 36 3 89 150

88 164 68 33 21 69 23 89

155 31 119 29 160 126 135 71

160 72 147 155 30 149 161 165

152 52 122 100 59 94 59 110

148 17 74 81 152 81 113 123


The inverse of public key D (in GF (pn)) is generated by using the relation D =

A.B−1.A. The decimal equivalent of D is given as below.

D =



25 112 102 13 44 97 94 37

60 109 44 96 71 62 165 19

162 21 127 82 57 120 2 87

154 46 103 40 59 22 114 137

157 82 65 130 40 43 17 70

96 81 139 162 104 117 55 105

168 104 131 3 130 108 57 90

107 112 167 111 4 1 20 124


Since encryption is done in GF(pn) with p = 13 and n = 2, pixels of original

image beyond 168 are rounded to 168. The image rounded to 168 pixels and its

histogram are shown in Figures 2.19, 2.20 and 2.21 respectively.

Figure 2.19: Cameraman and lena images with pixels ≤ 168

48



Chapter 2 Self-Invertible Matrix and Image Encryption

Figure 2.20: Histogram of cameraman image with pixels ≤ 168

Figure 2.21: Histogram of lena image with pixels ≤ 168

The encryption algorithm proposed in section 2.5 is used to encrypt the cam-
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eraman and lena images which are rounded to 168 pixels. The encrypted images

and their corresponding histograms are shown in Figures 2.22, 2.23 and 2.24 re-

spectively. On comparing the encrypted images with the original images, it can be

seen that the encrypted images and their histograms do not bear any resemblance

with the original images and their histograms.

Figure 2.22: Encrypted image of cameraman and lena in GF(132)

using encryption algorithm in section 2.5

Figure 2.23: Histogram of encrypted image of cameraman in GF(132)

using encryption algorithm in section 2.5
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Figure 2.24: Histogram of encrypted image of lena in

GF(132) using encryption algorithm in section 2.5

The encrypted image is decrypted by using the decryption algorithm presented

in section 2.5. The decrypted images and their histograms are shown in Figures

2.25, 2.26 and 2.27 respectively which are same as the original images (rounded

to 250 pixels) and their histograms.

Figure 2.25: Decrypted image of cameraman and lena in GF(132)

using decryption algorithm in section 2.5
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Figure 2.26: Histogram of decrypted image of cameraman GF(132)

using decryption algorithm in section 2.5

Figure 2.27: Histogram of decrypted image of lena in GF(132)

using decryption algorithm in section 2.5

The proposed algorithm is also tested with other images. Some of the sim-

ulation results are shown in Figure 2.28, where Figure 2.28(a,b,c) represent the

original images of Baboon, Barbara and Crowd. The corresponding histograms

of the original images are shown in Figure 2.28(d,e,f). The encryption algorithm

proposed in section 2.5 is used for encrypting the images. The encrypted images

are shown in Figure 2.28(g,h,i) and their histograms are represented in Figure

2.28(j,k,l).
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Figure 2.28: Additional simulation results
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2.8 Summary

Several methods of generating self-invertible matrices in GF(p), GF(28) and GF(pn)

are proposed in this chapter. In order to enhance the security, the public key for

encryption is taken as the product of self-invertible matrix and another matrix. If

the size of the matrix is increased, then decryption will be difficult. It has been

shown through theorems that eigen factors are very much essential to characterize

matrices in Galois field. Specifically, these principles can be used to determine

inverse of matrices by repeated multiplication of the same matrix. Results have

been validated through encryption of images using simulation techniques.
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Chapter 3

Discrete Orthogonal Transform

and Image Encryption

Transforms play major role in the field of engineering and applied science. It

is easier to work on the transformed data and lots of useful information can be

obtained from them. Fourier Transform, Cosine Transform, Sine Transform, etc

are the common transforms based on sinusoids because of the cyclic nature of

the signals. Walsh Transform and Walsh Hadamard Transform are simpler trans-

forms as compared to sinusoid-based transforms, in which the kernel is made of

+1 and −1. These transforms can be implemented without any additional mul-

tiplication operation. Hence, Walsh and Walsh Hadamard transforms are much

faster than Fast Fourier Transform. Modular Orthogonal Transforms such as

Walsh Transform, Walsh Hadamard Transform, Discrete Cosine Transform, Dis-

crete Sine Transform, Discrete Fourier Transform have been used for encryption

of image [28–31].

In this chapter, orthogonal matrices with elements belonging to finite field

i.e. GF (p), GF (2n) and GF (pn) have been introduced and several methods of

generating such matrices have been suggested. These orthogonal matrices are
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used as key matrices for encryption. To make encryption more secure another key

matrix is used which is generated by method similar to section 2.3.

3.1 Basic Theory

Let the image E be represented as a M × N matrix of integer numbers. An

image transform can generally process either the whole image or some part of the

image [28–31]. Transform matrices P and Q of dimension M ×M and N × N ,

respectively, are used to transform E into a matrix T of dimension M ×N .

T = PEQ (3.1)

If P and Q are non-singular, P−1 and Q−1 exist and the inverse transform can be

computed as

E = P−1TQ−1 (3.2)

Few terms and formulae are required for better understanding of this theory. Let

MT represent the transpose of the matrix M.

• M is symmetric if M = MT

• M is orthogonal if MTM = kI, where I is the identity matrix and k is any

number. If k = 1, then M is orthonormal.

• For any real and orthogonal matrix M , M−1 = 1
k
MT .

3.1.1 Hadamard Transform

Hadamard matrices are square matrices with entries +1 or -1 and have orthogo-

nal row vectors and orthogonal column vectors [33,54]. The Hadamard Transform

was first described by Hadamard in 1893. It grew out of matrix theory and has

been used widely in image processing, image compression and pattern recognition.
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Hadamard matrix operator is used to transform an image which is similar to the

two-dimensional Fourier transform [7].

If [f] represents the image and [F] the transformed image, the Hadamard Trans-

form is represented as [F ] = HN [f ]HN/N , whereHN represents aN×N Hadamard

matrix with element values either - 1 or + 1. The inverse Hadamard Transform

is given by [f ] = HN [F ]HN/N

For N=2, the Hadamard matrix is defined as

H2 =

1 1

1 −1


Then the Hadamard matrix of order 2N is generated in terms of the Hadamard

matrix of order N using the Kronecker product [7], as H2N = H2 ×HN

For N=2, H4 matrix is obtained as

H2×2 = H2 ⊗H2 =

H2 H2

H2 −H2

 = H4 =



1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1


Similarly H8, H16, H32, H64, H128, H256 matrices are obtained.

Properties

• Hadamard kernel is symmetric and orthogonal over finite field.

• Sequence of a row or a column of the kernel is given by the decimal representation

of the Gray code of the bit reversed binary values of the corresponding row or the

column index.

• The determinant of the minimum kernel is 2.

• The determinant of any other higher kernel of size 2n × 2n is 2n2
n−1

for n > 1.
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3.1.2 Walsh Transform

Walsh functions are often used in engineering applications, including communi-

cation systems and digital image processing. Walsh Transform was developed by

Walsh in 1923 by modification of Hadamard Transform and sometimes it is called

Walsh-Hadamard transform. M. A Karagodin et.al used the following Hadamard

Transform for image compression [13].

H4 =



1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1


The characteristics of the columns of H4 are the sign transitions (a transition is

defined as a -1 to 1 or 1 to -1 change). ForH4 the first column has 0 sign transitions,

the second column 3 sign transitions, the third column 1 sign transition, and the

fourth column 2 sign transitions. The number of sign changes is referred to as the

sequency. If the columns of H4 are arranged in order of increasing sequence, a

Walsh transform matrix w4 is obtained as [28–31,55]

w4 =



1 1 1 1

1 1 −1 −1

1 −1 −1 1

1 −1 1 −1


Hence, the Walsh Transform matrix is sequency ordered Hadamard transform

matrix. The Walsh transform is given by [F ] = WN [f ]WN/N

The inverse Walsh transform is computed as [f ] = WN [F ]WN/N similar to the

Hadamard Transform matrix. The rows (and columns) of the Walsh Transform

matrix are orthogonal and WN−1 = WN/N . The L × L upper left partition of
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the transformed image [F] using the Walsh transform corresponds to the lower L

sequency components.

Similarly, W8,W16,W32,W64,W128,W256 matrices are obtained.

Properties

• The Walsh transformation kernel is symmetric and orthogonal.

• Each row index or column index gives the sequency of the corresponding row or

the column in the kernel.

• The determinant of the minimum kernel is 2.

• And the determinant of any other higher kernel of size 2n × 2n is 2n.2n−1 for

n ≥ 2

Relationship between Walsh-ordered and Hadamard-ordered

Transforms

Walsh Ordered Binary Reverse Ordered Gray Ordered Decimal

(Hadamard ordered)

0 000 000 000 0

1 001 100 111 7

2 010 010 011 3

3 011 110 100 4

4 100 001 001 1

5 101 101 110 6

6 110 011 010 2

7 111 111 101 5
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3.1.3 The Discrete Cosine Transform

The N × N cosine transform matrix C = c(k, n), also called the Discrete Cosine

Transform (DCT) is defined as [20,21]

c(k, n) =


1√
N

k=0 and n ∈ [0,N-1],(√
2
N

)
cos
(
π(2n+1)(k)

2N

)
k ∈ [1,N-1] and n ∈ [0,N-1].

The one-dimensional DCT of a sequence u(n), 0 ≤ n ≤ N − 1 is defined as

v(k) = α(k)
N−1∑
n=0

u(n)cos

(
π(2n+ 1)k

2N

)
, k ∈ [0, N − 1] (3.3)

where α(0) =

√
1

N
, α(k) =

√
2

N
, k ∈ [1, N − 1] (3.4)

The inverse transformation is given by

u(n) =
N−1∑
k=0

α(k)v(k)cos

(
π(2n+ 1)k

2N

)
, n ∈ [0, N − 1] (3.5)

The basis vector of the 8×8 DCT shows the cosine transform of the image scan

line. Most of the transform coefficients are small, i.e. maximum energy of the data

is packed in a few transform coefficients. The two dimensional cosine transform

pair is obtained by substituting A=A∗ =C. The basis images of the 8 × 8 two

dimensional cosine transform are the cosine transform of different images.

Properties

• The cosine transform is real and orthogonal, i.e. C = CT ⇒ C−1 = CT

• The cosine transform is not real part of the unitary DFT. This can be seen

by inspection of C and the DFT matrix F. However, the cosine transform of a

sequence is related to the DFT of its symmetric extension.

• The cosine transform is a fast transform. The cosine transform of a vector of N

elements can be calculated in O(N log2N) operations via an N-point, where O is

the order of operation.

• The cosine transform has excellent energy compaction for highly correlated data.
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3.1.4 The Discrete Sine Transform

The N × N sine transform matrix also called as Discrete Sine Transform (DST)

Ψ = Ψ(k, n) is defined as

Ψ(k, n) =
1

N
sin

(
π(k + 1)(n+ 1)

N + 1

)
, k ∈ [0, N − 1] (3.6)

The sine transform pair of one-dimensional sequences is defined as

v(k) =

(√
2

N + 1

)
N−1∑
n=0

u(n)sin

(
π(k + 1)(n+ 1)

N + 1

)
, k ∈ [0, N − 1] (3.7)

u(n) =

(√
2

N + 1

)
N−1∑
k=0

v(k)sin

(
π(k + 1)(n+ 1)

N + 1

)
, n ∈ [0, N − 1] (3.8)

Two dimensional sine transform pair for N × N images is obtained by substituting

A = A∗ = AT = Ψ in the basis vectors and the basis images of the sine transform

Properties

• The sine transform is real, symmetric and orthogonal, i.e. Ψ∗ = Ψ = ΨT = Ψ−1.

Thus, the forward and inverse sine transforms are identical.

• The sine transform is not the imaginary part of the unitary DFT. The sine

transform of a sequence is related to the DFT of its anti symmetric extension.

• The sine transform is a fast transform. The sine transform (or its inverse) of

a vector of N elements can be calculated in O(Nlog2N) operations via a 2(N+1)

point FFT. Typically this requires N+1 = 2p, i.e. the fast sine transform is

usually defined for N=3, 7, 15, 31, 63, 255. Fast sine transform algorithms that

do not require complex arithmetic are also possible. In fact, these algorithms are

somewhat faster than the FFT and the fast cosine transform algorithms.

The sine transform is close to the KL transform algorithm for Markov se-

quences, whose boundary values are given. This makes it useful in many image

processing problems.
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3.2 Proposed methods of generating orthonor-

mal matrices in GF(p)

Several methods of generating orthonormal matrices in GF(p) are proposed in

the following sections.

3.2.1 Method I

Let A2 be a (2× 2) orthonormal matrix in GF(p) and is represented as below.

A2 =

 a11 a12

a21 a22



then a211 + a212 = 1 (3.9)

a11a21 + a12a22 = 0 (3.10)

and a221 + a222 = 1 (3.11)

If a11 and a22 are so selected such that

a211 + a222 = 1 (3.12)

From equation (3.10)

a21 =

(
−1

a11

)
a12a22 (3.13)

Substituting a21 from (3.13) in (3.11)

(a212a
2
22)

(a211)
+ a222 = 1

or
(a212 + a211) ∗ a222

a211
= 1 (3.14)

From equations (3.9) and (3.14)

a22 = ±a11 (3.15)

63



Chapter 3 Discrete Orthogonal Transform and Image Encryption

From equations (3.13) and (3.15)

a21 = −(±a12) (3.16)

For any value of m1 andm2

If x =
m2

1 −m2
2

m2
1 +m2

2

and y =
2m1m2

m2
1 +m2

2

then x2 + y2 = 1

Using (3.12) and above equation, a11 and a12 can be easily obtained.

Example (p = 251) With m1 = 2 and m2 = 1, the following 2 × 2 orthonormal

matrix A2 can be obtained.

A2 =

101 51

51 150

 or

101 51

200 101


Higher order orthonormal matrices can be generated by the nine matrices

(C11, C12, C21, C22, Z,D11, D12, D21, D22) as defined below.

C11 =

1 1

0 0

 C12 =

0 0

1 1


C21 =

−1 −1

0 0

 C22 =

 0 0

−1 −1



Z =

0 0

0 0



D11 =

C11 C12

Z Z

 D12 =

 Z Z

C11 C12


D21 =

C21 C22

Z Z

 D22 =

 Z Z

C21 C22
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A 4 × 4 orthonormal matrix A4 can be formulated as

A4 =


A2C11

2

... A2C12

2

· · ·
... · · ·

A2C21

2

... A2C22

2


On the same principle, 2m × 2m orthonormal matrix can be iteratively developed

by using 2m−1 × 2m−1 matrix and by replacing C11 ← D11, C12 ← D12, C21 ←

D21, C22 ← D22 and Z ←

Z Z

Z Z


3.2.2 Method II

Let A be a partition matrix of size 2m× 2m as shown below

A =


A11

... A12

· · ·
... · · ·

A21

... A22

 (3.17)

where A11, A12, A22 are three different orthonormal matrices of size m × m and

A21 = −A22A
T
12A11 (3.18)

AAT =


A11

... A12

· · ·
... · · ·

A21

... A22

 .

AT11

... AT21

· · ·
... · · ·

AT12
... AT22

 = 2I (3.19)

If above equations 3.17, 3.18 and 3.19 are satisfied, then A will be orthogonal

matrix. Thus by multiplying the matrix A by 1√
2

one can get an orthonormal

matrix.
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Example (Modulo p = 251)

Let A11, A12, A21, A22 be 4× 4 orthonormal matrices.

A11 =



161 131 45 24

131 90 24 206

58 50 209 107

50 193 107 42



A12 =



245 123 65 38

123 6 38 186

189 90 20 61

90 62 61 231



A22 =



99 120 159 79

120 152 79 92

66 178 20 61

178 185 61 231


A21 is obtained by substituting values of A11, A12 and A22 in (3.18)

A21 =



51 71 212 80

71 200 80 39

244 200 239 138

200 7 138 12
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So, A =



161 131 45 24 245 123 65 38

131 90 24 206 123 6 38 186

58 50 209 107 189 90 20 61

50 193 107 42 90 62 61 231

51 71 212 80 99 120 159 79

71 200 80 39 120 152 79 92

244 200 239 138 66 178 20 61

200 7 138 12 178 185 61 231


This 8× 8 matrix A is orthogonal and satisfies the relationship (3.19)

3.2.3 Method III

Let A11, A12 and A22 be orthonormal matrices. The following matrix A will be

orthonormal,

A =

n1A11 n2A12

n2A21 n1A22

 (3.20)

if A21 = −A22A
T
12A11 and n2

1 + n2
2 = 1.

n1 and n2 are integers which can be determined by the following relation

n1 =
m2

1 −m2
2

m2
1 +m2

2

, n2 =
2m1m2

m2
1 +m2

2

where, m1 and m2 are also integers.
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3.3 Proposed method of generating Orthonor-

mal Matrices in GF(2n)

If f(x) is a polynomial in GF(2n), a 2 × 2 orthonormal matrix A in GF(2n)

can be of the form

A =

 f(x) f(x) + 1

f(x) + 1 f(x)

 (3.21)

Then a generalised orthonormal matrix F2m,2m(x) can be generated using orthonor-

mal matrix Fm,m(x) as shown below.

F2m,2m(x) =

 Fmm(x) Fmm(x) + I

Fmm(x) + I Fmm(x)

 (3.22)

3.4 Proposed method of generating Orthonor-

mal matrix in GF(pn)

Let A be n× n orthonormal matrix in GF(pn).

A =

a11(x) a12(x)

a21(x) a22(x)

 (3.23)

then, A.AT = I ⇒ a211(x) + a212(x) = 1, (3.24)

a11(x)a21(x) + a12(x)a22(x) = 0, (3.25)

and a221(x) + a222(x) = 1 (3.26)

Let m1(x) and m2(x) be two elements in GF(pn)

then a11(x) =
(m2

1(x)−m2
2(x))

(m2
1(x) +m2

2(x))
(3.27)

and a12(x) =
2m1(x)m2(x)

(m2
1(x) +m2

1(x))
(3.28)

Substituting a11(x) and a12(x) in equation (3.25) and (3.26), a21(x) and a22(x)

can be obtained. Now a 2m × 2m matrix B can be generated by evaluating three
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(2m−1 × 2m−1) orthonormal matrices A11(x), A12(x)andA22(x) as per the following

method.

LetB =

b(x)A11(x) c(x)A12(x)

c(x)A21(x) b(x)A11(x)

 (3.29)

where, b(x) and c(x) are elements in GF(pn).

B will be orthonormal matrix, if

b2(x) + c2(x) = 1 (3.30)

and A21(x) = −A22(x)AT12(x)A11(x) (3.31)

3.5 Proposed algorithm of Encryption and De-

cryption

(a) Encryption

Step 1. Generate an orthonormal matrix ‘A’ by any one of the methods narrated

in sections 3.2 through 3.4.

Step 2. Select ‘n’ degree polynomials with non-zero roots arbitrarily.

Step 3. Generate a matrix ‘B’ with eigen factors derived from Step 2 and using

the method discussed in section 2.3.

Step 4. Determine the key matrix ‘C’ for encryption by the relation C = A.B.AT .

Step 5. Divide the image into 8 × 8 blocks.

Step 6. Encrypt each block by the key matrix.

Step 7. Combine these blocks to form the encrypted image.

(a) Decryption

Step 1. Divide the encrypted image into 8 × 8 blocks.

Step 2. Generate decryption matrix ‘D’ by the relation D = A.B−1.AT as dis-

cussed in section 2.3.2.
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Step 3. Decrypt each block using the decryption matrix.

Step 4. Form the decrypted image by combining these blocks.

3.6 Cryptanalysis

Number of 2 × 2 orthonormal matrices that exist in GF (p) equals to

2(p − 1)2 − p. When the dimension of the matrix is increased and p is taken

as a large number, the number of orthonormal matrices increases exponentially.

Therefore, it becomes very difficult for the intruder to guess the key-matrix by

brute force attack. The proposed algorithm uses asymmetric key technique for

encryption where the public key equals to A.B.AT . Here, A is the orthonormal

matrix and B is generated as discussed in section 2.3. Decryption is easy if the

private keys A and B are known as inverse of these keys can be easily determined.

But, the intruder has to find the inverse of the public key using standard matrix

inversion methods.

It is also difficult to predict the key by cipher-text-attack as the image is com-

pletely scrambled leaving no trace of the original image. The statistical property

of the image is also lost which is demonstrated in the histogram of the encrypted

image.

From the above analysis, it is evident that one cannot find the key by plain-

text/cipher-text attack. Moreover image encryption by block transformation tech-

nique increases the difficulty level.

Above cryptanalysis also holds good for encryption in GF(28) and GF(132).
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3.7 Results

The proposed algorithm for encryption and decryption is validated using simu-

lation technique. In the simulation studies, images of different resolution i.e. 256

× 256 and 512 × 512 pixels with 8 bit encoding for each pixel is considered.

3.7.1 Simulation result of encryption in GF(p) (p = 251)

Let A be an orthonormal matrix selected randomly in GF(p).

A =



56 242 223 52 143 206 166 182

242 195 52 28 206 108 182 85

42 192 160 190 139 114 109 94

192 209 190 91 114 112 94 142

165 23 51 185 89 9 219 213

23 86 185 200 9 162 213 32

125 86 35 225 143 51 127 174

86 126 225 216 51 108 174 124


The private key matrix B (in GF(p)) has been generated by taking eigen factors

x− 31, x− 7, x− 191, x3 + x2 + x− 8, x− 47 and x− 127 as defined in Section
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2.3. So, the private key B can be presented as

B =



31 0 0 0 0 0 0 0

0 7 0 0 0 0 0 0

0 0 191 0 0 0 0 0

0 0 0 −1 1 0 0 0

0 0 0 −1 0 −1 0 0

0 0 0 8 0 0 0 0

0 0 0 0 0 0 47 0

0 0 0 0 0 0 0 127


The public key matrix C (in GF(p)) is generated by using the relation C = A.B.AT

C =



3 208 49 179 68 73 67 17

18 41 2 22 134 176 186 36

170 208 156 39 8 139 54 96

16 217 178 103 139 3 65 179

91 118 236 100 183 10 172 156

223 6 40 130 84 238 78 211

234 212 237 83 168 93 105 226

45 121 240 208 2 66 204 75
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The inverse of public key D (in GF(p)) is generated by using the relation D =

A.B−1.AT

D =



70 113 213 19 221 122 50 248

39 215 164 91 205 3 192 7

238 97 48 231 115 96 55 188

0 185 152 36 24 160 189 114

217 111 225 239 117 229 232 26

6 80 97 124 177 202 14 111

127 121 206 177 110 244 99 162

206 103 24 126 227 211 21 187


256 × 256 cameraman image and 512 × 512 baboon image shown in Figures 2.1

and 3.1 respectively are considered to carry out the simulation. Their histograms

are presented in Figures 2.2 and 3.2 respectively. Since encryption is done in

GF(p) field with p = 251, pixels of original image beyond 250 are rounded to 250.

The images are rounded to 250 pixels and their histograms are shown in Figures

2.3, 3.3, 2.4 and 3.4 respectively.

Figure 3.1: Original baboon image used for encryption
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Figure 3.2: Histogram of original baboon image

Figure 3.3: Baboon image with pixels ≤ 250
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Figure 3.4: Histogram of baboon image with pixels ≤ 250

The encryption algorithm proposed in section 3.5 is used to encrypt the cam-

eraman and baboon images which are rounded to 250 pixels. After encryption, the

images of cameraman and baboon and their corresponding histograms are shown

in Figures 3.5, 3.6 and 3.7 respectively. On comparing the encrypted images with

the original images, it can be seen that the encrypted images and their histograms

do not bear any resemblance with the original images and their histograms.

Figure 3.5: Encrypted image of cameraman and baboon in GF (p)

(where p = 251) using encryption algorithm in section 3.5
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Figure 3.6: Histogram of encrypted image of cameraman in GF (p)

(where p = 251) using encryption algorithm in section 3.5

Figure 3.7: Histogram of encrypted image of baboon in GF(p)

(where p = 251) using encryption algorithm in section 3.5
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The encrypted images are decrypted by using the decryption algorithm pre-

sented in section 3.5. The decrypted images and their corresponding histograms

are shown in Figures 3.8, 3.9 and 3.10 respectively which are same as the original

images(rounded to 250 pixels) and their corresponding histograms.

Figure 3.8: Decrypted image of cameraman and baboon in GF (p)

(where p = 251) using decryption algorithm in section 3.5

Figure 3.9: Histogram of decrypted image of cameraman in GF (p)

(where p = 251) using decryption algorithm in section 3.5
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Figure 3.10: Histogram of decrypted image of baboon in GF (p)

(where p = 251) using decryption algorithm in section 3.5

3.7.2 Simulation result of encryption over GF (28)

The primitive polynomial for 8-bit data encryption in GF(28) is D8 +D4 +D3 +

D2 + 1 = 285.

Let A be a self-invertible matrix selected randomly in GF(28) whose decimal equiv-

alent is given here.
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The private key matrix B (in GF (28)) has been generated by taking eigen

factors x − (D + 1), x − (D2 + D + 1), x − (D3 + D2 + 1), x − (D4 + D3 + 1),

x− (D4 +D3 +D2 +D + 1) and x3 − x2 − x−D3 as defined in Section 2.3. So,

decimal equivalent of the private key B can be presented as

B =



3 0 0 0 0 0 0 0

0 7 0 0 0 0 0 0

0 0 13 0 0 0 0 0

0 0 0 1 1 0 0 0

0 0 0 1 0 1 0 0

0 0 0 8 0 0 0 0

0 0 0 0 0 0 25 0

0 0 0 0 0 0 0 31



The public key matrix C (in GF (28)) is generated by using the relation C =

A.B.AT . The decimal equivalent of C is given as below.

C =



141 159 226 82 232 92 119 84

214 54 9 92 15 196 75 195

103 252 132 196 95 131 209 155

72 148 42 147 147 180 163 144

27 21 2 16 239 166 35 148

177 248 99 5 79 36 0 127

241 21 229 62 157 19 181 76

96 168 21 143 215 51 3 220


The inverse of public key D (in GF (28)) is generated by using the relation D =

A.B−1.AT . The decimal equivalent of D is given as below.
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D =



54 199 239 180 50 52 214 186

111 236 23 197 240 159 213 117

251 154 127 181 224 50 129 134

177 234 202 147 26 126 19 119

181 224 255 146 154 231 221 79

17 78 252 127 45 15 209 189

16 95 52 119 241 222 77 79

64 55 16 83 95 61 254 83


The encryption algorithm proposed in section 3.5 is used to encrypt the camera-

man and baboon images inGF (28). The encrypted images and their corresponding

histograms are shown in Figures 3.11, 3.12 and 3.13 respectively. On comparing

the encrypted images with the original images, it can be seen that the encrypted

images and their corresponding histograms do not bear any resemblance with the

original images and their histograms.

Figure 3.11: Encrypted images of cameraman and baboon in GF (28)

using encryption algorithm in section 3.5
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Figure 3.12: Histogram of encrypted image of cameraman in GF (28)

using encryption algorithm in section 3.5

Figure 3.13: Histogram of encrypted image of baboon in GF (28)

using encryption algorithm in section 3.5
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The encrypted images are decrypted by using the decryption algorithm pre-

sented in section 3.5. The decrypted images and their histograms are shown in

Figures 3.14, 3.15 and 3.16 respectively which are same as the original images and

their histograms.

Figure 3.14: Decrypted images of cameraman and baboon in GF (28)

using decryption algorithm in section 3.5

Figure 3.15: Histogram of decrypted image of cameraman in GF (28)

using decryption algorithm in section 3.5
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Figure 3.16: Histogram of decrypted image of baboon in GF (28)

using decryption algorithm in section 3.5

3.7.3 Simulation result of encryption over GF (pn)

Encryption of cameraman and baboon images in GF(28) is presented in pre-

vious section. In this section, encryption in GF(pn) is presented considering

p = 13 and n = 2 and the primitive polynomial over GF(pn) D2 + D1 + 2 = 184

has been considered for encryption. Let A be a self-invertible matrix selected

randomly in GF(pn) whose decimal equivalent is given here.
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A =



101 126 71 14 104 47 151 140

56 101 168 71 135 104 42 151

162 84 32 18 47 112 19 73

98 162 164 32 70 47 109 19

145 105 9 158 101 126 71 14

77 145 24 9 56 101 168 71

134 103 167 21 162 84 32 18

79 134 161 167 98 162 164 32


The private key matrix B (in GF (pn)) has been generated by taking eigen factors

x− 1, x− (10D+ 1), x− (9D+ 1), x3−x2−x− 8, x− (4D+ 1) and x− (6D+ 1)

as defined in Section 2.3. So, decimal equivalent of the private key B can be

presented as

B =



1 0 0 0 0 0 0 0

0 131 0 0 0 0 0 0

0 0 118 0 0 0 0 0

0 0 0 1 1 0 0 0

0 0 0 1 0 1 0 0

0 0 0 8 0 0 0 0

0 0 0 0 0 0 53 0

0 0 0 0 0 0 0 79


The public key matrix C (in GF (pn)) is generated by using the relation C =

A.B.AT . The decimal equivalent of C is given as below.
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C =



68 119 123 100 63 113 85 16

33 44 164 99 147 94 32 48

52 134 1 54 137 107 7 152

42 62 34 149 68 4 123 70

49 118 47 93 132 35 85 135

132 53 35 102 154 160 56 119

61 152 14 125 19 71 90 13

93 9 51 15 26 32 25 116


The inverse of public key D (in GF(pn)) is generated by using the relation D =

A.B−1.AT . The decimal equivalent of D is given as below.

D =



104 119 115 31 0 49 135 90

83 131 76 162 148 22 123 108

66 23 141 6 46 167 15 22

140 28 21 18 158 90 50 91

148 87 47 43 60 49 1 52

147 141 122 20 61 68 19 160

138 151 22 163 104 158 35 137

15 138 150 50 26 23 152 82



Since encryption is done in GF(pn) with p = 13 and n = 2, pixels of original

image beyond 168 are rounded to 168. The image rounded to 168 pixels and its

histogram are shown in Figures 3.17, 3.18 and 3.19 respectively.
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Figure 3.17: Cameraman and baboon images with pixels ≤ 168

Figure 3.18: Histogram of cameraman image with pixels ≤ 168
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Figure 3.19: Histogram of baboon image with pixels ≤ 168

The encryption algorithm proposed in section 3.5 is used to encrypt the cam-

eraman and baboon images which are rounded to 168 pixels. The encrypted

images and their corresponding histograms are shown in Figures 3.20, 3.21 and

3.22 respectively. On comparing the encrypted images with the original images,

it can be seen that the encrypted images and their histograms do not bear any

resemblance with the original images and their histograms.

Figure 3.20: Encrypted images of cameraman and baboon in GF(132)

using encryption algorithm in section 3.5
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Figure 3.21: Histogram of encrypted image of cameraman in GF(132)

using encryption algorithm in section 3.5

Figure 3.22: Histogram of encrypted image of baboon in

GF(132) using encryption algorithm in section 3.5

The encrypted image is decrypted by using the decryption algorithm presented
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in section 3.5. The decrypted images and their histograms are shown in Figures

3.23, 3.24 and 3.25 respectively which are same as the original images (rounded

to 250 pixels) and their histograms.

Figure 3.23: Decrypted images of cameraman and baboon in GF(132)

using decryption algorithm in section 3.5

Figure 3.24: Histogram of decrypted image of cameraman in GF(132)

using decryption algorithm in section 3.5
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Figure 3.25: Histogram of decrypted image of baboon in GF(132)

using decryption algorithm in section 3.5

The proposed algorithm is also tested with other images. Some of the sim-

ulation results are shown in Figure 3.26, where Figure 3.26(a,b,c) represent the

original images of Cell, Goldhill and Pepper. The corresponding histograms of

the original images are shown in Figure 3.26(d,e,f). The encryption algorithm

proposed in section 3.5 is used for encrypting the images. The encrypted images

are shown in Figure 3.26(g,h,i) and their histograms are represented in Figure

3.26(j,k,l).
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Figure 3.26: Additional simulation results
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3.8 Summary

This chapter analyzed the use of orthonormal cipher matrix in encrypting images.

It can be used to extract the relevant information, similar to Walsh Transform,

Hadamard Transform, Discrete Cosine Transform, Discrete Sine Transform, Dis-

crete Fourier Transform etc. In order to make the encryption more secure, the

concept of private key has been introduced. Five methods of generating higher

order orthonormal matrices have been suggested. Simulation results show the

efficacy of the proposed algorithm.
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Chapter 4

Matrix Exponentiation and

Image encryption

Previously, there has been an extensive study on various operations and their

properties related to matrices. Some of these operations are addition, subtrac-

tion, scalar multiplication, multiplication and inversion. In this chapter, a new

operation on matrices called exponentiation has been proposed.

Exponentiation of a matrix by another matrix is defined in the following sec-

tion. It is a binary operation and is denoted by the operator ‘∗∗’. In this chapter,

all the properties of this operation has been presented. Moreover, it has been also

used for encryption of images by asymmetric key encryption technique.

4.1 Exponentiation Operation over Zp

4.1.1 Definition of exponentiation operator

Definition 4.1

Let A be the l ×m and B be m× n matrices defined over Zp.
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A ∗ ∗B is defined as

C = A ∗ ∗B =



a11 a12 · · · a1m

a21 a22 · · · a2m

· · · · · ·

· · · · · ·

· · · · · ·

al1 al2 · · · alm


∗ ∗



b11 b12 · · · b1n

b21 b22 · · · b2n

· · · · · ·

· · · · · ·

· · · · · ·

bm1 bm2 · · · bmn


(4.1)

=



c11 c12 · · · c1n

c21 c22 · · · c2n

· · · · · ·

· · · · · ·

· · · · · ·

cl1 cl2 · · · cln


where cij =

m∏
k=1

aik ∗ ∗bkj for i = 1 · · · l; j = 1, · · · n and cij ∈ Zp (4.2)

In this chapter, ∗∗ is used as normal exponentiation operator and ∗ is used as

normal multiplication operator.

4.1.2 Proposed theorem on exponentiation identity matrix

Theorem 4.1

If A is a n × n square matrix, then there exists an exponentiation identity matrix

Ie which is equal to the multiplicative identity matrix I.

i.e. A ∗ ∗Ie = A ∗ ∗I = A

95



Chapter 4 Matrix Exponentiation and Image encryption

Proof:

As per definition of exponentiation operator A ∗ ∗B = C where

cij =
m∏
k=1

aik ∗ ∗bkj = (aij ∗ ∗1) ∗
n∏

k=1,k 6=j

aik ∗ ∗0 = aij

Therefore Ie = I

4.1.3 Proposed theorem on exponentiation inverse of a

matrix

Theorem 4.2

If A is a n1 × n2, B is a n2 × n3 and C is a n3 × n4 matrix defined over Zp

then (A ∗ ∗B) ∗ ∗C = A ∗ ∗(B ∗ C)

Proof:

LetD = A ∗ ∗B and E = D ∗ ∗C

D =

n2∏
k=1

aik ∗ ∗bkl for i = 1, · · · , n1

E =

n3∏
l=1

(

n2∏
k=1

aik ∗ ∗bkl) ∗ ∗clj for i = 1, · · · , n1 and j = 1, · · · , n4

=

n2∏
k=1

aik ∗ ∗
n3∑
l=1

bkl ∗ clj

= A ∗ ∗(B ∗ C)
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Corollary

If A is a n1 × n2, B is a n2 × n3 and C is a n3 × n4 matrix over Zp then

(A ∗ ∗B) ∗ ∗C = A ∗ ∗(B ∗ C) = A

if and only if C is the multiplicative inverse of B modulo (p− 1).

Proof:

By Theorem 4.2, (A ∗ ∗B) ∗ ∗ C = A ∗ ∗(B ∗ C) and since ap−1 = 1, B ∗ C = I

only when bij = 0 mod (p-1) and bii = 1 mod(p− 1).

Therefore B ∗ C = I mod (p− 1).

N.B. Above theorem is not valid for p, if p is not a prime number.

4.2 Properties

The different properties which the exponentiation operator ∗∗ satisfies are men-

tioned below.

1. Closure : If A and B are two matrices defined over Zp, then A ∗ ∗B will also

be defined over Zp.

2. Associativity : The ∗∗ operator does not satisfy the associativity property

as

(A ∗ ∗B) ∗ ∗C 6= A ∗ ∗(B ∗ ∗C)

This is evident from Theorem 4.2 .

3. Commutativity: The ∗∗ operator does not satisfy the commutativity prop-

erty as

A ∗ ∗B 6= B ∗ ∗A
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This is obvious by definition.

4. Existence of identity element: As per Theorem 4.1, exponentiation iden-

tity matrix exists and is same as multiplicative identity matrix.

5. Existence of inverse: Exponentiation inverse of a matrix is same as mul-

tiplicative inverse of a matrix which is evident from Theorem 4.2. Therefore,

exponentiation inverse of a matrix can only exist if the matrix is non-singular.

4.3 Proposed algorithm for encryption and de-

cryption

All the operations mentioned below are carried out in Zp .

(a) Encryption

Step 1. Generate a self-invertible matrix ‘A’ in mod (p − 1) by any one of the

methods mentioned in section 2.2 and section 2.3.

Step 2. Select ‘n’ degree polynomials with non-zero roots arbitrarily.

Step 3. Generate a matrix ‘B’ with eigen factors derived from Step 2 and using

the method discussed in section 2.3.

Step 4. Determine the key matrix ‘C’ for encryption by the relation C = A∗B∗A.

Step 5. Divide the image into 8 × 8 blocks.

Step 6. Encrypt each block by the key matrix using exponentiation operation.

Step 7. Combine these blocks to form the encrypted image.

(a) Decryption

Step 1. Divide the encrypted image into 8 × 8 blocks.

Step 2. Generate decryption matrix ‘D’ by the relation D = A ∗ B−1 ∗ A as

discussed in section 2.3.

Step 3. Decrypt each block by exponentiation operation using the decryption
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matrix.

Step 4. Form the decrypted image by combining these blocks.

4.4 Cryptanalysis

The proposed algorithm of encryption is similar to the algorithm discussed

in chapter 2. Hence, the cryptanalysis done in chapter 2 holds good for this

algorithm. Moreover, since encryption involves a very complex operation i.e. ex-

ponentiation, it is difficult to find the key matrix by plain-text, cipher-text or

brute-force attack.

4.5 Results

The proposed algorithm for encryption and decryption was validated using

simulation technique. In the simulation studies, image of 256 × 256 pixels with 8

bit encoding for each pixel is considered.

4.5.1 Simulation result of encryption in GF(p) (p = 251)

Let A be a self-invertible matrix selected randomly in GF(p).

A =



134 103 195 195 29 91 43 47

86 241 148 216 78 123 113 2

31 239 92 101 19 7 105 215

31 5 23 240 231 191 203 45

167 85 211 47 218 3 17 83

228 100 174 88 4 20 207 164

186 190 238 236 14 75 106 92

64 230 112 114 86 35 83 197
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The private key matrix B (in GF(p)) has been generated by taking eigen factors

x− 31, x− 7, x− 191, x3 + x2 + 1, x− 47 and x− 127 as defined in section 2.3.

So, the private key B can be presented as

B =



31 0 0 0 0 0 0 0

0 7 0 0 0 0 0 0

0 0 191 0 0 0 0 0

0 0 0 −1 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 −1 0 0 0 0

0 0 0 0 0 0 47 0

0 0 0 0 0 0 0 127


The public key matrix C (in GF(p)) is generated by using the relation

C = A ∗B ∗ A.

C =



220 83 167 10 47 191 233 1

83 192 19 88 31 157 208 161

165 129 196 214 197 89 83 237

240 180 240 2 63 126 138 18

210 100 220 67 42 210 73 212

162 170 156 98 184 47 242 190

113 195 249 70 141 179 209 113

47 155 131 200 89 161 228 244


The inverse of public key D (in GF(p)) is generated by using the relation

D = A ∗B−1 ∗ A
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D =



127 6 108 102 176 48 97 28

25 228 225 143 18 163 66 21

46 218 89 138 78 246 215 132

91 85 133 61 67 131 245 29

210 100 190 9 92 136 244 28

28 230 214 92 120 185 104 4

163 235 209 15 138 41 181 175

197 115 121 45 192 239 72 158


256 × 256 cameraman image and iris flower image shown in Figures 2.1 and

4.1 are considered to carry out the simulation. Their histograms are presented in

Figures 2.2 and 4.2. Since encryption is done in GF(p) field with p = 251, pixels

of original image beyond 250 are rounded to 250. The images are rounded to 250

pixels and their histograms are shown in Figures 2.3, 2.4, 4.3 and 4.4 respectively.

Figure 4.1: Original iris flower image used for encryption
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Figure 4.2: Histogram of original iris flower image

Figure 4.3: Iris flower image with pixels ≤ 250
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Figure 4.4: Histogram of iris flower image with pixels ≤ 250

The encryption algorithm proposed in section 4.3 is used to encrypt the cam-

eraman image and iris flower image which are rounded to 250 pixels. The en-

crypted images and their corresponding histograms are shown in Figures 4.5, 4.6

and 4.7 respectively. On comparing the encrypted images with the original im-

ages, it can be seen that the encrypted images and their histograms do not bear

any resemblance with the original images and their histograms.

Figure 4.5: Encrypted image of cameraman and iris flower

using encryption algorithm in section 4.3
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Figure 4.6: Histogram of encrypted image of cameraman

using encryption algorithm in section 4.3

Figure 4.7: Histogram of encrypted image of iris flower

using encryption algorithm in section 4.3
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The encrypted images are decrypted by using the decryption algorithm pre-

sented in section 4.3. The decrypted images and their corresponding histograms

are shown in Figure 4.8, 4.9 and 4.10 respectively which are same as the original

image rounded to 250 pixels and its histogram.

Figure 4.8: Decrypted images of cameraman and iris flower

using decryption algorithm in section 4.3

Figure 4.9: Histogram of decrypted image of cameraman

using decryption algorithm in section 4.3
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Figure 4.10: Histogram of decrypted image of iris flower

using decryption algorithm in section 4.3

The proposed algorithm is also tested with other images. Some of the sim-

ulation results are shown in Figure 4.11, where Figure 4.11(a,b,c) represent the

original images of Baboon, Eveface and Barbara. The corresponding histograms

of the original images are shown in Figure 4.11(d,e,f). The encryption algorithm

proposed in section 4.3 is used for encrypting the images. The encrypted images

are shown in Figure 4.11(g,h,i) and their histograms are represented in Figure

4.11(j,k,l).
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Figure 4.11: Additional simulation results
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4.6 Summary

In this chapter, a new operation i.e. exponentiation of square matrices whose

elements are in GF(p) (where p = 251) has been defined and two theorems are

also proposed which will be helpful for image encryption. This operation has been

seen to be effective in encryption of images.
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Chapter 5

Image Encryption by Integer

Chaotic Sequence

In chapter 4, a new operation called exponentiation operation was introduced

to make image encryption more robust and the private keys used in this chap-

ter(and previous chapters) can be found out by standard algorithms used to find

the inverse of matrices. But, it takes considerable amount of time to find the

private keys which makes the image encryption technique robust. In order to en-

hance the robustness of the image encryption technique, the image is encrypted

in two stages in this chapter. In the first stage, the image is encrypted using a

novel integer chaotic sequence algorithm and then second stage encryption is done

using one of the encryption algorithms mentioned in chapters 2,3 and 4.

A chaotic sequence is a non-periodic, non-converging random sequence. Its ini-

tial value can be varied to produce different sequences. Since, the chaotic sequence

is deterministic and reproducible, it can be used conveniently for encryption of any

data sequence.
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5.1 Encryption by chaotic sequence

A Non-linear chaotic algorithm uses power function and tangent function in-

stead of a linear function. These functions produce highly uncorrelated random

sequence. This algorithm requires a set of parameters which are generated by

using a one-time-one-password. Moreover, this algorithm has the advantage of a

large key space and an improved security [25].

Image can be encrypted using a combination of different permutation tech-

niques. The main idea is that an image can be viewed as an arrangement of bits,

pixels and blocks. The intelligible information present in an image is due to the

correlations among the bits, pixels and blocks in a particular arrangement. Secu-

rity of image encryption can be improved by decreasing the correlation among the

bits, pixels and blocks using certain permutation techniques. It is observed that

the permutation of bits is effective in reducing the correlation thereby decreasing

the perceptual information, whereas the permutation of pixels and blocks are good

at producing higher level security compared to bit permutation [52].

A large external key is used to generate two chaotic logistic maps. It can be

used to generate an efficient chaos based stream cipher for image encryption. In

this algorithm, the parameters of second stage encryption depend on the previous

encrypted data. For mixing the current encryption parameters with previously

encrypted data, an encryption algorithm which uses an iterative cipher module

based feedback and data-dependent input mechanism is used. The secret key is

then changed after encryption of each pixel of the image, which makes the cipher

more robust against any attack. This is an efficient encryption algorithm for real

time [26].

In the traditional method, binary sequences are used for image permutation.

Chaos sequences are the real valued sequences. In order to convert a chaos se-
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quence into binary sequence an extra logic operation is required which generates

the integer pseudo random number for image permutation.

Blowfish encryption algorithm is used to encrypt an image and the resulting

image is further encrypted by an image encryption approach that uses block-

based encryption. A seed is used as a key to generate a pseudo random sequence.

The image is then divided into number of blocks and using this pseudo random

sequence, the pixel position of the image is transformed. Using this technique the

correlation among the pixels decreases and entropy increases [48].

Another technique of image encryption uses a combination of permutation

technique followed by normal encryption method. This permutation technique is

based on the combination of image permutation and a popular encryption algo-

rithm called RijnDael. The image is divided into number of blocks and these

blocks are then rearranged into permuted image. The resulting image is en-

crypted using the RijnDael algorithm. The correlation between image elements

decreases significantly by using the combination technique and hence higher en-

tropy is achieved [52].

The Shuffle Encryption Algorithm (SEA) applies nonlinear s-box byte substi-

tution. Following this, a shuffling operation is performed which partially depends

on the input data and the given key. The statistical analysis is done using his-

tograms, correlation and covariance with which security of encryption algorithm

is analyzed [36].

Image encryption can be done by selecting specific higher frequencies of DCT

coefficients which are the characteristic values and then these DCT coefficients

are encrypted. These encrypted blocks are shuffled using a pseudo-random bit

sequence. This method reduces the computational requirements for huge volumes

of images. In this method first the image is decomposed into 8 × 8 blocks. Then
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these blocks are transformed from the spatial domain to frequency domain by

the DCT and the DCT coefficients of higher frequencies are encrypted using Non-

Linear Shift Back Register (stream cipher) [11]. The concept behind the technique

is that, the detailed information of an image are embedded in the higher frequen-

cies, which the human eye cannot perceive. The algorithm is lossless and this

technique reduces time complexity.

Enhanced Image encryption algorithm by the chaos sequence is used to per-

mute the blocks of the image. Chaotic systems are sensitive to the initial condition.

Minor variation of initial condition produces a different sequence. The pixels of

the image are permuted on the basis of index position of the chaotic sequence and

then the blocks of image are permuted using this chaotic sequence by mapping it

with index position and encryption is done. Slight variation of the initial condi-

tion will lead to a different encrypted image and thereby making the encryption

algorithm more robust [38].

5.2 An overview of chaotic sequence

5.2.1 Chaos Theory

Chaos theory is now being applied to various fields of engineering, basic science

like physics, philosophy related to field of mathematics and also economics. Here

the focus is on the behavior of dynamic systems that are highly sensitive to initial

conditions commonly referred to as the butterfly effect. Small variation in the

initial conditions yields diverging results. The systems are deterministic without

involvement of random elements. The deterministic nature makes the system

predictable. Chaotic behavior is also evident in natural systems like weather. In

common usage, “chaos” means “a state of disorder”.
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5.2.2 Chaotic System

Chaotic system is a complex system and is highly dependent on initial condi-

tions. For a system to be deterministic and accurate, the initial conditions must

be known and to a certain level of accuracy. Following are various methods used

for mapping the chaotic system.

Logistic map

• Xn+1 = AXn(1−Xn)

• Usual parameter: A = 4

Hĕnon map

• Xn+1 = 1 + Yn − aX2
n

• Yn+1 = bXn

• Usual parameters: a = 1.4, b = 0.3

Chirikov (standard) map

• Xn+1 = Xn + Yn+1mod2pi

• Yn + 1 = Yn + ksin× nmod2pi

• Usual parameter: k = 1

Lorenz attractor

• dx
dt

= σ(y − x)

• dy
dt

= −xz + rx− y

• dz
dt

= xy − bz

• Usual parameters: σ = 10, r = 28, b = 8
3
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Róssler attractor

• dx
dt

= −y − z

• dy
dt

= x+ ay

• dz
dt

= b+ z(x− c)

• Usual parameters: a = b = 0.2, c = 5.7

Ueda attractor

• dx
dt

= y

• dy
dt

= −x3 − ky +Bsin(z)

• dz
dt

= 1

• Usual parameters: B = 7.5, k = 0.05

Simplest quadratic dissipative chaotic flow

• dx
dt

= y

• dy
dt

= z

• dz
dt

= −Az + y2x

• Usual parameter: A = 2.017

Simplest piecewise linear dissipative chaotic flow

• dx
dt

= y

• dy
dt

= z

• dz
dt

= −Az − y − |x|+ 1

• Usual parameter: A = 0.6
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5.2.3 Chaotic Sequence

A chaotic sequence is non-converging, non-periodic sequence and exhibits noise-

like behavior. The initial value can be varied to produce number of uncorrelated,

random-like, yet deterministic and reproducible signal sequences. These sequences

called the chaotic sequences are real valued sequences which can be converted into

integer valued sequences which are effective for pixel permutation during image

encryption.

One of the simplest and most widely studied nonlinear dynamic systems capa-

ble of exhibiting chaos is the logistic map.

Properties of chaotic sequence

For any dynamic function f mapping V→ V to be classified as chaotic, it must

have the following properties-

• periodic points are dense in V

• f is topologically transitive

• f has sensitive dependence on initial conditions

Consider our function f(x) = µ × x(1 − x) where µ is the control parameter.

This function maps [0,1] to [0,1] and matches all above criteria.

Dense periodic points A set is called dense when there is another number

between any two numbers. For instance, between 2 and 2.1 there is 2.05. But,

between 2 and 2.05 there is 2.005. Therefore, that a dense set has infinite number

of points.

Topological transitivity When we pick up any open interval of any size within

[0,1], there will exist a point in the selected interval that will jump to another

interval within [0,1] under iteration.
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Sensitive dependence on initial conditions Different initial conditions pro-

duce different chaotic sequences. The sensitivity dependence implies that no two

chaotic sequences will converge in a periodic cycle of iteration of any length. How-

ever, the chaotic sequences may converge in a non-periodic cycle of iteration.

Logistic map The logistic map is a polynomial mapping of degree 2, which is

a simple example of chaotic behavior which is obtained in a very simple non-linear

dynamical equation. Mathematically, the logistic map is written as,

xk+1 = xk × µ× (1− xk) where, 1 < µ < 4 and xk ∈ [0, 1]

Analysis of the variation of sequence for different values of µ By

varying the parameter µ, the following behavior is observed.

• With µ between 0 and 1, the sequence will die, independent of the initial value.

• With µ between 1 and 2, the sequence will converge to µ − 1
µ
, independent of

the initial value.

•With µ between 2 and 3, the sequence will converge to µ− 1
µ
, but it will fluctuate

around that value for some time. The rate of convergence is linear, except for µ

=3. The convergence will be slow if µ=3.

• With µ between 3 and 1+
√

6 (approximately 3.45), for almost all initial condi-

tions the sequence will approach permanent oscillations between two values. These

two values are dependent on µ.

• With µ between 3.45 and 3.54 (approximately), for all initial conditions the

sequence will approach permanent oscillations between four values. These four

values are dependent on µ.

•With µ increasing beyond 3.54, for almost all initial conditions the sequence will

approach oscillations 8 values, these eight values are dependent on µ.

• At µ approximately 3.57 is the onset of chaos, for almost all initial conditions
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there cannot be any oscillations of finite period. Slight variations in the initial

population yield dramatically different results over time, a prime characteristic of

chaos.

• Most values beyond 3.57 exhibit chaotic behavior, but there are still certain

isolated ranges of µ that show non-chaotic behavior. Beyond µ = 4, the values

eventually leave the interval [0,1] and diverge for almost all initial values.

5.3 Proposed scheme

Two stages of encryption are introduced here. In the first stage, chaotic se-

quence is generated in GF(p). Each row of pixels of the gray image is multiplied

by a separate chaotic sequence. The second stage of encryption is performed by

multiplying the modified data of the first stage with a 8 × 8 cipher matrix gen-

erated by any one of the algorithm discussed in chapters 2, 3 or 4. Decryption is

carried out by multiplying the final encrypted data with the multiplicative inverse

of the cipher matrix and then the multiplicative inverse of the chaotic sequence is

used for second stage of decryption.

5.3.1 Generation of Integer Chaotic Sequence

x(i) = x(i− 1) ∗ µ ∗ (1− x(i− 1))

zi = (x(i) ∗Q)

z = round(zi ∗N)

y(i) = mod(z, p)

where initial value of x i.e. x(1) = 0.2 and µ=3.8, Q=105, N = 105 and p = 251.

Since different chaotic sequence can be generated by varying initial value x(1)[0,1],
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µ [3.6,4) and Q[104,106] these can be considered as private keys. Block-based

transformation could have been used but here direct approach is used.

5.3.2 Algorithm of Encryption and Decryption

(a) Encryption

Step 1. All the pixel values pij are multiplied by y(256 ∗ (i− 1) + j) i.e.

pij = pij ∗ y(256 ∗ (i− 1) + j) mod p to obtain cipher1 image pixel values cpij.

Step 2. Divide this transformed cipher1 image into 8 × 8 blocks.

Step 3. Select a public key matrix from one of the previous chapters(chapters 2,

3 or 4)and encrypt each block by the key matrix.

Step 4. Combine the blocks to get the cipher2 image.

(b) Decryption

Step 1. Divide the encrypted image into 8 × 8 blocks.

Step 2. Decrypt each block by using the decryption matrix corresponding to the

public key matrix used in encryption algorithm.

Step 3. Form the decrypted image by combining these blocks. The image thus

obtained in this step is the cipher1 image.

Step 4. Multiply cpij obtained in Step 1 with the multiplicative inverse of y(256∗

(i− 1) + j) to obtain the original image.

5.4 Cryptanalysis

An algorithm based on 2-stage encryption is presented in this chapter. The

second stage of encryption uses any one of the methods suggested in chapters

2,3 or 4. So, cryptanalysis of this stage of encryption is same as the cryptanal-

ysis in chapter 2. Another level of security is introduced by the first stage of

encryption. In this stage, the pixels of the image are multiplied with the integer
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chaotic sequence. Generation of integer chaotic sequence requires 3 parameters

(x(1), µandQ ) which act as private keys. It is very difficult to find out the private

keys even if the chaotic sequence is known.

5.5 Results

The proposed algorithm for encryption and decryption is validated using sim-

ulation technique. In the simulation studies, image of 256× 256 pixels with 8 bit

encoding for each pixel is considered.

The following chaotic sequence y(i) (where 1 ≤ i ≤ 256 ) is generated for

x(1)=0.2, µ=3.8, Q=105, N=105 and p=251 and is used to transform the original

image into cipher1 image.

171 215 12 15 10 159 83 220 88 80 229 49 96 197 205 245 139 1 125 34 81 144 62

136 171 116 47 34 126 26 30 196 67 151 200 169 100 146 138 128 154 154 211 104

22 7 30 101 242 83 193 186 94 130 204 148 112 19 230 123 51 108 119 4 244 235

134 173 102 91 230 178 195 228 1 145 210 115 224 94 53 152 58 63 95 237 245 226

166 247 49 203 208 210 151 124 92 176 19 37 204 5 216 26 147 45 105 19 123 224

173 54 37 176 32 211 104 98 104 188 1 248 57 139 142 144 3 92 124 160 232 159

69 215 226 177 90 168 123 172 201 33 191 167 131 82 106 144 229 30 200 27 172

33 87 217 165 141 29 199 231 152 62 120 43 35 180 40 198 126 57 160 66 90 241

50 68 135 144 54 79 232 181 201 32 191 167 132 82 107 142 233 27 209 33 154 214

136 235 110 53 194 222 229 34 118 156 34 181 59 233 37 192 1 190 137 157 104 72

138 213 26 19 40 132 82 96 34 224 170 176 145 137 185 87 184 226 190 213 195

108 183 215 249 112 164 63 132 141 14 125 159 174 127 83 94
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Following is the public key matrix (C) in GF(p)(generated in chapter-2) which is

used to transform the cipher1 image into cipher2 image.

C =



45 95 198 73 140 150 16 25

147 22 181 104 147 57 165 240

29 202 104 205 70 228 153 74

98 196 173 107 23 97 9 188

68 150 78 25 213 4 88 12

201 214 113 70 210 173 81 27

129 44 100 120 129 189 161 156

8 63 52 165 12 56 77 79


The inverse of public key C (in GF(p)) denoted by D is used to get back the

cipher1 image from the cipher2 image.

D =



131 224 48 1 225 161 127 133

106 184 221 181 25 41 145 248

158 189 81 212 65 197 6 44

88 195 40 103 146 52 38 234

185 58 41 174 104 131 187 157

4 132 177 54 138 51 136 10

213 245 225 122 180 149 43 173

221 146 173 191 226 131 133 120


Mentioned below is Z(i), which is the multiplicative inverse of y(i)

where 1 ≤ i ≤ 256 which is used to obtain the original image from cipher1 image.

160 244 21 67 226 30 124 170 174 91 57 41 34 79 60 209 186 11 249 96 31 190 166

24 160 132 235 96 2 29 159 73 15 128 187 101 123 98 231 151 207 207 69 70 194
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36 159 169 223 124 238 139 243 56 16 212 65 185 239 100 64 86 135 63 215 47 133

74 32 80 239 55 121 120 1 206 202 227 158 243 90 180 13 4 37 233 209 10 62 188

41 183 35 202 128 83 221 87 185 95 16 201 43 29 181 106 153 185 100 158 74 172

95 87 102 69 70 146 70 247 1 167 229 186 175 190 84 221 83 171 66 30 211 244 10

78 53 127 100 54 5 213 46 248 23 150 45 190 57 159 187 93 54 237 176 155 143

162 26 111 138 180 166 228 216 208 152 182 161 2 229 171 232 53 25 246 48 119

190 172 197 66 147 5 102 46 248 116 150 61 175 237 93 245 213 207 156 24 47 89

90 22 225 57 96 117 214 96 147 234 237 95 17 1 144 11 8 70 129 231 33 29 185 182

116 150 34 96 158 220 87 206 11 19 176 236 10 144 33 121 86 203 244 125 65 75 4

116 162 18 249 30 88 168 124 243

256 × 256 cameraman image and crowd image shown in Figures 2.1 and 5.1

respectively are considered to carry out the simulation. Their histograms are

presented in Figures 2.2 and 5.2 respectively. Since encryption is done in GF(p)

with p = 251, pixels of original image beyond 250 are rounded to 250. The images

are rounded to 250 pixels and their histograms are shown in Figures 2.3, 5.3, 2.4

and 5.4 respectively.

Figure 5.1: Original crowd image used for encryption
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Figure 5.2: Histogram of original crowd image

Figure 5.3: Crowd image with pixels ≤ 250
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Figure 5.4: Histogram of crowd image with pixels ≤ 250

The encryption algorithm proposed in section 5.3.2 is used to encrypt the cam-

eraman image and crowd image which are rounded to 250 pixels. The encryption

algorithm consists of 2 stages. In the first stage, the image is encrypted using the

chaotic sequence(y). The encrypted images and their corresponding histograms

are shown in Figures 5.5, 5.6 and 5.7 respectively. On comparing the encrypted

images with the original images it can be seen that the encrypted images and

their histograms do not bear any resemblance with the original images and their

histograms.
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Figure 5.5: Encrypted image of cameraman and crowd using chaotic sequence y

Figure 5.6: Histogram of encrypted image of cameraman using chaotic sequence y
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Figure 5.7: Histogram of encrypted image of crowd using chaotic sequence y

In the second stage of encryption, the resultant images of first stage is again

encrypted using the public key C. The images after second stage encryption are

shown in Figure 5.8 and their corresponding histograms are shown in Figures 5.9

and 5.10 respectively.

Figure 5.8: Images of cameraman and crowd after second stage encryption

using public key C
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Figure 5.9: Histogram of image of cameraman after second stage encryption

Figure 5.10: Histogram of image of crowd after second stage encryption
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In the first stage decryption, the images are decrypted using the inverse of

public key i.e. D. The images and their corresponding histograms are shown in

Figures 5.11, 5.12 and 5.13 respectively.

Figure 5.11: Image of cameraman and crowd after first stage decryption using

private key D

Figure 5.12: Histogram of image of cameraman after first stage decryption
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Figure 5.13: Histogram of image of crowd after first stage decryption

The original images are obtained after the second stage decryption using inverse

of chaotic sequence i.e. Z. The images after second stage decryption and their

corresponding histograms are shown in Figures 5.14, 5.15 and 5.16 respectively.

Figure 5.14:Image of cameraman and crowd after second stage decryption using Z
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Figure 5.15: Histogram of image of cameraman after second stage decryption

Figure 5.16: Histogram of image of crowd after second stage decryption

The proposed algorithm is also tested with other images. Some of the sim-

ulation results are shown in Figure 5.17, where Figure 5.17(a,b,c) represent the

original images of Iris flower, Pepper and Lena. The corresponding histograms

of the original images are shown in Figure 5.17(d,e,f). The encryption algorithm

proposed in section 5.3.2 is used for encrypting the images. The final encrypted

images are shown in Figure 5.17(g,h,i) and their histograms are represented in

Figure 5.17(j,k,l).
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Figure 5.17: Additional simulation results
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5.6 Summary

In this chapter we popose two stage encryption scheme of image. The first

stage of encryption is done by modulo multiplication of pixel by integer chaotic

sequence. The integer chaotic sequence is in the range of 1 to 256. The second

stage of encryption is done by using a public key. The proposed scheme is proved

to be quite efficient through cryptanalysis.
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Chapter 6

Conclusion and Future Work

In this chapter, the overall contributions of the thesis are reported and future

research problems are outlined for further investigation in the same or related top-

ics. Different methods of generating self-invertible matrix are proposed. In order

to make encryption robust, a sparse matrix is defined whose inverse can be ob-

tained easily. The self-invertible matrix and sparse matrix are used as private keys

in the asymmetric key cryptosystem. Several methods of generating orthonormal

matrices are proposed and used in combination with the sparse matrix for en-

cryption of images. Exponentiation operation on matrices is introduced and used

for image encryption. Finally, a two-stage encryption technique based on chaotic

sequence followed by any one of the cipher matrix techniques proposed in previous

chapters is used to make encryption more robust. All the methods of encryption

are validated using simulation technique.

The methods highlighted in this thesis are samples of generalised Hill cipher

cryptosystem. In these methods, encryption is simpler in comparison to the de-

cryption process because in decryption, one has to obtain the inverse of a large

matrix in GF(p) and GF(pn). Although the exponentiation operation makes the

cryptosystem more secured, the computational complexity increases. Moreover,
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the limitations of Hill cipher method also exist in these methods barring the two

stage encryption technique discussed in chapter 5.

The future research areas are outlined here for further investigation -

• Generating self-invertible and othonormal matrices over Zn and using them

for encryption.

• Application of chinese remainder theorem in GF(pn) for encryption.

• Encryption by representing data by variable radix number system and quan-

tum number system.

• Introduction of error correcting codes for making cryptography more secured

and immune to channel noise.
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