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ABSTRACT 

Spent Pot Lining (SPL) or Spent Cathode is a solid waste produced by the aluminium 

industry during the manufacture of aluminum metal in electrolytic cells. After 3-7 years of 

operation, the cathode liner materials deteriorate and affect the cell’s performance and need 

to be replaced. Due to high fluoride (20 wt. %) and cyanide (1 wt. %) content SPL was listed 

as hazardous waste by the US Environmental Protection Agency in the year 1988.In the 

present study, various approaches in the treatment of SPL have been conducted to recover the 

valuable carbon and fluoride values. Initially a comparative study was investigated by the 

chemical leaching of water washed SPL with H2SO4 and HClO4 acids and the process 

parameters were optimized via utilization of Multiple Level Factorial design. For H2SO4 and 

HClO4 treatment of water washed SPL, L/S ratio was found to be the most significant 

factor.The carbon content was increased from 42.19% for raw SPL to 70.83% for H2SO4 and 

71.76% HClO4 treatment. An approach in chemical leaching of water washed SPL was 

performed initially with caustic leaching followed by Perchloric acid leaching. In this case, 

the Temperature was found to be the most significant factor among all the parameters, 

whereas the L/S ratio was the least significant among the four parameters studied.The carbon 

percentage of SPL was increased from 42.19 to 87.03% as confirmed from the ultimate 

analysis. From the proximate analysis, the fixed carbon was increased from 38.96% to 82.86 

% from the raw to final treated SPL. Another approach in chemical leaching of water washed 

SPL was conducted initially with causticleaching followed by sulfuric acid leaching. In this 

case, Alkali concentration and the Temperaturewere found to be the most significant and 

least significant factor among the four parameters studied.The process parameters used in 

above approaches were optimized by Taguchi method and Classical Method.The carbon 

percentage of SPL was increased from 42.19% to 81.27% as confirmed from the ultimate 

analysis. From the proximate analysis, the fixed carbon was increased from 38.96% to 

78.68% for sulfuric acid from the raw to final treated SPL.Gross calorific values (GCV) were 

determined for the all optimized samples obtained from above studies. The GCV was found 

to be increased from 2865.04kcal/kg to 6689.69 kcal/kg for raw SPL and optimized sample 

obtained from caustic followed by sulfuric acid treatment respectively. 

KEYWORDS: Spent Pot Lining; Chemical Leaching; Multiple Level Factorial Design; 

Taguchi Method; Gross Calorific Value. 
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Chapter 1 

INTRODUCTION  

1.1. Aluminum Electrolysis and Cell Design 

Aluminum is the most abundant metallic element (8.1 mass %) in the earth’s crust. 

Because of high affinity to oxygen, aluminum does not appear in nature in its pure 

elemental form and is found attached with in the form of silicates and aluminates. Two 

process steps are adopted for the aluminum production. The first process step involves the 

refining of the raw material bauxite (ore), which contains 30-60 % alumina (Al2O3)
1
 to 

pure alumina (Al2O3), this is known as the Bayer process (1887) which was developed by 

the Austrian chemist Karl Joseph Bayer (1847-1904). In the second step, alumina is 

electrochemically reduced by influencing electrical current. Aluminum cannot be 

produced by the electrolysis of an aluminum salt dissolved in water due to the high 

reactivity of aluminum
1
. In 1886 an American chemist Charles Martin Hall and the 

Frenchman Paul Heroult independently discovered the process of producing aluminum 

electrolytically, which was renamed after them as Hall-Heroult process
1,2

. An attempt to 

replace the process has not been successful yet. The basic principles have remained 

unchanged for more than a century now, but the efficiency of the process has increased 

continuously through scientific and technological progress. 

In essence, it is unmanageable to electrolyze pure alumina, due to its high melting 

point of 2060 °C. Hall and Heroult discovered that it is possible to dissolve 2-8 % 

alumina in the rather exotic salt cryolite (Na3AlF6), and to decompose this mixture by 

means of electrolysis
3
. Cryolite is mostly found on the west coast of Greenland as a 

naturally occurring material, but now-a-days it is being replaced by synthetic cryolite. 

The Hall-Heroult process takes place in an electrolytic “cell” or “pot”. The single pots are 

usually arranged in long rows, the so called “pot lines”. The pots can be aligned side-by-

side or end-by-end. The fundamentals of aluminum electrolysis are well described by 

several authors
1,3

. The overall reaction of the Hall- Heroult process is given in Eq. (1.1) 

and an illustration of a modern cell is given in Figure 1.1. 

2Al2O3 (dissolved) + 3C (s) = 4Al (l) + 3CO2    (1.1) 
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Figure 1.1: Schematic drawing of the main features of an Hall-Heroult aluminum reduction 

cell: (1) anode (prebaked), (2) electrolyte (bath), (3) Alumina point feeder, (3a) alumina 

hopper (3b) air cylinder, (3c) metering chamber, (3d) crust breaker, (4) Aluminum pad,(5) 

anode beam (current supply), (6) anode yoke and stubs (iron), (7) anode rod (aluminum), (8) 

anode clamp, (9) spent anode (butt), (10) alumina crust/ cover, (11) crust (side ledge), (12) 

cathode carbon block, (13) current collector bar (steel), (14) ramming paste, (15) refractory, 

(16) insulation, (17) steel shell, (18) sidewall block, (19) castable, (20) alumina, (21) 

rockwool and (22) gas collection hood (removable). The details in the lining may vary2,3. 

In the Hall-Heroult process, alumina (Al2O3) is dissolved in a carbon lined cell 

with a bath of molten cryolite (Na3AlF6) at a temperature of 960°C
4
. The electrolyte may 

have certain additives (mainly AlF3 to lower the cryolite melting point from 1012°C to 

960°C)
3
.The container of the cell is considered the cathode but from an electrochemical

1
 

point of view “cathode” is the interface between the aluminum metal and the electrolyte 

The carbon cathode conducts current to the cell and it has to withstand the corrosive 

environment, stress attributed to temperature fluctuations and chemical reactions
1
.The 

carbon cathode is often referred to as the most important part of the aluminum electrolysis 

cell because it is mostly the component that provides the cell its life expectancy
1,2

.Joule 

heating from the flow of electric current is more than adequate to maintain the melt 

temperature. 

The cell comprises of an anode and a cathode. The molten cryolite bath along with 

alumina is placed in between the electrodes. Besides cryolite and 2-5 wt. % alumina from 
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the Bayer-Process, the bath contains typically 10-12 wt. % aluminum fluoride (AlF3) and 

about 5 wt. % of calcium fluoride (CaF2). Some plants also add lithium fluoride (LiF) 

and/or magnesium fluoride (MgF2) to the bath
5
. The temperature of the bath is about 950 

°C, and its composition is a compromise between electrical conductivity, current 

efficiency, alumina and metal solubility, density and vapor pressure
5
.  

This molten mixture is named “electrolyte” and it works mainly as a solvent for 

alumina and enables its electrolytic decomposition to form pure aluminum at the cathode 

and carbon dioxide gas at the anode. Alumina (Al2O3) is fed to the bath through holes 

punched in the crust. This is done by point feeders in 1 to 2 kg per doses at every 1 to 2 

minutes interval
5
. Careful control of the alumina concentration is of essential importance. 

Too high feeding may lead to “sludge” or “muck” formation of undissolved bath/alumina. 

The mixture of bath and undissolved alumina will sink down owing to higher density and 

is then difficult to remove. With too low alumina content, on the contrary, may lead to the 

so-called anode effect, which interrupts the normal anode process by an abrupt increase in 

cell voltage and a rapid increase in bath temperature
2
. During an anode effect 

perfluorocarbon gases are generated which are harmful greenhouse gases
3
.  

The electrolyte height is used to keep around 20 cm and the temperature during 

the cell operation is typically between 950°C and 965°C
1
. The anodes are plunged in the 

bath from the top and gradually eroded due to influence of sodium attack in the lining. At 

the anode, oxygen from the alumina reacts with carbon to form CO2. The exhaust gas as 

carbon dioxide is collected below the hood. 

Aluminum oxide is an ionic compound. In the molten or dissolved state the ions 

are free to move
2
. Pure aluminum is formed at the bath/metal interface. It slides under the 

bath, due to the higher density and deposits at the cathode surface where it is protected 

against oxidation. In this way the molten aluminum metal accumulates. It forms a “pad” 

or pool between the cathode surface and below the bath, which acts as the “real” cathode. 

The thickness of the molten metal layer is around 20 cm 
5
. The aluminum is tapped from 

this layer on a daily basis into vacuum crucibles, ready to be transported into the cast 

house. However, the surface of the aluminum pad is not stable during operation, caused 

by motions and waves due to the magnetic field and convection in the electrolyte. A 

certain space between anode and cathode or so called inter-polar distance (4-5 cm) is 

necessary to prevent short-circuits
3,5

. 
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There are two main kinds of anode designs used in modern aluminum cells: The 

prebaked and the continuous self-baking Soderberg anode
3
. Soderberg is older technology 

and has been phased out and replaced successfully by the former one. This is due to lower 

energy consumption and lower degree of emissions. Thus, in this thesis it is focused on 

the prebaked technology, which uses multiple anodes in each cell. These anodes are made 

of petroleum coke and coal tar pitch, molded into blocks, baked in separate furnaces and 

then placed in the cell
3
. Anodes are working as current suppliers. Thus, they need to be 

connected to the bus bar system. In each case, an iron stub and aluminum rod is casted or 

rammed into the top of the anode block. A typical feature of the Hall-Heroult process is 

that the anodes are consumed. The height needs to be adjusted regularly while the anode 

is consumed to ensure a constant inter polar distance
3
. Therefore the rod ends are flexible 

fixed to the bus bar system by clamps. 

Anode removal and replacement by overhead crane needs to be done, when one 

third to one fourth of the original anode is left (called “spent anode” or “butt”). The anode 

change induces disturbances in the temperature and current distribution. When the anodes 

get in contact with air, they immediately burn away due to combustion. For a protective 

measure a “layer of alumina” covers the anode surface on top of the “crust”. In operation, 

the bath freezes on top and at the sidewalls of the cell forming a “side ledge” which 

protects this part of a severe attack by the molten aluminum and the molten electrolyte
3
.  

Although the molten metal is the actual acting cathode, the name “cathode” is 

usually used for the entire lower cell construction or “lining”. This includes the 

bath/electrolyte, molten aluminum pad, carbon blocks, collector bars, baked ramming 

paste, refractories and insulations which are surrounded and supported by an outer steel 

shell. Collector bars are embedded steel rails into the bases of the carbon block, sealed 

with cast iron and run horizontally through the entire bottom lining. They serve as 

electrical current collectors and both ends stick out of openings in the steel shell. Those 

parts are connected with the electrical bus to interlink the single cells
3,5

. The lining can be 

further classified into “bottom and side lining” as well as “carbon and non-carbon lining”. 

The non-carbon group contains dense refractories (such as high alumina and chamotte) 

and thermal insulation bricks (such as diatomaceous, vermiculite, calcium silica or 

others). They are placed between the steel shell and the carbon blocks to form the 

foundation of the cell superstructure. The carbon part of the lining consists mainly of 
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silicon carbide sidewall blocks and prebaked carbon bottom blocks. They are coupled 

together by using a ramming paste or carbonaceous “seam mix”
3
. 

1.2. The Cathode Lining 

The cathode lining is one of the most important parts in Hall-Heroult cell. It is required to 

ensure an appropriate service life time. The industry has been able to prolong the average 

lifetime of the cell lining from 1000 days in 1948 to an average of 2500 days today, 

mainly due to the improvements in material quality and operational procedures, 

innovations in cell design as well as process automations
3
. During the last decades, the 

substitution of anthracitic with graphitized carbon materials has been a significant 

achievement due to the reduction of the electrical resistivity and a lower total expansion
3
. 

At the same time the thermal conductivity of the cathode has increased, shifting the 

isotherms downwards in the lining. Refractory layers are installed below the carbon 

blocks to maintain the desired heat balance and to protect the insulation bricks underneath 

against higher temperatures and chemical attack
2
. They have not been improved to the 

same extent as the carbon materials. The most common refractory materials are found in 

the Al2O3-SiO2 system. These materials are called alumino-silicates and are distinguished 

by their alumina content
6
. Alumino-silicates have been and still are the preferred 

refractory materials due to good performance, light weight, availability and moderate 

costs
1,3,5

. Despite these properties the refractory material cannot completely withstand the 

permanent chemical attack caused by the uptake of sodium and electrolyte/bath 

components. During operation sodium followed by bath components will percolate 

through the carbon cathode block which causes swelling, heaving
3
 and cracking. Cracks 

are in general one of the main reasons for early cathode failure
2,5

. 

Underneath the carbon block sodium and bath components start to deteriorate the 

refractory lining
6–10

. This leads to significant mineralogical transformations in the 

material. Hence the material performance changes over time, resulting in increased heat 

loss through the cathode lining, rise in mechanical stresses (due to swelling)and in the 

worst case it causes a complete pot failure
2,11,12

. An increase in the energy consumption 

due to thermal instabilities and a shorter lifetime of the cell results in earlier needs for 

delining and relining are among others unwanted consequences. Since these material and 

operating expenses have a significant effect on the production cost, the aluminum 

producers are aiming to decrease in the number of unscheduled shutdowns and increase 

the average service life span to about 3000-4000 days
13,14

. To date, a significant 
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magnitude of research has been conducted in order to gain a qualitative understanding of 

the degradation of the cathode bottom lining materials by means of autopsies of shut 

down cells and/or laboratory investigation
2
. It was found that sodium plays an important 

role not only in the degradation of the carbon cathode but also in the sidelining in contact 

with alumino-silicate materials. The cathode, after continuous operations around variable 

period of time (1100-3000 days), is discarded and replaced with new one. The dismantled 

cathode or Spent Pot Lining (SPL) is a hazardous waste comprising of 20 wt.% fluoride 

and 1 wt.% cyanide which is a major environmental concern
15

. 

1.3. Motivation of the Thesis 

The main motivation of this thesis comes from the importance of the treatment of Spent 

Pot Lining (SPL). SPL is a hazardous material because it is toxic in nature as it contains 

leachable fluoride and cyanide. SPL is corrosive in nature due to the presence of alkali 

metals and oxides which react with water to produce inflammable, toxic and explosive 

gases. Basically three different methods as stated below are available for treatment of 

SPL in a commercial process 
15, 16, 22

. They are  

 Hydrometallurgical process 

 Pyrometallurgical process 

 Density separation method 

However none of these above methods were widely accepted due to the following 

reasons. 

 Did not have minimum number of steps to minimize cost.  

 Very low grinding index of SPL (i.e. 22) which implies a high cost for milling 

and grinding. 

 Recovery of valuable materials like graphite and fluoride in form of smelter grade 

raw materials were practically impossible. 

 Removal and elimination of cyanide was impractical. 

 Concurrent generation of environmental problem arising out of disposal of treated 

SPL. 

This thesis is of specific interest to get an effective way of treating SPL and 

recovery of valuable compounds. This thesis gives an idea about the adaptation of 

optimization techniques to monitor the process parameters and also provide various 



7 
 

approaches in the treatment as well as comparison of treatment processes. The possible 

use of treated SPL as a fuel is also another scope of this study. 

1.4. Organization of the Thesis 

The thesis is organized in five chapters. The layout of the chapters are as follows: 

 Chapter-1 is an introductory chapter in the field of aluminum electrolysis and 

cathode lining.  

 Chapter-2 contains pertinent literature review on Spent Pot Lining (SPL). It 

highlights various grading as well as production of SPL. It also describes about various 

treatment methods that has been developed till date to recover and recycle the valuable 

compounds from SPL.  

 Chapter-3 describes about the materials and instrumentation details as well as the 

brief introduction of adopted optimization techniques for the treatment of SPL. 

 Chapter-4 represents the results and discussion part which constitutes a total of 4 

sections and each section having a different approach to treatment of SPL.  

o Section-1 represents the comparative treatment of water washed SPL with that of 

Perchloric acid and Sulfuric acid by multiple level factorial design. 

o Section-2 is about an approach to treatment of SPL with Perchloric acid leaching 

by “Taguchi” and “One factor at a time” method.  

o Section-3 reflects the treatment of SPL with Sulfuric acid by the approach 

highlighted in section-2.  

o Sections-4 presents the fuel value analysis of all the optimized samples obtained 

from various treatment techniques.  

 Chapter-5 concludes the findings and future aspects of this study. 

Apparently, this thesis highlights the use of different materials for the treatment of SPL as 

well as its enrichment and utilization. However, as mentioned before, these materials 

were selected on the basis of their applications. The process parameters were optimized 

using standard techniques and correlated accordingly.  
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Chapter 2 

LITERATURE REVIEW 

 

With rapid progress in industrialization, many hazardous wastes come into play, 

which have a detrimental effect on the environment causing a major distress among the 

industry as well as society. Spent Pot Lining (SPL) is associated with one of the most 

growing industry mainly in aluminum industry. In this chapter the genesis of SPL and 

various treatment approaches along with the objectives of the project is discussed in this 

chapter. 

2.1. Spent Pot Lining (SPL)/Spent Cathode Lining 

The linings of electrolytic cells are fabricated in a steel shell. The lining comprises of 

carbon, silicon carbide (SiC) or carbon used in the sidewalls. The refractory bricks 

(insulating bricks and fire bricks) are lined below the carbon lining to provide mechanical 

support. During the electrolysis process the lining is subjected to highly reducing 

conditions and generally fails after 5-8 years of operation depending on the cell 

construction, design approach and operation
16,22

. 

Diversified opinions are available in the literature regarding the amount of 

production of SPL by a cell per tonne of aluminum produced. Generally in Soderbergs 

produce 35kg/tonne, end to end (EE) prebakes 20-28 kg SPL/tonne and figures may vary 

depending of lining life achieved. Usually in prebake technology the lining lasts for about 

2700-3000 days with amorphous carbon blocks, 2400 days with semigraphite blocks, and 

1700-2200 days with graphitized or graphitic blocks. Soderbergs have a typical life of 

2500-2700 days with amorphous blocks and 3000 days with graphitized blocks. These 

data are attributed by amount of aluminum produced per unit area (a reckoner of the 

volume of cell material). The amount of aluminum is not constant throughout the life 

period due to rise in amperage in cell systems. That is why a careful observation required 

in determining the production of SPL per tonne of aluminum produced
9, 13, 22

. 

After the failure of cell lining it is either dismantled or repaired in the cell rooms 

or removed from the cell rooms. The final waste product, thus generated is termed as 

“Spent Pot Lining”. It comprises of both first cut and second cut materials (Figure 2.1). 

First cut is generally carbonaceous in nature with varying proportions of graphite (30-
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100%) which is obtained above the collector bars. And below the collector bar, the 

second cut is obtained which mainly comprises of refractory materials. The composition 

of Spent Pot Lining (SPL) depends on several factors such as composition of new cell 

lining which is different for each technology. The dismantling procedure greatly affects 

the amount of bath and frozen aluminum in the lining components
16

. 

 

Figure 2.1: Schematic diagram of Hall-Heroult cell
16

 

The operating period of the cell is a vital factor which generates different 

composition of SPL. Intercalations of Sodium and Sodium Fluoride inside the lining 

materials increase with longer cell operation. Composition of the SPL for three different 

technologies is given in Table 2.1 (type A and type B are different SS modern prebakes). 

The composition was obtained from a composite sample of both first and second cut of 

SPL reduced to 300 mesh. The yield of fluoride and cyanide concentration varies with 

adopted process. A robust treatment process is needed to obtain non-hazardous byproduct 

from SPL. Ultimately the first and second cut SPL would be separated during dismantling 

of pot. It was found that concentration of fluoride and cyanides is prominent in first cut 

SPL. 
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2.1.1 Spent Pot Lining (SPL) reactivity and toxicity 

 Generation of water reactive chemicals happens due to the subjection of SPL at 

high temperature during the electrolysis process. Varieties of fluoride, sodium and 

aluminum compounds, cyanide (due to ingress of air through the collector bars), metal 

(Al, Li and Na), reactive metal oxides (Na2O), nitrides and carbides are found in SPL. 

These compounds react with moisture and air to produce NaOH, H2, C2H4 and NH3. 

Table 2.1: Composition of SPL for different technologies
16

 

Elements A type B type Soderberg Major phases 

Fluorides (wt. %) 10.9 15.5 18 Na3AlF6, NaF, CaF2 

Cyanides (ppm) 680 4480 1040 NaCN, NaFe(CN)6, 

Na3FeCN6 

Ratio (HCN/Total) 2.7 1.9 3.4  

Aluminum total (wt. %) 13.6 11 12.5 Al2O3, NaAl11O17 

Carbon (wt. %) 50.2 45.5 38.4 Graphite 

Sodium (wt. %) 12.5 16.3 14.3 Na3AlF6, NaF 

Al metal (wt. %) 1 1 1.9 Metal 

Calcium (wt. %) 1.3 2.4 2.4 CaF2 

Iron (wt. %) 2.9 3.1 4.3 Fe2O3 

Lithium (wt. %) 0.03 0.03 0.6 Li3AlF6, LiF 

Titanium (wt. %) 0.23 0.24 0.15 TiB2 

Magnesium (wt. %) 0.23 0.09 0.2 MgF2 

 

The wet delining procedure was used earlier to break lining materials, which leads 

to formation of flammable gases as mentioned above. However, due to health safety and 

environmental (HSE)
15

 concerns, this practice is now abandoned and today the lining is 

removed under dry condition. The active nature of the material makes it:  

 Toxic: Fluoride and cyanide compounds those are leachable in water 

 Corrosive: High pH due to alkali metals and oxides 

 Reactive with water: Producing inflammable, toxic and explosive gases 

The toxic, corrosive and reactive nature of the material means that care must be taken in 

its handling, transportation (transportation containers must be ventilated) and storage (due 

to its leach ability). Inter-country hazardous waste transfer is governed by convention. 
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2.1.2 Handling possibilities for Spent Pot Lining (SPL) 

 The aluminum industries are trying to develop an economic process to recycle the 

heterogeneous SPL materials. Considering complete, partial and no recycling of SPL the 

treatment approaches differ. For complete or partial recycling of SPL pyrometallurgy or 

hydrometallurgy approaches can be considered. Many researchers have proposed various 

processes and some of the most promising processes are given in Table 2.2 and 2.3. Due 

to heterogeneous composition of SPL the total recycling of SPL is a tremendous 

challenge. In cement industry, a limited quantity of SPL is added in a cement kiln to 

improve the quality of cement.  

The other industries that use SPL are the mineral wool and the iron and steel industries. 

All hydrometallurgical approaches aim at total recycling of SPL necessitates a separation 

of the main components such as carbon, brick and fluorides. Partial recycling and 

disposal is less stringent and depending on the economics, some specific components can 

be targeted for recycling. For example, during the time that the industry operated smelters 

with wet effluent treatment centers, cryolite recovery could be achieved. Safe disposal of 

SPL necessitates some kind of treatment to stabilize the leachable fluoride and to 

decompose all water-reactive compounds and the cyanides. In reality, each plant must 

choose between the alternatives allowed by its legislation. 

2.1.3 Environmental legislation concerns 

 Earlier SPL was classified as an industrial or mining waste and was disposed of in 

lined as well as unlined landfill sites. Many of these sites now require remediation. 

However, now it being treated as a hazardous waste KO88 since 1988 in the United 

States
17

and a special waste in Canada. These new classifications meant that SPL had to be 

stored in special buildings or hazardous waste sites. For industries processing hazardous 

wastes, environmental regulations have become stricter and it became more difficult for 

the cement and steel industries to accept unprocessed SPL. This meant partial or total 

detoxification had to be done before reusing the SPL. 

2.1.4 Recent storage of SPL 

 Storage and processing of SPL depends upon the prescribed norms of various 

agencies and legislations. It is estimated that a significant amount of SPL (>50%) is still 

being stored in buildings lined and unlined sites, waiting for treatment.  
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It could be considered as a passive treatment, which was done in Norway and Iceland, 

where SPL has been stored on the seashore allowing sea leaching of soluble components. 

The leachable fluorides present in SPL react with the calcium ions in seawater to form a 

stable calcium fluoride. An extensive investigation by the University of Iceland
18

did not 

indicate that the dumping pits had detrimental effects on shore communities. 

2.1.5 Industrial practices of Spent Pot Lining (SPL) 

The use of SPL in various industries has been investigated over the years and some the 

possible uses are highlighted in Table 2.2. 

Table 2.2: Use of SPL in various industries 

Industry Approach and reason Disadvantage or problems 

associated 

Location 

Cement
19–24

 To use first cut SPL in the kiln 

as it has reasonable calorific 

value and fluoride reduce the 

kiln temperature 

Second cut used in cement kiln 

(i)Necessity for 

Transportation in a closed 

container 

(ii)Maximum allowable limit 

for sodium (< 0.6%) and 

fluoride limits the additions 

up to a few percent of the 

feed stock 

Brazil 

Steel
25–27

 Additive to steelmaking 

because fluoride improves slag 

formation and small quantities 

of SPL can substitute for CaF2 

(i)Necessity for 

Transportation in a closed 

container. 

(ii)Limitation of use due to 

hazardous waste 

Italy 

Rockwool First cut SPL used as an 

additive or substitute for coke 

Limited requirement of SPL  Germany 

Alumina 

Plant 

Co-processing SPL with salt 

slags by BEFESA process 

 Germany 

 

2.2. Treatment and Recovery Processes 

 Over the years many processes have been developed, out of which 

hydrometallurgical or pyrometallurgical processes found to be suitable. 

2.2.1 Industrial scale improvements 

 Varieties of furnaces have been tried, including rotary kilns, coffee roasters and 

specialized (Ausmelt and VORTEC) and arc furnaces at various temperatures. Some of 

the industrial scale treatment process is shown in Table 2.3. 
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Table 2.3: Industrial scale treatment process for SPL 

Treatment 

approach 

Process condition and 

purpose 

Advantages Disadvantages 

PYROMETALLURGY  APPROACH 

ALCOA 

(Reynold) Gum 

Spring process
28

 

Destruction of cyanides in a 

rotary kiln and creation of 

industrial waste for road 

aggregates 

Use of Limestone to fix 

fluorides 

Generation of inert materials 

 

High 

temperature 

treatment 

approach 

High cost for 

the treatment 

RT (Comalco) 

COMTOR
16,19,29

 

 

Destruction of cyanides in a 

pretreatment reactor. 

Residue is leached with lime to 

produce a Bayer-type liquor and 

kiln-grade Spar for the cement 

industry 

Generation of product used 

in other industry 

High 

temperature 

treatment 

process leading 

to high energy 

demand 

AUSMELT 

process 
16,19,22,30

 

Formation of AlF3 and reusable 

industrial waste 

Moderate quality of Product High energy 

demand 

VORTEC 

process
15,16,19

 

Generation of reusable 

Industrial inert waste by 

combustion and pyrohydrolysis 

process 

Moderate quality of product High energy 

demand 

NOVA Pb
16

 Treatment in rotary kiln at 

1000°C 

Formation of useful product 

i.e. Calcifrit (High Fluoride 

and aluminosilicates) and 

Calcicoke (High Carbon)\ 

Potentially recyclable 

products 

High  

treatment cost 

Regain 

Process
16,31

 

Partial detoxification of SPL Low temperature process for 

the destruction of simple 

cyanides to deactivate SPL 

Still hazardous 

material 

ELKEM 

process
6,16,22,32

 

Use of SPL as a feedstock for 

pig iron making 

As feedstock material Transportation 

problems  and 

less 

requirement of 

feed 

SPLIT 

process
16,19,30

 

Treatment of SPL with CaSO4 

at 1000°C 

Production of inert materials High treatment 

cost 

Plasma 

vitrification
16,30

 

Inertization of SPL at high 

temperature 

Generation of inert materials High 

temperature 

treatment  

HYDROMETALLURY APPROACH  

BEFESA 
16,33

 Co-processing of SPL with salt 

slags 

Formation of suitable 

components to be used in 

cement or mineral wool 

industry 

Low temperature treatment 

process 

Not Available 

RIO TINTO 

ALCAN
16,22,31,34,

35
 

Low caustic leaching and 

Liming 

Formation of Bayer liquor , 

CaF2 and industrial waste 

can be used in other industry 

Low temperature treatment 

approach 

High 

installation 

cost 
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2.2.2 Lab scale improvements 

Various researchers have examined to mitigate the harmful effect of SPL by employing 

different approaches and some of the improvements are shown in the Table 2.4 and 2.5.  

Table 2.4: Lab scale pyrometallurgical approach for SPL 

Sl. 

No  

PYROMETALLURGY APPROACH 

Year Authors Approach and Findings 

1 1997 V. A. Utkov et al.
36,37

 Water soluble NaCN was neutralized by 

treating carbon rich part with an FeSO4
-
 

2 2000 Wang Y.
38

 Crushed first cut SPL can be used as collar 

paste for protecting anode stems. 

3 2000 Oliveira et al
22,39

 Heating of second cut SPL up to more than 

750°C to remove molten and volatile 

impurities  

4 2000 Balasubramanian et al.
22,40

 Vitrification of SPL by adding small 

additions of glass former along with traces of 

nucleation agents to aid crystallization and 

then melting at around 1300°C. 

5 2001 Courbariauxet al. 
22,29,41

 Treatment of crushed SPL in a circulating 

fluid bed  

6 2004 Karpel S.
22,30

 

Li and Chen 
16,22,42

 

Heating of crushed SPL mix to about 1000°C 

and adding lime to oxidize cyanides and bind 

the fluoride  

7 2007 Lazarinos
22

 Destruction of cyanide compounds in a 

gasification combustions. 

8 2007 Chen and Li 
16,22,42

 (i)Presence of graphite and sodium in SPL 

make it sticky, slippery and difficult to crush  

(ii)Chemical stability of the fluorides in the 

SPL 

9 2009 Blinov et al.
22,39

 Pyrohydrolysis process to recover fluorine as 

HF and use of  carbon rich part in pig Iron 

manufacture 
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Table 2.5: Lab scale hydrometallurgical approach for SPL 

Sl. 

No. 

 HYDROMETALLURY APPROACH 

Year Authors Findings 

1 1999 Baranovskii22 Mixing of crushed first cut SPL with that of limestone and 

then adding this mixture to an aqueous slurry for recovery of 

Soda and Potash 

2 2001 Lu et al.22 Separation of aluminum electrolysis carbon froth and spent 

pot lining by froth flotation technique 

3 2001 Zhao 43 (i) Treatment of SPL with water and H2SO4 to recover HF  

(ii) The liquids are filtered for the manufacture of graphite 

powder, aluminum hydrate and alumina. 

(iii) Fluoride and sulfates are manufactured from filtrates   

4 2001, 

2002 

Silveira et 

al.24,44 

(i) The leaching  behavior of SPL  was studied  

(ii) pH of SPL was around 10-11.8 

(iii) Total fluoride content was 5.13-11.41% 

(iv) Total dissolved  fluoride at pH 12 and at pH  5 was 6.45-

9.39% and  0.26-3.46% respectively 

5 2002 Mirsaidov et 

al.22 

Use of pine oil and kerosene as a flotation agent to separate 

cryolite alumina concentrate followed by burning of 

remaining carbon at 800°C in rotary Furnace. 

6 2007 Lisbona and 

Steel45 

Determination of Leachability of NaF, CaF2 and cryolite from 

SPL 

Precipitated fluorides in a form that can be recycled back into 

the pot have been studied by manipulating solution equilibria. 

7 2008 Lisbona and 

Steel30 

(i)Fluoride extraction  of 76-86 mol. % by using 0.34 Al3+ 

solution at 25°C for 24 h 

(ii)Removal of NaF and Na2CO3 from SPL by water washing 

of SPL 

(iii)In pH 4.5-5.5 selective precipitation of fluoride as an 

aluminum hydroxyfluoride hydrate product achieved by 

neutralization 

(iv)Higher pH leads to co-precipitation of hydrolyzed sodium  

fluoroaluminates 

8 2012  Lisbona et 

al.46,47 

(i)Leaching with Al3+ salts to precipitate aluminum hydroxyl 

fluoride hydrate 

(ii)Development of low-carbon environmentally sustainable 

approach 

9 2012 Zhong-ning 

et al.42 

(i)Two step alkaline-acidic leaching was conducted to achieve 

65% leaching rate after NaOH treatment having 72.7% purity 

of carbon 

Leaching rate was increased up to 96.2% and purity of carbon 

up to 96.4%. 

(ii)Cryolite precipitation rate was 95.6% and purity of 

Na3AlF6 obtained is 96.4%. 

10 2013 Lisbona et. 

al48 

(i)Leaching behavior of SPL with aluminum nitrate and nitric 

acid 

(ii)Following an initial water wash, a single leaching step 

using 0.5M HNO3 and 0.36M Al(NO3)3 at 60°C extracted a 

total of 96.3% of the remaining fluoride, extraction of Mg and 

Ca in form of MgF2 and CaF2. 
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2.3. Concluding Statement 

 Due to the intervention of local communities and lawmakers, the dumping of SPL 

in lined site has been practiced by aluminum industry ever since it has been regarded as 

hazardous waste. However, there is no widely accepted technology available for the 

treatment of SPL due to unknown behavior of its specific chemistry. Recent years 

hydrometallurgical studies for the treatment of SPL have gained pace as it promises the 

better recovery of useful compounds and less energy intensive. The presence of the free 

sodium makes the surface of the SPL slippery and difficult to crush which is another 

major challenge to find an alternative to the problem of crushing of SPL. Choice of 

proper chemical reagents for the chemical leaching is yet to be optimized for the 

treatment and recovery useful fluoride and graphitic carbon from SPL. 

 The review of literatures in this chapter confirms that most of the treatment 

processes are optimized by conventional way opening the doors for the treatment by 

using any of the specific optimization techniques. The new approach of treatment with 

various other acids need to be studied as well as a comparison between them is the one of 

the main objectives of this project. The treatment of SPL is considered to be one of the 

biggest challenges due to presence of highly leachable fluoride and cyanide content. 

Some of the specific objectives are as follows: 

 Characterization of SPL material 

 Treatment of SPL with HClO4 and H2SO4 for leaching of NaF, CaF2, Al(OH)3. 

 Treatment of SPL with NaOH, for leaching of Na3AlF6, Al2O3, NaF, CaF2.  

 Enrichment of the carbon percentage of SPL samples using leaching process. 

 Optimization of process parameters using multiple level factorial design, Taguchi 

design and conventional or classical approach. 

 Fuel value analysis of the optimized sample obtained from leaching process. 

The prime aim of this project is to find a way to utilize SPL gainfully without causing any 

environmental hazards. 
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Chapter3 

MATERIALS AND METHODS 

In this chapter the details process condition as well as purpose of this study has been 

discussed. All the leaching experiments were conducted in batch mode. 

3.1. Materials 

3.1.1 Chemicals 

All the chemicals used in this investigation were analytical reagent grade of 

highest purity and was procured from Merck (Germany). De-ionized water was used for 

preparation of stock solutions of alkali and acid.  

3.1.2 Glassware and instruments 

 All glassware (conical flasks, measuring cylinders, beakers, petri-dish and pipette 

etc.) were purchased from Borosil. The instruments and apparatus used throughout the 

experiment are listed in the Table 3.1. 

3.2. Methodology 

3.2.1 Sample preparation 

 The first cut Spent Pot Lining (SPL) sample was collected from Vedanta aluminum 

Ltd., Jharsuguda, Odisha, India for the proposed study. The SPL obtained from the 

aluminum reduction cell was dried at 110 ±1°C for 2 h and then crushed in a ball mill and 

then dried and sieved to recover desired size fractions that can pass through the 52 BSS 

sieve (300 micron). The experimental process and setup is shown in Figure 3.1 and 3.2.  

 

Figure 3.1: Schematic diagram of experimental process 
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Figure 3.2: Schematic and actual diagram of the experimental setup 

3.2.2 Water washing of Spent Pot Lining (SPL) 

 Initially 50g of raw SPL was treated with 250ml of deionized water at 50 ±1°C for 

a period of 4h in an orbital shaker at 120rpm. The reason for taking 5:1 L/S ratio (250ml 

of water /50g SPL) was to leach out leachable fluorides at which the optimum leaching 

was achieved. Then complete water washing of SPL was done to bring down the pH of 

residues to neutral range (6.8-7)
44

. The water soluble components were filtered out by 

using a Macheray-Nagel MN 640 filter paper and the residual SPL was dried in an oven 

for the period of 4h at 110 ±1°C. Leaching percentage was calculated by the following 

formula: 

100)/(][% 00  LLLLeached e              (3.1) 

L0, Le was the initial and final weight of SPL before and after a leaching process in grams. 

3.2.3 Leaching experiments 

 The SPL leaching was done by various steps according to the techniques adopted 

for the experimentation. Each experimental step was conducted with 4 g of sample 

weight. Then the treatments were done at 120 rpm and 4 h time either in orbital shaker or 

magnetic stirrer depending upon the requirement. After each experiment, the leachates 

were filtered out by filter paper and the residue was dried in an oven for a period of 4 h at 

110 ±1°C along with the filter paper. The weight of the filter paper was subtracted to 

obtain the exact weight of the dried residue. After each treatment, the pH of the residue
44
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was brought down to normal range as per standard practice and then subsequent treatment 

or characterization was done. 

3.2.4 Design of experiment (DOE) and statistical analysis 

3.2.4.1 DOE by multiple level factorial design 

A general multilevel factorial design was adopted for the optimization of leaching 

percentage. The factors taken for the optimization were acid concentration having three 

levels, Liquid to Solid (L/S) ratio having four levels and finally temperature having two 

levels.  Factorial design was being introduced to minimize the total no. of experiments in 

order to achieve the best overall optimization of the process
49,50

. The design determines 

the effect of each factor on response as well as how the effect of each factor varies with 

the change in the level of the other factors
51

. Factorial design comprises the greater 

precision in calculating the overall main factor effects and interactions of different 

factors. Factorial designs are strong candidates in examining treatment variations. Instead 

of conducting a series of independent studies, it is possible to combine these studies into 

one. The range of experiments is given in the Table 3.1. 

Table 3.1: Range of experimental parameters for Multilevel Factorial design 

Independent variables Levels 

Acid concentration (M) 5 7.5 10 - 

L/S ratio (cm
3
/g) 1.5 2.5 3.5 4.5 

Temperature (°C) 50 100 - - 

A two factor interaction model with liner model equation of the actual factors was used 

for the prediction and the equation was given below. 

3223311321123322110 xxbxxbxxbxbxbxbby 
                              (3.2) 

Where b0= global mean, bi= represents the other regression coefficients x1= acid 

concentration, x2 = L/S ratio, x3 = temperature and y = % leaching 

3.2.4.2 DOE by Taguchi design 

The Taguchi design approach helps in finding the effect of the factors on 

characteristic properties and the optimal condition of the factors. This is one of the better 

and simple ways to optimize design for performance, cost and quality
49,50

. In the present 

Taguchi approach analysis of variance (ANOVA) was used as the tool of analysis which 

can approximate the effect of a factor on the characteristic properties and the experiment 
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can be done with orthogonal arrays. The advantage of the Taguchi optimization design 

over the conventional optimization is the experimental conditions are determined with 

least variability, whereas in conventional optimization it is determined on the basis of 

measured values of the characteristic properties. The signal/noise ratio was used to 

measure the quality characteristics deviating from the desired value in Taguchi method. 

The experimental conditions having the maximum signal to noise (S/N) ratio were 

considered as the optimal conditions, and the varying characteristics were inversely 

proportional to the S/N ratio. The range of experiments is given in the Table 3.2. 

Table 3.2: Ranges of experimental parameters for Taguchi design 

Independent variables  Levels  

Acid concentration (M) 2.5 5 7.5 10 

Alkali concentration (M) 0.5 1.5 2.5 3.5 

L/S ratio (cm
3
/g) 1.5 2.5 3.5 4.5 

Temperature (°C)
 

25 50 75 100 

 

3.2.5 Classical approach of optimization 

For the conventional or “one factor at a time” approach of optimization, the effect studies 

were done at various process conditions.  In the classical approach of optimization, the 

alkali concentration was optimized initially at various alkali concentration ranges from 

0.5 M to 3.5 M. Then on the optimized alkali concentration, the effect of acid 

concentration (2.5 M-10 M) was done followed by the effect of the L/S ratio (1.5-4.5) and 

temperature (25-100 °C).  

3.3. Characterization of Spent Pot Lining (SPL) samples 

Characterizations of the SPL sample were done by several techniques to get the 

broader idea of all the components present in the SPL. The elemental analysis was done 3 

times and the average values are listed in the results and discussion section. The purpose 

and operating conditions of the experiments are highlighted in the Table 3.3. For XRD 

analysis the phases of all the materials were identified by the standard software provided 

with the XRD instrument i.e. “X’Pert Highscore” version 1.0b. The PDF2 database was 

used for the identification of particular component in the sample. The peak and pattern 

list is given in appendix I.  
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3.4. Cryolite precipitation 

Filtrates from leaching experiments on SPL acidic and alkaline treatment were 

combined at 75 ±1°C and pH at 4.5 and 9.5. The solution pH was maintained using water 

washed filtrate solution which was obtained from the initial water treatment of SPL and 

having a solution pH around 11.6. The acidic pH was maintained by 1M HClO4or 1M 

H2SO4solution. The precipitates obtained was recovered by centrifugation at 3000 rpm, 

dried at 110 ± 1°C and ultimately calcined at 500 ± 2°C for a period of 4 h each. Then the 

obtained samples were analyzed by XRD studies. 

3.5. Fuel value analysis 

Currently, the energy demands of the whole world are mostly recompensed from 

fossil based fuels such as fuel-oil, natural gas and coal. Due to the growing demand of the 

energy, it becomes a necessity for everybody to search for the alternate energy sources. 

Various renewable and nonrenewable sources have been explored over the years to fulfill 

the current demand. Energy from the industrial waste is one of the most convenient ways 

to explore energy. Spent Pot Lining has promised to have a good calorific value so that it 

can be used in a thermal plant. In the current thesis, the energy values of the various 

treated SPL are determined by using adiabatic Bomb-calorimeter and presented in table 

4.13. Details of all the instruments used along with their purpose during the 

experimentation are listed in Table 3.3. 
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Table 3.3: Instruments used and purpose 

Instrument Make Operation conditions  

Or specification 

Purpose 

Analytical balance Sartorius (BS223S) 1mg - 100g Weight measurement 

pH meter Systronics (361) pH  4.5 to 9.5  Measurement of pH, EPA 

Method 9.045C
44

for solid 

sample pH 

Incubator shaker Environmental orbital 

Shaker 
 Speed: 120 rpm.                  

 Temperature:25 and 50 ±1 °C. 

Shaking of conical flasks 

used in leaching study 

Scanning Electron 

Microscope- 

Energy-dispersive 

X-ray spectroscopy 

JEOL  

(JSM-6480 LV) 

and 

Nova Nanosem 450 

by BRUKER by FEI 

 Magnification: up to 10000X 

 Resolution : 1µm 

 Detector: Everhardt Thornley 

secondary electron detector 

and Solid state backscattered 

detector. 

 X-Ray Analysis: Oxford 

Instruments ISIS 310 system 

with “windowless” detector. 

 Light element analysis: silicon 

detector with ATW. 

To study the clear 

morphology about the 

structure and extent of 

leaching capacity of SPL 

samples. And the 

elemental analysis of 

samples. 

Calorimeter Parr 6100 calorimeter  Operating pressure 30 atm 

 

Fuel value analysis 

Micro Centrifuge Remi 

(RM12C) 
 8000 rpm for 10 min Separation of precipitates 

from the leachate broth 

CHNS analyzer ElementarVario El 

Cube CHNSO. 

 

 Measurement of carbon, 

hydrogen, nitrogen and Sulfur 

of the SPL sample 

 Initial wt.- under 10mg 

Ultimate analysis- 

ASTM-D-3176 for 

Elemental Analysis 

X-ray diffraction 

analysis 

Philips X’Pert X-

ray diffractometer 
 Cu Kα radiation generated at 

35 KV and 30 MA 

 Scattering angle 2θ was 

ranged from 5° to 80° 

 scanning rate of 3 

degrees/minute 

Mineralogical and phase 

analysis of SPL samples. 

TGA-DSC TASDTQ600  up to 800 °C (heating rate 

10°C/min) under N2 flow 

(100 ml/min) 

 up to 800 °C (heating rate 

10°C/min) under O2 flow 

(100 ml/min) 

Behavior of material 

under temperature 

increase 

PSA-DLS Malvern 

Mastersizer Hydro 

(2000mu) 

 Measuring the random 

changes in the intensity of 

light scattered from a 

suspension or solution. 

For particle size analysis 

by dynamic light 

scattering  

Hot Air Oven WEIBER  Done at 110 ±1°C for 4 h 

maximum 

For drying of samples 

Magnetic Stirrer Spinot-Tarson, 

Spectro 
 Speed: 120 rpm 

 Temperature:75 and100±1°C. 

For Stirring at high 

temperatures 

Oven and furnace Weiber, Adco-

electric furnace 
 As per standards For proximate analysis

30
 

ASTM-D-

3172,3173,3174,3175 
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Chapter 4 

RESULTS AND DISCUSSION 

The experimental study of this thesis is divided into several sections. The initial 

approach was to treat the water washed SPL (WWSPL) with two different types of acid 

i.e. Perchloric and sulfuric acid and compare the leaching behavior of both the acids. The 

process parameters of the above comparison were optimized by utilization of multiple 

level factorial designs. In the second section, an approach in chemical leaching of 

WWSPL was done initially with caustic, followed by Perchloric acid leaching. The third 

section reflected the chemical leaching of WWSPL by using caustic followed by Sulfuric 

acid. The process parameters used in section 2 and 3 were optimized by Taguchi method. 

The last section discussed about the fuel value analysis of all the optimized samples of 

SPL along with the raw SPL sample for the sake of comparison. 

4.1. Utilization of multiple level factorial design for optimizing the process 

parameters for the chemical leaching of WWSPL 

4.1.1. Model fitting and statistical analysis 

A total of 24 experiments were performed according to multiple level factorial 

design approach with 24 base runs and one replicate at the center point. The design matrix 

for the multiple level factorial design is given in Table 4.1.The actual and predicted 

results with fitted and residuals values are shown in Table 4.1. The experiments were 

carried out in randomized run order to determine the effect of the factors on single 

characteristic response (i.e. leaching percentage). The experimental data on leaching 

percentage was plotted with deviation in the experiments in the residual plot. The 

maximum leaching % was found to be 48.13% for H2SO4 and 50.62% for HClO4 

treatment of water washed SPL. 

4.1.2 Effect of acid concentration 

4.1.2.1 For H2SO4 treatment 

To study the effect of acid concentration on leaching percentage, the acid 

concentration of H2SO4 was varied from 5 M to 10 M. From the Table 4.2 it was 

observed that the acid concentration had no significant effect on the leaching percentage 

as compared to L/S ratio and temperature. This conclusion was based on the fact that it is 
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having F value 4.60 among all the parameters and contributed only 4.8% in leaching. 

During the leaching of SPL with H2SO4, the partly leachable CaF2 got converted to 

CaSO4 and HF. The optimum amount of acid needed to dissolve the soluble compounds 

was achieved at 5M concentration. 

Table 4.1: The experimental values for leaching percentage under different conditions 

Sl. 

No

. 

Acid 

Conc. 

(M) 

L/S 

Ratio

(cm
3
/

g) 

Temp 

(°C) 

Leaching % with H2SO4 Leaching % with HClO4 

Experim

ental 

Predicted Difference Experim

ental 

Predicted Difference 

1 5.0 1.5 50 37.267 36.4551 0.81192 30.170 30.3324 -0.162375 

2 7.5 1.5 50 36.980 36.6528 0.32717 34.175 33.9290 0.246000 

3 10.0 1.5 50 35.150 36.2891 -1.13908 38.000 38.0836 -0.083625 

4 5.0 1.5 100 41.050 41.8619 -0.81192 33.180 33.0176 0.162375 

5 7.5 1.5 100 41.450 41.7772 -0.32717 37.160 37.4060 -0.246000 

6 10.0 1.5 100 40.960 39.8209 1.13908 40.560 40.4764 0.083625 

7 5.0 2.5 50 36.483 36.9391 -0.45608 42.400 42.2357 0.164292 

8 7.5 2.5 50 37.630 37.8838 -0.25383 42.710 42.8648 -0.154833 

9 10.0 2.5 50 41.780 41.0701 0.70992 46.875 46.8845 -0.009458 

10 5.0 2.5 100 42.050 41.5939 0.45608 43.150 43.3143 -0.164292 

11 7.5 2.5 100 42.510 42.2562 0.25383 44.890 44.7352 0.154833 

12 10.0 2.5 100 43.140 43.8499 -0.70992 47.680 47.6705 0.009458 

13 5.0 3.5 50 38.300 39.0737 -0.77375 42.275 42.5420 -0.267042 

14 7.5 3.5 50 40.210 40.3750 -0.16500 42.400 42.4147 -0.014667 

15 10.0 3.5 50 45.100 44.1613 0.93875 44.775 44.4933 0.281708 

16 5.0 3.5 100 43.850 43.0763 0.77375 44.150 43.8830 0.267042 

17 7.5 3.5 100 44.260 44.0950 0.16500 44.562 44.5473 0.014667 

18 10.0 3.5 100 45.350 46.2888 -0.93875 45.260 45.5417 -0.281708 

19 5.0 4.5 50 45.600 45.1821 0.41792 48.150 47.8849 0.265125 

20 7.5 4.5 50 45.900 45.8083 0.09167 47.775 47.8515 -0.076500 

21 10.0 4.5 50 46.900 47.4096 -0.50958 49.025 49.2136 -0.188625 

22 5.0 4.5 100 46.850 47.2679 -0.41792 49.130 49.3951 -0.265125 

23 7.5 4.5 100 47.520 47.6117 -0.09167 50.230 50.1535 0.076500 

24 10.0 4.5 100 48.130 47.6204 0.50958 50.620 50.4314 0.188625 
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With increase in acid concentration, the concentration of soluble component such as NaF, 

Na3AlF6 and Al2O3 decreases in leaching solution
54

. Therefore the leaching percentage 

has no significant change with increase in acid concentration.  

The following reaction mechanisms were involved during leaching process
54

 

Al2O3+3H2SO4→ Al2 (SO4)3 + 3H2O      (4.1) 

2NaF+H2SO4→2HF (g) + Na2SO4      (4.2) 

NaF.AlF3+H2SO4→4HF (g) + Na Al (SO4)2     (4.3) 

CaF2+H2SO4→CaSO4+ 2HF (g)      (4.4) 

2Al (OH)3+3H2SO4→ Al2(SO4)3(aq.) + 6H2O(l)    (4.5) 

4.1.2.2 For HClO4 treatment 

To examine the effect of change in acid concentration on leaching percentage, the 

acid concentration was varied from 5 M to 10 M. From the Table 4.3 it was observed that 

the acid concentration was second most significant factor in the leaching percentage. Acid 

concentration was found to be one of the significant factors having F value 214.09 among 

all the parameters and contributed 11.7% in leaching. The following reaction mechanisms 

were involved during leaching process
54

. 

Al2O3+3HClO4→2Al(ClO4)3+ 3H2O      (4.6) 

NaF+HClO4→HF (g) + NaClO4      (4.7) 

CaF2+2HClO4→Ca (ClO4)2+ 2HF (g)     (4.8) 

Al (OH)3+3HClO4→Al2(ClO4)3(aq.) + 3H2O(l)    (4.9) 

4.1.3. Effect of Liquid to Solid (L/S) Ratio 

4.1.3.1 For H2SO4 treatment 

To study the effect of the L/S ratio on leaching percentage, the L/S ratio was 

varied from 1.5 to 4.5 cm
3
/g. The effect of the L/S ratio on leaching percentage was found 

to be most significant factor having F value 44.81 and contributed 46.7% in leaching. 

There was an appreciable increase in leaching percentage observed with increase in the 

L/S ratio. 

4.1.3.2 For HClO4 treatment 

The effect of the L/S ratio of leaching percentage was found to be most significant 

having F value 1421.99 and contributed 77.9% in leaching. The leaching percentage was 

increased substantially with increase in L/S ratio. 
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4.1.4. Effect of temperature 

4.1.4.1 For H2SO4 treatment 

The effect of temperature on leaching percentage was studied at two different 

values (i.e. 50 ±1°C and 100 ±1 °C). From Table 4.2, it was observed that the temperature 

was the second most significant factor having F value 41.38 and was contributed 43.2% 

in leaching. 

4.1.4.2 For HClO4 treatment 

From the Table 4.3, it was observed that the effect of temperature was the third 

most significant factor having F value 146.33 and contributed only 8.0% in leaching. 

There was a marginal increase in leaching percentage with increase in temperature from 

50 °C to 100 °C (Table 4.1). This was due to the fact that the solubility of leachable 

compounds such as NaF, Na3AlF6 and CaF2 increased with increase in temperature. 

4.1.5. Analysis of Variance (ANOVA) 

The ANOVA was carried out to investigate the significance of design parameters. 

“Fisher (F) test”
49

was conducted to test the significant effect on the output parameters. 

The most and least significant factors were decided on the basis of higher and lower “F” 

value. The percentage contribution of each factor is decided in terms of their “F” value 

From the ANOVA, for leaching percentage of H2SO4 treatment (Table 4.2) the L/S ratio 

and acid concentration were found to be most and least significant factor, respectively. 

The (acid concentration * temperature) and (L/S ratio * temperature) were found to be the 

least and most significant terms among interaction terms, respectively. From the 

ANOVA, for leaching percentage of HClO4 treatment, the L/S ratio and temperature were 

found to be most and least significant factor among all the linear terms (Table 4.3). But 

within the interaction terms, (acid concentration * temperature) and (acid concentration * 

L/S ratio) were observed to be least significant and most significant, respectively. For the 

linear terms with two factor interaction model expressed by (Eq. 3.2), whereby the 

variables take their coded values, represent ‘y’ as a function of acid concentration(x1), 

L/S ratio (x2) and temperature(x3).The model was evaluated by design of experiment 

(DOE) surface response analyzer, which indicated that the regression model was 

statistically significant at 95% confidence level for both types of acid treatment. The 

interaction terms were not significant as its corresponding P values were higher than 

prescribed 0.05 (Table 4.2). The value of adjusted correlation coefficient (R
2
) reflects the 
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percentage of variation in response variable which is explained by its relationship with 

one or more predicted variables. The adjustment is important because the adjusted R
2
 for 

any model will always increase when a new parameter is added
50

. The adjusted R
2
 is a 

useful tool for comparing the explanatory power of models with different numbers of 

predictors. Statistically, the values of adjusted R
2
 for H2SO4 treatment and HClO4 

treatment were determined to be 89.08% and 99.55%, respectively, indicating the 

significant regression of the model by using three parameters.  

Table 4.2: Analysis of variance for leaching percentage, using adjusted sum of 

squares (Adj. SS) tests for H2SO4 treatment 

Source DF Seq. 

SS 

Adj. 

SS 

Adj. 

MS 

F P % 

Contribution 

Acidic Concentration 2 14.704 14.704 7.352 4.60 0.061 4.798 

L/S Ratio 3 214.62 214.62 71.541 44.81 0.000 46.745 

Temperature 1 66.068 66.068 66.068 41.38 0.001 43.167 

Acid Concentration*L/S 

Ratio 

 

6 

 

18.081 

 

18.081 

 

3.014 

 

1.89 

 

0.230 

 

1.971 

Acid Concentration * 

Temperature 

 

2 

 

4.088 

 

4.088 

 

2.044 

 

1.28 

 

0.344 

 

1.335 

L/S Ratio * Temperature 3 9.100 9.100 3.033 1.90 0.231 1.982 

Residual Error 6 9.580 9.580 1.597    

Total 23 336.24     100 

S = 1.26360   R-Sq. = 97.15%   R-Sq. (Adj.) = 89.08% 

Table 4.3: Analysis of Variance for leaching percentage, using adjusted sum of 

squares (Adj. SS) tests for HClO4 treatment 

Source DF Seq. SS Adj. SS Adj. 

MS 

F P % 

Contribution 

Acidic Concentration 2 58.167 58.167 29.083 214.09 0.00 11.724 

L/S Ratio 3 579.515 579.515 193.172 1421.9 0.00 77.872 

Temperature 1 19.878 19.878 19.878 146.33 0.000 8.013 

Acid Concentration*L/S 

Ratio 

 

6 

 

27.257 

 

27.257 

 

4.543 

 

33.44 

 

0.000 

 

1.831 

Acid Concentration * 

Temperature 

 

2 

 

1.259 

 

1.259 

 

0.629 

 

4.63 

 

0.061 

 

0.253 

L/S Ratio * 

Temperature 

3 2.270 2.270 0.757 5.57 0.036 0.305 

Residual Error 6 0.815 0.815 0.136    

Total 23 689.160     100 

S = 0.368573   R-Sq. = 99.88%   R-Sq. (Adj.) = 99.55% 
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4.1.6. Residual plots 

All the four residual plots are presented in a single graph for the sake of 

comparing the plots to assess whether the proposed model fits the assumptions of the 

analysis or not. The residual plots in the graph include: 

(i) Histogram indicating whether the data are skewed or outliers exist in the data 

(ii) Normal probability plot indicating whether the data are normally distributed, other 

variables are influencing the response, or outliers exist in the data. 

(iii) Residuals versus fitted values indicating whether the variance is constant, a nonlinear 

relationship exists, or outliers exist in the data. 

(iv) Residuals versus order of the data indicating whether there are systematic effects in 

the data due to time or data collection order. 
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Figure 4.1: Four in one residual plot for leaching percentage of H2SO4 treatment. 
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Figure 4.2: Four in one residual plot for leaching percentage of HClO4 treatment. 
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From the residual plots for leaching percentage it was observed that the maximum 

deviation of predicted results with that of the actual values lies within 1.13% in case of 

H2SO4 treatment and 0.28% in case of HClO4 treatment of water washed SPL. From the 

Figure 4.1 and 4.2, it was found that, the residuals were almost falling on a straight line. 

This indicates that the residuals were normally distributed and the normality assumption 

is valid. The adequacy of ANOVA model was also tested through the correlation between 

calculated and experimental values, which is shown in scattered plot i.e. residual and 

fitted value. Furthermore, the standardized residuals also exhibited a random, irregular 

pattern, as observed in the residual versus observation order plot. This validates that the 

experimental data has been obtained purely on random basis with no specific trend in the 

residual data. This also validates the independence of the data. The model assumptions 

for both the types of acid treatment with leaching percentage as response were found to 

be valid. 

4.1.7. Characterization 

From the water treatment of SPL leachable components such as NaF and Na2CO3 

components were removed
30,46–48

 as confirmed form the XRD analysis (Figure 4.3.1). 

4.1.7.1 Elemental composition 

The elemental compositions of the different treated SPL samples were found out 

by CHNS analyzer primarily for two reasons. The first reason was to establish the 

presence of the heteroatom content in each fraction that was removed or increased after 

treatment of SPL with various acids. The second reason was that the determination of 

hydrogen to carbon ratio of each fraction, which is an indicator of the aromaticity and the 

anticipated H2 reduction during SPL leaching. From the Table 4.4 it was concluded that 

the aromaticity has no significant effect with increase in concentration of acid and water. 

Whereas the heteroatom compositions were increased by the treatment of acid due to 

increase in sulfur content, but there was no such trend in increment observed. The carbon 

content was found to increase from raw SPL (42.19%) to H2SO4 (70.83%) and HClO4 

(71.76%) treatment. The other parameters were kept constant for both the acids (i.e. 10 M 

acid concentrations, 4.5 L/S ratio and temperature 100 ºC). From the elemental analysis it 

was observed that nearly same degree of carbon enrichment was obtained for both the 

treatment approach.  The increased concentration of H2SO4 for the treatment of SPL 

showed that there was very small rise in carbon percentage, whereas a reasonable increase 

in carbon percentage was observed in case of HClO4. 
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Table 4.4: Elemental composition of Spent Pot Lining (SPL) by ultimate analysis 

Component Weight percentage (%) 

C H N S H/C N/C S/C 

Raw SPL 42.19 0.616 0.59 1.24 0.0146 0.013984 0.029391 

Water Washed SPL 48.08 0.21 0.40 1.72 0.00437 0.008319 0.035774 

5 M H2SO4 treated SPL 68.81 0.15 0.54 3.50 0.00218 0.007848 0.050865 

5 M HClO4 treated SPL 64.17 0.26 0.57 2.58 0.00405 0.008883 0.040206 

10 M H2SO4 treated SPL 70.83 0.17 0.60 5.57 0.0024 0.008471 0.078639 

10 M HClO4 treated SPL 71.76 0.21 0.53 3.42 0.00293 0.007386 0.047659 

4.1.7.2 X-Ray Diffraction (XRD) analysis 

From the X-ray diffraction data, the peaks at 38.801º, 56.066º and 70.299º of 2Θ 

value were attributed to Villaumite (NaF) (Figure 4.3.1) which vanished upon treatment 

with acids (Figure 4.3.2). The peaks at 26.426º, 44.462º and 54.512º corresponded to 

carbon fractions which get more prominent with the treatment of SPL by that of various 

acids. The peak of sodium iron cyanide at 32.533º was found only on the raw SPL which 

was completely removed by acid leaching. Fluorite (CaF2) having the peaks at 28.282º, 

47.020º and 55.770º are found in almost all the SPL as it was sparingly leachable during 

the acid treatment process. The peaks of cryolite (Na3AlF6) are found at 19.537º, 20.027º, 

22.884º, 32.570º, 38.766º and 46.764º in the raw SPL. The leachable components such as 

NaF, Na3AlF6 and part of NaAl11O17 were removed by the acid leaching process. 

 

Figure 4.3.1: XRD analysis of water washed filtrate 
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Figure 4.3.2: XRD analyses of Spent Pot Lining (SPL) samples 

4.1.8. Outcome 

 The predominating factor can be characterized by higher “F” value. The F-test and 

Analysis of variance (ANOVA) analysis was used to find the significant factors which 

played a vital role in the determination of leaching percentage. For H2SO4 and HClO4 

treatment of water washed SPL, L/S ratio was found to be the most significant factor. 

 Statistically, the values of adjusted R
2
 for H2SO4 treatment and HClO4 treatment 

were determined to be 89.08% and 99.55%, respectively, indicating the significant 

regression of the model by using three parameters.  

 The maximum leaching percentage was found to be 48.13% for H2SO4 and 

50.62% for HClO4 for 10M concentration. From the residual plots for leaching 

percentage, it was found that the maximum deviation of predicted results with that of the 

actual values lies within that of 1.13%. 

 The carbon content was found to increase from 42.19% for raw SPL to 70.83% for 

H2SO4 and 71.76% HClO4 treatment.  
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4.2. Chemical Leaching Treatment of Spent Pot Lining (SPL) by Taguchi Method 

using Caustic leaching followed by Perchloric acid leaching 

4.2.1. Taguchi approach for optimization 

The main objective of the optimization was to know the effect of acid 

concentration, alkali concentration, temperature, L/S on the leaching percentage in terms 

of percentage contribution. The experimental outcome for the leaching percentage of 

water washed SPL with that of HClO4 at different setting parameters with corresponding 

signal to noise (S/N) ratio is demonstrated in Table 4.5. The predicted value of the 

leaching percentage was found by fitting the linear regression model with that of the 

results obtained. There was good agreement of the predicted value with that of the actual 

value of leaching percentage observed and is presented in Appendix II.  

Table 4.5: Taguchi design matrix with experimental and predicted values 

Sl. 

no 

Alkali 

Conc. 

(M) 

Acid 

Conc. 

(M) 

L/S 

ratio 

(cm
3
/g) 

Tempe

rature 

(°C) 

Actual 

Leaching 

percentage 

(%) 

Actual 

S/N ratio 

Predicted 

leaching 

percentage 

(%) 

Predicted 

S/N ratio 

1 0.5 2.5 1.5 25 29.15 29.2928 29.2931 29.4162 

2 0.5 5.0 2.5 50 39.67 31.9692 39.1331 31.8352 

3 0.5 7.5 3.5 75 40.30 32.1061 40.7056 32.1417 

4 0.5 10.0 4.5 100 50.45 34.0572 50.4381 34.0323 

5 1.5 2.5 2.5 75 39.55 31.9429 39.5381 31.9180 

6 1.5 5.0 1.5 100 45.12 33.0874 45.5256 33.1230 

7 1.5 7.5 4.5 25 35.85 31.0898 35.3131 30.9557 

8 1.5 10.0 3.5 50 42.79 32.6268 42.9331 32.7502 

9 2.5 2.5 3.5 100 47.71 33.5722 47.1731 33.4381 

10 2.5 5.0 4.5 75 44.12 32.8927 44.2631 33.0161 

11 2.5 7.5 1.5 50 41.13 32.2832 41.1181 32.2582 

12 2.5 10.0 2.5 25 36.10 31.1501 36.5056 31.1858 

13 3.5 2.5 4.5 50 44.73 33.0120 45.1356 33.0476 

14 3.5 5.0 3.5 25 36.79 31.3146 36.7781 31.2896 

15 3.5 7.5 2.5 100 51.24 34.1922 51.3831 34.3156 

16 3.5 10.0 1.5 75 46.79 33.4031 46.2531 33.2690 

4.2.1.1 Analysis of the signal to noise (S/N) ratio 

The word “signal” represents the desirable value (mean) for the output 

characteristics and the word “noise” signifies the undesirable value (SD) for the output 

characteristics in Taguchi method. Thus the S/N ratio is the ratio of the mean to the SD. 

The Taguchi method uses the S/N ratio to measure the quality characteristic deviating 

from the desired value. The “larger is better” was selected for the optimum leaching 
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percentage calculation. The Signal to Noise (S/N) ratio Y was determined by means of 

following equation, 

2
log10



 







 k

n

k
x

k

n
Y        (4.10) 

Where n is the number of test and xk are the comparison variables in the k
th

 experiment. 

From the main effect plot for S/N ratio and from the equation, it was observed that 

greater the value of S/N ratio smaller was the variance of leaching percentage around the 

desired value. From the Figure 4.4 it can be attributed that more the effect of the 

parameter was significant, the deviation from the horizontal line was more. However, the 

relative importance among the process parameters for leaching percentage calculation still 

need to be known so that optimal combination of the process parameter levels can be 

determined more accurately. It was explained through the analysis of variance of S/N 

ratio. 
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Figure 4.4: Main effect plot for the Taguchi optimization 

4.2.1.2 Analysis of variance (ANOVA) 

ANOVA is a collection of statistical models used to analyze the differences 

between group means and their associated procedures. The reason for performing 

ANOVA was to investigate which design parameters significantly affect the quality 

characteristics. “Fisher (F)” test was conducted to recognize the significant effect on the 

quality characteristic. The “F” value is the ratio of the mean of the squared deviations to 
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the mean of squared errors. Generally, when F>4 indicates that the design parameter has a 

significant effect on the quality characteristics. The results of analysis of variance 

(ANOVA) for leaching percentage at various process and response conditions are 

presented in Table 4.6. After the selection of optimal level of the design parameters, the 

final step was to predict and verify the improvement of the quality characteristics using 

the optimal level of the design parameter. The estimated S/N ratio using the optimal 

parameters for leaching percentage can be obtained and the related other parameters can 

be calculated by the Eq. (4.10). It is perceived that there was a good correspondence 

between the predicted and actual leaching percentage from Table 4.5. From Table 4.6 it 

was found that, the temperature was the most significant and L/S ratio as the least 

significant parameter among all the independent parameters according to percentage 

contribution. 

Table 4.6: Analysis of variance of Signal to Noise (S/N) ratio 

Source DF Seq. SS Adj. SS Adj. MS F P Percentage 

Contribution 

Alkali concentration 3 2.7238 2.7238 0.90792 19.41 0.018 11.4 

Acid concentration 3 1.4815 1.4815 0.49383 10.56 0.042 6.2 

L/S ratio 3 1.1344 1.1344 0.37813 8.08 0.060 4.7 

Temperature 3 18.5956 18.5956 6.19852 132.50 0.001 77.7 

Residual error 3 0.1403 0.1403 0.04678    

Total 15 24.0756     100 

S = 0.2163   R-Sq. = 99.4%   R-Sq. (Adj.) = 97.1% 

4.2.2. Classical approach of optimization 

4.2.2.1 Effect of alkali concentration 

In this step the optimal values of NaOH concentration was predicted in the range 

of 0.5-3.5M. Water washed SPL was treated with varying NaOH concentration at 5 L/S 

ratio, at a temperature of 50 °C for 4 h. From the Figure 4.5 it can be seen that leaching 

percentage increased with increasing the alkali concentration in the range of 0.5 M to 1.5 

M. But after 1.5 M the leaching percentage was nearly constant. This was because at 1.5 

M NaOH concentration, it furnished the required amount of OH
-
 sites for the dissolving 

of unleached cryolite (Na3AlF6), alumina (Al2O3) fractions in the SPL sample
42

. 



35 
 

 

Figure 4.5: Influence of alkali concentration on leaching percentage 

For the leaching process following reaction mechanisms
42

wasinvolved. 

Na3AlF6+4 NaOH → NaAl(OH)4+ 6 NaF   (4.11) 

Al2O3+ 2NaOH+3H2O →2NaAl(OH)4   (4.12) 

Al(OH)4
-
+2OH

-
→ Al(OH)6

3-     
(4.13) 

2Al(OH)4
-
+2OH 

-
→ Al2(OH)10

4-    
(4.14)

 

4.2.2.2 Effect of acid concentration 

 In the solution of 1.5M NaOH with an L/S ratio of 5 at 50°C, the water washed 

Spent Pot Lining (WWSPL) was leached for 4h at different HClO4 concentration in the 

range of 2.5-10M.From the Figure 4.6 it was observed that the leaching percentage hardly 

increased as the acid concentration rose from 2.5 M to 10 M. The concentration of 

leachable components decreased with increasing acid concentration leading to lesser rise 

in leaching percentage. Hence 2.5 M of HClO4 was taken as the optimized value for the 

acid treatment. 
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Figure 4.6: Influence of acid concentration on leaching percentage 

4.2.2.3 Effect of liquid to solid (L/S) ratio 

The water washed Spent Pot Lining (WWSPL) samples were taken for the alkali 

leaching. The samples were leached in 1.5M NaOH followed by 2.5M HClO4 solution for 

4 h at 50 °C, and the L/S ratio was varied in the range of 1.5-4.5 cm
3
/g. The Figure 4.7 

shows the total leaching percentage obtained after both alkali and acid leaching. It was 

observed that the leaching percentage marginally increased with an increase in the L/S 

ratio in the range of 1.5-2.5. This was due to increase in mass of mass of OH
- 
ions with 

the increase in L/S ratio which reacts with the soluble Na3AlF6 and Al2O3. The 

concentration of soluble Na3AlF6 and Al2O3 in the leaching solution decreased with the 

increase of L/S ratio, which made the leaching percentage gradually constant with further 

increase in the L/S ratio in case of alkali leaching
42

. Similarly, in the case of acid leaching 

the rise in leaching percentage was due to the mass of ClO4
-
 ions which react with the 

Al(OH)3 and sparingly soluble CaF2 in the range 1.5-2.5. 
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Figure 4.7: Influence of liquid to solid (L/S)ratio on leaching percentage 

4.2.2.4 Effect of temperature 

Spent Pot Lining (SPL) samples were leached in 1.5 M NaOH followed by 2.5 M 

HClO4 solution for 4 h using 2.5 L/S ratio in the temperature values of 25, 50, 75 and 100 

±1°C. It is perceived from Figure 4.8 that the temperature has an appreciable effect on the 

leaching percentage. The leaching percentage increased from 35.62% to 54.04% when the 

temperature increased from 25 ±1°C to 100 ±1°C. This was because the solubility of 

leachable compound Al(OH)3 increased with the temperature. But after 50 ±1 °C there 

was a gradual increase in the leaching percentage due to the CaF2 was not fully leachable 

as confirmed from the XRD studies. Finally, from both Taguchi method and one factor at 

a time approach, it was concluded that 1.5 M NaOH, 2.5 M HClO4, 2.5 L/S ratio and 50 

±1°C were the best combination for the optimum leaching percentage and considered as 

“final treated SPL”. For “alkali treated SPL” the condition required were1.5M NaOH, 2.5 

L/S ratio and 50 ±1 °C. 
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Figure 4.8: Influence of temperature on leaching percentage 

4.2.3. Characterization of Spent Pot Lining (SPL) samples  

4.2.3.1 Thermo gravimetric analysis-differential scanning calorimetry (TGA-DSC) 

From the Figure 4.9.1, it can be noticed that the removal of moisture started at from 

99 °C and continued up to 104 °C with a mass reduction of 0.74%. Then there was a 4.3% 

rise in mass % in between 104-434 °C. The gain in weight in the TGA graph may be 

attributed to the following two reasons: 

(i) Chemical reaction (reactions with gaseous substances in the purge gas such as 

O2, CO2 with the formation of non-volatile or partially volatile compounds). 

(ii) Physical transitions (adsorptions of gaseous substances on samples such as 

active carbon). 

After that decomposition occurred with total mass reduction of 36.23 % from 434 °C 

to 749 °C. The sample was tested in O2 flow just to confirm the reason for the gain in 

mass which was happening with N2 flow. From the Figure 4.9.2, there is no such gain in 

mass is observed in O2 flow. From the DSC curve exothermic process occurring during 

the combustion is confirmed. The reason for rise in mass was due to the formation of 

NaCN compound at high temperature
52

. 
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Figure 4.9.1: TGA-DSC under N2 flow  Figure 4.9.2: TGA under O2 flow 

4.2.3.2 Proximate analysis 

The proximate analysis was done on the raw Spent Pot Lining (SPL) samples 

along with the optimized samples obtained from the leaching experiments. From Table 

4.7, it was observed that the fixed carbon percentage increased after treatment. Similarly 

the residue content was decreased as the removal of leachable component occurred during 

treatment of SPL. 

Table 4.7: Proximate analysis of SPL samples treated with HClO4 

Sample Moisture content 

(%) 

Residue content
30

 

(%) 

Volatile matter 

(%) 

Fixed carbon 

(%) 

Raw SPL 3.46 51.39 6.18 38.96 

Water Washed 

SPL 

2.40 51.32 5.91 40.37 

Alkali treated 

SPL 

2.20 25.25 4.78 67.77 

Final treated 

SPL 

2.10 14.84 0.20 82.86 

4.2.3.3 Particle size analysis (PSA) of sieved and treated SPL samples by dynamic light 

scattering (DLS) 

The particle size distribution of SPL was done in de-ionized water and the profile 

is shown in Figure 4.10 and 4.11. A reduction in average particle size was observed from 

raw SPL to final treated SPL. The raw SPL was having average particle size of 

102.138μm with maximum and minimum diameter of particle 296.079 and 13.964 μm, 

respectively. The final treated SPL was having average particle size of 15.5628 μm with 

maximum and minimum diameter of particle 107.93 and 2.851 μm, respectively. From 
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the Figure 4.10 and 4.11, it may be anticipated that the leachable particles that mainly 

comprised of inorganic fractions were being removed during leaching process. In order to 

assess how the leaching of inorganic fractions occurred during treatment, Scanning 

Electron Microscope-Energy Dispersive X-ray diffraction (SEM-EDX) analysis was 

performed.  

 Figure 4.10: Particle size analysis of raw SPL 

Figure 4.11: Particle size analysis of treated SPL 

4.2.3.4 SEM-EDX and ultimate analysis 

The 300μm size fraction SPL particles are mainly comprised of carbonaceous and 

finely divided inorganic materials attached to the exposed surfaces. This occurred due to 

breakage along the inside layers of bath material between the layers of graphene
2,30,46–48

. 

In Figure 4.12 and 4.16, it was observed that the partial mineral liberation or exposure of 

the inorganic materials from the carbon fraction was possible to a large extent leading to 

better leachability. From Figure 4.12 (iv and v), some elongated graphite particles (dark 

color) appeared completely exposed at this size fraction. After magnification it was found 

that, finely divided inorganic (brighter colored) particles attached loosely to graphite 
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particles or appeared as independent units. Figure 4.12(iv, v and vi) proposed a closer 

look of partially liberated graphite particles. It reflected that most of the inorganic 

fractions, which remained attached to graphite particles, were in the form of a relatively 

thin layer (∼1 μm).These inorganic fractions were fully accessible to any leaching 

solution. To know more about the structure about inorganic fractions, the SEM analysis 

of residual SPL samples (Figure 4.13) were performed and it was found that the needle 

like structure comprised of inorganic fractions. The appearance of inorganic fractions was 

becoming less prominent due to removal of leachable components leading to less bright 

particles present in the materials (Figure 4.14, 4.15, 4.17 and 4.18). The average values of 

all the components obtained after 3 times repetition of sampling is shown in Table 4.8. 

The ultimate analysis was done for the SPL samples and results are included in the Table 

4.8. 

 

 

Figure 4.12: SEM-EDX images of Raw SPL, having particle size of D minimum - 

13.964 μm, D mean -102.136 μm, D Max - 296.079 μm 

(ii) 
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Figure 4.13: SEM images Raw SPL sample burned at 800
°
C for 1.5h ( i, ii, iii, iv) and 

800
°
C for 5h(v, vi, vii, viii) 
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Figure 4.14: SEM-EDX images of alkali treatment of SPL at 1.5M NaOH concentration 

(i, ii, iii) 

 

 

 

(iii) 
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Figure 4.15: SEM-EDX images of the final treated SPL (i, ii, iii, iv, v, vi, vii) having D 

min = 2.851 μm, D mean = 15.5628 μm, D max = 107.93 μm 

 

 

Figure 4.16: FESEM-EDX images of raw SPL (i, ii) 
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Figure 4.17: FESEM-EDX images of 1.5M NaOH treated SPL 

 

Figure 4.18: FESEM-EDX images of Final Treated SPL 

Table 4.8: Ultimate and elemental (SEM-EDX) analysis of SPL samples 

 

4.2.3.5 X-ray diffraction (XRD) analysis 

The XRD analysis of optimum sample along with that of raw SPL was performed. 

The peaks of graphitic carbon (C), cryolite (Na3AlF6), villaumite (NaF), fluorite (CaF2), 

sodium iron cyanide (Na4Fe(CN)6) and gibbsite (Al(OH)3) phases were found. After 

washing and filtering of alkali treated SPL, the solid residue contained insoluble 

compounds of CaF2, Al(OH)3 and NaAl11O17 is shown in Figure 4.19. 
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Figure 4.19: XRD analysis of SPL samples 

4.2.4. Cryolite precipitation 

In order to check the feasibility of the cryolite precipitation the leachates were 

analyzed at 2 different pH values. At pH 4.5 (Figure 4.20) the aluminum ions have 

existed in the form of Al(OH)4
-
 or [Al8(OH)26]

2-
leading to precipitation of cryolite

42
. 

While at pH 9.5 (Figure 4.21) Cl
-
 prevails over the precipitation of cryolite leading to the 

formation of NaCl as confirmed from XRD analysis. The acid leaching solution 

containing H
+
 ion was added with alkali leaching solution having Na

+
, F

-
 and its complex 

anion (AlFx
3-x

) to form cryolite (Na3AlF6) at suitable pH value (Eq. 4.15). 

Al(OH)4
-
+4H

+
+3Na

+
+6F

-
→Na3AlF6+4H2O    (4.15) 

 

Figure 4.20: XRD analysis of fluoride precipitation at pH value of 4.5 
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Figure 4.21: XRD analysis of fluoride precipitation at pH value of 9.5 

4.2.5. Outcome of the study 

 Temperature was found to be the most significant factor among all the 

parameters, whereas the L/S ratio was the least significant among the four parameters 

studied.  

 Temperature contributed 77.7% in the leaching process, whereas L/S ratio 

contributed only 4.7 %. The maximum leaching percentage was found to be 54.04% for 

the classical approach of optimization, whereas in Taguchi optimization method the 

maximum leaching percentage was 51.24%. 

 From the S/N ratio analysis, the optimum condition was achieved at 3.5 M NaOH 

concentration, 7.5 M HClO4, 2.5 L/S ratio and at 100 ±1°C. From both Taguchi method 

and one factor at a time approach, it was concluded that 1.5 M NaOH, 2.5 M HClO4, 

2.5 L/S ratio and temperature 50°C was the best combination for the optimum leaching 

percentage for “final treated SPL” and 1.5M NaOH, 2.5 L/S ratio and temperature 50 

±1°C for “alkali treated SPL”. 

 The carbon percentage of SPL was increased from 42.19% to 87.03% as 

confirmed from the ultimate analysis. From the proximate analysis, the fixed carbon 

was found to be increased from 38.96% to 82.86% from the raw to final treated SPL. 

 From the XRD analysis, it was concluded that a lower pH value of the solution 

favors higher degree of precipitation of cryolite. 
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4.3. Chemical leaching treatment of Spent Pot Lining (SPL) by Taguchi method 

using Caustic leaching followed by Sulfuric acid leaching 

4.3.1. Taguchi optimization of NaOH followed by H2SO4 

The experimental results for the leaching percentage of water washed SPL with 

that of H2SO4at different setting parameters with corresponding S/N ratio is shown in 

Table 4.9. There was good agreement of the predicted value with that of the actual value 

of leaching percentage observed and is presented in Appendix II. 

Table 4.9: Taguchi design of NaOH followed by H2SO4 

Sl. 

No. 

Alkali  

Conc. 

(M) 

Acid 

Conc. 

(M) 

L/S 

ratio 

(cm
3
/g) 

Temperature 

(°C) 

Actual 

Leaching  

Percentage 

(%) 

Actual 

S/N 

ratio  

Predicted  

Leaching 

Percentage 

(%) 

Predicted  

S/N ratio 

1 0.5 2.5 1.5 25 31.24 29.8942 33.0544 30.3514 

2 1.5 7.5 4.5 25 51.37 34.2142 51.3669 34.1840 

3 2.5 10.0 2.5 25 48.27 33.6735 48.3844 33.6403 

4 3.5 5.0 3.5 25 52.39 34.3850 50.4644 33.9912 

5 0.5 5.0 2.5 50 41.77 32.4173 41.7669 32.3871 

6 1.5 10.0 3.5 50 51.47 34.2311 53.2844 34.6883 

7 2.5 7.5 1.5 50 49.12 33.8252 47.1944 33.4314 

8 3.5 2.5 4.5 50 48.49 33.7130 48.6044 33.6798 

9 0.5 7.5 3.5 75 45.50 33.1602 45.6144 33.1270 

10 1.5 2.5 2.5 75 47.08 33.4567 45.1544 33.0630 

11 2.5 5.0 4.5 75 50.96 34.1446 52.7744 34.6018 

12 3.5 10.0 1.5 75 47.72 33.5740 47.7169 33.5438 

13 0.5 10.0 4.5 100 50.28 34.0279 48.3544 33.6341 

14 1.5 5.0 1.5 100 48.45 33.7059 48.5644 33.6726 

15 2.5 2.5 3.5 100 50.32 34.0348 50.3169 34.0047 

16 3.5 7.5 2.5 100 50.24 34.0210 52.0544 34.4782 

4.3.1.1 Analysis of the signal to noise (S/N) ratio 

The “larger is better” was selected for the optimum leaching percentage 

calculation. The S/N ratio “Y” was determined by the formula given in the Eq. (4.10).  

Graphically the effects of parameters are shown in Figure 4.22.  
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Figure 4.22: Main effect plots for Signal to Noise (S/N) ratio 

4.3.1.2 Analysis of variance (ANOVA) 

The results of ANOVA for leaching percentage at various process and reaction 

conditions are shown in Table 4.10. The comparison of the predicted leaching percentage 

and the actual leaching percentage and the actual Signal to Noise (S/N) ratio with that of 

Taguchi predicted S/N ratio is shown in the Table 4.9. There was a good agreement 

between the predicted and actual leaching percentage observed. From the Table 4.10, 

alkali concentration was found to be the most significant factor and the temperature as a 

least significant factor on the basis of percentage contribution.  

Table 4.10: Analysis of Variance for Signal to Noise (S/N) ratio 

Source DF Seq. SS Adj. SS Adj. MS F P % Contribution 

Alkali concentration 3 166.95 166.95 55.649 5.95 0.089 45.52 

Acid concentration 3 67.91 67.91 22.638 2.42 0.243 18.52 

L/S ratio 3 99.97 99.97 33.323 3.56 0.162 27.24 

Temperature 3 32.11 32.11 10.705 1.14 0.457 8.72 

Residual Error 3 28.05 28.05 9.351       

Total 15 394.99          100 

S = 3.058   R-Sq. = 92.9%  
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4.3.2. Classical approach of optimization of NaOH followed by H2SO4 

4.3.2.1 Effect of alkali concentration 

The optimum value of NaOH concentration was predicted in the range of 0.5-3.5 

M and discussed in the section 4.2.2.1. The results were plotted in the Figure 4.5. 

4.3.2.2 Effect of acid concentration 

In this step, the optimum value of H2SO4concentration was proposed in the range 

of 0.5-10 M. The Spent Pot Lining (SPL) sample obtained from the alkali leaching of 1.5 

M NaOH was treated with H2SO4 under setting parameters of 5 L/S ratio, temperature 50 

±1°C, 120 rpm and time 4 h. From the Figure 4.23, it was observed that after 2.5 M 

concentration the leaching percentage was almost constant showing no more effect of 

acid concentration.  

 

Figure 4.23: Influence of acid concentration on leaching percentage 

4.3.2.3 Effect of liquid to solid (L/S) ratio 

The water washed SPL samples were leached in 1.5 M NaOH followed by 2.5 M 

H2SO4 solution for 4 h at 50 ±1°C and the L/S ratio was varied in the range of 1.5-4.5 

cm
3
/g. It was observed from Figure 4.24 that the leaching percentage substantially 

increased with increasing the L/S ratio in the range of 1.5-3.5. There was no effect on the 
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leaching percentage after 3.5 L/S ratio because at this point the required mass of OH
-
was 

available to react with the soluble Na3AlF6and Al2O3.Similarly in acid leaching, the rise 

of leaching percentage was due to the mass of SO4
2-

which react with the sparingly soluble 

CaF2 and NaAl11O17 and fully soluble Al(OH)3in the range of 1.5-3.5 L/S  ratio. 

 

Figure 4.24: Influence of liquid to solid (L/S) on leaching percentage 

4.3.2.4 Effect of temperature 

The water washed Spent Pot Lining (SPL) samples were leached in 1.5MNaOH 

followed by 2.5 M H2SO4 solution for 4 h and 3.5 L/S ratio at a different temperature 

ranging from 25-100 ±1°C. From the Figure 4.25, it can be perceived that there was a 

small rise in the leaching percentage from temperature 25 to 50 °C. But a decrease in 

leaching percentage was observed from temperature 50 to 100 °C. This was due to the 

solubility of leachable component such as Na2SO4 decreasing with increasing 

temperature. In this step, 25°C was considered as optimum temperature. Ultimately, 

from both Taguchi and classical approach it was concluded that 1.5 M NaOH, 2.5 M 

H2SO4, 3.5 L/S ratio and 25 ±1°C were the best combination for the optimum leaching 

percentage, considered as “final treated SPL” and 1.5M NaOH, 3.5 L/S ratio and 25 

±1°C for “alkali treated SPL”. 
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Figure 4.25: Influence of temperature on leaching percentage 

4.3.3. Characterization of Spent Pot Lining (SPL) samples  

4.3.3.1 Proximate analysis 

The proximate analysis was performed on the SPL samples and is shown in Table 

4.11. It was found that the fixed carbon percentage increased upon subsequent treatment. 

The volatile component and residual content were found to be decreased upon treatment 

by alkali and acid. 

Table 4.11: Proximate analysis of SPL samples treated with H2SO4 

Sample Moisture 

content (%) 

Residue content
30

(%) Volatile 

matter 

(%) 

Fixed Carbon 

(%) 

Raw SPL 3.46 51.39 6.18 38.96 

Water Washed 

SPL 

2.40 51.32 5.91 40.37 

Alkali treated 

SPL 

2.20 25.25 4.78 67.77 

Final treated 

SPL 

2.13 16 3.19 78.68 
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4.3.3.2 SEM-EDX and Ultimate analysis 

Morphological studies were conducted to examine the extent of leaching and to 

get better access about the behavior of material on the micron scale. The morphological 

studies of raw and alkali treated SPL were discussed in the section 4.2.3.4. In this section 

an elemental analysis of the final treated sample obtained from the sulfuric acid treatment 

was performed. The ultimate analysis was conducted to get the compositional details of 

SPL samples. The elemental composition of SPL samples is shown in the Table 4.12. The 

carbon content of the treated sample increased up to a certain level, which make these 

treated SPL samples, can be used for the preparation anode or cathode. 

 

Figure 4.26: FESEM-EDX images of Final Treated SPL 

Table 4.12: Ultimate and elemental (SEM-EDX) analysis of SPL samples 
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4.3.3.3 XRD analysis 

The XRD analysis of treated SPL along with that of raw SPL was done. The peaks 

of graphitic carbon (C), cryolite (Na3AlF6), villaumite (NaF), fluorite (CaF2), sodium iron 

cyanide (Na4Fe(CN)6), gibbsite (Al(OH)3) phases were found. The phases of cryolite 

(Na3AlF6), villaumite (NaF), sodium iron cyanide (Na4Fe(CN)6) and gibbsite 

(Al(OH)3were eliminated due to the removal of these leachable compounds by treatment 

with alkali and acid treatment. 

 
Figure 4.27: XRD analysis of raw SPL, alkali treated SPL and final treated SPL  

4.3.4. Cryolite precipitation 

In order to check the feasibility of the cryolite precipitation the leachates were 

analyzed at two different pH values. At pH 4.5 and 9.5 the aluminum ions exist in the 

form of Al(OH)4
-
 or [Al8(OH)26]

2-
leading to precipitation of cryolite

42
. It was found that 

both the conditions of pH suitable for the precipitation of cryolite. From the XRD 

analysis (Figure 4.29), it was found that at higher pH the co-precipitation of ammonium 

salt occurred. The mechanism for the precipitation of cryolite was described in the Eq. 

(4.15). 
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Figure 4.28: XRD analysis of fluoride precipitation at pH value of 4.5 

 

Figure 4.29: XRD analysis of fluoride precipitation at pH value of 9.5 

4.3.5. Outcome of the study 

 Alkali concentration and the Temperature were found to be the most significant 

and least significant factor among the four parameters studied. Alkali concentration 

contributed 45.52% whereas temperature contributed only 8.72%. 

 In the classical approach of optimizing the maximum leaching percentage was 

found to be 49.18% for sulfuric acid whereas in Taguchi optimization method the 

maximum leaching percentage was 52.39%.  

 From the S/N ratio analysis, the optimum condition was achieved at 3.5 M NaOH, 

5.0 M H2SO4, 3.5 L/S ratio and temperature 25 °C. From both Taguchi and classical 
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approach it was concluded that 1.5 M NaOH, 2.5 M H2SO4, 3.5 L/S ratio and 

temperature 25 ±1°C were the best combination for the optimum leaching percentage 

and considered as “final treated Spent Pot Lining (SPL)” and 1.5M NaOH 

concentration, 3.5 L/S ratio and 25 ±1°C for “alkali treated SPL”. 

 The carbon percentage of SPL was found to increase from 42.19% to 81.27% as 

confirmed from the ultimate analysis. From the proximate analysis, the fixed carbon 

was found to be increased from 38.96% to 78.68% from the raw to final treated SPL, 

respectively. 

 From the XRD analysis, it was concluded that in case of sulfuric acid treatment, 

both the conditions of pH were satisfied for the cryolite precipitation. 

4.4. Fuel value analysis of SPL samples 

Gross calorific values (GCV) were determined for all optimized samples obtained 

from above studies. The GCV was increased from 2865.04 kcal/kg to 6689.69 kcal/kg for 

raw SPL and final treated SPL obtained from caustic followed by sulfuric acid treatment, 

respectively.  

Table 4.13: Fuel value analysis of SPL samples 

 

4.4.1. Outcome of the analysis 

The calorific values of enriched SPL samples were found to increase equivalent to 

“A grade” coal from the raw SPL which was equivalent to “F grade” coal in context to 

Indian standards
53

. 
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Chapter 5 

CONCLUSION AND FUTURE WORK 

 

• Initial treatment of SPL with acid alone was not a better approach for the leaching 

due to higher requirement of acid. Whereas as compared to initial caustic leaching 

followed by acid leaching leads to more beneficial approach as the requirement of 

acid was found to be less.  

• Cooling of hot SPL in the presence of air leads to the formation of hazardous 

compound such as NaCN due to the N2 content of air. So it required to cool the 

hot SPL in N2 free environment. 

• It was concluded that in terms of quality of graphite obtained, HClO4 treatment 

was better compared to H2SO4 treatment as confirmed from XRD analysis. 

• In terms of volatile matter, which emits hazardous gases like SO2, H2S during 

combustion and HClO4 was found to be the better treatment approach compared to 

H2SO4 treatment, which leads to environment related issues. 

• Treated SPL can be a good alternative for energy source due to high calorific 

value. 

5.1. Future Recommendations 

• pH and temperature studies for the cryolite precipitation and the mechanism for 

the precipitation should be investigated in detail.  

• Exploration of treatment of SPL with other types of acids such as HCl, HNO3 and 

H3PO4 can be done. 

• Use of final treated SPL as preparation of ramming paste in cathode lining or 

preparation of green anode in aluminum industry can be investigated. 

• Use of water washed filtrate as an additive to maintain the cryolite ratio can be 

studied. 

• A model equation can be proposed for the prediction of calorific value using the 

multiple linear regression of ultimate and proximate analysis. 
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APPENDIX I 

XRD analysis of water washed filtrate SPL sample 

 

Peak List 

Position 

[°2 Θ] 

Height 

[cts] 

FWHM 

[°2Th.] 

d-spacing 

[Å] 

Relative  

Intensity 

[%] 

Tip 

width  

[°2 Θ] 

Matched 

by 

23.5782 29.94 0.1800 3.77024 0.13 0.1500 72-0628 

26.0523 73.33 0.2400 3.41754 0.32 0.2000 72-0628 

27.6029 87.62 0.2400 3.22898 0.38 0.2000 72-0628 

30.1260 3005.06 0.1800 2.96405 13.02 0.1500 72-0628 

33.0371 150.01 0.2400 2.70921 0.65 0.2000 72-0628 

33.5076 52.14 0.2400 2.67224 0.23 0.2000 04-0793 

34.2006 154.43 0.1800 2.61966 0.67 0.1500 72-0628 

34.5009 355.57 0.1800 2.59755 1.54 0.1500 72-0628 

35.2570 342.38 0.1800 2.54355 1.48 0.1500 72-0628 

37.9657 572.00 0.3000 2.36807 2.48 0.2500 72-0628 

38.8798 23089.16 0.1200 2.31448 100.00 0.1000 04-0793 

39.9230 203.19 0.2400 2.25637 0.88 0.2000 72-0628 

41.5320 222.57 0.2400 2.17260 0.96 0.2000 72-0628 

44.4816 51.59 0.1800 2.03514 0.22 0.1500 72-0628 

46.6006 144.01 0.2400 1.94741 0.62 0.2000 72-0628 

48.3051 230.48 0.1800 1.88260 1.00 0.1500 72-0628 

53.5089 59.72 0.3600 1.71114 0.26 0.3000 72-0628 

54.6406 70.12 0.2400 1.67834 0.30 0.2000 72-0628 

56.1131 1668.69 0.2400 1.63774 7.23 0.2000 72-0628 

59.0276 76.27 0.3600 1.56364 0.33 0.3000 72-0628 

60.5710 19.94 0.7200 1.52743 0.09 0.6000 72-0628 

62.6485 171.80 0.4200 1.48168 0.74 0.3500 72-0628 

63.8434 26.69 0.4800 1.45680 0.12 0.4000 72-0628 

65.7237 17.58 0.1800 1.41960 0.08 0.1500 72-0628 

Position [°2Theta]

10 20 30 40 50 60 70

Counts

0

10000

20000

 2.W_W_SPL_.RD
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66.8670 30.82 0.3600 1.39808 0.13 0.3000 72-0628 

67.3917 107.66 0.1800 1.38847 0.47 0.1500 72-0628 

70.3381 527.43 0.1800 1.33735 2.28 0.1500 72-0628 

72.3595 17.26 0.2400 1.30488 0.07 0.2000 72-0628 

74.4650 15.52 0.3600 1.27311 0.07 0.3000 72-0628 

Identified Patterns List 

 

Ref. Code Score Compound 

Name 

Scale 

Factor 

Chemical 

Formula 

72-0628 49 Sodium 

Carbonate 

0.044 Na2CO3 

04-0793 37 Villiaumite, 

syn 

0.142 Na F 

 

XRD analysis of raw SPL sample: 

 

Peak List  

Pos. 

[°2Θ] 

Height 

[cts] 

FWHM 

[°2Th.] 

d-spacing 

[Å] 

Rel. Int. 

[%] 

Tip 

width 

[°2Θ] 

Matched 

by 

5.3322 4.63 0.7680 16.56007 0.52 0.6400  

8.9501 6.96 0.2880 9.87242 0.79 0.2400 01-1077 

18.1320 13.86 0.7680 4.88856 1.57 0.6400 01-1077 

19.5233 15.24 0.1440 4.54320 1.72 0.1200 12-0257 

20.0254 9.00 0.7680 4.43040 1.02 0.6400 12-0257 

22.8310 20.62 0.1440 3.89192 2.33 0.1200 12-0257 

26.4932 646.22 0.2400 3.36166 73.06 0.2000 08-0415 

28.2202 42.55 0.1440 3.15973 4.81 0.1200 04-0864 

Position [°2Theta]

10 20 30 40 50 60 70

Counts

0
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29.0374 24.99 0.3840 3.07265 2.83 0.3200 01-1077 

30.9584 4.65 0.5760 2.88622 0.53 0.4800 04-0876 

31.9462 14.94 0.1440 2.79919 1.69 0.1200 12-0257 

32.5490 38.13 0.1200 2.74871 4.31 0.1000 12-0257 

33.8761 49.02 0.1200 2.64401 5.54 0.1000 01-1026 

35.7331 24.29 0.1920 2.51075 2.75 0.1600 11-0252 

36.7216 19.55 0.2880 2.44540 2.21 0.2400 12-0257 

37.9957 22.65 0.0960 2.36627 2.56 0.0800 12-0257 

38.8462 884.45 0.2160 2.31640 100.00 0.1800 04-0793  

39.1070 34.72 0.0960 2.30155 3.93 0.0800 04-0793 

39.6638 23.38 0.1440 2.27051 2.64 0.1200 12-0257 

40.5812 8.08 0.2880 2.22128 0.91 0.2400 12-0257 

44.5527 14.62 0.5760 2.03205 1.65 0.4800 08-0415 

45.4076 3.67 0.2880 1.99576 0.42 0.2400 01-1026 

46.6555 51.89 0.1440 1.94525 5.87 0.1200 12-0257 

46.9663 49.24 0.1440 1.93310 5.57 0.1200 04-0864 

51.3058 6.96 0.2880 1.77932 0.79 0.2400 12-0257 

52.5190 14.91 0.1920 1.74104 1.69 0.1600 12-0257 

54.5507 19.57 0.3840 1.68090 2.21 0.3200 08-0415 

56.0723 402.21 0.1680 1.63884 45.48 0.1400 04-0793 

58.7029 17.10 0.1920 1.57151 1.93 0.1600 12-0257 

66.8025 12.23 0.5760 1.39928 1.38 0.4800 04-0793 

70.3168 76.83 0.2400 1.33770 8.69 0.2000 04-0793 

77.4974 16.56 0.2880 1.23070 1.87 0.2400 08-0415 

 

Identified Pattern List  

Ref. Code Score Compound 

Name 

Scale 

Factor 

Chemical Formula 

04-0793 55 Villiaumite, 

syn 

0.794 Na F 

08-0415 39 Graphite 0.702 C 

04-0864 21 Fluorite, syn 0.040 Ca F2 

12-0257 14 Cryolite 0.142 Na3Al F6 

04-0876 Matched 

Strong 

Aluminum 

Oxide 

0.024 Al2O3 

11-0252 12 high quartz 0.254 SiO2 

01-1077 12 Troma 0.052 Na3H(CO3)2 .2 H2O 

01-1026 7 Sodium Iron 

Cyanide 

0.040 Na4Fe(CN)6 
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APPENDIX II 
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Figure A1: Scatter Plot for predicted and actual leaching percentage for HClO4 

treatment. 
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Figure A2: Scatter Plot for predicted and actual leaching percentage for H2SO4 

treatment. 
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