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Abstract 

The liquid level control in the coupled tank system (CTS) is a classical benchmark control 

problem. The dynamics of CTS resembles with that of many real systems such as distillation 

column, boiler process, oil refineries in petrochemical industries and many more. It is a most 

challenging benchmark control problem owing to its non-linear and non-minimum phase 

characteristics. Furthermore, its physical constraints are also pose complexity in its control 

design. 

The thesis provides the description of a CTS along with its hardware setup used for carrying 

out research work. Usually, system identification is a procedure to obtain the mathematical 

model of a physical system from the experimental input-output data of the system. The entire 

process of identifying a system from input and output data broadly consists of six steps. It 

begins with an experimental design followed by data collection and data preprocessing, next a 

suitable model structure is selected, then the parameters of the model are estimated and finally 

the model is validated using the experimental data. The present work is aimed at utilizing the 

existing as well as developing new tools of system identification for obtaining a suitable model 

for the studied coupled tank apparatus. Based on the identified model, control algorithms are 

developed in order to maintain constant liquid levels in the presence of disturbances which is 

arising due to sudden opening of the valve in the tanks. A lot of research works have been 

directed in the past several years to develop the control strategies for a CTS. But, few works 

have been reported for validating the developed control strategies through the experimental 

setup. Thus, there lies a good opportunity to develop some advanced controllers and to 

implement them in real-time on the experimental set-up of a CTS in the laboratory. 

The objectives of the present work is to maintain the water level at the desired set point value 

and also simultaneously ensure robust performances when there is a load disturbance. Initially, 

for regulating desired liquid level in both the tanks, a LMI based PI controller has been 

designed and implemented in real-time on a CTS. Usually, in this approach PI controller design 

problem is formulated as a state feedback controller design problem, which is further solved 

by exploiting a convex optimization approach. But, it yields slower response. Hence, an 

adaptive fuzzy PI (AFPI) controller has been developed to obtain better liquid level 

performance compared to LMI based PI controller. This developed AFPI controller consists of 

two parallel connected PI controllers such as a primary and a secondary PI controller.In primary 

part, parameters of the PI controllers are fixed which is tuned by Ziegler-Nichols method and 



in secondary part, parameters are altered implicitly by means a  suitable choice of  fuzzy rules 

in real-time.This developed AFPI controller provides precise liquid level owing to large range 

of operating conditions because the fuzzy logic controller ( FLC) covers a wide range of 

operating conditions which is the main advantage of this controller. After implementing the 

developed AFPI in real-time, it has been observed from the experimental response that it gives 

good tracking response but it yields overshoot which is undesirable. Hence, in order to obtain 

good tracking as well as robust performance, a sliding mode controller has been designed. But 

from experimental as well as simulation results it is observed that, it suffers from chattering 

problem which possess a serious concern such as chance of damaging of the actuator of the 

setup. Therefore, in order to reduce the chattering problem, an adaptive fuzzy sliding mode 

controller (AFSMC) is developed and also it is implemented in real-time. From both the 

experimental results, i.e. both under load disturbance and without disturbance it is observed 

that the proposed AFSMC control gives robust  control performance in order to maintain 

constant desired liquid level in both the tanks as compared to other presented controller. 
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Chapter 1 

Introduction 

 

The International Federation of Automatic Control (IFAC) Committee in the year 1990 has 

defined a set of practical design problems that are helpful in differentiating new and present 

control methods and tools so that a significant comparisons of control performance can be 

made. The committee came up with a set of real-world control problems that were included as 

“benchmark control problems”. Out of which, the level control problem in coupled tank system 

is featured as a benchmark problem in the category of nonlinear and unstable control systems. 

Process industries play a significant role in economic growth of a nation. Control of liquid level 

in tanks and fluid flow between tanks is a fundamental requirement in almost all process 

industries such as waste water treatment, chemical, petrochemical, pharmaceutical, food, 

beverages, etc. shown in Fig.1.1 Mostly, level and flow control in tanks are popular in all 

process control systems. 

1.1 Description of the Coupled Tank System  

Since last two decades, the control of coupled tank liquid level system has attracted attention 

of many researchers around the world. It is one of the most challenging benchmark control 

problems due to its nonlinear and non-minimum phase characteristics. The control objective in 

a coupled tank system is that a desired liquid level of the liquid in tank is to be maintained 

when there is an inflow and outflow of water out of the tank respectively. The coupled tank 

system is a multi-input multi output system (MIMO) with control voltage as input and water 

level as the output. Even though the coupled tank system is simple from construction point of 

view but there lies a lot of control challenge owing to following characteristics. Fig.1.2 depicts 

a basic representation of a typical liquid level system. 

 Non-linear system 

 Non-minimum phase system 
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Fig.1.2 Representation of a typical liquid level system 



Fig.1.3 illustrates the basic schematic representation of a coupled tank system. It consists four 

translucent tanks and each tank is fitted with an outlet pipe in order to transmit the over flow 

water to reservoir. In this process, bottom tank (fifth tank) is used for water storage purposes 

i.e. as a reservoir. A level sensor is also attached at the base of each tank in order to measure 

the water level of the corresponding tank [1]. The output of the level sensor is converted to 0-

5 volt DC by the help of a signal conditioning circuit. There are two pumps installed in the 

reservoir in order to drive the water from bottom to the top of the tank. A scale is attached in 

front of all the individual tanks for the purpose of monitoring the water level. It works under 

two basic modes of operations i.e. local mode and remote mode. In local mode, two tanks are 

controlled by two separate potentiometers which are applied to two tanks to drive water to 

respective tanks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1.3 Schematic Diagram of a Coupled Tank Mechanical Unit  
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1.2 Description of Coupled Tank Experimental Setup 

Apart from the mechanical parts of the coupled tank system it is also equipped with a power 

supply unit and a power amplifier (PSUPA) and a cable connector box which is shown in 

Fig.1.4. In this set-up, PC with Advantech card and MATLAB/SIMULINK environment serve 

as the main control unit. Basically, the PSUPA unit amplifies the water pressure-level signals 

and passes them as analogue signals to the PCI1711 DAQ card. Control signals to the pumps 

can be sent from the PC through the DAQ (PCI1711) card and PSUPA unit. The control signals, 

which are between 0V – 5V, are transferred to the PSUPA unit where they are transformed into 

24V PWM signals in order to drive the pumps.  

 

 

Fig.1.4 Schematic Representation of Experimental Set-up Showing Each Hardware 

The next section explains how the SIMULINK and Real-Time Workshop are integrating with 

the hardware. 

1.2.1 Real-Time Workshop 

Usually, the Real-Time Workshop is an extension of SIMULINK which has rapid prototyping 

ability for real-time software applications [56]. It has the following features, 
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 Automatic code generation for several target platforms. 

 A rapid and direct path from system design for implementation. 

 Simple graphical user interface. 

 Seamless incorporate with MATLAB/SIMULINK. 

The toolbox has an automatic code to building up the process for real-time process. Fig. 1.5 

explains the process diagrammatically. 
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Fig.1.5 Schematic of the Real-Time Workshop code generation process [56] 

The steps of real-time build process [56], are as follows 

1. Real-Time Workshop analysis the block diagram and compiles it into an intermediate 

hierarchical depiction of the form model.rtw. 

2. Target language compiler (TLC) reads the model.rtw and converts it into C code which 

is placed in the build directory within the MATLAB working directory. 

3. Further, the TLC constructs a make file from an appropriate target make file template 

and places in the build directory. 

4. Then the system reads the make file to compile the source code and links object files 

and libraries and generates an executable file i.e. model.exe. 



1.3 Literature Survey on Control Strategies Applied To Coupled Tank 

System (CTS) 

The last four decades have witnessed the development of several modeling and controller 

approaches for a coupled tank system. A coupled tank system is a challenging control problem, 

because it has right half-plane zeros (non-minimum phase system) which impose restrictions 

on the sensitivity function. An accurate model as well as an appropriate control strategy is 

highly essential in order to maintain desired level in tanks in face of uncertainty and 

disturbance. In [1-2], a brief description has been reported about a quadruple tank coupled 

system. A mathematical model for coupled tank by considering mass balance equation and 

Bernoulli’s principle has been described in [2-3]. But this linear model fails to provide adequate 

performance, because during linearization by Taylor Series expansion, generally higher order 

terms are omitted and also some parameters of the coupled tank system are not known 

precisely. So in order to overcome this drawback some literature consider the system 

identification techniques [4-5]. In [4], subspace identification has been presented. A soft 

computing approach, i.e. ANFIS architecture based on TSK fuzzy modeling for liquid level 

control has been reported in [6] with a hybrid learning approach. 

Although various control strategies have been successfully verified for the coupled tank 

system but the classical PID with some enhancement provides effective liquid level control 

performance. Also it is simple in view of its easy implementation and simple structure [7, 48, 

60, 62]. An auto adjustable PI controller using Model Reference Adaptive Control (MRAC) 

technique was proposed in [3]. In this, the MRAC approach can adapt the controller parameters 

in response to changes in plant and disturbance occurring in real time by referring to the 

reference model that specifies properties of the desired control system. A characteristics ratio 

assignment (CRA) based PI controller method was proposed in [8]. A comparison of 

performances of PI controller with numerous tuning approaches has been reported in [9]. In 

[10], a two degree of freedom control for level control has been reported where instead of 

measuring the inlet flow rate, a load estimation scheme is proposed. The proposed control uses 

a feed-forward gain for load estimation and only a proportional control (P) for only feedback 

control. The proposed control scheme in [10] acts as only proportional control (P) in 

disturbance free condition and it works like a PI control under load disturbance. An auto tuning 

technique of PID controller has been reported in [11-12]. In [12], a comparison of responses 

has been analyzed between conventional PID and auto tuning PID. A comparison analysis has 



been explored between the conventional Proportional Integral (PI) based on Ziegler-Nichols 

tuning approach with Internal Model Control (IMC) based on Skogestad’s setting [13]. 

A sampled-data level control for nonlinear coupled tanks was presented in [14]. 

Development of a web based laboratory control experiments has been reported in [15], with 

emphasis both on teaching and research. Further it has some attractive features such as the use 

of video conferencing for providing audio-visual feedback to the user and the provision for 

adjustment of the pan/tilt and the zoom of the camera capturing the real time video has been 

incorporated. In order to eliminate the draw backs of the standard PID controller, a robust PID 

controller design has been presented in [16-18], where two approaches such as edge theorem 

and Neimark’s D-Partitions [16] have been considered in order to carry out the design. Digital 

control of a liquid level tank system has been reported in [19] where a digital state-feedback 

algorithm has been proposed for achieving level control. A comparison between conventional 

PID and fuzzy control has been reported in [20]. In order to tune the PID gains, an inverting 

decoupling technique has been proposed in [21] for the quadruple tank process. A comparisons 

of different controller such as Linear Quadratic Gaussian (LQG), H∞, loop-shaping, feedback 

linearization and model predictive control (MPC) etc. has been presented in [22]. A different 

optimization technique also has been successfully applied to the coupled tank system for level 

control. In [23], cuckoo optimization has been considered in order to tuning the optimal fuzzy 

parameters for fuzzy logic controller which is used for liquid level control. Genetic algorithm 

has been reflected in [24], for on-line auto tuning of the PID parameters of a liquid level control 

system. A robust decentralized PID control for a quadruple tank system has been discussed in 

[25], where both minimum and non-minimum phase configuration of the quadruple coupled 

tank system are considered.  

A model based control using internal model control (IMC) has been reported in [4] 

where two control techniques has been discussed such as IMC and DMC Initially IMC applied 

to the non-minimum phase process and later on, dynamic matrix control (DMC) is used to 

control the system and explicitly implement process constraints. In [26], the authors has  

proposed a distributed model predictive control where local measurements at the nodes are 

used to estimate the relevant plant state which is then used in the model predictive calculations. 

Adaptive controllers and backstepping controllers also have been successfully 

implemented for coupled tank system [3, 27, 28]. In [3] real time implementation of model 

reference adaptive control (MRAC) has been explored based on MIT rule. A comparison 

between a direct model reference adaptive controllers (MRAC), an indirect MRAC with 

Lyapunov estimation and an indirect MRAC with a RLS parameter adaption estimation has 



been presented in [27].Two different backstepping control approaches have been designed in 

[28],namely model based backstepping controller and adaptive back stepping controller. Model 

based backstepping controller was initially designed in order to ensure the exponential tracking 

of level and then an adaptive backstepping controller compensating the uncertainties arising in 

the tanks 

During last two decades significant interest on variable structure system and sliding 

mode control has been observed in the control research community worldwide. Apart from the 

above reported controller techniques such as PID controller, model based control, adaptive 

control and backstepping controller also fuzzy logic as well as sliding mode control have been 

successfully implemented for coupled tank liquid level system [29-43,57,61]. In general, the 

sliding mode control have numerous attractive features such as faster response, good transient 

performance, better disturbance rejection capabilities. Basically SMC laws are inherently more 

robust against the matched uncertainties [45-46]. Variable structure systems with sliding modes 

design and analysis of systems are surveyed in [29 and 32]. Basic concept behind the sliding 

mode controller has been analysed in [30], where a brief tutorial about the most fundamental 

issues in the field of VSC and SMC; also the most important novel trends and engineering 

applications have been reported in this field. A new approach to sliding mode controller design 

based on a first order plus dead time (FOPDT) model for a chemical process has been reported 

in [33].In [34], development of an Internal Model Sliding Mode Control has been presented, 

where a new control method, combining the IMC approach and the SMC concept for the 

process with a large dead time has been discussed. A continuous time sliding mode controller 

for a chemical process has been reported in [35]. A fuzzy sliding mode controller using 

nonlinear sliding surface for coupled tank systems has been discussed in [36], where in order 

to alleviate the chattering, a fuzzy logic controller was used in order to approximate the 

corrective control term. Development of a neuro-fuzzy-sliding mode controller with a 

nonlinear sliding surface for a coupled tank system has been proposed in [37], in this paper in 

order to reduce the chattering a fixed boundary layer around the switching surface was used. 

Also in order to smooth the switching signal, fuzzy logic control has been used and to compute 

the equivalent controller a feed-forward neural network has been considered. A feedforward-

plus-sliding mode controller design for the coupled tank system has been reported in [38]. In 

this paper, a feedforward controller is used to achieve desired process output and the sliding 

mode controller is combined to ensure the robustness against different uncertainties and 

external disturbances. In [39], a static sliding mode control design has been proposed for a 

coupled tank system. Two different dynamic sliding mode control schemes were also proposed 



in [39] in order to reduce the chattering problem. Combining feedback linearization with 

sliding mode control algorithm control scheme was presented quadruple tank system [40]. 

A second order sliding mode control algorithm has been discussed in [41].In order to realize 

level position control of a coupled tank system, a chattering free sliding mode controller has 

been proposed in [42]. To improve the tracking performance of a coupled tank system against 

various uncertainties a nonlinear sliding mode control with varying boundary layer has been 

presented in [43].Herein authors has made a comparative assessment between the sliding mode 

control with a varying boundary layer. In [44], a comparative study has been made on two 

controllers namely, fuzzyPI+fuzzyPD with the conventional PI for a real-time liquid level 

control experiment in real time has been discussed. A robust recursive method for parameter 

estimation of linear time invariant continuous systems has been proposed in [59]. In this paper 

basically the algorithm is developed to estimate the coefficient of Laguerre series expansions 

of the process signal, when the measurement contains outliers. In [7], a fuzzy type PID based 

on ANFIS model for a nonlinear liquid level system has been analysed. A neuro-fuzzy 

controller (NFCGA) based on the radial basic function neural network which is tuned 

automatically by using genetic algorithms (GA) has reported in [6], where a linear mapping 

method is used to encode the GA chromosome and effectiveness is demonstrated in a real time 

coupled tank liquid level set-up.  

1.4 Motivation 

The development of control algorithm for a coupled tank system is complex and more 

challenging because, the coupled tank system dynamics is nonlinear which exhibits non-

minimum phase behaviour. It is the most popular form of coupled multivariable system. Level 

control in a coupled multivariable tank system is challenging due to the following issues. 

 Nonlinear and Non-minimum phase system 

 Commonly, multivariable nature causes interactions between the two tanks so water 

may flow in either two direction  

 System Constraints 

 The capabilities of DC motors used to pump water is limited (0-5V) (Input 

Constraints) 

 The water level in the two tanks have to be maintained at a desired set point 

within a specific level (Output Constraints) 

 

 



1.5 Thesis Objectives 

The objectives of the thesis are as follows. 

 To develop a suitable model for the coupled tank system by employing physical 

mathematical modeling as well as system identification techniques. 

 Design and implement different advance controllers for the level control in order to 

maintain desired liquid level in the coupled tank liquid level system. 

 To pursue a comparative study among all the developed controllers technique in 

order to choose the best controller based on tracking capability performance for the 

liquid level control.  

 To validate all results from the simulation (using MATLAB) and then through real-

time experimentation on a coupled tank liquid level setup  

1.6 Thesis Organization 

The thesis is organized as follows. 

 In chapter 2 the dynamics modeling of the coupled tank system has been described by 

employing both mathematical modeling as well as system identification technique. 

 Chapter 3, presents a Linear Matrix Inequality (LMI) based PI controller design and 

also a comparative study is pursued with the traditional approach PI controller design 

[7] where parameters are tuned employing Ziegler Nichols approach. 

 It has been observed in Chapter 3 that a large control action is required to acquire 

desired liquid level. Hence in Chapter 4, an adaptive fuzzy based PI control approach 

is proposed for the coupled tank system. 

 In view of overcoming the short comes of the PI controller that is unable to provide 

good robust performance against load disturbance, a sliding mode control algorithm is 

developed in Chapter 5 

 Chapter 6 proposes development of an Adaptive Fuzzy Sliding Mode Controller 

algorithm for the CTS. 

  Chapter 7 concludes the thesis and suggestions for future work are also discussed 

therein. 

 

 

 



Chapter 2 

Dynamics Modeling of a Coupled Tank System 

 

2.1 Coupled Two Tank Dynamics 

The simplest nonlinear model of the coupled tank system [1] can be obtained by considering 

the mass balance principle, which is relating the water level h1, h2 and applied voltage ‘u’ to 

the pump.  

  

 

Fig.2.1 Representation of Coupled Two Tanks Model 
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where 

h1 = water level in tank 1  

h2= water level in tank 2 

a1= outlet area of tank 1 

a2= outlet area of tank 2 



A = cross-sectional area of tanks 

g = gravitational constant 

 =constant relating to the control voltage  

Eq (2.1) and eq (2.2) represent the dynamics of the coupled tank system. On performing 

Taylor’s series expansion of eq (2.1) and eq (2.2) one can obtain linear mathematical model 

for the coupled tank system. At equilibrium point for constant water level the derivatives must 

be equal to zero, thus one obtains 
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Linearizing eq. (2.1) and (2.2), considering two operating point h10 and h20 as below 
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Defining water levels of tank as state variables for equation (2.9) and (2.10) a state space 

model of the coupled tank system can be obtained as follows 
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     (2.11) 

Laplace transforming eq. (2.9) and (2.10), yields the following transfer function models of the 

coupled tank system as follows 

Tank 1:- 
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Table.2.1 Parameters of the Coupled Tank System  

During linearization of eq.(2.1) and (2.2) by Taylor Series expansion, higher order terms are 

neglected because these are very small and also some parameters of the coupled tank system 

are not known perfectly. So there is an obvious need of an obtaining an accurate dynamics 

model of the system. Hence, the system identification technique is adopted in order to get a 

perfect model of the system. 

 

Symbol Description Value Unit 

A Cross sectional area of tanks 0.01389 cm2 

a1 Tank1 outlet area 0.1245 cm2 

a2 Tank-2 outlet area 0.1245 cm2 

g Gravitational constant 9.8 m/sec 

η Constant relating the control 

voltage with the water flow 

from the pump 

0.1194  



2.2 System Identification to Obtain Model for Coupled Tank System 

System identification is a procedure to obtain the mathematical model of a physical system 

from the input-output data [55]. System identification techniques can handle a wide range of 

system dynamics without any prior knowledge of the actual physical system. Thus, system 

identification technique is usually adopted in order to obtain flexible model of a physical 

system instead of its modeling formed by first principle method. It is of high significance for 

systems where the presence of large number of variables and nonlinear interactions among 

them hinders the determination of a model from the governing physical laws. Basically, 

system identification technique is broadly classified into two groups i.e. parametric approach 

and non-parametric. The entire process of identifying the system from input and output data 

is broadly consists of six stages. It starts with an experimental design followed by data 

collection and data processing; next a suitable model structure is selected then the parameters 

of the model are estimated and finally the model is validated with the experimental data. 

u
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ŷBlack Box Model

OE(Output Error 

Model)
 

Fig.2.2 A Basic Representation of Black Box Model Identification 

Generally different parametric model structures are selected while modeling of an unknown 

system. Parametric models commonly describe the true process behaviour exactly with finite 

number of parameters. The parametric model structure is also known as a black box model 

shown in Fig.2.2 

The general used model description of a linear system is given by 
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Fig.2.3 Representation of the General Model Structure 

where  

 u(k)=input of the system 

y(k)=output of the system 

e(k)=zero-mean white noise or disturbance of the system 

H(q)= transfer function of the stochastic part of the system 

G(q)=Transfer function of the deterministic part of the system 

This general model structure is usually divided into different structures which are discussed 

below. 

Output Error (OE) Model  

In the output error model (OE) structure the system dynamics is described separately. In this 

structure no parameters are used for modeling the disturbance characteristics. The model 

structure of output error model is depicted below 

1

1

B( )
( ) ( ) ( )

F( )

q
y k u k e k

q




 

        

(2.15)

 

1 1 2

0 1 2

1 1 2

1 2

( ) ......

( ) 1 ......

b

f

nb

n

nf

n

B q b b q b q b q

F q f q f q f q

   

   

    

    
 

1

1

( )

( )

B q

F q





u(k) y(k)

e(k)

+

 

Fig.2.4 Block Diagram of the OE Model 



Auto Regressive Exogenous (ARX) Model 

In ARX (Auto Regressive Exogenous) model, auto regressive means that the current output 

has a relation to the previous values of output and exogenous signifies that the system relies 

not only the current input values but also history of output values. The estimation of the ARX 

model is the most efficient of the polynomial estimation method because it solves the linear 

regression equation in analytical form. The model structure of ARX model is similar to that 

of the output error model(OE) except that the model output in the ARX form is a basic function 

of past input and past process output while model output in OE model form is a function of 

past input and past model output. 
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Fig.2.5 Block Diagram of the ARX Model 

Auto Regressive Moving Average Exogenous (ARMAX) Model 

The ARMAX model structure has more flexibility in handling disturbance, while compared 

to the ARX model structure. In ARMAX model structure, an extra moving average term is 

included as compared to the ARX model structure; except that part, both the ARX and 

ARMAX model structures are similar. Eq (2.17) gives the description of ARMAX model. 
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For describing OE, ARX and ARMAX, models the polynomial A, B and C can be defined as 

follows 

1 1 2

1 2

1 1 2

0 1 2

1 1 2

0 1 2

( ) 1

( )

( )

a

a

b

b

c

c

n

n

n

n

n

n

A q a q a q a q

B q b b q b q b q

C q c c q c q c q

  

  

  

    

    

    

 

1B( )q
u(k) y(k)

e(k)

+
1A ( )q



1

1

( )A q

1( )C q

1( )B qu(k) y(k)

e(k)

+

 

Fig.2.6 Block Diagram of the ARMAX Model 

In this present work, a second order output error model is considered for model identification, 

to obtain good fit of the experimental data. In the simplest, form the OE model is represented 

as  
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Least Square parameter estimation algorithm [55] is considered in order to estimate the 

parameters of the predicted model as that minimizes the error between the model and plant 

output in the sense of minimum square error. The parameter vector ˆ
Ls  can be obtained using 

the following normal equation. 
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Obtained parameters for Tank 1 and Tank 2 are as follows, 

Tank-1:-  
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Tank-2 :- 
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Thus, the obtainable transfer function model of the CTS for both tanks using the system 

identification which are given below  
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       (2.22) 

These models i.e. T1(s) for tank-1 and T2(s) for tank-2, are to be used subsequently for 

designing controllers. 

2.3 Results Obtained from System Identification  

The coupled tank system is excited by a white noise for performing system which covers a 

broad range of frequencies for whole dynamics in the identification of parameters. The excited 

input signal is as shown in Fig.2.7. The outputs of the both tanks are as shown in Fig.2.8 and 

Fig.2.9.  

 
Fig.2.7 Experimental Input Data 

 

Fig.2.8 Experimental Output versus the Simulated Output of the Identified Model for Tank 
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Fig.2.9 Experimental Output versus the Simulated Output of the Identified Model for Tank 
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Fig.2.10 Response of Mean Square error plot (MSE) 

 
Fig.2.11 Model Validation Response by Using Auto-correlation Analysis 

The experiment is performed for 600 secs with sampling time of 0.1 sec i.e. a record of 6000 

experimental samples are considered. After getting the identified model, the model was 

validated by using Mean Square Error (MSE) approach which is shown in Fig.2.10 and 

nonparametric approach technique i.e. auto-correlation method.in Fig.2.11 From the auto-

correlation analysis Fig.2.11 it is observed that all the lags (which is the time difference in 

samples between the signals at which the correlation is estimated) are lie inside the confidence 
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interval. Hence, from both the obtained responses it is envisaged that the identified model is 

a good model which can be used to verify the performances different control algorithms 

developed for the coupled tank system.  

2.4 Chapter Summary 

In this chapter basically in order to obtain dynamic model of coupled tank system two 

approaches namely mathematical modeling and system identification has been presented. 

Furthermore in next chapter controller design have been carried out based on these obtained 

dynamic models. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3 

A LMI based PI Controller Design for the Coupled Tank 

System 

 

The proportional-integral-derivative (PID) controller are extensively used in almost all the 

industries such as chemical, water treatment, and all process control industries etc. for last 

several decades. Ziegler and Nichols [7] have proposed first, the tuning of the PID controllers. 

The reason of popularity of PID controllers is their simplicity in design and parameter tuning 

[7-9] such as (Ziegler-Nichols approach). Usually PID controllers perform numerous important 

functions such as the steady state-state offset elimination and anticipation of deviation and 

adequate corrective signals generation through the derivative action. Along with combinational 

logic as well as sequential machines, these PID controllers are increasingly used in automation 

industries. However, there are many control problems where this simple PID control is 

inadequate such as nonlinear systems, systems with relative degree higher than two and also 

for non-minimum phase systems. The simple PID control structure does not provide 

satisfactory performance for time delay system and for the time varying system. Furthermore, 

in many real-world systems are time varying and uncertain systems. Therefore it is necessary 

that the controller should have good disturbance capability in face of the system uncertainties. 

Since a simple PID controller is not capable to handle this difficulties all together, in this 

chapter a LMI based convex optimization with simple PID controllers has been taken in order 

to overcome the above-mentioned problem. 

This approach is based on the transformation of the PI controller design problem to a state 

feedback controller design problem, which is further solved using the convex constraint 

optimization approach [52-54]. 

3.1 Chapter Objectives 

The objective of this chapter is that, to find an optimal state feedback gain K.so the cost function 

given in eq (3.7) is minimized which depends on the trajectory x (t).So that the objective is to 

find out the worst possible of J for the worst case of x (t) i.e. to find out optimal cost 0 0

Tx P x

.and by utilizing the obtained least optimal control effort the desired level will be maintain in 

both the tanks. 



3.2 Linear Matrix Inequality (LMI): A Brief Introduction 

Linear matrix inequalities in control system basically aim to describe how the convex 

optimization theory was established from the linear programming optimization tool to the 

interior-point approach and for analysis its significance in control systems [54]. Then after, the 

given control problem is transformed into a set of LMI constraints which will be further 

described by LQR optimal problem. In general the linear matrix inequality is represented in 

the following form  

0

1

( ) 0
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i i

i

F x F x F


          (3.1) 

where
mx R  is a variable and

*m , 0T n

i iF F R i m    are given. In eq (3.1), the inequality 

sign signifies that F(x) is positive definite, i.e.   0F x   for all non-zero
mx R . A LMI is a 

set of n polynomial inequalities in x. Further multiple LMIs 1( ) 0,..... ( ) 0nF x F x   can be 

stated as the simple LMI as follows 

1( ) 0 0

0 0

0 0 ( )n

F x

F x

 
 
 
 
 

   (3.2) 

Usually, nonlinear inequalities are converted into LMI by utilizing Schur compliment which is 

described by the lemma 3.1 

Lemma # 3.1.Schur Lemma 

The LMI is given as follows 

( ) ( )
0

( ) ( )T

Q x S x

S x R x

 
 

 
   (3.3) 

where ( ) ( ) , (x) ( )T TQ x Q x R R x   and ( )S x  depends affinely on x which is equivalent to 

1( ) 0, ( ) ( ) ( ) ( ) 0TR x Q x S x R x S x      (3.4) 

In other words, any matrix inequality of the form in equation (3.4) can be can also be 

represented as equation (3.3). 

 



Basically, the LMI in equation (3.1) offers two kinds of questions such as 

 The LMI feasibility problem amounts to testing whether there exists real variables 

1 nx x  such that equation (3.1) holds. 

 The LMI optimization problem amounts to minimizing the cost function 

1 1( ) n nc x c x c x    over all ( 1 nx x ) that satisfies the constraints in Eq (3.1). 

Usually, for control, most of the LMIs involve matrix variables rather than vector variables. 

That means most of the inequalities can be considered in the form as follows. 

  0F x            (3.5) 

3.3 A LQR-LMI framework based formulation for PI controller design 

In this formulation mainly PI control design problem is converted into a state feedback control 

design problem which is solved using convex constraint approach. Generally, the convex 

optimization problem can be effectively solved by using the interior point LMI solver 

(MINCX)[52,53].It is a state space approach control design technique, where PI controller 

design is considered as a static state feedback control design problem and the static feedback 

gain vector ‘K’ contains all the parameters of the PI controller. 

Consider a LTI system which is given as follows 

x Ax Bu

y Cx

 


          (3.6) 

In the feedback control strategy, the static feedback gain k contains only proportional gain for 

inner and outer feedback loops. Hence in order to transform the system into a PI like frame 

work, an extra state variable needs to be included which is generally chosen as the integral of 

necessary output, for which zero steady state error is desired. If the augmented state is chosen 

as  1r x    ,where r is the desired trajectory for 1z  output, then the PI like state feedback 

control problem can be described using Fig (3.1). 

The performance index for the above LTI system is given by 

0

( )T TJ x Qx u Ru dt



          (3.7) 
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Fig. 3.1 Generalized structure of the PI like state feedback controller 

The objective is to find an optimal state feedback gain K. The cost function given in eq (3.7) 

depends on the trajectory x (t), so that the objective is to find out the worst possible of J for the 

worst case of x (t) i.e. to find out optimal cost
0 0

Tx P x . 

The control law is given by  

1 Tu Kx R B P             (3.8) 

1 TK R B P           (3.9) 

In above equation, ‘P’ is a positive definite solution of the Algebraic Riccati Equation (ARE) 

1T TA P PA PBR B P Q           (3.10) 

The minimum quadratic cost is given by 

0 0

T

minJ x P x           (3.11) 

The above LQR problem can be recasted as an optimization problem over P̂ and y ,which is 

stated as follow 
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     (3.12) 

where ˆY KP   and 
1P̂ P  

Proof: 

From ARE we get 

1 0T TA P PA PBR B P Q           (3.13) 

0T TA P PA K RK Q           (3.14) 

where 

1TK PBR and TB P RK  

0T T T TA P PA K RK K RK Q K RK            (3.15) 

By pre and post multiplying 1P  in the above equation we obtain as follows 

1 1 1 1 1 1 1 1 0T T T TA P AP BKP P K B P QP P K RKP                (3.16) 

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ 0T T T TA P AP BKP PK B PQP PK RKP           (3.17) 

where in above equation (3.8) 1 ˆP P   and replace ˆKP Y   ,one can obtain 

ˆ ˆ ˆ ˆ 0T T T TA P AP BY Y B PQP Y RY            (3.18) 

By applying schur lemma in Eq (3.18) one can obtains 

1

1

ˆ

ˆ ˆ* 0, 0

*

T T T TAP A P BY Y B P Y

P Q P

Y R





   
 

   
 
  

     (3.19) 

In equation (3.19) it is to be assumed that Q and R are invertible, hence once again by 

employing schur compliment the cost function can be rewritten as follows 

1ˆ(0)P (0)Tx x          (3.20) 

where  be the specified upper bound. The inequality given in equation (3.20) also can be stated 

as LMI given by 



(0)
0

ˆ( )

Tx

x o P

 
 

  

       (3.21) 

* 1

,(P) , [K ]p IK Y K K         (3.22) 
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Fig.3.2 Block Diagram of the proposed LMI based PI Controller 

3.4 Results and Discussions 

For both the tanks Q, and R are chosen as follows.   

For Tank 1:- 

2.2555 2.4628
1.0 008*

2.4628 7.5024
Q e

 
   

 
 

18.647R   

 1.0 008* 5.9426 3.9373Y e     

For Tank 2:- 

4.5781 3.3694
1.0 008*

3.3694 7.1938
Q e

 
   

 
 

16.371R   

 1.0 008* 1.3268 0.0115Y e     

From the simulation as well as experimental results it is observed that, the above chosen values 

of Q, R and Y offer satisfactory performance for level regulating in the both tanks. By utilizing 

LMI solver (MINCX) the gain parameters of the presented algorithm are obtained as follows 

i.e. gain parameters for tank 1 and tank 2 are obtained as  0.2761 0.4542K  ,

 0.8265 0.6640K  . 



Simulation as well as experiment is performed using MATLAB in order to validate the 

performance of LMI based PI control law for regulating the level at a particular desired level 

in both the tanks. In order to evaluate the efficiency and feasibility of the LMI based PI 

controller, it has been compared with a traditional approach PI controller [7] and also 

implemented in real time. Fig.3.3, Fig.3.4 and Fig.3.5, Fig.3.6 show the simulation results 

obtained for tank 1 and tank 2 using both the controllers. Fig 3.7, Fig 3.8 and Fig.3.9, Fig.3.10 

show the experimental results of both the LMI based and Ziegler-Nichols tuned PI controllers. 

From simulation as well as experimental results it is clearly observed that the proposed LMI 

based PI control exhibits better control performance for maintaining the desired liquid level as 

compared to the PI controller tuning with the traditional approach. 

 

Fig. 3.3 Simulation Response of LMI based PI control for level control in Tank 1 

 

Fig. 3.4 Simulation Response of LMI based PI control for level control in Tank 2 
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Fig. 3.5 Simulation Response of Ziegler Nichols tuned PI control for level control in Tank 1 

 

Fig. 3.6 Simulation Response of Ziegler Nichols tuned PI control for level control in Tank 2 

 

Fig. 3.7 Experimental Response of LMI based PI control for level control in Tank 1 
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Fig. 3.8 Experimental Response of LMI based PI control for level control in Tank 2 

 

Fig. 3.9 Experimental Response of Ziegler Nichols based PI control for level control in 

Tank 1 

 

Fig. 3.10 Experimental Response of Ziegler Nichols based PI control for level control in 

Tank 2 

It is clearly observed from simulation results as well as the experimental results Fig. 3.3, 3.4, 

3.7 and 3.8 that by the LMI based PI control algorithm the system can reach the set-point in a 

short time with less overshoot and zero steady state error. On the contrary one can observe 
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clearly, from the simulation as well as experimental results i.e.Fig.3.5, Fig.3.6 and Fig.3.9 and 

Fig.3.10 that by the Ziegler-Nichols based PI controller the system is settled at its desired level 

with taking large settling time and also while achieving desired level in tank 2 little steady state 

error is yielded as compared to the LMI based PI controller algorithm. 

Table 3.1 Response Analysis from Time Domain Specifications and Performance Indices for 

Tank 1 

 

 

 

 

 

 

 

 

Table 3.2 Response Analysis by Time Domain Specification and Performance Indices for 

Tank 2 

 

 

 

 

 

 

 

 

 

Specification LMI Based PI Traditional Approach PI 

tuned using Ziegler Nichols 

approach 

Rise Time      (Sec) 2.9 3.12 

Settling Time (Sec) 21.6 29.17 

Peak Time     (Sec) 10.5 8.65 

Peak overshoot 2% 4% 

ISE 27.81 43.55 

IAE 62.82 64.33 

Specification LMI Based PI Traditional Approach PI 

tuned using Ziegler Nichols 

approach 

Rise Time      (Sec) 1.78 16.46 

Settling Time (Sec) 26.78 67.74 

Peak Time     (Sec)           20.93 27.48 

    Peak overshoot 9%  25% 

ISE 17.81 27.33 

IAE 43.221  39.54 



3.5   Chapter Summary 

In this chapter, a LMI tuned PI controller is presented for the regulation of liquid level in two 

tanks i.e. tank 1 and tank 2 of CTS. This chapter begins with the basic fundamental concept 

behind the LMI and furthermore PI control formulation based on LQR-LMI frame work has 

been described. Finally, this chapter concludes with a comparative assessment of the proposed 

controller and traditional approach tuned PI controller [7] using time domain specifications 

along with two different performance indices such as IAE and ISE. Also simulations as well 

as experimental results were pursued and the obtained result illustrates the efficacy of the 

proposed controller algorithm. However the proposed LMI based PI controller gives superior 

performance as compared to Ziegler Nichols tuned PI controller, but it yields sluggish response. 

Hence, in order to improve the response, in chapter 4 an Adaptive Fuzzy PI (AFPI) controller 

has been proposed. 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4 

An Adaptive Fuzzy PI controller design for the Coupled 

Tank System 

 

In chapter 3, we discussed LMI based PI controller, where the response is little sluggish. In 

order to get better control action an adaptive fuzzy PI controller is designed. The presented 

controller i.e. AFPI can provide precise liquid level owing to large range of operating 

conditions since, the fuzzy controllers cover a wide range of operating condition which is  main 

advantage of this presented control algorithm. Generally, an adaptive fuzzy PI controller 

implies that the parameters of the PI controller are regulated by fuzzy rules in real-time. The 

input of the presented controller algorithm involve by two types of signals i.e. main and 

auxiliary signal, where the weighted system error is the main input signal and the secondary 

input signal is formed by FLC. In main input signal weights are the parameters of the PI 

controller where the parameters are fixed and tuned by Ziegler Nichols approach. As the output 

of FLC is variable, thus the controller gain is altered indirectly adapted. The next section 

describes the description of controller algorithm. 

4.1 Design of an Adaptive Fuzzy PI Controller 

Fig 4.1 depicts the schematic structure of an Adaptive Fuzzy PI (APFI) controller. In the 

presented controller, PI controller consists two parallel connected PI controller. In this 

controller, the total control input is as follows 

0u u u    

where 

 u0= control input for main PI controller 

 ∆u = control input for auxiliary PI controller 

0

( ) [ ( ) ( )] [ ( ) ( )]

t

p e i eu t k t t k d              (4.1) 

The control law given in equation (4.1) can be rewritten as follows 

0 0

0

( ) [ ( )] ( ) [ ( )] ( )

t

p p e i i eu t k k t t k k d               (4.2) 

 



where 

0

0

( ) ( )

( ) ( )

p p p

i i i

k t k k t

k t k k t

  

  
         (4.3) 
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Fig. 4.1 Schematic Structure of Adaptive Fuzzy PI Controller 

In equation (4.3), the parameters i.e.kp
0 and ki

0 are pre-tuned and are time invariant constants 

and ∆kp (t) and ∆ki (t) are time varying and the value of these parameters are adapted in real-

time by using a FLC. In eq. (4.4), the parameters kp
0 and ki

0 are known as kernel of the 

parameters kp (t) and ki (t).Here, the adaptive perturbations of ∆kp (t) and ∆ki (t) make the 

parameters of kp (t) and ki (t) to move towards the kernel parameters kp
0 and ki. For implicit 

adaptation of the values of ∆kp (t) and ∆ki (t), equation (4.3) can be represented as follows 

0 0

0 0

( ) ( ) ( ) ( ) ( ) ( ) ( )

t t

p e i e p e i eu t k t k d k t t k d                   (4.4) 

0( ) ( ) ( )u t u t u t            (4.5) 

where 

   

0 0 0

0

0

( ) ( ) ( )

( ) ( ) ( )

t

p e i e

t

p e i e

u t k t k d

u t k t t k

   

   

 

    





       (4.6) 

In this proposed adaptive fuzzy PI control, the parameters of the main PI controller are 

determined by the kernel parameters i.e. kp
0 and ki

0 and the parameters of the auxiliary PI 



controller are defined by the ∆kp (t) and ∆ki (t). In this controller, the output of the main PI 

controller is u0 (t) and the output of the secondary PI controller is ∆u (t). The output of the 

auxiliary PI controller i.e. equation (4.7) equally can be rewritten as 

 
0

( ) ( )

t

ep iu t t e d               (4.7) 

where 

( ) ( ) ( )

( ) ( ) ( )

ep p e

ei i e

t k t t

t k t t

 

 

  

  
         (4.8) 

The parameters ∆kp (t) and ∆ki (t) in eq (4.8) are proportional to the error e . It is ensured that 

whenever some changes occur in the values of ∆kp (t) and ∆ki (t) it may lead to change the 

( )ep t , ( )ei t and vice versa. As a whole, if the linking between the two signals and the error 

is redirected to be a generalized functions, the change of two the signals imply the adaption of 

∆kp (t) and ∆ki (t). As defined, the adaption of kp (t) and ki (t), follow the adaption of ( )ep t

and ( )ei t . Hence, in order to provide the adaptation of signals ( )ep t ) and ( )ei t , a fuzzy 

logic control is employed. 

4.2 Design of Fuzzy Logic control (FLC) 

Fig. 4.2 shows the schematic diagram of the fuzzy logic controller. Usually, fuzzy logic control 

system is a knowledge based or rule-based system. The basic idea behind the fuzzy logic 

control is that, it integrates the expert experience of a human operator in the design of the 

controller in controlling a process whose input-output relationship is described by a set of fuzzy 

control rules (IF-THEN Rules) by involving the linguistic variables. Fuzzifier transforms the 

crisp values of error and the change in error into corresponding fuzzy values and secondly, 

from knowledge or rule base, the fuzzy values of error and change in error determine which 

particular rules are to be fired through a fuzzy inference mechanism. A defuzzification 

mechanism transforms these fuzzy informed values into one crisp control value. 



Knowledge Base

Fuzzification Interface
Defuzzification 

Interface

Decision Making 
Logic

Controlled System (Process)

Fuzzy Logic Controller

 

Fig.4.2 Schematic representation of a fuzzy logic control system 

A two input two output fuzzy system is formulated by the MATLAB/SIMULINK using fuzzy 

logic toolbox. The inputs of the FIS are considered as, error [ e ] and change in error [ ed

dt


].For 

both the inputs and outputs five membership functions have been defined 

namely,[NL,NS,ZE,PS and PL]. 

 

Table 4.1 Linguistic variables for input and output parameters 

 

  

 

 

 

 

 

 

NL Negative Large 

NM Negative Medium 

ZE Zero 

PL Positive Large 

PS Positive Small 



 

Fig.4.3 Fuzzy membership functions for input 

 

Fig. 4.4 Fuzzy membership functions for output  

R1:  IF           change in error NL and error NL 

  THEN     output is NL 

R2:     IF           change in error NL and error NS 

  THEN     output is ZE 

R3:     IF          change in error NL and error ZE 

  THEN    output is NL 

R4:   IF          change in error NL and error PL 

  THEN    output is NS 

R5:   IF          change in error NL and error PS 

  THEN    output is ZE 

- 1 

PS PL ZE NS NL 

0 0.5 1 -0.5 

- 2 

PS PL ZE NS NL 

0 1 2 -1 



R6:   IF          change in error NS and error NL 

  THEN    output is NL 

R7:   IF          change in error NS and error NS 

  THEN    output is NL 

R8:   IF          change in error NS and error ZE 

  THEN    output is NS 

R9:   IF          change in error NS and error PL 

  THEN    output is ZE 

R10:  IF          change in error NS and error PS 

  THEN    output is PS 

R11:  IF          change in error ZE and error NL 

  THEN    output is NL 

R12:  IF          change in error ZE and error NS 

  THEN    output is NS 

R13:  IF          change in error ZE and error ZE 

  THEN    output is ZE 

R14:  IF          change in error ZE and error PL 

  THEN    output is PS 

R15:  IF          change in error ZE and error PS 

  THEN    output is PL 

R16:  IF          change in error PS and error NL 

  THEN    output is NS 

R17:  IF          change in error PS and error NS 

  THEN    output is ZE 

R18:  IF          change in error PS and error ZE 

  THEN    output is PS 

R19:  IF          change in error PS and error PL 

  THEN    output is PL 

R20:  IF          change in error PS and error PS 

  THEN    output is PL 

R21:  IF          change in error PL and error NL 

  THEN    output is ZE 

R22:  IF          change in error PL and error NS 

  THEN    output is PS 

 



R23:  IF          change in error PL and error ZE 

  THEN    output is PL 

R24:  IF          change in error PL and error PL 

  THEN    output is PL 

R25:  IF          change in error PL and error PS 

  THEN    output is PL 

Description of Fuzzy Rule-Base for the AFPI Algorithm [48] 

For developing an adaptive fuzzy PI controller (AFPI) for the CTS in order to maintain liquid 

level at a desired level, tweenty five rules, along with five membership functions and Mamdani 

FIS system has been considered from the knowledge base and these are implemented using IF-

THEN rules.The above mentioned rule base explains the relationship between input and output 

fuzzy variables which is defined as membership function.The shape of membership function 

has been decided based on the trade-off between reduced complexity and superior performance. 

The sole reason of chosen triangular shape membership function is due to its simple formula 

and computational efficiency. After using the fuzzy inference system, the output will be a fuzzy 

variable and it should be converted to crisp value in order to provide the plant. This method of 

conversion of fuzzy variable to crisp variable is known as the defuzzification mechanism. 

There are various defuzzification methods are existing such as centroid, bisector, middle of 

maximum (MOM), smallest of maximum (SOM) and largest of maximum (LOM). For 

conversion of fuzzy value to crisp value in this chapter, centroid defuzzification mechanism is 

used. 

4.3 Results and Discussions 

In this section, simulation results along with experimental results are provided in order to 

illustrate the efficacy of the proposed AFPI control algorithm. A variable step input is applied 

to both tanks in order to observe the tacking ability of the proposed AFPI control algorithm. 

From the simulation results given in Fig. 4.6 and 4.7, it is observed that, for both the tanks are 

taking less settling time in order to reach steady state for maintain desired liquid level. 

Table 4.2 Values of the Kernel parameter 

Parameter Kp
0 KI

0 

Value 4.5 (Tank 1) 

1.5 (Tank 2) 

0.09(Tank 1) 

0.06 (Tank 2) 

 



 

Fig. 4.5 Simulation Response of Adaptive Fuzzy PI (AFPI) for level control in Tank 1 

 

Fig. 4.6 Simulation Response of Adaptive Fuzzy PI (AFPI) for level control in Tank 2 

 

Fig. 4.7 Experimental Response of Adaptive Fuzzy PI (AFPI) for level control in Tank 1 
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Fig. 4.8 Experimental Response of Adaptive Fuzzy PI (AFPI) for level control in Tank 2 

From Fig. 4.5 and Fig. 4.6 it is observed that, during first step (i.e. 0 to 200 sec) in the tank1, 

initially a little overshoot arises thereafter it requires less time to settle at its desired steady state 

level and while achieving second desired level (i.e. 200 to 500 sec) it is immediately settled by 

utilizing very less settling time with less undershoot. On the other hand, it is observed that in 

tank 2, there is no overshoot occurs while regulating level during both the steps. Fig.4.7 and 

4.8 shows the experimental response of both the tanks. The experiment was carried out with a 

sampling time of 0.1 sec for 600 seconds. From the obtained experimental results it is observed 

that while achieving desired level tank 2, it takes more time to settle at its desired level as 

compared to tank 1during each desired step. But on the other hand both the tanks maintain 

desired level without any steady state error and also without any overshoot. 

Table 4.3 Performance assessment of AFPI controller for Tank 1 

  Performance Values 

Peak Overshoot (%) 0  

Settling Time (Sec) 20.9 

Rise Time (Sec) 4.195 

ISE 4.356 

IAE 2.087 
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Table 4.4 Performance assessment of AFPI controller for Tank 2 

 

 

 

 

 

 

 

4.4 Chapter Summary 

In this chapter an adaptive fuzzy PI controller has been proposed for liquid level control in a 

coupled tank system. It is found, from the simulation as well as experimental results and also 

from performance assessment table 4.3 and 4.4 of the both tanks that, the presented control 

algorithm i.e. Adaptive Fuzzy PI (AFPI) controller provides better level control performance 

as compared to the LMI based PI controller. 

 

 

 

 

 

 

 

 

Performance Values 

Peak Overshoot (%) 0 

Settling Time (Sec) 18.09 

Rise Time (Sec) 13.98 

ISE 13.017 

IAE 23.13 



Chapter 5 

Design and Real-Time Implementation of a Sliding Mode 

Controller for the Coupled Tank System 

 

As discussed, in chapter 3 and chapter 4 that using a PID controller accurate desired level 

cannot be maintained in presence of uncertainties in the model dynamics. Hence in order to 

overcome this drawback a sliding mode control has been developed and implemented for the 

CTS. The sliding mode control has been known as an effective robust controller [29-32]. The 

sliding mode control is a powerful approach for controlling nonlinear and uncertain systems in 

presence of model uncertainties and disturbances. The SMC is preferred due to its robustness 

against various kinds of uncertainties such as external disturbances and measurement error. In 

general, SMC consists of two steps namely design of a sliding surface so as to achieve the 

desired system behaviour, like stability of the origin, when restricted to the surface and the 

second step is to select suitable gain of the controller so that the closed loop system becomes 

stable on the sliding surface [45-46]. 

One of the most intriguing aspects of the sliding mode is the discontinuous nature of the control 

action whose primary function is to switch between two distinct structures such that a new type 

of system motion would occur which is called sliding mode that exists in a manifold. A sliding 

mode exists only if the vicinity of the switching surface of the system states are directed 

towards the sliding surface. The most crucial task in the sliding mode control design is 

achieving the precise switching control law which enforces the system towards the sliding 

surface s (t). Once the state trajectories intersect the sliding surface they remain on it thereafter 

which is shown in Fig 5.1. Usually a sliding surface is chosen considering error. In this thesis, 

the sliding surface has been designed by taking the difference between the actual level and the 

desired level. In reality sampling noises, delays, discretization and hysteresis effects usually 

give rise to oscillations in the states of the system. In sliding control, the high frequency 

oscillation effect is commonly known as chattering which needs to be reduced.  

This chapter is organized as follows. In section 5.2, the problem statement is given for 

controlling the liquid level in a coupled tank system. Section 5.3 describes the sliding mode 

controller algorithm. In order to verify the effectiveness of the proposed control algorithm, in 



section 5.4, simulation results as well as the experimental results are discussed. Finally the 

chapter summary is presented in section 5.5.  

X
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Fig. 5.1 Graphical Representation of the Sliding Surface 

5.1 Problem Statement 

In this chapter the objective of the controller development is that, to adjust the liquid level of 

both the tanks to the desired set point level i.e. h1d and h2d irrespective of the load disturbances 

in the system dynamics. For the control law development, we assumed two constraints i.e. (1) 

q ≥ 0, (2) i.e. 1 2h h ,where q is the inflow rate and h1 and h2 are the desired level of the tank 1 

and tank 2 respectively. 

5.2 Development of Sliding Mode Control Law 

5.2.1 Control law for Tank -1 

In a coupled tank system, the liquid flow into the tank cannot be negative, so the constraint on 

the inflow rate is given as follows 

q ≥ 0         (5.1) 
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Fig 5.2 Schematic structure of sliding mode controller for level control in coupled tank 

system 

Considering the dynamics of the coupled tank system is given in chapter 2, can obtain SMC 

control action as follows where u is the flow rate. In order to satisfy the constraints in eq (5.1) 

on the flow rate, following inequality must be satisfied  

1 2h h          (5.2) 

Thus, by considering eq. (5.2) and defining as follows 

1 1 2 2,h z h z   

1 2

1 2

2 2
,

a g a g
k k

A A
          (5.3) 

1 2k k k   

The dynamic model of the coupled tank system as given in eq. (2.1-2.2) can be rewritten as 

follows 

1 1

2 1 2

1

z k z u

z k z k z

y z

  

 



         (5.4) 



The model of the coupled tank system dynamics is nonlinear. Therefore a transformation is 

defined so that the dynamics of coupled tank system in eq. (2.1-2.2) can be transformed into a 

seemly form for the control design.  

Let 
1

2

x
x

x

 
  

 
 , and the transformation x=T(z); such that 

1 1

2 1 1 1

x z

x z k z u



   
         (5.5) 

Now the dynamics of the coupled tank system can be rewritten is as follows 

1 2

2 1

1

2 1 1

1

.
2

( )
2

x x

k
x z

z

k
x k z u

z








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        (5.6) 

Hence the dynamics of the coupled tank system can be written in compact form as 

1 2

2

x x

x f u



 
         (5.7) 

where 

2

1

2

2

k
f

k

z
 





         (5.8) 

Define a sliding surface s (t) as 

1n

s

d
s

dt
 



 
  

 
         (5.9) 

where n is the order of the system to be controlled, αs is a positive constant and λ is the error 

1x H            (5.10) 

1 1( )ss x x H            (5.11) 

On differentiating both sides of equation (5.11) one gets  

1 1( )ss x x           (5.12) 



2 2( )ss x x           (5.13) 
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On solving the equation (5.14) yields the following control law 
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5.2.2 Control law for Tank -2 

In the same manner the control law has been obtained for the level control in tank 2 considering 

the dynamics of the coupled tank system equation (2.1-2.2), which yields 

1 2 2 1,h z h z   

1 2

1 2

2 2
,

a g a g
k k

A A
          (5.16) 

1 2k k k   

The dynamic model of the coupled tank system eq. (2.1-2.2) can be rewritten as follows 
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x
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  

 
 and define the transformation x=T (z), which yields 

1 1

2 1 2 1

x z

x z k z k z
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         (5.18) 

Now the dynamics coupled tank system can be rewritten by considering equation (5.18) as 

follows, 
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         (5.19) 

The dynamic model of the for level control in tank 2 can be written in compact form as 

follows 
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Define a sliding surface s (t) as 

1n

s

d
s
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 
         (5.22) 

where n is the order of the system to be controlled αs is a positive constant 

1x H            (5.23) 

1 1( )ss x x H            (5.24) 

By taking the derivatives of equation (5.24) one obtains 

1 1( )ss x x           (5.25) 

2 2( )ss x x           (5.26) 
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Solving equation (5.27), yields the following control law 
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   (5.28) 

Using the controller law given in equation. (5.15) and (5.28) in to equation (5.14) and (5.27), 

it follows that 

sgn(s)ss w           (5.29) 

The state trajectories associated with this unforced discontinuous dynamics i.e. eq (5.29) 

exhibit a finite time reachability to zero from any value of initial condition subject to the value 

of ws must be positive. Since system driven its states to zero in finite time, the desired level 

1 2y z h  and 1 1y z h   in both tanks are regulated after a finite time.by first order dynamics

( ) 0sy y H   . Hence, the output of both the tank will asymptotically converge to its 

desired value since αs is positive. 

5.3 Results and Discussions 

The control law derived in the section 5.2, was simulated using MATLAB/SIMULINK. Fig. 

5.3 and Fig 5.4 shows the simulation response of both tanks. It can be seen from Fig 5.3 and 

5.4, it requires around 10 sec (Tank 1) and 45 sec (Tank 2) to converge the output to its desired 

value H of both tanks. The response of chattering effect of both tanks are represented in Fig 

5.5 and 5.6. In this chapter a signum function has been considered in order to minimize the 

chattering effect of sliding mode control (SMC). 

Table 5.1 Parameters of the Sliding Mode Controller 
 

 

 

 

 

Symbol   Value 

   K 0.050 

η 0.1194 

ws 10(Tank 1),0.1(Tank 2) 

1  0.5(Tank 1), 

2  0.8(Tank 2) 



 

Fig. 5.3 Simulation Response of Sliding Mode Control while level control in Tank 1 

 

Fig. 5.4 Simulation Response of Sliding Mode Control while level control in Tank 2 

 

Fig. 5.5 Response of sliding surface while level control in tank 1 
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Fig. 5.6 Response of sliding surface while level control in tank 2 

  

 

Fig. 5.7 Experimental Response of Sliding Mode Control while level control in Tank 1 

 

Fig. 5.8 Experimental Response of Sliding Mode Control while level control in Tank 2 
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Fig. 5.9 Experimental Response of Sliding Mode Control under disturbance rejection mode 

while level control in Tank 1 

 

Fig. 5.10 Experimental Response of Sliding Mode Control under disturbance rejection mode 

while level control in Tank 2 

In order to observe the effectiveness of sliding mode controller (SMC), the controller algorithm 

is verified in the real-time and also tested the disturbance rejection capability against 

uncertainties. The experiment is performed for 500 sec by taking sampling time 0.1 sec. Fig 

5.7 and 5.8 exhibits the real time experimental results while SMC algorithm is applied for level 

control in the both tank 1 and tank 2. It has been seen from both Fig 5.7 and 5.8 that, less time 

requires in order to converge the output to its desired level H smoothly with small steady state 

error. Fig 5.9 and 5.10 represents the disturbance rejection capability of the SMC algorithm. 

The disturbances were applied during the steady state, where load is added into system by 

suddenly opening a valve. In both the tanks disturbances were applied for 80 sec in tank 1 and 

100 sec in tank2. It clearly identified that, from the obtained Fig.5.9 and 5.10, the SMC delivers 

good control action because when the load disturbances are removed it has been seen that the 

output requires less time in order to converge to its desired liquid level. 
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Table 5.2 Performance assessment of the Sliding Mode Control (SMC) controller 

 

 

 

 

5.4 Chapter Summary 

In this chapter level control for the both tank of a coupled tank system has been carried out by 

employing the sliding mode control. Here the effect of partial opening of the valve while level 

maintaining in coupled tank is considered as a load disturbance. Generally, sliding mode 

control technique suffers from charting problem. In this chapter a signum function has been 

considered in order to minimize the chattering effect of sliding mode control (SMC). 

Simulation as well as experimental studies is carried out with taking model disturbance in order 

to validate the SMC algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Specification Simulation Experimental 

Settling Time (Sec) 12.8(Tank1) 

44.74(Tank2) 

15.3(Tank1) 

29.4(Tank 2) 

Peak overshoot (%) 9.09(Tank1) 

0(Tank2) 

0 (For both Tanks) 



Chapter 6 

Development of an Adaptive Fuzzy Sliding Mode 

Controller Design for the Coupled tank System 
 

In chapter 5, a sliding mode control algorithm is discussed which is generally suffers from the 

chattering problem. The chattering problem possesses a serious concern such as possibility of 

damage of actuators. In order to alleviate the chattering problem, in this chapter an Adaptive 

Fuzzy Sliding Mode Control (AFSMC) is proposed. In this presented algorithm, the sliding 

surface design involves a fuzzy variable for reducing the chattering. It is well known that an 

adaptive fuzzy control is robust in face of parametric uncertainties and disturbances [47]. Both 

adaptive fuzzy control and conventional adaptive control have some similarities as well as 

dissimilarities. Usually, they are similar in their basic configurations and principles are more 

or less the same and the mathematical tools used in the analysis and designs are similar. The 

differences are the fuzzy control has a special nonlinear structure that is universal for different 

plants, whereas the structure of a conventional adaptive controller changes from plant to plant 

and human knowledge about the plant dynamics and control strategies can be incorporated into 

adaptive fuzzy controllers, whereas such knowledge is not considered in conventional adaptive 

control system.  

6.1 Chapter Objectives 

The objectives of this chapter are as follows 

 Development of an adaptive fuzzy sliding mode control algorithm in order to maintain 

the liquid level at a certain desired level. 

 To introduce a fuzzy logic control in  sliding surface design for alleviating chattering  

 

 

 

 

 

 



6.2 Development of an Adaptive Fuzzy Sliding Mode Controller 

This section presents the design of an Adaptive Fuzzy Sliding Mode Control (AFSMC) using 

the Lyapunov stability criteria together with a sliding condition. The adaptive fuzzy sliding 

mode control has several advantages over the conventional sliding mode control. Such as, it 

ensures zero steady state error with good set point tracking against parameter uncertainties and 

disturbance and it has robustness property. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6.1 Schematic Control Structure of the Adaptive Fuzzy Sliding Mode Controller  

Fig. 6.1 depicts the schematic control structure of the adaptive fuzzy sliding mode control, 

where controller adapts its parameters (k) by utilizing the adaption law Eq (6.12) and finally 

resultant control input is sent to the coupled tank system as its input control signal. The control 

law is derived for both the tank by using equation (5.6) and (5.16) given in chapter 5 which 

describes the dynamics of coupled tank system. 
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6.2.1 Development of Control law for Tank -1 

By considering equation (5.6) in chapter 5, one can rewrite the model for tank1 in compact 

form as  

1 2

2

x x

x f u



 
         (6.1) 

Let 

ˆˆ

f

f








         (6.2) 

Substituting θ, by replacing f in eq. (6.1) one can rewrite 

1 2

2
ˆ

x x

x f bu



 
          (6.3) 

Considering control law given in equation (5.15) in chapter 5 and equation (6.2) we have the 

final sliding control law u for the level control in tank 1 as follows 
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        (6.4) 

Consider a Lyapunov candidate function as 

2 21 1 ˆ( ) ( )
2 2

v t s               (6.5) 

where R   denotes a positive adaptive gain constant 

By taking the time derivative of equation (6.5), yields 

ˆ( )v t ss            (6.6) 

where ˆ     

By substituting the value of s  from equation (5.14) in chapter 5, one obtains 

2 2
ˆ( ) ( )sv t s x x            (6.7) 

 2
ˆ( ) sv t s bu x              (6.8) 



Using equation (6.4) in equation (6.8) one can get 

1

2

1

1

ˆsgn( ) ˆ( )
2

2

s s

s

s

w s k zk
v s x

z k

z

 
   

 

 
 

  
    

  
   

  

    (6.9)
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 (6.10) 

After eliminating the common factor from equation (6.10) yields 
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    (6.11) 

Solving equation (6.11), yields the adaption law for ̂  and sw  as follows  
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The closed loop system can be proved to be stable if 

0v           (6.14) 
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  2sgn 2 sv sk s s x k             (6.17) 



6.2.2 Development of Control law for Tank -2 

By considering equation (5.19) in chapter 5, one can rewrite the model for tank 2 in compact 

form  
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x x

x f u
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         (6.18) 

Let 

ˆˆ

f

f
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         (6.19) 

Replacing f by substituting θ, eq. (6.18) can be altered as 

1 2

2
ˆ

x x

x f bu


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         (6.20) 

Considering control law given in equation (5.28) in chapter 5 and the equation (6.19), we have 

the final sliding control law u for the level control in tank 2 as follows 
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Consider a Lyapunov candidate function as 

2 21 1 ˆ( ) ( )
2 2

v t s               (6.22) 

where 

R  denotes a positive adaptive gain constant 

By taking the time derivative of above equation (6.22), yields 

ˆ( )v t ss            (6.23) 

where 

ˆ     

By replacing the value of s  from equation (5.26) in chapter 5, one can obtain 

2 2
ˆ( ) ( )sv t s x x            (6.24) 

 2
ˆ( ) sv t s bu x              (6.25) 



Using equation (6.4) in equation (6.8) one can obtain  
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Eliminating the common factor of equation (6.27), yields 

   2 1
ˆ sgns sv s s k z k z sw s            (6.28) 

Solving the above equation (6.28), which yield the adaption law for ̂  and sw  as follows 
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The closed loop system can be proved to be stable if 

0v           (6.31) 
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 2 12 sv s k z k z           (6.34) 

From equation (6.16) and (6.32), it is ensured that the derived control law for maintaining liquid 

level in tank 1 (eq. 6.4) and tank 2(eq. 6.21) guarantee the asymptotic stability of the closed 

loop system. The control law in equation 6.4 and 6.21 exhibits little oscillations, which is 

commonly well known as chattering which is undesirable. Because it can excite high frequency 

in dynamics of the system which owing to possibility of actuators in the system. So in order to 

decrease the chattering effect in this chapter we have considered a fuzzy control term in the 

sliding surface. 

 



6.3 Design of Fuzzy Logic Control 

For developing a fuzzy logic controller (FLC), error and change in error are considered as its 

input. Here, the difference between the actual water level and the desired water level is treated 

as error which is shown in Fig.6.2.Basically the fuzzy controller is a logical system, which is 

closer to human thinking and natural language than the traditional logic system [48-50]. In 

general, the fuzzy sliding controller design starts from extending the crisp sliding surface to 

fuzzy sliding surface defined by suitable linguistic expression. Here in order to carry out design 

seven membership function has been chosen based on the trade-off between reduced 

complexity and better performance.  
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Fig. 6.2 Block diagram of adaptive fuzzy sliding mode control 

Linguistic Variables 

Commonly, if a variable can take words in natural languages as its value, referred as linguistic 

variable. There are seven I/O parameter used to develop the FLC, the linguistic used to describe 

the states of these parameters are defined in Table.6.1. 

Membership Function 

For defining the fuzzy variables, here the triangular membership functions are chosen. For each 

input and output variables the states are represented as linguistic variables and each variable is 

associated with the triangular function. 



 

Fig..6.3 fuzzy membership function for error (Input 1) 

 

Fig.6.4 fuzzy membership function for change in error (Input 2) 

 

Fig.6.5 fuzzy membership function for output 
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 Table 6.1 Linguistic variables for input and output parameters 

NB Negative Large 

NM Negative Medium 

NS Negative Small 

ZE Zero 

PB Positive Large 

PM Positive Medium 

PS Positive Small 

 

 

Description of fuzzy rule base while level control in tank 1 [49] 

 

𝒗𝒆 

∆𝒗𝒆 𝒅𝒕⁄  

NB NM NS ZE PS PM PB 

        PB     ZE NS NS NM NM NB NB 

PM PS ZE NS NS NM NM NB 

PS PS PS ZE NS NS Nm NM 

ZE PM PS    PS ZE NS NS NS 

NS PB PM PM PS PS ZE NS 

NM PB PB PM PM PS PS ZE 

Description of fuzzy rule base while level control in tank 2 [49] 

𝒗𝒆 

∆𝒗𝒆 𝒅𝒕⁄  

NB NM NS ZE PS PM PB 

        PB     ZE NS NS NM NM NB NB 

PM PS ZE NS NS NM NM NB 

PS PS PS ZE NS NS Nm NM 

ZE PM PS    PS ZE NS NS NS 

NS PB PM PM PS PS ZE NS 

NM PB PB PM PM PS PS ZE 



For developeing the fuzzy controller for CTS for maintaing desired liquid level at particular 

level, two rule base has been designed for both the tank. These rule base are the knowledge 

base and these are implemented using IF-THEN rules. The above mentioned rule base which 

explains the relationship between input and output fuzzy variables which is defined as 

membership function. Here the membership function has been chosen based on the trade-off 

between reduced complexity and better performance. In this work, a Mamdani Fuzzy Inference 

system along with seven membership function defined as in table 6.1 have been considered for 

carry out design. 

Defuzzification 

After employing the fuzzy inference system the output will be a fuzzy and it should be 

converted to crisp value for giving to the plant. This method of conversion of fuzzy variable to 

crisp variable is called defuzzification process. There are various defuzzification methods are 

available such as centroid, bisector, middle of maximum (MOM), smallest of maximum (SOM) 

and largest of maximum (LOM). Here centroid defuzzification method was used to defuzzify 

the fuzzy sets into a crisp control signal. The reason for taking this centroid defuzzification 

method is only its intuitive plausibility [47] and also it provides most accurate signal. 

6.4 Results and Discussions 

Fig.6.6 and 6.7 presents the simulation results and Fig. 6.10 and 6.11 exhibits the experimental 

result for the coupled tank system. Fig.6.8 and 6.9 illustrates the chattering response of the both 

tanks. In order to improve the chattering response a fuzzy term has been considered. From Fig. 

6.10 and 6.11, it is observed that the sliding variable converges to zero that means states remain 

on the sliding surface ( , 0x h x   ). It is clearly identified that from Fig.6.6 the output y (t) 

=h1 (t) and Fig. 6.7 that the output y (t) =h2 (t) converges to its desired level such as h1d and 

h2d in about 60 sec and 100 second. 

Table 6.2 Parameters of the Adaptive Sliding Mode Controller 

 

 

 

 

 

Symbol   Value 

K 0.050 

N 0.1194 

  0.1 (Tank 1),0.35 (Tank 2) 

γ 500 (Tank 1),0.05 (Tank 2) 



 

Fig. 6.6 Simulation Response of AFSMC while level control in Tank 1 

 

Fig. 6.7 Simulation Response of AFSMC while level control in Tank 2 

 

Fig. 6.8 Sliding Surface while level regulating in Tank 1 
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Fig. 6.9 Sliding Surface while level regulating in Tank 2 

 

Fig. 6.10 Experimental Response of AFSMC while level control in Tank 1 

 

Fig. 6.11 Experimental Response of AFSMC while level control in Tank 2 

From Fig. 6.10 and 6.11, it is observed that, with the proposed AFSMC control algorithm level 

of both tanks reach the desired level with taking less settling time. It also yields no overshoot 

and less steady state error. Here, water level of both tanks maintain its desired level in two 

desired step, where tank 1 maintain its first desired level at 20 cm for 0-320sec and second 
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desired level at 10 cm for 330-500 sec and in tank 2 first desired level is regulated at 10 cm for 

0-320 sec further the second desired level is at 20 cm for 330-500 sec. From Fig. 6.10 it is 

witnessed that, while level is regulating in tank 1 during the first desired step, level is smoothly 

settled around 30 second with zero steady state error but during second desired step it settles 

around 350 sec with little steady state error. Also from Fig.6.11 it is seen that, when level is 

regulating in tank 2 during first desired set point, level is settled around 10 sec with steady state 

error and in second desired step, level is settled around 340 sec with no steady state error. 

 

Fig. 6.12 Experimental Response of AFSMC under disturbance rejection mode while level 

control in Tank 1 

 
Fig. 6.13 Experimental Response of AFSMC under disturbance rejection mode while level 

control in Tank 2 

 Fig. 6.12 and 6.13 illustrates the disturbance rejection capabilities of the presented AFSMC 

control algorithm. Here the disturbances were applied to both the tanks during the steady state 

where load disturbance is added into the system by suddenly opening a valve for 30 sec in case 

of tank1 and 50 sec for tank 2.From Fig.6.12 and 6.13, it is observed that the proposed AFSMC 

algorithm brings the system response to the set point with less settling time and little steady 

state error after removal of the load disturbance.  
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Table 6.3 Performance assessment of AFSMC and SMC control algorithm 

 

6.5 Chapter Summary  

In this chapter an adaptive fuzzy sliding mode control law has been developed for maintaining 

desired liquid level in the both tank at a desired level. In this chapter, a fuzzy term has been 

included in the sliding surface in order to improve the chattering effect. It has been found that 

from both simulation and experimental results that the AFSMC controller exhibits best 

performance. It is also observed that the AFSMC control algorithm provides good robustness 

performances against disturbance rejection as well as tracking performance as compared to 

LMI based PI, Adaptive Fuzzy PI (AFPI), conventional sliding mode control (SMC). 

 

 

 

 

 

 

 

 

Comparison Chattering 

Effect 

Real time 

implementation 

issue 

Reaching Time 

to the desired 

steady state 

level 

Disturbance 

Rejection 

Capability 

 

Adaptive Fuzzy 

Sliding Mode 

Control (AFSMC) 

Smooth Difficult 

 

22 sec (Tank 1) 

10 sec (Tank 2) 

Better 

Sliding 

Mode 

Control 

(SMC) 

Less 

smooth as 

compared 

to AFSMC 

quite easier than 

AFSMC 

3 sec(Tank 1) 

7 sec(Tank 2) 

 

Less as 

compared to 

AFSMC 



Chapter 7 

Conclusions and Suggestions for Future Work 

7.1 Conclusions 

This thesis presents a number of control strategies such as LMI based PI, Adaptive Fuzzy PI, 

Sliding Mode Control and Adaptive Fuzzy Sliding Mode controller. These control strategies 

have been fruitful in meeting with the control objectives i.e. maintaining of desired liquid level 

in both tanks of the coupled tank system as well as also satisfying the physical constraints in 

the control input.  

The development of all the presented control strategies for the CTS have been successfully 

implemented using MATLAB/SIMULINK by considering vertical tanks coupling of the 

coupled tank system. In chapter 2 and chapter 3, a LMI based PI and Adaptive Fuzzy PI (AFPI) 

has been implemented in the real-time on a coupled tank liquid level system, which yields large 

overshoot and takes more time in order to maintain the desired level. Therefore for the 

improvement of response, in chapter 4 a sliding mode control designed in view of obtaining, 

as it is an effective approach for controlling nonlinear and uncertain system in presence of 

model uncertainties and disturbances. After implementation in the real-time, it is observed that, 

it suffers from the chattering problem which commonly possesses a serious concern to the 

possibility of damage of actuator. Hence in order to alleviate the chattering problem in chapter 

5, an adaptive fuzzy sliding mode control has been developed, where the design of the sliding 

surface involves a fuzzy variable for the improvement of chattering problem. It is observed that 

the results obtained from AFSMC controller that, the developed control algorithm ensures best 

robust performance in face of system uncertainties as well as disturbance rejection and also it 

requires less time to settle at the desired steady level in both the tanks as compared to other 

controllers discussed in chapter 2, chapter 3 and chapter 4. 

 

 

 

 



Table 7 1 Performances assessment of all controllers based on performance indices for Tank 

1 

Controller IAE ISE Remarks 

LMI based PI 

Controller 

62.82 27.81  Real-Time Implementation is easy but with this 

sluggish type of response is yielded. 

 Both ISE and IAE values are more as compared to 

AFPI, SMC and AFSMC. 

Adaptive Fuzzy PI 

Controller (AFPI) 

13.017 4.356  Real-Time Implementation is quite difficult as 

compared to LMI based PI controller and also in this 

controller selection of range of membership 

function is time consuming. 

 Both Performance Indices are less as compared to 

LMI based PI controller. 

Sliding Mode 

Controller 

(SMC) 

3.296 10.86  Real-Time Implementation is easier as compared 

AFPI. 

 Values of ISE and IAE are less compared to both 

LMI based PI and AFPI controller. 

Adaptive Fuzzy 

Sliding Mode 

Controller 

(AFSMC) 

12.32 9.695  Real -Time Implementation is quite difficult as 

compared to SMC. It has better disturbance 

rejection capability as compared to SMC. 

 Both Performance Indices are less as compared to 

LMI based PI controller and AFPI controller and 

also the value of ISE is less as compared to the 

obtained values of ISE from SMC. 

 

Table 7.2 Performances assessment of all controllers based on performances indices for 

Tank 2 

Controller IAE ISE Remarks 

LMI based PI 

Controller 

43.221 17.81 Values of ISE and IAE are higher as compared to other 

controller such as AFPI, SMC and AFSMC. 

Adaptive Fuzzy PI 

Controller 

(AFPI) 

23.13 13.017 The values of ISE and IAE are lesser as compared to 

LMI based PI Controller 

Sliding Mode 

Controller 

(SMC) 

10.843 18.97 Value of IAE is lesser as compared to LMI based PI and 

AFPI and ISE is less as compared to both AFSMC and 

LMI based PI controller. 

Adaptive Fuzzy 

Sliding Mode 

Controller 

(AFSMC) 

14.042 16.804 The value of IAE is less as compared to AFPI , LMI 

based PI and the values of  ISE is less as compared to 

all presented controllers such as LMI based PI, 

AFPI,SMC and AFSMC. 

 

 

 



7.2 Contributions of the thesis 

The following are the contribution of the thesis 

 PI controller based on LQR-LMI framework and an Adaptive Fuzzy PI (AFPI) is 

developed and implemented in real time for the regulation of level. 

 In order to provide robust performance a sliding mode control is proposed. As usually 

the normal sliding mode control suffers from chattering problem, so in order to 

overcome this difficulty an adaptive sliding mode control is developed and also 

implemented in real time liquid level system. 

 

7.3 Suggestions for the future work   

 In the thesis, we have considered two tank systems in the dynamics equation and the 

controller design has been carried out accordingly. It can be further extended to four 

tanks with considering cross coupling and decoupling effect, which makes the problem 

more challenging. 

 In chapter 4, in order to get robust response in face of model disturbance and also 

parametric uncertainties a sliding mode control has been designed and implemented in 

real-time. But usually the sliding mode controller suffers from the chattering problem. 

Hence due to that in chapter 5, an adaptive fuzzy sliding mode control has been 

developed for the improvements of chattering where a fuzzy variable is considered 

while designing the sliding surface. It can be further improved by utilizing higher order 

sliding mode (HOSM) and the super twisting algorithm. 
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