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ABSTRACT 

 

Rotor dynamics is the study of the behaviour of the machines resulting from excitations 

originating from its rotating elements, and has a very important role to play throughout 

the fast-growing mechanical and industrial world. Shafts or circular cross-section 

beams are important parts of rotating systems and their geometries play important role 

in rotor dynamics. Therefore, there is a need to consider the dynamic characteristics of 

special shaft-rotor systems with disks and shafts whose radii are functions of their 

length. The procedures for the determination of the deflection slope, shear force and 

bending moment at the extremities of the shaft are used and the dynamics of shaft-rotor 

system are considered. Conventional frequency response method is used for the 

computation of resonance, critical speed or whirling frequency. For particular lengths 

and rotational speeds, the response of the system is determined for the establishment of 

the dynamic characteristics. Several types of such shaft-rotors are analysed as 

examples. Hollow tapered shaft-rotors with uniform thickness and uniform bore are 

also considered.  

Critical speeds or whirling frequency conditions are computed using transfer matrix 

method and then the results are compared with the results obtained using FEA. A 

dynamic model of the profiled shaft-rotor system is presented. The equation of motion 

of the rotating non-uniform shaft is derived using Lagrangian approach together with 

the finite-element method. The shaft-rotor components with circular cross-section are 

discretized into a number of finite shaft elements with 8 degrees of freedom each. 

Euler-Bernoulli beam theory has been used for both the methods. For particular shaft-

lengths and rotating speeds, response of the hollow-tapered shaft-rotor system is 

determined for the establishment of dynamic characteristics. Effects of shaft lengths 

and rotational speeds on frequency response are shown by bode plots. Step responses of 

the systems are also plotted simultaneously. 
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      CHAPTER-1 

     

 INTRODUCTION 

 

1.1 Background 

Rotor dynamics [1] is the study of the behaviour of the machines resulting from 

excitations originating from its rotating elements. It plays a very important role 

throughout the fast-growing mechanical and industrial world. This is different from 

structural vibrations analysis because of the gyroscopic moments, and the possibility of 

whirling instability. Rotating machinery find its applications in turbo-machines, power 

stations, machine tools, automobiles and aerospace. The interaction of the rotating 

machines with their surroundings is of great importance due to the fact that if these 

machines are not operating at the correct speeds, vibration may occur and ultimately 

cause failure of the machines. Shaft is a major component of any rotating system, used 

to transmit torque and rotation. Hence the study shaft-rotor systems have been the 

concern of researchers for more than a century, and will continue to persist as an active 

area of research and analysis in near future.  Geometry of shaft is of the main concern 

during the study of any rotating system. Most research work related to shaft-rotor 

systems considered uniform cylindrical shaft elements for study and analysis of rotating 

systems.  

Many investigations in linear rotor dynamics deal with the problems of unbalance, 

natural and transient vibrations. Analytical methods can be used to analyse the simple 

shaft-rotor systems. . In this regard, transfer matrix method (TMM) has been widely 

used. Whalley and Ameer [2] used frequency response analysis for profiled shafts to 

study dynamic response of distributed-lumped shaft rotor system. They studied the 

system behaviour in terms of frequency response for the shafts with diameters which 

are functions of their lengths. They derived an analytical method which uses Euler-

Bernoulli beam theory in combination with TMM. However, complex shaft-rotor 

systems normally used in plants and industries are not amenable to exact analysis. 

Therefore, it is necessary to follow some approximate methods to study the dynamic 

behaviour of complex rotor systems. Powerful approximation methods, such as the 

finite element method, are available for analysing complex structures.  
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Frequency response of any rotating machine is influenced by many vital parameters 

such as; shaft geometry including length, hollowness, rotor-speed etc.  

1.2 Motivation and Objective 

The geometry of shaft plays very important role in dynamic analysis of shaft-rotor 

systems. Most of the papers on rotor dynamics consider linear shaft with uniform 

cylindrical geometry.  

The present work focuses on non-uniform shaft-rotors. Objective of this work is to find 

the frequency response of shaft-rotor systems where shafts‟ radii are functions of their 

lengths, i.e., the cross-sectional area will change continuously with increasing shaft-

rotor-length. Euler-Bernoulli beam theory has been considered for the shaft vibration 

analysis. Multi-disk, multi-profiled including convergent-divergent type of shaft, 

hollow profiled and hollow tapered shaft-rotor systems are analysed here. Numerical 

examples are provided for better understanding and general applicability of TMM and 

FEM. Effects of rotational speeds, shaft length and hollowness are also discussed.  

Shafts are the important parts of the rotating machines and are employed hugely in 

aeronautics, industries and power plants. Shaft geometry is one of the vital parameters 

that affect the response of the shaft-rotor system. In the present work, axisymmetric 

non-uniform shafts are considered. The shafts‟ radii are the function of their lengths, 

and hence the cross-section varies according to the length of the shaft. The main 

purpose of the present work is to study different such shaft-rotor systems with respect 

to the shaft lengths and rotor speeds and their effects on the response of the system.  

1.3 Transfer matrix method (Myklestad-Prohl Technique) 

A general method that can be used for computation of frequency response of uniform 

and variable stiffness was developed by N.O Myklestad and M.A Prohl [3, 4]. The 

method was initially developed for uncoupled bending vibrations, but later it was 

extended for coupled and uncoupled problems. In present research Myklestad method 

will be developed for computation of frequency response of members with variable 

stiffness. 

 

Myklestad method can be thought of as an extension to the Holzer method that is used 

for the solution of torsional vibration problems. However, solution of flexural vibration 
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problems is difficult since it involves computation of four elastic parameters namely 

deflection, slope, bending moment and shear force for each length segment of the shaft. 

 

1.4 Frequency Response 

 

The term frequency response refers to steady state response of a system for a given 

input. The response of the system is analysed over a certain range of shaft speeds 

resulting in magnitude and phase with frequency. The response of a given system can 

be studied for different configurations by varying the system parameters. The transfer 

function that gives the relation between input (force) and output (displacement), is a 

complex quantity and can be represented by magnitude and phase angle with frequency 

(shaft rotational speed). In the current work Bode plot technique is used to obtain the 

response from the given transfer function. Bode diagram is represented by two plots, 

one giving magnitude versus frequency and the other the phase angle versus frequency. 

Both the diagrams are plotted on logarithmic scale. The unit of magnitude is generally 

dB (decibel) and that of phase in degree. 

 

1.5 Laplace Transform 

 

Partial and ordinary differential equations describe certain quantities which vary with 

time, such as the current in electrical circuit, the oscillations of vibrating members, flow 

of pipes or heat conduction through conductor. These equations are generally coupled 

with initial and boundary conditions that describe the state of system at time t=0. 

A powerful technique for solving these engineering problems is the use of Laplace 

transform, which transforms the original differential equation into elementary algebraic 

equations. Later this can then be simply transformed once again into the solution of the 

original problem. This technique is generally known as the “Laplace transform 

method.”  

 

1.6 Finite element method 

 

The main rule that involved in finite element method is “divide and analyse”. The 

greatest unique feature which separates finite element method from other existing 

methods is “it divides the given domain into a set of sub domains, called finite 
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elements”. Any geometric shape that allows the computation of the solution or its 

approximation, or provides necessary relations among the values of the solution at 

selected  points called „nodes‟ of the sub domain, qualifies as finite element. Division 

of the domain into elements is called mesh. Approximate solutions of these finite 

elements give rise to the solution of the given geometry which is also an approximate 

solution.  

The approximate solution can only become exact when 

1. Division of the given domain into infinite number of sub domains or elements 

2. The expression for the primary variable must contain a complete set of polynomials 

(infinite terms). 

 

1.7 Outline of the thesis 

 

The research presented in this thesis gives a framework on the study of the shaft-rotors 

with non-uniform geometries. The investigation as outlined in this thesis is broadly 

divided into six chapters. The thesis work is outlined as follows; 

 

Chapter 1: This chapter gives a brief introduction to the thesis work and summarizes 

the importance, motivation of the present investigation. 

 

Chapter 2: This chapter contains detailed relevant literature review on various aspects 

of vibration analysis of shaft-rotor systems. Most of the earlier and present vital 

researches carried out by various scientists and researchers have been represented in 

details. This chapter is divided into different sections emphasizing; transfer matrix 

method for vibration analysis, Finite element approach in rotor dynamics, various 

configurations of shaft-rotors including hollowness and research work done on non-

rotating non-uniform beams.  

 

Chapter 3: This chapter elaborates a complete description of the transfer matrix method 

for frequency response computations of the non-uniform shaft-rotors used by Whalley 

and Ameer [2].  Complete matrix expressions and hence the computation of transfer 

function is explained in detail.  
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Chapter 4: This chapter outlines the details of the finite element approach on vibration 

analysis of non-uniform shaft-rotors. Element matrices formulation is presented in 

detail. Lagrangian approach is used as governing equation.  

 

Chapter 5: This chapter elaborates the detailed discussions on the results obtained from 

the analytical approach of Whalley and Ameer [2] and finite element analysis as 

outlined in chapters 3 and 4. The theoretical expression for different arrangements and 

configurations of the shaft-rotor systems has been found out by considering different 

shaft profile values, shaft lengths and rotor speeds. Further, method has been extended 

for finding frequency response of hollow shaft-rotors. Step responses for such systems 

are also plotted. Numerical example on hollow tapered shaft has been presented for 

ease of understanding. The results obtained are compared with the results of Whalley 

and Ameer [2].  

 

Chapter 6: This chapter summarizes the important conclusions drawn from the 

observations discussed in the chapter 5 along with some suggestions for applying the 

present work in various fields of real applications. This chapter also contains the scope 

for further research work. 
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CHAPTER-2 

              

LITRETURE REVIEW 

2.1 Introduction 

Rotating machines began manufacturing in significant numbers concurrently with the 

development hydraulic power in the early 1800s and steam turbines in late 1800s. The 

first dynamics problem encountered was critical speed where the vibration produced by 

rotor unbalance is magnified by resonance with the first natural frequency of the 

system. Rankine analysed the critical speed phenomenon in 1869 and it was only 

partially correct. The resulting design philosophy was to keep running speeds below the 

first critical speed. Rotor dynamics and stability of shaft-rotor systems has been the 

concern of engineers and scientists for more than a century, and it will continue to 

persist as an active area of research and study in coming future. Shaft geometries are 

one of the basic concerns for the researchers. Jeffcott [5] provided a very basic model 

of a shaft-rotor system. Initially, he made three assumptions for his model: (i) Zero 

damping is associated with the rotor, (ii) Axially symmetric rotor, and the important 

one is (iii) The rotor carries a point mass. Later, the model was expanded to take care of 

damping. In general, two methods, namely transfer matrix method and finite element 

method are used for vibration analysis of shaft-rotor systems. Dunkerley [6] published 

an article in which he showed the whirling speeds of a uniform shaft rotating on simple 

supports are same as its natural frequencies of lateral vibration. Dunkerley suggested 

that any unbalance of rotating shaft would excite the natural frequencies to produce 

critical speeds with large, synchronous whirling amplitudes. Dunkerley gave a simple 

formula for calculating whirling speeds of shafts with several disks spaced at different 

locations along the length of the shaft. The formula neglects the effect of gyroscopic 

moments, but still it was being used in some machine design textbooks in late 1960s. 

Dunkerley‟s formula is given by, 

2 2 2

cr 1 2

1 1 1

  
 

                 (2.1.1)

 

where ω1 and ω2 are the whirl speeds of the shaft with disks 1 and 2 alone, respectively, 

and ωcr is the critical speed with all disks installed. The literature reviewed in this 

chapter are grouped into three sections namely, 
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 Transfer matrix method as a tool for vibration analysis, 

 Finite element method as a tool for vibration analysis, and 

 Vibration analysis of non-rotating non-uniform beams. 

 

2.2 Transfer matrix method as a tool for vibration analysis 

 

Basic idea of transfer matrix method was first put forth by Holzer for finding natural 

frequencies of torsional systems. Later it was adapted by Myklestad [3,7] for 

computing natural frequencies of airplane wing, coupled in bending and torsion. In this 

approach the shaft is divided into a set of longitudinal sections with the distributed 

mass of each, concentrated at the section end. Thereafter, the boundary conditions for 

the bending moment–shear force and inertia loading are equated until parity is 

achieved, again by way of iteration. This resolution identifies the critical speed in that 

this is the only possible origin for the maximisation of the deflection, in the absence of 

additional external loading. Prohl [4] applied it to rotor-bearing systems and included 

gyroscopic moments in his computations. Lund [8] used complex variables as the next 

significant advancement in the method and showed it could be applied to more general 

formulations of bearing forces. Lund showed how system damping could be accounted 

for including self-exciting influences, such as oil whip and internal frictions. From the 

above developments, the method came to be known as “The Transfer Matrix Method” 

(TMM).  The design of shaft-rotor systems includes computation of the critical or 

whirling speed, which is an essential design parameter. Whenever the critical frequency 

is found, the operational conditions below the lowest or fundamental critical are 

normally considered. An improved method for calculating critical speeds and rotor 

stability of turbo machinery is investigated by Murphy and Vance [9]. In their work, 

they shown that complex variable can be employed in transfer matrix programs when 

damping and cross coupling are included in rotor bearing system and it may lead to loss 

of accuracy in the computation of critical speeds. They show that by rearranging the 

calculations performed in transfer matrix program, one can derive characteristic 

polynomial for a complex rotor-bearing. A mathematical model, developed by 

Marhomy et al. [10] in which method of R-H stability criterion was applied to both the 

characteristics equations of the translational and rotational modes of motion and the 

stability regions were represented graphically. Hsieh et al. [11] developed a modified 
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transfer matrix method for analysing the coupling lateral and torsional vibrations of the 

symmetric rotor-bearing system with an external torque. They modelled rotating shaft 

as Timoshenko beam and considered a continuous system concept rather than the 

conventional “lumped system” concept. 

 

Whalley and Ameer [2] used frequency response analysis for profiled shafts to study 

dynamic response and transient response of distributed-lumped shaft rotor system. They 

studied the system behaviour in terms of frequency response for the shafts with 

diameters which are functions of their lengths. They derived an analytical method 

which uses Euler-Bernoulli beam theory in combination with transfer matrix method 

(TMM). Frequency response and transient response of the system for an impulse of 1N 

is determined in terms of critical speed for various values of shaft speed and shaft 

lengths by minimising mass, inertia etc. 

 

2.3 Finite element method as a tool for vibration analysis 

 

On the other hand, there are large number of numerical applications of finite element 

techniques for the calculation of whirling and the computation of maximum dynamic 

magnitude. In this regard, Ruhl and Booker [12] modelled the distributed parameter 

turbo rotor systems using a finite element method (FEM), which may be considered as 

the beginning of finite element modelling in rotor dynamics. Thorkildsen [13] was the 

first to include rotary inertia and gyroscopic moments in the finite element model. 

Nelson and McVaugh [14] reduced large number of eigenvalues and eigenvectors 

identified, following finite element analysis, and the erroneous modes of vibration 

predicted were eliminated. Nelson [15] again formulated the equations of motion for a 

uniform rotating shaft element using deformation shape functions developed from 

Timoshenko beam theory including the effects of translational and rotational inertia, 

gyroscopic moments, bending and shear deformation and axial load. Chen and Ku [16] 

used a three nodal C ° Timoshenko beam finite element to analyse the natural whirl 

speeds of a rotating shaft with different end conditions. The Timoshenko model was 

extended by Ozguven and Ozkan [17] to include effects such as transverse and rotary 

inertia, gyroscopic moments, axial load, internal hysteretic, viscous damping, and shear 

deformations in a single model. Zorzi and Nelson [18] provided a finite element model 

for a multi-disk rotor bearing system. The model was based on Euler-Bernoulli beam 
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theory. Rouch and Kao [19] presented a comprehensive approach to the linearized 

analysis of rotor-bearing systems including matrix reduction techniques; to accurately 

assess the dynamic behaviour of a rotor-bearing system for four type of analysis namely 

undamped critical speed, synchronous response, damped eigen value or stability 

analysis and transient integration of system equations.  Kim and Lee [20] developed a 

powerful matrix reduction technique to analyse rotor-bearing systems by using the 

modal data of the isotropic undamped stationary parts, which gives significant 

reductions in computation time and core size. Kalita and Kakoty [21] studied the 

dynamic behaviour of Timoshenko beam supported on hydrodynamic bearings 

incorporating internal damping using finite element model. Khulief and Mohiuddin [22] 

developed a finite element dynamic model for a rotor-bearing system. The model 

included gyroscopic moments and anisotropic bearings. Reduced order model using 

modal truncation was obtained. Khulief and Al-Naserb [23] derived equation of motion 

of the rotating drill string using Lagrangian approach together with the finite-element 

method. The drill string components with circular cross-section were discretized into a 

number of finite shaft elements with 12 degrees of freedom each. Modal 

transformations were invoked to obtain a reduced order modal form of the dynamic 

equations. They integrated developed model into a computational scheme to calculate 

the modal characteristics and to perform time-response analysis of the drill string 

system. Forrai [24] studied the stability analysis of symmetrical rotor bearing systems 

with internal damping by using finite element method. By the analysis, it was proved 

that the whirling motion of the rotor system becomes unstable at all speeds beyond the 

critical speed of instability. It was found that the rotor stability is improved by 

increasing the damping provided in the bearings. Aleyassin [25, 26] worked on 

computation of irrational characteristic determinant of the system model by the 

dynamics stiffness matrix method (DSMM). He compared the results obtained to the 

transfer matrix method (TMM) and discussed about the accuracy of the results. 

Aleyassin proved the equivalence of the characteristic determinant in TMM and the 

DSMM and clarified that TMM is more accurate method. Various papers were 

published for conical or tapered shaft-rotors. Lee et al. [27] investigated the forced 

response analysis of an undamped distributed parameter rotating shaft by using a modal 

analysis technique. Their shaft model included rotary inertia and gyroscopic effects, 

and various boundary conditions.  They presented a study of the resulting non-self-

adjoint eigenvalue problem and its characteristics in the case of rotor dynamics. In 
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addition to the modal analysis, they applied the Galerkin's method to analyse the forced 

response of an undamped gyroscopic system. Both methods were illustrated in a 

numerical example and the results are compared and discussed. Katz et al. [28] 

investigated the dynamic behaviour of a rotating shaft subjected to a constant velocity 

moving load. The Euler-Bernoulli, Rayleigh and Timoshenko beam theories were used 

to model the rotating shaft. The modal analysis method and an integral transformation 

method were employed in their study, for the case of a shaft with simply supported 

boundary conditions. The influence of parameters such as rotational speed of the shaft, 

the axial velocity of the load and the dimensions of the shaft were discussed for each 

shaft model. The results were presented and compared with then available solutions of 

a non-rotating beam subjected to a moving load. Katz [29] investigated the dynamic 

response of a rotating shaft subjected to an axially, constant-velocity, moving and 

rotating load. He studied the dynamic behaviour of high-speed linear bearings. 

Considering slender shaft, they used Rayleigh beam theory to model the rotating shaft. 

Modal analysis and integral transformation methods were employed to develop 

analytical expressions for the transient response of the shaft with simply supported 

boundary conditions. Numerical results were presented, discussed and compared with 

the then available solutions. They observed that by changing model parameters, it is 

possible to describe dynamic behaviour of different types of linear bearings and other 

mechanical elements. Ku [30] presented a C
0
-class Timoshenko beam finite element 

model to analyse the dynamic characteristics of a rotor-bearing system with internal 

damping. Numerical results were compared with the then published works in order to 

demonstrate the accuracy of finite element model of the rotor-bearing system. His 

findings indicated that hysteretic internal damping results in the destabilisation of 

forward precessional modes at all spin speeds, whereas viscous internal damping results 

in the destabilisation of forward precessional modes only when the spin speed becomes 

higher than the critical speed. He observed that for any kind of internal damping, the 

backward precessional modes are always stable. Greenhill et al. [31] derived equation 

of motion for a conical beam finite element form Timoshenko beam theory and include 

effects of translational and rotational inertia, gyroscopic moments, bending and shear 

deformation, axial load and internal damping. Genta and Gugliotta [32] analysed 

element with hollow or annular cross-section based on Timoshenko beam theory having 

two degrees of freedom at each node. Agostini and Souza [33] worked on the vibration 

analysis of vertical rotors including gravitational and gyroscopic effects. They obtained 
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forward and backward modes separately through the implementation in MATLAB of 

complex modal analysis in conjunction with the finite elements method. They 

compared numerical simulations with the existing literature and found it to be 

satisfactory. Gmur and Rodrigues [34] presented the first forward and backward natural 

frequencies of a hollow tapered shaft with simply supported conditions rotating at 

10000 rpm. Mohiuddin and Khulief [35] derived equations of coupled bending and 

torsional motion of the rotating shaft using the Lagrangian approach. They derived 

conical beam finite element for vibration analysis of rotating shafts including shear 

deformations and rotary inertia. The finite beam element has ten degrees of freedom 

and accounts for linear tapering. Explicit expressions for the element mass, stiffness, 

and gyroscopic matrices are derived using consistent mass formulation. They compared 

their findings with exact solutions, and with other numerical results available in the 

literature.  Again Mohiuddin and Khulief [36] derived a finite element model of a 

tapered rotating cracked shaft for modal analysis and dynamic modelling of a rotor-

bearing systems, based on Timoshenko beam theory i.e., included shear deformation 

and rotary inertia.  Edney et al [37] developed two tapered beam finite elements as part 

of a study of the shock response of rotor-bearing systems. In one of the finite element, a 

linear approximation is used for the geometrical properties yielding closed form 

expressions for the element matrices. Scaling factors are also incorporated to 

compensate for errors introduced by the linear approximation. While for other element, 

exact expressions are used with a numerical integration. They included translational 

and rotational inertia, gyroscopic moment, axial torque, shear deformation, viscous and 

hysteretic material damping and mass eccentricity for analysis.   They proved that 

applied torque has little effect on the predicted whirl speeds unless the rotor is very 

slender. However, it has a destabilizing effect on some of the modes. Many examples 

on dynamics and vibration analyses are provided in [38, 39, and 40]. 

  

2.4 Vibration analysis of non-rotating non-uniform beams 

 

Many researchers carried out vibration analysis of non-rotating non-uniform shafts. 

Mehmet et al. [41] investigated an isotropic beam which has a variable cross-section. 

They reduced the governing equation to an ordinary differential equation in spatial 

coordinate for a family of cross-section geometries with exponentially varying width. 

Three different types of boundary conditions associated with simply supported, 
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clamped and free ends were applied and studied. Results show that the non-uniformity 

in the cross-section influences the natural frequencies and the mode shapes. Tong et al. 

[42] presented an analytical solution for free and forced vibrations of non-uniform 

Timoshenko beams. As an approximation the non-homogeneous beam with variable 

cross-section is replaced by a number of homogeneous stepped beams with constant 

cross-section. They also proved that as the number of the stepped beams increases the 

results converge to the exact solutions of the original beams. 

Abrate [43] presented an efficient procedure to analyse the free vibration of non-

uniform beams with general shape and arbitrary boundary conditions. He presented 

simple formulas for predicting the fundamental natural frequency of non-uniform 

beams with various end support conditions. The natural frequencies are determined by 

solving a simple transcendental equation. Rosa and Auciello [44] examined the 

dynamic behaviour of beams with linearly varying cross-section, in the presence of 

rotationally and axially flexible ends. The equation of motion is solved in terms of 

Bessel functions. Attarnejad et al. [45] introduced new functions, namely basic 

displacement functions (BDFs) and studied free transverse vibration of non-prismatic 

beams from a mechanical point of view. They developed dynamic shape functions in 

terms of BDFs. The new shape functions developed by them were dependent on the 

circular frequency, configuration of the element and physical properties such as mass 

density and modulus of elasticity. Differential transform method was employed to 

obtain BDFs via solving the governing differential equation for transverse motion of 

non-prismatic beams. They carried out free vibration analysis for five numerical 

examples including beams with linear mass and inertia, linear mass and fourth order 

inertia, second order mass and fourth order inertia, tapered beam with non-classical 

boundary conditions and exponentially varying area and inertia. It was observed that 

the results were in good agreement with the previously published ones in the literature. 

Grossi and Bhat [46] presented a note which dealt with the approximate determination 

of frequency coefficients of linearly tapered beams with ends elastically restrained 

against rotation, using two approaches namely the modified Rayleigh-Schmidt method 

and the characteristic orthogonal polynomials method. They concluded that the use of a 

set of orthogonal polynomials in the Rayleigh-Ritz method is a quite simple procedure, 

and provides not only the determination of the values of the fundamental frequency 

coefficient but also the values corresponding to higher modes. Auciello and Ercolano 

[47] determined the free-vibration frequencies of tapered beams in the most general 
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possible boundary conditions by means of direct method. Their study was extended to 

beams, made up of two sections with different cross-sectional variations. The equations 

of motion were solved by means Ressel function. The natural frequencies were 

determined using the false position method and symbolic program as roots of the 

corresponding characteristic equations. Klein [48] investigated the free vibrations of 

elastic beams with non-uniform characteristics theoretically by a new method. He 

combined the advantages of finite element approach and of Rayleigh-Ritz analysis. He 

compared the results with the known analytical results for uniform beams and found 

good convergence of the method for natural frequencies and modes. He observed that 

for internal shear forces and bending moments, rate of convergence is less rapid. He 

conducted experiments with a cantilevered helicopter blade with strong non-

uniformities. The theory developed by him adequately predicts natural frequencies and 

mode shapes. Lee et al. [49] developed and presented a systematic solution theory for 

the non-uniform Euler- Bernoulli beam vibration, including forced and free vibrations, 

with general elastically restrained boundary conditions. The frequency equation and the 

dynamic forced response, in closed integral form, are expressed concisely in terms of 

the fundamental solutions of the system. Lee and Ke [50] presented a simple and 

efficient method to study the problem of free vibration of a non-uniform Euler-

Bernoulli beam with general elastic restraints at boundary points. They derived 

frequency equation and expressed in concise form, with one set of particularly chosen 

fundamental solutions of the system. They found that if the closed form fundamental 

solutions of the system are not available, the approximate fundamental solutions can be 

obtained through the newly developed algorithm shown to be efficient, convenient and 

accurate. Finally, they examined several limiting cases of the general system. Laura et 

al. [51] obtained an approximate solution of free and forced vibrations of beams of non-

uniform cross-section by using Rayleigh's optimization technique where the mechanical 

system subjected to harmonic loading is symmetric. They also assumed that the beam is 

subject to an axial force and presented the results for the buckling problem as well. 

They compared the analytically determined eigen values with values calculated by the 

finite element method. Zheng et al. [52] analysed the vibration of a multi-span non-

uniform beam subjected to a moving load by using modified beam vibration functions 

as the assumed modes, based on Hamilton‟s principle. They presented numerical results 

for both uniform and non-uniform beams under moving loads of various velocities. 

They, from examples, observed that this method converges very quickly and good 
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results are obtained. Dugush and Eisenberger [53] investigated the dynamic behaviour 

of multi-span non-uniform beams transverse by a moving load at a constant and 

variable velocity. The continuous beam is modelled using Euler-Bernoulli beam theory. 

The solution was obtained by using both the modal analysis method and the direct 

integration method. They obtained the natural frequencies and mode shapes exactly by 

deriving the exact dynamic stiffness matrices for any polynomial variation of the cross-

section along the beam using the exact element method. They expressed mode shapes 

as infinite polynomial series. They presented numerical examples in order to 

demonstrate the accuracy and the effectiveness of their study, and the results were 

compared to previously published results. Esmailzadeh and Ohadi [54] presented two 

sets of governing equations for transverse vibration of non-uniform Timoshenko beam 

subjected to both the axial and tangential loads. For the first set, the axial and tangential 

loads were taken perpendicular to the shearing force, i.e., normal to the cross-section 

inclined at an angle, while for the second set, the axial force is considered to be 

tangential to the axis of the beam-column. For each case, there existed a pair of 

differential equations coupled in terms of the flexural displacement and the angle of 

rotation due to bending. The two coupled second order governing differential equations 

were combined into one fourth order ordinary differential equation with variable 

coefficients. They presented several illustrative examples of uniform and non-uniform 

beams with various boundary conditions such as clamped supported, elastically 

supported, and free end mass and pinned end mass. They also investigated the stability 

analysis for the variation of the natural frequencies of the uniform and non-uniform 

beams with the axial force. Li [55] proposed an exact approach for free vibration 

analysis of a non-uniform beam with an arbitrary number of cracks and concentrated 

masses. He adopted a model of massless rotational spring to describe the local 

flexibility induced by cracks in the beam. He developed the fundamental solutions and 

recurrence formulas for determining the mode shape function of vibration of a non-

uniform beam with an arbitrary number of cracks and concentrated masses. The main 

advantage of Li‟s proposed method is that the eigen value equation of a non-uniform 

beam with any kind of two end supports, any finite number of cracks and concentrated 

masses can be conveniently determined from a second order determinant. He observed 

that the decrease in the determinant order as compared with previously developed 

procedures leads to significant savings in the computational effort and cost associated 

with dynamic analysis of non-uniform beams with cracks. He presented numerical 
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examples to illustrate their proposed method and to study the effect of cracks on the 

natural frequencies and mode shapes of cracked beams. Kumar and Sujith [56] 

presented the exact analytical solutions for the longitudinal vibration of rods with non-

uniform cross-section. They reduced the equation of motion of axial vibration of a rod 

with varying cross-section using appropriate transformations to analytically solvable 

standard differential equations whose form depends upon the specific area variation. 

They obtained the Solutions for a rod with a polynomial area variation and for a 

sinusoidal rod. The solutions were obtained in terms of special functions such as Bessel 

and Neumann as well as trigonometric functions. Simple formulas to predict the natural 

frequencies of non-uniform rods with various boundary conditions were presented. The 

natural frequencies of non-uniform rods for several end conditions were calculated, and 

they discussed their dependence on taper. Li [57] presented an exact approach for free 

longitudinal vibrations of one-step non-uniform rods with classical and non-classical 

boundary conditions. He expressed the expression for describing the distribution of 

mass is arbitrary, and the distribution of longitudinal stiffness as a functional relation 

with the mass distribution and vice versa. Using appropriate functional transformation, 

the governing differential equations for free vibrations of one-step non-uniform rods 

were reduced to analytically solvable differential equations for several functional 

relations between stiffness and mass. He derived the fundamental solutions that satisfy 

the normalization conditions and used them to establish the frequency equations for 

one-step rods with classical and non-classical boundary conditions. He proposed a new 

exact approach for determining the longitudinal natural frequencies and mode shapes of 

multi-step non-uniform rods using the fundamental solutions of each step rod and a 

recurrence formula developed by him. Li demonstrated with the help of numerical 

examples that the calculated longitudinal natural frequencies and mode shapes are in 

good agreement with the experimental data and those determined by the finite element 

method. Irie et al. [58] presented an analysis for the vibration and stability of a non-

uniform Timoshenko beam subjected to a tangential follower force distributed over the 

centre line by use of the transfer matrix approach. For this purpose, the governing 

equations of a beam were written in a coupled set of first-order differential equations by 

using the transfer matrix of the beam. After the matrix has been determined by 

numerical integration of the equations, they obtained the eigen values of vibration and 

the critical flutter loads. They applied this method to beams with linearly, parabolically 

and exponentially varying depths, subjected to a concentrated, uniformly distributed or 
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linearly distributed follower force, and the natural frequencies and flutter loads were 

calculated numerically, from which they studied the effects of the varying cross-

section, slenderness ratio, follower force and the stiffness of the supports on them. 

 

2.5 Summary 

Most of the previous research work deals with vibration analysis of rotating uniform 

cross-section shafts and non-rotating non-uniform beams. Objective of the present work 

is to compute the frequency response for the rotating shafts whose radii are the 

functions of their length. Bode plots for such shaft-rotor systems, including profiled, 

multi-disk, multi-profiled and hollow tapered shaft-rotors are found by TMM approach 

and are compared with the results found from the FEM approach, specially focussing 

on the effects of shaft-lengths and rotor-speeds. The TMM approach is discussed in 

chapter-3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



17 
 

CHAPTER-3

    

THEORETICAL ANALYSIS BY TRANSFER MATRIX 

APPROACH 

3.1 Introduction 

Transfer matrix method or the Myklestad-Prohl technique is an approach to matrix 

structural analysis that uses a mixed form of the element force-displacement 

relationship and transfers the structural behaviour parameters and the joint forces and 

displacement from one end of the structures to other. The best advantage of transfer 

matrix method is that it produces system of equations to be solved that are quite small 

in comparison with those produced by the stiffness method. However, the disadvantage 

is the extensive sequence of operations that are required on a small matrix. 

The transfer-matrix method is used whenever there is any possibility that the total 

system can be broken into a sequence of subsystems that interact only with adjacent 

subsystems. This method is suitable for line structures such as arches, cables and 

beams. 

For implementing the transfer matrix method, we need a relationship that gives the state 

of forces and displacements at one end of the element in terms of force and 

displacement at the other. 

3.2 Mathematical Formulation 

The system represents distributed lumped model of cantilever shaft carrying rigid disk 

at its end. Consider a profiled shaft of length „l‟ is loaded with a concentrated harmonic 

force   and impulse of 1N at its end as shown in the Fig. 3.1. 

The cross section area of the shaft is A(x) which is a function of its length. 

Consequently the stiffness and moment of inertia of the shaft varies with the length. Its 

young‟s modulus is „E‟ and „m‟ be the mass per unit length of the shaft. 
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Fig. 3.1 A cantilever non-uniform shaft-rotor system subjected to external excitation at 

its free end. 

A general method that can be used for computation of vibrational frequencies was 

developed by Prohl [3] and Myklestad [4]. The method extensively used for both 

coupled and uncoupled bending vibrations. In using this method, the member is divided 

into number of sufficiently large massless lengths with constant Young‟s modulus (E) 

and variable moment of inertia (I).The total mass of  segment is converted into lumped 

masses at the juncture point of each the segment.  

The following assumptions are made in deriving the mathematical model. 

1. The mass of the shaft is neglected as compared to the disc. 

2. Torsional effect of shaft is neglected. 

3. Effect of bearing elements is also neglected. 

4. The initial displacement and initial velocity at time t = 0 are assumed to be zero. 

5. The material is isotropic and homogeneous. 

3.3 Modelling of vibrating shaft 

Relation between input-output state vectors for a shaft-rotor system 

Consider a segment dx of the shaft subjected to transverse vibration as shown in the 

free body Fig. 3.2. The deflection, slope, bending moment and shear force at both the 

ends of a segment is determined from differential equation of motion of a vibrating 

shaft. Examining various quantities involved in the segment of length dx, we can apply 

Newton‟s second law of motion to obtain equation of motion. 
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Fig. 3.2 Lateral vibration of shaft element. 

From Fig. 3.2, we have 

y1, y2 (x, t) - Vertical downward deflection at station 1 & 2 

θ1, θ2(x, t) - Slope of the shaft at station 1& 2. 

m1, m2(x, t) - Bending moment at station 1&2. 

q1, q2(x, t) - Shear force at station 1 & 2.  

I(x) - Moment of inertia at a distance „x‟ from the bearing end. 

The bending moment- shear force relation is given by, 

y

y

dM
q

dx
 .         (3.3.1) 

From the simple beam theory, one can have 

2

2
( )y

d y
M EI x

dx
   , and        (3.3.2) 

3

3
( )y

d y
q EI x

dx
          (3.3.3)  

From Newton‟s second law of motion, one can write 

2

2
( )

yq y
A x

x t


 
 

 
.        (3.3.4) 

Velocity at any point x is given by, 
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.         (3.3.5) 

Hence equation (3.3.4) becomes, 

( )
y yq v

A x
x t


 

 
 

.        (3.3.6) 

On differentiating (3.3.3) w r t time and substituting from (3.3.5) gives 

3

3
( )

y yq v
EI x

t x

 
 

 
.        (3.3.7)   

Let mass per unit length of the shaft is given by, 

 ρA x L(x) .        (3.3.8)  

Let the shaft compliance per unit length given by, 

1
c(x)

EI(x)
 .         (3.3.9)  

Now taking Laplace of equation (3.3.7) one can get 

 
3

3

y

y

d V
s.Q x,s EI(x)

dx
  ,      

Or    
3

3

y

y

d V
s.c x .Q x,s

dx
  .       (3.3.10) 

Taking Laplace of equation (3.3.6) with respect to time, 

 y

y

dQ
s.ρA x .V (x,s)

dx
  ,       (3.3.11) 

or  y

y

dQ
s.L x .V (x,s)

dx
  .       (3.3.12) 

Differentiating equation (3.3.10) with respect to x, 
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y y

4

d V dQ
s.c x .
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       (3.3.13)
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Using equation (3.3.12), equation (3.3.13) can be written as, 

   
4

y

4

d V
s.c x .L x .V(x,s)

dx
 .       (3.3.14) 
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4

y 2

4

d V
s c x .L x .V x,s 0

dx
   .      (3.3.15) 

Eq. (3.3.15) can be written in the form of, 

 
4

y 2

4

d V
-Г x .V=0

dx
        (3.3.16) 

where    Г(x) s. c x .L x .       (3.3.17) 

Equation (15) is known as Euler-Bernoulli beam equation. The solution of equation 

(3.3.16) will be 

         yV x,s A.sinhx Г x B.coshx Г x C.sinx Г x D.cosx Г x    . (3.3.18) 

Since     , ,Y x s L y x t be the vertical deflection of the shaft, transformed with initial 

zero condition is, 

         
A B C D

Y x,s .sinhx Г x .coshx Г x .sinx Г x .cosx Г x
s s s s

    . (3.3.19) 

Differentiating equation (3.3.19) with respect to x, we get the slope as 

           
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s

 
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  
  
 

           

          
      (3.3.20) 

For bending moment differentiating equation (3.3.20) with respect to x & multiply by –

EI(x), equation (3.3.20) become 
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          (3.3.21)
 

For shear force one can differentiate equation (3.3.21) with respect to x, to obtain 

 
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Since, 

 
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 
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Applying boundary conditions to equations (3.3.19) through (3.3.22)  

i.e. at  1 1 y1 1
x=0,Y=Y , θ=θ , M =M & Q =Qy y y  

we obtain,  

1

B D
Y




s
,         (3.3.25) 
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and        (3.3.27) 
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s
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Eqs. (3.3.25) – (3.3.28) can be written in the form of matrix as 
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   

   

           

1

1

1

1

0 1 0 1Y

Г 0 0 Г 0 0θ B1

0 -EI(0)Г 0 0 EI(0)Г 0M C

Q D-EI 0 Г 0 Г 0 0 EI 0 Г 0 Г 0 0y

y

A

s


    
    
    
    
    
      

.      

(3.3.29)   

The values of A, B, C and D can be obtained by inverting equation (3.3.29) to get 

 

. 

 

This can be written further as 

-1[W]=[X] [S]
. 

Consider now the inverse of matrix [X]. 

TadjX CF
[X]= =

X X
 

Where CF
T
 is transpose of the cofactor matrix. 

 

   

     

1 1

11

0 Г 0 0

( 1) -EI(0)Г 0 0 EI(0)Г 0 0

0 EI 0 Г 0 Г 0 0


  

 
 
 
 
  

C . 

   

 

           

        

   

12

2 3 2 3

12

2 3

12

Г 0 Г 0 0

( 1)1 2 0 0 EI(0)Г 0

-EI 0 Г 0 Г 0 EI 0 Г 0 Г 0 0

1 -(EI 0 ) Г 0 -(EI 0 ) Г 0

2(EI 0 ) Г 0

  

  

 

 
 
 
 
  

C

C

C

 

 

   

     

1 3

13

Г 0 0 0

( 1) 0 -EI(0)Г 0 EI(0)Г 0 0

-EI 0 Г 0 Г 0 0 0

C 

 
 

   
 
  

, 

   

   

           

1

1

1

1

1

0 1 0 1 Y

Г 0 0 Г 0 0 θB

0 -EI(0)Г 0 0 EI(0)Г 0 MC

QD -EI 0 Г 0 Г 0 0 EI 0 Г 0 Г 0 0

y

y

A

s





    
    
    
    
    
     
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   

 

           

        

   

1 4

14

2 3 2 3

14

2 3

14

Г 0 0 Г 0

( 1) 0 -EI(0)Г 0 0

-EI 0 Г 0 Г 0 0 EI 0 Г 0 Г 0

1 -(EI 0 ) Г 0 -(EI 0 ) Г 0

2(EI 0 ) Г 0


 

  

 

 
 
 
 
  

C

C

C

 

   

     

            
     

2 1

21

2 2 2 2

21

2 2

21

1 0 0

( 1) -EI(0)Г 0 0 EI(0)Г 0

0 EI 0 Г 0 Г 0 0

1 -(EI 0 ) Г 0 Г 0 -(EI 0 ) Г 0 Г 0

2(EI 0 ) Г 0 Г 0


 

  

 

 
 
 
 
  

C

C

C

 

 

           

2 2

22

0 0 1

( 1) 0 0 EI(0)Г 0 0

-EI 0 Г 0 Г 0 EI 0 Г 0 Г 0 0

C 

 
 

   
 
  

 

   

     

            
     

2 3

23

2 2 2 2

23

2 2

23

0 1 1

( 1) 0 -EI(0)Г 0 EI(0)Г 0

-EI 0 Г 0 Г 0 0 0

1 -(EI 0 ) Г 0 Г 0 -(EI 0 ) Г 0 Г 0

2(EI 0 ) Г 0 Г 0

C

C

C



 
 

   
 
  

  

 

 

 

           

2 4

24

0 1 0

( 1) 0 -EI(0)Г 0 0 0

-EI 0 Г 0 Г 0 0 EI 0 Г 0 Г 0

C 

 
 

   
 
    

 

     

3 1

31

1 0 1

( 1) 0 Г 0 0 0

0 EI 0 Г 0 Г 0 0

C 

 
 

   
 
    
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   

           

        

   

3 2

32

2 2 2 2

32

2 2

32

0 0 1

( 1) Г 0 Г 0 0

-EI 0 Г 0 Г 0 EI 0 Г 0 Г 0 0

1 EI 0 ) Г 0 EI 0 ) Г 0

2EI 0 ) Г 0

C

C

C



 
 

   
 
  

   

  
 

 

     

3 3

33

0 1 1

( 1) Г 0 0 0 0

-EI 0 Г 0 Г 0 0 0

C 

 
 

   
 
    

   

           

        

   

3 4

34

2 2 2 2

34

2 2

34

0 1 0

( 1) Г 0 0 Г 0

-EI 0 Г 0 Г 0 0 EI 0 Г 0 Г 0

1 EI 0 ) Г 0 EI 0 ) Г 0

2(EI 0 ) Г 0

C

C

C



 
 

   
 
  

   

 
 

 

       

            
      

4 1

41

2 2

41

2

41

1 0 1

( 1) 0 Г 0 0

-EI 0 Г 0 0 EI 0 Г 0

1 EI 0 ) Г 0 Г 0 EI 0 ) Г 0 Г 0

2 EI 0 ) Г 0 Г 0

C

C

C



 
 

   
 
 

   

    

   

   

3 3

42

0 0 1

( 1) Г 0 Г 0 0 0

0 0 EI 0 Г 0

C 

 
 

   
 
   

 

       

            
      

4 3

43

2 2

43

2

43

0 1 1

( 1) Г 0 0 0

0 -EI 0 Г 0 EI 0 Г 0

1 EI 0 ) Г 0 Г 0 EI 0 ) Г 0 Г 0

2 EI 0 ) Г 0 Г 0

C

C

C



 
 

   
 
 

   

    



26 
 

   

   

4 4

44

0 1 0

( 1) Г 0 0 Г 0 0

0 EI 0 Г 0 0

C 

 
 

   
 
   

The cofactor matrix will be 

       

           

       

             

2 3 2 3

2 2 2 2

2 2 2 2

2 2

2(EI 0 ) Г 0 2(EI 0 ) Г 0

2(EI 0 ) Г 0 Г 0 2(EI 0 ) Г 0 Г 0

2EI 0 ) Г 0 2EI 0 ) Г 0

2 EI 0 ) Г 0 Г 0 2 EI 0 ) Г 0 Г

0 0

0 0

0 0

0 00

CF

 
 
 

  
 
 
  





and 

            
       

            
       

2 2 2

2 3 2 2

2 2 2

2 3 2 2

T

2(EI 0 ) Г 0 Г 0 -2 EI 0 ) Г 0 Г 0

2(EI 0 ) Г 0 -2EI 0 ) Г 0

2(EI 0 ) Г 0 Г 0 2 EI 0 ) Г 0 Г 0

2(EI 0 ) Г 0

0 0

0 0
CF =

0 0

0 02EI 0 ) Г 0

 
 
 
 
 
 
  

 

   

11 11 12 12 13 13 14 14

2 3(EI 0 ) Г 04

X X CF X CF X CF X CF

X

   

 
 

     

 

     

 

-1

1 -C(0)
0 0

1 -C(0)
0 0

2
X =

1 C(0)

2 Г 0 2Г 0 Г 0

2Г 0

2 Г 0 2Г 0 Г 0

2Г 0

0 0

1 C(0)
0 0

2



 
 
 
 
 
 
 
 
 
 
 
  

 

     

 

     

 

1

1

y1

y1

2 Г 0 2Г 0 Г 0

YA

2Г 0 θB
=s

MC

QD 2 Г 0 2Г 0 Г

1 -C(0)
0 0

1 -C(0)
0 0

2

1 C(0)
0 0

1 C(

0

2Г

0)
0 0

2 0



 
 
 
   

  
  


 
 
 
 
 
 
 
  

  
  

   

 



27 
 

 

 

   
1 1

0
A .θ .Q

2 Г 0 2Г 0 Г 0
  

c ss
,

     
(3.3.30) 

 

 
1 1

0
B .Y .M

2 2Г 0
y

c ss
  ,

       (3.3.31)

   

 

 

 

   
1 1

0
C .θ .Q

2 Г 0 2Г 0 Г 0
y

c ss
  and

     
(3.3.32) 

 

 
1 1

0
D .Y .M

2 2Г 0
y

c ss
  .

       (3.3.33) 

Substituting the values of A, B, C and D in equation (3.3.19) through (3.3.22) and 

applying the boundary conditions,  

i.e. at  2 2 y2 y2x='l',Y=Y , θ=θ , M =M & Q =Qy y one can write
 

 

 

   
 

 

 
 

 

 

   
 

 

 
 

1 y

2

1 1 y1

1 y1 1 y1

c 0 s c 0 ss s
.θ - .Q sinhl Г l + .Y - .M coshl Г l

2 2Г 02 Г 0 2Г 0 Г 0
.

c 0 s c 0 ss s
+ .θ - .Q sinl Г l + .Y + .M cosl Г l

2 2Г 02 Г 0 2Г 0 Г

Y =

0

    
          
  
  

  
            

  (3.3.34)

 

 
 

   

 
 

 

 
 

   

 
 

1 y1 1 y1

1 y1 1 y1

2

c 0 Г 0 sc 0 ss s
.θ - .Q coshl Г l + .Y - .M sinhl Г l

2 2Г 0 2 2Г 0

.

c 0 Г 0 sc 0 ss s
+ .θ - .Q cosl Г l - .Y + .M sinl Г l

2 2Г 0 2 2Г 0

θ =

   
           
   
             

         

             (3.3.35) 

 

     
 

 

 
 

 

   
 

 

 
 

1 y1 1 y1

1 y1 1 y1

y2

s Г 0 s Г ls s
.θ - .Q sinhl Г l + .Y - .M coshl Г l

2c 0 2c 0 22c l Г 0
.

s Г s Г 0s s
- .θ - .Q sinl Г l - .Y + .M cosl Г l

2c 0 2c 0 22

M =

0

Г 0

    
    
    
    
    
    
    
    

(3.3.36) 
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 

   
 

   

 

 
 

 

   
 

   

 

 
 

1 y1 1

y

y1

1 y1 1 1

2

y

sГ 0 Г 0 Г 0 ssГ 0 s
.θ - .Q coshl Г l + .Y - .M sinhl Г l

2c 0 2Г 0 2c 0 2

.

sГ 0 Г 0sГ 0 Г 0 ss
+ .θ - .Q cosl Г l - .Y + .M sinl Г l

2c 0 2Г 0

Q =

2c 0 2

   
           
   
           

  (3.3.37) 

Now the input & output relation can be obtained from equation (3.3.34)-(3.3.37) in the 

matrix form as, 

2 1

2 1

2 1

2 1

( )
y y

y y

Y Y

F s
M M

Q Q

 

   
   
   

   
   
   
   

       
       (3.3.38) 

Where F(s) is given by, 

sin ( ) sinh ( )
cos ( ) cosh ( )

2 ( )2

(0) (sin ( ) sinh ( ) ) cos ( ) cosh ( )

2 2

(0)(cos ( ) cosh ( ) ) (0) (sin ( ) sinh ( ) )

2 (0) 2 (0)

(0) (0) (sin ( ) sinh ( ) ) (0)(cos ( ) cosh (

2 (0)

l l l l
l l l l

l

l l l l l l l l

l l l l l l l l

C C

l l l l l l l

C

  
  



       

       

         ) )

2 (0)

l

C











 

(0)(sin ( ) sinh ( ) )(0)(cos ( ) cosh ( ) )

2 (0) (0)2 ( )

(0)(sin ( ) sinh ( ) ) (0)(cos ( ) cosh ( ) )

2 (0) 2 (0)

sin ( ) sinh ( )
cos ( ) cosh ( )

2 (0)2

(0) (sin ( ) sinh ( ) ) co

2

         

C l l l lC l l l l

l

C l l l l C l l l l

l l l l
l l l l

l l l l

    

 

      

 

  
  



     s ( ) cosh ( )

2

l l l l  











 

In more simplified way we can write 

T T

2 2 y2 y2 1 1 y1 y1Y θ M Q =F(s) Y θ M Q          (3.3.39) 
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The matrix F(s) is called field transfer matrix that connects state vector on the left and 

right of the profiled shaft. 

For simplification of equation, following trigonometric identities are required. 

3 5 7

sin
3! 5! 7!

x x x
x x             

2 4 6

cos 1
2! 4! 6!

x x x
x              

3 5 7

sinh
3! 5! 7!

x x x
x x          

 
 

2 4 6

cosh 1
2! 4! 6!

x x x
x            .

 

The trigonometric identities in the elements of the field transfer matrix are denoted by 

following expressions. The series expansion of these identities is given by, 

    
   4 8

1

γ l γ l1
f = cosh cos = 1+ + +------

2 4! 8!
l l 

 
 
 

 

     
   5 9

2

γ l γ l
f =sinhγ l +sinγ l =2 γ l + + +---

5! 9!

 
 
 

 

     
   6 10

2

3

γ l γ l
f =coshγ l -cosγ l =γ l +2 +2 +---

6! 10!
 

   
     3 7 11

4

γ l γ l γ l
f =sinhγ l -sinγ l =2 + + +---

3! 7! 11!

 
 
 

 

            

      

1/21/2

1/41/2

γ 0 =l Γ 0 =l s L 0 c 0 =ls L 0 .c 0

γ l =ls L l .c l .
 

The lowest frequency of oscillation or whirl would be detected when restricting series 

expansion of f1, f2, f3 and f4 is restricted to the least number of terms. The accuracy of 

the results can be increased by increasing the number of terms in the series expansion. 

Hence the resultant matrix becomes, 
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 

 

 

 

 

   

 

 

 

 

 

 

   

 

 

 

 

 

2 3

1 2 3 42 3

2

4 1 2 32

2

3 4 1 22

3 2

2 3 4 13 2

-c 0 l -c 0 ll
f f f f

2γ 0 2γ 0 2γ 0

γ 0 -c 0 l -c 0 l
f f f f

2l 2γ 0 2γ 0
F(s)=

-γ 0 -γ 0 l
f f f f

2l c 0 2cl 0 2γ 0

-γ 0 -γ 0 γ 0
f f f f

2c 0 l 2c 0 l 2l

 
 
 
 
 
 
 
 
 
 
 
 
  

 

 

 

 

 

   

     

     

 

     

2 2 3 3

2 3

3 2

2

2 2 3

2

3 2 2 3

3 2

lγ l -γ l c(0)l -c(0)l γ l
1

γ 0 2γ (0) 6γ (0)

γ l γ(0) -c(c)lγ l -γ l c(0)
1

6l γ(0) 2γ (l)
F s =

-γ (0)γ l -γ 0 γ(0) lγ l
1

2c(0)l 6lc(0) γ 0

-γ (0)γ l -γ (c)γ l γ l γ (0)
1

l c(0) 2l c(0) 6l

 
 
 
 
 
 
 
 
 
 
 
  

 

3.4 Disk Modelling 

The mathematical modelling of disk involves determination of state vectors at station 2 

and 3. Fig. 3.3 depicts detached model of disk from shaft, showing various parameters 

involved in modelling. 

 

Fig. 3.3 Vibrating disk element 

From Fig. 3.3, we have 
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y2(x, t), y3(x, t) - Vertical downward deflections at station 2 & 3. 

θ2(x, t), θ3(x, t) - Slope of the shaft at station 2 & 3. 

m2(x, t), m3(x, t) - Bending moment at station 2 & 3. 

q2(x, t), q3(x, t) - Shear force at station 2 & 3.  

J –mass moment of inertia of the disk. 

The relation between the state vectors at station 2 and station 3 is established by writing 

continuity and equilibrium equations for the four parameters namely deflection, slope, 

bending moment and shear force. The disk is assumed to be rigid and hence from 

continuity conditions, we have 

   2 3y 2 =y 3  and                   (3.4.1) 

   2 3θ 2 =θ 3           (3.4.2) 

Equation (3.4.1) and equation (3.4.2) indicates the displacements and slopes at left and 

right side of the rigid disk are equal. From the equilibrium conditions moment and 

shear force can be written as 

2
y3 y2

dθ
M +JΩ =M

dt
and

       (3.4.3)

y3 2 2 y2Q =M y +Qy
         (3.4.4)  

Taking Laplace of equation (3.4.1)-(3.4.4), we get 

3 2Y (s)=Y (s) ,
         (3.4.5)

 
3 2θ (s)=θ (s) ,

         (3.4.6)
 

 y3 2 y2M =-JΩsθ s +M and
       (3.4.7)

 

2

y3 2 y2Q =ms Y +Q .
        (3.4.8)

 

In matrix form, equation (3.4.5) to (3.4.8) can be written as follows, 
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3 2

3 2

y3 y2

2
y3 y2

Y1 0 0 0

θ θ0 1 0 0
=

M M0 -JΩs 1 0

Q Qms 0 0 1

Y    
    
    
    
    
              (3.4.9)

 

 
T T

3 3 y3 y3 2 2 y2 y2Y θ M Q = R s Y θ M Q          (3.4.10)
 

The matrix R(s) is called point transfer matrix. The point transfer matrix connects the 

state vectors on either side of the mass. 

3.5 Cantilever Shaft-Rotor System 

Consider now the cantilever shaft –rotor system subjected to the external excitation as 

shown in Fig.3.4. In order to obtain the relation between the state vectors, the shaft and 

the disk modal matrices are assembled into equation (3.5.1). This equation represents 

the relation between the state vectors at station 3 and station 1. 

[Y3, θ3, My3, Qy3]
T
=R(S) F(S) [Y1, θ1, My1, Qy1]

 T
 

      =H(s) [Y1, θ1, My1, Qy1]
 T

     (3.5.1) 

Where H(s) = Transfer matrix which when multiplied to state vector at station „n-1‟ 

gives state vector at station „n‟. 

 

Fig. 3.4 A cantilever shaft-rotor system subjected to external excitation at its end. 
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Fig. 3.5 Distributed–lumped shaft rotor model. 

The transfer matrix for impulse loading is given by, 

 

 

   

     

     

 

     

2 2 3 3

2 3

3 2

2

2 2 3

2 2

3 2 2 3

3 2

lγ l -γ l c(0)l -c(0)l γ l
1

γ 0 2γ (0) 6γ (0)

1 0 0 0 γ l γ(0) -c(0)lγ l -γ l c(0)
1

0 1 0 0 6l γ(0) 2γ (l)
H(s)=

0 -JΩs 1 0 -γ (0)γ l -γ 0 γ(0) lγ l
1

ms 0 0 1 2c(0)l 6lc(0) γ 0

-γ (c)γ l -γ (0)γ l γ l γ (0)
1

l c(0) 2l c(0) 6l




 
 
 
 
 
 

















 

.

 

 

 

   

     

         

   

 

2 2 3 3

2 3

3 2 2

2

3 2 2 3 2 2

2 2

3 2 2

2

3

lγ l -γ l c(0)l -c(0)l γ l
1

γ 0 2γ (0) 6γ (0)

γ l γ(0) -c(0)lγ l -γ l c(0)l
1

6l γ(0) 2γ (l)
=

-JΩsγ l γ(0) γ (c)γ l γ 0 γ(0) JΩsc(0)lγ l JΩsγ l l c(0) lγ(l)
- -JΩs- 1+ +

6l 2c(0)l 6lc(0) γ(0) 2γ (l) γ(0)

γ (0)γ l ms lγ l γ (0)γ
ms - -

l c(0) γ 0

       2 2 2 2 3 2 3 3

2 2 3

l -ms γ l c(0)l γ 0 γ (l) -ms c(0)l γ l
+ +1

2l c(0) 2γ (0) 6l 6γ (0)

 
 
 
 
 
 
 
 
 
 
 
 
 

          (3.5.2) 

For a cantilever shaft an impulse of 1N is applied at the free end, the boundary 

conditions becomes, 

1 1
At x 0, Y 0,θ 0    and       (3.5.3) 

3 3
At x l, M 0,Q 1          (3.5.4) 
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11 12

21 22

3

3

1

1

H H

H H

0Y

0θ

M0

Q1

 

  
  

    
      

  
   

 

After partitioning, one can write 

 3 1

12

3 1

Y M
= H

θ Q

   
   

  
        (3.5.5) 

  1

22

1

M

1

0
= H

Q

  
  

   
        (3.5.6) 

 
-11

22

1

M 0
= H

Q 1

   
   

           (3.5.7)

 

Substituting equation (3.5.7) into equation (3.5.5), one can get 

  
-13

12 22

3

Y 0
= H H

θ 1

   
   

  
       (3.5.8) 

Now -1

22 22

22

1
H = adj.(H )

H
  

 

2 2

2

2 2 2 3 2 3 3

2 3

22

JΩslc(0)γ(l) JΩsl γ (l) lγ(l)
1+ +

γ(0) 2γ (0) γ(0)
H

-ms l γ (l)c(0) γ(0).γ (l) -ms l γ (l)c(0)
+ 1+

2γ (0) 6l 6γ (0)

=

 
 
 
 
 
 

 

2 3 3 2 2

3 2

2 2 2 3

2

22

ms l γ (l)c(0) JΩsl γ (l)c(0) lγ(l)
1-

6γ (0) 2γ (0) γ(0)
adjH

ms l γ (l)c(0) γ(0).γ (l) JΩslc(0)γ(l)
1+

2γ (0) 6l γ(0)

- -

=

-

 
 
 
 
 
 

 

2 3 3 2 2 2 2 2 3

22 3 2 2
detH

JΩslc(0)γ(l) ms l γ (l)c(0) JΩsl γ (l) lγ(l) -ms l γ (l)c(0) γ(0).γ (l)
= 1+ 1- - + +

γ(0) 6γ (0) 2γ (0) γ(0) 2γ (0) 6l

     
     

     

 

   4 4 2 3 3 3 2 3 5 4 4

22 4
detH

mJΩl γ (l)c(0) s + 4ml γ (l)γ(0)c(0) s +JΩslc(0)γ (0)[12γ(l)-γ (l)].s+2γ (l)[6-γ (l)]
=

12γ (0)
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412 (0)

s




  

  

2 2 3 3 2 2

2 3 2

12 22 2 2

2

l γ (l)c(0) l γ (l)c(0) JΩsl γ (l)c(0) lγ(l)
- - - -

0 2γ (0) 6γ (0) 2γ (0) γ(0)
H adjH =

1 JΩslc(0)γ(l)lγ(l)c(0) l γ (l)c(0)
1+- -

γ(0)γ(0) 2γ (0)

   
   

     
      

   
  

 

2 2 2 2 3 3

2 2 3

2 2 2 2

2 2

l γ (l)c(0) JΩsl γ (l)c(0) lγ(l) l γ (l)c(0) JΩslc(0)γ(l)
- - - + - 1+

2γ (0) 2γ (0) γ(0) 6γ (0) γ(0)
=

lγ(l)c(0) JΩsl γ (l)c(0) lγ(l) l γ (l)c(0) JΩslc
- - - + - 1+

γ(0) 2γ (0) γ(0) 2γ (0)

     
     

     

    
    

    

(0)γ(l)

γ(0)

 
 
 
  
  

  
3 3 2 4 4 3 3 2 4 4

3 4 3 4

2 2 2 3 3 2 2 2 3 3

2 3 2 3

c(0)γ (l)l JΩsc(0) γ l c(0)γ (l)l JΩsc() γ (l)l
+ - -

2γ (0) 4γ (0) 6γ (0) 6γ (0)
=

c(0)γ (l)l JΩsc(0) γ (l)l c(0)γ (l)l JΩsc(0) γ (l)l
+ - -

γ (0) 2γ (0) 2γ (0) 2γ (0)

 
 
 
 
  
 

 

3 3 2 4 4 3 3 2 4 4

4

2 2 2 3 3 2 2 2 3 3

3

6c(0)γ (l)γ(0)l +3JΩsc(0) γ (l)l -2c(0)γ (l)γ(0)l -2JΩsc(0) γ (l)l

12γ (0)
=

2c(0)γ (l)γ(0)l +JΩsc(0) γ (l)l -c(0)γ (l)γ(l)l -JΩsc(0) γ (0)l

2γ (0)

 
 
 
 
  
 

 

3 34
3

2 2 2
3

4

JΩsc(0)lγ(l)

1

Y c(0)l γ (l)[ +4γ(0)]12γ (0)
=

Δsθ 6c(0)γ (l)γ (0)l

12γ (0)

  
  

   

 

3 3
3

2 2 2
3

JΩsc(0)lγ(l)Y c(0)l γ (l) [ +4γ(0)]1
=

θ Δs 6c(0)γ (l)γ (0)l

  
  

   

 

3 3

3 4 4 2 3 3 3 2 3 4 4 4

JΩsc(0)lγ(l)c(0)l γ (l) [ +4γ(0)]
Y

[mJΩl γ (l)c(0) ]s +[4ml γ (0)γr(0)c(0)]s +[JΩc(0)lγ (0)(12-γ (l)]s+2γ (0)[6-γ (l)]
 

  

           (3.5.9)

 

Where, 

4 4 2 3 3 3 2 3 4 4 4Δs=[mJΩl γ (l)c(0) ]s +[4ml γ (0)γr(0)c(0)]s +[JΩc(0)lγ (0)(12-γ (l)]s+2γ (0)[6-γ (l)]  

The equation (3.5.9) gives the transfer function of the cantilever non-uniform shaft rotor 

system which represents the ratio displacement to the force in Laplace domain. The 

impulse frequency response of the system is obtained by solving equation (3.5.9) in 

MATLAB. The response of this transfer function results into two plots, one giving 

magnitude versus frequency and the other giving phase versus frequency.  
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3.6 Summary 

This chapter gives a detailed matrix calculations and expressions involved in transfer 

matrix method. In the present work Euler-Bernoulli beam theory along with transfer 

matrix method is adopted. Shaft model and disk model along with their model matrices 

are presented in systematic manner. Both, the shaft model matrix and the disk model are 

combined to get the expression for transfer matrix of a cantilever shaft-rotor system. 

The finite element approach is discussed in the next chapter. 
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CHAPTER-4

  

THEORETICAL ANALYSIS BY FINITE ELEMENT 

APPROACH 

4.1 Introduction 

The concept of the finite element analysis exists for centuries. The idea behind is to 

replace a complex problem with a simpler one that represents the true solution to a 

desirable degree of accuracy. It is likely that ancient mathematicians employed finite 

element like problem solving techniques to many physical problems. With the advent of 

the high speed computer FEA can now be applied to more broad and sophisticated 

problems. The very obvious indication of ancient mathematicians utilizing finite 

element techniques are found in early attempts to calculate value of π. Chinese 

literature written in the very beginning of the first century A.D. indicates that the 

Chinese were aware of certain geometric theorems. These theorems led a Chinese 

engineer Tsu Chung Chilk, to estimate π to be between 3.1415926 and 3.1415927 in 

480 A.D. This was most likely done by representing the area of a circle with many 

inscribed and circumscribed rectangles, or finite elements. Archimedes also used the 

finite element technique to estimate the volume of various solids. These are very few of 

the more obvious early uses of the finite element technique. Today finite element 

approach is used to solve more complex problems of various backgrounds. 

Rotating machinery is very extensively used in diverse engineering applications. The 

accurate prediction of dynamic characteristics, such as natural whirl frequencies, 

critical speeds, instability thresholds and response to mass unbalance, is very important 

in the design of any type of rotating machinery. 

The utilization of finite element models in the field of rotor dynamics has yielded 

highly successful results. As stated earlier in literature review, Ruhl and Booker [12] 

and Nelson and McVaugh [14] contributed their works to rotor dynamics with finite 

element approach.  

4.2 System configuration 

A typical flexible shaft-rotor system to be analysed consists of a rotor composed of 

discrete discs, non-uniform rotor shaft segments with distributed mass and elasticity.  
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Such a system is illustrated in Fig. 4.1 along with two reference frames for describing 

the system motion. For the analysis of rotating structures, generally two types of 

reference frames, rotating and stationary are used. For stationary reference frame, the 

reference analysis system is attributed to the global coordinate system, which is a fixed 

one, and gyroscopic moments due to nodal rotations are added in the damping matrix. 

For rotating reference frame, entire model along with the reference coordinates, rotates 

at same rotational speed.  The two frames [14], XYZ:  and xyz:   triads are the 

fixed      () and rotating () references respectively with X and x collinear and 

coincident with the un-deformed rotor centre line.  is defined relative to  by a 

single rotation ωt about X, where ω denotes the whirl speed. 

 

Fig. 4.1 Displacement variables and coordinate systems 

A cross-section of the shaft, in a deformed state is defined relative to fixed references 

by translations V(x,t) and W(x,t) in the Y and Z directions to locate the elastic 

centreline and small angle rotations B(x,t) and Γ(x,t) in Y and Z directions to orient the 

plane of the cross-section.  

A triad abc: C is obtained by the following rotations: 

1. Rotation Γ about Z to obtain '' '' ''a b c . 

2. Rotation B about b′′ to obtain ' ' 'a b c . 

3. Rotation φ about a′ to obtain the abc. 
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     (4.2.1) 

For small deformations the (B, Γ), the rotations are approximately collinear with (X, Y) 

respectively. The spin angle φ, for a constant speed system with negligible torsional 

deformation, is Ωt, where Ω denotes the shaft-rotor spin speed. 

4.3 Component equations 

The component (disk and shaft) equations of motion can be found by using Lagrangian 

formulation (equation (4.3.1)). The Lagrangian (L) is defined as the difference between 

the element‟s kinetic energy and potential energy. Additionally, energy dissipation in 

the system due to internal damping or friction can be incorporated in Eq. (4.3.1). The 

shaft-rotor element equation of motion is developed by specifying the spatial shape 

functions and then treating the shaft-rotor element as an integration of infinite set 

ofdifferential elements. 

.
d L L

Q
dt qq

 
    

   

        (4.3.1) 

4.3.1 Rigid disk 

The rigid rotor disk has a total of four degrees of freedom. These are translation and 

rotation in Y and Z direction respectively, hence four displacement coordinates are 

associated with it. The kinetic energy of the disk with mass centre coincident with the 

elastic rotor centreline is given by the equation (4.3.2). 
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  (4.3.3) 
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Since the disk is considered as a rigid body, therefore no strain energy is involved. The 

Lagrangian equation of motion of the disk for constant spin condition is given by 

equation (4.3.4). The forcing term includes external forces. 

([ ] [ ]){ } [ ]{ } { }d d d d d d

T RM M q G q Q         (4.3.4) 

4.3.2 Finite rotor-shaft element 

A typical finite rotor-shaft element is shown for illustration in Fig. 4.2. The element 

time dependent cross section displacements (V, W, B, Γ) are functions of position (x) 

along the axis of the element. The rotations (B, Γ) are related to the translations (V, W) 

by Eq. (4.3.5). 

;   
W V

B
x x

 
   

 
        (4.3.5) 

The coordinates ( 1 2 8, ,...,e e eq q q ) are the time dependent end point displacements of the 

finite shaft-rotor element. The translations and rotations of a point internal to the 

element are chosen to obey the relations given by equation (4.3.6) and (4.3.7) 

respectively. 

  
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( ) ( )
( , )

e
V x t

x q t
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( , )

e
B x t

x q t
x t

 
  

 
       (4.3.7) 

 

Fig. 4.2 Finite rotor shaft element 
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Each of the elements of the displacement function matrices represents the static 

displacement mode associated with unit displacement of one of the end point 

coordinates while all others fixed. These functions are given by Eq. (4.3.8).  

The translational shape matrix is given by 

  31 2 4

31 2 4

0 0 0 0
( )

0 0 0 0
x

  


  

 
  

  
   (4.3.8) 

The rotational shape matrix is given by 

  31 2 4

31 2 4

0 0 0 0
( )

0 0 0 0
x

   
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      

  

  
  (4.3.9) 

Where, the shape functions are given by, 
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           (4.3.12) 
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l l
            (4.3.13) 

For a differential rotor shaft element located at (x), elastic bending, axial load and 

kinetic energy are given by equations (4.3.14)-(4.3.16). These are expressed in terms of 

nodal displacements in equations (4.3.17)-(4.3.19). One can observe the flexural 

rigidity, mass per unit length and inertias are the functions of length as the shaft-rotor 

system considered here consists of non-uniform shaft. 
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The energy of the complete shaft-rotor element is obtained by integrating equation over 

the element length is given by Eq. (4.3.20). 
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Where, 
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The Lagrangian equation of motion of the finite rotor shaft element under constant spin 

condition is given by Eq. (4.3.26). Gyroscopic matrix is given by Eq. (4.3.27). 
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4. 4 System equations of motion 

The assembled equation of motion for complete system, consisting of component 

equations is given by Eq. (4.4.1). The mass matrix [M
s
] contains the assemblage of 

both the translational and rotary effect of the shaft, the rigid disk mass and the 

diametric moment of inertia. The matrix [G
s
] represents the gyroscopic moments and is 

skew symmetric in nature. The stiffness matrix [K
s
] contains stiffness effects of rotor-

shaft elements. The excitation matrix [Q
s
] contains the excitation due to external forces. 

[ ]{ } [ ]{ } [ ]{ } { }s s s s s s sM q G q K q Q        (4.4.1) 

For efficiently and simple computing, equation (4.4.1) is expressed in terms of the first 

order state vector form in equation (4.4.2).  
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4.5 Summary 

This chapter describes the detail of the finite element formulation of the shaft-rotor 

system. The equation of motion of the rotating non-uniform shaft is derived using 

Lagrangian approach together with the finite-element method. Finite element model of 

rigid disk and finite shaft element has been presented. Element mass, stiffness and 
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gyroscopic matrices are found. Expression for the assembled equation of motion for 

complete shaft-rotor system is also presented. Results and discussions are discussed in 

the next chapter. 
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CHAPTER-5

    

RESULTS AND DISCUSSIONS 

5.1 Transfer matrix approach 

5.1.1 Profiled shaft-rotor system with multi disks 

A cantilever profiled rotor-shaft system with two disks at different lengths is shown in 

Fig. 5.2. By replacing 
1 1 1 2 2 2, ,  and , ,l m J l m J  instead of l, m and J as in Whalley and 

Ameer [2], for suffixes 1 and 2 respectively for the rotors-shafts and neglecting the 

bearing effects, as proceeded in the above sections, in the same way for the dual disk 

systems illustrated in Fig. 5.2. can be formulated as- 

2 2 1 1( ) ( ) ( ) ( ) ( )H s R s F s R s F s      (5.1.1) 

1 5 1 5 1 5 1 5( ( ), ( )),  ( ( ), ( )),  ( ( ), ( ))  ( ( ), ( ))y y y yy s y s s s M s M s and Q s Q s   are the deflections, slopes, bending 

moments and shear forces at the fixed and free end respectively. Distributed-lumped 

shaft rotor model for two shafts and two disks is shown in Fig. 5.1. 

 

Fig. 5.1 Distributed-lumped shaft-rotor model for two shafts and disks. 

Input-output vectors relationship for the model shown in Fig. 5.1 is given by, 

5 1

5 1

5 1

5 1

( )
y y

y y

y y

H s
M M

Q Q

 

   
   
   
   
   
   

 

Applying the boundary conditions for a cantilever shaft-rotor, and adding impulse of 

1N on the free end, the above equation can be written as, 
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From the above Eqs., we get 
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And hence transfer function can be obtained from above expressions, which represents 

the ratio displacement to the force in Laplace domain. For numerical analysis following 

data are considered for the system illustrated in Fig. 5.2: 

1 2

1 2

9
X3

1 2 0

m 0.6 kg, m 0.7 kg, 

d 0.08 m,  d 0.09 m, 

=7800 ,  E=209 10

10000 rpm an

0.075 m, r 0.005

d

 m

kg
P

l

a
m

l





 







 



 

For example, applying the fixed-free boundary condition, the transfer function for 

NN=40 and rotational speed of 10000 rpm with 1 N vertically downward force on the 

disk is given as 

4 4 3 8 2 11 15

6 4 5 8 4 11 3 15 2 16 19

1.667s  + 7.262 10 s  + 6.839 10 s  + 2.77 10 s + 1.726 10

s  + 4.357 10 s  + 4.137 10 s  + 2.308 10 s  + 1.223 10 s + 7.014 10 s + 8.814 10

   

     
 

 

Fig. 5.2 Non-uniform shaft-rotor system with dual disk. 
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The profile equation for the shaft-rotor [2] is given by 

2

0( ) (1 ( ))r x r NN x         (5.1.2) 

Bode plots for different profile values, rotating speeds and shaft-rotor lengths have been 

obtained and are shown in Fig. 5.3, Fig. 5.4 and Fig. 5.5 respectively and the results 

obtained are tabulated for better understanding. 

 

Fig. 5.3 Bode plot for varying profiles for shaft-rotor system illustrated in Fig. 5.2 for 

10000 rpm and l1=l2=0.075 m . 

 

Fig. 5.4 Bode plot for different rotor speeds for shaft-rotor system illustrated in Fig. 5.2 

for NN=25 and l1=l2=0.075 m. 
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                 Fig. 5.5 Bode plot for different rotor lengths for shaft-rotor system illustrated 

in Fig. 5.2 for 10000 rpm and NN=25. 

The x-axis of bode plot represents the frequency in rad/s, while y-axis represents the 

amplitude in dB. However they can be represented by other units. The whirling 

frequency is noted at the peaks in magnitude diagram of Bode plot. All the plots are 

obtained using MATLAB
® 

software. It is observed that as the speed of rotor decreases 

the amplitude increases and vice-versa. Also, small change in shaft length has 

significant effect on critical frequency. 

 

Table 5.1. Results obtained from Bode plots for shaft-rotor system illustrated in Fig. 5.2 

1l  (m) 2l  (m) Speed (rpm) Value of NN 

Critical 

Frequency 

(rad/sec) 

Amplitude 

(dB) 

0.050 0.050 10000 40 593 -94.4 

0.075 0.075 10000 40 271 -78.7 

0.075 0.075 10000 15 330 -82.5 

0.075 0.075 10000 25 307 -81.1 

0.075 0.075 3000 40 272 -68.3 

0.075 0.075 5000 40 272 -72.7 

0.075 0.075 6500 40 304 -75.0 

 

For NN=40, at 11000 rpm, the step response, following an impulse of unit load (in 

Newton) at the free end, gives the characteristics shown in Fig. 5.6.  This indicates that 

steady state conditions will be restored in approximately 0.157 s. At lesser rotational 
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speeds the effects would be much greater because of the reduction in the gyroscopic 

couple. In Fig. 5.6, at 5500 rpm the maximum overshoot remains almost unchanged, 

but its settling time is almost double than for that of 11000 rpm, i.e., 0.314 s, after the 

same impulse disturbance.  

 

Fig. 5.6 Step Response for multi-disc profiled shaft-rotor system shown in Fig. 5.2. 

5.1.2 Multi-profiled shaft rotor system 

5.1.2 (a) Different profiled shafts and disks in series 

A typical shaft-rotor system with two different profiled shafts with two disks at the end 

of each profiled shaft is shown in Fig. 5.7. Various parameters and their values for 

multi-profiled system shown in Fig. 5.7 have been given in Table 5.2. 

 

Fig. 5.7 Multi profiled shaft-rotor with two disks. 
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Table 5.2. Values for the multi-profiled shaft-rotor system illustrated in Fig. 5.7 

Parameters Values 

Length of the shaft-rotors, 1 2,l l  (m) 0.2, 0.1 

Mass of the disks, m1, m2(Kg) 20, 1 

Diameters of the disks, D1, D2 (m) 0.2, 0.09 

Young‟s Modulus of Elasticity, E (GPa) 209 

Density of the material,  ( 
3/Kg m ) 7800 

Rotational Speed (rpm) 5000 

 

The equation of radius for shaft 1 is given by, 

( 12.8 )

1( ) 0.01 0.027275 sin(29.328 1.1593) 0.00035xr x e x x    . (5.1.3) 

And the equation of the radius of shaft 2 is given by, 

2

2 0( ) (1 ( ))r x r NN x  .       (5.1.4) 

As seen from Fig. 5.7, there are two different profiled shafts in the rotor system and two 

disks at the end of each profiled-shaft have been mounted. Equations for the profiles of 

each shaft are different and have been mentioned earlier. The illustrated system can be 

practically manufactured either by casting or some other production methods. 

Otherwise two different profiled shafts can be coupled together by some suitable 

coupling devices. However, any such coupling devices and their effects have not been 

considered in the present work. The model will be same as shown in Fig. 5.1. The 

transfer function for the values given in Table for profiled shaft-rotor system as 

illustrated in Fig. 5.7 is given by, 

 
4 7 3 13 2 19 23

6 7 5 13 4 19 3 23 2 25 29

1.6097 1.1766 4.6549 6.6205

1.6097 1.1766 4.6549 6.620

*10 *10 *10 *10

*10 *10 *10 *4 4.4710 *1089 *1.5 6 01 9 8

s s s s

s s s s s s

   

     
 (5.1.5) 

 

Fig. 5.8 Bode plot for varying lengths for multi-profiled shaft-rotor system at 5000 rpm. 



51 
 

 

The effect of different shaft lengths of rotating systems on frequency response 

calculation is significant. So, the study of changing length is considered to be of great 

use dealing with the resonance conditions. The Bode plot has been obtained for 

different lengths of the shaft-rotor segments at 5000 rpm and NN=15, as shown in Fig. 

5.8. The plot shows the effect of different lengths while rotor-speed has been kept 

constant. The effect of change in lengths of the shaft part of the concerned rotor system 

(Fig. 5.7) is clearly notable from Fig. 5.8. As shown in the bode plot, when the shaft 

length is increased from 0.2 m and 0.1 m of lengths to 0.4 m and 0.2 m respectively, the 

critical frequency changes from 491 rad/s to 98.6 rad/s. While the amplitude increases 

from -87.9 dB to -55.4 dB respectively.  

 

Fig. 5.9 Bode plot for varying rotor speedfor multi-profiled shaft-rotor system. 

The Bode plot has been obtained for changing rotor speeds for 2500, 5000 and 9000 

rpm as shown in Fig. 5.9. The lengths of the shafts have been kept constant i.e. l1 = 0.2 

m and l2 = 0.1 m respectively. Also, the profile value of second profiled shaft is also 

kept as NN=15. It may be noticed that the effect of rotational speeds on the critical 

frequency is negligible, however the impact on amplitude can be felt via bode plot. As 

shown from the bode plot, when the rotational speed is increased from 2500 rpm to 

9000 rpm, the whirling frequency remains constant at 491 rad/s but the magnitude 

decreases from -81.9 dB to -93 dB respectively. 
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Fig. 5.10 Bode Plot for different profile values (NN) at 5000 rpm. 

The Bode plot has been obtained for different profile values of the shaft-rotor system 

by changing the values of NN in the profile equation of the second shaft-rotor. The 

rotor speed and length of the shaft part of the rotor is kept constant at 5000 rpm and l1 = 

0.2 m and l2 = 0.1 m respectively. As shown in Fig. 5.10, when the profile value NN for 

the second profile shaft is changed from 15 to 50, then the whirling frequency reduces 

from 491 rad/s to 330 rad/s respectively, while the magnitude increases from -87.9 dB 

to -79.9 dB respectively. 

Table 5.3. Results obtained from Bode plots for multi-profiled shaft-rotor system 

shown in Fig. 5.7 

1l  (m) 2l  (m) Speed (rpm) Value of NN 

Critical 

Frequency 

(rad/sec) 

Amplitude 

(dB) 

0.20 0.10 5000 15 491 -87.9 

0.20 0.10 5000 25 447 -86.0 

0.20 0.10 5000 50 330 -79.9 

0.30 0.15 5000 15 222 -71.8 

0.40 0.20 5000 15 98.6 -55.4 

0.20 0.10 2500 15 491 -81.9 

0.20 0.10 9000 15 490 -93.0 

 

For NN=15, at 9000 rpm, the step response, following an impulse of 1 N, gives the 

characteristics shown in Fig. 5.11.  It shows the steady state conditions will be restored 

in approximately 0.0839s. At lesser rotational speeds the effects of this disturbance 

would be greater because of the reduction in the gyroscopic couple. In Fig. 5.11, at 



53 
 

4500 rpm the maximum overshoot remains unchanged, but settling time is almost 

double than for 9000 rpm, i.e., 0.167 s, after the same impulse. 

 

Fig. 5.11 Step response for multi-profiled shaft-rotor system 

5.1.2 (b) Convergent-divergent shaft-rotor system 

In this section, two profiled shafts in series have been taken into account. The cross-

sectional area of the first shaft is reducing till the neck portion and then area of the 

second shaft gradually increases till the end of the shaft, where a disk is attached, as 

shown in Fig. 5.12 for illustration purpose. The ending radius of the convergent shaft 

portion is will be the starting radius for the divergent portion of the shaft-rotor. The 

transfer function will be obtained by, 

2 1( ) ( ) ( ) ( )H s R s F s F s       (5.1.6) 

Where R(s) is the rigid disk matrix while the F1(s) and F2(s) are the modal matrix for 

the convergent and divergent portions of the shaft-rotor respectively. 

The profile equation for the shaft-rotor is given by- 
 

2

0( ) (1 ( ))r x r NN x          (5.1.7) 

 

The „ ‟ sign indicates the decrement and then increment in the cross-sectional area of 

the shafts.  A unit impulse is applied on the disk at the free end to produce excitations 

in the shaft-rotor system.  Values of different parameters of the convergent-divergent 

shaft-rotor system are given in Table 5.4. 
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Table 5.4. Various parameters of convergent-divergent shaft-rotor system as shown in 

Fig. 5.12 

Parameters Values 

Length of the shaft-rotor, 1 2,l l  (m) 0.1, 0.1 

Mass of the disk, m (Kg) 0.75 

Diameter of the disk, D (m) 0.09 

Young‟s Modulus of Elasticity, E (GPa) 209 

Density of the material,  ( 3/Kg m ) 7800 

Rotational Speed, N (rpm) 10000 

Profile Value, NN (Constant) 15 

 

 

Fig. 5.12 Convergent divergent shaft rotor system with 1 N force on the disk. 

Table 5.5. Neck radius for various profile values (NN) for convergent-shaft length of 

0.1 m 

Profile Value NN 
Neck radius (m) of the shaft-rotor shown in 

Fig 4 

15 0.0043 

25 0.0037 

40 0.0030 

 

The transfer function obtained for the system shown in Fig. 5.12, for the values given in 

Table 5.4, is given as, 

3 2 5 9

1.333 s + 7090

s  + 5317 s  + 7.673 10  s + 1.044 10 
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Table 5.6. Computed values of compliance, mass per unit length and gamma parameter 

for shaft with l1=0.1 m and l2 =0.1 m and speed 10000 rpm 

Profile 

Value 

(NN) 

Compliance (C(x)) Mass per unit length (L(x)) Gamma Parameter ( Г(x) ) 

X=0 X=l1 

(neck 

portion) 

X=l2 X=0 X=l1 

(neck 

portion) 

X=l2 X=0 X=l1 

(neck 

portion) 

X=l2 

15 0.00975 0.01867 0.01019 0.61261 0.44261 0.59921 0.17029 0.03015 0.02795 

25 0.00975 0.03081 0.01331 0.6126 0.34459 0.52416 0.17029 0.03210 0.52416 

40 0.00975 0.07521 0.01958 0.6126 0.22054 0.43226 0.17029 0.03589 0.03033 

 

Bode plots for various lengths, profile value NN and rotor speed has been found with 

the help of MATLAB ® software shown in Figs. 5.13-5.15. 

Table 5.7. Results obtained from Bode plots for convergent-divergent shaft-rotor 

system 

1l  (m) 2l  (m) Speed (rpm) Value of NN 

Critical 

Frequency 

(rad/sec) 

Amplitude 

(dB) 

0.10 0.10 10000 15 447 -91.3 

0.10 0.10 10000 25 370 -91.0 

0.10 0.10 10000 40 273 -89.9 

0.15 0.15 10000 15 161 -76.4 

0.20 0.20 10000 15 47 -62.4 

0.10 0.10 1000 15 449 -71.3 

0.10 0.10 2500 15 449 -79.3 

0.10 0.10 4000 15 448 -83.4 

 

Bode plot for different profile values (NN) of the convergent-divergent shaft-rotor 

system, with 0.1 m length for both convergent and divergent shaft portions respectively 

and rotational speed of 10,000 rpm is shown in Fig. 5.13. 

 

Fig. 5.13 Bode plot for varying profile values (NN) for convergent-divergent shaft-rotor 

system for L1=0.1m and L2=0.1m and 10000 rpm. 
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Bode plot for different lengths for both convergent and divergent shaft portions 

respectively of the convergent-divergent shaft-rotor system, with profile value NN of 

15 and rotational speed of 10,000 rpm is shown in Fig. 5.14.  It is seen that when the 

rotational speed increases the amplitude decreases. 

 

Fig. 5.14 Bode plot for different shaft lengths of convergent-divergent shaft-rotor with 

profile value (NN) =15 and 10000 rpm. 

Bode plot for various rotational speeds (rpm) of the convergent-divergent shaft-rotor 

system, with 0.1 m length for both convergent and divergent shaft portions respectively 

and profile value (NN) of 15 is shown in Fig. 5.15. 

 

 

Fig. 5.15 Bode plot for varying rotor speeds for convergent-divergent shaft-rotor 

system for L1=0.1 m, L2=0.1 m and NN=15. 
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5.1.3 Hollow profiled shaft rotor system 

5.1.3 (a) Hollow shaft-rotor with uniform thickness 

A tubular or hollow profiled shaft with uniform thickness and a disk at free end is 

illustrated in Fig. 5.16, and values of various parameters of the system are given in 

Table 5.8. One can observe that the thickness remains constant throughout the shaft, 

while the inner bore gradually changes till the end of the shaft-rotor system. 

 

Fig. 5.16 Tubular profiled shaft with uniform thickness t and force of 1 N on the disk 

Table 5.8. Values of various parameters for the system illustrated in Fig. 5.16 

Parameters Values 

Length of the shaft-rotor, l  (m) 0.1 

0r (m) 0.005 

Mass of the disk, m (Kg) 0.7443 

Diameter of the disk, D (m) 0.09 

Young‟s Modulus of Elasticity, E (GPa) 209 

Density of the material,  ( 
3/Kg m ) 7800 

Rotational Speed, N (rpm) 10000 

Thickness of the tubular shaft, t (m) 0.002 

Profile value, NN (Constant) 25 

 

After applying the boundary conditions for cantilever beam, we get deflection   at the 

free end of the system, so we will ultimately get the transfer function, where the profile 

equation of the shaft-rotor is given by, 

2

0( ) (1 ( ))r x r NN x  .        (5.1.8) 

For example, transfer function for NN=25, l=0.1m, t=0.002 m, E=209x10
9
 Pa, 

m=0.7443 Kg, D=0.09 and rotational speed of 10000 rpm is given by, 

4

3 2 5 9

1.344 s + 1.025 10

s  + 7626 s  + 8.608 10  s + 1.641 10



 
.     (5.1.9) 
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Bode plot has been obtained for different profiles of the shaft-rotor system by changing 

the profile values of NN in Eq. (5.1.8) of the shaft, as shown in Fig. 5.17. Critical 

frequencies obtained for tubular profiled shafts are tabulated in Table 5.9. 

 

Fig. 5.17 Bode plot for different profile values (NN) for tubular profiled shaft-rotor for 

shaft-length of 0.1 m and rotating speed of 10000 rpm. 

Table 5.9. Critical frequencies for rotating tubular shaft-rotor system for different 

profile values (NN) 

Value of NN Critical Frequency(rad/s) 

15 518 

25 463 

40 378 

50 322 

 

The study of changing length is considered to be of great use dealing with the 

resonance conditions. Bode plot has been obtained for different lengths of the shaft-

rotor segments as shown in Fig. 5.18. 
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Fig. 5.18 Bode plot for different shaft lengths for tubular profiled shaft-rotor for profile 

value (NN) of 25 and rotating speed of 10000 rpm. 

The Bode plot has been obtained for changing rotor speeds for 2000, 4000, 6000 and 

10000 rpm as shown in Fig. 5.19. It may be noticed that the effect of rotational speeds 

on the critical frequency is negligible, however the impact on amplitude can be 

observed from bode plot. 

 

Fig. 5.19 Bode plot for different rotational speeds for tubular profiled shaft-rotor for 

shaft-length of 0.1 m and profile value (NN) of 25. 

For NN=25, at 10000 rpm, the step response, following an impulse of 1 N, gives the 

characteristics shown in Fig 5.20.  It shows the steady state conditions will be restored 
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in approximately 0.0891 s. At lesser rotational speeds the effects of this disturbance 

would be greater because of the reduction in the gyroscopic couple. In Fig. 5.20, at 

5000 rpm the maximum overshoot remains unchanged, but settling time is almost 

double than for 10000 rpm, i.e., 0.183 s, after the same impulse disturbance, and hence 

is the effect of gyroscopic couple. 

 

Fig. 5.20 Step response for an impulse of 1 N at two different speeds for tubular 

profiled shaft-rotor system shown in Fig. 5.16. 

 

5.1.3 (b) Hollow shaft-rotor with uniform bore 

A typical hollow profiled shaft with uniform bore and a disk at free end is illustrated in 

Fig. 5.21 and various parameters and their values are given in Table 5.10. One can 

observe that the bore remains constant throughout the shaft, while the thickness 

gradually changes till the end of the shaft-rotor system. For example, transfer function 

for NN=25, l=0.1m, di=0.002 m, E=209x10
9
 Pa, m=0.7443 Kg, D=0.09 and rotational 

speed of 10000 rpm is given by, 

 

4

3 2 6 9

1.344 s + 1.217 10

s  + 9059s  +1.097 10 2.483 10s



  
     (5.1.10) 



61 
 

 

Fig. 5.21 Hollow profiled shaft with uniform bore and force of 1 N on the disk 

Table 5.10. Values of various parameters for the system illustrated in Fig. 5.21 

Parameters Values 

Length of the shaft-rotor, l  (m) 0.1 

Mass of the disk, m (Kg) 0.7443 

r0 (m) 0.005 

Diameter of the disk, D (m) 0.09 

Young‟s Modulus of Elasticity, E (GPa) 209 

Density of the material,  ( 3/Kg m ) 7800 

Rotational Speed, N (rpm) 10000 

Inner radius of hollow shaft, ir  (m) 
0.001 

Profile Value, NN (Constant) 25 

 

Bode plot has been obtained for different profiles of the shaft-rotor system by changing 

the profile values of NN in Eq. (5.1.8) of the shaft, as shown in Fig. 5.22. 

 

Fig. 5.22 Bode plot for different NN values for hollow profiled shaft-rotor for length of 

0.1 m and rotating speed of 10000 rpm. 
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Table 5.11. Critical frequencies for hollow profiled shaft-rotor system for different 

profile values (NN) 

Value of NN Critical Frequency (Hollow Shaft) 

(rad/s) 

15 570 

25 522 

40 448 

50 397 

 

The study of changing shaft-rotor length is considered to be of great use dealing with 

the resonance conditions. Bode plot has been obtained for different lengths of the shaft-

rotor segments as shown in Fig. 5.23. 

 

Fig. 5.23 Bode plot for different shaft lengths for hollow profiled shaft-rotor for profile 

value (NN) of 25 and rotating speed of 10000 rpm. 

The Bode plot has been obtained for changing rotor speeds for 2000, 4000, 6000 and 

10000 rpm as shown in Fig. 5.24. It may be noticed that the effect of rotational speeds 

on the critical frequency is negligible, however the effect on amplitude can be felt via 

bode plot. 
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Fig. 5.24 Bode plot for different rotational speeds for hollow profiled shaft-rotor for 

length of 0.1 m and rotating profile value (NN) of 25. 

For NN=25, at 10000 rpm, the step response, following an impulse of 1 N, gives the 

characteristics shown in Fig 5.25  It shows the steady state conditions will be restored 

in approximately 0.0846 s. At lesser rotational speeds the effects of this disturbance 

would be greater because of the reduction in the gyroscopic couple. In Fig.5.25, at 5000 

rpm the maximum overshoot remains unchanged, but settling time is almost double 

than for 10000 rpm, i.e., 0.169 s, after the same impulse disturbance, and hence is the 

effect of gyroscopic couple.  

 

Fig. 5.25 Step response for an impulse force at two different speeds for hollow profiled 

shaft-rotor system shown in Fig. 5.21. 
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5.1.4 Linear tapered shaft rotor system 

5.1.4 (a) Hollow shaft-rotor with uniform thickness 

A cantilever tapered shaft-rotor with uniform thickness t and a disk at the free end with 

a downward force „P‟ on the disk as shown in Fig. 5.26. The values of various 

parameters are tabulated in Table 5.12. 

 

Fig. 5.26 Hollow tapered shaft-disk with uniform thickness. 

The profile equation of the shaft-rotor or the radius, which is the function of shaft‟s 

length, is given by, 

1 0
0

-
( ) ( )

R R
r x R x

l
 

      (5.1.11) 

Where R0  and R1 are the starting and ending radius of the tapered shaft respectively. 

Table 5.12. Various parameters of the hollow shaft-rotor system shown in Fig. 5.26 and 

their values 

Parameters Values 

Length of the shaft-rotor, l  (m) 0.1 

Mass of the disk, m (Kg) 0.7443 

Diameter of the disk, D (m) 0.09 

Young‟s Modulus of Elasticity, E (GPa) 209 

Density of the material,  ( 3/Kg m ) 7800 

Rotational Speed, N (rpm) 10000 

Thickness of the hollow shaft, t (m) 0.002 

Beginning radius , 
0R (m) 0.0050 

End radius, 
1R (m) 0.0037 
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Transfer function for tubular shaft with constant thickness as shown in Fig. 5.26 for the 

values given in Table 5.12 is computed, and is given by, 

4

3 2 5 9

1.344 1.016 10

7564 8.401 10  1.589 10

s

s s s

 

    
.     (5.1.12) 

Bode plots for different lengths and rotating speed have been plotted using MATLAB® 

software, as shown in Fig. 5.27 and Fig. 5.28. 

 

Fig. 5.27 Bode plot for different lengths for hollow tapered shaft-rotor with uniform 

thickness and rotating speed of 10000 rpm. 

Fig. 

5.28 Bode plot for various speeds for hollow tapered shaft-rotor with uniform thickness 

and length of 0.1 m. 
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5.1.4 (b) Hollow shaft-rotor with uniform bore 

A typical cantilever hollow tapered shaft with uniform bore and a disc at the free end is 

shown in Fig. 5.29. The values of various parameters are given in Table 5.13.   

 

Fig. 5.29 Hollow tapered shaft-disk with uniform bore and vertically downward force P 

on the disk. 

The profile equation of the tapered shaft-rotor or the radius which is the function of 

shaft‟s length is given by, 

1 0
0

-
( ) ( )

R R
r x R x

l
 

      (5.1.13) 

Table 5.13. Various parameters of the system shown in Fig. 5.29 and their values 

Parameters Values 

Length of the shaft-rotor, l  (m) 0.1 

Mass of the disk, m (Kg) 0.7443 

Diameter of the disk, D (m) 0.09 

Young‟s Modulus of Elasticity, E (GPa) 209 

Density of the material,  ( 3/Kg m ) 7800 

Rotational Speed, N (rpm) 10000 

Inner Radius of  hollow shaft, Ri (m) 0.001 

Beginning radius , 
0R (m) 0.0050 

End radius, 
1R  (m) 0.0037 

Impulse force, P (N) 1 

 

The transfer function for hollow shaft with uniform bore, for values given in Table 5.13 

is given by 
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4

3 2 6 9

1.344 1.217 10

9059 1.097 10  2.483 10

s

s s s

 

    
.     (5.1.14) 

The Bode plots for different lengths and rotating speed have been plotted using 

MATLAB® software, as shown in Fig. 5.30 and Fig. 5.31 respectively. 

 

Fig. 5.30 Bode plot for various lengths for hollow tapered shaft-rotor with uniform bore 

at 10000 rpm. 

 
Fig. 5.31 Bode plot for different speeds for hollow tapered shaft-rotor with uniform 

bore and l=0.1 m. 
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5.2 Finite element approach 

5.2.1 Profiled Shaft Rotor  

A finite profiled shaft element is shown in Fig. 5.32. Applying FEM, we get mass, 

gyroscopic and stiffness matrices. The various parameters of the profiled-shaft-rotor 

system are given in Table 5.14. Values of radius at different locations are given in 

Table 5.15. Effects of bearing elements are neglected. 

 

Fig. 5.32 Profiled shaft finite element 

Table 5.14. Values of various parameters for the shaft-rotor system illustrated in Fig. 

5.32 

Parameters Values 

Length of the shaft-rotor, l  (m) 0.1 

Initial radius, 
0r

(m) 
0.005 

Mass of the disk, m (Kg) 0.7443 

Diameter of the disk, D (m) 0.09 

Young‟s Modulus of Elasticity, E (GPa) 209 

Density of the material,  ( 3/Kg m ) 7800 

Rotational Speed, N (rpm) 10000 

 

Table 5.15. Values for radius at different locations of the profiled-shaft illustrated in 

Fig. 5.32 for NN=25 and 0r = 0.005 m 

x (m) r(x) (mm) 

0.01 4.9875 

0.02 4.9500 

0.03 4.8875 

0.04 4.8000 

0.05 4.6875 

0.06 4.5500 

0.07 4.3875 

0.08 4.2000 

0.09 3.9875 

0.10 3.7500 
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From Eqs. (4.3.21)-(4.3.24) we get stiffness, translational and rotational mass and 

gyroscopic matrices. Since there is no axial pull considered, hence e

AK  
is neglected. 

Stiffness matrix is given by, 

11

21 22

31 32 33

41 42 43 44

51 52 53 54 55

61 62 63 64 65 66

71 72 73 74 75 76 77

81 82 83 84 85 86 87 88

.

p

p p

p p p

p p p p

p

p p p p p

p p p p p p

p p p p p p p

p p p p p p p p

k

k k

k k k sym

k k k k
K

k k k k k

k k k k k k

k k k k k k k

k k k k k k k k

 
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 
 
 
 
 
 
 
  

   (5.2.1) 

Elements of stiffness matrix are given by, 

4 4 8 3 6 2 4 2

0
11 3

(259  - 1210  + 2178  - 1848  + 1155)

385
p

Er NN l NN l NN l NNl
k

l




 

 4 4 8 3 6 2 4 2

0

1 24

469   2145   3762   3234   3465

2310
p
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
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32 54 41p p pk k k   , 76 81p pk k , 72 85 72 81p p p pk k k k    , 44 33 84 73,  p p p pk k k k  . 

The translational mass matrix is given by, 
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  (5.2.2) 

Elements of translational mass matrix are given by, 
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The rotational mass matrix is given by, 
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  (5.2.3) 

Elements of rotational mass matrix are, 
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22 55 66 11 51 62 32 41 63 54,  ,   ,  pr pr pr pr pr pr pr pr pr prm m m m m m m m m m        

72 81 44 33 84 73 85 76,  ,  ,  pr pr pr pr pr pr pr prm m m m m m m m       

The gyroscopic matrix for the profiled shaft-rotor finite element is given by, 
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Elements of gyroscopic matrix are given by, 
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Discretizing the tapered shaft into six elements of equal length, as shown in Fig. 5.33 

and then assembling the element matrices, we get the assembled mass, gyroscopic and 

stiffness matrices. Equation of motion for the complete system is given by, 

       s s s s s s s

p p p pM q G q K q Q                  (5.2.5) 

s

pM   contains assemblage of both the translational and rotational mass matrices. 

 

Fig. 5.33.Discretization of profiled shaft into six elements of equal length (0.1/6 m). 

The cantilever boundary condition on the system‟s equation of motion has been 

applied. MATLAB® program is used to find the bode plot for a unit impulse of 1N 

acting vertically downward on disk at 7th node of the discretized shaft element for 

different values of profile value NN as shown in Figure 5.34. For authenticity, the 

results obtained are compared with that of Whalley and Ameer [2] approach, as shown 

in Table 5. 16. 

 

Fig. 5.34 Bode plot for an impulse of 1 N for profiled-shaft rotor [2] obtained by finite 

element approach. 
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Table 5.16. Results obtained from FEA is compared with that of Whalley and Ameer[2] 

approach  

Profile Value NN Critical frequency 

Whalley‟s approach [2] 

(rad/s) 

Critical frequency 

obtained using FEM  

(rad/s) 

Error % 

15 583.043 608 4.105 

25 531.55 554 4.223 

40 456.43 469 2.754 

50 394.29 409 3.731 

 

Table 5.17. Convergence study of the profiled shaft-rotor system rotating at 10000 rpm 

and profile value NN of 25 

No of Finite Shaft 

Elements 

Critical frequency 

obtained using FEM  

(rad/s) 

4 557 

6 554 

8 554 

12 554 

  

5.2.2 Hollow tapered shaft-rotors with uniform thickness 

Applying finite element approach on the system shown in Fig. 5.26, we get mass, 

gyroscopic and stiffness matrices from Eqs. (4.3.21-4.3.24). A finite hollow tapered 

shaft element is shown in Fig. 5.35. 

 

Fig. 5.35 Hollow tapered shaft finite element with uniform thickness t 

The stiffness matrix for hollow tapered shaft-element with uniform thickness is given 

by, 
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 (5.2.6) 

Where elements of the stiffness matrices are, 
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The translational mass matrix is given by 
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Where elements of translational mass matrix are given by, 
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Rotational mass matrix is given by: 

11

21 22

31 32 33

41 42 43 44

51 52 53 54 55

61 62 63 64 65 66

71 72 73 74 75 76 77

81 82 83 84 85 86 87 88

.

nr

nr nr

nr nr nr

nr nr nr nr

nr

nr nr nr nr nr

nr nr nr nr nr nr

nr nr nr nr nr nr nr

nr nr nr nr nr nr nr nr

m

m m

m m m sym

m m m m
M

m m m m m

m m m m m m

m m m m m m m

m m m m m m m m


























 
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Where elements of rotational mass matrix are given by 
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The gyroscopic matrix is given by 
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Where the elements of the gyroscopic matrix are given by 
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Discretizing the tapered shaft into six elements as shown in Fig. 5.36 and then 

assembling the element matrices, we get the assembled mass, gyroscopic and stiffness 

matrices. Equation of motion for the complete shaft-rotor system is given by, 

       s s s s s s s

n n n nM q G q K q Q              .  (5.2.10) 
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Where 
s

nM   is the assembled mass matrix containing both the translational and 

rotational mass matrices. 

 
Fig. 5.36 Discretized shaft element with six elements of equal length (0.1/6 m). 

The assembled equation of motion is arranged in first order state vector form for 

simplicity in computations. 
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
     (5.2.12) 

The shaft-rotor has been discretized into six elements of equal length. 

MATLAB® program is used to find the bode plot for different values of shaft-length 

and rotor-speed as shown in Fig. 5.37 and  Fig. 5.38 and are found to be in good 

agreement with bode plots found using TMM as shown in Fig. 5.27 and  Fig. 5.28. 

 

Fig. 5.37 Bode plot for different shaft lengths (FEA) for hollow tapered shaft-rotor with 

uniform thickness and rotating speed of 10000 rpm. 
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Fig. 5.38 Bode plot for various rotor-speeds (FEA) for hollow tapered shaft-rotor with 

uniform thickness and length of 0.1 m. 

 

Table 5.18. Comparison of Bode plots obtained using Whalley and Ameer [2] approach 

and FEA for different rotor speeds and shaft lengths of a hollow tapered shaft-rotor 

system with uniform thickness, t 

Length of tapered shaft-

rotor (m) 

Rotational speed (rpm) Critical frequency using 

Whalley and Ameer [2] 

approach (rad/s) 

Critical frequency using 

FEM  (rad/s) 

0.10 1000 458 469 

0.10 3000 458 468 

0.10 7000 458 468 

0.10 10000 457 468 

0.15 10000 249 255 

0.20 10000 162 166 

 

5.2.3 Hollow tapered shaft-rotors with uniform bore 

Applying FEM on the same system, as shown in Fig. 5.29 we get mass, gyroscopic and 

stiffness matrices from Eqs. (4.3.21)- (4.3.24). A finite hollow tapered shaft element is 

shown in Fig. 5.39. 
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Fig. 5.39 Hollow tapered shaft finite element with uniform bore. 

The stiffness matrix for hollow tapered shaft with uniform bore is given by  
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Where elements of the stiffness matrices are given by, 
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Translation mass matrix is given by, 

11

21 22

31 32 33

41 42 43 44

51 52 53 54 55

61 62 63 64 65 66

71 72 73 74 75 76 77

81 82 83 84 85 86 87 88

.

ut

ut ut

ut ut ut

ut ut ut ut

ut

ut ut ut ut ut

ut ut ut ut ut ut

ut ut ut ut ut ut ut

ut ut ut ut ut ut ut ut

m

m m

m m m sym

m m m m
M

m m m m m

m m m m m m

m m m m m m m

m m m m m m m m


























 

  (5.2.14) 

Where elements of translational mass matrix are given by, 
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The rotational mass matrix is given by: 
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Where the elements of the rotational mass matrix are given by, 
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The gyroscopic matrix is given by, 

11

21 22

31 32 33

41 42 43 44

51 52 53 54 55

61 62 63 64 65 66

71 72 73 74 75 76 77

81 82 83 84 85 86 87 88

.

ue

ue ue

ue ue ue

ue ue ue ue

ue

ue ue ue ue ue

ue ue ue ue ue ue

ue ue ue ue ue ue ue

ue ue ue ue ue ue ue ue

g

g g

g g g skewsym

g g g g
G

g g g g g

g g g g g g

g g g g g g g

g g g g g g g g



















 
 
 
 
 

      (5.2.16) 

Where the elements of the gyroscopic matrix are given by, 
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Proceeding  as in section 5.2.2, and then using MATLAB® program to obtain the bode 

plots for various shaft-length and rotor-speed as shown in Fig. 5.40 and Fig. 5.41 and 

are found to be in good agreement with bode plots found using TMM as shown in Fig. 

5.30 and Fig. 5.31. 

 

Fig. 5.40 Bode plot for different shaft lengths (FEA) for hollow tapered shaft-rotor with 

uniform bore at 10000 rpm. 
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Fig. 5.41 Bode Plot for different rotating speeds (FEA) for hollow tapered shaft-rotor 

with uniform bore and l=0.1 m. 

The results obtained from finite element approach are compared with that of Whalley 

and Ameer [2] approach and are tabulated in Table 5.18. 

Table 5.19. Comparison of bode plots obtained using Whalley and Ameer [2] approach 

and FEA for different rotor speeds and shaft lengths of hollow tapered shaft-rotor with 

uniform bore 

Length of tapered shaft-

rotor (m) 

Rotational speed (rpm) Critical frequency using 

Whalley and Ameer [2] 

approach (rad/s) 

Critical frequency using 

FEM  (rad/s) 

0.10 1000 519 530 

0.10 3000 519 530 

0.10 7000 518 530 

0.10 10000 517 529 

0.15 10000 282 288 

0.20 10000 183 187 

 

5.3 Summary 

Transfer matrix method, as stated in chapter 3, includes complexity in calculations of 

frequency response. However, once the transfer matrix has been found, it is easier to 

find the frequency response.  The length of the shaft is a vital parameter that affects the 

frequency response of the shaft-rotor system. As shown in Figs. 5.5, 5.8, 5.14, 5.18, 

5.23, 5.27, 5.30, 5.37 and 5.40, there is increase in amplitude of vibration for increased 

value of shaft length, with the reduction in the whirling speed of shaft. The system 

exhibits this behaviour due to bending effect of the shaft and stiffness change. For 

changing lengths, there are large differences in frequencies even for small increase in 

lengths. 
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Effects of rotational speed on frequency response is clearly shown by bode plots in 

Figs. 5.4, 5.9, 5.15, 5.19, 5.24, 5.28, 5.31, 5.38 and 5.41. For an impulse input, the 

amplitude of vibration becomes larger for lower values of shaft speed and decreases 

with increase in speed. The phase angle changes abruptly for lower value of shaft 

speeds than higher speeds. This is due to the fact that there is reduction in gyroscopic 

couple as the rotational speed of the shaft decreases thereby giving larger amplitude of 

vibration. Step responses for shaft-rotors with different configurations are shown in 

Figs. 5.6, 5.11, 5.20 and 5.25. One can clearly observe that at lower rotational speeds, 

the disturbance is much greater owing to the reduction in the gyroscopic couple. 

Maximum overshoot almost remains unchanged; however the settling times for higher 

speeds are shorter. Results obtained from finite element approach are compared with 

the results obtained using Whalley and Ameer [2] approach, as shown for three 

different cases, in Tables 5.16 - 5.18, and are found to be in good agreement. Specific 

conclusions drawn and the scope for further research from the results are discussed in 

chapter-6. 
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     CHAPTER-6 

 

CONCLUSION AND SCOPE FOR FURTHER 

 RESEARCH WORK 

Conclusion 

Shaft geometry plays one of the important roles in dynamic characteristics of rotating 

systems.  The present chapter summarizes the important conclusions drawn from the 

theoretical analyses by TMM and FEM results. Vibration analysis with the help of bode 

plots has been done for shaft-rotor systems with various geometries and arrangements. 

Following conclusions can be drawn out from the results discussed in chapter 5: 

 Shaft profiling, a commonly adopted design method enabling system deflection, 

mass and inertia minimisation. Shaft geometry plays one of the important roles in 

dynamic characteristics of rotating systems.   

 Raw material cost is also reduced due to profiling of the shafts.  

 There is increase in amplitude of vibration for increased value of shaft length, 

while reducing the whirling speed of shaft. The system exhibits this behaviour due 

to bending effect of the shaft and stiffness change. For changing lengths, there are 

large differences in frequencies even for small increase in lengths. 

 For an impulse input, the amplitude of vibration becomes larger for lower values of 

shaft speed and decreases with increase in speed. The phase angle changes abruptly 

for lower value of shaft speeds than higher speeds. Rotating speeds have very little 

effect on the critical frequencies; however with increasing speed, amplitudes are 

lowered due to gyroscopic effect.  

Scope for Further Research 

The present work is based on estimating the critical frequencies of non-uniform shaft-

rotors based on Euler-Bernoulli beam theory. Moreover, various vital parameters such 

as rotational speeds and shaft lengths affecting the frequency response of shaft-rotor 

system have been discussed in details. However, the present study can be extended for 

further research as pointed out below. 
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 Timoshenko beam theory can be used for vibration analysis instead of using 

Euler-Bernoulli beam theory. 

 Effects of bearings may be included in the problem. 

 Rotors with crack may be analyzed. 

 The same analysis can be used for simply-supported and other such boundary 

conditions. 

  Geared systems and their effects can be included in the problem. 

 Other rotary elements can be mounted instead of discs and further calculations 

can be made.  

 Functionally Graded Material and Composite Shafts can be analysed with the 

help of finite element models. 
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