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Abstract 

Iron ore resource has its own typical mineral characteristics which require definite 

beneficiation process to produce quality raw material. India is endowed with large reserves of 

high grade hematite ore. However, steady consumption of these iron ores is now a concern 

forcing to develop beneficiation strategies to utilize low grade iron ores. Characterization has 

become an integral part of mineral processing and beneficiation depends on the nature of the 

gangue present and its association with the ore. Different characterization aspects like 

mineralogy, textural relationship, liberation size, chemical analysis and grain size analysis 

were studied to develop the beneficiation scheme. As reflected in the National Steel Policy, 

the life of high grade lumpy ore as on April 2010 will be ten more years. In order to ensure 

longer period of ore availability, it is important to use low grade Banded Hematite Quartzite 

(BHQ) & Banded Hematite Jasper (BHJ) iron ores after beneficiation. Looking at the present 

scenario, Indian Bureau of Mines (IBM) has slashed the threshold value of Fe in hematite to 

45% from 55 % (t). According to National mineral policy projections, exploitation of the low 

grade iron ore horizons is necessary to achieve zero waste mining. BHJ assaying up to 40% 

Fe (T) had upgraded above 60% Fe (T) to use effectively. Technically it is possible to 

enhance the quality of low grade as well as BHQ/ BHJ iron ores to an acceptable grade using 

various techniques like Flotation, Enhanced gravity separation, WHIMS etc. In India, iron 

ores are generally washed to remove the high alumina containing clayey matter. 

Conventionally, after washing, the lumps are directly fed to blast furnace and the fines are 

used after agglomerating them into sinter. However, the slimes are being rejected in the 

tailing ponds. These slimes in most cases contain substantial iron values in the range of 54–

58% Fe. Therefore, it is imperative to recover iron values from these slimes because of high 

demand on the good grade iron ores day-by-day. 

Key words: Iron ore, Beneficiation, Communition, WHIMS, Flotation, Hematite 



viii 
 

LIST OF TABLES 

Table 2.1 Generalised Chronostratigraphic succession of the Singhbhum-Orissa 
iron ore craton (after Saha et al., 1988) 

Table 2.2 Year-wise iron ore reserves in Jilling- Langalata iron ore mines 
Table 2.3 Year-wise iron ore reserves in Barsua Iron Mine, SAIL 
Table 3.1 World iron ore reserves and reserve base as estimated by U. S. 

Geological Survey (U. S. Geological Survey, 2007, www.fedmin.com, 
2008) 

Table 6.1 Liberation data of banded hematite jasper, Goethite- lateritic ore, iron 
ore slime and low grade iron ore fines showing abundance of various 
phases converted to wt %. 

Table 6.2 Sink-Float study results of LIF 

Table 6.3 Size distribution and size-wise chemical analyses of BHJ and LIF 
(Siliceous BD) 

Table 6.4 Size distribution and size-wise chemical analyses of Goethite-Lateritic 
ore & Iron ore slime 

Table 7.1.1 Wilfley table test results with3˚ deck and 1.68 cc. per cm/sec water 
flow 

Table 7.1.2 Falcon &WHIMS test results of banded hematite jasper 

Table 7.1.3 Flotation test of WHIMS concentrate at a pH of 9.3, with 10% solids, 
5 min. conditioning time, 2.0kg/t collector (sodium oleate), 2.5kg/t 
depressant (sodium silicate), 0.3kg/t frother(MIBC) 

Table 7.2.1 Hydrocyclone test results of iron ore fines 

Table 7.2.2 WHIMS test with hydrocyclone U/F product of Test 1 with 
Wash water: 20 lpm, Solid: 10%. 

Table 7.2.2.1 Experimental results under different operating conditions 
Table 7.3.1.1 Hydrocyclone test results of iron ore slime 

Table 7.3.1.2 WHIMS test with hydrocyclone U/F product of Test 1 with 
1 amp current, Wash water: 20 lpm, Solid: 10%. 

Table 7.3.1.3 Wilfley Table test results of Hydrocyclone U/F of Test 2 with 10% 
solids,0.25 inch inclination, 280 rpm Speed and 3 lpm Wash water. 

Table 7.3.1.4 Flotation test of Tabling concentrate at a pH of 5.5 with 10% solids, 3 
min. conditioning time, 2.5 kg/t collector (Sodium Oleate), 1.5 kg/t 
Depressant (Sodium silicate), 0.2 kg/t Frother (MIBC) 

Table 7.4.1 Result of desliming operation 

Table 7.4.2 Analysis of the crusher products 

Table 7.4.3 Jigging results of goethitic-lateritic ore 

Table 7.9.4 Tabling result of goethite-lateritic ore 

Table 8.1 Approximate cost of beneficiation of 1tonne of iron ore 
 

http://www.fedmin.com/


ix 
 

LIST OF FIGURES 

Fig. 2.1 (a) Generalised Geological Map Showing BIF-I, BIF-II and BIF-III 
Surrounding the NOIOC (b)Geology of the Singhbhum craton.  

Fig. 2.2 Geological map showing BIF and iron ore occurrences along the horse-
shoe shaped synclinorium in the Singhbhum-N Orissa Craton, eastern India 

Fig. 2.3 Field Photographs showing (a) Tightly Folded Banded Hematite Jasper (b) 
Shale band (ferruginous & white shale) (c) Alternative band between blue 
dust and white shale (d) Highly siliceous blue dust (e) parting shale besides 
soft laminated ore (f) Ochre red Lateritic ore. 

Fig. 2.4 Field Photographs showing (a) Canga ore as top cappings (b) Biscuity ore 
along joint pattern (c) Litho contact between hard massive ore &Blue dust 
(d) Hard massive ore (e) Soft Laminated Ore retaining the banding (f) 
Highly jointed (2 sets) hard massive ore 

Fig. 2.5 Section showing different lithological units (a) across Barsua Iron ore 
mines (b) Lenticular shape iron ore deposit of SAIL Barsua- Taldih-Kalta 

Fig. 2.6 Section showing different lithological units across Jhiling- Langalata iron 
ore mines. 

Fig. 3.1 Graphical representation of (a) Distribution of Hematite ore in India (b) 
Distribution of Magnetite. 

Fig.3.2(a) Total resources of Iron ore in India (Iron & Steel, vision, 2020) 
Fig.3.2(b) 

 
State wise reserves & total remaining resources of Hematite (As on 
1.4.2010) 

Fig. 3.3 Zone-Wise distribution of Iron ore in India. 

Fig. 3.4 Domestic consumption & Export of Indian Iron ore 

Fig. 3.5 Graphical representation of (a) Sector-wise production of iron ore in India 
(b) State-wise production of iron ore in India. 

Fig. 3.6 (a) Graphical representation of (a) Production, Consumption and Export of 
iron ores in India (b) Production of iron ore lumps, fines, concentrate in 
India. 

Fig. 5.1.1 Schematic diagram showing different zones and the flow pattern of (a) 
hydrocyclone (b) wilfley table. 

Fig. 5.1.2 (a) Schematic & Various zones of Falcon Centrifugal Concentrator (b) 
Fluidization Water Injection in Falcon concentrator. 

Fig. 5.1.3 (a) Schematic of Kelsey Centrifugal Jig (IMPC, 2012) (b) Kelsey 
Centrifugal Jig set up at National Metallurgical Laboratory, Jamshedpur.  

Fig. 6.1 Zeta potential vs pH of BHJ 
Fig. 6.2 XRD pattern of (a) banded hematite jasper (b) siliceous blue dust with 

           Identified phases.  



x 
 

 

Fig. 6.3 Photomicrographs of Banded Hematite Jasper under reflected light 
microscope  

Fig. 6.4 SEM photomicrographs with energy dispersive spectroscopy of iron ore 
samples, (i) hematite grains stalked upon one another in BHJ (ii) siliceous 
blue dust sample showing microplaty hematite. 

Fig. 6.5 Photomicrographs of LIF  

Fig. 6.6 SEM photomicrographs of goethite-lateritic ore  

Fig. 6.7  XRD patterns of Goethitic-Lateritic ore (a) ore fraction shows presence 
of hematite and goethite. 

Fig. 6.8 Photomicrographs of Goethite- Laterite iron ore under reflected light 
microscope.   

Fig. 6.9 Photomicrographs of Iron ore Slime under Microscope  

Fig. 6.10 SEM Photomicrographs with EDS of iron bearing particles of slimes 
Fig. 6.11 XRD pattern of iron ore slime of Barsua iron ore with different 

phases  
Fig. 7.1.1 Processing flowsheet of Banded Hematite Jasper 

Fig. 7.2.1 Graphical representation of a) Desliming of low grade fines in 
hydrocyclone (b) WHIMS test results of low grade iron ore fine sample 
(+150 micron) with 10% solids, 0.8 amp. current, and 20 lpm Wash water, 
 

Fig.7.2.2 Processing flow sheet of the low grade iron ore fines. 
Fig. 7.2.2.1 Processing flow sheet of the low grade iron ore fines (Single stage 

operation). 
Fig. 7.3.1  Traditional Processing flow sheet of Iron ore slime 

Fig. 7.3.1.1  Processing flow sheet of Iron ore slime 

Fig. 7.3.2 Graphical representation of a) Desliming of iron ore slime in hydrocyclone 
(b) Tabling result of  hydrocyclone U/ F (c) WHIMS test results of iron ore 
slime sample (+150 micron) with 10% solids, 1 amp. current, and 20 L/pm 
Wash water. 

Fig. 7.4.1 Processing flow sheet of the Goethite-Lateritic ore. 



1 
 

 

 

 

 

 

CHAPTER- I 

INTRODUCTION 

 

 

 

 

 

 

 

 



2 
 

INTRODUCTION 

1.1 PROLOGUES  

Iron is the second most abundant metallic element in the Earth’s crust and by mass the most 

common element on Earth. It is the fourth most common element in the Earth's crust 

accounting for around 5 % of it. The principal minerals of iron are the oxides (hematite and 

magnetite). Hematite and magnetite are the two important iron ores from which iron is 

extracted. Of these, hematite is considered to be superior owing to its high grade.  Iron & 

steel is the crux for industrial development in a country. The vitality of the iron & steel 

industry largely influences the economic status of a country. Iron ore being the essential raw-

material for Iron & Steel Industry, its mining arguably is the cynosure of all mining activities 

undertaken by any country. However, being a non-renewable natural resource the reserve of 

good quality ore is ever dwindling. In order to meet the present and future requirement it is 

indeed essential to utilize marginal to sub-marginal grade iron ore. Indian iron ore is 

relatively rich in Fe as well as contains higher proportion of silica, alumina and phosphorous 

compared to the other major deposits of the world. World steel demand grew by 3.6% in the 

year 2013[150] owing to the huge requirement of iron ore by China, the major iron ore 

producing countries have increased their production by adopting the steps to utilize the lean 

grade iron ores, fines and slime. Iron and steel industry in India grew exponentially during 

the last decade. India is slated to become the second largest steel producers in the world by 

2015. Steel production in the country has increased at a compound annual growth rate 

(CGAR) of 6.9% over the year 2008-2012[148].On the basis of the growth witnessed, 

National Steel Policy, 2008 revised the estimated domestic steel projection as 190 Mts by the 

year 2020. 

 

http://en.wikipedia.org/wiki/Abundance_of_elements_in_Earth%27s_crust
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India is endowed with large iron ore reserve of around 26 billion tonnes. Current mining 

practice adopts a cut off grade of 58% Fe content. As a result of which lot of low grade in-

situ deposits are locked in operating mines. Besides these in-situ deposits huge stockpiles of 

low grade ore has been created in all operating mines in course of removal of overburden and 

selective mining during mine development. This low grade ore can’t be utilised due to low 

industrial value and marketability. According to industry, the high quality iron ore will be 

exhausted much before the full operational life of the plants in place today or those being 

planned to set up.  

Indian iron ore is generally friable in nature that results in generation of significant quantity 

of fines (around 35%) during mining and processing in the country [106]. The ratio of lumps 

to fines produced in the country is 2:3. These fines however can’t be used for iron making 

(blast furnace/ direct reduced iron (DRI) units. These fines could be put to use in the 

domestic iron & steel industry after suitable beneficiation followed by agglomeration. 

However, the popularity of these routes is yet to gear up/ pick up the momentum in Indian 

iron and steel industry. In order to produce 1 ton of lump ore, about 1.5 ton fines are 

generated of which only 0.5 ton are utilized. The rest is either dumped as stocks at the mine 

or permanently lost due to lack of proper beneficiation facilities. It is estimated that around 

20 MT fines are lost every year [53]. Upon crushing and sizing, the high alumina bearing 

laterite and friable ores have greater propensity to break down into finer sizes as compared to 

hard ores which leads to concentration of alumina in ore fines; the slime being richest in 

alumina.  

High alumina of the low grade iron ore and in sinters through iron ore fines and coke ash 

leads to increase in slag viscosity and in turn makes the blast furnace operation difficult. High 

alumina is undesirable but unavoidable to a certain extent, especially in the Indian context 

where alumina rich iron ores are to be exploited. The reduction degradation behavior of the 
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sinter can be improved considerably by lowering its alumina content. In view of using the 

sinter to share the load in blast furnace, there exists a need for lowering the alumina in 

sinters. 

The selection of the right process route for beneficiation of an ore is strongly dependent on 

their mineralogical characteristics that need careful investigation. Iron ores in general are 

associated with gangue such as silica, alumina and other oxides. The valuable iron bearing 

constituents need to be separated out from the gangue to render them economically usable. 

This is achieved by taking advantages of differences in physical properties such as size and 

shape, color, specific gravity, magnetic susceptibility, electrical conductivity, and surface 

properties between the mineral constituents and the gangue. The treatment to which the ores 

are subjected to achieve such separation is known as beneficiation. Depending upon the 

nature of the iron ore it can be subjected to various unit operations such as sizing, washing, 

gravity separation, magnetic separation, flotation, etc. as reflected in the characterization 

data. 

1.2 SCOPE OF PRESNT INVESTIGATION 

The present study is both basic and applied in nature. The wheels of progress, in the rapid 

mobilization of the primary earth resources, cannot be reversed or stopped even slowing 

down though possible, will have a wide repression in mineral industry and the economy of 

many developing countries like India. It is for this reason that many consider the rigid rules 

and regulations of environmental protection as hindrance to progress.  

Mineralogical characterization both qualitative and quantitative of iron ore is a very 

important and basic aspect that has to get due attention before any attempt for its processing 

and has become even more important these days because of the increasing demand of the ore. 

Mineral processing technology is evolved to separate and recover ore minerals from gangue 
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in a commercially viable method and is mainly based on the process of mineral liberation and 

the process of mineral separation. Therefore, it is important to first get a clear understanding 

about ore- and gangue minerals and their behavior. 

The blast furnace route of iron making is predominant in India. It has been established over 

the years that the productivity of blast furnace increases and energy consumption decreases 

by using superior quality of raw materials. One percent increase in iron content improves the 

productivity by 2% and reduces the coke consumption by 1%.Indian hematite though rich in 

Fe, but the alumina: silica ratio (1.5 to 3.0) for lumpy ore is detrimental to blast furnace as 

well as sinter plant productivity and should be less than 1.5 and preferably below 1. In the 

blast furnace, 1% increase in alumina content increase coke rate by 2.2%, a decrease in 

productivity by 4% and an increase in flux consumption by 30kg/ t of hot metal production 

[145]. 

The scope of this research includes physical, mineralogical and geo- chemical 

characterization. The investigation is also designed to find out the possible ways of 

beneficiation for their optimal utilization. With these objectives, the work plan under this 

Research programme has been structured into two parts: characterization and beneficiation. 

Before discussing the economical utilization of different lean grade ores, their characteristics 

and origin are briefly discussed. 

1.3 OBJECTIVES OF PRESENT RESEARCH  

The primary objectives of the proposed research is to 

• Study of regional geology of Iron ore deposits of Singhbhum-Orissa Iron ore belt for 

understanding the overall geological environment of the deposition. 

• To understand the nature of three sub-marginal grade ores of different types through 

detailed characterization. 
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• A quantitative and definitive assessment of the extent of silica and alumina reduction 

possible with state-of-the-art beneficiation technology  

• Development of process flow sheet to enrich them to ≥ 64% Fe with low alumina and 

silica content 

• Correlation between characterisation and beneficiation data for ultimate utilization of 

iron ores and slimes 

1.4 INDIAN IRON ORE - GREAT FUTURE WITH MANY PROBLEMS 

The huge and high quality iron ore resources of India are often left out of the equation when 

global iron ore deposits are surveyed. This might have been correct in the past, when India's 

domestic demands were small and when it’s steel industry was very much closed off from the 

world. However, in the present situation with Indian steel companies becoming global leaders 

and with Indian iron ore exports to China surpassing 100 Mt, it is no longer so. 

According to the Indian Bureau of Mines (IBM), iron ore resources in the country amount to 

a total of 26 billion tons, of which 15 billion hematite and 11 billion tons magnetite. The 

quality of the Indian resources is excellent, with high Fe content and high share lumpy ore. 

Almost 60 % of the hematite resources have Fe grades above 62 % and 45 % lumpy ore, 33 

% fines and 12 % classified as lump with fines and the balance not classified. These are huge 

figures which are most probably underestimates for several reasons: 

• Detailed exploration has been scanty and shallow and almost no modern exploration 

work has been done.  

• Over the past 25 years resources have further grown in spite of quickly rising 

production levels.  

• The cut-off grade used by the IBM is 45 %[147] which is high by all standards in 

global prospective (earlier 55%). 
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It is clear that India's iron ore resources are of a superior quality and far better located 

compared to many of the deposits which are at present considered for exploitation. It is 

indicative of the new climate in Indian mining sector that the hurdles that have to be 

overcome to reach a production of 500 Mt are now discussed and conventional wisdom 

contested. To reach this level followings issues should be addressed. 

• Increased systematic exploration activities using modern methods to reach deeper and 

cover larger areas should be started. 

• A major potential source of iron ore units for the steel industry in India is fines. At 

present lump ore accounts for most of the blast furnace feed. With increasing steel 

production, a surplus of fines has been available for exports to China. If the fines fraction 

could be utilised, as it is around the world for sinter or pellet production and similar electric 

arc furnace (EAF) feed, additional volumes of iron ores, which today are either not mined or 

stored in slime dams and waste heaps would be available for both the domestic steel industry 

and for exports.  

• Domestic iron ore prices must reflect the international market situation. 

1.5 THE PROSPECTS 

The implementation of large scale beneficiation of lean grade iron ore will result in 

• Substantial increase in iron ore reserve base. 

• Augmentation of available limited resources. 

• Increasing the life of tailing pond & decreasing area requirement for waste disposal. 

• Decrease in mining threshold value of Fe & subsequently improving mine economics 
as well as increasing reserve base. 
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GEOLOGICAL FRAMEWORK 

The Precambrian greenstone belts and similar supracrustals are the main repositories of 

banded iron formation hosted iron ore deposits world over [26]. Origin of these iron ores are 

considered as the product of supergene enrichment processes [63, 79, 81] or hydrothermal 

mineralization processes [16, 98]. 

Archean supracrustal belts containing banded iron formations in the Jharkhand-Orissa region, 

India are commonly referred to as Iron Ore Group [118]. These belts skirt an Archean 

basement block along its east, south and west. The basement block contains early Archaean 

volcano-sedimentary assemblages (OMG) as rafts within banded granitoids (OMTG) and 

granites (SBG-A) [119]. 

The Singhbhum-Orissa craton (Fig.2.1) forms a triangular crustal block between latitudes 

21°0' and 23°15' N and longitudes 84°40' and 86°45' E of a surface area ~40,000 sq. km. The 

lithological-cum-chronostratigraphic succession of this craton, which is widely referred to in 

geological literature, has been revised more than a decade ago [110] (Table 2.1). 

Subsequently, a number of new radiometric ages on the different litho-units of this craton 

have been generated [41, 42, 75, 77, 119, 120, 121]. The chronostratigraphy of the whole 

Singhbhum-Orissa craton [6] or part of it was attempted to revise.  

Orissa-iron-ore-craton [110, 111] or Singhbhum Orissa craton [76] consists of Iron Ore 

Group, which were deposited over Older Metamorphic Group. They occur in three basins 

along eastern, western and southern perimeters of Singhbhum granite batholithic complex, 

defined as Singhbhum-Keonjhar or Jamda-Koira Basin, Gorumahisani- Badampahar Basin 

and Daitari-Palalahara Basin respectively [3,76]. The western Singhbhum-Keonjhar or 

Jamda-Koira Basin extends over a strike length of 60-70 km in NNE-SSW direction from 

Chakradharpur to Malangtoli [140]. The iron formations and associated rocks are found in 
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horseshoe shaped, gently plunging, and sharply bent synclinorium, known as “Bonai 

Horseshoe Synclinorium” (Fig.2. 1). The early works envisaged a stratigraphic unity within 

the belt and the metamorphosed supracrustal sequence came to be known as the Iron Ore 

Group, the mafic volcanic rocks as the Dalma lava, thought to be younger than that Iron Ore 

Group [35].  

(i) JAMDA- KOIRA VALLEY 

The type area of Iron Ore Group lies in Noamundi-Jamda-Koira valley in the southern part of 

this NNE-SSW trending basin.  

(ii)GORUMAHISANI-BADAMPAHAR IRON ORE BASIN 

The BIF in this section is distinctly intruded by epidiorites, Newer dolerites and ultramafic 

dykes of younger age, whereas in adjacent Sukinda Valley and Tomka-Daitari range, the 

iron-formations are intruded by chromiferous ultramafic rocks and dolerite dykes [22]. 

These altered volcanic tuffs are termed as ‘shales’ but the presence of ubiquitous volcanic 

material has made is much complicated [68].  

(ii) DAITARI-PALA-LAHARA IRON ORE BASIN 

It is considered as underlying the IOG of west Singhbhum Keonjhar basin [12, 54]. On this 

basis, it can be interpreted that the Daitari Iron Formation as well as Gorumahisani-

Badampahar formation are older than west Singhbhum- Keonjhar IOG sequences; however 

this interpretation is quite controversial [109].  

These formations form a prominent synform whose axial region is occupied by the Sukinda 

valley, where chrome bearing ultramafics of ophiolitic affinity occupies the core [14].  

2.1 LITHOSTRATIGRAPHY OF SINGHBHUM-ORISSA CRATON 

Singhbhum craton is also called as Singhbhum-Odisha craton in eastern India. 

The rock-suite constitutes the Singhbhum craton-: 
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• Singhbhum granite (I, II, III) with enclaves of (i) Older Metamorphic Group (ii) Older 

Metamorphic Tonalite Gneiss. 

• Iron Ore Group (IOG) dominantly Banded Iron formation (BIF) at the margin of 

Singhbhum granite. 

• Volcanics/ Green stone belts 

Generalized chrono-stratigraphic succession according to their ages and position is given in 

Table 2.1. 

Older Metamorphic Group 

Older Metamorphic Group (OMG) is the oldest known rocks of the Singhbhum craton, [111]. 

The OMTG rocks are the oldest rocks that occur south of Singhbhum Shear zone which have 

been named by [32] as the “Older metamorphics”.  

Older Metamorphic Tonalite Gneiss (OMTG)  

The OMG rocks are synkinematically intruded by Tonalitic Gneiss grading into Trondhjemite 

and designated as Older Metamorphic Tonalite Gneiss  

Singhbhum Granite 

The formation of OMG & OMTG was successively followed by emplacement of Singhbhum 

granite that intruded in 2 phases (SBG-I & SBG-II), deposition and folding of Iron Ore group 

supracrustals and emplacement of Singhbhum granite phase-III. This granite complex is a 

part of the earliest continental segment to cratonise and together with the archean 

supracrustals have been designated the archean cratonic core region by [65].  

Iron Ore Group 

The Iron Ore Group constitutes the major supracrustal unit in the SOIOC and referred to as 

“Archean Supracrustals [65]”. The study area of Jilling-Langalata deposits lies in the type 
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area of this basin - the “Noamundi-Jamda-Koira” valley (Fig.2.1a); which extends to a strike 

length of 100 km in NNE-SSW direction with widths varying from 20 to 30 km.   

The banded Iron formation forms a major component of the greenstone belts and similar 

supracrustal world over [97]. In all the three basins the supracrustal sequence stars with 

sandstone-conglomerate at the base followed by ferruginous shales, tuffs, lavas and Banded 

Iron Formation (BIF) [85, 23].  According to [35, 117] all the iron formations of Jharkhand 

and Orissa belong to one group. The BIFs belong to different age groups, a view supported 

by [13, 14, 2]. A two-tier system was suggested by [12] while [4, 5, 6] conceived of a three-

tier system.  

The BIF-1 is narrow, BMQ-type, thin banded and and exhibits at least 6 periods of 

deformation but with no big ore deposits so far known (Fig.2.1b).  

BIF-2 forms Tomka- Daitari basin (Fig.2.1b) dies out at Harichandanpur 

BIF-3, the Horse-shoe basin is the youngest with Dhanjori sandstone and younger volcanic at 

its base. It has the best grade and huge sized ore bodies each of more than one km in length at 

times.  

Singhbhum Group 

Rock succession lying to the north of the Singhbhum Shear Zone extends in a series of E-W 

folds for over 200 km.[116, 117] have named the succession lying to the north of the shear 

zone as Singhbhum Group.  

Dhanjori Group   

Another group of supracrustals, overlying the Singhbhum Granite and IOG rocks is the 

Dhanjori Group [116,117,111]. The succession is unconformably deposited over the 

Singhbhum Granites and Iron Ore Group.  
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Fig.2.1 (a) Generalised Geological Map Showing BIF-I, BIF-II and BIF-III Surrounding the NOIOC (b)Geology of the Singhbhum craton 
(modified by Mondal et al. 2006a after Saha, 1994; Sengupta et al. 1997).     
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TABLE – 2.1: GENERALISED CHRONOSTRATIGRAPHIC SUCCESSION OF THE  

SINGHBHUM - ORISSA CRATON (After Saha et al., 1988) 

Newer Dolerite dykes and sills c.1600-950 Ma 

Mayurbhanj Granite  c.2100 Ma 

Gabbro - anorthosite – ultramafics 

Kolhan Group                                                                                          c.2100-2200 Ma                                                   
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Unconformity  ~~~~~~~~~~~~~~~~~~~~~~~~~ 

Jagannathpur lava Dhanjori - Simlipal                          Dhanjori Group 

 Malangtoli Lava                              lava(c.2300Ma)                                      

  Quartzite conglomerate 

Pellitic & arenaceous  

Metasediment with mafic                                                                       Singhbhum Group 

Sills (c. 2300- 2400Ma) 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Unconformity~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Singhbhum Granite (Phase II)   C. 31.1 Ga 

Mafic lava, tuff, acidic volcanics, 

Tuffaceous shales, BHJ and BHQ with  Iron Ore Group 

Iron Ores, ferrugenous chert, local 

dolomite, Quartzite and  Sandstone 

-------------------------------------------------------     

    Singhbhum Granite (Phase I & II)                                                      Nilgiri Granite 

    c.3.3 Ga                                                                                               Bonai Granite 

--------------------------------------------------------   

Folding and metamorphism of OMG and OMTG c.3.4 – 3.5 Ga 

Older metamorphic tonalite gneiss (OMTG) c.3.775Ga 

Older metamorphic group (OMG):  

Pelitic Schist, Quartzite, Para-amphibolite, Ortho-amphibolite C.4000 Ma 
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Kolhan Group  

The Kolhan basin intervenes between the IOG of the Noamundi basin and the Singhbhum 

Granite [34]. It begins with thin plane- and cross-bedded red and purple sandstones consisting 

of ferric oxide-rich quartz arenite with beds/lenses of conglomerates deposited in shallow, 

ephemeral braided streams. [83].  

Newer Dolerites 

The Newer Dolerites occur in two distinct orientations (NE/SW and NW/SE) in the 

Singhbhum. Granitoid Complex (SBGC). These dikes are mostly tholeiites and quartz-

normative dolerites associated with subordinate norites. The SBGC is transected by several 

dikes of mafic to acidic compositions, collectively known as the Newer Dolerites [34, 111].  

2.2 THRUST AREA  

Barsua & Jilling-Langalata the iron ore deposits of Odisha, India are the focus of the present 

work.  

(i) The Jilling-Langalata area is part of the Iron Ore Group of the Precambrian Singhbhum-

North Orissa Craton, Eastern India falls in the north east quadrant of Survey of India 

topographical sheet No. 73 G/5 and is located between Latitudes 21˚ 56´ 15˝ N and 21˚ 59´ 

00˝ N and Longitudes 82˚ 25´ 10˝ E and 85˚ 26´ 10˝ E (Fig. 2.2). The study area, mining 

lease of M/s Essel Mines, is surrounded by leaseholds of M/s H.C. Pandya in East, towards 

north, west by M/s OMC Limited and M/s Rungta Mines (P) Limited in the south. According 

to [9], the area is segmented as the North Orissa Sector I. The detail survey of literature also 

reveals that the sector consists of several major lithologic groups of sedimentary and igneous 

origin ranging in age from Archean to the younger proterozoic. The major lithological units 

of the area   comprises of mainly the older metamorphic Banded Iron Formation (BIF).  
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Fig. 2.2: Geological map showing BIF and iron ore occurrences along the horse-shoe shaped 

synclinorium in the Singhbhum-N Orissa Craton, eastern India.
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(i) Jilling Langalota iron ore deposit comprises six (6) ore bodies.There are three main 

ore bodies of economic significance out of six. These are – Langalota ore body, Gangaigora 

ore body and Appahatu ore body. The Langalota ore body further divided into two sections, 

i.e. Langalota and Jajang. Besides these above three ore bodies, there are three minor ore 

bodies namely – Jilling (almost exhausted), Rakhaburu and Khuntpani. Exploration has been 

done all the ore bodies except the Rakhaburu. The ore bodies are bedded and lensoidal with 

variable dimension. The ore bodies have thickness ranging from 2.20 to 66.7 m occuring in a 

maximum depth of 76.90 m in Jhiling area and data generated suggests that the total reserves 

of Jilling-Langalata deposits is 67.1 million tones.  

 

(ii) In Barsua area, the ore body extends over Barsua-Taldih-Kalta. The ore is generally 

harder at the top and softer at depths. The irregularly lateritised harder ore forms the crest of 

the ore body following profile of the hills, as thin mantle of about 10-20 m at Barsua. The 

average thickness of the ore bodies is in the range of 40 m.  

 
(iii) Jilling ore body is oval in shape covering an area of 79,739 sq. m with its longer axis 

having a length of 520 m. which is parallel to north-south strike of the regional lithounits. 

The total reserves of Jilling-Langalata deposits are 67.1 million tonnes  as per the ACC 

report, 1997 which is confirmed from geological mapping, followed by drilling (1525.50 m), 

sampling and chemical analysis in an area of 866700 m2. Basing upon detailed investigations, 

reserves and quality of iron ore up to a depth of 499m were estimated and given in Table 2.2 

& 2.3 for BIM deposits. The iron ore is occasionally inter-bedded with thin bands of shale 

which has been named as parting shale (Fig. 2.4e).  

BHJ along with different types of iron ores are well exposed in the Jilling-Langalata and 

Barsua region. The principal iron oxide minerals include hematite; martite and hydroxides 
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such as goethite and limonite are predominantly observed in most of the sections of different 

types of iron ores. Due to high resistance, BHJ generally seen to represent most ridges. 

Table 2.2: Annual iron ore reserves in Jilling- Langalata iron ore mines 

 

BHJ grades into Banded hematite quartzite/ chert in the south. Such gradation is also present 

within the main ore body occurring as roughed irregular masses. BHJ outcrops are seen on 

both the sides of Jilling as well as Langalata hill occurring as discontinuous bodies. In Dalco 

nala section, massive iron ore overlies BHJ. BHJ in the deposit is unevenly banded and the 

thickness of individual bands varies from a few mm to 5 cm.  

In Langalata hill, laminated iron ore exposures are seen towards west. The ore shows north-

south trend exhibiting variable dips. The friable and biscuity iron ore could be seen in 

subsurface. In general, friable ore alternate with laminated iron ore. 

(ii) The combine leasehold (ML-130) of Barsua-Taldih-Kalta is situated in the classic iron 

bearing formations of Orissa. The regional geological set up constitutes part of the 

Precambrian meta- sedimentary sequence known as Iron Ore Series. 

AREA YEAR RESERVE 
(Mts) 

GRADE ROM 
(Mts) 

PRODUCTION 
(Mts) 

456100m2 2006-07 77.37 58->65%Fe 41,97,451 22,48,588 

2007-08 67.11 58->65%Fe 41,92,378 39,98,499 

2008-09 58.98 58->65%Fe 50,90,370 45,99,848 

2009-10 58.29 58->65%Fe 42,24,984 42,24,984 

2010-11 58.03 45->65%Fe 34,31,188 29,80,406 

2011-12 57.86 45->65%Fe 17,4355 17,4355 

2012-13 57.69 45->65%Fe 23,06,742 23,08,198 
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The lease area extends 18kms North-South on the top of the hill ranges in a narrow strip. Its 

Eastern and Western boundaries lay on the hill slope. The Barsua Iron ore mine along with 

Kalta, Kiriburu occupies the western limb of Bonai synclinorium The area is located between 

Latitudes 210 59’N and 210 50’ 50” N nad Longitudes 850 14’ 07” E and 850 08’ 11”E. 

The geological reserves in BIM were estimated to be 212.647 Mt out of which mineable 

reserves were 139.75Mt (01.01.1973). Since, then mining has depleted the reserves to 82.90 

Mt as on 01.04.2004. Further depletion due to mining since then the reserve has reduced to 

65.03 Mt as on 01.04.2013. 

Table 2.3: Annual iron ore reserves in Barsua Iron Mine, SAIL 

AREA YEAR RESERVE 
(Mts) 

GRADE ROM 
(Mts) 

PRODUCTION 
(Mts) 

9764300m2 2006-07 79.23 57->65%Fe 16,01,609 
 

15,27,262 
 

2007-08 77.63 57->65%Fe 21,25,469 20,13,613 

2008-09 75.51 57->65%Fe 17,98,409 20,58,963 

2009-10 73.72 57->65%Fe 21,05,005 18,90,993 

2010-11 71.62 45->65%Fe 23,47,022 20,24,983 

2011-12 69.28 45->65%Fe 19,79,803 18,00,673 

2012-13 67.31 as on 1-
04-12 

45->65%Fe 22,81,296 21,56,301 

2013-14 65.03 as on 1-
04-13 
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2.3 LITHOLOGICAL SUCCESSION IN JILLING-LANGALATA AREA 

Upper Shale Formation 

The upper shale resembles lower shale in all its physical aspects and is distinguishable only 

when it is actually seen to be overlying the iron ore body (Fig. 2.4d).  

Iron Ore  

Exposures of iron ore bodies are observed on the top of Jilling (almost exhausted) in the 

lease. Though stratigraphically iron ore overlies BHJ but at many places it directly overlies 

shale. The iron ore bodies are interbedded with thin bands of shale similar in nature to the 

bottom or top shale and are extensively lateralized. The shale (top) overlies the iron ore and is 

similar in physical characteristics to the bottom shale. It is often silicified and hard. The iron 

ore is occasionally inter-bedded with thin bands of shale which has been named as parting 

shale (Fig. 2.3b) 

Banded Hematite Jasper (BHJ) 

The Banded Hematite Jasper (BHJ) formation overlies the shale bottom. Thickness of BHJ 

varies between 2 m to 30 m. The thickness of individual band, however, varies between few 

millimeters and 10 cm and do not extend more than 5 meter before they pinch and merge 

with other band. The outcrop consists of alternating layers of hematite and quartz/ jasper 

Parting Shale or Middle Shale  

Parting shale / middle shale, occuring as thin partings within the iron ore similar to the shale 

both top and bottom (Fig. 2.3e) and is not restricted to any particular sratigraphic horizon. It 

is found in the bottom of the active quarry-6 as bottom shale and feruginious shale in between 

the main Iron ore body as patches.  
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Laterite 

It is found mostly in the surface of the lease area is reddish brown to brown in colour. It is of 

hard to friable in nature. Some portion consists of lumpy Iron ore. The Fe content varies from 

high grade to medium grade and below portion of the active quarry consists of blue dust & 

siliceous blue dust. Laterites blanketing the iron ore deposit and occur in 5 to 15 m. thickness. 

Goethite (hydrated iron oxide) is the major mineral found in laterites.  

2.4 LITHOLOGICAL SUCCESSION IN BARSUA AREA 

The litho sequence in Barsua- Kalta may be described as follows 

Epidiorites 

Upper Shale 

The Upper Shale forms the central shale and clay band in entire Barsua and part of Taldih 

“A” block after which it gradually swings east and passes along the eastern margin of the ore 

body in Kalta block 

Banded Hematite Jasper/ Quartzite (BHJ/ BHQ) 

The BHJ constitutes the hanging wall of the Iron ore deposits, overlooking the western 

valley. The BHJ grades into Banded hematite cherts and Quartzite (BHQ) in the south. Such 

gradation is also present within the main ore body occurring as rugged irregular masses in 

form of tongues and horses indicating the original unaltered rock. 

Massive Iron ore (mostly in Barsua) 

Massive ore mostly occur as isolated patches in contact with BHJ and sometimes grades to 

friable and blue dust (Fig. 2.4c). 
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2.5 CLASSIFICATION OF THE IRON ORES OF STUDY AREA 

Based on mineralogy and texture, several ore types can be distinguished at the megascopic 

scale.  

2.5.1 Massive Ore 

As the name suggests, they are devoid of bands and laminations (Fig. 2.4d). These ores are 

steel grey in color and are relatively high grade. They are massive, compact and dense with 

packed hematite minerals.  

2.5.2 Hard laminated Ore 

The ore is generally dark grey to iron black in colour, massive in nature devoid of any 

banding/ lamination. The ore is dense and have a high specific gravity, sometimes finely 

laminated. Very often the ore is highly broken and jointed (Fig. 2.4f) and sometimes 

lateralized. 

2.5.3 Blue Dust 

Megascopically siliceous blue dust looks mono-mineralic, but detailed microscopic 

examination reveals the presence of an admixture of very fine to coarser fragments of 

hematite and goethite. It mainly occurs as pockets along with other ore type (Fig. 2.3d). 

2.5.4 Goethitic-Lateritic ore and Canga Ore 

Laterites are soil types rich in iron and aluminium, formed in hot and wet tropical areas. 

Nearly all laterites are rusty-red because of iron oxides. Lateritic ore is dull earthy in color 

with limonitic red, yellow and dull white patches. However, in a fresh surface, it appears 

darker. Canga forms a valuable ore, which may run as high as 68% iron. Canga ores (Fig. 

2.4a) are the erosion products of earlier formed laminated and massive ores.  

http://en.wikipedia.org/wiki/Soil_type
http://en.wikipedia.org/wiki/Iron
http://en.wikipedia.org/wiki/Aluminium
http://en.wikipedia.org/wiki/Iron_oxide
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Fig 2.3 Field Photographs showing (a) Tightly Folded Banded Hematite Jasper (b) Shale band (ferruginous & white shale) 
(c) Alternative band between blue dust and white shale (d) Highly siliceous blue dust (e) parting shale besides soft laminated ore 

(f) Ochre red Lateritic ore. 
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Fig. 2.4: Field Photographs showing (a) Canga ore as top cappings (b) Biscuity ore along joint pattern (c) Litho contact between hard massive 
ore &Blue dust (d) Hard massive ore (e) Soft Laminated Ore retaining the banding (f) Highly jointed (2 sets) hard massive ore.
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Fig. 2.5: Section showing different lithological units (a) across Barsua Iron ore mines (b) 
Lenticular shape iron ore deposit of SAIL Barsua- Taldih-Kalta(Source: Survey department, 

Barsua iron ore mine)
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                   Fig 2.6 Section showing different lithological units across Jhiling- Langalata iron ore mine.
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IRON ORE RESOURCES- INDIAN PERSPECTIVE 

Iron & steel is the driving force behind industrial development in a country (Indian Minerals 

Year Book, 2011). The vitality of the iron & steel industry largely influences its economic 

status. The mining of iron ore, an essential raw material for Iron & Steel Industry is of prime 

importance among all mining activities undertaken by any country. Iron ore is the basic raw 

material for iron and steel industry. India is bestowed with good quality iron ore which can 

meet the growing demand of domestic iron and steel industry and can also sustain 

considerable foreign trade. With the total resources of over 28.52 billion tones of hematite 

(Fe2O3) and magnetite (Fe3O4), India is the fourth largest producer of iron ore in the world. 

United States Geological Survey (USGS) has estimated that the world resources are estimated 

to exceed 230 billion tons of iron contained within greater than 800 billion tons of crude ore 

[142]. The global iron ore market earlier was mostly in developed countries including Japan. 

However, with industrialization in Asian countries, especially in China and to some extent in 

Republic of Korea, Brazil and India, too the situation has changed giving rise to more 

consumption in these countries. 

3.1 RESOURCES 

Magnetite is another principal iron ore that also occurs in the form of oxide, either in igneous 

or metamorphosed banded magnetite-silica formation, possibly of sedimentary origin. 

Hematite and Magnetite are the important iron ores in India. About 59% of hematite ore 

deposits are found in the eastern India and about 92% of magnetite ore deposits occur in 

southern India, especially in the state of Karnataka. Eastern Indian deposits belong to the 

Precambrian Iron Ore Group and the ore is within Banded Iron Formations occurring as 

massive, laminated, friable and also in powdery/blue dust form. 
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As per UNFC system, the total resources of hematite as on 1.04.2010 are estimated at 17,882 

million tonnes of which 8,093 million tonnes (45%) are under reserves category and the 

balance 9,789 million tonnes (55%) are under remaining resources category [53]. By grades, 

lumps constitute about 56% followed by fines (21%), lumps with fines (13%) and the 

remaining 10% are black iron ore, not-known and other grades The remaining are low grade, 

unclassified resources of lumps and fines or high, medium, low or unclassified grades of 

lumps and fines mixed etc (Fig. 3.1a). Major resources of hematite are located in Odisha- 

5,930 million tonnes (33%), Jharkhand-4,597 million tonnes (26%), Chhattisgarh- 3,292 

million tonnes (18%), Karnataka-2,159 million tonnes (12%), and Goa-927 million tonnes 

(5%). (Fig.3.1a). the balance 6% resources are spread in Maharashtra, Andhra Pradesh and 

Madhya Pradesh. The cut-off grade for estimating the hematite resources has been taken as 

45% Fe. At this cut-off grade, the iron ore resources will increase substantially. With the 

modern technology (like EGS, flotation, magnetic separation) it is possible to utilize iron ore 

of 45% Fe and above.  

The total resources of magnetite estimated at 10,644 million tonnes of which reserves 

constitute mere 22 million tonnes while 10,622 million tones are placed under remaining 

resources. Classification on the basis of grade shows 21% resources of metallurgical grade 

while 79% resources belong to unclassified, not-known and other grades (Indian Mineral 

Year Book, 2011). India’s 92% magnetite resources are located mainly in 4 states namely 

Karnataka (7,802MT, 73%), Andhra Pradesh (1464MT, 14%), Rajasthan and Tamil Nadu 

(527MT,5%).Assam, Bihar, Jharkhand, Kerala, Maharashtra, Meghalaya, Nagaland and Goa 

together account for the remaining 8% resources (Fig.3.1b). The balance 10,396 million tones 

constitute remaining resources [52]. Of the total resources, 1,728 million tonnes i.e. only 16% 

resources are of metallurgical grade while 80% resources are of unclassified grade.  
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3.2 IRON ORE DEPOSITS OF INDIA 

The entire country is divided into five zones with respect to iron ore occurrences [146] as 

indicated below (Fig. 3.3). 

Zone-A Orissa and Jharkhand  

Zone-B Chhattisgarh and Maharashtra 

Zone-C Karnataka  

Zone-D Goa and Redi, and  

Zone-E Kudremukh, Bababudan and Kudachadri of Karnataka.  

Zone-wise description of the deposits is given below: 

ZONE – A  

Orissa 

The iron ore deposits in Orissa are found in the districts of Keonjhar, Sundargarh, 

Mayurbhanj, Koraput, Sambalpur and Dhenkanal. Of these, deposits of Keonjhar and 

Sundargarh districts are worth mentioning. The important deposits containing large reserves 

of high grade (55% to 69% Fe) are in Thakurani, Joda, Banspani, Joruri, Malangtoli, 

Khandadhar, Kalmang, Barsua, Bolani, and Kalta. Malangtoli is the largest deposit 

containing high reserves with Fe content varying from (55% to 63% Fe). Orissa contributes 

about 50 million tonnes of iron ore production per annum. 

Jharkhand 

In Jharkhand state, hematite deposits occur in a number of prominent hills in Singhbhum 

District (east and west Singhbhum). The significant deposits of this district are located in 
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Noamundi, Gua, Barajamda, Kiriburu, Meghahatuburu, Manoharpur and Chiria. The annual 

production from Jharkhand is around 21 million tonnes in 2014.  

ZONE - B 

This zone comprises of Bailadila, Dalli, Rajahara, Rowghat, Mahamaya etc. Two important 

iron ore bearing areas i.e. Bailadilla range and Rowghat are located in Bastar Tribal region of 

Chhattisgarh state. Six deposits have been identified with total geological reserves of about 

711 million tonnes. Dalli – Rajahara containing high grade of iron ore.  

ZONE – C 

Significant deposits are located in Bellary-Hospet sector and those are Donimalai, 

Ramandurg, Kumaraswami, Thimmappan gudi, Ettinahatti and Belegal.  

ZONE – D 

Huge quantity of friable/blue dust variety of iron ore deposits is concentrated in a small area 

of about 3700 sq. km in Goa. The production from Goa region is about 24 million tonnes at 

present.  

ZONE – E 

This zone contains mainly magnetite ore deposits at Kudremukh, Bababudan and Kuda 

chadari.  

3.3 IRON ORE PRODUCTION    

The production of iron ore consisting of lumps, fines and concentrates at 136.02 million 

tonnes in 2012-13 decreased by 19% as compared to that in the previous year., mainly on 

account of suspension of mining operation in Karnataka due to Hon'ble Supreme Court order 

[52]. On the contrary, in the year 2010-11, the total production was 208 million tonnes, 

showing a decline of about 5% as compared to preceding year. There were 270 reporting 

mines in 2012-13 as against 313 mines in the previous year.  
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Fig.3.1 Graphical representation of (a) Distribution of Hematite ore in India (b) Distribution 
of Magnetite (Indian Mineral Year Book, 2011) 
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        Fig 3.2(a) Total resources of Iron ore in India (Iron & Steel vision, 2020, IBM) 

 

                  Fig.3.2 (b) State wise reserves & total remaining resources of Hematite. 
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The production trend of iron ore in public sector and private sector mines since 2007-2011 is 

given in Fig. 3.5a. Production has decreased from 218.6Mt to 208.1Mt in 2010-11 over the 

previous year. This decrease is more in private sector mines than in public sector. In 2010-11, 

the share of public and private sector production was 28% against 27% in the preceding year. 

The remaining 72% production in 2010-11 was from private sector. About 60% of production 

comes in the form of fines (including concentrates) during the course of mining operations 

itself. Further, 10-12% lumps become fines while handling, loading/unloading and while 

converting them into calibrated lump ore (CLO) for sponge/pig iron plants/exports. On an 

average 2.5 tonnes of run-of-mines (ROM) are required to get one tonne of CLO [146]. 

Another demarcation of iron ore production is between Captive and Non-captive mines. 

Orissa is a leading producer state with the highest production, followed by Karnataka, Goa, 

Chhattisgarh and Jharkhand (Fig. 3.2b). It is also to be noted that out of the total production 

Captive mines are owned by SAIL’s steel plants and the Tata Steel besides some other small 

companies. Out of the total ore production in the country, the non-captive mines produce is 

78%, while the share of captive mines is only 22%. Of 208million tonnes in 2010-11, the iron 

ore lumps constituted 82.2 million tonnes or about 39.5% and fine product is 125.1million 

tonnes or about 60.2%.   

 

The Working Group for 12th Plan, Planning Commission of India has estimated that the 

production of iron ore would be about 374 million tons by 2016-17 at 8% growth rate. The 

apparent consumption is estimated at 218 million tons by 2016-17 at 8% growth rate. 
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Grade wise analysis of the current year’s output reveals that out of total output of 208 million 

tonnes, iron ore lumps constituted 82.2 million tonnes or about 39.5%, fines 125.1 million 

tonnes or about 60.2% and concentrates 0.7 million tonnes or about 0.3% of the total output 

of iron ore lumps. About 23.8 million tonnes or 29.1% was of grade 65% Fe and above, about 

30 million tonnes or 36.5% of grade 62% to below 65% Fe, 11.5 million tonnes or 14% was 

of grade 60% to below 62% Fe and the rest 16.9 million tonnes or about 20.5% of the 

production was of grade below 60% Fe. 

In the case of iron ore fines, 17.2 million tonnes or 13.8% of the production was of grade 

65% Fe and above, 53.9 million tonnes or 43.1% of grade 62% to below 65% Fe and balance 

53.9 million tonnes or about 43.1% of grade below 62% Fe. Run off mine iron ore, range in 

size from less than 8 mm to 0.15 mm is designated as fines, whereas, the ore below 0.15 mm 

are known as slime and slimes are generated in the washing plant. About 70-75% of the total 

production of iron ore is fines which are generated either at the time of mining or become 

fines during subsequent handling or conversion of lumps into Calibrated Lump Ore (CLO) 

[144].  

3.4 CONSUMPTION PATTERN  

The level of per capita consumption of steel is treated as an important index of the level of 

socio-economic development and living standards of the people in any country. It is a product 

of a large and technologically complex industry having strong forward and backward 

linkages in terms of material flows and income generation. All major industrial economies 

are characterized by the existence of a strong steel industry and the growth of many of these 

economies has been largely shaped by the strength of their steel industries in their initial 

stages of development. Steel industry was in the vanguard in the liberalization of the 

industrial Sector and has made rapid strides since then the industry has moved up in the value 

chain and exports have raised consequent to a greater integration with the global economy.  
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In 2010-11 about 104.05 million tonnes of iron ore was consumed in various industries like 

iron and steel, sponge iron, ferro-alloys, alloy steel, coal washery and cement. The Iron & 

steel including sponge was the major consumer of iron ore and accounted for over 98% of its 

consumption. 

 

                                                         Source: Metalytics. 

Fig.3.4 Domestic consumption & export of Indian Iron ore. 

Iron ore demand is linked with the production of crude steel. The steel plants of SAIL in the 

public sector and Tata Steel in private sector besides some small plants have their own mines 

for captive consumption. Another public sector steel plant is Visakhapatnam Steel Plant 

(VSP) which meets its total requirement of iron ore from NMDC mines located in Bailadila 

sector of Chhattisgarh state. The domestic consumption of iron ore is shown in Fig. 3.6a. 
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Fig.3.5: Graphical representation of (a) Sector-wise production of iron ore in India (b) State-
wise production of iron ore in India (Indian Mineral Year Book, 2011.                                                                                      
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Fig.3.5: Graphical representation of (a) Sector-wise production of iron ore in India (b) State-
wise production of iron ore in India (Indian Mineral Year Book, 2011.                                                                                      
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Fig. 3.6a Graphical representation of (a) Production, Consumption and 
Export of iron ores in India (b) Production of iron ore lumps, fines, concentrate 

in India (Iron & Steel vision, 2020). 
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3.5 FOREIGN TRADE  

3.5.1 EXPORT: 

Exports of iron ore decreased to 46.88 million tonnes in 2010-11 from 101.53 million tonnes 

in the previous year. In terms of value too, the iron ore exports rose to 21,416 crore in 2010-

11 from 28,366 crore in 2009-10. The exports in 2010-11 in terms of volume comprised iron 

ore fines (92%), iron ore lumps (7%), and iron ore concentrates & iron ore pellets (1%). 

Exports were mainly to China (91%) and Japan and United Arab Emirates (3% each). If we 

consider last three financial years, 2008-09, 2009-10 and 2010-11, when the exports demand 

for iron ore increased from China, still there was a fall in export from 101.53 million tonnes 

to 46.88 million tonnes which in turn has increased the import of iron ore.  

3.5.2 IMPORT: 

Imports of iron ore were 1,867 thousand tonnes in 2010-11 as compared to 897 thousand 

tonnes in the previous year. The imports in 2010-11 comprised of iron ore pellets (60%), 

fines and non-agglomerated concentrates, etc. The iron was imported from Bahrain, Mali, 

Brazil and Ukraine. Import of iron ore was 69 thousand tonnes, 897 thousand tonnes, 1,867 

thousand tonnes in the year 2008-09, 2009-10, 2010-11 respectively [52, 53]. The imports 

mainly comprise of iron ore pellets, fines, non-agglomerated concentrates and it was from 

countries like Bahrain, Brazil, Russia & Ukraine. The export of iron ore in the last nine years 

is given in Fig. 3.6a. Iron ore production grew gradually and export also increased but the 

percentage remained almost the same.  
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3.6 WORLD PERSPECTIVE 

The developments in the Chinese steel industry have set the pace of iron ore mining globally.  

World production of iron ore exceeded 1 billion tonne for the first time in 2002 and 1520 

million tonnes in 2005. Production has increased in all major iron ore producing countries.  

World marine trade of iron ore exceeded 600 million tonnes in 2005 and the same is likely to 

grow to 650 MT by 2007.  Three largest companies viz. CVRD, Rio Tinto and BHP Billiton 

together control about 30% of the global production.  Four companies viz. CVRD, Rio-Tinto, 

BHP Billiton and Mitsui account for 70% of marine iron ore trade. The world iron ore 

reserves and reserve base as estimated by U. S. Geological Survey (USGS) [144] are shown 

in Table 3.1. 

Table 3.1: World iron ore reserves and reserve base as estimated by U. S. Geological 
       Survey (USGS Mineral Commodity Summaries, 2013). 

                                                                                              (Qty.: In Mts) 

 

 

 Mine Production Reserves 
 2011 2012 Crude Ore Iron content 

United States 55 53 6,900 2,100 
Australia 488 525 35,000 17,000 

Brazil 373 375 29,000 16,000 
Canada 34 40 6,300 2,300 
China 1,330 1,300 23,000 7,200 
India 240 245 7,000 4,500 
Iran 28 28 2,500 1,400 

Kazakhstan 25 25 2,500 900 
Mauritania 12 12 1,100 700 

Mexico 15 13 700 400 
Russia 100 100 25,000 14,000 

South Africa 60 61 1,000 650 
Sweden 25 25 3,500 2,200 
Ukraine 81 81 6,500 2,300 

Venezuela 17 20 4,000 2,400 
Other 

countries 
59 61 12000 6,000 

World 
Total(rounded) 

2,940 3,000 170,000 80,000 
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The World Steel Association estimated global crude steel production to be 1548 million 

tonnes in 2012, 1.2% up on the annual 2011 and the highest total ever. The amount of iron 

ore produced globally in 2011 was 1.92 billion tons, representing a 4.7 per cent increase from 

2010[148]. World crude steel production reached 1,548 mega tonnes (Mt) for the year 2012, 

up by 1.2% compared to 2011. This is a record for global crude steel production.  

3.7 STEELMAKING 

World’s 80% steel making is through the blast furnace method and hence the role of iron ore 

as a raw material and its quality becomes very critical to obtain the best quality steel. High Fe 

content, low alumina and phosphorous contents in iron ore reduce this proportion. Hence, the 

quality of raw material plays an important role in steelmaking process. Although India is 

having vast reserves of iron ore, lack of consistency with respect to Al2O3/SiO2 ratio makes 

these ores unsuitable to use directly in the metallurgical industries without prior 

beneficiation. It has also been established that the adverse effects of high alumina to silica 

ratio (ideally it should be < 1) is detrimental to blast furnace as well as sinter plant 

productivity [107]. Indian iron ores are being beneficiated by washing, scrubbing, 

hydrocycloning, gravity separation and magnetic separation. During sizing and washing 

operations the enrichment with respect to iron content is marginal and gangue reduction with 

particular reference to favorable Al2O3/SiO2 is minimized. Concentration of alumina is the 

lowest in pure hard ore and blue dust and vice versa in lateritic ores. Indian iron ores consist 

of higher proportions of impurities in the form of alumina (Al2O3) and phosphorus (P). Their 

presence adversely affects the performance of blast furnaces and hence it is always preferred 

to maintain their level as low as possible [70]. The higher content of P increases surface 

cracking during steel making process at higher temperatures and also increases level of 

inclusions, which adversely affect the mechanical properties of finished steel [138, 141]. 
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Small amounts of aluminum (Al) are present in many ores including iron ore, sand and some 

limestone. Aluminium is very hard to reduce. However, it does increase the viscosity of the 

slag [86, 87]. The thicker slag will slow the descent of the charge, prolonging the process and 

adding cost. Generally, iron oxide deposits must be low in aluminium (<1.5%) to be 

considered as a viable ore. 

Hence, it is important to restrict the alumina and phosphorus inputs in the furnace through 

raw materials [139]. All the ore types contain silica as gangue in the form of quartz, clay in 

the form of kaolinite and alumina in the form of gibbsite.  

Sulfur (S) is a frequent contaminant in coal. The typical balance of P and S comes from raw 

materials such as coke (65%), iron ore/sinter (25%) and fluxes/others (10%). The effect of 

even small amount of sulphur is immediate and serious. The degree of hot shortness 

(brittleness, usually of steel or wrought iron, when the metal is hot, due to high sulfur 

content) is directly related to the amount of sulphur present. Higher levels of alkalis lower the 

mechanical strength of coke and sinter in blast furnace. They create adverse impact on the 

descending charge due to re-condensation, cause imbalances in furnace stability and increase 

the RDI of sinter, resulting in higher generation of fines and lower productivity. Use of 

limestone with low alkalis (0.05%), use of imported coal from Australia with low alkalis 

(0.12–0.16%), use of dunite and pyroxenite sinter with low alkalis (0.05– 0.1%), use of 

washed coal and low coke rate are some of the important measures taken for alkali control 

during steelmaking [139].  Another unwanted contaminant within raw iron ore is Silica. The 

problem here relates to the fact that Silica requires extremely high temperatures in order for it 

to be burned off. Therefore, the more silica that exists in the raw material, the more energy is 

used in producing the ore oxide. Silicon input in the blast furnace burden comes in the form 

of SiO2 from coke ash (70%) and sinter and iron ores (30%). The desired level of silicon in 

the steel is 0.6%. Reduction of silicon from a concentration of 1.1 to 0.6% results in a 

http://en.wikipedia.org/wiki/Aluminium
http://en.wikipedia.org/wiki/Sulfur
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reduction in coke rate by 14 kg per tonne of hot metal and increases the productivity by 2.5% 

or 0.035 tonnes m-3 per day in iron making through the blast furnace route.  

3.8 INDUSTRY OUTLOOK –“IRON ORE” 
Iron ore market had seen a paradigm shift since 2000 with emergence of Chinese industrial 

demand. In the first decade of the 21st millennium, China emerged as the largest producer of 

steel and consequently became the largest consumer of iron ore. Steel production dropped 

marginally in 2008 and about 8.1% last year on account of global slowdown. The demand, 

however, picked up this year once again due to China and it is estimated China alone needs 

more than 650 million tons of imported iron ore this year to feed its ever growing steel 

industry. Some of the vital and crucial challenges faced by the industry are mineral 

conservation, detailed geological studies of the deposits, availability of the land for waste 

disposal, poor quality (high contents of Al2O3 and P) of ores, poor infrastructure, and 

complicated and lengthy processes for statutory clearances. The following factors play key 

roles in mineral conservation strategies in India: 

(a) Indian iron ore is relatively rich in Fe and contains significant amounts of silica, alumina 

and phosphorous compared to the other major deposits of the world.  

(b) Huge quantity of slime generation during ore processing and their disposal. In order to 

produce 1 ton of lump ore, about 1.5 ton fines are generated of which only 0.5 ton are 

utilized. It is estimated that around 20 MT fines are lost every year.  

 (c) Difficulties in beneficiation of BHJ/BHQ due to due to non-availability of suitable 

technology. 

(d) Safe disposal of mining waste/overburden in particular 

(e) Environmental problems due to land degradation, pollution & deforestation. 
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REVIEW OF LITERATURE 

The Precambrian greenstone belts and similar supracrustals are the main repositories of 

banded iron formation hosted iron ore deposits world over [26]. Origin of these iron ores is 

considered as the product of supergene enrichment processes [63, 78, 80] or hydrothermal 

mineralization processes [16, 98]. 

BIF has been reported from different part of the world. According to some researchers [48] 

the source of iron strongly doubtful, both continental and hydrothermal model have been put 

forward as likely for the source of iron and silica. Recently mid-oceanic ridge or hot spot 

style tectonic setting are also considered as a source of iron [48, 80]. The several giant and 

world-class ore systems were formed during intra-plate tectono-thermal and rifting events 

[92]. Iron was scavenged from the oceanic crust and re-deposited on the ocean floor by 

hydrothermal fluids, i.e., high temperature hydrothermal alteration of early Archean oceanic 

crust played an important role in the deposition of BIFs [94]. 

The Precambrian greenstone belts contain variety of geological information in different 

tectonic settings [30]. One of the important issues pertinent to the mantle evolution through 

time is to characterize the Archaean peridotites either of mantle origin or of crystallization 

product within the crustal greenstone sequence [78].  

The famous iron ore bearing state Odisha comprises of three distinct iron ore bearing 

provinces encircling the North Odisha Iron Ore Craton (NOIOC) [18, 19, 20].   

In 1903, eminent geologist, P. N. Bose discovered iron ore deposits in Gorumahisani hills in 

Mayurbhanj state and brought it to the notice of J.N. Tata in 1904. It was this foresight that 

led to the setting up of Tata Iron and Steel Company Tata Steel in the year 1911 which was 

the 5th largest steel industry in the world and 12th at present[145].  
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The Newer Dolerites occur in two distinct orientations (NE/SW and NW/SE) in the 

Singhbhum Granitoid Complex (SBGC). These dikes are mostly tholeiites and quartz-

normative dolerites associated with subordinate norites [8].  

 

The rich iron ore deposits of Mayurbhanj were investigated [33, 34, 35] and presented a 

divergent concept of older metamorphic. Results of the investigation presented in a memoir 

on the “Mineral deposits of Eastern Singhbhum and surrounding areasMost of the sandstone 

and conglomerates recognised  [127] as the base of iron ore series were overlie at the top of 

that series and dolerite sills stated by him were actually lava flows. The stratigraphic and 

structural work in Singhbhum [115], found that iron ore series of South Singhbhum-

Keonjhar-Bonai region is a low NE plunging synclinorium, overturned towards SE, the 

eastern limb of which remain normal. They opine that lavas underlie lower shales or BHJ. 

The economic aspects were focussed [14, 36, 60] and ore geology of south Singhbhum and 

Keonjhar. There were evidences [69] that iron was initially deposited as magnetite dust in 

jasper bands which then remobilised and iron migrated towards pre-existing iron rich bands 

and precipitated in the form of hematite. Stromatolite in dolomite supports this in addition to 

suggesting limestone fence [112]. This has not found to develop in BIF-1 and marginally so 

in BIF-2.  

Most of these Banded Iron Formation horizons belong to the oxide facies banded iron-

formations as defined by Jones, where as the silicate facies banded iron-formations are 

locally developed [21]. Jones opined the chemical-sedimentary origin [68] of these Banded 

Iron Formations. 

Due to the monomineralic composition of the ore, the genesis of these high-grade hematite 

ores remains controversial. Different depositional models have been proposed for the genesis 

of high-grade iron ores which include deep seated hydrothermal [134], syngenetic and 
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diagenetic [60] varieties. Supergene enrichment followed by metamorphism is the most 

widely cited explanation for the genesis of high-grade hematite ores in Hamersley province 

[47, 79, 80, 81]. The Banded Iron Formation (BIF) and the associated litho types of the study 

area belong to youngest Iron Ore Group (BIF-III) of IOSG [4, 18]. The iron mineral in the 

basin is predominately oxide facies [56].  

Although India is bestowed with large reserves of iron ore, a large amount of iron ores having 

high amount of impurities in the form of Al2O3 and SiO2, make some of these ores unsuitable 

for direct use in the blast furnace [24, 53]. With the fast depletion of high grade iron ore and 

to cope with the increased industrial demand, the low grade iron ore in general, is being the 

focus of interest now. Beneficiating the low grade iron ore to remove the gangue minerals 

and enhancing its grade is a prospective proposition today.  

 

Since the goal of every mineral processing operation/ technique is to effectively separate the 

valuable material from the gangue with minimum metal loss in tailings, the need to develop 

and employ a sustainable, effective and relatively economical method of separation is 

imperative. The concentration of the valuable minerals from the gangue involves exploitation 

of the differences in the mineral properties of the ore after effective comminution [84].  

 

In order to increase the efficiency of blast furnace, some of the issues relating to Iron ores 

include chemical composition of Iron ore with low Fe content and high Al: Si ratio, low 

temperature softening and melting behavior of Iron ores, etc. Normally Iron ores with Fe 

content above 65% are desirable to achieve better productivity either in blast furnace or direct 

reduction. The other impurities level (such as Na, K, S and P) should be as low as possible 

[73]. Another problem is the utilization of huge amounts of iron ore fines and slimes which 

are not only a loss of the very important iron ore resource, but also pose severe long term 
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environmental problems. The issue of the utilization of iron ore slimes, however, is fairly 

complex owing to the extremely small size of the individual mineral particles and has not met 

with great success until now. However, many of the other issues related to mineralogical 

characterization, physical liberation and mineral dissemination are common to the above 

stated problems. Enrichment of low grade iron ores always involves comminution in order to 

achieve mineral liberation and there by produce significant amount of ultra-fines which are 

difficult to concentrate.  

 

The main difficulty in processing and utilization of lean grade iron ores originates from their 

compositional characteristics, soft nature of some of the ores and high alumina content as 

well. The composition of the Indian iron ores is typified by high iron content with relatively 

higher amount of alumina (as high as 10% to 15%). Alumina and Silica content should be 

within the permissible limit for better fluidity of slag which in turn reduces the coke 

consumption [67, 141].  

 

The most common gangue mineral found in Iron ore is silica. It may be in the form of 

quartz/jasper. Silica is undesirable because silicon does not bond with carbon during the 

smelting process and can remain in the iron after it is refined. Modern steelmaking techniques 

generally use lime and other fluxes to help removal of the silica from the molten iron ore, and 

form slag on the surface of the molten metal.  

 

Indian iron ores contain relatively high iron but cost effective reduction of alumina within the 

specified limits [124] has been a challenging task. Reduction of 1% alumina in iron ore 

improves blast furnace performance by 3%, reduction in reduction-degradation index (RDI) 

by 6 points leading to an improvement in productivity by 0.1 tonne per m3 per day, lowers the 
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coke rate by 14 kg per tonne of hot metal and increases sinter productivity by 10–15%, i.e. 

800–1000 tonnes per day [106]. 

Alumina in general is associated with iron ores as clay/gibbsite. This is usually removed by 

washing the iron ore, and by fluxing the same. Generally, iron oxide deposits must be 

relatively low in alumina (<1.5%) in order to be considered as an ore.  It would  demand a 

higher temperature and more sintering time for attainment of satisfactory sinter strength at 

high alumina [11]. The sulfur problem is not much in case of Precambrian iron ores, as found 

in the study area, as it is generally associated with Tertiary iron ores [28].  

Reduction of alumina [29] in the slime using classification followed by separation in a 

hydrocyclone was investigated. It was found that it is possible to obtain a product containing 

64% Fe, 1.4% Silica and 3.5% Alumina from a feed assaying 57% Fe, 4% Silica and 8.3% 

Alumina. Several researchers have worked on alumina reduction focusing on flocculation 

techniques that met with variable degrees of success [43, 46, 66]. 

Gravity and magnetic separation processes have their own limitation in finer size ranges. 

Studies were conducted [55] on highly selective reagents to achieve satisfactory separation of 

hematite and goethite from alumina containing minerals (gibbsite or kaolinite) in the ore and 

slimes. They found, among all the reagents that starch exhibits the highest selectivity towards 

the hematite surface with a difference in interaction energy of 63 kcal/mol between hematite 

and gibbsite surfaces and polyvinyl pyrrolidone (PVP) to be more selective dispersant for 

kaolinite compared to conventional sodium silicate and sodium hexa metaphosphate. 

Phosphorous is a deleterious contaminant because it makes steel brittle, even at a 

concentration of as little as 0.6% [141], where as the desired levels of phosphorous in hot 

metal vary from 0.08 to 0.14%. It cannot be easily removed by fluxing or smelting, and so 

iron ores must generally be low in phosphorus (0.08%) [138,141]. 
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Sulfur is unwanted because it results in a decreased hot strength of iron and steel. Sulfur also 

increases SO2 gas in the flue emissions from a smelter and interferes with the smelting 

process [88]. Today iron ore with 0.03% sulfur or higher is avoided. 

 

India has vast deposits  (1209 MT) of superior quality hematite ore, categorized as  direct 

shipping ore, which just needs crushing and sizing to be used as metallurgical feed, such  

deposits are depleting at faster rate. Apart from such ores, India also has vast deposits of 

other low-grade iron ore, including banded iron formations like Banded Hematite Quartzite 

(BHQ), Banded Hematite Jasper (BHJ) etc. Such ores invariably have low iron content, even 

less than the cut-off grade of 45%. So, currently they are not being exploited in India. Apart 

from their low iron content, another problem with banded iron formations is intricate mixing 

of ore and gangue mineral grains, which results in optimum liberation occurring at sizes 

below 100–150 microns [9].  

 

According to National Mineral policy projections, exploitation of low grade iron ore horizons 

like BHJ is necessary to achieve the zero waste concepts. BHJ assaying up to 40% Fe (T) has 

to be upgraded above 60%Fe (T) to use effectively during blending and direct sale. BHJ of 

Bonai region is considered as mother rock has its considerable reserves in India. At present 

large quantity of BHJ is being rejected at the mine site due to its high silica content. In order 

to beneficiate BHJ size reduction is needed [44] up to 50µm which reflects very intricate 

relationship between hematite and quartz and intergrowth patterns developed among ore 

minerals and gangue minerals. Gravity and magnetic separation equipment, namely, Floatex, 

gravity slime table [129] and wet high intensity magnetic separator (WHIMS) can be used for 

BHJ beneficiation. Their results indicate that it is possible to upgrade the sample by both 

gravity and magnetic separation techniques. However, the WHIMS results indicate that jasper 

grains report to the concentrate at higher gauss intensities. They studied the applicability of 
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gravity spirals for beneficiating BHJ in the liberation size range of -0.150 mm. The test 

results indicate that it is possible to obtain a final concentrate assaying 65.75 per cent Fe and 

4.75 per cent SiO2 with a yield of 25.9 per cent and an iron recovery of 41.31 per cent.  

 

Characterization of BHJ of Singhbhum craton for their beneficiation was studied [37, 40] and 

result show that it is not possible to get >60% Fe at coarser size (>1 mm size) as the silica 

minerals are finely locked with iron minerals. But, on grinding to liberation size of 100 

micron (needs high energy for breaking in conventional grinding) and treating in fines 

beneficiation circuit, (preferably flotation, as the particles are non-sticky and easily settles 

and responds to surface response) it is possible to enrich iron content to >65%Fe. 

 

Iron ore is being beneficiated all round the world to meet the quality requirement of Iron and 

Steel industries. However, each source of Iron ore has its own peculiar mineralogical 

characteristics and requires the specific beneficiation and metallurgical treatment to get the 

best product out of it. The choice of the beneficiation treatment depends on the nature of the 

gangue present and its association with the ore structure. Several techniques such as washing, 

jigging, magnetic separation, advanced gravity separation and flotation are being employed to 

enhance the quality of the Iron ore. Washing, jigging and classification are being carried out 

for the beneficiation of Iron ores in India.  

 

The ever increasing need to utilize the slimes is being reflected in the shift in Steel production 

from basic blast furnaces to electric arc furnace technology. In the USA, around 40% of Steel 

is produced in electric arc furnaces by using Iron ore pellets. However the use of pellet in 

Indian Steel plants is very limited [73]. Lot of low grade Iron ore fines are generated during 

preparation of lumps, calibrated ores and sinter-fines. In addition to these fines, 10-15% of 

ore mined is generated as slimes and are discarded as tailings [89]. These fines and tailings 

are potential sources to produce pellet grade concentrate after suitable beneficiation [113]. 
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During washing and sizing of the ore, slimes with less than 0.21 mm size are generated and 

discarded into the tailing pond [101]. 

 

Beneficiation and utilization of these slimes still remains as a challenging task.  This low 

grade ore cannot be utilized due to low industrial value [102] and marketability a large 

amount of slime containing 48-62% Fe is also being generated yearly in the beneficiation 

plants spread all over the country.  

 

The beneficiation of iron ore slime [98] produced from washing plants and tailing ponds of 

Kiriburu mines using wet high intensity magnetic separators followed by classification in 

hydrocyclone was studied. It was shown that a concentrate assaying 63% Fe and 3.3% 

alumina could be produced with an overall iron recovery of 56%. Pradip compared the 

efficiencies of different unit operations including Wet high intensity magnetic separation 

(WHIMS) and multi-gravity separator (MGS) and found that it was possible to produce 

concentrates, at least on a laboratory scale; assaying less than 2% alumina at an overall yield 

of around 50% from slimes feed analyzing 7-8% alumina. Another noteworthy observation 

was that the separation achieved in MGS is remarkably close to the theoretical yield predicted 

based on the sink-float tests. Multi-gravity separation is a useful technique for treating iron 

ore slime and it is particularly effective for reducing alumina. However, it is still not very 

successful commercially due to its low capacity. 

 

The reverse flotation study of iron ore slimes [104] by using hydrocyclone followed by 

flotation was studied. The result shows that the desliming of the slime sample gave a product 

with a yield of 67.3% contains 60.6% Fe under best condition. It is shown that deslimed 

product on reverse froth flotation gave yield 46.9% containing 64.5% Fe which can be 

directly used as pellet feed.  
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Separation behavior of slime samples [73] collected from Barbil, Goa, Bailadila and Hospet 

region was investigated. The throughput of hydrocyclone during the experiments was 240 to 

780 kg/hr. Classification in hydrocyclone followed by spiral concentration for iron ore slime 

collected from washing plants [129] and tailing ponds of Kiriburu mines was investigated. 

The results show that it is possible to raise the iron content up to 64.17% at a yield of 37.3% 

with a decrease in the alumina content to 1.17%. 

 The beneficiation prospect of Lateritic ore from Nuamundi was studied [100]  and found that 

the sample contains huge quantity of goethite which is partially weathered, interlocked with 

hematite and gangue minerals like gibbsite, kaolinite and quartz at different proportions. 

Mineralogical studies revealed that the concentrate product quality depends on presence of 

the goethite in the product. Basing up on mineralogical studies, they designed two flow sheets 

for beneficiation of Lateritic ore. One comprises of classification followed my gravity 

separation and second one with similar approach but the gravity concentration replaced by 

magnetic separation. They found that the second flow sheet is more effective. 

Iron ores across the globe are being beneficiated by several techniques such as the shaking 

table, jig [91] and spirals, selective dispersion flocculation methods [96]. Separation 

processes based upon the surface-chemical differences between iron and alumina containing 

minerals, for example froth flotation and selective dispersion/flocculation are promising [59]. 

Gravity concentration using Wilfley Table is a powerful technique for the recovery of fine 

iron minerals. Many theoretical and experimental investigations of Wilfley table have been 

reported [39, 71, 72, 126]. Tabling efficiency is quite high when the specific gravity 

difference between the valuable and gangue minerals is high. In addition, magnetic separation 

[136] may be preferred, depending on the ore characteristics [61,131, 132, 133].  Floc-

magnetic separation process is also reported for the processing of fines [10, 127]. Magnetic 

separation and flotation are the most widely accepted technologies for upgrading iron ore 
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particles, but these processes result in iron concentrate with high amount of very fine and/ or 

interlocked silica particles [148]. It was found that flotation [135] is incapable to treat mixed-

phase (middling) and weakly hydrophobic particles. To overcome this problem and to 

achieve a higher iron ore recovery, several new attempts and technologies are being 

developed with an added aim of achieving economical and environmental benefits through 

use of the jigging method [49, 38]. Upgrading of iron ore by jigging has been an emerging 

trend [82]. Flotation is also used for the beneficiation of finely grained ores [99]. The success 

rate of these conventional methods in fine particle size range is very limited as it depends 

upon the liberation particle size which in turn causes loss of fine iron ores into tailings. 

 

Flotation is one of the most important methods applied for the separation of mineral fines 

whose success critically depend on the degree of liberation of various phases present in the 

ore. Most of the countries producing iron ore use this technique as an effective beneficiation 

process to upgrade the iron values [74]. Direct anionic flotation or reverse cationic flotation 

routes are generally employed using fatty acids or amines as the respective collectors 

[99,143]. Usually cationic collectors are employed for ores bearing silicates and quartz, 

whereas anionic collectors are used for the beneficiation of iron and phosphorus bearing 

minerals. 

 

The problems associated with surface-based separation processes such as froth flotation may 

be overcome by using several enhanced gravity separators recently developed in the mineral 

processing industry [64]. Notable examples of the units include the Falcon Concentrator, 

Kelsey Jig, Knelson Concentrator and Mozley Multi- Gravity Separator [137]. All of these 

units are water-based devices which use centrifugal forces to improve the separation of fine 

particles based on differences in density. 
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Surface property-based separation processes such as froth flotation and agglomeration are 

very selective in rejecting well-liberated mineral matters [114]. However, efficiency of these 

processes gets reduced if the feed contains disproportionate amount of composite particles. 

Surface based separation processes are very intricate, need close attention and careful 

operation where as the conventional gravity-based separation techniques like spiral 

concentrator, water only cyclone or dense media cyclone have all been found to be inefficient 

for treating ultra fine particles in terms of selectivity and recovery [64]. 

 

Conventional gravity methods have limitations in processing very fine material and in 

removal of aluminous impurities. Falcon concentrator, one of the enhanced gravity separators 

(EGS), can generate high ‘G’ force up to 300 which can effectively separate very fine iron 

particles from the aluminous clayey particles. Over the last decade, EGS have found wide 

acceptance to mineral industries for concentration of fines and ultra-fine minerals in 

particular to precious metals such as Au, Ag, Pt [128]. 

 

The new genre of enhanced gravity separators overcome the problems associated with the 

surface-based separation processes as well as conventional gravity processes. A Falcon 

concentrator is a spinning fluidized bed concentrator, which is a combination of sluice and 

continuous centrifuge [114]. It enables the treatment of particles in the size range of 15-

20µm.  

The major advantage of enhanced gravity separation is its ability to reject composite particles 

more efficiently than flotation [143]. Among the enhanced gravity separators, the KCJ is very 

promising due to its higher production capacities and utilization of less plant area. The KCJ is 

successfully demonstrated for the concentration of tin, mineral sand, gold, platinum ores and 

iron ore slime. The Kelsey jig is an appropriate substitute to the conventional jig with some 

basic similarities [123]. The parameters of conventional jig are entirely utilized along with 
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additional features to vary the apparent gravitational field. The ability to increase the apparent 

gravitational field enhances the chances of recovery of fine particles by improving their 

settling characteristics. 

The low grade iron ore sample from Gua region was studied [104] and found that the ore is 

mostly hematitic in nature and considerable amount of goethite/limonitic material is also 

present in it. The major impurities were quartz and clay and iron bearing phases are poorly 

liberated above 300 μm and the liberation improves below 300 μm. More than 80% liberation 

is achieved below 106 μm. Based on the liberation data, ROM was crushed followed by 

grinding and deslimed. The underflow was subjected to various beneficiation techniques such 

as tabling, enhanced gravity separator (EGS), wet high intensity magnetic separation 

(WHIMS) and flotation. All these above methods were able to produce pellet grade 

concentrate with iron content of 64.5%, however, a marginal higher yield was observed for 

WHIMS (81%). 

The iron ore slime from Goa region was studied. It predominantly consists of goethite with 

subordinate hematite. The major gangues were reported in the form of ferruginous clay and 

quartz [25]. Since most of Indian plant tails are aluminous, selectivity of flotation is rendered 

difficult. Hence, the processing of iron ore slimes by magnetic separation seems attractive. 

The slime was crushed, scrubbed in log washer followed by classification in screw classifier. 

The classifier O/ F was subjected to hydrocyclone followed my magnetic separation in Longi 

VPWHIMS. The result shows that the  deslimed -0.1 + 0.01 mm fraction could yield 

marketable concentrates assaying > 62% Fe with 25-30 wt% yield, increasing production by 

5-6%, reducing the load on tail pond by 25%. Longi WHIMS was found to be a viable 

alternative for traditional WHIMS. 
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Mineralogical characterization both qualitative and quantitative of iron ore is a very 

important and basic aspect that has to get due attention before any attempt for its processing 

and has become almost inevitable these days because of the increasing demand of the ore. 

Mineral processing technology is evolved to separate and recover ore minerals from gangue 

in a commercially viable method and is mainly based on the process of mineral liberation and 

the process of mineral separation. Therefore, it is important to first get a clear understanding 

about ore- and gangue minerals. 

 

Indian iron ores are soft in nature accounting for around 58% Fe. The ratio between alumina 

and silica is more than one which is attributed to the association of iron bearing minerals with 

finely disseminated gangues may be in the form of silica/alumina. Presence of clay mineral 

like kaolinite, gibbsite contributes alumina [15].  

The blast furnace route of iron making is predominant in India. It has been established over 

the years that the productivity of blast furnace increases and energy consumption decreases 

by using superior quality of raw materials. 1% increase in iron content improves the 

productivity by 2% and reduces the coke consumption by 1%. 

Indian hematite though rich in Fe, but the alumina: silica ratio (1.5 to 3.0) for lumpy ore is 

detrimental to blast furnace as well as sinter plant productivity and should be less than 1.5 

and preferably below 1. In the blast furnace, 1% increase in alumina content increase coke 

rate by 2.2%, a decrease in productivity by 4% and an increase in flux consumption by 30kg/t 

of hot metal production. 

It has now been established both in laboratory and plant trials that alumina has an adverse 

effect on sinter properties like Reduction Degradation Index (RDI). According to one 

estimate, a decrease in alumina content in the sinter from 3.1 to 2.5% will improve RDI by at 
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least 6%, lower blast furnace coke rate by 14 kg/ t of hot metal and increase its productivity 

by about 30% under Indian operating conditions. Under these circumstances RDI is even 

more important. 

4.1 SET BACKS  

I) Banded iron-formations were created when solutions of iron oxides and silica 

precipitated in alternating layers. The iron oxides form hematite and/or magnetite; the silica 

forms chert. Iron and silica were supplied by volcanic activity common during the 

Precambrian period. The deposits accumulated to form distinctive gray (iron oxides) and red 

bands, hence the name "banded iron." Banded iron deposits constitute the largest source of 

iron ore now being mined in the United States and the world. A key question in the enigma of 

BIFs concerns the genesis of the characteristic alternating iron-rich and silica-rich bands. It’s 

very hard to believe that such periodicity can be attributed solely to variations in iron and/or 

silica influx. 

II) The deep-marine depositional environment construed for most BIF deposits. What 

could be the mechanism of transporting iron in its’ soluble form and subsequently 

precipitating it, on a regional scale, out of solution? 

4.2SCOPE OF THE REASEARCH 

The rapid mobilization of the primary earth resources, non- renewable resources in particular 

cannot be reversed or stopped, even slowing down will have a wide repression in mineral 

trade, industry and in the economy of a developing country like India. 

The present statistics of total reserves are not encouraging. Therefore, the total remaining 

resources should be converted into reserves by accelerated exploration activities to minimize 

the demand supply gap as well as to achieve necessitated desired growth. This activity 

requires certain gestation period for its reality. Only harnessing the high grade ore, our 
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country’s reserves will deplete in less than 40 years. So in the coming years, a good 

utilization plan has to be synthesized for the available iron ore. 

 

The overall situation suggests that for Indian steel industry, in this backdrop, the readily 

available sub-grade resources falling in between threshold value and saleable grade should be 

utilized. These constitute the potential sources for producing usable grade iron concentrate 

after beneficiation which needs to be exploited on priority. This processing will not only 

utilize existing discard material for recovery of valuable but also conserve limited high-grade 

lumpy hematite reserves in the country. The only way to utilize all types of iron ore within 

the country and add value to our valuable non-renewable resource is by bringing in new 

mining, beneficiation & agglomeration technologies. In the present research, much care has 

been taken in co-relating the characterization data with processing data in order to formulate 

the most suitable beneficiation route in terms of grade and recovery. 
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MATERIALS AND METHODS 

5.1 MATERIAL DETAILS 

The study of the different iron ore samples collected from the two localities i.e. Jhiling & 

Barsua are the main focus of this research project. Different samples collected from outcrops, 

sections, mine faces and drill cores of the Barsua & Jilling-Langalata iron ore deposits were 

characterized in respect of their physical, mineralogical and chemical properties and aspects 

of possible up gradation have been attempted. The different samples include banded hematite 

jasper, siliceous blue dust, goethite-lateritic ore and iron ore slime.  

5.2 METHODOLOGY   

• Thorough literature and patent search of various methods and practices of iron ore 

beneficiation including comminution, classification, gravity and magnetic separation, 

froth flotation, dewatering and agglomeration 

• Collection of data on geology and mineralogy of iron ores from Jilling-Langalata and 

Barsua- Kalta deposits of eastern India. 

• Processing and interpretation of chemical data. 

• Major and trace minerals using X-ray Fluorescence Spectrometry (XRF)  

• Mineralogical characteristics have been established for the lump ore and the slime. 

Detailed ore microscopy, image analyzer, Scanning Electron Microscopy- Energy 

Dispersive Spectroscopy (SEM-EDS) and X-ray Diffractometry (XRD) have been 

used in the characterization of different types of iron ores and slimes and accordingly 

the processing parameters designed accordingly. 
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5.2.1 MINERALOGICAL ANALYSIS 

Mineralogy of the various samples has been established by synthesizing the integrated results 

brought out by the following instrumental methods: 

5.2.1.1Optical microscopy 

Mineral identification is the most important aspect that is needed to be carried out prior to 

beneficiation. The basic instrument for mineral identification is an optical microscope. The 

polished surface types of ore samples were prepared using araldite in a mould to study under 

reflected light microscope. The samples were polished by conventional polishing techniques, 

cleaned ultrasonically and examined under Orthoplan Microscope (Leitz make). The 

mineralogy, texture, microstructure and inclusions etc. in respect of ore samples were studied 

by this method [45]. 

5.2.1.2Electron microscopy 

Unlike optical microscopy where light is the source for image formation. In electron 

microscope, the image formation is due to the scattering of electron beam scans over the 

sample. In general, this study i) brings out the size, shape and micro morphology of minerals 

and iii) their textural patterns. 

For Scanning electron microscope (SEM) study, the sample was degreased and dried then 

cleaned ultrasonically with acetone. After cleaning the sample was blown by using a 

compressed gas. Samples were compressed into small disks for mounting. Carbon tapes by 

an ion sputtered JFC-1100 was used for this purpose. The powder sample was sprinkled 

lightly with a spatula, pressed lightly to seat and then studied under a Japanese make electron 

microscope (JEOL JSM-6480LV). For this, the working height was kept at 15mm with 

working voltage ranging between 10 kV to 20 kV. For EDS, polished samples were taken 
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and examined at 15 mm working height. The working voltages for study was kept at 25 kV 

with beam current 100 nA.  By this technique, Energy dispersive  spectra (EDS) spectra of 

individual sample showing the semi-quantitative abundance of major and minor elements 

was brought out. 

5.2.1.3 X-ray diffraction 

X-ray diffraction technique (XRD) was extensively used for identification of various mineral 

phases especially the clay minerals and gibbsite for assessing the abundance of each phase in 

an ore sample. The XRD was carried out using PANalytical X-ray Diffractometer, MODEL 

D500 having automatic receiving slit, divergence slit, and graphite mono-chrometor 

assembly. Cu, Kα radiation operating at 40 kv and 20 nA was used for this purpose. A 

diffraction pattern recording the angle 2θ against the intensity was obtained over a range 

between 10˚ to 70˚ corresponding to d- values between 20 A and 1.34A. The scanning rate 

was 2˚ per minute with recorder full scale set in to 2 X 103 counts. Each mineral phase 

exhibits a characteristic reflection peak corresponding to its d-values. These of D values were 

matched from the [57] and various minerals were identified. Further the variations in the peak 

intensities of different mineral phases in the ore sample indicate their relative abundance.  

5.2.1.4 Zeta Potential 

In flotation, the response of many minerals is often dramatically affected by pH .Adsorption of 

collectors and modifying reagents in the flotation of oxide and silicate minerals is controlled 

by the electrical double layer at the mineral-water interface. In systems where the collector is 

physically adsorbed, flotation with anionic or cationic collectors depends on the mineral 

surface being charged oppositely. Adjusting the pH of the system can enhance or prevent the 

flotation of a mineral. Thus, the Iso electric point (IEP) of the mineral is the most important 

property of a mineral in such systems but raising the pH sufficiently above the IEP can repel 
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chemisorbing collectors from the mineral surface. Zeta potentials can be used to delineate this 

interfacial phenomenon. 

5.2.2 CHEMICAL ANALYSIS 

The objective of chemical analysis was to determine the chemical composition of the different 

ore types by different established techniques and distinguish the characteristics of one from 

the other by chemical means. The major, minor and trace constituents in different samples 

were taken up by wet chemical methods and using different instrumental techniques such as 

XRF. 

5.2.2.1 X-ray Fluorescence 

Major and minor constituents of various slag samples were analysed by XRF spectrometry on 

Phillips (PW-1400) X-ray spectrometer with Scandium and Rhodium targets using 

pentaerythritol (Al, Si), Thallium Acid Pathalate (Na, Mg), Germanium (P) and Lithium 

Fluoride (for heavier elements) as analyzing crystals in vacuum medium. International and 

in-house standards of appropriate compositions were used for calibration. Both major and 

minor elements were determined by pressed powered pellet technique. The specific gravity of 

iron ore samples was measured using picnometer by the standard method. 

5.3 BENEFICIATION UNIT OPERATIONS 

5.3.1 Crusher and grinder 

Crushing is the first mechanical stage in process of comminution in which the main objective 

is breakage of the material to the required size for effective liberation of valuable minerals 

from the gangue. Grinding is the last stage in the process of comminution; in this stage the 

particles are reduced in size by a combination of impact and abrasion. For this study, size 

reduction was done in a jaw crusher with opening size of 50/25 mm followed by roll crusher 

with opening size of 10/6mm. The crushed material was charged to batch type ball mill. The 
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operating conditions were (i) weight of the crushed material = 2kg, (ii) weight of the ball 

charged = 5kg, (iii) duration of grinding = 20 minutes, (iv) rotation of cylinder = 20 rpm. 

5.3.2 Hydrocyclone 

Hydrocyclones are continuously operating classifying devices that utilize centrifugal forces to 

accelerate the settling rate of heavier particles. It is one of the most important devices used in 

the mineral industry. Hydrocyclone operates under variable pressures [146]. It consists of a 

conically shaped vessel, open at its apex, or underflow, joined to a cylindrical section, which 

has a tangential feed inlet. The top of the cylindrical section is closed with a plate through 

which passes an axially mounted overflow pipe. The pipe is extended into the body of the 

cyclone by a short, removable section known as the vortex finder. The feed is introduced 

under pressure through the tangential entry which imparts a swirling motion to the pulp.  

The centrifugal force developed accelerates the settling rate of the particles thereby 

separating particles according to size, shape, and specific gravity. Faster settling particles 

move to the wall of the cyclone, where the velocity is lowest, and migrate to the apex 

opening. Due to the action of the drag force, the slower-settling particles move towards the 

zone of low pressure along the axis and are carried upward through the vortex-finder to the 

overflow. The hydrocyclone used for this investigation was of Richard Mozley. 
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Fig. 5.1.1 Schematic diagram showing different zones and the flow pattern of (a) 
hydrocyclone (b) wilfley table. 

5.3.3 Wilfley Table 

Shaking table utilizes flowing film concentration. The flowing film effectively separates 

coarse light particles from small dense particles. The equipment used for this study was of 

Carpco, USA make. The unit was driven by a 440 V, 3 phase motor.  

5.3.4 Jigging 

Jigging is one of the oldest methods of gravity concentration. In the jig the separation of 

minerals of different specific gravity is accomplished in a bed which is rendered fluid by a 

pulsating current of water so as to produce stratification. The aim is to dilate the bed of 

material being treated and to control the dilation so that the heavier, smaller particles 

penetrate the interstices of the bed and the larger high specific gravity particles fall under a 

condition probably similar to hindered settling. 

5.3.5 Wet High Intensity Magnetic Separator 

The magnetic separation was conducted in Wet High intensity Magnetic Separator (JONES- 

P40, Germany). The variables include: slurry density, feed rate, flow rate of wash-water, field 

intensity. The field intensity is adjusted depending upon the susceptibility of the minerals to 
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be treated. The ground material in the slurry with about 10 - 15 % solids is fed through a 

funnel. The magnetic particles are retained in the matrix and the non-magnetic particles are 

discharged and collected separately. Additional wash-water is added to wash the magnetic 

particles. The operation is continued till the non-magnetic particles are completely separated. 

At the end of the operation, the magnetic particles are collected separately. The parameters 

for the separation are fineness of the material, feed rate, quantity of wash water and field 

intensity. 

5.3.6 Falcon Concentrator 

The material is stratified according to specific gravity and then passed over a concentrate bed 

fluidized from behind by pressure water. The fluidized bed is required to retain coarse 

particles. Initially the design considered non-continuous operation, but with the years the 

design was improved and this centrifugal concentrator can work in continuous or not. There 

are several types of equipments to each need. The equipment functions and rising cycle are 

automated with variable frequency drive device. 

Generally, the higher the field or the stronger separation gravity forces between different 

particles of different density, the more fast and efficient is the separation. Within limits, an 

enhanced gravity concentrator can treat more material and recover finer particles if it is spun 

faster. Falcon concentrator is to produce centrifugal fields of 100g. The equipment can 

change this value if the unit is equipped with a variable speed motor. Concentrating surface 

area is the single most important determinant for enhanced gravity concentrator. The bowl 

has a high depth to diameter ratio when compared to other designs which means that for a 

given bowl diameter, Falcon has a higher unit capacity. It is not necessary to spin the 

concentrating surface to apply the enhanced gravity fields, it is also necessary to accelerate 

the slurry. If the valuable particles must travel through a thicker flowing film, they will need 

more time to reach the zone where they will be concentrated in the fluidized bed. The smaller 
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the flow of fluidizing water required, the less likely this water will transport fine particles 

away from the retention zone. The holes through which the fluidization water is injected in 

the Falcon concentrator are perpendicular to the axis of rotation. This consideration 

significantly reduces the tendency for holes plugged with solids from the slurry being 

processed. The retention zone is deep enough to allow the fluidization water holes to be 

larger and more widely spaced. Beneficiation study was undertaken on iron ore sample using 

a Falcon concentrator, Model SB-40, Falcon Inc, Canada. 

 

 

Fig. 5.1.2 (a) Schematic & Various zones of Falcon Centrifugal Concentrator (b) Fluidization 
Water Injection in Falcon concentrator. 

5.3.7 Kelsey Jig 

The new genre of enhanced gravity separators overcome the problems associated with the 

surface-based separation processes as well as conventional gravity processes. The Kelsey 

Centrifugal Jig (KCJ) works on the separation principles of a conventional jig employing a 

centrifugal force field. A much higher G-force (80-100 G) is obtained enabling the treatment 

of particles between 5 and 500 μm. It is apparent for very fine minerals, as the enhanced field 

significantly reduces the effect of forces that hinder finer particle separation. A schematic of 
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the KCJ is shown in Fig. 5.1.3.The separation efficiency of the KCJ depends upon several 

factors which include (i) spin frequency (ii) pulsation frequency (iii) nature of ragging 

material(usually selected on the basis of density that is intermediate of that between the 

valuables and gangues to be separated) (iv) the ragging bed thickness (v) the feed flow rate 

(vi) hutch water (required to maintain uniform bed fluidization in conjunction with the pulse 

frequency but wash fine heavies to tails if excessive) addition as well as (vii) the screen 

opening. The interaction among these factors is very complex in nature which renders the 

process extremely difficult to describe from a theoretical or modeling standpoint.  

The KCJ is fed down a fixed central pipe and the feed slurry is distributed at the bottom of 

the bowl, which flows upwards over the surface of a bed of ragging material supported by a 

cylindrical screen. The screen is spun coaxially with the rotor and pressurized water is 

introduced into a series of hutches behind the screen [125]. Water is pulsated through the 

ragging bed, which helps in stratifying the feed as well as dilating the ragging bed. Particles 

with specific gravity greater than or equal to that of the bed of the ragging material pass 

through the ragging bed. The principles of differential acceleration hindered settling, and 

interstitial trickling hold [137]. The differential acceleration rates are substantially enhanced 

by the higher apparent gravitational forces arising out of the rotation. The denser particles 

pass through the internal screen to concentrate hutches and then through spigots to a 

concentrate launder. The lighter particles are swept away by the rising flow and are 

discharged over a ragging retention ring into the tailing launder as shown in Figure. 5.1.3. A 

laboratory Kelsey Jig (Model No.J200 supplied by Roche Mining) was used in the study. The 

influences of spin frequency, pulsation frequency were investigated. 

 

 



72 
 

 

 

                                                                          

Fig. 5.1.3(a) Schematic of Kelsey Centrifugal Jig (IMPC, 2012) (b) Kelsey Centrifugal Jig set 
up at National Metallurgical Laboratory, Jamshedpur 

 

5.3.8 Flotation cell 

All flotation tests were performed in a 2.0 litre Denver D-12 Sub-aeration flotation cell. Time 

dependent concentrates were collected till the differences in cumulative weight of the 

concentrates became nominal. Most of the tests were carried out for 3 to 4 minutes. MIBC is 

used as frother; sodium oleate is used as collector and sodium silicate as depressant. pH of the 

pulp was measured by ORION 720-A pH80 meter. 
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CHARACTERIZATION OF IRON ORES 

Mineralogical characterization of iron ore is a very important and basic aspect that has to get 

due attention before any attempt for its processing and has become almost inevitable these 

days because of the increasing demand of the ore. Mineral processing technology is evolved 

to separate and recover ore minerals from gangue in a commercially viable method and is 

mainly based on the process of mineral liberation and the process of mineral separation. 

Therefore, it is important to first get a clear understanding about ore- and gangue minerals. 

From mineral processing point of view, it is important to identify the ore and gangue minerals 

(mineralogical study), and their textural relationships (grain size, grain boundary relationship, 

intergrowths etc.). Geometric information obtained from the textural analysis greatly 

influences the liberation of gangue minerals from the valuable minerals in the optimum size 

range during comminution [27].  An effective liberation of gangue minerals and ore minerals 

influences the optimum separation efficiency.  

Ore characterization study can provide critical information that will either assist in the 

development of a new processing flow sheet or the optimization of an existing one. Ore 

characterization relates to physical, chemical and mineralogical properties of raw materials to 

their behavior during their processing such as comminution, physical beneficiation as well as 

their hydrometallurgical processing. Practical processes for the efficient recovery of metals 

and minerals from ores are a fundamental requirement for the health of any industry.  

The principal objective of the beneficiation is to separate and recover ore minerals from 

gangue in a commercially viable method and mainly based upon the process of mineral 

liberation and the process of mineral separation. It has been commonly asserted that the 

second step is impracticable if the first has not been successfully accomplished [90]. Even 

though the ore is mined with the highest efficiency of the technology, the excavated ore gets 
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partly contaminated by the surrounding host rock (overburden) and the geological material 

closely associated with the ore during mining. Both the materials are undesirable and hence 

form gangue. The knowledge of occurrence of such detrimental elements is helpful to 

delineate the plan in advance for their removal [108].The mineralogical studies would also 

reveal the differences in the physical properties, which are relevant to their separation by 

physical means.  The presence of a large number of fissures, voids, crack and joints assist in 

the grinding process while massive and hard ores are difficult to grind [146]. 

The description of multiphase particles has always been of special interest to the mineral 

processing engineers. Mineral identification is the most important aspect that is needed to be 

carried out prior to beneficiation. Optical image analysis is a very convenient tool for 

obtaining comprehensive information about fine iron ore size fractions and in generating 

quantified data with respect to mineral distribution [93, 31].  

7.1 CHARACTERIZATION OF ORES 

Five samples were collected from the study area namely Banded Hematite Jasper, Siliceous 

blue dust, goethite-lateritic ore and iron ore slime and soft laminated ore. Soft laminated ore 

assay for more than 63% Fe doesn’t need any beneficiation before agglomeration process. 

The characterization of the remaining four samples is outlined here. 

A number of polish sections of iron ore samples of the area were studied for micro-

morphological characteristics under the microscope. The entire mineral assemblages can be 

divided in to two groups i.e. iron minerals and gangue minerals. Ore microscopic study 

reveals that the common iron minerals of the study area are hematite, martite, and magnetite. 

Goethite and specularite appear as the second phase minerals that have been transformed 

from early minerals. The gangue predominantly comprises of silicate minerals in the form of 

quartz/ jasper, clay minerals as kaolinite and discrete phase as gibbsite. 
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6.1.1 CHARACTERIZATION OF BANDED HEMATITE JASPER  

BHJ is unevenly banded with alternating layers of hematite and jasper, and the thickness of 

individual bands varies from a few mm to about 2 cm while average thickness is observed to 

be 1 to 2 mm. The bands also vary in color from gray or white to red, brown or black. 

Crosscutting of iron and jasper bands during different stages of sedimentation and diagenesis 

attests multiple generation of formation of minerals. In larger grains it is observed that 

continuous transformation and alteration processes are going on. Bands are generally parallel, 

while the concentration of iron ore minerals in an “iron-rich band” is more or less uniform; in 

a silica-rich band” it is highly erratic. There is wide range in thickness of banding of hematite 

and chert/jasper. One of the factors of thickening of bands is diagenetic intergrowth with 

band capturing of thin lamminae (Fig.6.3f). The ore shows complex interlocking between 

hematite and jasper. The ore shows complex interlocking between hematite and jasper (Fig. 

6.3a). Secondary quartz veins of various dimensions have been observed with in Banded 

Hematite Jasper (Fig. 6.1b). These quartz veins show cross cut relationships with Banded 

Hematite Jasper.  

Pinch and swell structures are sporadically observed in the bands (Fig.6.3a), which may be 

formed due to differential compaction of interlaminated heterogeneous sediments or 

differential compaction and dehydration of gelatinous material [101] Hematite phase in this 

ore is of secondary origin & is a product of oxidation of original magnetite called as martite. 

Martite, hematite and Quartz are in well crystalline form. Hematite appears to be a martitized. 

The martite, which is pseudomorphs magnetite, in most cases, retains the shape of original 

magnetite (Fig.6.3e). Disseminated secondary quartz also occurs in many samples. At places 

there are enriched zones of hematite. In BHJ, transformation of one mineral to another 

happens under the influence of heat, temperature, pressure. Crystallization proceeds almost 



77 
 

homogeneously and a large number of small crystals are formed by recrystallisation. 

Recrystallisation of Hematite might have produced due to hydrothermal fluids [63] but here 

magnetite gets converted to hematite due to oxidation. Hematite appears to be a martitized 

product of magnetite. At places there are enriched zones of hematite.   

Salt and pepper texture (Fig.6.3c) is a very common feature in BHJ formed due to Small 

disseminated volcanoclasts and quartz within the hematite base and vice versa. XRD patterns 

indicate various discrete mineral phases as shown in Fig. 6.2a. SEM pattern hematite grains 

stalked upon one another in BHJ (Fig.6.4a). EDS analysis shows a high percentage of Si and 

complex interlocking of hematite and jasper which made it very difficult for beneficiation. 

BHJ containing 35.29 % Fe, 49.12 % silica and 1.96% alumina with LOI of 1.01% had been 

taken for characterization study with a view to beneficiation. The liberation analysis (Table 

6.1) says that in BHJ samples, clay content is negligible but silica content is very high. 

Hematite and quartz are medium to very fine grained. About 80% of hematite grains carry 

extremely fine grained inclusions of quartz. The interlocking of quartz with iron oxides is of 

very complex nature. From size analysis study it was found that the sample is very hard and 

coarser fraction comprises of around 80% indicating higher concentration of gangues in 

coarser fractions. Liberation analysis shows that about 48% interlocking still exists in -

150+100 μm size. The complexity of interlocking between iron oxides and quartz wherein 

quartz ranging in size range of 5-10μm are intimately associate with the ground mass of 

hematite and vice versa creates difficulty in liberation. Some of the iron oxide grains that are 

free from interlocking also carry fine inclusions of quartz. In BHJ samples, clay content is 

negligible but silica content is very high. Hematite and quartz are medium to very fine 

grained. About 80% of hematite grains carry extremely fine grained inclusions of quartz.  

The size analysis result of BHJ is listed in Table. 6.2. From the size analysis study it can be 

confirmed that the ore is of poor grade in nature. The Fe assay is almost uniform in all size 
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ranges. In coarser size Fe accounts for around 30% where as with decreasing size it increases 

but the increase is not much significant. 

 

From the Zeta Potential study (Fig.6.1), the IsoEletric Point/ Zero Charge Point of BHJ  is 

found to be at at pH 4.0 which in turn indicates that the ideal pHcondition for flotation is in the 

range of 6-10. 

 

Fig.6.1 Zeta potential vs pH of BHJ 
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Fig. 7.2: XRD pattern of (a) banded hematite jasper (b) siliceous blue dust with identified 
phases. (Hm-Hematite,Go-Goethite & Q-Quartz
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 Fig. 6.3: Photomicrographs of Banded Hematite Jasper under reflected light microscope (a) Stylolitic intergrowth of hematite and chert bands 
of equal amplitude in opposite direction forms pinch and swell (b) disseminated quartz grains. skeletal nature of euhedral martite after 
magnetite (known as kenomartite) (c) Salt and pepper structure in BHJ (d) Some bands of magnetite are absolutely transformed to hematite (e) 
Octahedral martite (f) Macro-band of hematite & jasper in BHJ. 
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6.1.1.1 Distinguished features 

The state of art characterization study shows the presence of hematite and quartz as major 

phases. Ratio of iron ore minerals to gangue minerals concludes size reduction is needed for 

further beneficiation. Textural study revealed the complex relationship of hematite and quartz 

due to its mineral association and intergrowth patterns developed among ore minerals and 

gangue minerals. The exact cut-off size to liberate quartz grains is difficult to determine due 

to its significant variation of grain sizes. Such a low grade ore with such complex 

interlocking pattern may not render the beneficiation process economically viable. The ore 

requires multiple stages of crushing & grinding followed by classification, gravity and 

magnetic separation and/or froth flotation may be required to produce a sufficiently high 

grade concentrate. It may also be noted that attaining liberation may be an extremely difficult 

job requiring comminution down to about a few microns.  
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Table 6.1: Liberation data of banded hematite jasper, Goethite- lateritic ore, iron ore slime 
and low grade iron ore fines showing abundance of various phases converted to wt %. 

 

        

Mineral phases/ Size in 
micron  -1000+600  -600+500  -500+300  -300+200  -200+150 

 
-150+100 

Banded Hematite Jasper  
Free goethite 0 0 0 0 0 0 
Percentage of iron liberated 37.85 39.75 40.05 41.40 43.56 48.0  

 
Percentage of interlocking 
(iron+ gangue) 

43.45 40.06 36.59 24.22 17.44 13  
 

Percentage of gangue 
liberated  

17.69 20.18 23.35 34.38 39 39 

       
Goethite- Lateritic Ore 

  -3200+595  -300+250  -250+150  - 150+100 -- -- 
Free goethite 16.59 19.98 23.45 26.28 -- -- 
Free gangue 
(kaolinite+gibbsite) 12.56 15.94 22.73 25.73 -- 

 
-- 

Free hematite 25.74 29.94 35.93 39.30 -- -- 
Interlocked ( iron + 
gangue) 45.12 35.14 17.89 8.69 -- 

-- 

Percentage of iron mineral 
liberated  58.46 67.62 81.57 90.16 -- 

 
-- 

       
Iron ore Slime  
 -500+ 297 -297+211 -211+150 -150+100 -100+75 -75+65 
Free goethite 11.5 11.6 9.3 11.0 12.4 16.7 
Free hematite 4.1 5.1 11.6 26.2 35.6 46.0 
Interlocked ( iron + 
goethite) 57.1 57.0 52.3 39.3 

33.5 23.3 

Free Quartz 4.3 3.4 4.2 2.1 4.7 4.0 
Percentage of iron mineral 
liberated  76.9 77.1 77.3 78.6 

 
86.2 

 
90.1 

       
Siliceous blue dust/ Iron ore fines  

   -350+300  -300+250  -250+150  -150+100 
 
-100+75 

 

Free goethite 1.86 2.5 2.72 3.5 -- -- 
Free gangue 
(kaolinite+gibbsite) 5.90 8.24 9.43 10.5 -- -- 
Free hematite 72.89 74.80 77.08 80.81 -- -- 
Interlocked ( iron + 
gangue) 15.29 12.15 8.87 4.69 -- -- 
Percentage of iron mineral 
liberated  

78.38 
 

84.93 
 

86.13 
 

87.78 
 -- -- 

     -- -- 
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Fig. 6.4 SEM photomicrographs with energy dispersive spectroscopy of iron ore 
samples, (i) hematite grains stalked upon one another in BHJ (ii) siliceous blue dust 
sample showing microplaty hematite. 
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6.1.2 CHARACTERISATION OF SILICEOUS BLUE DUST/ LOW GRADE IRON 

ORE FINES 

Blue dust is a natural occurrence of iron-ore in very fine form and is of high grade. 

Sometimes it is exposed near the surface and is subjected to weathering. In the surface zone it 

becomes partially weathered and of low grade.  A low grade iron ore fine sample has been 

taken for characterization and possible beneficiation.  

Megascopically siliceous blue dust looks mono-mineralic, but detailed microscopic 

examination reveals the presence of an admixture of very fine to coarser fragments of 

hematite and goethite (Fig. 6.5). Hematite and goethite are the iron phases. Quartz and 

kaolinite are the associated gangue minerals. Hematite, usually occurring as elongated 

anhedral grains, is the main constituent of low grade iron ore fines. In general, goethite in 

blue dust is rare but due to near surface weathering it is commonly found and thereby making 

the ore low grade. Sieving results indicate the presence of ore pieces even larger than 3 mm 

in size. The coarse grains in different sieve fractions are almost weathered and have a spongy 

structure. Total removal of interstitial silica has lead to the development of this type of iron 

ore, which is flaky, extremely friable and fine-grained in nature. Some grains are quite hard 

and tough. This is because they could have escaped the intense chemical weathering that has 

leached out the matrix material (mainly the gangue minerals). Therefore, less leached and 

hard pieces contain least impurities. At places, the cavities of the spongy-structured 

fragments are filled by secondary clay (Fig. 6.5d).  

Goethite being the most common secondary mineral formed in the process of remobilization 

known as goethitisation along the crack and cleavage planes (Fig. 6.5a). Long slender 

specular hematite (Specularite) is developed both from magnetite and hematite (Fig.6.5 b & 

f) in the pressure and/ or shear zone which are also termed as micro platy hematite. 

Sometimes it is found that specularite co-exists with magnetite. 
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X-ray diffraction study was carried out with a view to identify mineral phases in the low 

grade iron ore fine sample. In the diffractogram, shown in Fig. 6.2b it can be seen that 

hematite and goethite are the major iron bearing phases. SEM of a coarse grain of blue dust 

shows that it consists of microplaty hematite (Fig. 6.4b). Micro-platy hematite is interlinked 

like a network of minerals with pores in between. In coarse grains these pores are generally 

filled with quartz and clay. Secondary microplaty hematite occurs in many different 

environments but importantly, where unmodified by metamorphism, it is the defining minor 

component of the high-grade BIF-hosted iron ores of the world that are dominated by martite 

Size analysis data of the siliceous blue dust sample is shown in Table 6.3. From these data it 

is seen that the sample is fine in nature and the size distribution is almost uniform in all 

fractions. Substantial amounts of the fines are below 150 µm in size range. 

The specific gravity of the low grade fines was measured using picnometer by the standard 

method and found to be 3.19. Low grade blue dust/ Low grade iron ore fine samples contain 

50.24% total Fe, 12.86% silica and 4.03% alumina with an LOI of 6.42%. The chemical 

analysis over various size ranges which is elaborated in Table 6.3., indicate that Fe is 

predominantly concentrated in the finer size fraction. It can be noted that -100 µm fraction 

contains about 56.4 % Fe with 6.9% SiO2 and 5% Al2O3.  

The low grade iron ore fine sample is powdery in nature consisting of fine flakes of hematite 

and other impurities; mainly shale/clay and silica. Optical microscopic studies revealed that 

the size of the impurities which may be inherited from the parent rock or secondary in nature 

remains around and below 150 µm. The result of the liberation study is presented in Table 

6.1. From size analysis study it is found that the Fe distribution is almost uniform over the 

entire size range. The liberation pattern is intermediate in the upper range with around 15% of 

interlocking which keeping on decreasing with decrease in size and around 88% of Fe is 
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liberated in -150µm. so a size reduction down to 150µm is required to separate the valuables 

from gangues. 

6.1.2.1 Heavy Liquid Separation 

Characterization of LIF was also performed using sink-float studies in heavy liquid to assess 

the quality of the iron ore samples. Pure bromoform (specific gravity= 2.89) was used to 

quantify the heavy (sp.gr. >2.81) and light (sp.gr. < 2.81) content of the sample. Heavies’ 

content in the sample generally increased with decreasing particle size. 

Table.6.2: Sink-Float study results of LIF 

Size (in microns) Sink wt% Fe Assay % 
+500 91.8 60.09 
+300 91.5 62.89 
+200 82.6 63.23 
+150 64.8 63.60 

 

6.1.2.2 Distinguished features 

Though the alumina and silica content together is close to 16% in the bulk LIF sample, this 

content is low in the fines. The coarser lumps can be separated by simple screening. The 

coarser lumps contributing about 80-90% of the alumina and silica require proper 

beneficiation. 

The mode of occurrence of alumina in the coarse lumps (>150 µm size) is interstitial / intra-

granular and it is bounded by colloidal hydrated oxides of iron. Therefore, in the lumps it will 

not be possible to lower the alumina level by simple washing.  

Therefore, in the lumps it will not be possible to lower the alumina level by simple washing. 

At around 300 µm adequate liberation is achieved. Also, the grade of is moderate (52% Fe). 

Therefore, comminution followed by gravity separation may not be adequate to prepare an 

acceptable concentrate grade from this type of ores.  
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Table 6.3: Size distribution and size-wise chemical analyses of BHJ and LIF (Siliceous BD) 

Banded Hematite Jasper Low grade iron ore fines/ Siliceous blue 
dust 

Particle size μm Wt. %  Fe %                                                                                                                         Particle size μm Wt. %  Fe % 
-6.3+3mm 15.7 28.3 -3+1mm 8.2 43.5 

-3+1mm 15.5 31.0 -1000+853 5.2 46 
-1000+853 10.10 32.7 -853+600 9.5 47 

+600 10.5 35.6 +500 5.5 51.1 
+500 6.8 34.9 +300 6.8 52.1 
+300 6.829 35.7 +200 5.7 53.7 
+200 6.73 34.4 +150 6.9 52.1 
+150 6.874 36.5 +100 10.9 54.4 
+100 5.92 38.1 +75 10.1 56.4 

-100+75 5.15 41.8 -75+66 3.6 46.1 
-75+66 3.57 31.1 Composite 100 50.24 

Composite 100 34.5    
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Fig. 6.5: Photomicrographs of LIF showing(a) alteration of hemetite into goethite(b) microplaty Hematite, (c)hemetite disseminated in 
goethite(d)clay within hematite(e)large grain of hematite with clay(f) Specularite with kaolinite precipitated in void spaces/cavities
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6.1.3 CHARACTERISATION OF GOETHITIC- LATERITIC ORE  
 
Lateritic ore is earthy in luster and limonitic red in color, yellow with white patches. 

Goethite-Lateritic ore mainly contains goethite, hematite (as subordinate mineral), kaolinite, 

gibbsite and quartz. Goethite which is common in lateritic profile/ surfaces of iron ore 

deposits is abundant in all the samples. Ore microscopic studies reveal presence of colloform 

and cavity filling texture. There are extensive vein filling by goethite precipitation.  

From mineralogical study, it is evident that the ore has two distinct types of valuable minerals 

i.e. i) crystalline hematite with disseminated inclusions (Fig.6.8e) and microcrystalline 

hematite particles with microcrystalline goethite (Fig.6.8d). Vitreous goethite, being hard and 

crystalline is abundant in the sample (Fig.6.8e). Most of the lateritic samples show high 

degree of porosity. These pores are the most favorable sites for clay deposition (Fig. 6.8h), 

which is mainly responsible for the high alumina content in this ore rendering it difficult for 

use in iron making without rigorous beneficiation. These cavities are also partly filled by 

gibbsite and kaolinite (Fig.6.8b). Spongy hematite and martite partly or wholly transformed 

to goethite and later concreted by goethite precipitation along the wall of the tubular pores. 

This ore also exhibits multiple joint and fracture surfaces along which the clay and goethite 

precipitation takes place (Fig.6.8c). Goethite replaces hematite indifferent degrees (Fig.6.8c& 

f). Kaolinite occurs in intimate association with goethite but free quartz grains are uncommon 

indicating that silica is available in the form of kaolinite. Majority of the kaolinite grains are 

embedded with iron hydroxide minerals i.e. goethite. Gibbsite is the predominant alumina 

contributing mineral and occurs intimately intermixed with goethite. Gibbsite & clay 

minerals are present as microcrystalline to cryptocrystalline aggregates. Colloform texture of 

weathered goethite is observed in Fig.6.8b. Free quartz is rarely observed. 
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Goethite changes to limonitic clay due to dissolution and re-precipitation. Goethite occurs as 

massive mass occasionally with secondary hematite. Goethite and clay at places occur as 

oolitic or pisolitic grains cemented together (Fig.6.8 a). Small highly altered relicts of martite 

ore fragments are common within goethite. Goethite partially dehydrates to hematite. The 

clay bearing laterite contains clusters of gibbsite grains in the voids and fine kaolinite needles 

in the nodules and pisoids.  

XRD pattern reveals that lateritic ores mainly comprise of hematite, goethite and clay 

minerals (Fig. 6.7). SEM observation of goethite-lateritic ore shows that goethite is the 

common mineral (Fig. 6.6). It is formed under oxidizing conditions as a weathering product 

of iron bearing-minerals. The alumino-silicates are intricately associated with goethite and 

are very difficult to remove from the ore. 

SEM observation of goethite-lateritic ore shows that goethite is the common mineral (Fig. 

6.6). It is formed under oxidizing conditions as a weathering product of iron bearing-minerals 

[62]. The alumino-silicates are intricately associated with goethite and are very difficult to 

remove from the ore. 

A number of images were processed and the conclusion drawn was most of the iron bearing 

minerals are fully or partially weathered (Fig.6.6A) resulting in substitution of most of the 

iron oxides with Al in mineral grains (Fig.6.6B). At point b (Fig.6.6B), it is free of silica 

which can be substantiated from EDX. At the same time it is porous and rich in alumina. This 

substitution can normally happen in goethite grains which are resulted due to the weathering 

of iron oxide particles.  

A very low grade Goethite-lateritic ore collected from Barsua iron ore deposits of Eastern 

India. The sample contains 38.19% Fe, 9.48%SiO2, 19.97 Al2O3. Goethite- In the present 

work attempts have been made to understand and characterize the lateritic iron ore to 

ascertain the feasibility of their beneficiation for value addition. 
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The weight percentage distribution of goethite-lateritic ore sample in respect of various size 

fractions is shown in Table.6.4. From size measurement it is evident that the ore is coarse in 

nature at the same time, the finer fraction (<150) accounts for 13% indicating significant 

amount of slime generation during washing. The coarser fraction requires suitable grinding 

for proper liberation. The Fe assay is almost uniform over the entire size range. 

 
Liberation analysis of goethite-lateritic ore shows (Table 6.1) that in coarser fractions 

percentage of interlocking is very high which decreases with decreasing particle size. Low 

free hematite content and higher gangue contents indicate very low grade of this type of iron 

ore. Complex interlocking nature of the particles shows that the liberation can be achieved 

below 150 µm size. Achieving high purity concentrate in beneficiation of this ore is likely to 

be quite difficult due to the complexity of interlocking. Proper comminution is required to 

break the interlocking and attain good liberation in this case. 
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Table. 6.4: Size distribution and size-wise chemical analyses of Goethite-Lateritic 
ore & Iron ore slime 

 

 

 

 

 

 

Goethite-lateritic ore Iron ore slime 
ParticleSize, μm Wt % Fe Assay Particle Size, μm Wt % Fe Assay 

2000 40.24 42.32 +1mm 19.89 56.08 
1000 10.60 41.64 -1+500 6.59 52.04 
853 5.87 39.07 -500+250 5.26 54.15 
600 8.72 38.24 -250+200 4.72 54.52 
500 4.08 38.43 -200+150 7.53 57.35 
300 5.74 37.64 -150+100 4.52 58.36 
200 2.23 37.35 -100+75 8.53 59.73 
150 6.40 37.39 -75+66 3.13 60.76 
100 1.68 37.72 -66+50 4.11 61.82 
75 2.07 37.20 -50+37 3.09 62.80 
66 0.62 35.45 -37+25 4.54 54.23 

<66 11.75 33.70 <25 32.92 50.83 
Composite 100 38.19 Composite 100  
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Fig. 6.6 SEM photomicrographs of goethite-lateritic ore  
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Fig. 6.7: XRD patterns of Goethitic-Lateritic ore (a) ore fraction shows presence of 
hematite and goethite. 

 

6.1.3.1 Distinguished features 

In case of lateritic iron ores, the iron bearing grains are highly weathered due to surface 

weathering of the bulk ore in the deposit. The iron occurs mainly in hydroxy form as goethite 

interlocked with kaolinite and gibbsite. The liberation analysis illustrates that the impurities 

are concentrated at finer size fraction, which contains ferruginous clayee material such as 

kaolinite etc. These ores must be upgraded by thorough and proper processing after adequate 

comminution to attain liberation. The concentration criterion [146] for these ores is found to 

be less than 2.5. Therefore, simple gravity separation will not be much effective. These ores 

may be upgraded by using advanced gravity separation techniques in the first stage. Further 

purification may be achieved using wet high intensity magnetic separation. If this stage also 

fails to achieve the required grade, froth flotation to remove the gangue may be tried at the 

final concentration stage. 
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Fig.6.8: Photomicrographs of Goethite- Laterite iron ore (a) Gibbsitic clay (reddish black) bounded by goethite (grayish white), 
characteristic of Lateritic ore (b) colloform goethite with clay (c) joint and fracture surface along which goethite and clay 

precipitation takes place (d) microcrystalline hematite with microcrystalline goethite (e) vitreous goethite (f) cavity filling by goethite 
precipitation (g) Vein filling by goethite precipitation (h) Highly porous goethite & cavities are filled up by clay 
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6.1.4 CHARACTERISATION OF IRON ORE SLIME 

During washing and sizing of the ore, slimes with less than 0.21 mm size are generated and 

discarded into the tailing pond. It is estimated that around 10 million tonnes of slimes are 

being generated every year during the processing of hematite ore and lost as tailings 

containing around 48-62% of Fe. Iron ore slime is typified by the presence of high percentage 

of alumina. In India, beneficiation and utilization of slime is yet to be practiced on an 

industrial scale. Considering the present magnitude of the iron ore slimes generation 

annually, the quantities of slimes accumulated over the years, the fact that these slimes are 

available in already ground form and assaying reasonably high % Fe, it is obvious that if 

properly beneficiated, these slimes can be considered a national resource.  Beneficiation and 

utilization of slime is gearing up but not practised on an industrial scale in India.  

 

Sieving of iron ore slime sample was carried out using the Vibratory Laboratory Sieve 

Shaker. For the separation of 200 micron particles micro-precision sieves were used.  It is 

seen from the size measurement that the slime is extremely fine in nature. Substantial amount 

of the slime is below 50µm. The size analysis result of iron ore slime is shown in table 6.4. 

 

The presence of hematite, goethite, magnetite, kaolinite, and quartz is also supported by X-

ray diffraction data.  XRD analysis of the clay material shows that it is mainly composed of 

kaolinite.  Some of the ore fragments have undergone weathering, producing ochreous 

goethite, and kaolinite. Therefore, this can be termed as lateritic ore.  It is generally soft and 

friable and leads to slime generation during handling. 

Microscopic studies reveal that the slime sample consists of relict magnetite, martite, 

hematite, goethite and quartz as also inferred from XRD. Hematite/martite/magnetite occurs 

in two different modes: a) as independent coarse grains (Fig. 6.9c) and as intergrowths/ 
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inclusions within goethite (fig. 6.9d). Rim like structure is also developed in goethite where 

the outer rim is of ochreous goethite and it is interlocked with clay. The inner rim is vitreous 

goethite which is hard and crystalline in nature (Fig.6.9a). Occurrence of clay is more at 

places where the ore has become porous due to weathering and altered. Some of the samples 

are martitized with relict magnetite (Fig.6.9c) grains present in the ore samples indicating 

oxygen from infiltration water was incorporated into the magnetite lattice during the martite 

formation. Hematite is recrystallised from magnetite through martite. Martites preserve the 

skeletal remains of magnetite with internal voids, which is known as Kenomartite (Fig.6.9e). 

SEM and EDS of liberated iron particles containing low silica and alumina is shown in Fig. 

6.10c. Most of the clays (kaolinite and gibbsite) are ferruginous and occur as limonitic 

kaolinite. Kaolinite in iron ore slime mainly contributes towards the high Al2O3. The iron 

particles (Fig. 6.10a) are not porous and are relatively compact having smooth surfaces 

containing very low percentages of impurities. Microscopic studies reveal that the bands 

consist of relict magnetite, martite, hematite, goethite and quartz as also observed using 

XRD. 

Aluminum is common in weathering environment results in Al substitution in most of the 

iron oxides. This substitution can also occur in hematite. Hematite is essentially composed of 

Fe and O, but it may contain variable quantities of impurities viz., Al, Si in the range of about 

2-5%.  

Liberation analysis shows that in coarser fractions, interlocking between hematite and clay is 

significant. Predictably, the percentage of clay-hematite interlocking decreases with 

decreasing particle size. Liberation analysis (Table.6.1) shows that in coarser fractions 

hematite is highly interlocked with clay.  
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Figure.6.9: Photomicrographs of iron ore Slime under Microscope (a) colloform structure of vitreous goethite with fracture filling(b) Rhythmic 
precipitation of goethite with porous martite (c) Recrysatllised hematite grains in magnetite base (d) Interlocking of goethite & clay, martite & 
clay (e) skeletal nature of euhedral martite after magnetite (known as kenomartite) (f) Specularite as secondary iron ore mineral. 
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Fig. 6.10: SEM Photomicrographs with EDS of iron bearing particles of slime. 
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Fig.6.11XRD pattern of iron ore slime of Barsua iron ore with different phases (a) Quartz, 
goethite and hematite, (b) Hematite and (c) Hematite and magnetite (Qt-quartz, Mt-

magnetite, Hm-hematite, Go-goethitie). 

 

 

 



 

101 
 

6.1.4.1 Distinguished features 

Mineralogy, physical and chemical characteristics suggest that the iron ore samples from 

Indian deposits contain porous and friable oxides and hydroxides of iron with kaolinite and 

quartz. 

In Indian iron ore samples hematite mainly occurs as specularite with inter-granular micro-

pore spaces. Goethite is abundant and occurs as secondary colloform texture in cavities along 

the weaker bedding planes. Such inter-granular pore spaces and voids along the weaker 

bedding plane are very fragile making the hematite and goethite friable during mining and 

processing. These friable particles break down and account for the iron content of the slime. 

Most of the bulk ore samples contain numerous cavities. These cavities are mainly filled with 

clay in the form of kaolinite and gibbsite. Kaolinite and gibbsite are very friable and easily 

crumble into ultrafine sizes during mining and processing operation leading to greater 

concentration of alumina in the slime. 

Optical microscopic studies revealed that in Barsua iron ore slime hematite is the most 

abundant phase and the other iron-bearing phase is goethite having white and light grey 

features respectively and the goethite occurs in very low quantity. Quartz and clay are the 

main gangue phases, and they can be easily distinguished from all iron bearing minerals. Iron 

is interlocked with clay. Most of the quartz occurs as free liberated grains. The gangues are 

highly liberated where as for iron it is vice versa. It indicates beneficiation will be effective at 

lower size range. Iron principally present in two phases i.e. oxy-hydroxyl and oxide phase. 

The principal oxide minerals are hematite; martite and hydroxides such as goethite and 

limonite are predominantly observed. 
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BENEFICIATION OF IRON ORES 

Iron ore is being beneficiated all round the world to meet the quality requirement of Iron and 

Steel industries. However, each source of iron ore has its own peculiar mineralogical 

characteristics and requires the specific beneficiation and metallurgical treatment to get the 

best product out of it. The choice of the beneficiation treatment depends on the nature of the 

gangue present and its association with the ore structure. Mineral beneficiation is 

characterized by a constant adaptation to changing raw materials and market conditions. It is 

the link between the mined raw material and a marketable product. As a lot of high grade 

reserves are exploited, a steady deterioration of raw material quality can be observed. At the 

same time, the customers´ requirements for product purity and consistent quality increase. 

Several techniques such as washing, jigging, magnetic separation, advanced gravity 

separation and flotation are being employed to enhance the quality of the Iron ore. Washing, 

jigging and classification are being carried out for the beneficiation of Iron ores in India.  

Indian Iron ore is typified by high alumina and silica in comparison to rest of the world. 

Along with Hematite, goethite is the other predominant iron phase which causes hurdles in 

beneficiation.  

 

7.1 BANDED HEMATITE JASPER (BHJ) 

The gangue and ore minerals contained in Banded Hematite Jasper vary significantly in their 

physical properties i.e. magnetic and gravity properties. Therefore gravity and magnetic 

separation techniques are the potential low cost techniques that can be applied to pre-

concentrate or beneficiate such ores. The fine size of the ore and gangue minerals and their 

poor liberation is however one of the constraint that limits its beneficiation at coarser stage.  



 

104 
 

The feed size-wise chemical analysis shows 35% Fe (T) with 49% Silica. Textural 

characterization study revealed the complex relationship of hematite and quartz due to its 

mineral association and intergrowth patterns developed among ore minerals and gangue 

minerals. The presence of ultrafine grains of quartz and hematite within the ore and gangue 

mineral bodies indicates that the BHJ sample is very difficult to beneficiate even at very fine 

grind size. Proper comminution is required to break the interlocking. Good quality liberation 

is observed at a particle size < 50 μm. Such a low grade ore with such complex interlocking 

pattern may not render the beneficiation process economically viable. Achieving high purity 

concentrate through beneficiation of this ore is likely to be extremely difficult. An elaborate 

and complicated flow sheet with multiple stages of comminution, classification, gravity and 

magnetic separation and froth flotation may be required to produce a sufficiently high grade 

concentrate. 

7.1.1 BENEFICIATION OF BANDED HEMATITE JASPER (BHJ) 

From the detailed characterization studies, it has been observed that in BHJ, the clay content 

is low but silica content is very high. Consequently, the grade of the ore is very low (35% 

Fe). Also, the quartz is very finely disseminated rendering it extremely difficult to attain 

liberation. Concentration of iron is almost uniform over the entire size range. 

In order to improve the grade and obtain a concentrate with permissible gangue content a 

four-stage concentration is developed. To study the beneficiation prospects of coarse 

particles, a first stage of gravity separation in Wilfley Table was carried out. It may be seen 

that about 45.40% solids is recovered in the concentrate product. The experimental 

conditions, 3˚ deck slope and 1.68 cc per cm/ sec. water flow rate are kept constant in all 

tabling experiments. The results obtained are reported in Table 7.1.1. It is observed that the 
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quality of the ores improved significantly by tabling. In the BHJ, the concentrate grade 

improved to 49% iron by processing the feed ground to <1mm.  

Table 7.1.1Wilfley table test results with 3˚ deck slope and 1.68 cc. per cm/sec water flow 

Product Fe (%) SiO2 (%) Al2O3 (%) Yield (%) 
Conc. 49.0 27.8 3.8 45.40 

Middling 27.0 34.6 8.5 43.24 
Tailing 22.0 36.9 9.3 11.36 
Feed 35.29 49.12 4.3 100 

 

It is observed that the quality of the ores improved significantly by tabling but the impurity 

content is beyond permissible limit (alumina: silica < 1.5% and preferably < 1%). 

7.1.1.1 Effect of concentration criteria 

Theoretically, effective gravity separation is possible when the concentration criterion (Wills, 

1988) for these ores is greater than 2.5 (Equation 8.2.1).                         

   5.2>
−
−

fl

fh

DD
DD

                             ----------------------- (7.2.1) 

where, Dh is the specific gravity of the heavy mineral, Dl is that of the light mineral and Df is 

the specific gravity of the fluid medium. 

Gravity separation is relatively easy when the quotient is greater than 2.5. As the value of the 

quotient decreases, the efficiency of separation decreases. Below about 1.25, gravity 

separation is not practically feasible [146]. The specific gravity of hematite is 5.5 to 6.5 

whereas it is 4.1 to 4.3 for goethite. Specific gravity values of kaolinite, gibbsite and quartz 

are in the range of 2.3 to 2.6. In the case of hematite ore, separation criterion, as shown in 

Equation (7.2.1), is estimated to be in the range of 2.81 to 3.44. In the present work, low 

percentage of iron is going to the tailings product during tabling operation of (Table 7.1.1) 
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feed is observed. This is due to a higher concentration criterion above 2.5 and thereby 

enhances the efficiency of separation. 

Further concentration of tabling concentrate is carried out in a falcon concentrator. A number 

of tests were conducted by varying the water pressure and rpm. The results under optimum 

operating conditions are given in Table 7.1.2. The best test results obtained under operating 

conditions of 40 Hz and 15 psi.  Fe content was increased to 60.01%% with a yield of 

56.08%. The concentrate grade is still not good enough to be accepted commercially.  

Liberation analysis of different ground size fractions of the ores suggests that the grain size 

reduction to less than 150 sizes is necessary to achieve sufficient liberation of iron ore 

minerals from its gangue (Table 6.1). Therefore, the falcon concentrate i.e. <1mmsized 

materials are subjected to further comminution to 150µm. In continuation with the earlier 

work the Falcon Concentrate of BHJ was subjected to Wet High Intensity Magnetic separator 

in accordance with mineralogical studies showing that in BHJ ore, most of the irons bearing 

particles are hematite, which are paramagnetic in nature. So Wet High Intensity Magnetic 

Separator (WHIMS) has been used and Fe can be enriched to 61.03 with 8.26% SiO2 and 

10.27% Al2O3.  

In a magnetic separator apart from the magnetic force, several competing forces act on a 

particle. These are, among others, the force of gravity, the inertial force, the hydrodynamic 

drag and surface and inter particle forces. However, among the competing forces gravity and 

hydrodynamic drag forces are the major competing forces.  
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Table 7.1.2 Falcon &WHIMS test results of banded hematite jasper 

 Falcon test results of tabling conc.  
in optimum condition of 40Hz, 
15psi 

WHIMS test results of Falcon conc. 
with 10% solids, .5 Amp. Current and 
20 lpm Wash water 

 
Product 

 
Fe (%) 

 

 
SiO2 
(%) 

 

 
Al2O3 
(%) 

 

 
Yield 
(%) 

 
Fe (%) 

 

 
SiO2 
(%) 

 

 
Al2O3 
(%) 

 

 
Yield 
(%) 

 
Concentrate 

 
60.01 

 

 
10.08 

 
2.70 

 
56.08 

 
61.03 

 

 
8.26 

 
2.3 

 

 
60.19 

 
Tailing 

 
36.31 

 

 
12.78 

 

 
22.40 

 

 
44.91 

 
29.88 

 
37.48 

 
21.57 

 
39.81 

 
Feed 

 
49.0 

 
27.8 

 
3.8 

 
100 

 
60.0 

 
10.08 

 
2.70 

 
100 

 
 
 

The force of gravity is expressed as                    

gVFg
rr

ρ=
   Where ρ is the density of the particle while g is the acceleration due to gravity. 

The hydrodynamic drag is given by    

pd bF νµη6=
r

              

Where η the dynamic viscosity of the fluid, b is the particle radius and νp is the relative 

viscosity of the particle with respect to the fluid. 

WHIMS result (Table 7.1.2) of 150 μm size ground sample shows that due to relatively 

higher drag force significant amount of Fe is lost into the tailings and the desired grade could 

not achieved. Fines generated in the grinding process are not recovered in the concentrate. 

The WHIMS concentrate is further subjected to Flotation for further up gradation.  
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Table 7.1.3: Flotation test of WHIMS concentrate at a pH of 9.3, with 10% solids, 
5 min. conditioning time, 2.0 kg/t collector (sodium oleate), 2.5 kg/t depressant 

(sodium silicate), 0.3 kg/t frother (MIBC) 
 

 
Product 

 
Fe (%) 

 
SiO2 (%) 

 
Al2O3 (%) 

 
Yield (%) 

Concentrate 63.47 7.2 1.8 68 
Tailing 42.08 18.1 11.2 32 
Feed 60.01 10.08 2.3 100 

 

In flotation, the response of many minerals is often dramatically affected by pH .Adsorption 

of collectors and modifying reagents in the flotation of oxide and silicate minerals is 

controlled by the electrical double layer at the mineral-water interface. 

In systems where the collector is physically adsorbed, flotation with anionic or cationic 

collectors depends on the mineral surface being charged oppositely. Adjusting the pH of the 

system can enhance or prevent the flotation of a mineral. Thus, the Iso electric point (IEP) of 

the mineral is the most important property of a mineral in such systems but raising the pH 

sufficiently above the IEP can repel chemisorbing collectors from the mineral surface. Zeta 

potentials can be used to delineate this interfacial phenomenon. From Zeta potential graph 

(Fig. 6.3) the IEP was found to be 4.0 which in turn indicate that the ideal pH condition for 

flotation is in the range of 6-10. Flotation is carried out using Denever D-12 flotation cell 

with MIBC as frother and soidum oleate as collector and sodium silicate as depressant. The 

test results are presented in Table 7.1.3. 

7.1.2 DISCUSSION 

BHJ sample is relatively low grade having 35.29% Fe with exorbitantly high silica and 

alumina. Ratio of iron ore minerals to gangue minerals, their association infers size reduction 

is needed for further beneficiation. Textural study revealed the complex relationship of 

hematite and quartz due to its mineral association and intergrowth patterns developed among 

ore minerals and gangue minerals is the main constraint in beneficiation. Beneficiation 

studies using four- stage concentration operation, the feed with grade 35.29% Fe can be 
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enriched to 63.47% Fe by WHIMS and flotation respectively but still the silica content is far 

beyond acceptable limit. The exact cut-off size of liberation of Quartz grains is difficult to 

ascertain due to its significant variation of grain sizes. Even in -150 μm, liberation percentage 

is only 48%. The occurrence of free hematite is observed at a particle size < 50 μm. 

Therefore, beneficiation of this ore is not commercially viable but at the same time if the 

silica content can be reduced by modern methods then BHJ will be the best alternative for the 

dwindling high grade ores. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         Fig.7.1.1. Processing flow sheet of Banded Hematite Jasper 

TABLING 

CONCENTRATE 
49%Fe, 27.8% SiO2 & 3.8 Al2O3 

 

TAILING 
22% Fe, 37% SiO2 & 9.3% Al2O3 

WHIMS 

MAG 
61.03% Fe, 8.26% SiO2 & 2.3% Al2O3 

N-MAG 
29.88% Fe, 37.48% SiO2 & 21.57% Al2O3 

FLOTATION 

CONCENTRATE 
63.4 % Fe, 7.2% SiO2 & 1.8% Al2O3 
 

TAILING 
42.08% Fe, 18.1% SiO2 & 11.2% Al2O3 

BANDED HEMATITE JASPER 

FALCON CONCENTRATOR 

CONCENTRATE 
60% Fe, 10.85% SiO2 & 2.70% Al2O3 

 

TAILING 
36.31% Fe, 12.78% SiO2 & 22.40% Al2O3 
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7.2LOW GRADE IRON ORE FINES (LIF) 

Detailed particle characterization of blue dust ore revealed the following characteristic 

properties of the blue dust that are useful for developing the processing scheme of the sample. 

From size measurement of the blue dust sample, it is seen that blue dust is fine in nature with 

substantial amount of ore (31%) below 200 µm (Table 6.3). Chemical analysis reveals that 

iron is mainly concentrated in the finer size fraction. It was found that Fe content in -150 µm 

is 56.4%, whereas coarser fraction (+150 µm) has relatively low Fe % (Table 6.3).Chemical 

analysis of low grade fine sample shows that besides the silica, alumina is also a major 

impurity. X-ray diffraction study reveals that hematite and goethite are the main iron bearing 

phases.  

7.2.1BENEFICIATION OF LOW GRADE BLUE DUST/FINES 

Liberation study shows that iron is mainly interlocked with gangues in the coarser size 

fraction whereas the finer size fraction is almost liberated (Table 6.1). Quantitative phase 

analysis indicates that the finer size fractions are devoid of free gangue and rich in free iron 

bearing minerals. Liberation study of the blue dust sample suggested that grain size reduction 

lower than 150 µm size would be necessary to achieve sufficient liberation of iron ore 

minerals from its gangue (clay and quartz). A beneficiation scheme is choosen involving 

desliming in hydrocyclone followed by magnetic separation. The ROM sample was crushed 

down to 0.5mm (<48#). The -48# to +100# fraction was subjected to concentration in Kelsey 

jig and the finer fraction (<100#) was subjected to classification in hydrocyclone and 

WHIMS for magnetic separation. 

The Iron ore fines were first treated in a 2"-hydrocyclone to remove the ultrafines. A number 

of tests were conducted by varying spigot and vortex finder diameters, pulp density, inlet 
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pressure etc. After each tests both the underflow and overflow fractions were collected and 

analyzed for grade and yield. Two best results are shown in the Table 7.2.1. 

 

Table 7.2.1 Hydrocyclone test results of iron ore fines 

 

In the above two hydrocyclone test,  cyclone diameter, overflow diameter, inlet diameter, 

volumetric percentage of solid in the feed, under flow opening diameter, effective cyclone 

length,  specific gravity of solid and liquid were constant. So the cut point, d50, is dependent 

upon the total volume flow rate. It can be seen from the Table 7.2.1 that with a decrease in 

inlet pressure yield in the hydrocyclone underflow product decreased as the cut point d50 

increases although with a better grade. This is due to the fact that a decrease in inlet pressure 

will cause the cut point to rise. This is because the centrifugal force on the particles will 

decrease, forcing fewer amounts of fine particles to the cyclone wall and hence reporting to 

the underflow. On the other hand, an increase in the yield at high inlet pressure is 

accompanied by an increase in the alumina and silica contents of the underflow. It was 

observed that the quality of the iron ore fines can be improved to about 60.28% Fe at 75% 

yield after this stage. The alumina and silica content of this concentrate are not acceptable are 

not from metallurgical grade point of view. In order to avoid multi- stage operation and 

Test-1(5 mm. spigot, 14.3mm. vortex, 0.68MPa feed pressure) 
Product Yield (%) Fe (%) SiO2 (%) Al2O3 (%) 

U/F 75 60.28 8.9 3.32 

O/F 25 47.83 22.59 18.23 
Test-2(5 mm. spigot, 14.3mm. vortex, 0.10MPa feed pressure) 

U/F 80 55.36 10.76 13.88 

O/F 20 46.67 27.78 20.12 

Feed 100 50.24 12.86 4.03 
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conserve energy, a single stage operation involving Kelsey centrifugal jig (KCJ) was tried 

and the results obtained were quite promising. 

 
Table 7.2.2 WHIMS test with hydrocyclone U/F product of Test 1 with 

Wash water: 20 l/pm, Solid: 10%. 

 
 

The Hydrocyclone underflow of Test 1 for iron ore fines was treated in Wet High Intensity 

Magnetic Separator (WHIMS). A number of tests are conducted with variable current. The 

results under best conditions are given in Table 7.2.2. It may be seen from Table 7.2.2 that in 

the iron value can be raised to 66.31% with consequent lowering of alumina and silica values 

to 0.70% and 3.40%, respectively, with a yield of about 74%. The data indicate that alumina 

and silica rejection was quite high. The concentrate product (0.5 amp) is pellet grade 

material.  

 
 

 
 
 

0.5 amp 
Product Fe (%) SiO2 (%) Al2O3 (%) Yield (%) 
Magnetic product 66.31 3.4 0.7 74 
Non magnetic product 22.30 59.5 4.0 26 

0.8 amp 
Magnetic product 63.72 4.4 0.5 76.52 
Non magnetic product 24.64 55.2 6.2 23.48 

1 amp 
Magnetic product 62.81 4.7 2.4 77.94 
Non magnetic product 17.02 65 4.2 22.06 
Feed (hydrocyclone (U/F) 60.28 8.9 3.32 100 
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Fig 7.2.1 Graphical representation of a) Desliming of low grade fines in hydrocyclone (b) 
WHIMS test results of low grade iron ore fine sample (+150 micron) with 10% solids, 0.8 
amp. current, and 20 L/pm Wash water, 
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Fig.7. 2. 2. Traditional process flow sheet of the low grade iron ore fines. 

 

7.2.2 EXPERIMENTS IN KELSEY CENTRIFUGAL JIG 

The entire ROM was ground below 48 mesh and treated by enhanced gravity separation in a 

Kelsey Centrifugal Jig (KCJ). In order to study the separation process in KCJ a detailed 

experimental campaign was undertaken. Considering two factors, namely, Bowl Rotation/ 

spin frequency (rpm), Bed Pulsation 6 number of experiments was conducted. The factors 

and their respective levels for the experiments are shown in Table 7.2.2.1 Products from each 

experiment were analyzed for quantitative information. The experimental campaign was 

undertaken in a KJS. The details of experiments and results are discussed in the following 

section. 

LOW GRADE FINES 

CRUSHED & GROUND TO 300µm 

SCREENING 

-300 µm+ 150 <150 µm 

KELSEY JIG 

CONCENTRATE TAILING 

HC 

U/ F 
60.28% Fe, 8.9% SiO2 

& 3.32% Al2O3 
 

O/ F 
47.83% Fe, 22.6% SiO2 

& 18.23% Al2O3 
 

WHIMS 

CONCENTRATE 
66.31% Fe, 3.4% SiO2 & 0.7% Al2O3 

 

TAILING 
22.30% Fe, 59.59% SiO2 & 4.0% Al2O3 
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The influences of spin frequency, pulsation frequency were investigated. The other operating 

variables were kept constant during the experimental work. A screen with 425 micron 

opening (internal aperture) was used and magnetite was used as the ragging material. The 

size of the magnetite was taken as 0.853+0.6 mm. The hutch water flow rate was maintained 

at 25 L/min under all experimental conditions. 

The feed to the KCJ was screened at a size less than the internal screen size to avoid pegging. 

In the present study, iron ore of size <300 micron were used as feed material. The particle 

size of the ragging material to be used depends on the pegging factor of the internal screen. 

Pegging factor is the ratio of internal screen aperture to the bottom size of the ragging 

material. It is recommended that for smooth operation pegging factor should be close to 0.6. 

Based on this, the minimum permissible size of the ragging material was estimated at 708 

micron. Therefore, the minimum particle size of the ragging material used in this study was 

850 micron. The weight of ragging material (300 gms) was kept constant throughout the 

entire operation. 
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Feed Rate: 60kg/hr. 

Six numbers of tests were performed under varying conditions listed below. 

 

Table.7.2.2.1 Experimental results under different operating conditions 

 

7.2.3 RESULT & DISCUSSION 

The Fe% obtained in the above set of experiments is in the range of 59-65% in comparison to 

50.24% Fe in the feed. The result thus is quite encouraging. The results clearly indicate that 

by changing the operating variables, it is possible to get a higher concentrate or cleaner reject. 

The two operating variables include 

 
(1) Bowl Rotation/spin frequency (rpm) 

(2) Bed Pulsation 

Spin frequency is the rotational speed of the bowl or in other words it is the centrifugal force 

acting upon the flow pattern inside the jig. It affects the behavior of ragging bed as well as 

particle momentum. 

 

Experimental Condition 

No 
of 

Tests 

Bowl 
rotation 

Pulsation Ragging 
weight 

Feed Rate 
(kg/hr) 

Product Yield% Fe% 

1  
600 

 
1000 

 
300 

 
60 

Conc. 61.73 59.47 
Tail 38.27 46.20 

2  
590 

 
1000 

 
300 

 
60 

Conc. 46.7 65.90 
Tail 53.3 45.05 

3  
580 

 
1000 

 
300 

 
60 

Conc. 49.05 62.71 
Tail 50.95 46.01 

4  
580 

 
970 

 
300 

 
60 

Conc. 52.42 61.81 
Tail 47.58 45.70 

5  
590 

 
970 

 
300 

 
60 

Conc. 59.62 59.31 
Tail 40.38 47.09 

6  
550 

 
980 

 
300 

 
60 

Conc. 57.15 63.59 
Tail 43.85 42.09 
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The spin frequency has two contradictory effects.  

 
(i) When spin is increased, there is an increase in gravitational force acting upon the 

ragging bed which in turn becomes more compact and rendering it less porous. As a result 

very limited quantity of material will penetrate the ragging bed results a decrease in yield but 

a high grade concentrate. It is inferred from Test-2 & 3, where at a higher frequency there is a 

drop in yield from 49.05% to 46.70% with an increase in grade from 62.71% to 65.90%. 

(ii) With increase in spin frequency, the centrifugal force acting upon the particles 

increases. It leads to increase in particle momentum which increases the probability of 

passage of more particles trough the ragging bed. In this condition, there is an increase in 

yield of concentrate but dilution of grade happened. This can be inferred from Test-1 &2 and 

Test-1 & 3.In case of Test-1 & 2, with increase in frequency from 590 rpm to 600, there is a 

sharp rise in yield from 46.7% to 61.73% with Fe percentage decreases from 65.9% to 59.47. 

More or less similar relation is observed in Test-1 & 3. 

By virtue of density, high density particles remain close to the ragging bed and vice-versa, 

but the particles with intermediate density (goethite) decide the efficiency of separation as 

they may increase/ decrease the yield there by affecting the concentrate grade. 

(2) Pulsation: Pulsating strokes dilates the ragging bed thereby facilitating the movement of 

particles trough the bed material. In high pulsating condition, particles are prevented from 

attaining terminal velocity. Thus the differential acceleration between light and heavy particle 

is maintained. Pulsation stokes are more profound on lighter material. So probability of 

migration of lighter elements into concentration stream is feeble resulting low yield & high 

concentrate grade which is reflected in Test-3 & 4. 
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In high pulsation condition, the time difference between dilation and contraction get reduced, 

results sluggish movement of particles. As a result less quantity of material will penetrate 

decreasing the yield. It can be verified comparing Test-5 & 2. 

Test No-6 shows the best result with 550 rpm & 980 Bed pulsations i.e. in low rpm and 

intermediate pulsation condition. 

7.2.4 DISCUSSION 

Yield and chemical assay of all KCJ products are presented in Table 7.2.2.1 for all the 

experiments. From this Table, it may be observed that spin frequency affects the porosity of 

the ragging bed as well as the momentum of the particles. It is established in the present work 

how the spin frequency needs to be controlled in order to achieve the target mass yield and 

grade of the products. The pulsation also has been shown to have significant influence on the 

porosity of the ragging bed as well as the differential acceleration of the particles. A better 

yield can be achieved through a high pulsation frequency. However, in order to get the best 

results a moderate level of pulsation is recommended.  

Two processing flow sheets are developed for beneficiation of iron ore fines. Beneficiation 

studies using simple two-stage concentration operation, the feed with grade 50.24% Fe can be 

enriched to 60.28% Fe and 66.31 % Fe by hydrocyclone and WHIMS respectively. Thus, it 

may be concluded that a two-stage beneficiation route involving classification in 

hydrocyclone followed by magnetic separation/ single stage operation involving Kelsey jig is 

adequate to produce sinter/pellet grade concentrate from this low-grade blue dust/ low grade 

fines. This ore needs to be deslimed first followed by magnetic separation instead; enhanced 

gravity separation technique can be adopted to avoid multi- stage beneficiation. 
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LOW GRADE FINES 

CRUSHING & GRINDING TO -300 µm 

ENHANCED GRAVITY SEPARATION BY KCJ 

CONCENTRATE 
63.40% Fe 

 

TAILING 
42.09% Fe 

Fig.7.2.2.1 processing flow sheet of the low grade iron ore fines (Single 
stage operation). 
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7.3IRON ORE SLIME 

During washing and sizing of the ore, slimes with less than 0.21 mm size are generated and 

discarded into the tailing pond. It is estimated that around 10 million tonnes of slimes are 

being generated in every year during the processing of hematite ore and lost as tailings 

containing around 48-62% of Fe. The slimes are ideal for generating the material for 

pelletization. They can also be used for preparation of sinter feed after microballing. The 

slimes had considerably low iron content. The density values of the gangue materials (silica 

and alumino-silicates) are in the range of 2.5-2.8 g/cc while that of hematite is 5.0-5.5 g/cc. 

Due to sharp density differences, concentration by gravity separation may be adequate to 

produce a concentrate grade that is acceptable for metal extraction from slime. If not, a 

further step involving magnetic separation may be required followed by flotation. 

7.3.1BENEFICIATION OF IRON ORE SLIME 

Detailed characterization of Barsua iron ore slime revealed that most of the alumina and silica 

is concentrated in the fraction less than 20 µm size. Therefore, it is imperative that a 

desliming operation to remove the ultrafine fraction would improve the grade. Hence, a 

beneficiation scheme was chosen involving classification followed by tabling and WHIMS 

(Fig. 7.3.1). The results of the unit operations are carried out in these slimes discussed in the 

following section. 

7.3.1.1 Classification in hydrocyclone 

The iron ore slime from Barsua was first treated in a 2"-hydrocyclone to remove the 

ultrafines. A number of tests were conducted by varying spigot and vortex finder diameters, 

pulp density, inlet pressure etc. After each test both the underflow and overflow were 

collected and analyzed for grade and yield. Two best results are shown in the Table 7.5.1. 

One of the tests was aimed at obtaining high grade of the underflow with a low yield (Test 1). 
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Test no. 2 was aimed at obtaining higher yield of the underflow albeit with a lower grade. 

However, in case of three stages of beneficiation (Fig. 7.3.1.1), hydrocyclone underflow of 

test 2 (Table 7.3.1.1) was used to obtain a reasonably high yield of the final concentrate. 

 

From the test results (Table 7.3.1.1), it can be seen that most of the free kaolinite and quartz 

in Indian iron ore slimes are concentrated in the finer size fraction. Therefore, significant 

removal of impurities takes place during this operation. 

 

Table 7.3.1.1 Hydrocyclone test results of iron ore slime 

 

7.3.1.2 Concentration of Hydrocyclone underflow using Wet High Intensity Magnetic 

Separator  

The Hydrocyclone underflow of Test 1 for iron ore slime was treated in Wet High Intensity 

Magnetic Separator (WHIMS). A number of tests are conducted with variable pulp density, 

current and wash water flow rate. Under best condition of Current: 1Amp, wash water: 20 

l/min. and pulp density of 10% solids the results are given in Table 7.3.1.2 

 

 

 

Test-1(5 mm. spigot, 14.3mm. vortex, 0.68MPa feed pressure) 
Product Yield (%) Fe (%) SiO2 (%) Al2O3 (%) 

U/F 69.56 57.56 5.70 3.89 
O/F 30.44 43.56 7.12 10.30 

Test-2(5 mm. spigot, 14.3mm. vortex, 0.10MPa feed pressure) 
U/F 79.56 50.33 9.32 7.47 
O/F 20.44 36.56 23.79 23.79 
Feed 100 54.70 8.32 11.08 
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7.3.1.3. Gravity separation of slime samples using Wilfley Table  

To study the efficacy of Tabling for treating slimes, the Hydrocyclone underflow of Test 2 of 

Barsua was subjected to concentration in Wilfley Table. The test results are presented in 

Table 7.3.1.3. It was observed that quality of the slime could be improved significantly. 

However the concentration grade is about 62.48% indicating concentrate product is not a 

pellet grade material requiring further enrichment. 

 
Table 7.3.1.2 WHIMS test with hydrocyclone U/F product of Test 1 with 

1 amp current, Wash water: 20 L/ m, Solid: 10%. 

 

 

Table 7.3.1.3 Wilfley Table test results of Hydrocyclone U/F of Test 2 with 10% solids, 

0.25 inch inclination, 280 rpm Speed and 3 L/ m Wash water. 

Product Fe (%) SiO2 (%) Al2O3 (%) Yield (%) 
Concentrate 62.48 2.1 1.5 65.53 

Tailing 48.34 48.34 2.3 34.47 
Feed 50.33 9.32 7.47 100 

 

7.3.1. 4 Concentration of Tabling concentrate using Froth Flotation 

The Tabling concentrate was subjected to flotation in a 2.0 litre Denver D-12 Sub-aeration 

flotation cell with MIBC as frother and soidum oleate as collector and sodium silicate as 

depressant. The test results are presented in Table 7.3.1.4. Substantial removal of silica and 

alumina could be obtained in flotation. It may be seen from Table 7.3.1.4 that in Barsua 

sample iron value is raised to 66.97% from a feed of 62.48% total Fe with consequent 

lowering of alumina and silica values down to 0.69% and 1.7% respectively. 

 

Product Fe (%) SiO2 (%) Al2O3 (%) Yield (%) 

Magnetic product 66.31 3.4 0.7 74 
Non magnetic product 22.30 59.5 4.0 26 

Feed 57.56 5.70 3.89 100 
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Table 7.3.1.4 Flotation test of Tabling concentrate at a pH of 5.5 with 10% solids, 3 min. 
conditioning time, 2.5 kg/t collector (Sodium Oleate), 1.5 kg/t Depressant (Sodium silicate), 
0.2 kg/t Frother (MIBC) 

Product 
 

Fe (%) 
 

SiO2 (%) 
 

Al2O3 (%) 
 

Yield (%) 
 

Concentrate 66.97 
 

1.7 
 

0.69 
 

68 
 

Tailings 
 

28.87 5.8 
 

3.9 
 

32 
 

Feed (Tabling concentrate) 62.48 
 

2.1 
 

1.5 
 

100 
 

However, small mass of the particles leads to the particles entrainment in concentrate, low 

probability of collusion with a bubble, difficulty in overcoming the energy barrier between 

particle and particle and particle and bubble. The fine particles have high surface energy per 

unit area due to imperfect crystallization, increase cracks dislocation, edges as observed from 

SEM,  which can lead to problem during  flotation operation.  The high surface areas of the 

slime particles leads to specific adsorption of reagents, increase hydration, rapid surface 

reaction, increase solubility, adsorption of large quantity of chemicals, undesirable coating of 

the valuable particles by ultrafine gangue particles and rigidity of froth [128]. High Fe loses 

in tailing during flotation of slimes is due to these reasons.  
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Fig.7.3.1 Traditional processing flow sheet of iron ore slime 
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Fig.7.3.1.1 Processing flow sheet of Iron ore slime 
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Fig 7.3.2 Graphical representation of a) Desliming of iron ore slime in hydrocyclone 
(b) Tabling result of  hydrocyclone U/ F (c) WHIMS test results of iron ore slime 
sample (+150 micron) with 10% solids, 1 amp. current, and 20 L/pm Wash water. 
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7.3.2 DISCUSSION 

Characterization studies of slime has been carried out and indicated that the sample from 

Barsua deposits contains porous and friable oxides and hydroxides of iron with kaolinite and 

quartz.In iron ore samples hematite mainly occurs as specularite with inter-granular micro-

pore spaces. Goethite is abundant exhibiting secondary colloform texture in cavities along the 

weaker bedding planes. Such voids and inter-granular pore spaces along the weaker bedding 

plane are very fragile making the hematite and goethite friable during mining and processing. 

These friable particles break down and account for the iron content of the slime.  

A flow sheet involving classification, gravity separation, magnetic separation and flotation is 

developed with a view to achieve the grade at reasonably high yield. The hydrocyclone 

underflow product of test 2 (lower grade but higher yield) is treated by gravity separation 

technique using Wilfley Table to exploit the differences in specific gravity. It is observed that 

quality of the slime could be improved significantly. However the concentration grade is 

about 62.48% indicating the requirement of further concentration process. The Tabling 

results indicate that better grade product can be obtained. The grade improved substantially 

from 50.3% to 62%. However to make the concentrate grade for pellet making, a fourth stage 

of processing has been applied. In the fourth stage the physico- chemical surface properties of 

the particles is used using froth flotation. The flotation results show that iron value in the 

sample can be raised to 66.97% with lowering of alumina and silica values to 0.69% and 

1.7%, respectively. From the above discussion it may be concluded that a relatively simple 

flow sheets may be quite effective in producing pellet grade concentrate from such low grade 

iron ore slimes with a reasonable yield.  
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7.4 GOETHITE- LATERITIC ORE 

Lateritic iron ores predominantly consists of iron in hydroxy form as goethite interlocked 

with kaolinite and gibbsite. Presence of significant amounts of impurities renders the ore low 

grade. These ores must be upgraded by thorough and complete processing after adequate 

comminution to attain liberation. The concentration criterion [146] for these ores is less than 

2.5, reflecting the inefficiency of simple gravity separation in this case. These ores may be 

upgraded by advanced gravity separation techniques in the first stage. Further enrichment 

may be achieved using high intensity magnetic separation. If this stage also fails to achieve 

the required grade, froth flotation to remove the gangue could be used as the final 

concentration stage. 

 

7.4.1 BENEFICIATION OF GOETHITE-LATERITIC ORE 

Detailed characterization of the iron ore revealed that most of the impurities in the form of 

alumina and silica are concentrated in the finer size fractions while iron is concentrated in the 

coarser size fractions. Therefore, it is imperative that removal of ultrafines using a desliming 

operation would improve the grade. A beneficiation scheme was chosen involving desliming 

by simple washing, jigging followed by gravity separation. To study the beneficiation 

prospects of coarse particles a first stage of gravity separation by Jigging is carried out. 

Finally, further comminution and a second stage of Tabling operation and/or Kelsey jig 

Separation is employed to generate sinter/pellet grade concentrate. The three stage flow sheet 

(Fig 7.4.1) was designed for beneficiation of Goethite- lateritic ore. By simple washing the Fe 

values upgraded substantially, as shown in Table 7.4.1. Desliming improves the Fe % from 

40% to 43% while reducing the silica and alumina content from 9.48 % and 19.97 % to 7.87 

% and 14.97%, respectively. 
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The washed lumps, after desliming contains considerable amount of coarse ore pieces (> 

3mm). They were crushed to -3000 μm size. The crushing operation generated significant 

amount of fines less than 853 μm (Table 7.4.2). The -3000 +853 μm size fraction contains 

46% total Fe, 4.9% silica and 11.30% alumina. This size fraction was subjected to gravity 

separation by Jigging. Jigging result, as shown in Table 7.4.3, indicates that only small 

amount of gangues are rejected. The Fe% increased to 53.10% with a decrease in the alumina 

and silica content to 6% and 4.20%, respectively, by jigging. It is found that the resulting 

concentrate is still not acceptable feed material for pelletisation/sintering. Therefore, further 

concentration was required. 

                            Table 7.4.1: Result of desliming operation 
 

 
 
 
 
 
 
 
 
                                       Table 7.4.2: Analysis of the crusher products 
 

 

 

                               Table 7.4.3: Jigging results of goethitic-lateritic ore 
 

 Yield % Fe% SiO2 Al2O3 (%) 
Concentrate 79.12 53.10 4.2 6.0 

Tailings 20.88 40.04 17.56 7.87 
Feed 100 46 4.9 11.30 

 

 

 

   
  Wt. (%) Fe (%) SiO2 (%) Al2O3 (%) 

Feed 100 40 9.48 19.97 
>100µm 75.4 43 7.87 14.97 
<100µm  24.6 37.94 13.50 21.30 

 Yield (%) Fe (%) SiO2 (%) Al2O3 (%) 
Feed 100 43 7.87 14.97 

-3000+853micron 
product 

65.3 46 4.9 11.30 

-853 micron product 34.7 35.32 8.9 19.81 
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Liberation analysis of different ground size fraction of the iron ore suggested that grain size 

reduction to less than 300 µm size was necessary to achieve sufficient liberation of iron ore 

minerals from its gangue (Table 6.1). Therefore, the Jigging concentrate (-3000+853 µm) was 

subjected to further comminution. 

To investigate the optimum particle size requirement for adequate enrichment, the iron ore 

was ground separately to three different finenesses, i.e., 300 µm, 200 µm and 150 µm. In 

order to study the efficacy of gravity concentration, these samples were subjected to 

concentration in Wilfley Table. 

 
Experimental condition with 3˚ deck slope, 1.68 cc. per cm/ sec. water flow rate was kept 

constant in all tabling experiments. The results obtained from the best tests are given in Table 

7.4.4.  It was observed that the quality of the ore improved significantly by tabling. Different 

concentration grade was obtained from the feed ground to different fineness. The concentrate 

grade improved to 56.29%, 59.57%, 61.01% Fe by processing the three feeds ground to 300 

µm, 200 µm and 150 µm, respectively. Processing of 150 µm size ground material shows that 

the grade of the ore was improved from 53.10 % Fe to 61.01 % Fe (Table 7.4.4). The silica 

and alumina content of this concentrate were 3.05% and 2.01%, respectively. 

 

Table 7.4.4: Tabling result of goethite-lateritic ore 

 

 

 

 

 

 

 

Product Feed Size 
300µm 200µm 150µm 

  Fe (%)  
Conc. 56.29 59.57 61.01 

Middling 45.25 42.60 37.89 
Tails 42.22 39.61 31.61 

   SiO2 (%) 
Conc. 5.12 4.86 3.05 

Middling 5.78 6.68 9.37 
Tails 10.16 9.93 10.24 

    Al2O3 (%) 
Conc. 4.65 3.02 2.01 

Middling 7.51 5.98 8.11 
Tails 8.55 8.48 8.42 
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7.4.2 DISCUSSION 

Theoretically, effective gravity separation is possible when the concentration criterion (Wills, 

1988) for these ores is greater than 2.5 (Equation 7.1.1).                         

   5.2>
−
−

fl

fh

DD
DD

                             ----------------------- (1) 

where, Dh is the specific gravity of the heavy mineral, Dl is that of the light mineral and Df is 

the specific gravity of the fluid medium. When the quotient is greater than 2.5, then gravity 

separation is relatively easy. As the value of quotient decreases, so the efficiency of 

separation decreases and below about 1.25 gravity separations are not economically feasible. 

The specific gravity of hematite is 5.5 to 6.5 whereas it is 4.1 to 4.3 for goethite. Specific 

gravity of kaolinite, gibbsite and quartz is in the range from 2.3 to 2.6.  

In case of hematite ore, separation criterion as shown in Eqn. (1) is estimated to be in the 

range from 2.81 to 3.44. On the other hand, separation criterion in case of goethite ore is 

estimated to be in the range from 1.93 to 2.06. Due to high concentration of goethite, the 

separation efficiency decrease in case of wilfley tabling. As a result, grade dilutes, which also 

happened in case of jigging. The Tabling concentrate of 150micron is still needs further 

concentration either by EGS techniques or flotation. 
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Fig 7.4.1. Processing flow sheet of the Goethite-Lateritic ore 
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CONCLUSION 

The principal object of the present investigation was to provide an economical iron ore 

beneficiation process for the production of saleable concentrates which are acceptable to the 

steel mills because they meet the requirements of the mills. The different types of iron ores 

are characterized in detail with an implication on their beneficiation and utilization.  

In view of the known capabilities and the known disadvantages of various prior art 

beneficiation methods, it is apparent that no single beneficiation process can be found which 

will lend itself to an economically feasible flow sheet for the production of acceptable 

saleable concentrates from semi-taconite ore, from low grade concentrates and waste 

products from previous separations, and other similar services of low grade iron minerals. 

Accordingly, the present invention is based upon the utilization of the advantageous 

characteristics of a combination of concentrating procedures. By utilizing several types of 

processing equipment, it is possible to sort the minerals in the ore so that advantage can be 

taken of the particular physical and chemical properties of each ore group by using a 

combination of concentrating procedures. 

With high-grade Iron ore rapidly depleting, the necessity of Iron ore beneficiation is 

becoming a reality. Beneficiation of Iron ore is much more economical than getting rid of 

gangue at higher end of value chain like in BF or BOF / Electric furnace. It will cost 5 to 10 

times more to remove gangue in BF / BOF or Electric arc furnace than in Beneficiation plant. 

The pre-concentration of iron values in Banded Hematite Jasper can be achieved through 

gravity and high intensity magnetic separation. The pre- concentration efficiency of both 

gravity and magnetic techniques increase with decrease in feed size. The increase in both 

yield and grade with decreasing feed size suggests a preferential crushing mechanism of ore 

mineral at the ore-gangue mineral grain boundary which corroborates with the research work 
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done on this subject. In case of Banded hematite jasper, the production cost is more as it 

requires multiple stages of crushing and grinding. The processing cost of `BHJ is approx Rs. 

2500/- per tonne. At the same time the selling price of lump ore is around Rs.4, 600/- per 

tonne. In the present Research, beneficiation of BHJ was attempted. The pre-concentration of 

iron values at finer stage of flow-sheet development disables rejection of substantial quantity 

of silica (7%) mineral thereby increasing the load on grinding mill and processing cost as 

well. Further, the substantial reduction of silica and alumina content in the coarser size range 

of BHJ is processed then it’s commercially viable. 

Traditional mineral processing techniques become increasingly inefficient as particles sizes 

are reduced, resulting in unacceptable grades. However, using techniques like jigging, dry 

high intensity magnetic separator (DHIMS), pre-concentration of iron values at a coarser 

stage can also be achieved. In case of banded hematite jasper, the enhanced gravity separator 

(Falcon Concentrator) produced substantial enrichment in the concentrate with 60% Fe. 

In case of goethite-lateritic ore, Wilfley Table was found to be promising in reducing loss of 

fine iron particles and increasing the grade of the concentrate. A beneficiation scheme was 

framed involving desliming by simple washing followed by gravity separation. Finally, 

further comminution and a second stage of Tabling operation caused an enrichment of grade 

to 61% from 40% which needs further processing. Using Multi gravity separator/ KCJ, it can 

further be upgraded. 
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Table 8.1 Approximate cost of beneficiation of 1tonne of iron ore 
Sl.No Details Rs/Ton 

1 Electricity charges 60 
2 Diesel consumption 48 
3 Sub contractor 150 
4 Maintenance 50 
5 Spare & Wearing parts 100 
6 Labour cost 30 
7 major sub assembly cost 200 
8 Water charges 5 
9 Environment 5 

10 Other 10 
Total B.P Operation cost 658 

Total Production cost Rs / Ton 
1803(Inclusive of all ancillary 

works) 
 

In case of low grade iron ore fines, the single stage unit operation is cost effective in 

comparison to the multi stage unit operations due to low operational as well as capital 

investment. The average production cost of 1 tonne iron comes around Rs.1, 803/- in 

conventional wet circuits (gravity separation, WHIMS etc.) and in single stage operation it 

comes around Rs.1, 560/- per tonne. The saleable price for 1 ton of finished product (0-5mm 

size, Fe >61%) is around Rs.3, 000/- per tonne. The profit cost analysis of low grade iron ore 

fines is quite economical. 

In iron ore slime sample high percentage of liberated quartz occurs in lower size fraction 

suggesting that desliming classification would not be useful in this case. To make the 

concentrate grade for pellet making, a four stage processing was designed for iron ore slimes.  

In case of iron ore slime, the feed grade is 54% Fe. Total average cost of finished concentrate 

is Rs 2, 250/- per tonne. Selling Price of Concentrate is approx Rs.3, 1600/- per tonne (64% 

Fe). The final concentrate can be used for pellet making. The production cost of pellet is 

approx – Rs 4000/- per tonne (including the raw material cost). Selling price of Pellet is 



 

137 
 

approx – Rs.8, 000/- per tonne. The use of pellets in steel industry saves cost around Rs.1, 

800/- per tonne. In case of slime, the concentrate from the wet high intensity magnetic 

separator can be used for pellet making (66.97% Fe, 1.7 SiO2, 0.69 Al2O3) there by use of 

costly flotation agents can be avoided by avoiding the flotation in total. 

In India, the Public Sector Undertaking (PSU) Mineral major i.e. National Mineral 

Development Corporation (NMDC) has raised the price of fines up to 3,160/- per tonne. 

NMDC’s move is an attempt to take advantage of domestic short—supply scenario mainly 

after the partial ban in Odisha, India. 

As per the present practice, in India, in order to produce one ton of fines (61% Fe), 2.5 ton of 

ore (46% Fe) will be required. Considering the cost of logistics and conversion to 61% Fe, 

the price of iron ore dumps have to be very low to make it cost-effective. If the cost of iron 

ore dumps are more than Rs.100 a tonne, it won't be viable to beneficiate it and use it as 

feedstock for blast furnaces. For captive miners, due to availability of good plant and 

machinery, low investment in variables as well, the production cost will remain same even 

though the cost of iron ore dumps increase beyond Rs.100/-. However, the price rise won’t go 

well with private sector steel makers which do not have captive mines. There is a need of 

government intervention to patronize. Therefore the government should come forward to 

encourage others in particular, to the economic use of lean grade ore profitably. It will boost 

the national economy and generate scope of employment too. 
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ECONOMIC FEASIBILITY OF BENEFICIATION  OF IRON ORE FINES 
 In case of low grade iron ore fines, the single stage unit operation is cost effective in 

comparison to the multi stage unit operations due to low operational as well as capital 
investment.  
 

• The average production cost of 1 tonne iron comes around Rs.1, 803/- in 
conventional wet circuits (gravity separation, WHIMS etc.) and 
 

•  In single stage operation it comes around Rs.1, 560/- per tonne. 
 

• The saleable price for 1 tonne of finished product (0-5mm size, Fe >61%) is 
around Rs.3000/- per tonne. The profit cost analysis of low grade iron ore fines is 
quite economical. 

 

 

ECONOMIC FEASIBILITY OF BENEFICIATION  OF IRON ORE SLIME 
 • In case of iron ore slime, the feed grade is 54% Fe.  

 
• Total average cost of finished concentrate is Rs 2, 250/- per tonne.  

 
• Selling Price of Concentrate is approx Rs.3, 160/- per tonne (64% Fe). 

 
• If the concentrate is sold in the market then the profit comes to be Rs 910/- per 

tonne.  The final concentrate can be used for pellet making.  
 

• The production cost of pellet is approx – Rs 4,200/- per tonne (including the raw 
material cost).  
 

• Selling price of Pellet is approx – Rs.6, 000/- per tonne.  
 

• The use of pellets in steel industry saves cost around Rs.1, 800/- per tonne. So it 
is advisable to make pellets and to be sold in the market rather than selling the 
concentrates in the market. 
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SIGNIFICANT FINDINGS: 

(i) The beneficiation of BHJ is yet to gather momentum in India. In the present Research, 

BHJ was upgraded successfully using four- stage concentration operation, the feed with grade 

35.29% Fe could be enriched to 63.47% Fe by Tabling, EGS, WHIMS and flotation 

respectively. Beneficiating lean grade ores will not only augment the existing resource but at 

the same time it will help to achieve the zero- waste concept. 

(ii) In case of low grade fines, the KCJ (Kelsey Centrifugal Jig) was found to be 

promising. Instead of going for multiple stages of concentration i.e. hydrocyclone followed 

by WHIMS, the entire ROM can be treated in one single unit operation resulting a better 

product grade from (50.24% Fe to 65.90%)  which will lowers the operational cost and 

capital investment as well. 

(iii) The beneficiation system of iron ore slime (with 65% ) Fe has many advantages like 

• It will maximize the quantity of saleable products out of existing mines with 

       minimum investment. 

• Improving the economics of operation 

• Minimising the pollution. 

• Conservation of mineral resources. 

• Reduction of operation problems in slurry disposal system by reducing the quantity of 

solids. 
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