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ABSTRACT 

Concrete is the most versatile, indispensable and widely used building material, of 

which cement is an integral constituent. From the time immemorial Portland cement has 

been used as binder in concrete construction. However, the production of the cement is 

not eco-friendly and consumes enormous amount of energy which ultimately leads to the 

depletion of the fossil fuel reserve. In addition to this, it emits noxious greenhouse gases 

which are harmful for the biosphere. An attractive alternative to Portland cement is the 

binder obtained by alkaline activation of materials; rich in reactive amorphous silica and 

alumina. In order to enhance its physical and mechanical properties, slag is activated by 

different activators along with admixtures. Activated slag cement is a sustainable 

building material, and this cement product is carbon neutral. The use of slag as a 

cementious material results in a reduction of greenhouse gases. It also helps in preserving 

the natural raw materials, which would otherwise have been used in making ordinary 

Portland cement (OPC).  

Cementing materials are produced from ground granulated blast furnace slag by 

activating it with alkali activators like NaOH, Na2SiO35H2O or by activating it using 

compounds of alkaline earth metals such as lime. A good number of literatures are 

available on slag activated by alkali activators but a few researches have been done on 

activation of slag by activators involving compounds of alkaline earth metals. The 

physical properties like setting characteristics of alkali activated slag were investigated 

by many researchers, Wang et al. (1995), Collins et al. (2000) and Puertaset al. (2004) 

and it was found that alkali activated slag cement (AASC) posed rapid setting and high 

drying shrinkage. Further, the setting characteristics of slag-lime mixes were determined 
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by using granulated slag and high calcium lime by Feret (1939) as well as Jolibois and 

Nicol (1952). Brough et al. (2000) used phosphate and malic acid as retarders in slag and 

sodium silicate base mixes in order to increase the setting time of the alkali activated slag 

cement. The mechanical property of slag activated by hard-burnt gypsum (anhydrite), 

plaster of Paris, and little amount of lime or OPC was investigated by Bijen and Niel 

(1981), Mehrotra et al. (1982) and Dutta and Borthakur (1990). Douglas and Brandstetr 

(1990) studied the influence of mineral admixture on mechanical strength of alkali 

activated slag cement taking different proportions of sodium silicate solution, lime, OPC, 

silica fume and fly ash. Yazic set al. (2008) studied the effect of mineral admixtures on 

compressive strength of ternary blended cement. Bellman and Strak (2009) studied the 

effect of different accelerators such as calcium formate, calcium acetate, calcium 

chloride, sodium chloride, calcium nitrate, calcium bromide on strength. 

Aitcin(1958),Aldeaet al. (2000),   Kim et al. (2002), Ezzianet al. (2007), and Tanyildizi 

(2009) reported that a higher curing temperature improves the strength at early ages. The 

effect of type and amount of activators used, structure and composition of the slag and 

curing conditions on the formation of hydration products was investigated by 

Glukhovsky et al. (1983), Talling et al. (1981), Puertas (2000), and Shi and Li 

(1989).Scanning through the above literatures, it is perceived that researches based on 

alkali or alkaline activation of slag cement is not so profound and incoherent. The 

optimization of raw material proportions has been done randomly on the basis of limited 

experimental data. Keeping in view of all these aspects, an extensive laboratory testing 

program has been undertaken to investigate the physical, mechanical and chemical 

properties of slag activated with lime and plaster of Paris. Especially, optimization of raw 
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material based on compressive strength was made by using generalized reduced gradient 

method. The influence of mineral admixture, chemical admixture, and curing conditions 

on formation of hydration products, morphology, microstructure, and drying shrinkage 

was investigated from the optimized mix-proportion of raw materials, which was 

determined by using response surface plot. 

The granulated blast furnace slag used in this work was collected from Rourkela 

Steel Plant (RSP). It was sun dried and mixed thoroughly to bring homogeneity in the 

sample. The same was ground in a ball mill to a Blaine’s fineness of 410m2kg-1. The 

plaster of Paris (POP) and hydrated lime used were procured from the local market. The 

mineral admixtures such as silica fume, fly ash, glass powder, and OPC as well as the 

chemical admixtures like calcium formate, calcium acetate, calcium nitrate, sodium 

carbonate, and sodium meta-silicate were used in this study. 

The experiments were performed in two phases. In first phase, the physical 

properties of different mixes of slag-lime-plaster of Paris were evaluated. In addition to 

this, the optimization of raw material proportions was done on the basis of mechanical 

strength of different mixes of slag-lime-plaster of Paris adopting the generalized reduced 

gradient (GRG) technique and response surface plot. In second phase, the influence of 

mineral admixtures, chemical admixtures and curing conditions on mechanical strength, 

hydration product, microstructure, morphology, porosity, and drying shrinkage behavior 

were studied. A correlation has been established between the developed mechanical 

strength and hydration products, microstructure as well as the morphology of cured 

specimens. 
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The physical properties such as consistency, initial setting time (IS), final setting 

time (FS) and soundness of 42 different mixes of slag-lime-plaster of Paris were 

determined. The proportions of blast furnace slag in the slag-lime mixes were varied from 

95 to 60% while the lime content from 5 to 40%. The amount of plaster of Paris in the 

slag-lime-plaster of Paris mixes was varied from 0 to 10%, which is taken on the 

combined mass of slag plus lime. The hydration products and formation of bonds in the 

paste were studied by using several techniques like X-ray diffraction (XRD), scanning 

electron microscope (SEM), thermo gravimetric analysis (TGA), differential scanning 

calorimeter (DSC), Fourier transform infrared (FTIR) and mercury intrusion porosimetry 

tests. The compressive strength of mortar specimens was determined for the above mix 

proportions after different curing periods. The optimization of mix-proportion based on 

compressive strength was done by adopting generalized reduced gradient technique and 

response surface plot. The effects of curing conditions on strength of slag activated with 

lime and plaster of Paris were investigated. This includes curing of specimens in water at 

different temperatures and periods. Accelerated curing of mortar specimens was also 

done at high pressure and temperature in an autoclave. Further, the effects of mineral 

admixtures such as silica fume, fly ash, glass powder, OPC as well as chemical 

admixtures like calcium acetate, calcium formate, calcium nitrate, sodium meta-silicate, 

and sodium hydroxide on mechanical strength, hydration products, morphology, and 

microstructure were determined. Finally, the compressive strength of specimens was 

correlated with hydration products, microstructure, morphology, and pore structure; 

obtained from several analyses like XRD, SEM, TGA, DSC and FTIR tests. 
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          The test results indicate that the normal consistency values of slag-lime-plaster of 

Paris mixes increase with increase in the content of either lime or plaster of Paris. The 

initial and final setting times of the mixes decrease with either increase in lime or plaster 

of Paris content or both. Setting times of the mixes are lesser than that of the value 

prescribed for ordinary Portland cement. Further, addition of borax retards the setting 

time and a borax content of 0.4% by mass gives the setting time that is normally 

prescribed for OPC 

The compressive strength results of mortar specimens containing slag-lime-POP 

in different proportions show that no appreciable increase in strength is incurred beyond 

5% POP content. Depending on the slag and POP content, an optimum dose of lime 

exists and no further significant increase in strength is achieved beyond this dose. A 

higher dosage of lime reduces the strength. The strength of slag cement increases up to 90 

days of curing and even beyond that. Microstructure and hydration product studies show 

the presence of compounds of ettringite and C-S-H gel, which mainly enhances the 

strength. An addition of lime beyond an optimum value results in the formation of 

hillebrandite and reduction in compressive strength. The optimum value of the response 

function that is the compressive strength is obtained using fitted response surface models 

by GRG method. The optimum lime and POP content for 90 days cured mortar specimen 

is found to be 19.12% and 4.26% respectively. However, for other curing periods the 

optimum values of lime and POP are found to vary from 15.75 to 19.12% and 3.95 to 

4.57% respectively. 

          The strength of mortar specimens mainly depends on the curing period as well as 

the type, amount, and the fineness of the mineral admixtures. It indicates that the silica 
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fume added samples give the highest compressive strength than other mixes at similar 

test conditions. Silica fume added mortars specimens show the lowest porosity and 

exhibits uniformly distributed pores over the measured pore size range. This indicates 

that silica fume acts as a filler material and it also participates in the pozzolanic reactions. 

X-ray diffraction analysis shows a series of compounds such as calcium silicate hydrate, 

gypsum, quartz, and calcite. SEM analysis also confirms the existence of these 

components in the hydrated specimens as calcium silicate hydrated gel. FTIR spectrum 

shows a shift of Si-O, O-H, and Al-O bonds with wave number indicating that the 

hydration process continues with curing time and confirms the formation of calcium 

silicate hydrated gel during the reaction. 

  The addition of calcium based chemicals like calcium acetate, calcium formate and 

calcium nitrate up to 2% to the reference binder (D5) improves the compressive strength 

and after that it decreases. However, an addition of sodium based admixtures results no 

appreciable change in strength over the reference sample. The SEM image of specimens 

containing calcium based chemicals such as calcium acetate and calcium formate shows 

abundance of needle shaped Aft phase of calcium aluminate tri-sulphate and gel like 

calcium silicate hydrate. The presence of these hydration products result in enhancing the 

strength of the mortar specimens. However, in sodium based specimen these phases are 

found in lesser quantity.  

Compressive strength results of mortar specimens cured under different 

temperatures revealed that higher curing temperature favors an early strength gain but the 

strength at a later age is found to be lower than the samples cured at moderate 

temperatures. Samples cured at low temperature show a rising trend of strength even after 
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90 days of curing whereas the strength of high temperature cured specimens gets 

stabilized much earlier. A crossover effect of strength is noticed between low and high 

temperature cured specimens. X-ray diffraction analysis shows a series of compounds 

such as calcium silicate hydrated and wollastonite in the hydrated specimens. Usually 

needle like crystals of ettringite are observed during the early periods of hydration 

whereas in the later curing period common fibrous type of irregular grains forming a 

reticular network of calcium silicate hydrate gel is found. The gradual shifting of v4-SiO4 

bond towards lower frequency with increase in temperature indicates the formation of 

more amounts of C-S-H with increased curing period. The optimum dose of raw 

materials is found to vary marginally based on curing temperature and curing period. X-

ray diffraction analysis shows a series of hydration compounds such as calcium silicate 

hydrate, gismondine, xonotlite, and tobermorite in samples cured in autoclave whereas 

absence of gismondine, xonotlite and tobermorite is observed in samples cured in water 

at normal temperature of 27 oC. Furthermore, tobermorite structures having different 

morphology such as foiled and semi-transparent are observed in the spherical pores in 

autoclaved samples. A high temperature and pressure curing favors quick formation of 

hydration products and it results much faster gain of strength. The samples cured in an 

autoclave for 2 hours give almost equal strength to specimens cured in water at normal 

temperature for 28 days. No appreciable gain in strength is observed in specimens cured 

in autoclave beyond 2 hours whereas samples cured in water at normal temperature show 

a continuous increase in strength up to 90 days. The specimens cured in water for 90 days 

show a low porosity, higher mass density and more homogeneous distribution of 
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hydration products than the specimens cured in autoclave for 4 hours. This contributes to 

higher strength of the samples.  

The objective of the present investigation is to understand the properties of lime 

activate slag cement through an extensive experimental program. Therefore, the test 

results obtained from present investigation builds a high level confidence that alkaline 

activated slag can be used as an alternate binding material to OPC. 
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CHAPTER I 
Introduction 

 

1. INTRODUCTION 

1.1 AN OVERVIEW ON CEMENT PRODUCTION AND UTILIZATION 

In this present scenario, the economic development of a country majorly depends 

upon the development of infrastructures and industries. For construction of these 

infrastructures, concrete is adjudged to be an indispensable building material and cement 

is an integral constituent of this material. It is used universally for all construction works 

such as housing and industrial construction as well as for construction of infrastructures 

like ports, roads, power plants, etc. From the time immemorial, Portland cement has been 

used as binder in concrete construction. It is basically made up of a mixture of chemical 

compounds such as calcium oxide, silica, aluminium oxide, and iron oxide. Generally, the 

ordinary Portland cement is prepared by mixing clinker with some additives whereas the 

clinker is produced by calcinations of limestone (calcium carbonate) and siliceous 

material. During the clinker production process, de-carbonation occur which causes 

emission of huge amount of carbon dioxide to the atmosphere. The global cement production 

is likely to reach 5000 million tonnes in the year 2050 (Figure 1.1). Though today there is 

skyrocketing rise in demand for cement in construction field, its production is not 

adjudged to be eco-friendly due to emission of CO2 which accounts for around 5%. The 

total emission of CO2 per kg of cement clinker produced is 0.53 kg from the 

decarbonation of calcite, plus 0.33 kg from the burning process plus 0.12 kg from the 

generation of electrical power required, making a total of 0.98 kg. Therefore, for every 



  
   

2 

ton of cement clinker produced, an approximately equal amount of carbon dioxide is 

released into the atmosphere (Davidovits, 1991). The world cement industry contributes 

an approximate of 7% to the total man made CO2 emission (Malhotra, 1999). 

 

Figure1.1Global cement productions (1970-2050) 
[Source: International Energy Agency (IEA)] 

 
Figure 1.2 represents the total amount of CO2 emitted to the atmosphere during 

last three years in different regions and from this it is observed that Asian region ranks 

second position in carbon dioxide emission. In the year 2011, the production of world 

cement has reached to 3.6 billion tones and emitted 2 billion tons of CO2 to the 

environment which being produced both from calcinations of limestone and fossils 

fuel/gas used during the entire process. As per global cement sector, the emission of CO2 

for cement production can be reduced by three main parameters and those are: 

• Energy efficiency, 

• Alternative fuels or biofuels, and  

• Clinker substitution. 
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Figure1.2 CO2 emission during last three years (2011-13)  

[Source: International Energy Agency (IEA)] 
 
 

 
Figure 1.3 CO2  emission in different countries (1960-2010) 

 

Through the combination of these efforts, the emissions of CO2 have been 

reduced by 16 percent from the 1990 levels of 750 kg CO2 per tonne of cement. Further, 

reductions can be achieved through continued action using these three parameters but 

there is a practical limit on the reductions that can be achieved. Hence deep cuts in CO2 

emissions from cement production can be achieved only through cement clinker 

substitution. In addition to this, another disadvantage of cement production is that it 

consumes huge amount of energy. A closer look at the economics of the production of 



  
   

4 

Portland cement shows that energy input accounts for 58% of the total cost of production 

(28% for power, 30% for fuel). The energy required to produce different types of cement 

in terms of fuel consumption (Kilos per metric ton of cement) is given in Table1.1. 

Table 1.1 Energy required for different type of cement production 

 (Source from www.nationalslagassoc.org) 

 

Taking into account the disadvantages of conventional Portland cement 

production it has been a challenge for the cement industry to meet the growing demand 

for cement with the need to forge a more sustainable cement industry. Though the current 

cement production and cement industry has not completely reduced the carbon dioxide 

Cement type 
 

% 
Slag 

Clinker 
production 

Drying slag 
with 

grinding at 
15% 

moisture 

Grinding at 
3000 Blaine 

(m2/kg) 

Total energy 
requirement 

(kg/ton) 

Pure cement  0 106.1 0 10.5 116.6 

Compound 
Portland 
cement  

35 68.9 5.6 13.1 87.6 

Blast furnace slag 
cement  

30 63.7 6.4 13.5 83.6 

40 53.1 8 14.2 75.3 

50 42.4 9.6 15.0 67.3 

60 26.5 12 16.1 54.6 
Slag cement and 

clinker  85 15.9 13.6 16.9 46.4 

Slag 15% 
moisture, 

dried and ground 
100 0 16.0 18 34 

Dry slag ground 100 0 0 18 18 
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emission and not fully saved the energy consumption, there is an indigence of an 

alternative technology to reduce and save the energy. 

The development of alternative cements based on the alkali-activation of slag has 

a relatively long history. Feret (1939) first described the use of slag instead of cement in 

1939, while in 1940 Purdon focuses on alkali activated slag, but this concept become 

widespread in 1950s by Glukhovsky. In 1960s, several apartments and other engineering 

structures were constructed using alkali activated slag cements in Ukraine. Although 

these structures subjected to severe weather, they still are in stable condition. The use of 

slag in cement is especially attractive for a number of environmental reasons. Alternate 

alkali activated slag cement can be used by adding some activators such as lime and 

plaster of Paris in slag which also gives the same properties as alkali activated slag 

cement (AASC). 

 

Literally, alkaline activated slag cement is a sustainable, eco-friendly binding 

material as well as a superior alternative to OPC as it possesses some major positive 

features that it emits negligible amount of carbon dioxide and consumes less amount of 

energy. Although the development of alternative cements based on the alkali-activation 

of slag has a relatively long history, still its implementation in the construction industry 

has never been overhyped and the commoners are unaware of its application so far. So a 

proper and comprehensive study need to be done in order to evaluate it’s physical, 

chemical and mechanical properties so that  a high level confidence can be built up for 

it’s safe and extensive application in the construction field as an alternate to OPC.  
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1.2 ORGANIZATION OF THE THESIS 

The work presented in this thesis involves fundamental knowledge on cement 

properties like physical, chemical, and mechanical properties of lime activated slag 

cement. The observations reported in literature and experimental procedure described in 

Indian Standard code was used as reference for the experimental and computational 

work. The research framework of this thesis is presented in Figure 1.4. It is composed of 

8 chapters, which are described in details below. 

Chapter 1of this thesis introduces some background knowledge on the importance 

of cement production, effects of cement production on the environment as well as its 

remedies and a brief description about different types of cement and substitution of 

cement. 

A critical review of relevant literature is given in Chapter 2. This includes 

activation of pozzolanic materials by different activators and their effects on physical, 

chemical, and mechanical properties. The effects of curing conditions and admixtures on 

the strength and hydration products are also reviewed in this chapter. A few computer 

models for optimization of raw materials of cement are introduced with special emphasis 

on the computer model called generalized reduced gradient (GRG) algorithm and 

response surface method. 

Chapter 3 of this thesis deals with the experimental procedure for material 

characterization, details of the experimental studies undertaken and the experimental 

procedure adopted.  
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Chapter 4 of this thesis deals with the physical properties of slag-lime-POP mixes. 

The reaction mechanism along with the formation of hydration products, their 

characteristics, compositions, and accompanying properties are investigated. A 

correlation is established between physical properties and developed hydration products 

and microstructure. 

Chapter 5 of this thesis emphasizes on the mechanical properties of slag-lime-

POP mixes. The compressive strengths of slag-lime-POP mixes after different curing 

periods are evaluated and are correlated with hydration products, chemical bonds, and 

microstructure. The optimization of raw material proportions was made based on the 

experimental values of compressive strength by adopting response surface plot and the 

generalized reduced gradient technique. 

Chapter 6 of this thesis focuses on the effects of admixtures (mineral and 

chemical admixtures) on strength of lime activated slag cement. The mineral admixtures 

used are silica fume, fly ash, glass powder and OPC.  Similarly, chemical admixtures 

used in this work are calcium acetate, calcium formate, calcium nitrate, sodium 

hydroxide, and sodium-meta-silicate. The effects of these admixtures on compressive 

strength, hydration products, microstructure and porosity are investigated and reported. 

 Chapter 7 of this thesis describes the effects of curing conditions on strength of 

lime activated slag cement. The curing is done in different curing temperatures in water 

bath and with high temperature and pressure for different curing periods in autoclave. 

The results of strength obtained in different curing conditions are compared and 

correlated with hydration products and chemical bonds formed after curing. 
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Chapter 8 of this thesis gives the detailed summary, conclusions, and future scope 

of the work.  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4 Structure of the thesis 
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CHAPTER II 
Literature review 

 

2. LITERATURE REVIEW 
2.1 INTRODUCTION 

An extensive literature review pertaining to the activation of pozzolanic materials 

is conducted. A wealth of information were found in the literature and studied with 

respect to different properties of alkali activated slag, such as mix proportions, curing 

conditions, admixtures, hydration products and hydration mechanism, microstructure and 

morphology. The area of further research is to be looked into to open new avenues to 

enhance the knowledge on this alternate construction material. A brief review or 

summary of reports, papers and articles is given in below. 

2.2 POZZOLANIC MATERIAL 

Pozzolana, also known as pozzolanic ash, is a siliceous or siliceous and aluminous 

material in the form of amorphous or glassy materials. When it reacts with calcium 

hydroxide in the presence of water at room temperature, calcium silicate hydrate and 

calcium aluminate hydrate compounds are formed possessing cementitious properties. 

The term 'pozzolana' has two different meanings. The first one specifies the pyroclastic 

rocks, essentially glassy and sometimes zeolitised, which occur either in the 

neighbourhood of Pozzuoli (the ancient Puteoli of the Roman times) or around Rome. 

The second meaning includes all those inorganic materials, either natural or artificial, 

when these pozzolana materials mixed with calcium hydroxide (lime) and water which 

formed a harden material or that can release cementious properties. The use of 

pozzolanas has been mostly restricted to Italy, where considerable reserves of natural 
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pozzolanas are found and in Greece (Santorin earth) for a long day. In other countries the 

interest in these pozzolana materials is of relatively recent date and has arisen from the 

need for reusing some waste materials such as blast furnace slag, fly ash and silica fume. 

This historical background can help to explain why so many countries have long 

distrusted pozzolana containing cements, despite the millenary use of lime-pozzolana 

mortars and almost 100-year experience in pozzolanic cements. In any case, the results of 

a variety of studies have substantially confirmed that pozzolanic cements can yield 

concrete showing a higher ultimate strength and greater resistance to the attack of 

aggressive agents. Now-a-days the most pozzolanic cementing material is the activated of 

slag cement; which is an attractive, cost effective and environment friendly cementing 

material. 

2.2.1 Activation of pozzolanic materials 

The natural pozzolanic materials and the artificial pozzolana like industrial byproducts 

such as ground granulated blast furnace slag, fly ash, silica fume and rice husk can be 

used as cementious material. These pozzolanic materials are activated due to its latent 

hydraulic properties and become the most suitable cementing material alternate to OPC. 

The activation of pozzolanic materials can be achieved by three different activation 

methods such as: 

1. Alkaline activation  

2. Sulphate activation  

3. Combined alkaline and sulphate activation 
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2.2.1.1 Alkaline activation 

In alkaline activation alkalis or alkaline earth ions are used to stimulate the 

pozzolanic reaction or release the latent cementious properties of finely divided inorganic 

materials. In this process the solubility of the pozzolanic materials are influenced and 

solubility of the alumina, silica becomes greater with the increase in pH value of the 

aggressive solution. Figure 2.1 shows the solubility of amorphous silica and alumina in 

different pH ranges. The increase in solubility is particularly strong in the relevant pH 

value range of more than 10. 

 
Figure 2.1 Solubility of Al2O3 and amorphous SiO2 related to pH value (source Fra90) 

 
The application of alkaline reacting material aggravates an increased solubility of the 

pozzolana silicates and improves the reaction capability of these materials. The alkaline 

compounds that are suitable as activators can be classified into three classes:  

i. Alkaline salts of weak acids (except for silicates) e.g., sodium carbonate, 

sodium fluoride 

ii. Alkaline silicate, e.g., sodium silicate, sodium silicate in a compound with 

sodium fluorosilicate 

iii. Alkali hydroxide, e.g., Ca(OH)2 is also included amongst the alkaline 

activators 
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The function of Ca(OH)2 is different from that of the alkaline salts. It not only acts as 

a catalyst for the pozzolanic reaction, but also it takes part in reaction activity. During the 

reaction it produces C-S-H phases and calcium-alumina hydrate such as C4AH13. Jiang 

(1997) classified the activation of different pozzolanic materials as (1) alkali activated 

slag cement; (2) alkali activated portland-slag cement; (3) alkali activated fly ash-slag 

cement; (4) alkali activated pozzolana-lime cement; and (5) alkali activated pozzolana 

cement. The activators used are NaOH, KOH; Na2SO4; Na2CO3; CaSO4, and soluble 

silicate of sodium and potassium. These alkali activate cementing materials have great 

potential and generate very early, high strength, greater durability and high performance. 

Krivenko (1994) classified the alkali activated cementious material based on the 

composition of hydration products. The alkaline alumino-silicate systems (R-A-S-H, 

where R= Na or K) were called “geocements”, emphasizing the similarity of the 

formation process of these materials to the geological process of the natural zeolites. The 

alkaline–alkaline earth systems (R-C-A-S-H) where the hydration products are low basic 

calcium silicate hydrates (C-S-H gel with low Ca/Si ratio). This includes the alkali-

activated slag and alkaline Portland cements. 

2.2.1.2 Sulphate activation 

The reaction of the pozzolana materials can also be stimulated by the addition of 

sulphate-containing compounds such as calcium sulphate. The effectiveness of this 

activator is based upon the reaction of these with the sulphate ions subject to the 

formation of etringitte, C-S-H phases and aluminium hydroxide. The reaction speed of 

the pozzolana materials are, however comparatively low when exclusively stimulated 

with sulphates. The effectiveness of the sulphate activation can only be improved to any 
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significant degree with the addition of alkaline reacting materials. With simultaneous 

alkaline activation an increase in the sulphate content has a positive effect on the reaction 

speed of these materials. The sulphate activation is used particularly in sulphate slag 

cements, which containsat least 75% and mostly between 80 and 85% GGBS. As 

activators, these cements contain between 10 to 15% anhydrite and about 5% Portland 

cement clinker or lime. The Al2O3 content in the raw material should be at least 14 % or 

higher to achieve high quality sulphate cement. In recent years, sulphate slag cements 

have been redeveloped using the present day GGBS qualities and the optimum dose of 

activators are to be finalized depending on the quality of slag. 

2.2.1.3 Combined alkaline and sulphate activation 

Pozzolanic materials can be activated by combined sulphate and alkaline 

activation. In this activation, in the early stage of the reaction the sulphate activation is 

predominant; leading for solidification and after termination of the solidification 

reactions the reaction of the pozzolana materials continues by alkaline activator. The pore 

solution in the hardened cement paste is characterized by the ever-present calcium 

hydroxide in the surplus due to very high pH values of at least 12.5. In addition, in the 

early hydration stage, it contains high concentration of sulphate ions, which originate 

from the calcium sulphate added as a solidification actuator and from the alkaline 

sulphates of the clinker. Sulphate is bound during the solidification process and forms 

calcium-aluminate-sulphate-hydrates which leads to the reduction of sulphate 

concentrations. At the same time the sulphate ions are replaced by hydroxide ions and the 

pH value increases. After the end of the solidification reactions, the pore solution 

contains mostly alkali and hydroxide ions and the pH value is between 13 and 14. The 
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solubility of the calcium in highly alkaline pore solution is still only minimal. The 

predominant part is present in the hardened cement paste in the form of solid Ca(OH)2. 

2.3 ALKALINE ACTIVATION OF SLAG 

In the present study an extensive literature review is made on the activation of 

ground granulated blast furnace slag (GGBFS) by using different activators. The physical 

properties, mechanical properties, hydration products, microstructure, and morphology of 

slag activated by different activators have been reviewed and presented in the following 

sub-sections. The effects of curing conditions and admixtures on strength and hydration 

products are also reviewed.  

2.3.1 Physical properties 

The physical properties of the binding material are as important as the mechanical 

properties. The physical properties mainly consist of the consistency, setting time and 

soundness of the cementing material. A detailed review on physical properties of the 

activated slag is presented here.  

Shi and Li (1989) studied extensively on the formation of hydration products of the alkali 

activation of slag activated by water glass. The properties of alkali-phosphorus slag 

cement were influenced by the modulus of water glass (Na2O:nSiO2), soluble phosphates, 

water to solid ratio and the fineness of the slag when water glass and granulated 

phosphorus slag (GPS) were used to make alkali-GPS cement. The anions of water glass 

react with Ca2+ dissolving from the surface of GPS grains and primarily calcium silicate 

hydrate forms at the initial stage of hydration. The main hydration product is reported to 

be hydrated calcium–alumina–silicate, like C-A–S–H gel. This phase is different from 
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that formed in the Portland cement in the early period of hydration and has a lower C/S 

ratio. Wang et al. (1995) reported that the slag activated with sodium hydroxide poses 

quick setting and high shrinkage with micro crack formation. Brough et al. (2000) used 

phosphate and malic acid as retarders in slag and sodium silicate base mixes to increase 

the setting time of the alkali activated slag cement. Gong and Yang (2000) studied the 

effect of phosphate on the hydration mechanism of alkali activated red mud slag through 

micro calorimeter, X-ray diffraction, and energy dispersive spectroscopy. The setting 

time was found to be retarded due to the production of a new phase of (CaNa) 

O(SiAl)O2y(CaNa) SO4xH2O.  

2.3.2 Mechanical properties 

The strength of cement mortar is the most important parameter which gives the 

overall measure of quality of cement and concrete. An attractive alternative with equal or 

more strength to Portland cement is the binders obtained by activation of pozzolanic 

materials, rich in reactive amorphous silica and alumina. In order to enhance its 

mechanical properties, slag is activated by different activators. This section summarizes 

the works regarding the development of compressive strength in alkali activated slag 

cement. Malolepszy and Nocun-Wczelik (1988) found that both compressive and flexural 

strengths of sodium silicate-activated slag cement mortars decreased with increase in 

molarity of sodium silicate solution. Shi and Li (1989) activated granulated phosphorus 

slag by water glass (Na2O:nSiO2) and determined the effect of modulus of water glass 

(Na2O:nSiO2), soluble phosphates, water to solid ratio and the fineness of the slag on 

hydration mechanism and the mechanical strength of the cement. The results indicate that 

the modulus of water glass and fineness of slag have pronounced effect on the strength of 
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the cement and the increase in water to solid ratio is not helpful both to the early 

hydration and strength of the cement. Douglas et al. (1991) activated the ground 

granulated blast-furnace slag mortars and concrete with alkaline reagents (NaOH, 

Ca(OH)2, sodium or potassium silicates). The results indicate that the activation of 

sodium silicate can be used to make slag concrete with satisfactory workability and 

strength properties. Wang et al. (1994) investigated on the activation of acidic, neutral, 

and basic slag with water glass having different moduli. The results indicate that the 

optimum modulus for the acidic, neutral and basic slag was around 0.75-1.25, 0.9-1 and 

1.0-1.5 respectively. Bakharev et al. (1999) activated the slag by sodium silicate, sodium 

hydroxide, sodium carbonate, sodium phosphate, and combinations of these activators. 

The result indicates that the compressive strengths are in the range from 20 to 40 MPa 

and most effective activator is found to be liquid sodium silicate. Sodium silicate solution 

with a low Na content and modulus equal to 0.75 is recommended for formulation of 

AAS concrete. Puertas et al. (2000) studied the strength behavior of alkali-activated slag/ 

fly ash pastes activated with either 2 M or 10 M of NaOH solutions. The slag to fly ash 

ratios were 100/0, 70/30, 50/50, 30/70 and 0/100. The results indicated that as slag 

content in the pastes increased, compressive strength increased. The higher strengths 

were obtained when 10 M NaOH was used. Glukhovsky et al. (1983), Bakharev et al. 

(2001) reported that the alkali activated slag cement (AASC) had lower resistance to 

alkali aggregate attack than that of the OPC concrete of similar grade. Escalante-Garcia et 

al. (2002)studied the strength properties of blended slag mortars with replacement levels 

of 0, 5, 10, 15 and 20% geothermal silica waste, and slag was activated with  6%  Na2O 

equivalent of NaOH and water glass. The lime was added as an activating agent to 
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promote pozzolanic reaction with the silica. It was found that the presence of silica waste 

increased the reactivity of the cementitious materials, and compressive strength increased 

with increase in silica content up to 15% replacement; thereafter, the strength was 

reduced. Ben Haha et al. (2011) reported the strength of slag cement that was activated 

by NaOH and Na2SiO35H2O. The slag activated by Na2SiO35H2O gave higher strength 

compared to slag activated by NaOH.  

2.3.3 Effect of admixtures 

Mineral admixtures mainly used in concrete works in order to make the cement 

more economical, reduce permeability, increase strength, and influence other properties 

of hardened concrete. The industrial by-products like fly ash (FA), silica fume (SF), and 

glass powder (GP) can be used as mineral admixtures. Silica fume,fly ash, and glass 

powder generally has been used as an admixture in slag based alkali-activated 

systems.Phillips and Cahn (1973) commented that glass cullet up to 35% could be used in 

concrete in combination with low-alkali cement. Samtur (1974) reported that the fine 

glass powder of size less than 75 µm acts like a pozzolana material and it reduced the 

tendency of reactive aggregate to undergo alkali silica reaction. Douglas and Brandstetr 

(1990) studied the mechanical strength of alkali activated slag cement taking different 

proportions of sodium silicate solution, lime, OPC, silica fume and fly ash. It has been 

found that silica fume activator (SFA), a product prepared from silica fume and water 

solution of alkali compound, is more active than NaOH and water glass Zivica (1993). 

Rousekova (1997) reported that the SFA is a highly effective substance for the alkali 

activation of the combinations of Portland cement, silica fume and blast furnace slag as 

well as slag alone. The positive effect of silica fume is based on the intensification of the 
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production of calcium silicate hydrates. Shi and Day (1999) studied the early strength 

development and hydration of alkali activated blast furnace slag/fly ash blend cements by 

activating with sodium hydroxide and water glass. The authors found a decrease in 

strength with increase in the amount of OPC, but in the case of fly ash it is reversed.Shao 

et al. (2000) reported that the finer particle size of 75 μm or less of glass powder is 

favorable for pozzolanic reaction. Zivica (2004) investigated the effectiveness of silica 

fume natrium hydroxide, natrium carbonate, and water glass, on the strength of activated 

slag. They prepared fresh mortar mixtures of activated slag by adding SFA (a product 

prepared from silica fume and water solution of alkali compound), natrium hydroxide and 

water glass and result shows that improvement of strength is due to activation of SFA.Shi 

(2005) found that the fine glass powder possesses high pozzolana reactivity. The effect of 

silica fume activator (SFA) on strength is more active than natrium hydroxide, natrium 

carbonate, and water glass. Zivica (2006) activated blast furnace slag by SFA, the author 

found an increase in compressive strength and the resistance to permeability of water. 

Yazic et al. (2008) studied on the effect of mineral admixtures on compressive strength 

of ternary blended cement. The results indicated that the reactive powder concrete 

containing high volume binary (SF-FA or BFS) or ternary (SF-FA-BFS) blends have 

satisfactory mechanical performance.  

2.3.4 Effects of curing temperature 

For cement based materials, the curing conditions are the main key variables, 

because these influence both the early hydration kinetics and the properties of the 

hardened cement paste and concrete. Curing conditions and curing temperature influence 

the properties of hardened concrete. Aitcin (1958) opined that if curing is neglected in the 
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early period of hydration, the mechanical properties of concrete will decrease at later ages 

and suffer some irreparable loss. Bakharev et al. (1999) studied the effect of elevated 

curing temperature on the properties of alkali-activated slag concrete and concluded that 

the heat treatment significantly accelerated the strength development but in later ages the 

compressive strength was reduced as compared to the concrete cured at room 

temperature. Puertas et al. (2000) studied the strength behavior and hydration of alkali 

activated fly ash slag cement on different curing conditions. The results indicated that 

increased curing temperature has a positive effect on early strength gain and the strength 

increased up to a fly ash content of 30%. However, increase in fly ash content beyond 

this lowers the strength for a variety of activators and curing regime. Talling (1989) 

reported that an increase in strength of alkali activated slag cement occurred when the 

curing temperature was raised from 50 oC to 60 oC, and then no obvious temperature 

effect was observed up to 90 oC regardless of activator dosage.Shi et al.(1991) examined 

the strength developed in alkali-activated phosphorus slag cement and pointed out that 

the curing temperature had a very significant effect on the strength development in slag 

cement. Carino (1991) and Carino, and Tank (1992) reported that the crossover effect did 

not occur in hot cured high strength concrete prepared using OPC as the binding material. 

Fernandez and Puertas (1997) reported that the activation energy of alkali-activated slag 

cement is higher than that of Portland cement and it is expected that high temperature 

curing may be very helpful in improving the strength of alkali-activated slag cement. 

Zain and Radin (2000) studied the compressive strength and modulus of elasticity of 

high-performance concrete made with four types of concrete mixes exposed to 

temperatures within the range of 20 oC to 50 oC under three different types of curing 



  
   

20 

methods. The results showed that the compressive strength of concrete incorporating 

mineral admixtures practically reached above 100MPa from the age of 7 days. Puertas et 

al. (2000) studied the strength behaviour and hydration of alkali activated fly ash slag 

cement on different curing conditions. The fly ash / slag (100/0, 70/30, 50/50, 30/70 and 

0/100) are activated with NaOH solution with concentration of 2 and 10 molality at 

curing temperature 25oC & 65oC. Their results indicated that the curing temperature has 

positive effect in the strength increase at first days of reaction. But at longer ages the 

effect is the inverse. The strengths are higher when curing temperature is 25oC. Escalante 

Garcia (2001) and Sharp, (2001) reported on the crossover effects in mortar specimens 

made from OPC blended with fly ash/ground granulated blast furnace slag. The degree of 

hydration of the cement phases has been reported to be higher at increased temperatures 

in the early stages, but at later period the situation was reversed. A higher curing 

temperature at early ages increases the rate of hydration. However, it does not allow the 

reaction products to become uniformly distributed within the pores of hardening paste. 

Jin-Keun et al. (2002) reported the results of curing temperature and curing period on the 

strength and elastic modulus. They prepared the concrete with binders of cement and fly 

ash concrete, cured in isothermal conditions of 10, 23, 35, and 50oC and determined the 

strength and elastic modulus at the ages of 1, 3, 7, and 28 days. The results indicate that 

the concretes subjected to high temperatures at early ages attain higher early-age 

compressive and splitting tensile strengths, but lower later-age compressive and splitting 

tensile strengths than concrete subjected to normal temperature. Shi et al. (2006) opined 

that an increase of 10oC curing temperature doubled the rate of chemical reaction. 

According to a study conducted by Shi et al. (2006) on alkali activated slag cement the 
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compressive strength was found to be the highest at curing temperature of around 80 to 

90 oC, but the strength decreased as the temperature was further increased to 100 oC. 

Ezzian et al. (2007) prepared mortar specimens with 0, 10, 20, 30 and 40% of natural 

pozzolana replacement and cured under constant curing temperature of 20, 40 and 60 oC 

with saturated humidity. The results indicate that pozzolana enhances the ultimate 

compressive strengths and increases the activation energy which indicates the slow 

reactivity. The effect of the temperature on the ultimate strength is reduced with increase 

in temperature. Tanyildizi (2009) reported that a higher curing temperature improves 

strength at early ages. At a later age, the important hydrates formed have no time to 

arrange suitably and this causes a loss of ultimate strength.  

2.3.5 Autoclave curing 

The compressive strength is the main factor considered in the design and 

construction of concrete structures. The compressive strength of the samples is known to 

depend on the curing conditions adopted. Curing conditions and curing temperature 

influence the properties of hardened mortar and concrete also. Neville (1995) reported 

that the 28 days strength of normal curing can be achieved in about 24 hour with 

autoclave curing. Furthermore, studies showed that the incorporation of fine silica also 

enhances the mechanical properties. Aldea et al. (2000) studied the effects of curing 

conditions on properties of slag cement concrete. Autoclaving (175 oC, 0.5 MPa) and 

steam curing (80 oC) were compared to normal curing (28 days, 20 oC, and 100% RH). 

Four different concrete mix designs with the same mix proportions and different cement 

replacements were used: 0% slag (control), 25% slag, 50% slag, and 75% slag. The 

effects of slag replacement and curing conditions upon concrete properties were 
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examined. Shi and Hu (2003) studied the effect of autoclave curing on hydration product 

and microstructures of alkali activated slag cement with and without silica fume as an 

admixture. Sugma and Brothers (2004) investigated on the effects of curing temperature 

on strength properties of sodium silicate activated slag cement. It was found that sodium 

silicate activated cement autoclaved at temperature up to 200 oC displayed an outstanding 

compressive strength of more than 80 MPa. Hong and Glasser (2004) studied the 

hydration products of alkali activated slag cement and reported that C-S-H gel of 

appropriate compositions normally gets converted rapidly to crystalline phases of 

tobermorite and xonotlite in 12 to 18 hour at autoclaving temperature of 160 oC to190 oC. 

Yazici (2007) studied the effect of curing conditions on the mechanical properties of 

ultra-high strength concrete mixes manufactured using OPC and mineral admixtures like 

class-C fly ash and pulverized slag (PS). The specimens were cured in water, steam cured 

(90 oC) at atmospheric pressure and autoclave cured (210 oC) at pressure of 2MPa. The 

test results showed that high strength concrete can be obtained with high volume mineral 

admixtures. Yazici et al. (2009) prepared and studied the strength of alkali activated slag 

cement cured in water, steam, and autoclave (210 oC) under 2 MPa pressure for 8 hour. 

The result indicated that the steam and autoclave curing caused some reduction in 

flexural strength as compared to the standard water curing for 28 days. However, an 

addition of ground granulated blast furnace slag (GGBFS) and /or fly ash (FA) decreased 

the negative effect on strength of specimen cured in both steam and autoclave. Rashad et 

al. (2012) activated ground granulated blast furnace slag with quartz powder at various 

replacement levels ranging from 0 to 30% with sodium silicate as alkali activator. These 

were cured in autoclaved at a pressure of 8 bars and a temperature of 170 oC with 
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autoclaving times varying from 0 to 10 hour. An improvement in compressive strength is 

reported up to 30% replacement of slag by quartz powder.  

2.4 SULPHATE ACTIVATION OF SLAG 

2.4.1 Physical properties 

Bijen and Niel (1981) prepared the super-sulphated cement consisting of a 

mixture of 83% of Dutch blast furnace slag, 15% of fluoro-gypsum (anhydrite) and 2% of 

Portland clinker, and mixture is ground to a specific surface of 500 m2/kg. The results 

indicate that fineness of mixture reduces the setting time. Mehrotra et al. (1982) opined 

that plaster of Paris is a better activator than the conventional hard burnt gypsum 

(anhydrite) for activation of slag but, this cement has shorter setting time. Dutta and 

Borthakur (1990) reported the physical properties like setting time of super sulphated slag 

cement, prepared the blended cement by using slag, anhydrite/gypsum and clinker. They 

found the initial and final setting times of different compositions are in the range of 50-80 

min and 105-170 min respectively. The optimum amount of anhydrite to activate the slag 

was varying from 15 and 20%.  

2.4.2 Mechanical properties 

 The mechanical property like compressive strength of activated slag cement is 

studied by many authors. Weast (1979) reported that the solubility of gypsum is lower as 

compared to plaster of Paris and the slag activated by gypsum gains strength at a slower 

rate than treated with plaster of Paris. Bijen and Niel (1981) reported on the mechanical 

strength of super-sulphated cement, which was prepared with a mixture of 83% blast 

furnace slag, 15% flour gypsum (anhydrite) and 2% clinker (Portland cement). Mehrotra 

et al. (1982) reported that plaster of Paris (POP) is a better activator than the conventional 

hard-burnt gypsum (anhydrite) at least for a class of blast furnace slag, which ordinarily 
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considered less ideal for this purpose. The early strength of sulphate activated cement 

was reported to be lower than the OPC, but the strength exceeds than that of OPC with 

prolonged curing. Dutta and Borthakur (1990) reported the mechanical properties of 

super sulphated slag cement prepared by using (70-85)% slag, (10-25)% anhydrite and 

5% clinker. The results indicated that the compressive strengthincreases with hydration 

time and optimum amount of anhydrite required to activate the slag is in the range of 15-

20%. The 3 and 7 days strength of these compositions are about 50-60% of the 28 days. 

Li Dongxua et al. (2000) studied the influences of compound admixture like sodium 

sulphate on slag activated with gypsum and anhydrite.  The results indicate that the 

compound admixtures not only speed up the breakage of slag structure, but also 

accelerate the hydration of clinker and the solution of anhydrite and lead to production of 

more hydrates and improvement in all properties of high-content slag. Savastaro et al. 

(2001) prepared the blended cement using blast furnace slag, lime and gypsum with 80, 

8, and 12 % respectively. Their results indicate that the compressive strength is 24.5 MPa 

with this mix proportion. Jhon et al. (2005) studied on the durability of slag mortar 

reinforced with coconut fibre and prepared the binder with blast-furnace slag activated by 

10% of gypsum and 2% of lime with acidic solution (chloridric acid, 10%) in an 

ultrasonic bath. They found that the fibers remained undamaged, as it was observed by 

scanning electron microscopy (SEM) analysis after 12 years. 

2.5 COMBINED ALKALINE AND SULPHATE ACTIVATION 

2.5.1 Physical properties 

The setting characteristics of slag-lime mixes were studied by Feret (1939) and 

Jolibois and Nicol (1952) by using granulated slag and high calcium lime. The slow 

setting of the mixes was improved by adding sodium sulphate to the extent of 1 %, but it 
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suffered from producing efflorescence. An addition of gypsum is recommended in their 

work instead of sodium sulphate. Naceri et al. (2009) activated the slag cement by 

hydrated lime with 0, 2, 4, 6, 8, and 10% (by addition and substitution method) and 

observed a reduction in setting time with an increase of lime content. The setting and 

hardening of cement paste could be correlated with the formation of chemical 

compounds, phases, and hydration products. 

2.5.2 Mechanical properties 

Douglas et al. (1991) found that the strength of slag cement activated by lime and silica 

fume is higher than that obtained from activating with lime alone. Shi and Day (1993) 

reported that 6% hemihydrate gypsum is sufficient to activate the lime pozzolana cement. 

Cheng and Sarkar (1994) obtained a compressive strength of 75 MPa, when the slag was 

activated by 10% lime and 5% Na2O by weight of slag. Singh and Garg (1995) produced 

blended cement by mixing anhydrite with granulated blast furnace slag, Ca(OH)2, and 

small amounts of Na2SO4.10H2O and FeSO47H2O as activators. The results indicate that 

the activation of granulated slag with the gypsum anhydrite and Ca(OH)2 forms ettringite 

and tobermorite. Melo Neto et al. (2010)reportedthe compressive strength, shrinkage 

(autogenous and drying) and microstructure (porosity, hydrated products) of blast furnace 

slag (BFS) pastes activated with hydrated lime (5%) and hydrated lime (2%) plus gypsum 

(6%). Theycharacterized the paste mixture using powder X-ray diffraction (XRD), 

mercury intrusion porosimetry (MIP) and thermo-gravimetric analysis (TG/DTG). The 

results indicate that BFS activated with lime and gypsum (LG) larger amounts of 

ettringite when compared with BFS activated with lime (L). The presence of ettringite 
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and the higher volumes of macro-pores cause the compressive strength of BSF activated 

with hydrated lime plus gypsum to be smaller than that of BFS activated with lime. 

2.5.3 Effects of admixtures 

Douglas et al. (1991) found that the strength of slag cement activated by lime and 

silica fume is higher than that obtained from activating with lime alone. Bellman and 

Strak (2009) activated the blast furnace slag and prepared super-sulphate cement by 

mixing of 80-85% slag, Ca(OH)2 and CaCO3 instead of calcium sulphate. They 

accelerated the cement and studied the effect of accelerators such as calcium formate 

Ca(COOH)2, calcium acetate CaCH2(COOH)2, calcium chloride (CaCl2), sodium 

chloride (NaCl), calcium nitrate, calcium bromide with the range of (0.5-5)% by weight 

of cement on the compressive strength. The result indicates that the early strength of slag 

cement is increased from 6 to 16 MPa after the two days of addition of admixture and the 

final strength is increased from 36 to 53 MPa after 28 days.  

2.6 HYDRATION PRODUCT AND MICROSTRUCTURE 

Talling et al. (1981) and Shi and Day (1989) studied extensively on the alkaline 

activation of slag and the hydration products. The main hydration product was found to 

be C-S-H and hydrated calcium-alumina-silicate like C-A-S-H gel. This phase is different 

from that formed in the Portland cement in the early period of hydration and has a lower 

C/S ratio. The formation of other phases or hydrated compounds depends on the type and 

amount of the activator used, structure, and composition of the slag and curing conditions 

of hardening cement and concrete. Mehrotra (1982) analyzed the unhydrated and 

hydrated compound of mortar specimen of plaster of Paris activated slag cement by 

differential thermal analysis (DTA). DTA curve shows that unhydrated composition is 



  
   

27 

obtained as endothermal peak at 165 oC due to dehydration of plaster of Paris. After one 

week hydration, another small endothermic peakis obtained at 140 oC which may 

attribute to C-S-H. Stade (1989) reported that if the sodium amount is higher enough than 

the gel is named as sodium calcium silicate hydrate (NCSH). Shi et al. (1991) studied the 

hydration products of alkali activation of blast furnace slag, having detected the 

formation of CSH and xonotlite under autoclaving. Wang et al. (1994) activated the slag 

by NaOH and water-glass solution and hydration peak measured by DTA analysis. The 

endothermic peak at 90-110 is due to C-S-H (I) and at 130-170 oC,indicated the presence 

of Afm-type phase. These phases are obtained only when the slag was activated by 

NaOH. Singh and Garg (1995) produced blended cement, a mixtures of anhydrite with 

granulated blast furnace slag, Ca(OH), and small amounts of Na2SO4.10H2O and 

FeSO47H2O as activators. Their results indicate that the activation of granulated slag with 

the gypsum anhydrite and Ca(OH)2 to form ettringite and tobermorite. Wang and 

Scrivener (1995) examined the hydration products using XRD, DTA andmicrostructural 

development; they confirmed that CSH gel is the main reaction product of alkali 

activation of blast furnace slag, with low C/S ratio. That is conceivably due to the high 

pH solutions, which favors low Ca concentrations and high Si concentrations. The 

authors reported that formation of crystalline phase of hydrotalcite type when slag is 

activated with either NaOH or water-glass; and crystalline phase of AFm type in slag 

activated with NaOH. Hong and Glasser (1999, 2000) reported that the amount of sodium 

inside the C-S-H phase increases with the decrease of C/S ratio. Song et al.(1999, 2000) 

reported that the main reaction product of blast furnace slag during hydration is C-S-H 
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gel with minor amounts of hydrotalcite, which was detected by XRD analysis. These are 

formed only when the slag attains a high level of hydration.  

Puertas et al.(2000) studied the hydration products in the mixtures of fly ash and 

blast furnace slag activated by alkali.They reported that CSH gel was the main reaction 

product, they also identified the formation of hydrotalcite (Mg6Al2CO3(OH)16·4H2O), 

pirssonite (Na2Ca(CO3)·2H2O), as well as calcite, however, they did not find any alkaline 

alumino-silicate phase. Kim and Hong (2001) observed that the ion concentration change 

of liquid phase during hydration was different depending on the activator and the 

hydration time. Zhihua et al. (2000, 2003) studied the alkali activation of blast furnace 

slag mixed with red mud.They have investigated on the hydration products of this cement 

at ambient temperature by means of XRD, IR, TG-DTA, TEM, and EDXA. They 

detected the hydration product C-S-H gel with low Ca/Si ratio, neither Ca(OH)2 and AFt, 

which are usually present in the hardened Portland cement paste, nor zeolite-like 

products. Brough and Atkinson (2002) studied the hydration products of activated blast 

furnace slag, and reported that XRD analysis shows no crystalline products, however, the 

SEM analysis reveal the formation of hydrotalcite after one month and these phases are 

distinctly visible after one year.Escalante-Garcıa et al.(2003) studied hydration products 

of blast furnace slag mortars with 10% replacement by silica wastes. Silicaand the binder 

were activated by 6%Na2O by weight, equivalent of NaOH and water glass. They 

obtained CSH gel and hydrotalcite as reaction products by SEM and X-ray element 

analysis. Puertas and Fernandez-Jimenez (2003) analyzed the hydration products of 

alkali-activated mixtures of blast furnace slag and fly ash. They reported two types of 

CSH gel, calcium silicate hydrate aluminium with sodium in its structure and also an 
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alkaline alumino silicate hydrate with a three-dimensional structure due to the fly ash 

activation. Puertas et al. (2003) analyzed the phases formed in blast furnace slag 

activated with NaOH, by XRD analysis and they reported the presence of hydrotalcite 

(Mg6Al2CO3(OH)16·4H2O), calcite (CaCO3) and CSH. The authors have observed that 

activator NaOH leads to reaction products with the molar ratio Al/Si higher than that 

obtained with the activator NaOH mixed with waterglass. Gruskovnjak et al. (2008) 

activated the two different slag with 15% natural anhydrite and 0.5% KOH by weight and 

also Al2(SO4)3.16H2O and Ca(OH). The hydration products formed during the hydration 

inactivated slag is determined by XRD and TGA. They observed supplementary ettringite 

in addition to Al2(SO4)3.16H2O and Ca(OH)2in the hydration product. Bezerra et al 

.(2012) reported that the addition of crystalline silica, in the form of silica flour or silica 

sand modifies the trajectory of this natural conversion process and transforms C-S-H, at 

120 oC, into tobermorite, which shows low permeability and high resistance to 

compression. At the increased temperature, new transformations occur at 150 oC, with the 

conversion of tobermorite into xonotlite (Ca6Si6O17(OH)2). 

2.7 OPTIMIZATION OF RAW MATERIALS 

Kunhanandan Nambiar et al. (2006) developed the empirical model for 

compressive strength and density of foam concrete through statistically designed 

experiments and response surface plots which helped in visually analyzing the influence 

of factors on the responses. The relative influence of fly ash replacement on the strength 

and density of foam concrete is studied by comparing it with mixes without fly ash and 

brought out that replacement of fine aggregate with fly ash will help in increase the 

strength of foam concrete at lower densities allowing high strength to density ratio. 
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Confirmatory tests have shown that the relation developed by statistical treatment of 

experimental results can act as a guideline in deciding the mix proportion of foam 

concrete. Many researchers have used the response surface methodology in optimizing 

various parameters in their investigations. Maghsoud et al. (2008) used techniques 

response surface method and genetic algorithm for optimization of cement clinkering 

process. The result indicates that both techniques are capable, but the response surface is 

better than the genetic algorithm. Timur Cihana et al. (2013) used various methods for 

process improvement, development, and optimization. They reduced the number and the 

variations of effect-parameters by using response surface methodology. They determined 

the influence levels of the main and interaction terms of effect variables using 273 

fractional factorial designs in order to reduce the number of simultaneously controllable 

variables. They determined the quadratic terms using D-Optimal design, and response 

surface graphics were plotted. Serdar (2013) studied the effects of binary and ternary 

combination of ground granulated blast furnace slag (GGBFS), fly ash, and silica fume 

on compressive strength, flexural strength of OPC mortars. They have determined 

optimum replacement ratios of fly ash and silica fume in order to increase the quality of 

alkali activated slag mortars by Response Surface Method (RSM). The optimization of 

these admixtures was done using response surface method.  

2.8 POROSITY AND PORE SIZE DISTRIBUTION STUDY 

Shi and Day (1996) observed the relationships between compressive strength and 

the mercury intrusion porosity of alkali-activated slag and Portland cement mortars. The 

distribution of pore size of alkali-activated slag mortars is significantly different from that 

which Portland cement mortars. This may be due to the difference in the nature of their 
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main hydration products. Raymond and Cook (1999) performed porosity and pore size 

distribution on 92 hardened cement paste specimens of water/cement mercury 

porosimetry, they observed that longer curing times and lower w/c ratios resulted in 

smaller total porosities. Sharath et al. (2012) studied the porosity and pore size 

distribution by mercury intrusion porosimetry (MIP) of concrete specimens under the 

elevated curing regime.The result observed that there is an increase in the number of 

pores in the microstructureof concrete with an increase in curing temperature. 

2.9 CRITICAL OBSERVATIONS 

Based on the extensive literature review, it is observed that most of the studies are 

concentrated on the activation of slag by alkalis or sulphates. The available literature on 

slag activated by combination of alkaline and sulphate activation or lime and plaster of 

Paris is very limited and no attempt has been made to optimize the raw material 

compositions by using computational algorithm. Further, it shows that a limited attention 

has been paid to establish the influence of admixtures on the strength and microstructure. 

Again, it shows that several attempts have already been made to study the effect of high 

temperature curing on the strength only for alkali activated slag cement and ordinary 

Portland cement not in lime activated slag cement nor in combination of sulphate and 

alkaline activation of slag cement.Almost no literature is available on the effects of high 

temperature and pressure curing on strength of lime (alkaline earth metal) activated slag 

cement. Limited attempt has been made to establish a correlation between the mechanical 

strength and the hydration products, microstructure as well as morphology of the cured 

specimens. 
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2.10 OBJECTIVES AND SCOPE 

The objective of the present research is to prepare and characterize a sustainable 

binding material using primarily the industrial byproducts as an alternate to Portland 

cement.  

The scope of the research is as follows: 

• To prepare and characterize a cementing material by activation of industrial by-

products like granulated blast furnace slag using activators such as lime and 

plaster of Paris to have comparable physical, chemical and mechanical properties 

like that of OPC. 

• To optimize the raw material proportions of lime activated slag cement using 

response surface plot and generalized reduced gradient technique. 

• To study the effect of mineral and chemical admixtures as well as curing 

conditions on hydration products, morphology, microstructure and strength of 

lime activated slag cement. 

• To correlate the mechanical strength of specimens with the hydration products, 

morphology and microstructure of specimens. 

 

 



 

 

CHAPTER III 
EXPERIMENTAL WORK AND METHODOLOGY 

 

3. EXPERIMENTAL WORKAND METHODOLOGY 
3.1INTRODUCTION 

The main objective of the present study is to assess the suitability of a cementing 

material prepared by activating the ground granulated slag with lime and plaster of Paris 

as an alternate cementing material to ordinary Portland cement. This will also avert the 

exhaustion of natural resources, enhancement of the usage of waste materials, safe 

guarding global environment, and overall a change over from the mass-production, mass-

consumption, mass waste society to a zero-emission society. This chapter introduces the 

details of raw material used, their characterization, parameters investigated, detail 

procedure of experimental works and the methodologies adopted.  

3.2 DETAILS OF TESTS CONDUCTED 

An extensive laboratory testing program was undertaken to investigate the 

physical, chemical, and mechanical properties of lime-slag-plaster of Paris mixes. The 

total work can be broadly divided into two phases. In the first phase of investigation the 

physical properties such as consistency, setting timeand soundness for different mixes of 

lime-slag-plaster of Paris were determined. This also includes the study on hydration 

products and microstructure using several techniques like XRD, SEM,and 

FTIRtestscorresponding to initial and final setting time of different mixes. In the second 

phase of tests the mechanical property, microstructure, porosity, and drying shrinkage of 

mixes were determined. This is achieved in three series of tests. In the first series of tests, 

the compressive strength of 36 mixes of slag-lime-plaster of Paris was determined. Based 
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on which, the optimization of raw materials was done for different curing periods 

adopting the response surface plot and generalized reduced gradient technique. The 

optimum composition of raw materials is termed as reference sample (D5), which 

contains slag and lime in ratio of 80:20 and plaster of Paris of 5% over the combined 

mass of slag and lime. In the second series of tests, the effects of admixtures (mineral and 

chemical admixtures) on the compressive strength, microstructure, porosity, and drying 

shrinkage of reference sample were studied. In the third series of tests, the effects of 

curing temperature and curing condition on the compressive strengthand microstructure 

of reference sample with mineral admixtures were studied. After that correlation has been 

established between chemical bonds, hydration products, microstructure and morphology 

with strength of the mix. The details of tests conducted in this experimental program are 

summarized in Table 3.1. 

Table 3.1 Details of experimental program 
 

i Aim Evaluation of physical and chemical properties of 
slag-lime-POP mixes 

 Apparatus used and 
parameters evaluated 

Vicat apparatus (Consistency and setting time) 
Le-Chatelier apparatus (Soundness) 
XRD (Chemical compounds) 
FTIR (Chemical bonds) 
SEM (Microstructure and morphology) 

 Raw materials and its mix 
proportions 

Slag (95, 90, 85, 80, 70 and 60% ) 
Lime (5, 10, 15, 20, 30, and 40%) 
POP (0%, 1%, 1.5%, 2%, 2.5%, 5%, and 10%) 
Note: *POP is taken over the combined mass of lime and slag 

 Number of tests conducted 
and repeatability 

Consistency (42 mix proportions, 3observations each) 
Initial setting time (42 mix proportions, 3 
observations each) 
Final setting time (42 mix proportions, 3 observations 
each) 
Soundness (42 mix proportions, 2 observations each) 

 Results presented in Chapter Chapter: 4 
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ii Aim 

Study of mechanical property, microstructure, 
porosity and drying shrinkage of slag-lime-POP 
mixes and optimization of raw material 
proportions 

 Apparatus used and 
parameters evaluated 

Compression testing equipment (Compressive 
strength) 
XRD (Chemical compounds) 
FTIR (Chemical bonds) 
SEM (Microstructure and morphology) 
TGA (Mass loss in terms of chemical compounds) 
DSC (Chemical compounds) 
Mercury Intrusion porosimeter (Porosity and pore size 
distribution) 
Length comparator (Drying shrinkage) 

 Mix proportions 
Slag (95, 90, 85, 80, 70 and 60% ) 
Lime (5, 10, 15, 20, 30, and 40%) 
POP (1%, 1.5%, 2%, 2.5%, 5%, and 10%) 
Note: *POP is taken over the combined mass of lime and slag 

 Number of mixes and 
number of samples tested 

Compressive strength (36 mix proportions, 540 
samples) 
Porosity and Pore size distribution (1 mix proportion, 
3 samples) 
Drying shrinkage (1 mix proportion, 6 samples) 

 Curing condition Curing temperature: 27 oC (water curing) 
Curing period: 3, 7, 28, 56 and 90 days 

 Results presented in chapter Chapter: 5 

iii Aim 
Study the effects of mineral admixtures on  
compressive strength, microstructure, hydration 
products, porosity and drying shrinkage behaviour 

 Apparatus used and 
parameters evaluated 

Compression testing equipment (Compressive 
strength) 
XRD (Chemical compounds) 
FTIR (Chemical bonds) 
SEM (Microstructure and morphology) 
TGA (Mass loss in terms of chemical compounds) 
DSC (Chemical compounds) 
Mercury Intrusion porosimeter (Porosity and pore size 
distribution) 
Length comparator (Drying shrinkage) 

 Mix proportion 

Reference specimen (D5) with admixtures in different 
proportions (as listed) 
Flyash: 0, 10, 20, 30, 40% 
Silica fume: 0, 5, 10 and 15% 
Glass powder: 0, 5, 10 and 15% 
OPC: 0, 5 and 10% 
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 Curing condition Curing temperature: 27 oC (water curing) 
Curing period: 3, 7, 28, 56 and 90 days 

 Number of  samples tested 
Compressive strength (198 samples) 
Porosity and Pore size distribution (6 samples) 
Drying shrinkage (6 samples) 

 Results presented in chapter Chapter: 6 

iv Aim 
Study the effects of chemical admixtures on  
compressive strength, microstructure, and 
hydration products 

 Apparatus Used and 
Parameters evaluated 

Compression testing equipment (Compressive 
strength) 
XRD (Chemical compounds) 
FTIR (Chemical bonds) 
SEM (Microstructure and morphology) 
TGA (Mass loss in terms of chemical compounds) 
DSC (Chemical compounds) 

 Chemical admixture used 
and mix proportion 

Calcium formate, calcium acetate, calcium nitrate, 
sodium hydroxide, and sodium meta silicate (0, 0.5, 1, 
2 and 4%) 

 Curing condition Curing temperature: 27 oC (water curing) 
Curing period: 3, 7, 28, 56 and 90 days 

 Number of samples tested Compressive strength (780 samples) 
 

 Results presented in chapter Chapter: 6 

v Aim 
Study the effects of curing temperature on 
compressive strength and microstructure for slag-
lime-POP mixes 

 Apparatus used and 
parameters evaluated 

Compression testing equipment (Compressive 
strength) 
XRD (Chemical compounds) 
FTIR (Chemical bonds) 
SEM (Microstructure and morphology) 
TGA (Mass loss in terms of chemical compounds) 
DSC (Chemical compounds) 

 Mix proportion 
Slag ( 80% ) 
Lime (20%) 
POP (1%, 1.5%, 2%, 2.5%, 5%, and 10%) 
Note: *POP is taken over the combined mass of lime and slag 

 Curing Condition Curing temperature: 27, 45, 60 and 75oC Water 
curing) Curing period: 3, 7, 28, 56 and 90 days 

 Number of samples tested Compressive strength (270 samples) 
 Results presented in chapter Chapter: 7 
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vi Aim 
Study the effects of autoclave curing conditions on 
compressive strength and microstructure for slag-
lime-POP mixes 

 Apparatus used and 
parameters evaluated 

Cement autoclave (Curing of specimens) 
Compression test  (Compressive strength) 
XRD (Chemical compounds) 
FTIR (Chemical bonds) 
SEM (Microstructure and morphology) 
TGA (Mass loss in terms of chemical compounds) 
DSC (Chemical compounds) 

 Mix proportion 
Reference specimen (D5) with flyash or silica fume 
Fly ash: 0, 10, 20, 30,and  40% 
Silica fume: 0, 5, 10 and 15% 

 Curing condition 

Water curing: 
Curing temperature: 27 oC 
Curing period: 3, 7, 28, 56 and 90 days 
Autoclave curing: 
Curing temperature: 210 oC 
Pressure: 2MPa 
Curing time: 1, 2, 3 and 4h 

 Number of samples tested Compressive strength (84 samples) 
 Results presented in chapter Chapter: 7 

 

3.3 MATERIALS USED 

For this work, raw materials like ground granulated blast furnace slag; lime and 

plaster of Paris were used to prepare the binding material. Sand is used for the 

preparation of mortar specimens. Fly ash, silica fume, glass powder are used as mineral 

admixtures and ordinary Portland cement as additives. Calcium acetate, calcium formate, 

sodium meta-silicate, sodium hydroxide, and calcium nitrate were used as chemical 

admixtures. The physical properties and chemical compositions for all the materials are 

given in Table 3.2 and Table 3.3 respectively. 

3.3.1Ground Granulated Blast Furnace Slag (GGBFS) 

The blast furnace slag used in this work was collected from Rourkela Steel Plant 

(RSP). The slag was sun dried and mixed thoroughly to bring homogeneity in the sample. 
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The same was ground in a ball mill to a Blaine’s fineness of 410 m2/kg. The surface 

morphology of slag is rough and angular-shaped as shown in Figure 3.1(a). The 

characterization of blast furnace slag was done by XRD analysis; from this test result it is 

observed that the slag is purely glassy material. The XRD pattern of slag sample is shown 

in Figure 3.2(a). 

3.3.2 Lime 

Lime was procured from the local market. It was air dried, passed through 150 

micron sieve and mixed thoroughly in dry condition. Then lime was stored in air tight 

container for subsequent use. From the SEM image as shown in Figure 3.1(b), it is 

observed that the particles of lime are irregular in shape. The XRD test result of lime 

sample is shown in Figure 3.2(b). From the figure it is observed that the 

predominantconstituents are calcium oxide and calcium carbonate.  

3.3.3 Plaster of Paris 

Plaster of Paris was procured from the local market. It was air dried and mixed 

thoroughly in dry condition. It was passed through 150 micron sieve and stored in airtight 

container for subsequent use. The microstructure of Plaster of Paris is irregular in shape 

as shown in Figure 3.1(c). The XRD analysis result for plaster of Paris sample is shown 

in Figure 3.2(c). From the figure it is observed that calcium oxide, calcium sulphate, 

silicon oxide, and aluminum oxide are mainly present in plaster of Paris. 

3.3.4 Mineral admixtures 

Mineral admixtures such as fly ash, silica fume, glass powder and OPC are used 

in the present study. 
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3.3.4.1 Fly ash 

The fly ash used in the present investigation was collected from the Rourkela 

Steel Plant, Sundargarh, Odisha. The fly ash had grayish white colour. The tests on fly 

ash were carried out as per IS: 1727-1967. The specific gravity of fly ash was found to be 

2.3. The SEM image for fly ash as shown in Figure 3.1(d) reveals that most of the 

particles are spherical structure with few irregular particles. The XRD analysis result for 

fly ash is shown in Figure 3.2(d) from which it is observed that the predominant 

constituents are silicon oxide, aluminum oxide, and iron oxide. 

3.3.4.2 Silica fume 

The silica fume was collected from the Corniche India Ferro Silicon Alloy 

Mumbai. The specific gravity of silica fume was 2.21. The value of Blaine’s specific 

surface area of this material was 17256 m2/kg. The physical, chemical, morphological, 

and mineralogical data for the silica fume is presented in the following sections. From the 

SEM image as shown in Figure 3.1(e), it is observed that the particles of silica fume are 

spherical in shape. The crystalline peaks of SiO2 are prominent in the XRD images 

shown in Figure 3.2(e). 

3.3.4.3 Glass powder 

The glass powder used in the present investigation was prepared from broken 

shards of waste glass. The specific gravity of glass powder was 2.65. The Blaine’s 

specific surface area value of these materials was 210 m2/kg. The physical, 

chemical,morphological, and mineralogical data for the glass power is presented. 



  
   

40 

3.3.4.4 Ordinary Portland cement (OPC) 

In this study ordinary Portland cement is used as an additive with the raw 

materials. The ordinary Portland cement used in this experiment was collected from 

UltraTech Company, Kolkata. The specific gravity of ordinary Portland cement was 3.17. 

The Blaine’s specific surface area value of this material was 257 m2/kg. 

   
                    (a)GGBFS                                          (b) Lime 

    
 (c) Plaster of Paris      (d) Fly ash  
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(e) Silica fume 

 
Figure 3.1 Scanning Electron Micrograph (SEM) images of the raw materials 

 

 
         (a) GGBFS 

 

 
                            (b) Lime          (c) Plaster of Paris 
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                              (d) Fly ash                                                (e) Silica fume 
 

Figure 3.2 X-ray diffraction (XRD) patterns of the raw materials 
 
 
 
Table 3.2 Physical Properties of raw materials 

 
3.3.5 Chemical admixtures 

Different types of chemical admixtures such as calcium acetate, calcium formate, 

sodium meta-silicate, sodium hydroxide and calcium nitrate were used in the 

experimental program. These were collected from local chemical shop. 

Table 3.3 Chemical compositions of raw materials 

Sample Fineness (m2/kg) Specific gravity 

Ground granulated Blast furnace Slag 410 2.94 
Lime - 2.49 

Plaster of Paris - - 
Silica fume 17256 2.21 

Fly ash 334 2.30 
OPC 257 3.17 

Glass Powder 210 2.65 

Composition (%) Slag Plaster of 
Paris 

Lime Fly ash Silica 
fume 

OPC 

MgO 9.52 1.92 2.47 1.7 1.04 0.86 
Al2O3 21.06 1.13 0.98 28.1 1.48 5.57 
SiO2 30.82 0.916 2.75 53.6 88.2 19.3 
K2O 1.04 0.661 0.9 1.97 3.95 0.76 
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3.3.6 Sand 

Ennore sand confirming to Indian Standard IS 650-1991 was used for preparing 

the mortar specimens for compressive strength test.  

3.4 EXPERIMENTAL PROCEDURE 

The experimental procedures undertaken in the present study involves several 

experiments, conducted to obtain various properties. The physical properties tests such as 

consistency test, setting time test and soundness test of the mixes were determined. The 

mechanical property that is compressive strength was obtained by conducting uniaxial 

compression test. The raw material optimization was done on the basis of compressive 

strength of different mix proportion on hit and trial basis following response surface plot 

by adopting generalized reduced gradient method. The hydration products and formation 

of chemical bonds were studied using several techniques like XRD, SEM, FTIR, TGA 

and DSC analysis. Also, porosity and drying shrinkage were found out. The detailed 

experimental procedures adopted in this study are presented in the following sections. 

3.4.1 Determination of physical properties 

The physical properties such as consistency, setting time and soundness of the 

mixes were determined following Indian standard codes of practice and the detailed 

experimental procedure is discussed in the following sections. 

P2O5 - 0.58 - 1.72 - 
CaO 32.02 41.45 90.26 2.65 1.92 63.54 

Fe2O3 1.37 0.852 0.381 1.8 0.98 3.46 
Na2O 0.088 1.55 0.52 0.5 - 0.13 
MnO 0.14 - - 0.3 - - 
TiO2 1.04 - - 0.85 - - 
SO3 0.66 39.88 - - - 2.91 

Loss on Ignition 1.81 6.25 0.84 6.5 1.18 3.59 
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3.4.1.1 Determination of normal consistency 

The normal consistency of 42 mixes of slag-lime-POP was determined following 

IS code 4031 -1988 (part 4). The lime content in the mix was varied as 5, 10, 15, 20, 30 

and 40%; and the POP content as 0, 1, 1.5, 2, 2.5, 5 and 10%. The plaster of Paris content 

is taken over the combined mass of lime and slag. The test results are presented in Table 

3.4. 

Table  3.4 Consistency of slag-lime-POP mixes 
 

Lime 
content (%) 

 

Consistency (%) 
Plaster of Paris content (%) 

0 
 1 1.5 2 2.5 5 10 

5 28.89 28.89 29.24 29.24 29.25 29.25 29.42 
10 29.24 29.24 29.60 29.60 29.62 29.78 29.90 
15 29.60 29.96 29.96 29.96 29.96 30.32 30.5 
20 29.60 30.32 30.32 30.32 30.32 30.74 31.42 
30 33.17 34.24 34.24 34.24 34.24 34.24 34.42 
40 36.20 36.90 37.10 37.10 37.20 37.20 37.4 

 

3.4.1.2 Determination of initial and final setting time 

In order to place mortar and concrete in position conveniently, it is necessary that 

the initial setting time of the binder should not be too quick and after it has been laid the 

hardening should be rapid so that the structure can be made as possible. To determine the 

setting time of slag-lime-POP mixes, pastes were prepared by adding water equal to 85% 

of normal consistency of cementing powder. The paste was filled in Vicat mould 

immediately after 3 minutes of through mixing and surface was made smooth within 5 

minutes as shown in Figure 3.3. The initial setting time was determined as the period 

elapsed between the time when water was added to cement and time at which the square 

needle fail to pierce the test sample about 5 mm from bottom and the final setting time 
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was the time period elapsed between the time when water was added to the mix and time 

at which the annular attachment of needle fails to pierce the test sample. All these tests 

were conducted as per IS: 4031 (Part 5)-1988.  

The proportions of lime and POP in the slag-lime-POP mixes were varied as 5, 

10, 15, 20, 30 & 40% and 0, 1, 1.5, 2, 2.5, 5, 10% respectively. Thus 42 different mixes 

were prepared and tested. Initial and final setting times for different mixes are presented 

in Tables 3.5 and 3.6 respectively. In addition to this, the effect of borax on setting time 

was studied by adding 0.2, 0.4, 0.6, 0.8, and 1% borax to the mixes containing 20% lime 

and different percentages of plaster of Paris as mentioned above. The test results are 

presented in Tables 3.7 and 3.8. 

 

Figure 3.3Vicat apparatus 

Table 3.5 Initial setting time of slag-lime-POP mixes 

Lime 
content 

(%) 

Initial setting time (min) 
Plaster of Paris content (%) 

0 1 1.5 2 2.5 5 10 
5 271 269 47 47 24 18 13 
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Table 3.6 Final setting time of slag-lime-POP mixes 

Lime 
content 

(%) 

Final setting time (min) 
Plaster of Paris content (%) 

0 1 1.5 2 2.5 5 10 
5 540 495 480 470 310 270 79 
10 533 470 450 430 290 266 74 
15 493 441 424 410 251 236 72 
20 478 370 350 320 219 230 72 
30 442 361 320 310 218 181 71 
40 375 275 230 280 205 170 55 

 

Table 3.7 Initial setting time of slag-lime-POP mixes with borax 

Borax 
content (%) 

Initial setting time (min) 
Plaster of Paris content (%) 

1 1.5 2 2.5 5 10 
0 109 21 21 14 13 11 

0.2 119 54 37 30 21 19 
0.4 155 106 100 96 27 23 
0.6 160 130 121 109 89 63 
0.8 171 164 153 150 100 67 
1.0 291 199 187 185 118 99 

 

Table 3.8 Final setting time of slag-lime-POP mixes with borax 

10 270 236 30 29 20 17 12 
15 239 150 26 24 16 16 12 
20 235 109 21 21 14 14 11 
30 214 35 20 20 14 13 11 
40 163 19 19 18 12 12 10 

Borax 
content (%) 

Final setting time (min) 
Plaster of Paris content (%) 

1 1.5 2 2.5 5 10 
0 370 350 320 230 219 71 

0.2 376 370 361 345 262 209 
0.4 382 375 367 354 279 245 
0.6 398 379 372 366 289 279 
0.8 406 393 388 370 307 287 
1.0 415 398 390 375 314 295 
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3.4.1.3 Determination of soundness 

To measure the excess of free lime and magnesia present in the binder, soundness 

test was conducted for different mixes as per IS 4031-1988 (part-3) using Le-chatelier 

apparatus (Figure 3.4). The mix proportions taken for these tests are the same as 

mentioned for setting time tests. The lightly oiled mould was placed on a lightly oiled 

glass sheet and it was filled with cement paste formed by gauging cement with 0.78 times 

the water required to give a paste of standard consistency following  IS: 4031 (Part 4)-

1988. The mould was covered with another piece of lightly oiled glass sheet, a small 

weight was placed on this covering glass sheet, and immediately the whole assembly was 

submerged in water at a temperature of 27 ± 2 oC and kept for 24 hours. The distance 

separating the indicator points to the nearest 0.5 mm was measured. Again the mould was 

submerged in water at the temperature prescribed above. The water was brought to 

boiling, with the mould kept submerged, in 25 to 30 minutes, and kept it boiling for three 

hours. The mould was then removed from the water, allowed to cool and the distance 

between theindicator points was measured. The difference between thesetwo 

measurements indicates the expansion ofthe cement. For each mix 2numbers of 

observations were taken and the average of these values is presented in Table 3.9.  

 
Figure 3.4 Le-chatelier apparatus 
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Table 3.9 Soundness of slag-lime-POP mixes 

 
Lime content 

(%) 
 

Soundness (mm) 
Plaster of Paris content (%) 

0 1 1.5 2 2.5 5 10 

5 2 2 2 1.5 1 1 1 
10 2 2 2 1.5 1 1 1 
15 2 2 2 1.5 1 1 1 
20 2 2 2 1.5 1 1 1 
30 2 2 2 2 1 1 1 
40 2 2 2 2 2 2.5 3 

 

3.4.2 Determination of mechanical properties 

The mechanical property that is compressive strength of slag-lime-plaster of Paris 

mixes was determined following IS: 4031 (Part 6&7)-1988. The detailed test procedure is 

given below. 

3.4.2.1 Compressive strength 

To determine the compressive strength, 1 part of the binder was mixed with 2.5 

parts of standard sand. The binder and sand were mixed for one minute in dry state and 

then required amount of water was added and the mixing continued for another 3 minutes 

in mechanical mixture machine. The cubical test specimens of 50 x50 x 50 mm size were 

prepared and these specimens were cured in water at an average temperature of 27 oC. 

The compressive strength of the samples was determined in uniaxial compression testing 

machine after 3, 7, 28, 56 and 90 days of curing. For each mix proportion and each curing 

period, three identical specimens were prepared and the average of the strengths was 

reported as the compressive strength of the mix. The apparatus used for the preparation of 

test specimens and testing the mortar cubes are shown in Figure 3.5. 
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(a)  Cubical specimen      (b)  Cubical specimen 

 
( c) Mixture machine 

 

(d) Vibrating table       (e ) Compression testing machine 

Figure 3.5 Detailed arrangements for mortar specimen preparation with 
testing facilities 
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Table 3.10 Mix proportions and compressive strength of mixes 

 

Mix 
designation 

Mix proportions 
(%) Compressive strength (MPa) 

Slag Lime POP 3 Days 7 Days 28 Days 56 Days 90 Days 
A1 95 5 1 9.24 15.38 18.78 22.19 23.67 
B1 90 10 1 12.03 16.56 22.36 24.65 26.53 
C1 85 15 1 16.35 18.96 22.98 26.76 28.45 
D1 80 20 1 17.96 20.12 24.23 31.03 33.62 
E1 70 30 1 17.34 17.91 21.81 29.92 33.26 
F1 60 40 1 16.22 16.78 20.14 27.75 27.99 

A1.5 95 5 1.5 13.38 18.95 22.76 24.78 26.35 
B1.5 90 10 1.5 13.23 17.69 23.75 26.65 28.52 
C1.5 85 15 1.5 18.74 20.69 25.67 28.64 30.68 
D1.5 80 20 1.5 20.14 21.81 27.36 33.23 35.65 
E1.5 70 30 1.5 18.08 19.67 24.33 32.08 34.32 
F1.5 60 40 1.5 17.62 18.18 22.75 29.68 31.23 
A2 95 5 2 18.18 22.65 26.58 30.35 32.86 
B2 90 10 2 18.64 21.65 26.89 33.86 35.68 
C2 85 15 2 20.42 23.64 28.65 33.67 35.98 
D2 80 20 2 21.54 24.12 29.65 34.8 37.86 
E2 70 30 2 19.02 20.67 26.57 33.85 36.84 
F2 60 40 2 17.99 19.86 24.98 31.68 32.98 

A2.5 95 5 2.5 19.52 23.56 27.5 31.78 34.56 
B2.5 90 10 2.5 19.58 23.82 28.13 34.87 36.44 
C2.5 85 15 2.5 20.97 24.65 29.98 35.64 37.86 
D2.5 80 20 2.5 21.81 24.96 30.98 37.15 40.14 
E2.5 70 30 2.5 19.86 22.13 27.21 34.65 37.32 
F2.5 60 40 2.5 18.86 21.36 25.98 32.86 34.32 
A5 95 5 5 20.32 24.33 30.13 35.19 37.69 
B5 90 10 5 20.54 24.62 31.12 37.89 39.67 
C5 85 15 5 22.37 26.48 32.86 39.77 41.71 
D5 80 20 5 23.77 27.14 33.67 39.97 42.21 
E5 70 30 5 20.14 23.98 28.96 35.67 37.68 
F5 60 40 5 19.58 22.98 27.98 34.69 35.86 

A10 95 5 10 21.15 24.82 31.23 36.17 38.67 
B10 90 10 10 21.36 25.18 31.94 39.18 41.36 
C10 85 15 10 22.93 26.58 33.69 40.62 42.68 
D10 80 20 10 24.62 27.69 34.59 40.95 43.95 
E10 70 30 10 21.17 24.67 29.89 36.68 37.94 
F10 60 40 10 20.56 23.68 28.89 35.78 36.31 
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3.4.3 Optimization of raw material proportions 

The optimum composition of the raw materials was determined by mixing the raw 

materials in different proportions and evaluating the compressive strength of mortar in 

accordance with IS: 4031 (Part 6) 1988. In this series 36 different mixes of slag-lime-

plaster of Paris were taken and 540 numbers of samples were tested.Based on the 

experimental values obtained from compressive strength tests, optimization of raw 

material proportions was done using response surface plot and the generalized reduced 

gradient technique. Table 3.10 presents the compressive strength of different mixes at 

different curing period. 

3.4.3.1 Response surface method (RSM) 

Response Surface Methodology (RSM) is a collection of statistical and 

mathematical technique used for developing response models and optimizing process 

[Myers Raymond H, Montgomery D C, 2002]. This method was originally developed to 

model experimental responses (Box and Draper, 1987), and then shifted to model 

numerical analysis also. The approximation of the response function in relation with 

inputs in the form of polynomials with optional transformation of inputs and/or response 

is called response surface methodology. Due to the existence of a complex interaction of 

inputs (x1=lime % and x2=POP %) with the response such as compressive strength, a 

response surface model of third degree polynomial is considered. The general third-

degree polynomial response surface model for two predictive variables is represented as: 

F(x1, x2) = p00 + p10.x1 + p01.x2 + p20.x1
2 + p11.x1.x2 + p02.x2

2 + p30.x1
3+ p21.x1

2.x2 + 

p12.x1.x2
2 + p03.x2

3    ……………………………………………………………….….(3.1) 
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Where, p00, p10, p01, p20,…,p03 are the regression coefficients to be estimated from the data 

and F(x1, x2) is the dependent variable for  given independent variables x1 and x2. A 

statistical RSM has been used to obtain the optimum values of lime and plaster of Paris 

by maximizing the response function such as compressive strength by adopting nonlinear 

generalized reduced gradient (GRG) method in excel solver. This method was developed 

by Leon Lasdon and the details of which are presented by Leon Lasdon et al. (1973). 

3.4.4 Chemical bonds, hydration products, micro structure and morphology  

The chemical bonds, hydration products, microstructure and morphology of few 

selected samples were studied using several techniques like XRD, SEM, FTIR, TGA and 

DSC analysis and the above mentioned analysis process are described  in the following 

sections. 

3.4.4.1 X-ray diffraction (XRD) 

 The X-ray diffraction (XRD) tests were used to determine the hydration peaks 

that appeared in the pastes at different curing periods. This is performed by using Philips 

X' PERT System X-Ray diffractometer and shown in Figure.3.6. After specified curing 

period, representative samples were collected and soaked in anhydrous ethanol to stop 

further hydration. After this, mortar pieces were ground in mortar pestle to sizes less than 

75 micron before being used in XRD analysis. The XRD test was done to determine the 

phases that appeared in the hydrated paste and mortar. This was performed by using 

Philips X' PERT System X-Ray diffractometer. The powder sample was affixed to the 

sample holder and the upper surface of the sample was smeared by a glass slide to get a 

smooth and uniform surface. The specimen was then placed in the diffractometer and 

scanned in a continuous mode from 70-700 with a scanning rate of 0.05 degree/sec.  
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Figure 3.6 Philips X' PERT System X-Ray Diffractometer with sample holder 
 

3.4.4.2 Scanning electron microscope (SEM) 

The morphology and microstructure in the paste were studied with the help of 

SEM analysis. Microscopic studies were undertaken to examine the morphology and 

microstructure of hydrated specimens. These were done by a JEOL 6480LV SEM, 

equipped with an energy dispersive X-ray detector of Oxford data reference system as 

shown in Figure 3.7. The powdered as well as broken samples were loaded and fixed in 

the sample holder using a carbon tape which is further coated with a thin layer of 

electrically conductive platinum material. Micrographs were taken at accelerating voltage 

of 20 kV for the best possible resolution from the surface.  
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Figure 3.7 JEOL-JSM-6480 LV 

3.4.4.3 Fourier transform infrared (FTIR) 

The formation of different chemical bonds during the hydration process was 

studied in Fourier Transform Infrared (Perkin Elmer, USA/RX-I FTIR-TM series) 

equipment with a pellet-holding accessory. After a specified period of setting/hydration, 

representative samples were collected and are soaked in anhydrous ethanol to stop further 

hydration. These samples were ground to sizes less than 75 microns before being used in 

FTIR tests. Further, the specimens used in FTIR tests were prepared by mixing 1mg of 

the powdered sample in 300 mg of potassium bromide (KBr)in a mortar and pestle; the 

mixture was then compressed under 10 tons of force for 10 minutes to form a solid pellet. 

The spectral analysis was performed in the range 4000-400 cm-1 with spectral resolution 

of 1cm-1. When smoothing of data was required, a 5-point adjacent averaging filter was 

used in the plotting software. The detailed arrangement or setup of Fourier Transform 

Infrared with sample holder and hydraulic jack compressor is shown in Figure. 3.8. 
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Figure 3.8 FTIR with total set of pelletize 

3.4.4.4 Thermo-gravimetric analysis/ Differential scanning calorimeter (TGA/DSC)  

For thermal analysis test, the hydrated specimens were taken after different days 

of curing and soaked in anhydrous ethanol to stop the further hydration. After this, mortar 

pieces was ground in mortar pestle and passed through 75μm sieve. The powder sample 

was used to know the hydration of cement paste by using thermal analysis.The thermal 

analysis of cementing materials was carried out using NETZSCH STA 499C as shown in 

Figure 3.9. For this test, approximately 20 mg of powder sample was heated at the rate of 

10 oC/min from room temperature to 1000 oC. Al2O3 was taken as a reference sample for 
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this test. Differential temperature and the mass loss corresponding to different 

temperature range were recorded. 

 
 

Figure 3.9 NETZSCH STA 449 C 
 

3.4.5 Porosity and pore size distribution 

The porosity and pore size distribution study of cured mortar specimens were 

conducted in mercury intrusion porosimetry analyzer, Pore Master (PR-33-13) as shown 

in Figure 3.10. A constant size of broken samples were collected after the compressive 

strength test and the pressure was applied from zero to 240 MPa with a constant contact 

angle of 1400 and with a constant surface tension of mercury of 480mN/m 

(miliNewton/meter). The pore diameter and pore size distribution were measured at ages 

of 7, 28 and 90 days for reference specimen and specimens containing silica fume. 

Forspecimens containing other mineral admixtures and additives (OPC), the porosity and 

pore size distribution was determined after 90 days curing only. 
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1.1.1.1.1.1.1 Figure3.10 Mercury intrusion porosimetry analyzer, Pore Master (PR-33-13) 
3.4.6 Drying shrinkage 

The drying shrinkage mortar specimen was measured by using beam mould with 

25 mm x 25 mm size and 282 mm internal length. The materials for molding each batch 

of test specimens were mixed separately using required amount of dry materials and 

water. The amount of water added for this test was same as that required for preparation 

of mortar specimens for compressive strength test. Mixing was done mechanically 

immediately after that the test specimen was placed in the mold in two layers, each layer 

being compacted with the thumb and fore fingers by pressing the mortar into the corners, 

around the reference inserts and along the surfaces of the mould until a homogeneous 

specimen is obtained. The mortar was leveled off to flush with the top of the mould and 

the surface smoothened with few strokes of the trowel. After 24 hour, the specimens were 

demoulded and immersed in water at 27 oC for six days. At 7 and 28 days the specimens 
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were removed from the water and change in length was measured using a length 

comparator. The length comparator with beam mould is shown in Figure 3.11. 

 

Figure 3.2 Length comparator with beam mould 
 

3.5 PARAMETRIC INVESTIGATIONS AND SAMPLE DESIGNATIONS 

Based on the compressive strength of 36 slag-lime-POP mixes, optimization was 

done and a reference mix was obtained. Various mineral and chemical admixtures were 

added to the reference mix. The sample identification along with the mechanical 

properties of these samples is given in the following sections. The effects of curing 

conditions on compressive strength, microstructure, and porosity of mortar specimens 

were also studied in this work. For this, specimens were cured at different temperatures 

in water and few specimens were also cured in autoclave. In addition to this, specimens 

were also prepared with different admixtures and cured in autoclave. The identification 

of these samples along with their compressive strengths is presented in subsequent 

sections. 
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3.5.1 Mineral admixtures 

The effect of mineral admixtures on strength of lime activated slag cement was 

studied by adding different proportions of admixtures and then evaluating their 

compressive strength. Mineral admixtures used in this work are fly ash (FA), silica fume 

(SF), glass powder (GP), and OPC. The proportions of trial mixes are given in Table 

3.11. The samples were cured in temperature controlled water tanks at an average 

temperature of 27 oC and to determine the compressive strength specimens were tested in 

a compression testing equipment after curing periods of 3, 7, 28, 56 and 90 days. The 

above four types of mineral admixtures were used with different percentages of reference 

sample by weight as described below: 

• 5, 10 and 15% of powdered glass by weight were added to the reference 

sample  

• silica fume was added to the reference sample in 5, 10 and 15% by weight  

• fly ash was added to the reference sample in 10, 20, 30 and 40% by weight  

• ordinary Portland cement was added to the reference mixture in 5 and 10% by 

weight 

Table 3.11 Details of mix proportion and compressive strength of mortar specimens 
added with mineral admixtures 
 

Sample 
ID 

Mineral 
admixture 

Amount of 
admixture 
in the mix 

(%) 

Proportion 
of raw 

materials in 
the mix (%) 
(S+L+P)+ 
Admixture 

Compressive strength (MPa) 

3 
Days 

7 
Days 

28 
Days 

56 
Days 

90 
Days 

FA1 Fly ash 
(FA) 

10 (76.2+19.0+
4.8)+10 17.34 24.56 32.15 37.89 45.1 

FA2 20 (76.2+19.0+
4.8)+20 18.5 31 43.68 48.96 53.52 
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FA3 30 (76.2+19.0+
4.8)+30 23 32.73 46.79 53.69 58.41 

FA4 40 (76.2+19.0+
4.8)+40 21.13 32.17 45.51 51.36 55.96 

D5 Reference 
sample 0 (76.2+19.0+

4.8)+0 23.78 27.13 33.67 39.77 42.21 

C11 Ordinary 
Portland 
cement 
(OPC) 

5 76.2+19.0+
4.8)+0 17.35 23.5 32.35 43.65 53.13 

C22 10 (76.2+19.0+
4.8)+10 18.19 24.62 34.68 45.36 56.79 

SF1 
Silica 
fume 
(SF) 

5 (76.2+19.0+
4.8)+5 22.78 25.67 42.56 52.69 59.67 

SF2 10 (76.2+19.0+
4.8)+10 23.98 31.35 45.56 55.69 65.28 

SF3 15 (76.2+19.0+
4.8)+15 24.56 32.73 47.98 59.63 68.78 

GP1 
Glass 

powder 
(GP) 

5 (76.2+19.0+
4.8)+5 16.53 24.34 29.65 35.64 39.28 

GP2 10 (76.2+19.0+
4.8)+10 16.88 24.62 31.37 38.96 44.22 

GP3 15 (76.2+19.0+
4.8)+15 17.45 24.91 32.65 40.36 45.36 

 

3.5.2 Chemical admixtures 

The compressive strength of mortar specimens containing different chemical 

admixtures was determined as per IS: 4031 (Part 6).These results were compared with the 

reference specimen. The reference specimen is a mixture of finely ground blast furnace 

slag and hydrated lime, mixed in weight proportions of 80:20 along with 5% of plaster of 

Paris and water to binder ratio 30.74. The above optimum composition of the raw 

materials was obtained by mixing the raw materials in different proportions and 

evaluating their mechanical properties which was studied in previous experiment which 

was done to lime slag and plaster of Paris mix. The chemical admixtures such as calcium 

acetate, calcium formate, sodium meta-silicate, and sodium hydroxide were added with 

0.5, 1, 2 and 4% of total reference mix (S+L+P). The binder and sand were mixed with 
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liquid of chemical admixture for one minute in dry state and then required amount of 

water was added while mixing in mechanical mixture for another three minutes. Seven 

hundred eighty numbers of specimens were cast for determining the compressive strength 

of mortar. The effect of chemical admixtures on the strength of slag cement was studied 

by adding above different proportions of admixtures and evaluating their compressive 

strength. The mix proportions of chemical admixture mixes are given in Table 3.12. The 

cubical test specimens were cured in a temperature controlled water tanks at an average 

temperature of 27 oC. These specimens were tested in a compression testing equipment 

after specified days of curing that is at 3, 7, 28, 56 and 90 days. After specified curing 

period the compressive strength was determined and crushed pieces of sample were 

collected for further tests like SEM, XRD, TGA, DSC and FTIR analysis. 

Table 3.12Details of mix proportion and compressive strength of mortar specimens 
added with chemicals 

Sample ID Chemical 
admixtures 

Proportion 
of admixtures 
in the mix (%) 

Compressive strength(MPa) 
3 Days 7Days 28Days 56Days 90Days 

N1 
Sodium 

meta 
silicate 

0.5 20.58 23.2 32.2 38.9 44 
N2 1 20.02 22.9 30.7 35.6 39.4 
N3 2 20.02 22.9 32.2 35.2 39.4 
N4 4 18.22 22.4 30.7 34.5 38.6 
C1 

Calcium 
acetate 

0.5 20.38 24.1 35.1 48 54.8 
C2 1 20.75 24.6 38.6 48.8 55.2 
C3 2 21.3 25.7 39.7 51.2 58 
C4 4 20.18 24.6 37.8 46.4 48.4 
S1 

Sodium 

hydroxide 

0.5 23.22 24.3 33 36.9 44 
S2 1 24.65 26.6 34.9 39.2 48.8 
S3 2 24.05 25.2 34.2 38.6 47.2 
S4 4 15.38 22.4 31.8 34.7 44 
F1 

Calcium 
formate 

0.5 16.23 24.4 32.2 44.2 45.9 
F2 1 16.51 24.4 31.3 44.7 48 
F3 2 17.38 24.9 33.2 44.7 52 
F4 4 15.86 21.25 30.2 41.9 43 
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CN1 
Calcium 
Nitrate 

0.5 16.24 23.78 30.8 46.4 48 
CN2 1 16.23 23.78 29.1 44 49.6 
CN3 2 15.94 23.78 27.4 40.8 48 
CN4 4 15.38 22.37 25.2 40 41.6 

D5 Reference 
sample 0 23.77 27.14 33 39.9 42.2 

 

3.4.5 Curing temperatures  

 The effects of curing temperatures and curing periods on compressive strength of 

mortar specimens were studied. For determine the compressive strength same procedure 

was followed as mentioned in 3.4.2.1. The test specimens are cured under different 

curing temperatures in both water bath and autoclave are shown in Figure 3.12.  

3.4.5.1 Water curing 
The cubical test specimens were prepared and cured in separate water tanks and 

water bath at an average temperature of  27, 45, 60or 75 oC with an accuracy of ±1 oC. 

All the mortar specimens prepared for this test contain 20% lime as the binder, whereas 

the amount of plaster of Paris was varied from 1 to 10%.Table 3.13 presents the 

compressive strength of mixes cured in water bath under different temperatures. 

3.4.5.2 Autoclave curing 

The compressive strength of mortar specimens containing mineral admixtures and cured 

in autoclave for different periods was determined. These results were compared with the 

reference specimen. Mineral admixtures like silica fume (SF) and fly ash (FA) were 

added to reference sample (D5) in weight proportions of 5, 10, 15% and 10, 20, 30% 

respectively. These blended samples were designated as SF1, SF2, SF3 andFA1, FA2, 

FA3 respectively. For preparing the mortar specimens the amount of water added was 

based on the consistency of each mix and tests were carried out as per Indian standard 
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Table 3.13 Compressive strength of mortar specimen cured in water bath 

*POP is taken over the combined mass of lime and slag 

code of practice IS: 4031 (part 4) 1988.  The cubical mortar specimens were kept in the 

mold for 24 hour at room temperature of about 27 oC. After demolding, the specimens 

were cured in autoclave at 215 oC temperature and under 2.0 MPa pressure for 1, 2, 3 or 

4h. The temperature of the autoclave was raised gradually from room temperature that is 

from 27 oC to 215 oC at a rate of 1.5 oC /min. Thereafter, the temperature and pressure 

were maintained constant at 215 oC and 2 MPa for specified curing periods that is 1, 2, 3 

Mix 
Code 

Mix proportions (%) Curing 
temperature 

( oC) 
 

Compressive strength (MPa) 

Slag Lime POP* 3Days 7Days 28Days 56Days 90Days 

D1 80 20 1.0 

27 

18 20.2 24.3 31.1 33.6 
D1.5 80 20 1.5 20.2 21.8 27.4 33.2 35.7 
D2 80 20 2.0 21.5 24.2 29.7 34.8 37.9 

D2.5 80 20 2.5 21.8 25 31 37.2 40.2 
D5 80 20 5.0 23.8 27.2 34 40 42.2 

D10 80 20 10 24.6 27.7 34.6 41 44 
D1 80 20 1.0 

45 

20.2 20.7 28.2 31.7 33.5 
D1.5 80 20 1.5 21 22.3 29.2 34.2 36.2 
D2 80 20 2.0 22 25.2 30.4 35.5 38 

D2.5 80 20 2.5 23 25.6 34.4 38.3 40 
D5 80 20 5.0 25 27.4 35.2 40.1 43 

D10 80 20 10 26.6 28.6 37.1 43.4 44.5 
D1 80 20 1.0 

60 

21.8 22.7 32.3 33.1 33.8 
D1.5 80 20 1.5 22.4 24.2 35 35.2 36.6 
D2 80 20 2.0 23 26.7 36.5 36.7 37.9 

D2.5 80 20 2.5 24 27.2 40 40.1 41 
D5 80 20 5.0 23 29 42.7 43.4 44.5 

D10 80 20 10 28 31.8 45.2 47 47.6 
D1 80 20 1.0 

75 

20.7 22.7 31 31.2 32.1 
D1.5 80 20 1.5 22 24.2 33 33.5 34.5 
D2 80 20 2.0 22.4 24.7 34.5 34.2 35.2 

D2.5 80 20 2.5 23.3 25.2 39.3 39.2 39.2 
D5 80 20 5.0 25.2 27 43.6 43.2 43.3 

D10 80 20 10 27.2 31 44 44.2 44.3 
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or 4 hour and then it was gradually cooled to room temperature in 2 hour. The specimen 

is left over in autoclave until the temperature of the autoclave was reduced to room 

temperature. The compressive strength of each set of samples was determined under 

uniaxial compression testing condition. The compressive strength of mortar specimens 

cured in autoclave was compared with specimens cured at 27 oC in water for 7, 28 and 90 

days. Table 3.14 presents the compressive strength of mixes cured under different 

conditions like autocalve and water curing.  

    
    

                       (a) Water bath                  (b) Autoclave 

Figure 3.3 Curing of mortar specimens in water bath and autoclave 

 

Table3.14Compressive strength of mortar specimens cured in autoclave and water 

Sample 
ID 

 
Mineral 

admixture 
Admixture 
in the mix 

(%) 

Compressive strength (MPa) 
Autoclave curing time Water curing time 

1 hour 2hour 3hour 4hour 7days 28days 90days 
SF1 Silica 

fume 
5 39.1 43.3 48.9 49.3 25.7 42.6 59.7 

SF2 10 41.9 44.7 50.4 50.9 31.6 45.6 65.3 
SF3 15 43.4 53.2 55.9 56.0 32.7 47.9 68.8 
FA1 Fly ash 10 27.4 43.4 46.2 46.4 24.6 32.2 45.1 
FA2 20 31.9 43.1 47.6 48.0 31.0 43.7 53.6 
FA3 30 35.8 43.9 48.2 48.8 32.7 46.9 58.4 
D5 Reference 

sample 
0 26.3 39.7 41.9 42.0 27.2 33.7 42.2 
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CHAPTER IV 

RESULTS AND discussions   I 
 

4. PHYSICAL PROPERTIES  

4.1 INTRODUCTION 

An extensive laboratory testing program was undertaken to investigate the 

physical properties like normal consistency, setting time, and soundness of 42 different 

mixes of slag-lime-plaster of Paris. The lime content in the slag-lime mixes were varied 

as 5, 10, 15, 20, 30 and 40% by mass. Furthermore, the plaster of Paris was added to the 

above mixes of slag-lime and its proportion in the mix was taken as 0, 1, 1.5, 2, 2.5, 5 and 

10% of the total weight of slag and lime. In order to examine the effect of borax on the 

setting time of a mix containing 20% lime, different amount of borax such as 0, 0.2, 0.4, 

0.6, 0.8, and 1% were added as a retarder. The experimental findings and discussions on 

it are presented in the following sub-sections. This also includes the study on hydration 

products and microstructure of this binding mix corresponding to their respective initial 

and final setting periods.  

4.2 PHYSICAL PROPERTIES 

4.2.1 Normal consistency 

The typical curves presenting normal consistency values with lime at a given 

plaster of Paris content is presented in Figure 4.1. It is seen that the normal consistency 

increases with either increase in lime or plaster of Paris contents. The consistency values 

of slag-lime-plaster of Paris mixes vary over a wide range from 28.89% to 37.4% 

whereas the same is about 30% for ordinary Portland cement. The increase of water 
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demand or consistency mainly depends on percentage of lime and plaster of Paris content 

in the mix. This is attributed to the increase in calcium ions in the mixture or (Ca/Si) 

ratio. Hence, an increase in lime and/or plaster of Paris content in the mixture results in 

an increase in consistency values. A similar trend was also observed by Benghazi et al. 

(2009). 

 
Figure 4.1Variation in consistency with lime content 

 
4.2.2 Setting time 

The effect of lime on initial and final setting time of slag-lime-plaster of Paris 

mixes are delineated in Figure 4.2 and Figure 4.3 respectively. The setting time of mixes 

containing no plaster of Paris is too long for cementing materials as prescribed in Bureau 

of Indian Standards. For a given plaster of Paris content, both the initial and final setting 

time of the mixes are observed to decrease with an increase in the lime content. Similar 

results were also obtained by Naceri et al. (2011). The reduction in setting time of the 

mix with addition of lime is due to the increase in cation concentration and increase in pH 

value of the mix. In alkaline activation, the introduction of calcium hydroxide, sodium 
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hydroxide, soda and others in an aqueous solution leads to formation of corresponding 

silica-hydrate. The calcium silicate is known to be structure forming phase whereas the 

sodium silicate is soluble. This results in a marginal decrease in setting time of the mix. 

Further, it is observed that at a given lime content, an increase in plaster of Paris greatly 

reduces the setting times. This quick setting action is attributed to the high concentration 

of sulphate ions in solution, which reacts quickly with aluminum rich slag forming 

hydrated products. It is reported by Chandra (1996) that when the calcium sulphate 

activator is mixed with slag, it interacts directly with the alumina, calcium-hydroxide, 

and water to form hydro-sulphate-aluminates (3CaO-Al2O3-CaSO4-12H2O) along with 

other new phase-formations during the hardening process.  

 
Figure 4.2 Variation in initial setting time with lime content 

 
The formation of new phases retards in setting time of the mixes. In general, it is 

observed that the initial and final setting times of the mixes containing plaster of Paris are 

lesser than that of the value prescribed for ordinary Portland cement. In order to 

overcome this problem, borax was added in these mixes. The effect of borax on the initial 
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and final setting times of slag-plaster of Paris mixes at 20% lime content is highlighted in 

Figure 4.4 and Figure 4.5 respectively. From these figures, it is observed that the setting 

time increases when the borax is added to the mixture of slag-lime-plaster of Paris. 

Further, it is observed that the retarding effect is not significant before a critical amount 

of retarder is used; beyond this the setting time increases. This indicates the retarding 

effect is very sensitive to the amount of retarder. The excess amount of borax retards the 

setting time significantly. On the other hand, insufficient amount of retarder cannot retard 

the setting time to the required workability. Similar results were also obtained by 

Mehrotra et al. (1982) and Chang et al. (2003). It is well known that the anions and 

cations present in the activators play a major role in deciding the physical properties of 

fresh mixtures.  

 

Figure 4.3 Variation in final setting time with lime content 

The setting times mainly depend on types of activator and concentration of the activator. 

It is found that borax content of 0.4% is sufficient to increase the initial setting time from 

11 min to a workable range of 23 minutes and final setting time from 72 to 245 min. 
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Higher borax content further delays the initial setting time than that prescribed for 

ordinary Portland cement. 

 

Figure 4.4 Effects of borax on initial setting time of mixes containing 20% lime 
 

 
Figure 4.5 Effects of borax on final setting time of mixes containing 20% lime 

 
 

0
25
50
75

100
125
150
175
200
225
250
275
300
325

0 0.2 0.4 0.6 0.8 1 1.2

In
iti

al
 se

tt
in

g 
tim

e(
m

in
)

borax  content (%)

1%PP 1.5%PP
2%PP 2.5%PP
5%PP 10%PP



  
   

70 

4.2.3 Soundness 

The soundness value of various mixes of slag-lime-plaster of Paris is presented in 

Figure 4. 6. It has been seen that the soundness of these mixes varies between 1 mm to 

2.5 mm for all the mixes except for the mix containing 10% plaster of Paris and 40% 

lime. For the said composition, the soundness value is 3 mm. It may be due to the 

presence of an excess amount of free calcium and magnesia in the mix. According to 

Bureau of Indian Standards, the soundness of cement should not exceed 10 mm. 

Therefore, the above mixes are sound and can be used as building material. 

 
Figure 4.6 Soundness of slag-lime-plaster of Paris mixes 

 
4.3 CHEMICAL BONDS AND HYDRATION PRODUCTS 

The hydration products and microstructure of hydrated paste D10 sample 

(contains 80% slag, 20% lime and 10% plaster of Paris) during setting or hydration 

process were examined using XRD and SEM analysis. Also, the formation of chemical 

bonds was studied by using FTIR analysis. The XRD patterns of D10 specimens (with 

the testing condition: CuKα; 7-70°; 2θ; 2°/minutes) cured for different setting periods are 

shown in Figure 4.7. From the XRD analysis, a series of crystalline compounds such as 
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calcium-hydroxide, quartz, calcium-sulfate-hydrate, portlandite, calcium silicate hydrate, 

and gypsum were found. As the hydration time increases, the series of crystalline 

compounds or phases are intensified. The crystalline peaks of calcium-sulphate-hydrate, 

calcium carbonate, and portlandite appeared for 5 minutes of setting time. Thereafter, that 

is at 11 min (initial setting time) quartz and gypsum compounds appeared, and the peaks 

become more intensified. An increase in the hydration period, especially at 72 min (final 

setting time) the peaks become more intensified. However, after 24 hours of setting, 

abundance of calcium-silicate-hydrate was observed. 

 

Figure 4.7 XRD patterns of D10 sample at different curing time 

 

The microstructure and surface morphology of specimens cured for different 

periods have been studied using SEM and EDX analyzer respectively. Figure 4.8 shows 

the microstructure of specimens cured for different periods. Abundance of needle-like 

structure is found in specimens cured for 5 min; usually, needle-like crystals appeared 

during the early period of hydration. As curing period proceeds in, the needle shaped 

crystals change to hexagonal platy crystals and some gel-like substances appeared. 
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Further, increase in setting period (24 hour of curing) results in an increase of crystal 

concentration and more gel like phase of calcium-alumina-silicate-hydrate appeared. This 

results in an increase of strength and hardness of specimens. The elemental composition 

was analyzed using EDX. The EDX output for D10 sample after the curing period of 5 

min, 11 min and 24 hour are shown in Figure 4.9, Figure 4.10 and Figure 4.11 

respectively along with the corresponding surface morphology obtained from SEM 

analysis. 

 

 

 

 

 

(a) 5 min               (b) 11 min         (c) 72 min  

 

 

 

 

 

    (d) 2 h        (e) 24 h 

Figure 4.8 Typical microstructure of D10 sample after different curing times 

 

For D10 specimen at an early stage of setting (5min) as in Figure 4.9, hydrated 

oxides of Ca, Al, S, and Si are found indicating the presence of compounds of calcium-

alumina-sulfate-hydrate that is the C-A-S-H gel. At 11 minutes setting, abundance of 

element sulfur is noticed in addition to other elements like Ca, Al, and Si, indicating 

intensification of calcium-alumina-sulphate-hydrate compounds shown in Figure 4.10. 
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The C-A-S-H gel is found to form in the early stages of curing in slag activated by alkali 

instead of C-S-H gel, as generally found in hydration-products of ordinary Portland 

cement. A similar observation was also reported by Puertas et al. (2011). Specimen cured 

for a longer period that is for 24 hours revealed the presence of Ca, Al, Si and S 

indicating the formation of both calcium-alumina sulphate-hydrate and calcium-silicate-

hydrate compounds as shown in Figure 4.11.  

 
Figure 4.9 EDX analysis of D10 sample at 5min curing period 

 
At this setting time the atomic percentage of sulphur is much lower than the earlier cases. 

This may be due to conversion of tri-sulphate alumina (AFt) to mono-sulphate alumina 

(AFm). The Si/Ca (% atomic ratio) is 1.02, 0.98, and 0.94 at 5 min, 11 min and 24 hour 

setting of the sample respectively. From this, it is concluded that more amount of calcium 
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reacted with un-reacted silicon ion of slag. The Al/Ca ratio (% atomic) is 0.54, 0.71 and 

0.79 at 5 min, 11 min and 24 hour setting of the sample respectively and in all the cases 

the concentration of Al is lower as compared to Si. These parameters indicate the 

formation of C-S-H phase with an increase in curing period.  

 
Figure 4.10EDX analysis of D10 sample at 11min curing period 

 

 
Figure 4.11 EDX analysis of D10 sample at 24 h curing time 
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The presence of this phase results in imparting hardness and strength to the mass. 

The elemental analysis of samples, cured for different periods, shows compounds that are 

identified earlier from XRD analysis. Hence, the EDX analysis confirms the XRD results. 

The FTIR spectra of the D10 specimen are given in Figure 4.12 for different 

curing periods. Analysis of the results showed the bond of O-H at wave numbers 1780 

cm-1 and 3345-3500 cm-1. The minor band range 570-715 cm-1 indicates the presence of 

small amounts of siliceous and alumina-silicate material. The stretching vibration band of 

O-H is banded at wave number of 3345-3500 cm-1 due to calcium hydroxide phase. The 

presence of peak at 1410 cm-1 is due to the bonding in CO3
2- ions. This indicates the 

presence of carbonated minerals, possibly due to the absorption of CO2 from the 

atmosphere.  

 
 

Figure 4.12 FTIR spectra of D10 sample for different curing times 
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The bending vibration band of O-H is observed at wave numbers 875 cm-1. The 

quick setting of paste is due to S-rich compounds such as gypsum. Prominent peaks 

found at 1650 cm-1 indicate the formation of S-O bonds in the paste. The presence of this 

bond indicated the formation of calcium-sulphate-hydrate phase. The S-O and O-H 

groups are found to be shifted right with the increase in curing period. This indicates that 

the hydration process continues with setting time and more amount of calcium-sulfate-

hydrate gel is formed during the hydration process. 

4.4 SUMMARY 

The physical properties of 42 mixes of slag-lime-POP are studied and presented in 

this chapter. It seems that the physical parameters of slag-lime-POP mixes very much 

depend on the mix proportions. In general, the setting times of the mixes are too low as 

compared to OPC. However, an addition of small amount borax brings the setting times 

that meets the specifications as stipulated in Indian code of practices for the cementing 

material. 
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CHAPTER V 
RESULTS AND DISCUSSIONS   II 

 

 
5. MECHANICAL PROPERTIES AND OPTIMIZATION OF RAW 
MATERIAL PROPORTIONS 

5.1 INTRODUCTION 

This chapter presents the compressive strength test results of 36 different mixes of 

slag-lime-plaster of Paris after curing periods of 3, 7, 28, 56 and 90 days. The lime 

content in the binding mix was varied as 5, 10, 15, 20, 30 and 40% of the mass of slag 

and the plaster of Paris content as 1, 1.5, 2, 2.5, 5 and 10% of the combined dry mass of 

slag and lime. In total 514 numbers of mortar specimens were prepared and these 

specimens were cured in water at an average temperature of 27 oC and tested. The 

optimization of raw materials proportions of the binding mixture was achieved from the 

experimental results using response surface plot and generalized reduced gradient 

technique. Furthermore, the chemical analysis of hydration products, microstructure, 

morphology, chemical bonds formed for slag-lime-POP mixes were made using XRD, 

SEM, FTIR, and TGA. The mechanical strength of mortar specimens are correlated to the 

hydration products microstructure, and morphology of the specimens. Also, porosity and 

drying shrinkage were determined by mercury intrusion porosity tests and length 

comparator. 

The results of these tests were presented in terms effects of lime, plaster of Paris, 

and curing period on compressive strength, hydration products, microstructure, 

morphology and pore structure. The hydration products observed under different testing 
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conditions were compared with the results reported by earlier researchers. Further, the 

optimization of raw material proportions for attaining maximum compressive strength at 

a given curing period is made. These are presented in the following sub-sections. 

5.2 MECHANICAL PROPERTIES AND HYDRATION PRODUCTS 

5.2.1 Effects of lime 

The effect of lime on strength of activated slag for different mix proportion was 

evaluated. The typical variation of compressive strength with lime content for POP 

content of 2.5% is shown in Figure 5.1. It is seen that at a given POP content, an increase 

in lime results in an increase in compressive strength up to about 20% lime. However, a 

further increase in lime in the mix results in a decrease in strength. This trend is observed 

for samples containing all POP contents and for all curing periods.  

 

Figure 5.1 Variation in compressive strength with lime at POP content of 2.5% 

It clearly indicates that depending on the proportion of slag, activators, and curing 

conditions, there exists an optimum dose of lime. No significant increase in strength can 
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be achieved beyond this dose. A further increase in lime content reduces the strength and 

other harmful properties such as efflorescence and brittleness may increase because of the 

effect of the free alkali in the product. A similar result was reported by Wu et al. (1990). 

It was reported that an excess addition of alkali activator results in degradation of 

strength. Cheng et al. (1994) reported that both the early and 28 days strength increased 

dramatically by adding 1.9-3.45% Ca(OH)2. Glukhovsky et al. (1983) reported that OPC 

clinker was considered to have similar effects when added to alkali activated slag cement. 

The presence of gypsum neutralizes the alkaline component and produces expansive 

non–binding substances, which is dangerous to strength. However, in the present study it 

is observed that a certain percentage of POP in the lime-slag mixture improves the 

strength.  

The compressive strength of mortar was correlated with hydration of the sample 

and analyzed with SEM results. The SEM image of A2.5, C2.5, D2.5, and E2.5 sample at 

28 days curing period is analyzed and presented in Figure 5.2. The hydration products 

like ettringite and C-S-H gel are not clearly visible in A2.5 specimens. This indicates that 

the lime added is not sufficient to trigger the pozzolanic reactions completely. On the 

other hand, E2.5 sample that contains more lime shows the formation of an excess 

coagulated matrix. However, images obtained for C2.5 and D2.5 samples show lots of 

hydration products of needle-like ettringite and fibrous C-S-H gel. These hydration 

products in D2.5 and C2.5 samples are responsible for imparting higher strength to these 

specimens. 

 



  
   

80 

 
    (a) A2.5                                                      (b) C2.5  

 
(c) D2.5                                                    (d) E2.5  

 
Figure 5.2 Microstructure of samples after 28 days curing 

 
 

5.2.2 Effects of plaster of Paris 

The effect of POP on the compressive strength of mortar specimens was studied 

by varying the POP contents as 1, 1.5, 2, 2.5, 5 and 10% of the total weight of the slag-

lime mixture. The compressive strength test results are given in Table 3.10. Typical 

variation of compressive strength with POP content for specimens containing 20% lime is 

presented in Figure 5.3. The result shows that for a given lime content, the compressive 

strength of mortar cubes increases non-linearly with plaster of Paris content.  
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Figure 5.3 Variation in compressive strength with POP at lime content of 20% 

 

Initially, the rate of increase of strength with plaster of Paris content is high, 

followed by a mild increase in strength. Further, it is observed that no appreciable 

increase in strength occurs beyond 5% plaster of Paris content. The test results show that 

the compressive strength of mortars containing 10% POP is about 3 to 4% higher than 

samples containing 5% POP. Excess amount of POP in the mix may cause efflorescence 

in future and neutralize the alkaline components. It may also produce non-binding 

substance that is harmful to long term strength of concrete. Keeping this in mind it is 

concluded that with the quality of raw materials used in the present testing program, the 

optimum amount of POP is about 5 percent. 

 The XRD pattern of D2.5 and D10 samples at 28 days is presented in Figure 5.4. 

Compounds like ettringite, gypsum, quartz, calcite and C-S-H gel are found in D10 

samples, whereas a D2.5 sample contains compounds like quartz, calcite, and C-S-H gel. 

The amorphous calcium silicate hydrate hump with broader base is observed in D10 
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specimen compared to D2.5 specimen. The SEM images of D2.5 and D10 samples are 

presented in Figure 5.5. A lesser quantity of needle-like structures of ettringite is 

observed in D2.5 specimen as compared to D10 sample. Similarly, D10 sample contains 

more C-S-H gel as compared to D2.5 samples. The presence of more needle-shaped 

crystals of ettringite and C-S-H gel imparts higher strength to D10 specimens as 

compared to D2.5 specimens.  

 The crystalline peaks of calcite and secondary gypsum are more intensified in 

D10 sample as compared to D2.5 sample. It is found that ettringite is not formed in D2.5 

sample and formations of C-S-H peaks are not that prominently intensified. This results 

in lesser compressive strength in D2.5 sample as compared to D10 sample. The formation 

of ettringite mainly depends upon the amount of POP and in D10 samples; the POP 

content is higher than D2.5 samples resulting the formation of more ettringite and higher 

compressive strength. 

 

Figure 5.4 XRD patterns for samples after 28 days cured 
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(a) D2.5 sample                                          (b) D10 sample 

Figure 5.5 Microstructure for samples after 28 days curing 

5.2.3 Effects of curing period 

The compressive strength of trial mixes was determined after different curing 

periods. The test results are presented in Table 3.10. The typical relationship between 

compressive strength and curing period for samples containing 20% lime with different 

POP content is presented in Figure 5.6.  

 
Figure 5.6 Variation in compressive strength with curing period for 20 % lime in 

mix 
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The result shows that for a given lime content with different plaster of Paris 

content, the compressive strength of mortar cubes increases non-linearly with curing 

period. Initially, the rate of increase in strength with time is high, followed by a mild 

increase in strength. Further, it is observed that for all mix proportions the strength 

continues to increase up to 90 days of curing, and the curves have an upward trend. This 

indicates that unlike OPC, the lime-slag cement continues to gain strength for a longer 

period. The specimens containing 20% lime and 10% plaster of Paris attain compressive 

strength of 34.59MPa and 43.56MPa at 28 and 90 days curing period respectively. 

Further, it is noticed that for all curing conditions, an increase in POP content results in 

an increase in strength. However, beyond a POP content of 5% no significance gain in 

strength is noticed. 

5.2.4 Hydration products and Microstructure 

The formations of hydration products, microstructure, surface morphology and 

chemical compounds during the hydration period were studied by using XRD, SEM, 

EDX, FTIR and TGA analysis for D10 sample. The XRD patterns for D10 sample after 

3, 28, and 90 days of curing are shown in Figure 5.7. A series of chemical compounds or 

phases such as ettringite, quartz, calcium silicate hydrated, gypsum and calcite were 

found. The amorphous hump of calcium silicate hydrate appeared at 3 days of curing at 

about 300 scattering angle (2Ɵ). These peaks become more boarder base for specimens 

cured for 28 days. However, additional peak representing calcium hydrogen silicate 

appeared at 500 scattering angles in specimens cured for 90 days. The appearance of 

additional amorphous humps of calcium hydrogen silicate at 500 scattering angle is 

responsible for imparting additional compressive strength to the specimens. The calcite 
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peak obtained at 290 is due to the occurrence of calcium carbonate in the waste lime, 

used in this work. The peaks corresponding scattering angle of 90, 150, and 230 is 

characteristics of ettringite and these phase is found to present in samples cured for 3, 28, 

and 90 days.The compressive strength of mortar and concrete mainly depends on the 

presences of C-S-H gel and ettringite. Ettringite gives the early strength and excess 

amount of ettringite causes expansion. An increase in lime content results in an increase 

of C-S-H gel and the compressive strength. However, addition of lime beyond an 

optimum value results in the formation of hillebrandite and reduction in compressive 

strength.  

 
Figure 5.7 XRD patterns of D10 specimen for different curing periods 

 

The hydrated specimens of D10 sample was analyzed by SEM after 3, 7, 28 and 

90 days of curing. The SEM images are shown in Figure 5.8. The SEM images show that 

the needle-like crystals of ettringite exist in the hydration product. At earlier ages, that is 

at 3 days curing period, little ettringite was formed. After 7 days of curing, the amount of 

hydration products increased and more needle-shaped structures were formed. Especially 
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after 28 days, more ettringite and foil like material of C-S-H were appeared. In the later 

ages, that is at 90 days the hydration went steadily; more C-S-H gel is formed and the 

hydrated specimen is filled in between the rod-like crystals of ettringite. In addition to 

this, the calcium hydrated silicate gels (CaH4Si2O7) are formed. At 90 days of hydration, 

much of the ettringite was wrapped in C-S-H gel and coated with slag particles. More and 

more C-S-H filled into the pores of hardened paste improving the compressive strength 

further. 

 
(a) 3 days                                              (b) 7 days 

 

 
(c) 28 days                                          (d) 90 days 

 
Figure 5.8 Microstructure of D10 sample for different curing periods 
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The EDX output for D10 sample after curing period of 90 days is shown in Figure 

5.9, along with the corresponding surface morphology obtained from SEM analysis. The 

main elements present in EDX analysis of D10 sample are Ca, Si and lesser quantities of 

Al. These elements indicate the presence of compounds of calcium-silicate-hydrate. The 

main hydration peak of amorphous C-S-H is obtained at 30o and 50o scattering angles 

(2Ɵ). With increased curing period the hydration products like ettringite is intensified up 

to 28 days after that the peak of ettringite is not obtained. As curing time increases the 

series of hydration products are intensified. The amorphous peaks of calcium silicate 

hydrate appeared at 3 days of curing at 30o scattering angle (2Ɵ). These humps become 

more boarder base for specimens cured for 7 days and 28 days. However, additional peak 

representing calcium hydrogen silicate appeared at 50o scattering angles (2Ɵ) in 

specimens cured for 90 days. The appearance of additional amorphous peaks of calcium 

hydrogen silicate at 50o scattering angle is responsible for imparting additional 

compressive strength to the specimens. A similar result was also obtained by Cheng et al. 

(1994) and Bijen sset al. (1981). Mehrotra et al. (1982) reported that slag activated by 

anhydrite is inferior in strength compared to POP activated slag with an equal amount of 

OPC activator. It was also reported that the early strength of AAS cement was lower as 

compared to Portland cement but after two weeks curing it became stronger than Portland 

cement.  

The compressive strength of mortar and concrete mainly depends on the 

presences of C-S-H gel and ettringite. Ettringite gives the early strength and excess 

amount of ettringite causes expansion. An increase in lime content results in an increase 

of C-S-H gel and the compressive strength. However, additions of lime beyond an 
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optimum value result in the formation of hillebrandite and reduction in compressive 

strength. These results are in line with the findings of Puertas et al. (2000) who carried 

out factorial experimental designs from which it was concluded that the nature of 

activator solution is the most statically significant variable in the alkali activation of blast 

furnace slag. 

 
Figure 5.9 EDX analysis of D10 specimen after 90 days curing 

 

The Fourier transmittance infrared (FTIR) spectra of the D10 specimen are given 

in Figure 5.10 for different curing periods. Analysis of the results showed the bands of O-

H at wave numbers 3345-3500 cm-1 respectively. The minor band range 441-468 cm-1 

indicates the presences of small amounts of siliceous silicate material. The stretching 

vibration band of O-H is banded at wave number of 3345-3500 cm-1 due to ettringite 

phase. The presences of peak at 1465-1492 cm-1 is due to the bonding in CO3
2- ions, 

indicates the presence of some sort of carbonated mineral, possibly due to the absorption 

of CO2  from the atmosphere. The bending vibration band of Si-O is observed in wave 

numbers 1110-1145cm-1 due to the formation of calcium-silicate-hydrate. The peaks 
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found at 1652-1661cm-1 indicate the formation of S-O bonds in the mortar specimen. The 

presences of this bond indicated the formation of secondary gypsum. The S-O and O-H 

groups are found to be shifted right with the increase in curing period. 

 
Figure 5.10 FTIR analysis of D10 specimens cured for different days 

 
 

The hydration mechanism of mortar specimens containing slag-lime-POP mixes 

was analyzed by thermo gravimetric method and its hydration products are identified. 

Figure 5.11 shows the TGA curves for D10 samples cured for 3, 7, 28, and 90 days. The 

total mass loss in these samples, in the temperature range of 0 to 1000 oC varies 

between11.4% to 13.5% and the loss of mass is found to increase with the curing period 

of samples. This indicates that as the curing period increases there is progressive 

participation of the slag in the hydration reaction and the formation of more amount of C-

S-H phase. The hydrated product of C-S-H exhibits permanent endothermic peak in the 

temperature ranges from 95 oC to 122 oC. The endothermic peak corresponding to this 

temperature range is found to be intensified and the base becomes broader with the curing 
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period of the samples. This also suggests the formation of more amount of C-S-H phase 

with the curing period. DSC curves for samples cured at different periods show small 

exothermic peaks at temperatures of 757 oC and 883 oC. This is attributed to the 

decomposition of calcium carbonate which may be present in the lime or formed during 

curing and storing of specimens.  

 
(a) 3 days                        (b) 7days 

 
   (c) 28 days                                                             (d) 90 days 
 

Figure5.11 DSC and TGA of D10 samples cured for different days 

The mass loss due to ettringite and C-S-H increased with curing period. A similar result 

was also obtained by Barbhuiya et al. (2009), Ramachandran (2001) and Taylor (1997). 

5.3 RESPONSE SURFACE MODEL 

Furthermore, optimization of raw materials was done on experimental values of 

compressive strength of different mixtures with various lime and POP contents cured for 
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3, 7, 28, 56, and 90 days by response surface plot with the generalized reduced gradient 

technique. The experimental values of the compressive strength for mixture with various 

lime and POP contents at above curing periods are compiled and are fitted with the third–

degree polynomial keeping lime and POP as variable. The regression coefficients of the 

above said model for each of the representative curing periods are obtained by 

performing multiple regressions. The fitted response of the third-degree polynomial 

model shows better agreement with the actual response with lower standard error and 

higher coefficient of determination (Table 5.1) than other models such as second-degree 

polynomial, linear etc., due to consideration of interaction terms such as x1.x2, x1
2.x2 and 

x1.x2
2 which takes into account the high non-linearity which exist between input variables 

and response of the model along with higher order terms.  

Table 5.1 ANOVA test results 

Response 
Model 

fc (3days) fc (7days) fc (28days) fc (56days) fc (90days) 

Standard error 1.27 1.019 0.874 1.2 1.414 

R2 value 0.881 0.924 0.963 0.951 0.938 

F value 21.46 35.56 76.47 56.707 44.19 

Significance of F 7.25x10-10 2.22x10-12 2.06x10-16 8.21x10-15 1.68x10-13 

p-value (prob>F)      

x1 0.000259 0.002956 1.52x10-6 8x10-6 0.000216 

x2 2.15x10-7 3.24x10-8 1.67x10-10 1.24x10-9 5.65x10-9 

x1
2 0.025956 0.025374 5.2x10-5 0.00274 0.058552 

x1.x2 0.002981 0.198167 0.07775 0.002856 0.004496 

x2
2 2.05x10-5 2.15x10-6 3.98x10-8 7.32x10-7 1.66x10-6 

x1
3 0.174076 0.120202 0.001352 0.045246 0.508504 
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x1
2 .x2 0.292768 0.916307 0.665232 0.591344 0.42236 

x1.x2
2 0.006977 0.128857 0.114382 0.00399 0.014379 

x2
3 0.000231 2.8x10-5 8.86x10-7 2.39x10-5 3.26x10-5 

 

 

A typical plot showing the dispersion of predicted value with the experimental 

results for 28 and 90 days cured mortar specimen is shown in Figure 5.12 indicating a very 

good correlation between observed and predicted values of compressive strength. The 

statistical model for prediction of compressive strength for different curing periods of 3, 7, 

28, 56, and 90 days are given as follows 

fc(3 days) = -2.937 + 1.154x1 + 10.52x2 -0.03109x1
2 -0.1279x1.x2 -1.727x2

2 + 

0.0002701x1
3 + 0.0006127x1

2.x2 + 0.007529x1.x2
2 + 0.08867x2

3         (5.1)                                                                    

fc (7 days) = 5.28+ 0.7136x1 + 9.321x2 -0.02488 x1
2 -0.04106x1.x2 -1.605  x2

2 + 

0.0002474x1
3 + 0.00004824x1

2.x2 + 0.003211x1.x2
2   + 0.08389x2

3    (5.2) 

fc (28 days) = 6.033+ 1.155x1 + 10.44x2 -0.04349 x1
2 -0.04898x1.x2 -1.742  x2

2 + 

0.0004741x1
3 + 0.0001707x1

2.x2 + 0.002869x1.x2
2   + 0.09084x2

3       (5.3)                                                                

fc (56 days) = 4.881+ 1.421x1 + 13x2 -0.04087 x12 -0.1206x1.x2 -2.021x22 

+0.0003814x13+ 0.000291x12.x2 + 0.007614x1.x22 + 0.09995x23                 (5.4)                                                                 

fc (90 days) = 5.968+ 1.296x1 + 14.18x2 -0.02878x1
2 -0.1341x1.x2 -2.262x2

2 

+0.0001432x1
3+ 0.0005139x1

2.x2 + 0.007447x1.x2
2 +0.115x2

3                                                   (5.5) 

 

ANOVA test results show that the selected model for prediction of compressive 

strength (fc) passed the F test with the values given in Table 5.1 and also significance of 
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F values, which are the probability that the model will not explain the variations in the 

response, are very much less than 0.05 which indicates that the selected model is highly 

significant. The significance of F values (prob>F) of the model less than 0.05 are 

statistically significant lack of fit at the 95% confidence level (Muthukumar M, Mohan 

D, 2004). The interaction term x12.x2 is not significant model term for the all fitted 

models since the p-value is larger than 0.05. The response of the fitted model shows that 

the term x13 is not significant corresponding to curing periods of 3, 7 and 90 days and 

also the interaction term x1.x2 is not significant to the response model corresponding to 

curing period of 7 days.  

 

Figure 5.12 Plot between predicted verses observed values of compressive strength 

 

The quadratic term x1 is not significant term in the response model of 90 days 

cured sample. F-value of model must be lower than the critical or tabulated F-value if a 
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particular model is significant. Also F test results proved that the selected models passed 

the F test with the values given in Table 5.1. The model can be further simplified by 

neglecting insignificant terms from the corresponding models and analysis can be done 

by backward stepwise technique. 

5.4 OPTIMIZATION 

The nonlinear response of the model is optimized using generalized reduced 

gradient (GRG) algorithm. The above nonlinear method is adopted to obtain the 

maximum value of the predicted response for each of the fitted models. The predicted 

response of the fitted model is shown in the form of surface and contour plots for 28 days 

and 90 days cured mortar specimen (Figures 5.13 and 5.14). It is observed that the 

response function initially increases with lime content and reached an optimum value, 

thereafter it shows decreasing trend with further increase in lime content. A similar 

pattern is also observed with POP content, with the compressive strength remaining 

almost constant at higher POP contents. The optimum value of the response function is 

obtained using fitted response surface models by GRG method. The optimum lime and 

POP content for 90 days cured mortar specimen is found to be 19.12% and 4.26% 

respectively. However, for other curing periods the optimum values of lime and POP are 

found to vary from 15.75 to 19.12% and 3.95 to 4.57% respectively. In general, it is 

observed that with increasing curing period the optimum values of activators are found to 

be more. This is obvious as the hydration of slag with lime and POP is much slower and a 

higher dose of activators does not take part in pozzolanic reaction and is left out as free 

lime and POP. As the curing periods increase, more and more activators are consumed in 

hydration process, thus increasing the strength. 
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(a) Surface plot    

 

 
                 (b) Contour plot 
 

Figure 5.13 Surface and contour plot for predicted compressive strength after 28 days 
of curing 
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(a) Surface plot 

 
 

 

 

 

 

 

 

  

 

(b) Contour plots 

Figure 5.14 Surface and contour plot for predicted compressive strength after 90 days 
of curing 
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5.5 POROSITY AND PORE SIZE DISTRIBUTION STUDY 

The porosity and pore size distribution of mortar specimens prepared from 

reference binder and cured for 7, 28, and 90 days are presented in Figure 5.15. From this 

data it is observed that at 7 days curing, the sample has a porosity of 18.6%, which 

reduces to 13.2% and 10.7% at 28 and 90 days of curing respectively. The pores present 

in the sample range from 0.006 to 100 µm with abundance of smaller size voids 

(diameter < 0.01 µm) whereas the higher diameter pores are lesser in numbers. The 

porosity declines with increase in the curing period. In 28 days cured specimen, the total 

porosity is 13.2% with the gel pore (diameter < 0.01 µm) contributing about 1% and the 

capillary pores (diameter > 0.01 µm) contributing the rest that is 12.2%. In 90 days cured 

specimen the gel pore contributes about 0.6% and the capillary pores contribute the rest 

that is 10.1% of the total porosity of 10.7%. The above observations suggest that as the 

curing period increases the porosity as well as the pore size decreases. This is due to the 

formation and distribution of more hydration product like AFm, calcium silicate hydrated 

gel.  

 
Figure 5.15 Plots between porosity and pore diameter of D5 sample at different 

curing periods 
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5.6 SUMMARY 

The mechanical properties and optimization of raw material proportions of 36 

mixes of slag-lime-POP are studied and presented in this chapter. The mechanical 

property in terms of compressive strength depends on amount and doses of activator such 

as POP and lime content. Optimization of raw material proportion has been carried out 

using response surface models and generalized reduced gradient algorithm and the results 

of optimized values are well comparable to the experimental values. 
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CHAPTER VI 
RESULTS AND DISCUSSIONS   iii 

 
6. EFFECTS OF ADMIXTURES 

6.1 INTRODUCTION 

This chapter presents the test results of experimental studies conducted to 

evaluate the effects of admixtures on the strength, microstructure, morphology, porosity 

and drying shrinkage behavior of blast furnace slag activated by lime and POP. The 

mineral admixtures/additives like silica fume(SF), fly ash(FA), glass powder (GP), 

ordinary Portland cement (OPC) and chemical admixtures like calcium acetate, calcium 

formate, calcium nitrate, sodium meta-silicate, sodium hydroxide were used in different 

proportions with the reference mix (D5). The test programme includes the determination 

of compressive strength of specimens after different curing periods. Further, the 

hydration products, microstructure, morphology and chemical bonds of few selected 

samples were studied and a correlation has been established between these properties 

with the compressive strength of the respective samples. In addition to this, the pore 

diameter and pore size distribution in the specimens were measured by mercury intrusion 

porosimetry test at curing periods of 7, 28 and 90 days for the reference mix and the mix 

containing different admixtures. The detailed test results are presented in the following 

sections. 

6.2 MINERAL ADMIXTURES 

Four different types of mineral admixtures/additives like silica fume, fly ash, 

glass powder, and OPC are used in this investigation. These are mixed to the reference 
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binding mixture in different proportions and cubical mortar specimens were prepared out 

of these new binders. In total 198 numbers of specimens were cast and tested after 

specified curing periods. Table 3.11 gives the detail proportions of admixtures used, the 

sample designation along with the compressive strength of specimens after different 

curing periods. The test results are presented in the following sub-sections. 

6.2.1 Compressive strength 

The curves in Figure 6.1 show the variation of compressive strength with the 

curing period for fly ash and OPC added specimens. Figure 6.2 represents the same for 

silica fume and glass powder added specimens. From these figures it is observed that the 

compressive strength increases non-linearly with the curing period for all specimens. The 

compressive strength of reference mix is found to be 33.7 and 42.3 MPa at 28 and 90 

days of curing respectively. An addition of fly ash to the reference sample (Figure 6.1) 

results in an increase in strength up to fly ash content of 30%. Any further addition of fly 

ash beyond this, results in a fall of strength. The compressive strength of mortar with 

30% fly ash is 46.8 MPa and 58.4 MPa at 28 and 90 days of curing respectively. The fly 

ash used in this test has a specific surface of 334 m2/kg whereas; the same is 410 m2/kg 

for reference binder. Hence, the common concept of fly ash acting as filler to micro voids 

is ruled out. However, the increased compressive strength of mortar specimen in fly ash 

added specimen may be attributed to the longer pozzolanic reaction. Bakharev et al. 

(1999) reported a reduction in compressive strength in mortar specimen when the amount 

of fly ash added to slag activated with 8% liquid sodium silicate is more than 30%.An 

addition of 5% cement increases this strength to 34.7 and 51.1 MPa and 10% OPC gives 

a compressive strength of 36.7 and 54.8 MPa respectively. This shows that an addition of 
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OPC beyond a certain quantity does not improve the strength remarkably. A similar 

observation was reported by Douglas and Brandstetr (1990) upon addition of OPC in 

blast furnace slag activated with sodium silicate solution.  

 
Figure 6.1 Variation in compressive strength with the curing period for fly ash and 

OPC added specimens 
 

 
Figure 6.2 Variation in compressive strength with the curing periodfor silica fume 

and glass powder added specimens 
 

The curves (Figure 6.2) for compressive strength are found to increase both with 
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in compressive strength of 40.6, 44.6 or 47.0 MPa after 28 days of curing and 59.7, 65.3 

or 68.8 MPa after 90 days of curing respectively. This shows a substantial increase in 

compressive strength upon addition of silica fume. The ultra-fine silica fume with 

specific surface area of 17256 m2/kg might act as filler to the pore structure of the mortar. 

In addition, the increase in strength is attributed to the formation of more quantity of C-S-

H gel in the specimen. However, no substantial change in compressive strength is 

observed when glass powder is added. This may be attributed to the low specific surface 

area (210 m2/kg) of the glass powder. A similar result has been reported by Shayan 

(2004) and Schwarz (2008) that the strength decreases with addition of admixtures with 

lesser fineness. 

6.2.2 Hydration products, microstructure and morphology 

The hydration products, morphology and chemical bondformed during the 

hydration process were studied using XRD, SEM, and FTIR analysis. The XRD pattern 

of reference sample added with 15% silica fume is shown in Figure 6.3 for different 

curing periods. A series of compounds such as calcite, quartz, calcium silicate hydrated, 

and gypsum are found in the hydrated specimens. As the curing period increases, the 

hydration products or phases are intensified. The crystalline peaks of gypsum, quartz, 

calcium hydroxide, calcite and amorphous hump of calcium silicate hydrate (C-S-H), 

appeared at 3 days of curing. Presence of un-reacted lime and gypsum are found in the 

specimen. As the curing period increases amount of free lime and gypsum diminishes. 

The peak for quartz almost remains the same for 28, 56, and 90 days cured samples; 

however, the quartz peak in 3 days cured sample is somewhat smaller with a broad base. 

In addition to the primary peak of C-S-H, secondary peaks of C-S-H are observed in the 
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samples cured for longer periods. Specimens cured for longer periods show wide base 

corresponding to amorphous C-S-H phase.  

 

Figure 6.3 XRD patterns of SF3 specimens cured for different periods 
 

The XRD patterns of the specimens, added with different admixtures are shown in 

Figure 6.4 after a curing period of 90 days. More intensified peaks of C-H-S are found in 

specimens containing glass powder and OPC. However, the peaks of GP2 and C22 

samples at 2θ of 29.5o contain C-S-H, wollastonite, additionally hillebrandite is present in 

GP2 sample whereas other samples at this position mostly give the C-S-H phase. The 

wide amorphous hump corresponding to C-S-H compounds are found in specimens 

containing fly ash and silica fume as compared to other specimens. This may be due to 

the presence of ultra-fine amorphous silica particles in these samples. The formation of 

more amount of C-S-H resulted in an increase in strength for the specimens containing 

these admixtures. Qualitative analysis of C-S-H gel (PDF-00-043-1488) in the specimens 
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was made using X’Pert High Score Plus software which shows that the content of C-S-H 

gel is more in FA3 specimen followed by C22, SF3 and GP3. It is noted that even though 

the percentage of C-S-H gel in SF3 sample is slightly lower than other specimens, it 

registers a high compressive strength. This is mainly due to the low porosity, higher mass 

density of hydrated sample and homogenous distribution of C-S-H gel in the mass. The 

diminished intensity of calcium hydroxide peaks with an increased curing time for 

samples SF3 and FA3 is an indication of participation of calcium hydroxide in hydration 

process and formation of more amount of C-S-H gel.  

 
Figure 6.4 XRD patterns ofmortar specimens cured for 90 days 

The microstructure and hydration products of specimens cured for different 

periods are studied using SEM analyzer. Figure 6.5 shows the microstructure of SF3 

specimens cured for different periods. Abundance of needle-like structures are found in 

the specimens cured for 3 days. Usually needle like crystals appeared during the early 

period of hydration. As curing proceeds the needle shaped crystals are seen wrapped with 
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gel like substances of calcium silicate hydrate. A further increase in the curing period 

resulted in an increase of crystal concentration and more C-S-H gel appeared. This results 

in an increase in strength and hardness of specimens. At early curing periods, in some 

areas, more solid hydrated products appeared while other smaller areas are found porous 

with inhomogeneous distribution of hydration products and voids. However, at later days 

of curing; common fibrous type of irregular grains forming a reticular network of 

calcium-silicate-hydrated gel is found. The 90 days cured sample is fully filled with a 

fibrous network of calcium-silicate-hydrate. The presence of this hydration product 

results in enhancing the strength of mortar sample. The SEM analysis shows compounds 

that are identified earlier from XRD analysis. 

 
     (a)3 days                          (b) 28 days 

 
(c ) 56 days                                       (d) 90 days 

 
Figure 6.5 Microstructure of silica fume added specimen for different curing 

periods 
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 The SEM images of reference sample and the specimens added with fly ash, silica 

fume, glass powder, and OPC at 90 days curing period are shown in Figures 6.6 and 6.7. 

The microstructure images show that the silica fume containing specimen is more 

homogenous, uniform and dense as compared to other samples. The C-S-H gel is found 

to be evenly distributed over the mass and the voids diameters as well as numbers are 

much smaller. On the other hand, the fly ash added sample shows an abundance of 

calcium alumino-silicate hydrates and aggregation of C-S-H. This mostly imparts 

strength to the sample. In glass powder added sample, needle shaped mono-sulphate 

aluminate (AFm phase) and C-S-H gel are found. However, the structure is not dense as 

compared to silica fume sample. Further, it is seen that the structure is neither 

homogeneously distributed nor are the products themselves homogeneous. 

 
                           (a) FA3                          (b) GP2 

 
                ( c) SF3                            (d) D5 

 
Figure 6.6 Surface morphology for specimens after 90 days curing 



  
   

107 

 For instance, in some areas more solid hydrated products appear while other areas 

are highly porous. The OPC added sample shows fibrous C-S-H gel and plate shaped 

calcium hydroxide phases. The SEM image of reference sample shows uneven 

distribution of hydration products, some unreacted slag powder, and smaller quantities of 

calcium silicate hydrate. The ultimate structure of hydrated cement at the micrometer 

scale is that of C-S-H, which is considered to be responsible for the strength of samples, 

and the structure of C-S-H plays an important role in revealing the mortar strength and 

other physical properties. 

 
                              (a) GP2                              (b) FA3 

 
                             (c) D5                   (d) C22 
 

Figure 6.7 Microstructures of mortar specimens cured for 90 days 
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The FTIR spectra of SF3 specimen cured for different periods are shown in 

Figure 6.8. The spectrum shows bands at 990-960 cm-1 corresponding to the stretching 

vibration of Si-O-Si and at 458-464 cm-1 associated with bending vibration. The bending 

vibration band characteristic for O-H is banded at wave number 882 cm-1. The stretching 

vibration band of O-H is banded at wave number of 3375-3448 cm-1 due to the presence 

of calcium hydroxide phase. The presence of  peak at 1456-1498 cm-1 is due to the 

bonding in CO3
2- ions, indicates the presence of some sort of carbonated mineral, 

possibly due to the absorption of CO2 from the atmosphere. The Si-O bond is found to 

shift towards higher frequency with increase in curing period. The stretching band of time 

indicating the progress of the hydration process and the formation of more calcium 

silicate hydrated gel during the reaction. Especially, at 90 days curing the spectra of C-O 

bond shows weaker double peaks at wave length 2500 cm-1. 

 
Figure 6.8 FTIR spectra for SF3 specimen after different curing periods 
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  The FTIR spectra of the 90 days cured samples of the reference binder and the reference 

binder added with admixtures are given in Figure 6.9. The FA3 of sample has band at 

3433, 1626, 1517, 1144, 1004, 797, 663, and 457 cm-1. The band appeared at 3433 and 

1144 cm-1 is associated with O-H bond and indicates the formation of mono-sulphate 

aluminate (AFm) phase and the broadband at 1626 -1517 cm-1is also the characteristics 

for AFm phase. The band at 474 cm-1 is associated with O-Si-O or O-Al-O bond bending 

vibration. Silica fume contained sample (SF3) has shown the band at 3464, 1616, 958, 

872, and 446 cm-1. The band at 3461 and 1616 cm-1 are associated with O-H and S-O 

bond respectively, but the consumption of sulphate is found to be less, as compared to 

FA3 specimen. This indicates the formation of C-S-H gel is more than the AFm phase in 

SF3 as compared to FA3 and vice versa. A similar observation has also been reported by 

Sakulich (2010), Ramachandran (2001) and Taylor (1997). The low frequency band of 

 

Figure 6.9 FTIR spectra for specimens containing different admixtures after 90 days 
of curing 
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446 cm-1 is the characteristics of v4-SiO4 and it indicates the formation of O-Si-O bond. 

As compared to other specimens, the v4-SiO4 bond of SF3 specimen is found to shift 

more towards lower frequency. This indicates that larger quantity of silica taking part in 

the reaction. 

The hydration mechanisms for the binder containing different admixtures were 

analyzed by thermo-gravimetric analysis and the hydration products formed are shown in 

Figure 6.10. Differential scanning calorimeter (DSC) curve exhibits an endothermic peak 

at 92 oC to 206 oC for all samples. The results of thermo-gravimetric analysis (TGA) 

show the mass loss of 3.75, 2.69, 3.7, 2.1 and 3.67% for SF3, OPC, FA3, GP2 and D5 

specimens in the above temperature range. There is also a mass loss peak related to the 

decomposition of uncombined calcium hydroxide between temperature range of 400 oC to 

551 oC in reference sample and OPC added samples, and the occurrence of a mass loss 

peak due to the decomposition of un-reacted calcium carbonate at temperatures range 560 

oC to 794 oC. The mass losses in the temperatures range from 560 oC to 794 oC are 6.4, 

4.58, 6.1, 9.61 and 7.01% for GP2, SF3, FA3, OPC and D5 specimens respectively. The 

SF3 sample mixture presents an expressive loss of mass between 92 oC and 220 oC related 

to the decomposition of gypsum, calcium silicate hydrate. The total mass loss in SF3 

samples are 3.5% and3.75% for curing periods 28 and 90 days respectively. The mass 

loss is found to increase with the curing period of samples which attributes the formation 

of C-S-H and causes gain in strength after longer curing of samples. 
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      (a) D5 after 90 days curing     (b) GP2 after 90 days curing 

      (c) C22 after 90 days curing         (d) FA3 after 90 days curing 

   (e) SF3 after 90 days curing         (f) SF3 after 28 days curing  
 

Figure 6.10 DSC and TGA curves for specimens containing different mineral 
admixtures 
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6.2.3 Porosity and pore size distribution 

The relationship between porosity and pore diameter of SF3 sample is presented 

in Figure 6.11. The porosity and pore size is found to reduce with an increase in curing 

period. The pores are distributed in sizes varying from 0.006 to 100 µm. The porosity of 

7 days cured sample is 14.8%. However, the smaller size pores (diameter <0.01 µm) 

contribute only 3.2% to total porosity. The other significant difference between the 

reference sample and SF3 sample is the distribution of pore size at a given curing period. 

The reference sample shows the presence of large number of pores of higher diameter 

than the SF3 sample. The porosity of SF3 changed from 10.06 to 7.5% with an increase 

in the curing period from 28 to 90 days. Silica fume added samples exhibit a significant 

lower measured porosity than that of the reference sample for both gel pore and capillary 

pore. 

 
Figure 6.11 Porosity and pore size distribution in SF3 sample after different curing 

periods 
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 The porosity and pore size distribution of reference sample and reference 

sample with different admixtures after 90 days curing period are presented in Figure 6.12. 

It is found that the pores are distributed in sizes varying from 0.006 to 100µm. However; 

the pores in SF3 specimen are more uniformly distributed over the measured pore size 

range from 0.1 to 100 µm.The porosity and pore size distribution for samples containing 

fly ash are almost identical with the reference sample, both showing the same porosity 

and identical distribution of pore size in the sample. SF3 mortar has lowest porosity 

among all five mortar samples for a given curing age. SF3 specimens also showed 

uniformly distributed pores over the measured pore size range. This shows that silica 

fume acts as a filler material in the reference sample and helps in homogenizing the 

specimen. The higher mechanical strength of SF3 specimen may be attributed to the 

above factor. 

 
Figure 6.12 Porosity and pore size distribution in mortar specimens containing 

different admixtures after 90 days of curing 
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6.2.4 Drying shrinkage behaviour 

The drying shrinkage behaviors of D5 specimen and D5 specimen with mineral 

admixtures like fly ash and silica fume were determined after curing periods of 3, 7 and 

28 days. These are presented in Figure 6.13. It is seen that an addition of mineral 

admixtures reduces the drying shrinkage value. The minimum value is found for 

specimens added with silica fume and the highest value is for the reference mortar. The 

drying shrinkage values of all the specimens are found to increase with the curing period.  

 

Figure 6.13 Drying shrinkage of specimen with mineral admixture for different 
curing period 

 
6.3 CHEMICAL ADMIXTURES 

Five different types of chemical admixtures such as calcium formate, calcium 

acetate, sodium-meta-silicate, calcium nitrate, and sodium hydroxide are used in this 

investigation. These are mixed to the reference binding mixture in different proportions 

and mortar the specimens were prepared. A total 780 numbers of mortar specimens were 

cast and strength of mortar cubes was determined after 3, 7, 28, 56 and 90 days of curing 
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period. Table 3.12 gives the detail proportions of chemical admixtures used, the sample 

designation along with the compressive strength of mortar specimens after different 

curing periods. The test results are presented in the following sub-sections. 

6.3.1 Compressive strength 

The relationship between compressive strength and curing period of specimens 

with different chemical admixtures are presented in Figures 6.14 to 6. 18. The result 

indicates that the addition of calcium based chemical admixtures give lower strength at 

early period and at later period results higher strength. But sodium based admixtures give 

equal or same strength as reference sample in both early and later curing period. The 

addition of calcium acetate and sodium-meta-silicate is able to increase the final strength 

at lesser percentages that is 2 and 0.5% respectively. The samples with 0.5% sodium-

meta-silicate and 2% calcium acetate give the maximum strength which are 44 and 58 

MPa respectively at 90 days. The results show that the addition 1% of calcium nitrate and 

gave 48 MPa at 90 days and an excess addition of admixtures decreases the strength. 

The effect of sodium meta-silicate on the strength of lime activated slag cement 

was studied by varying its contents as 0.5, 1, 2 and 4 %. The result is presented in Figure 

6.14. From this figure, it is observed that the compressive strength is increased by the 

addition of sodium meta-silicate and 0.5% sodium meta-silicate gives the highest 

strength at 90 days. From the results it observed that there are no changes in strength by 

addition of sodium meta-silicate beyond 0.5%. A higher dose of chemical reduces the 

strength. The reduction of strength might be due to presence of sodium calcium sulphate. 
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The effect of calcium acetate on the strength of lime activated slag cement was 

studied by varying its contents as 0.5, 1, 2 and 4 %. The variation of compressive 

strength with curing period for different proportions of admixture is presented in Figure 

6.15. From this figure, it observed that the compressive strength is increased with 

addition of calcium acetate up to 2% and after that the strength falls. A further increase 

in the content of calcium acetate results in a reduction of strength. The higher strength 

might be due to high calcium ion concentration in the pore solution which increases the 

pH and accelerates the reaction of the mix. The high calcium concentration is directly 

responsible for activation of the slag.  

 
Figure 6.14 Variation in compressive strength with the curing period for sodium 

meta-silicate added samples 
 

15

20

25

30

35

40

45

50

0 20 40 60 80 100

Co
m

pr
es

siv
e 

st
re

ng
th

 (M
Pa

)

Curing period (days)

N1 N2 N3

N4 D5



  
   

117 

 
Figure 6.15 Variation in compressive strength with the curing period for calcium 

acetate added samples 

 
The variation of compressive strength with the curing period for calcium formate 

added samples is presented in Figure 6.16. Similarly, in this case also the strength is 

improved with addition of calcium formate up to 2% after that the strength decreases in 

the same way as observed for calcium acetate. From Figures 6.15 and 6.16, it is observed 

that the compressive strength is increased by the addition of calcium acetate and calcium 

formate up to 2%. The chemical admixture, calcium acetate seems to be more reactive 

than the calcium formate. At 2% chemical content calcium acetate specimen gave 13.7% 

higher strength than calcium formate for 90 days curing period. The maximum strength 

of mortar specimens is 51.12 MPa for optimum dose of calcium formate.  

The variation of compressive strength with the curing period is presented in 

Figure 6.17 for specimen containing calcium nitrate. The calcium nitrate was varied as 
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0.5, 1, 2, and 4 % to the reference binder mix.  From this figure, it is observed that the 

strength of specimens is declined with increase of amount in calcium nitrate. However, 

an increase in curing period results in an increase in the compressive strength. One 

percent calcium nitrate in the reference binder gave the strength of 49.6 MPa for 90 days 

cured mortar specimens, which is the highest strength among all these proportions. A 

reduction in the compressive strength of mortar specimens is observed for specimens 

added with different amounts of calcium nitrate at early days of curing. 

The effect of sodium hydroxide on compressive strength of lime activated slag 

cement was studied. The variation in compressive strength for reference specimen and 

specimen added with 0.5, 1, 2, and 4 % sodium hydroxide content with different curing 

period is presented in Figure 6.18. From this figure, it observed that the compressive 

strength increases with the addition of sodium hydroxide and 1% sodium hydroxide gives 

the highest strength after 90 days curing that is 48.8 MPa. 

 
Figure 6.16 Variation of compressive strength with the curing period for calcium 

formate added samples 
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Figure 6.17 Variation in compressive strength with the curing periodfor calcium 

nitrate added samples 

 

 
Figure 6.18 Variation in compressive strength with the curing periodfor sodium 

hydroxide added samples 
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6.3.2 Hydration products and microstructure 

The hydration products, morphology and chemical bond during the hydration 

period were studied by using XRD, SEM and FTIR analysis. The XRD pattern of 

different sample added with chemical admixture is shown in Figure 6.19. A series of 

crystalline and amorphous compounds such as qartz, aragonite, sodium-calcium-sulphate, 

calcium sulphate hydrate gismondine, gypsum and calcium silicate hydrated are found in 

the hydrated specimens. In calcium acetate and calcium formate specimen, the chemical 

compounds such as aragonite, gismondine, calcium silicate hydrate, and gypsum are 

found. In the sample added with sodium meta-silicate, sodium-calcium-sulphate, and 

calcium sulphate hydrate including phases like CSH and gypsum are obtained. Similarly, 

specimens containing sodium hydroxide showed same chemical compounds as that 

observed with sodium meta-silicate specimens. The strength may be equal or lesser than 

the reference specimen due to formation of sodium-calcium-sulphate in sodium based salt 

specimen. 

 
Nomencleture: A-CSH, Sodium calcium sulphate, C-Aragonite, B-Quartz, D-Gismondine G-Gypsum 

 
Figure 6.19 XRD patterns for chemical admixture added specimen after 90 days 

curing 
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The microstructure and hydration products of specimens containing different 

chemical admixtures and cured for 90 days are studied using SEM analyzer. Figure 6.20 

shows the abundance of needle and gel like structures in all specimens.  

 
(a)CA                                               (b)S 

 
(c)F                                   (d) CN 

 
(e)  N                                            (f) D5 

Figure 6.20 SEM images for chemical admixture added specimen after 90 days 
curing 
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The needle shaped crystals are seen wrapped with gel like substances of calcium 

silicate hydrate. In specimen containing calcium acetate and calcium formate, the 

microstructure is filled with needle shaped and gel like substances. These substances 

might be Aft phase and calcium silicate hydrate respectively. The presence of these 

hydration products enhances the strength of sample. However, in sodium based specimen 

like sodium meta-silicate and sodium hydroxide, lesser quantity of needle shaped Aft 

phase and common fibrous type of irregular grains forming a reticular network of 

calcium-silicate-hydrated gel are found. The reference sample shows uneven distribution 

of  hydration products, some unreacted slag powder, and lesser quantities of calcium 

silicate hydrate. This results in lower compressive strength in mortar specimens 

containing sodium based chemicals as compared to calcium based specimens.  

The FTIR spectra of mortar specimens containing different chemical admixtures 

and cured for 90 days are given in Figure 6.21.  

 

Figure 6.21 FTIR spectra for chemical admixture added specimen after 90 days 
curing 
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The specimen containing calcium acetate has band at 3433, 1626, 1517, 1144, 

1004, 797, 663, and 457 cm-1. The band appeared at 3433 and 1144 cm-1 is associated 

with O-H bond and indicates the formation of mono-sulphate aluminate (AFm) phase and 

the broad band at 1626-1517 cm-1represents the AFm phase. Calcium formate contained 

sample has shown the band at 3464, 1616, 978, 872, and 448 cm-1. The frequency band of 

464-448 cm-1 is the characteristics of v4SiO4 and it indicates the formation of O-Si-O 

bond. As compared to other specimens, the v4-SiO4 bond in specimens containing 

calcium formate is found to be shifted more towards lower frequency. This indicates that 

large quantity of silica took part in the reaction and formation of C-S-H, which imparts 

the strength. A similar observation has also been reported by Sakulich (2010), 

Ramachandran (2001) and Taylor (1997). 

 

The hydration mechanism for reference specimen and specimen with chemical 

admixture were analyzed by thermo-gravimetric method by measuring the amount of 

hydrates and different chemical compounds formed. The TGA and DSC curves for 

specimen added with calcium acetate, calcium formate, sodium meta-silicate and 

reference samples after 90 days of curing period are shown in Figure 6.22. DSC curve 

exhibits an endothermic peak in the temperature range of 92oC to 206oC for all samples. 

The mass loss peak between 92oC and 206oC is the characteristics of the presence of CSH 

and gypsum. There is also a mass loss peak related to the decomposition of uncombined 

calcium hydroxide between 400oC to 551oC in all specimens. Specimens with calcium 

acetate show more mass losses in the temperature range between 400oC to 551oC. This 

may be due to the presence of higher amount of calcium hydroxide in the specimen. The 
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occurrence of a mass loss peak in the temperatures range of 560 oC to 794 oC is the 

characteristics of the decomposition of calcium carbonate. This is found in specimens 

containing all chemicals.  

 

Figure 6.22 DSC and TGA for chemical admixture added specimen after 90 days 
curing 

 

6.4 SUMMARY 

The effects of mineral admixtures such as silica fume, fly ash, glass power and additive 

OPC on the strength, hydration products and porosity of lime activated slag has been 

investigated and presented in this chapter. Out of the several admixtures used in this 
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experimental investigation, silica fume was found to be a better admixture as it yields 

higher strength and lower porosity. The effect of chemical admixture on strength and 

hydration products of lime activated slag cement was also presented in this chapter. The 

calcium based chemicals are found to yield higher compressive strength than sodium 

based chemicals both at early age and later stage. 
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CHAPTER VII 
RESULTS AND DISCUSSIONS iV 

 

7. EFFECTS OF CURING CONDITIONS 

7.1 INTRODUCTION 

 The effects of curing conditions on strength, hydration products, microstructure, 

and morphology of lime activated slag specimen cured under different conditions have 

been evaluated and presented in this chapter. The mortar specimens were cured under 

different curing temperatures in water tanks such as 27, 45, 60 and 75 oC for curing 

periods of 3, 7, 14, 30, 56, and 90 days. The binding mix containing 20% lime and POP 

contents of 1, 1.5, 2, 2.5, 5, and 10 % was used to prepare the mortar specimens. The test 

results are presented in terms effects of curing temperature, curing period, POP content 

on strength, hydration products, microstructure and morphology. The compressive 

strength obtained in this experimental program was compared with the results of 

Benghazi et al. (2009). Further, the effects of curing temperature and POP content on 

compressive strength are analyzed. Response surface plot and generalized reduced 

gradient technique is used to optimize the curing temperature for a given curing period 

and POP content. In addition to this, the mortar specimens were also cured in autoclave. 

These specimens were prepared with D5 binding mix (mix containing 20% lime and 5% 

POP) and D5 mix added with silica fume or fly ash in different proportions and were 

cured in autoclave at a temperature of 210 oC and pressure of 2 MPa for 1, 2, 3, and 4 

hours. The test results are presented in terms effects of admixtures, curing period on 

strength, hydration products, microstructure, and morphology. 
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7.2 COMPRESSIVE STRENGTH 

7.2.1 Effects of curing period 

The typical relationship between compressive strength and curing period for D10 

and D1.5 sample cured under different curing temperatures are presented in Figures.7.1 

and 7.2 respectively. The result shows that the compressive strength of slag-lime-POP 

mix increases non-linearly with curing period. Initially, the rate of strength gain is high 

up to 28 days curing, followed by a mild increase in strength. It is observed that the 

strength continues to increase up to 90 days for all the specimens. However, specimens 

cured at low temperatures show an upward trend even after 90 days of curing while the 

strength of specimens cured at higher temperatures either stabilized or show an 

insignificant increase in strength. This leads to a cross over effect of strengths. Specimens 

cured at higher temperature shows a high early strength gain. However, as the curing 

period increases the strength gain in the specimens cured at comparatively lower 

temperature is more than that of the specimens cured at higher temperatures. High 

temperature favors rapid pozzolanic reaction at early stages of curing. However, the 

distribution of hydration products is not uniform leading to a formation of non-

homogenous and porous structure. This phenomenon results in lower ultimate strength 

for specimens cured at higher temperatures and this leads to the crossover effects. The 28 

and 90 days strength of mortar specimens cured at 60 oC temperature are higher than 

specimens cured either at 27, 45, 75 or 90 oC. The compressive strength of mortar 

specimens containing D10 binder and cured in water at 60 oC temperature are 45.2 MPa 

and 47.7 MPa after 28 days and 90 days curing whereas D1.5 sample attains strength of 

34.87 MPa and 36.58 MPa respectively under similar curing conditions.  
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Figure 7.1 Variation of compressive strength with curing period for D10 sample 

 

The results of compressive strength tests indicate that the strength is a function of 

raw material proportions, curing period and the curing temperature. Verbeck and 

Helmuth (1986) and Esclante Garcia (2001) reported the crossover effect in mortar 

specimens cured at different temperatures. The degree of hydration of the cement phases 

has been reported to be higher at increased temperatures in the early stages, but later, the 

situation is reverse. A higher curing temperature increases the rate of hydration at early 

ages. However, it does not allow reaction products to become uniformly distributed 

within the pores of hardening paste. Carino (1991) and Carino and Tank (1992) on the 

other hand reported that the crossover effect does not occur in hot cured high strength 

concrete.  
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Figure 7.2 Variation of compressive strength with curing period for D1.5 sample 

 
 

7.2.2 Effects of plaster of Paris content 

 For the mix containing 20% lime, the effect of plaster of Paris on strength for 

different curing period has been determined. The variation of compressive strength with 

plaster of Paris content under curing temperatures of 75 oC and 27 oC are presented in 

Figures 7.3 and 7.4 respectively. The result shows that the compressive strength of mix 

increases with plaster of Paris content. The increase in strength with POP content is more 

distinct in the early ages of curing. At later curing periods, especially after 28 days and 

for higher curing temperature that is at 75 oC no substantial gain in strength is recorded 

with an increase of POP content. An insignificant change in strength of 2.19% is 

observed when the POP content is increased from 5% to 10% for 90 days cured 

specimens at curing temperature of 75 oC. 
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Figure 7.3 Variation of compressive strength with POP content at curing 

temperature of 75 oC 

 

 
Figure 7.4 Variation of compressive strength with POP content at curing 

temperature of 27 oC 
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However, specimens cured at 27 oC shows a marginal improvement in the 

compressive strength with POP content. The test results show that the compressive 

strength of mix increases both with curing period and plaster of Paris content. The 

compressive strength of mortars containing 10% plaster of Paris is about 3 to 4% higher 

than samples containing 5% plaster of Paris both at the early and later curing periods. At 

a given POP content, an increase in curing temperature results in a substantial increase in 

strength. The increase in strength with curing period is more prominent at low POP 

contents. The results indicate that for the raw materials used in the present testing 

program, the optimum amount of plaster of Paris is about 5%. 

7.2.3 Effects of curing temperature 

The relationship between compressive strength and curing temperature for D10 

sample is presented in the Figure 7.5. The result shows that the compressive strength of 

the mix cured for a specified period increases with the curing temperature up to 60 oC. 

Thereafter, the strength decreases with further increase in the curing temperature. At low 

curing temperatures of 27 oC and 45 oC, the compressive strength is found to increase 

with the curing period. However, sample cured at 60 oC and 75 oC shows an 

improvement in strength up to 28 days beyond which no significant increase in strength is 

noticed. The strength is found to stabilize with curing period. The results further indicate 

that for all curing periods and comparable testing conditions, the samples cured at 60 oC 

give the highest strength as compared to other curing temperatures. 
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Figure 7.5 Relationship between compressive strength and curing temperature for 

D10 sample 
 

7.3 HYDRATION PRODUCTS AND MORPHOLOGY 

 The effect of temperature on strength of some selected samples due to formation 

of hydration products, morphologyand chemical bonds during the hydration process has 

been studied using XRD, SEM, and FTIR analysis. The XRD pattern of D5 sample at 90 

days curing period and different curing temperatures is shown in Figure 7.6. The 

chemical compounds such as calcite, quartz, calcium silicate hydrated, gypsum, 

wairakite, and wollastonite are found in the hydrated specimens. The peaks of calcium 

silicate hydrate, quartz, gypsum, wairakite, and calcite appeared in the specimen cured 

under 75 oC and the peaks are more intensified. 
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Figure 7.6 XRD patterns of D5 sample after 90 days curing 

 

 However, specimen cured at 60 oC shows the compounds like calcium silicate 

hydrate, quartz, and gypsum whereas quartz, calcite, C-S-H, and wollastonite appeared in 

the specimen cured at 45 oC temperature. The compounds like calcium silicate hydrate, 

quartz, and gypsum appear for the sample cured under 27 oC temperature. It is observed 

that the amount and type of chemical compounds formed during hydration is a function 

of curing temperature. In general, higher curing temperature favours higher amount of 

hydration products.  

 The hydration product wairakite is formed in a porous area of hydrated mortar 

when the sample is cured at 75 oC. On the other hand, specimen cured at 60 oC shows 

compounds like calcium silicate hydrate and gypsum and these compounds are 

responsible in imparting higher compressive strength to the specimen. The compressive 

strength of mortar cured at 75 oC is slightly lower than that of the specimen cured at 60 
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oC. This is mainly due to the porous structure and non-homogenous distribution of 

hydration products in the specimen.  

 The XRD patterns of D5 sample cured at 27 oC and 75 oC for 7 days and 90 days 

curing are shown in Figure 7.7. These figures show that the hydration peaks for specimen 

cured at 75 oC are more intensified than the specimen cured at 27 oC. This is more 

prominent at 7 days cured specimen than 90 days cured specimen. This shows that higher 

curing period favours formation of more hydrated products at early ages of curing. 

However, with increase in curing period this difference gradually vanishes and at 90 days 

curing the intensity of hydration peaks are almost same for both curing temperatures. 

 

Figure 7.7 XRD patterns of D5 sample cured for 7 days and 90 days 
 

 The microstructure and hydration products of specimens cured for different periods 

and different curing temperature are studied using SEM analyzer. Figure 7.8 shows the 
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microstructure of D5 specimens cured in water at temperatures of 27, 45, 60, and 75 oC 

after a curing period of 7days.Abundance of needle-like structure is found in specimens 

cured for 7 days at curing temperatures of 27 oC and 45 oC whereas the samples cured at 

higher temperature that is at 60 oC and 75 oC show the presence of both needles like 

structures of ettringite as well as C-S-H gel. 

 
(a) 27 oC      (b) 45 oC 

 
(c) 60 oC     (d) 75 oC 

Figure 7.8 Microstructure of D5 specimens on 7 days curing under different 
temperatures 
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 The microstructure of D5 specimen cured for 90 days in water at temperatures of 27, 

45, 60 and 75 oC is shown in Figure 7.9. The structure seems to be more compact 

compared to samples cured for 7 days and most of the pore spaces are filled with these 

compounds. However, absence of the hydration products is noticed in few spaces in the 

specimens cured at low temperatures. As curing period increases, the low temperature 

cured specimens gradually add the hydration products and these are more uniform and 

homogeneously distributed over the mass as compared to samples cured at 75 oC. This 

leads to a gradual and steady increase in strength for specimens cured at low 

temperatures.  

 
(a) 27 oC                                  (b) 45 oC 

 
(c) 60 oC                              (d) 75 oC 

Figure 7.9 Microstructure of D5 specimens cured for 90 days under different 
temperatures 
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However, with the increase in curing period a non-homogeneous distribution of hydration 

products are observed especially samples cured at 75 oC temperature (Figure 7.9). 

Further, it is observed that with increase in curing period the needle like compounds of 

ettringite are gradually converted to mono-sulphate aluminates (AFm phase). In addition 

to this, with the increasing curing period more fibrous network of C-S-H gel are formed. 

These compounds add to the compressive strength of specimens. The SEM analysis 

shows compounds that are identified earlier from XRD analysis.  

 The FTIR spectra of D5 mortar samples cured for 90 days with different curing 

temperature are given in Figure 7.10. The band appeared at 3428-3471 cm-1 is associated 

with O-H bond and indicates the formation of mono-sulphate aluminate (AFm) phase and 

the band at 1652-1670 cm-1 is the characteristics for AFm phase [Ramachandran(2001), 

Taylor(1997)]. The band at 457-480 cm-1 is associated with O-Si-O or O-Al-O bond 

bending vibration. A similar observation has also been reported by Sakulich (2010). The 

low frequency band of 457-480 cm-1 is the characteristics of v4-SiO4 and it indicates the 

formation of O-Si-O bond. The v4-SiO4 bond is found to shift more towards lower 

frequency as the curing temperature is raised from 27 oC to 75 oC. This specifies that 

large quantity of silica took part in the reaction resulting in the formation of higher 

amount of C-S-H gel. The presence of peak at 1427-1448 cm-1 is due to the bonding in 

CO3
2- ions. This indicates the presence of carbonated minerals in the waste lime used in 

this testing program and possibly due to the absorption of CO2 from atmosphere in 

subsequent periods of curing and testing. 
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Figure 7.10 FTIR spectrums for D5 sample after 90 days curing under different 

temperature 
 

7.4 RESPONSE SURFACE MODEL 

The experimental values of the compressive strength of mortar specimens 

containing different amount of POP and cured under different temperatures and periods 

such as 3, 7, 28, 56 and 90 days are compiled. The predictive models for compressive 

strength of specimens having constant lime content of 20% are developed using second 

degree polynomial in which POP and curing temperature are taken as explanatory 

variables for different curing ages of 3, 7, 28, 56 and 90 days. The regression coefficients 

of the above said model for each of the representative curing periods are obtained by 

performing multiple linear regressions.  

Response surface models for the prediction of compressive strength of mixture 

having constant lime content of 20% have been presented through equations (7.1 to 7.5). 
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The predictive capability of developed models in terms of R2 value shows that the fitted 

response surface model can perform well with very low standard square error (SSE) in 

the range of 12.46 to 72.11 and root mean square error (RMSE) in the range of 0.832 to 

2.002. Predictive models for compressive strength taking POP and temperature as inputs 

are as follows, 

fc (day 3) = 14.4 + 1.366P+ 0.1753T -0.06974P2+0.000912PT -0.001367T2  

(R2=0.9015)  

            (7.1) 

fc (day 7) = 15.45+ 2.139P + 0.1755T -0.1367P2+0.003434PT -0.001455T2 

(R2=0.8867)   

           (7.2) 

fc (day 28) = 12.98+ 3.661P + 0.3822T -0.2744P2 +0.01016PT-0.002367T2 

 (R2=0.8988)           (7.3) 

 

fc(day 56) = 23.04+ 3.544P + 0.2413T -0.2501P2+0.009195PT-0.002316T2 

(R2=0.9377)           (7.4) 

 

fc (day 90) = 26.91+ 3.681P + 0.193T -0.2574P2+0.007169PT-0.002238T2 

(R2=0.9479)           (7.5) 

 

Figure 7.11 shows the actual verses the predicted values of compressive strength 

and it is observed that the entire model developed here can predict the output response 

i.e. compressive strength with high correlation coefficient. Among the various model 

developed, the model for prediction of compressive strength for curing ages 3, 56 and 90 

shows high correlation coefficient of 0.9015, 0.9377 and 0.9479 respectively.  
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Figure 7.11 Actual versus predicted values of compressive strength 

 
7.5 OPTIMIZATION 

The nonlinear response of the model is optimized using generalized reduced 

gradient (GRG) algorithm. The above nonlinear method is adopted to obtain the 

maximum value of the predicted response for each of the fitted models. The predicted 

response of the fitted model is shown in the form of surface and contour plots for 90 days 

cured mortar specimen (Figure 7.12). It is observed that the response function initially 

increases with increase in POP content up to the optimum value and thereafter, it shows 

decreasing trend with further increase in POP content. A similar pattern is also observed 

for curing temperature with the compressive strength. The optimum value of the response 

function is obtained using fitted response surface models by GRG method. The optimum 

values of POP content and curing temperature for 90 days cured mortar specimen are 

found to be 7.927% and 55.82oC respectively. However, for other curing periods the 

optimum values of POP content and curing temperature are found to vary from 8.059 to 

10% and 67.45 to 75 oC respectively. In general, it is observed that the optimum values of 



  
   

141 

activator such as POP are found to decrease with increase in curing period. This is 

obvious as the hydration of slag with lime and POP is much slower and a higher dose of 

activators does not take part in pozzolanic reaction and is left out as free lime and POP. 

As the curing period increases, more and more activators are consumed in hydration 

process, thus increasing the strength.  

 
(a) Response Surface model 

 
(b) Contour plot 

 
Figure 7.12 Response surface model and contour plot showing variation of 

compressive strength with curing temperature and POP content 
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7.6 AUTOCLAVE CURING 

Few mortar specimens prepared with D5 binding mix and D5 mix added with 

silica fume or fly ash in different proportions were cured in autoclave at a temperature of 

210 oC and pressure of 2MPa for 1, 2, 3, and 4 hours. The proportion of silica fume and 

fly ash in the reference mix was varied as 5, 10, 15% and 10, 20, 30%. These specimens 

are designated as SF1, SF2, SF3 and FA1, FA2, FA3 respectively. The test results are 

presented in terms effects of admixtures, curing period on strength, hydration products, 

microstructure and morphology of lime activated slag cement. 

7.6.1 Compressive strength 

The compressive strength of autoclave cured mortar specimens and specimens 

cured in water tanks at 27 oC were determined after specified curing periods and are given 

in Table 3.14.The compressive strength values obtained were plotted with autoclaving 

time and is presented in Fiure.7.13. The compressive strength of mortar specimens was 

improved due to the addition of either fly ash or silica fume to the reference sample. 

These curves show that the compressive strength increases rapidly with autoclaving time 

only up to about 2 hours, beyond that only a marginal gain in strength is observed. For 

comparable test conditions silica fume added specimens show higher compressive 

strength followed by sample added with fly ash and the reference sample. The 

compressive strength of the mixture containing 15% of silica fume attained a value of 56 

MPa at 4 hour of autoclaving. The enhancement in compressive strength is 33.33% as 

compared to that obtained for mortar specimens prepared out of the reference binder at a 

comparable curing time. The reference sample added with 30% fly ash showed 16.9% 

higher strength than that obtained for the reference sample at the same autoclaving time.  
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Figure 7.13 Variation of compressive strength with autoclaving time 

 

The compressive strength of mortar specimens obtained from autoclave curing is 

compared with that of the normal water curing at 27 oC. The autoclave curing timings of 

1, 2, 3, and 4 hour are represented as AC01, AC02, AC03, and AC04 respectively 

whereas the normal water curing periods of 7, 28, and 90 days are represented as WC07, 

WC28, and WC90 respectively. Figure 7.14 shows the compressive strength of reference 

sample and samples added with different proportions of admixtures for similar curing 

conditions whereas Figure 7.15 gives the compressive strength of specimens with similar 

compositions cured under different conditions. For similar curing conditions SF3 samples 

gave the highest compressive strength compared to all other specimens. The samples 

cured in an autoclave for 2h give almost equal strength to 28days water cured specimens. 

The 7 days water cured specimens gave strength which is even lower than the 1h 

autoclave cured specimens. This indicates that high temperature and pressure curing 

favor quick formation of hydration products and much faster gain of strength. However, 
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the strength of 4 hour autoclave cured SF3 specimens is slightly lower than the strength 

of specimens cured in water for 90 days. Similar observations are made for specimens 

containing different proportions of admixtures.  

Figure 7.14 Compressive strength of mortar specimen cured under different 
conditions 

 
Figure 7.15 Compressive strength of identical mortar specimen cured under 

different condition 
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Furthermore, no appreciable gain in strength is observed with increase in the 

curing period in autoclave cured specimens beyond 2 hours whereas samples cured in 

water at standard temperature show a continuous increase in strength up to 90 days of 

curing, though the rate of gain of strength in early curing period is more than the later 

curing periods. The figures indicate that the ultimate strength of specimen cured in an 

autoclave with additives or without additives is slightly lower as compared to normal 

water cured specimen.   

7.6.2 Hydration products and morphology 

The formation of hydration products and microstructure during the hydration 

process was studied using XRD and SEM analysis. The XRD patterns of the D5, FA3 

and SF3 mortar specimens cured for 90 days in water at 27 oC are shown in Figure 7.16. 

The chemical compounds such as C-S-H, calcite, quartz, gypsum are found in specimen 

cured in water. Calcium silicate hydrate compounds are found with wide amorphous 

humps in SF3 and FA3 specimens as compared to D5 specimens. This may be due to the 

presence of ultra-fine amorphous silica particles in these samples. The formation of more 

calcium silicate hydrated resulted in an increase of the strength of mortar specimens 

containing these admixtures. It is noted that the percentage of C-S-H gel in SF3 sample is 

slightly lower than FA3 specimens but higher than D5 specimens. However, it registers 

the highest compressive strength. The additional strength of SF3 specimens over FA3 

specimens may be mainly due to the low porosity, higher mass density of hydrated 

sample and homogenous distribution of C-S-H gel in the mass. The XRD pattern of D5, 

SF3 and FA3 sample after 4 hour of curing in the autoclave is shown in Figure 7.17. The 

chemical compounds such as calcite, quartz, calcium silicate hydrated, gismondine (PDF-
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00-020-0452), tobermorite (PDF-00-045-1480), and xonolite (PDF-00-029-0379) are 

obtained. The chemical compounds such as gismondine, tobermorite, and xonotlite are 

not found in samples cured at standard temperature of 27 oC. The C-S-H phase in 

specimens cured in autoclave is found in the form of α-dicalcium silicate hydrate (α-C2S) 

and tobermorite. The α-dicalcium silicate hydrate (α-C2S or Ca2(HSiO4)OH) normally 

causes an increase in porosity and reduction in strength. However, with the presence of 

silica, α-C2S gets converted to tobermorite (C5S6H5) on continued heating, thus imparting 

higher strength to the specimens. [Bezerraet al. (2012)]. The XRD pattern of SF3 

specimen also shows higher amount of tobermorite as compared to specimens containing 

fly ash and reference sample. The higher compressive strength of SF3 mortar specimens 

over FA3 and D5 specimens are mainly due to the higher tobermorite content coupled 

with low porosity, higher mass density, and homogenous distribution of C-S-H gel in SF3 

mortar specimens. This shows that silica fume acts as filler in the micro-voids of the 

specimens and also participates in the pozzolanic reaction. 

 
Figure 7.16 XRD patterns of specimens cured in water for 90 days 
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Figure 7.17 XRD patterns of specimens cured in autoclave for 4 hours 

 
           The microstructure of the hydration products of D5, FA3 and SF3 specimens cured 

under different conditions is given in Figure 7.18. Abundance of reticulated plate-shaped 

structure of tobermorite and C-S-H is found in SF3  and  FA3 specimens. A combination 

of needle and plate shaped structure is found in reference sample. The needle and plate 

shaped structures are due to formation of tobermorite which normally appear in 

specimens that are cured at elevated temperature. The occurrence of tobermorite is also 

confirmed from XRD analysis. The microstructure of the hydration products of D5, FA3 

and SF3 specimens cured under different conditions is given in Figure 7.18. The SEM 

images of D5, FA3 and SF3 specimens cured for 4 hour in autoclave are shown in 

Figures 7.18 (a) to 7.18 (c) respectively. Abundance of reticulated plate-shaped structure 

of tobermorite  and  C-S-H  is found in SF3  and  FA3 specimens.  A combination of 

needle and plate shaped structures are found in reference sample.  The needle and plate 

shaped structures are due to formation of xonotlite and tobermorite which normally 

appear in specimens that are cured at elevated temperature. The presence of                     
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tobermorite in specimens cured in autoclave is also established from XRD analysis. 

Similarly SEM images of D5, FA3 and SF3 specimens cured for 90 days in water at 27 

oC are shown in Figure 7.18 (d) to (f) respectively. The needle and plate shaped structures 

of xonotlite and tobermorite are absent in these samples. However, the hydration product 

C-S-H is found in abundance in these specimens. Figures 7.19 (a) to (c) show the surface 

morphology of D5, FA3 and SF3 specimens cured in autoclave whereas Figures 7.19(d) 

to (f) show the surface morphology of D5, FA3 and SF3 specimens cured in water at 27 

oC. The microstructure images show that the silica fume and fly ash containing specimen 

are denser as compared to the reference samples both for specimens cured in water or in 

autoclave. The C-S-H gel is found to be homogenous, uniform and evenly distributed 

over the mass and the voids diameters as well as numbers are much smaller especially in 

water cured samples as compared to specimens cured in autoclave. Specimens containing 

fly ash show an abundance of calcium alumino-silicate hydrates and aggregation of C-S-

H as compared to specimens containing silica fume at comparable test conditions. This 

shows that silica fume also acts as a filler material and helps in homogenizing the 

specimen in addition to contributing to pozzolanic reaction. The higher mechanical 

strength of SF3 specimen is attributed to the above factor. Further, a homogenous 

distribution of hydration products in specimens cured in water for 90 days makes these 

specimens stronger than the specimens cured for 4 hour in autoclave, although the 

amount of hydration products in autoclaved specimens seemed to be more than the 

normal water cured specimens. 
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(a) D5-AC04                       (b) FA3-AC04                       (c) SF3-AC04 

 

 
(d) D5-WC90                              (e) FA3-WC90                         (f) SF3-WC90 

 
Figure 7.18 Microstructure of specimens cured in autoclave and water 

 

 
(a) D5-AC04                          (b) FA3-AC04                       (c) SF3-AC04 

 

 
              (d) D5-WC90                  (e) FA3-WC90                    (f) SF3-WC90 
 

Figure 7.19 Morphology of specimens cured in autoclave and water 
 

The microstructure images show that the silica fume and fly ash containing 

specimen are more homogenous, uniform and dense as compared to the reference 
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samples. The C-S-H gel is found to be evenly distributed over the mass and the voids 

diameters as well as numbers are much smaller especially in water cured samples as 

compared to autoclaved specimens. On the other hand, the fly ash added sample shows an 

abundance of calcium alumino-silicate hydrates and aggregation of C-S-H. This shows 

that silica fume mainly acts as a filler material and helps in homogenizing the specimen. 

The higher mechanical strength of SF3 specimen is attributed to the above factor. 

Further, a homogenous distribution of hydration products in 90 days water cured 

specimens makes these specimens more stronger than the specimens cured for 4 hour in 

autoclave, although the amount of  hydration products in autoclaved specimens seemed to 

be more than the specimens  cured in normal water  at a given raw material composition. 

 The hydration mechanism of slag-lime mortar was analyzed by thermo-gravimetric 

method and its hydration products are identified. Figure 7.20 shows the TGA and DSC 

curves of D5 and SF3 specimens cured in autoclave for 4 hour and in water for 90 days. 

In autoclave cured sample the total mass loss varies from 14.3 to 16%. The total mass 

loss in these samples for water cured specimens is 9.9% to 14.3% in the temperature 

range of 0 oC to 1000 oC. The higher mass-loss in autoclaved samples compared to 

normal water cured samples indicates that higher amount of hydration products is formed 

in autoclaving curing. This is also evident from the XRD patterns of these samples. 

However, the compressive strength of water cured specimens after 90 days of curing are 

somewhat higher than the corresponding 4 hour of autoclaving specimens. This can be 

explained from the morphology of these samples. The 90 days water cured samples show 

a more homogeneous distribution of hydration products than the corresponding autoclave 
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cured specimens. DSC curve exhibits an endothermic peak at 92 oC to 20 oC for samples 

cured in water.  

(a) D5-WC90 (b) D5-AC04 

 

(c) SF3-WC90 (d) SF3-AC04 

Figure 7.20 TGA and DSC of specimens cured in autoclave and water 

 

        A mass loss of 3.75 and 3.67% is observed in this temperature range for SF3 and D5 

specimens respectively. The mass loss peak between 92oC and 206oC is characteristics of 

presence of gypsum and C-S-H. A mass loss peak in temperature range from 560 oC to 

794 oC is seen. This is due to the decomposition of calcium carbonate. The mass loss in 

the temperature ranges of 560oC to 794°C is 4.58 and 7.01% for SF3 and D5 specimens. 

The TGA curve of autoclave cured SF3 specimen showed two stages of thermal 

decomposition; the first stage began at the onset temperature near 25°C and ended around 
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410 °C and the second took place from 410 °C to 780 °C. The first stage might be caused 

by dehydration of calcium silicate hydrate, tobermorite and xonotlite with mass loss of 

5.7%. The second stage representing a large mass loss of 6.44 % mostly involved the 

decomposition of calcium carbonate. 

7.7 SUMMARY 

The effects of curing conditions like water curing with high temperature and  autoclave 

curing  on strength, hydration products, microstructure, and morphology of lime activated 

slag cement have been evaluated and presented in this chapter. In general, the high 

temperature curing imparts higher strength at early ages; however, a specimen cured at 

low temperature registers a higher compressive strength than specimens cured at higher 

temperatures.  
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CHAPTER VIII 
SUMMARY AND CONCLUSIONS 

 
 

8. SUMMARY AND CONCLUSIONS 

 
8.1 SUMMARY 

The objective of the present research is to prepare and characterize a sustainable 

binding material using industrial by-product as an alternate to Portland cement. To 

achieve the above objective, an extensive review on studies related to the physical, 

chemical and mechanical properties along with microstructure and morphology of slag 

activated by various activators have been made. Based on this, the scope of the present 

study is defined and the same has been summarized in chapter 2. Indian standard codes of 

practice are followed to conduct various tests and chapter 3 presents the details of 

materials used, the testing procedure adopted and the variables studied. The experimental 

test results pertaining to the physical properties and chemical analysis of hydration 

products in slag-lime-POP mixes are presented in chapter 4, while chapter 5 presents the 

mechanical strength of mortar specimens prepared out of this binding mixture along with 

a technique for optimization of raw material proportions. Chapter 6 deals with the effects 

of different mineral and chemical admixtures on strength and hydration products. Chapter 

7 delineates the effects of curing temperature including curing in autoclave conditions on 

strength and hydration products. In the present chapter the conclusions drawn from the 

test results are summarized. 
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8.2 CONCLUSIONS 

The physical properties of 42 slag-lime-plaster of Paris mixes along with the 

study on hydration products and microstructure corresponding to their respective initial 

and final setting times has been made based on which the following conclusions are 

drawn: 

1. The normal consistency value of slag-lime-plaster of Paris mixes increases with 

increase in either lime or plaster of Paris content. The consistency for these mixes 

varies over a wide range from 28.89 to 37.4% whereas this value is about 30% for 

ordinary Portland cement (OPC).  

2. The initial and final setting time of the mixes decrease with increase in either lime 

and/or plaster of Paris content. An addition of borax retards the setting time and a 

borax content of 0.4% by mass in the binding mixture gives the setting time that is 

normally prescribed for OPC. 

3. The soundness of this binder varies between 1 mm to 3 mm, which is lower than 

that of the value prescribed for OPC by Bureau of Indian Standards. 

4. X-ray diffraction analysis shows a series of crystalline compounds such as 

calcium-sulphate-hydrate, portlandite, calcium-silicate-hydrate and calcite which 

influence the hardening process.  

5. SEM analysis for the early stages of setting reveals the presence of calcium-

aluminate-silicate-hydrate (C-A-S-H) gels in the mixes instead of calcium-

silicate-hydrate (C-S-H) gel which is normally found in hydration products of 

OPC. However, after 24 hours of setting both C-S-H and C-A-S-H phases are 

found.  
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6. FTIR analysis shows a shift of S-O and O-H bands with wave number, indicating 

that the hydration process continues with setting time and confirms the formation 

of calcium-sulphate-hydrate gel during the reaction. 

Based on the compressive strength of 36 slag-lime-POP mixes optimization has been 

done and an optimum mix of raw materials (reference mix) has been obtained. Various 

properties such as compressive strength, microstructure, porosity and drying shrinkage 

have been investigated for mortar specimens prepared from the reference mix and the 

following conclusions are arrived at: 

1. The compressive strength of the slag-lime-POP mixes depends on proportions of 

slag, lime and POP. An optimum dose of lime exists and no further significant 

increase in strength is achieved beyond this dose. A higher dosage of lime reduces 

the strength. The compressive strength increases non-linearly with POP content. 

No appreciable increase in strength is observed beyond 5% POP content. Also, 

the strength of the mixes increases with curing period. 

2. Response surface models are introduced for respective curing periods with high 

coefficient of determination and the chosen model was proved to be statistically 

significant based on ANOVA tests. Optimization of the fitted model has been 

carried out using a generalized reduced gradient (GRG) algorithm and the results 

of optimized values are well comparable to the experimental values.  

3. The optimum composition of raw materials is found to vary marginally with the 

curing period. The optimum proportion of lime and POP for 90 days cured 

specimens is found to be 19.12% and 4.26% respectively.  
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4. Microstructure and hydration product studies show the presence of compounds 

like ettringite and C-S-H gel, which mainly enhance the strength. An addition of 

lime beyond an optimum value results in the formation of hillebrandite and 

reduction in compressive strength. 

5. The total porosity and the size of pores decrease with an increase in curing period. 

Particularly, a substantial reduction in capillary pores is observed with an 

increased curing period. 

 

Several mineral and chemical admixtures have been added to the reference mix and 

various properties like compressive strength, microstructure, porosity and drying 

shrinkage were studied. The conclusions drawn from the experimental results are: 

1. The strength of mortar specimens mainly depends on the curing period, type, amount, 

and the fineness of the mineral admixtures. For the present test variables, silica fume 

added samples gave the highest compressive strength than other mixes at comparable 

test conditions.  

2. The porosity and pore size distribution in mix are found to be a function of the type of 

admixture, its quantity and the curing period. Silica fume added mix is less porous 

and shows uniform distribution of pores over the measured pore size range. This may 

be due to the presence of micro fine particles, which function as filler material and 

also participate in pozzolanic reaction.  

3. X-ray diffraction analysis shows a series of compounds such as calcium silicate 

hydrated, gypsum, quartz, and calcite.  A wider amorphous hump corresponding to 

the C-S-H compound is observed in specimens containing fly ash and silica fume 
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compared to reference specimen and specimens containing OPC and glass powder.  

SEM analysis also confirms the existence of these components in the hydrated 

specimens as a calcium silicate hydrated gel. The FTIR spectrum shows a shift of Si-

O, O-H, and Al-O bonds with wave number indicating that the hydration process 

continues with curing time and confirms the formation of calcium silicate hydrated 

gel during the reaction. 

4. From DSC and TGA curve the absence of calcium hydroxide peak is observed except 

OPC sample. A correlation is established between the developed strength with the 

type of mineral admixture through analysis of hydration products and the 

microstructure. For the present test variables silica fume is found to be a better 

admixture compared to fly ash, glass powder, and OPC. 

5. It is seen that an addition of mineral admixtures reduces the drying shrinkage value. 

However, the drying shrinkage values of all the specimens are found to increase with 

the curing period. 

6. In brief, the findings of the investigation show that the strength of lime activated slag 

cement improves by addition of calcium based admixtures like calcium acetate, 

calcium formate and calcium nitrate up to 2% to the reference binder (D5) and after 

that it decreases. However, an addition of sodium based admixtures results no 

appreciable change in strength over the reference sample.  

7. The SEM image of specimens containing calcium based chemicals such as calcium 

acetate and calcium formate shows abundance of needle shaped Aft phase of calcium 

aluminate tri-sulphate and gel like substance of calcium silicate hydrate. The presence 

of these hydration product results in enhancing the strength of mortar specimens 
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containing calcium acetate and calcium formate. However, in sodium based specimen 

these phases are found in lesser quantity.  

8.  The v4-SiO4 bond is found to shift more towards lower frequency for the specimen 

containing calcium formate indicating that large quantity of silica took part in the 

reaction and formation of CSH gel, which imparts higher strength to the specimen 

compared to the specimens containing other chemicals. 

  The effects of curing temperature and curing under autoclave conditions on the 

compressive strength of mortar specimens and hydration products are investigated. Based 

on experimental results following conclusions are drawn:  

1. The curing temperature is found to influence both the early and late age strengths of 

lime activated slag cement. Higher curing temperature favors an early strength gain 

but the strength at a later age is found to be lower than the samples cured at moderate 

temperatures. Samples cured at low temperature show a rising trend of strength even 

after 90 days of curing whereas the strengths of high temperature cured specimens 

get stabilize much earlier. A crossover effect of strength is noticed between low and 

high temperature cured specimens. 

2. For the present test variables and conditions, the highest 90 days compressive 

strength was found to be 47.63MPa for D10 specimen cured at temperature of 60 oC. 

The microstructure of specimen cured at 60 oC is found to be more homogenous and 

dense with the hydration products distributed more evenly compared to other 

specimens.  

3. D5 binding mix added with silica fume shows higher compressive strength than the 

reference sample (D5) or the reference sample added with fly ash under same curing 
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condition.  The highest compressive strength is found to be 68.8 MPa for a mortar 

specimen containing D5 binder with 15% silica fume and cured for 90 days in water 

at 27 oC. The samples cured in an autoclave for 2 hours give almost equal strength to 

specimens cured in water at normal temperature for 28 days. No appreciable gain in 

strength is observed in mortar specimens cured in autoclave beyond 2 hours whereas 

samples cured in water at normal temperature show a continuous increase in strength 

up to 90days. 

4. The specimens cured in water for 90 days show a low porosity, higher mass density 

and more homogeneous distribution of hydration products than the 4 hours 

autoclaved specimens. This contributes to higher strength of the samples.  

5. X-ray diffraction analysis shows a series of hydration compounds such as calcium 

silicate hydrated, gismondine, xonotlite, and tobermorite in samples cured in 

autoclave whereas absence of gismondine, xonotlite and tobermorite is observed in 

samples cured in water at normal temperature of 27 oC. Furthermore, tobermorite 

structures having different morphology such as foiled and semi-transparent are 

observed in the spherical pores in autoclaved samples. A high temperature and 

pressure curing favors quick formation of hydration products and it results much 

faster gain of strength. 

6. The gradual shifting of v4-SiO4 bond towards lower frequency with increase in 

temperature indicates the formation of more amounts of C-S-H with increased curing 

period. The optimum dose of raw materials is found to vary marginally based on 

curing temperature and curing period of specimens. 
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7. Based on the findings of the experimental investigation, it perceives that activation 

of slag using lime and plaster of Paris is a viable process. 

The objective of the present investigation is to understand the properties of slag 

activated by lime and plaster of Paris through an extensive experimental program. 

Therefore, the test results obtained from present investigation builds a high level 

confidence that alkaline activated slag can be used as an alternate cementing material 

which has similar physical, chemical and mechanical properties to that of the OPC. 

8.3 BROAD RECOMMENDATIONS 

A cementing material of 43 grade can be prepared by activating slag with 20% lime and 

5% POP. Cementing material with higher grade such as 53 grade can be manufactured by 

activating slag with suitable mineral admixtures like silica fume. The rate of gain in 

strength in lime activated slag cement is comparatively lower than that of OPC, PPC, or 

PSC and hence, higher curing period is recommended for this type of binding material. 

8.4 SCOPE FOR FUTURE RESEARCH WORK 

The present thesis pertains to the study on the physical, chemical, and mechanical 

properties of lime activated slag cement. Due to time constraint all other aspects related 

to other properties like durability of lime activated slag could not be studied. The future 

research work should address the following: 

1. The present work can be extended to study the durability of concrete made out of this 

cementing material. 

2. The drying shrinkage and autogenous shrinkage of this binding material can be 

studied in detail.  

3. The performance of concrete made out of this cementing material under chemical 

environment may be studied.  
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