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Abstract 
                 
 

 

The diffusion theory model of neutron transport plays a crucial role in reactor theory since it is simple 

enough to allow scientific insight, and it is sufficiently realistic to study many important design problems.  

The neutrons are here characterized by a single energy or speed, and the model allows preliminary design 

estimates.  The mathematical methods used to analyze such a model are the same as those applied in more 

sophisticated methods such as multi-group diffusion theory, and transport theory. The neutron diffusion 

and point kinetic equations are most vital models of nuclear engineering which are included to countless 

studies and applications under neutron dynamics. By the help of neutron diffusion concept, we understand 

the complex behavior of average neutron motion. The simplest group diffusion problems involve only, 

one group of neutrons, which for simplicity, are assumed to be all thermal neutrons. A more accurate 

procedure, particularly for thermal reactors, is to split the neutrons into two groups; in which case thermal 

neutrons are included in one group called the thermal or slow group and all the other are included in fast 

group. The neutrons within each group are lumped together and their diffusion, scattering, absorption and 

other interactions are described in terms of suitably average diffusion coefficients and cross-sections, 

which are collectively known as group constants.  

We have applied Variational Iteration Method and Modified Decomposition Method to obtain the 

analytical approximate solution of the Neutron Diffusion Equation with fixed source. The analytical 

methods like Homotopy Analysis Method and Adomian Decomposition Method have been used to obtain 

the analytical approximate solutions of neutron diffusion equation for both finite cylinders and bare 

hemisphere. In addition to these, the boundary conditions like zero flux as well as extrapolated boundary 

conditions are investigated. The explicit solution for critical radius and flux distributions are also 

calculated. The solution obtained in explicit form which is suitable for computer programming and other 

purposes such as analysis of flux distribution in a square critical reactor. The Homotopy Analysis Method 

is a very powerful and efficient technique which yields analytical solutions. With the help of this method 

we can solve many functional equations such as ordinary, partial differential equations, integral equations 

and so many other equations. It does not require enough memory space in computer, free from rounding 

off errors and discretization of space variables. By using the excellence of these methods, we obtained the 

solutions which have been shown graphically.  

 



ii 
 

The fractional differential equations appear more and more frequently in different research areas of 

applied science and engineering applications. The fractional neutron point kinetic equations have been 

solved by using Explicit Finite Difference Method which is very efficient and convenient numerical 

technique. The numerical solution for this fractional model is not only investigated but also presented by 

graphically. 

 

 Fractional kinetic equations have been proved particularly useful in the context of anomalous slow 

diffusion. Fractional Neutron Point Kinetic Model has been analyzed for the dynamic behavior of the 

neutron motion in which the relaxation time associated with a variation in the neutron flux involves a 

fractional order acting as exponent of the relaxation time, to obtain the best operation of a nuclear reactor 

dynamics. Results for neutron dynamic behavior for subcritical reactivity, supercritical reactivity and 

critical reactivity and also for different values of fractional order are analyzed and compared with the 

classical neutron point kinetic equations.  

 

In dynamical system of nuclear reactor, the point-kinetic equations are the coupled linear differential 

equations for neutron density and delayed neutron precursor concentrations. The point kinetic equations 

are most essential model in the field of nuclear engineering. By the help of neutron diffusion concept we 

understand the complex behaviour of average neutron motion which is diffused at very low or high 

neutron density. The modeling of these equations intimates the time-dependent behavior of a nuclear 

reactor. The standard deterministic point kinetic model have been the subject of countless studies and 

applications to understand the neutron dynamics and its effects, such as developed of different methods 

for their solution. The reactivity function and neutron source term are the parametric quantity of this vital 

system. The dynamical process explained by the point-kinetic equations is stochastic in nature. The 

neutron density and delayed neutron precursor concentrations differ randomly with respect to time. At the 

levels of high power, the random behavior is imperceptible. But at low power levels, such as at the 

beginning, random fluctuation in the neutron density and neutron precursor concentrations can be crucial. 

We have applied the numerical methods like Euler Maruyama and Strong order 1.5 Taylor which are used 

as a powerful solver for stochastic neutron point kinetic equation. The main advantages of Euler-

Maruyama method and Strong order 1.5 Taylor method are they do not require piecewise constant 

approximation (PCA) over a partition for reactivity function and source functions.  

Differential Transform method has been applied to compute the numerical solution for classical neutron 

point kinetic equations in nuclear reactor. Differential transform method (DTM) is an iterative procedure 

for obtaining analytic Taylor series solutions of differential equations. The new algorithm multi-step 
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differential transform method (MDTM) is also applied here for solving classical neutron point kinetic 

equation. The multi-step DTM is treated as an algorithm in a sequence of intervals for finding simple and 

an accurate solution. Moreover, numerical examples with variable step reactivities, ramp reactivity and 

sinusoidal reactivity are used to illustrate the preciseness and effectiveness of the proposed method.  

Fractional stochastic neutron point kinetic equation is also solved using the Explicit Finite Difference 

Scheme. The numerical solution of Fractional Stochastic Neutron Point Kinetic Equation has been 

obtained very efficiently and elegantly. Fractional Stochastic Neutron Point Kinetic Model has been 

analyzed for the dynamic behavior of the neutron. The Explicit Finite Difference method is investigated 

over the experimental data, with given initial conditions and step reactivity. The computational results 

designate that this numerical approximation method is straightforward, effective and easy for solving 

fractional stochastic point kinetic equations. Numerical results showing the behavior of neutron density 

and precursor concentration have been presented graphically for different values of fractional order. 

Foremost the random behavior of neutron density and neutron precursor concentrations has been analyzed 

in fractional order. The random behaviors of neutron density and neutron precursor concentrations have 

not been analyzed before in fractional order. The results of the numerical approximations for the solution 

of neutron population density and sum of precursors population for different arbitrary values of   are 

computed numerically. In nuclear reactors, the continuous indication of the neutron density and its rate of 

change are important for the safe startup and operation of reactors.  

The Haar wavelet operational method (HWOM) is proposed to obtain the numerical approximate solution 

of neutron point kinetic equation appeared in nuclear reactor with time-dependent and independent 

reactivity function. Using HWOM, stiff point kinetics equations have been analyzed elegantly with step, 

ramp, zig-zag, sinusoidal and pulse reactivity insertions. On finding the solution for a stationary neutron 

transport equation in a homogeneous isotropic medium, we also used Haar wavelet Collocation Method. 

Recently Haar wavelet method has gained the reputation of being a very easy and effective tool for many 

practical applications in applied science and technology. To demonstrate about the efficiency of the 

method, some test problems have been discussed.  

Keywords:   Neutron Diffusion Equation; Fractional Point Kinetic Equation; Stochastic 

neutron point kinetic equation; Stationary Neutron Transport Equation; Sinusoidal Reactivity; Pulse 

Reactivity; Temperature feedback Reactivity; Wiener Process; Neutron population density; Caputo 

fractional derivative; Grunwald-Letnikov fractional derivative; Haar Wavelets; Homotopy Analysis 

Method; Variational Iteration Method; Adomian Decomposition Method; Fractional Differential 

Transform; Multi-step Differential Transform Method 
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PRELIMINARIES 

  
 

 

Elements of Nuclear Reactor Theory 

 Nuclear Reactor Theory and Reactor Analysis 

In “Elements of Nuclear Reactor Theory”, we study an overview of nuclear reactors and how 

nuclear energy is extracted from reactors. Here, nuclear energy means the energy released in 

nuclear fission. This occurs because of the absorption of neutrons by fissile material. Neutrons 

are released by nuclear fission, and since the number of neutrons released is sufficiently greater 

than 1, a chain reaction of nuclear fission can be established. This allows, in turn, for energy to 

be extracted from the process. The amount of extracted energy can be adjusted by controlling the 

number of neutrons. The higher the power density is raised, the greater the economic efficiency 

of the reactor. The energy is extracted usually as heat via the coolant circulating in the reactor 

core. Finding the most efficient way to extract the energy is a critical issue. The higher the 

coolant output temperature is raised, the greater the energy conversion efficiency of the reactor. 

Ultimately, considerations of material temperature limits and other constraints make a uniform 

power density level which means careful control of the neutron distribution. If there is an 

accident in a reactor system, the power output will run out of control. This situation is almost the 

same as an increase in the number of neutrons. Thus, the theory of nuclear reactors can be 

considered the study of the behavior of neutrons in a nuclear reactor.  

Here, “nuclear reactor theory” and “reactor analysis”, are used to mean nearly the same thing. 

The terms “reactor physics” is also sometimes used. This field addresses the neutron transport 
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including changes of neutron characteristics. Basically, Nuclear Reactor is a device in which 

controlled nuclear fission chain reactions can be maintained. These nuclei fission into lighter 

nuclei (fission products) accompanied by the release of energy (  200 MeV per event) plus 

several additional neutrons. Again these fission neutrons can then be utilized to induce still 

further fission reactions. The study of how to design the reactor so that there is a balance 

between the production of neutrons in fission reactions and the loss of neutrons due to capture or 

leakage is known as nuclear reactor theory or nuclear reactor physics or neutronics. 

 Discovery of the Neutron, Nuclear Fission and Invention of the Nuclear Reactor 

  

Technology generally progresses gradually by the accumulation of basic knowledge and 

technological developments. In contrast, nuclear engineering was born with the unexpected 

discovery of neutrons and nuclear fission, leading to a sudden development of the technology. 

The neutron was discovered by Chadwick in 1932. This particle had previously been observed 

by Irene and Frederic Joliot-Curie. However, they interpreted the particle as being a high energy 

γ-ray. The discovery of neutrons clarified the basic structure of the atomic nucleus (often 

referred to as simply the “nucleus”), which consists of protons and neutrons. Since the nucleus is 

very small, it is necessary to bring reacting nuclei close to each other in order to cause a nuclear 

reaction. Since the nucleus has a positive charge, a very large amount of energy is required to 

bring the nuclei close enough so that a reaction can take place. However, the neutron has no 

electric charge; thus, it can easily be brought close to a nucleus.  

 

Nuclear fission was discovered by Hahn, Stresemann, and Meitner in 1939. Fission should have 

taken place in Fermi’s experiments. The fact that Fermi did not notice this reaction indicates that 
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nuclear fission is an unpredictable phenomenon. In 1942, Fermi created a critical pile after 

learning about nuclear fission and achieved a chain reaction of nuclear fission. The output power 

of the reaction was close to nil; however, this can be considered the first nuclear reactor made by 

a human being. However, it is not the case that a nuclear reactor can be built simply by causing 

fissions by bombarding nuclei with neutrons. The following conditions have to be satisfied for 

nuclear fission reactions 

 Exoergic reaction 

 Sustainable as a chain reaction 

 Controllable 

The first nuclear reactor was built by Fermi under a plutonium production project for atomic 

bombs. In a nuclear reactor, radioactive material is rapidly formed. Therefore, nuclear reactors 

have the following unique and difficult issues, which did not have to be considered for other 

power generators. 

 Safety 

 Waste 

 Nuclear proliferation 

Its products were the atomic bombs using enriched uranium and plutonium. One of the reasons 

for this war was to secure energy sources. After the war, the energy problem remained a big 

issue. Thus, large-scale development of nuclear engineering was started in preparation for the 

exhaustion of fossil fuels. Light-water reactors, which were put into practical use in nuclear 

submarines, were established in many countries. These reactors are not a solution to the energy 

problem, since they can utilize less than 1% of natural uranium. Fast reactors, on the other hand, 

can use almost 100% of natural uranium. Nuclear Reactor are made of with 
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 Fuel: Any fissionable material 

 Fuel element: The smallest sealed unit of  fuel 

 Reactor Core: Total array of fuel, moderator and control elements 

 Moderator: Material of low mass number which is inserted into the reactor to slow down 

or moderate neutrons via scattering collisions. 

Ex.- Light water, heavy water, graphite and beryllium 

 Coolant: A fluid which circulates through the reactor removing fission heat 

Ex.- Coolant used as liquid: Water and Sodium 

        Coolant used as gaseous state: 4
2He  and 2CO  

 Control Elements: Absorbing material inserted into the reactor to control core 

multiplication. Commonly absorbing materials include boron, cadmium, gadolinium and 

hafnium. 

Nuclear engineering is an excellent technology by which tremendous amounts of energy is 

generated from a small amount of fuel. In addition to power generation, numerous applications 

are expected in the future. As well as being used in energy generation, neutrons are expected to 

be widely used as a medium in nuclear reactions. 

 

 Constitution of Atomic Nucleus 

In the constitution of matter an atom from elementary fundamental particles are made of protons, 

neutrons, and electrons. Among these, the proton and neutron have approximately the same 

mass. However, the mass of the electron is only 0.05% that of these two particles. The proton has 

a positive charge and its absolute value is the same as the electric charge of one electron (the 

elementary electric charge). The proton and neutron are called nucleons and they constitute a 
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nucleus. An atom is constituted of a nucleus and electrons that circle the nucleus due to Coulomb 

attraction. Species of atoms and nuclei are called elements and nuclides, respectively. An 

element is determined by its proton number (the number of protons). The proton number is 

generally called the atomic number and is denoted by Z. A nuclide is determined by both the 

proton number and the neutron number (the number of neutrons denoted by N). The sum of the 

proton number and neutron number, namely, the nucleon number, is called the mass number and 

is denoted by A (A=Z+N). Obviously, a nuclide can also be determined by the atomic number 

and mass number. 

In order to identify a nuclide, A and Z are usually added on the left side of the atomic symbol as 

superscript and subscript, respectively. For example, there are two representative nuclides for 

uranium, described as 235
92U  and 238

92U . The chemical properties of an atom are determined by the 

atomic number. These nuclides are called isotopic elements or isotopes. If the mass numbers are 

the same and the atomic numbers are different, they are called isobars. If the neutron numbers 

are the same, they are called isotones.  

 

 Nuclear Reaction 

In chemical reactions, electrons are shared, lost or gained, in order to form new compounds.  In 

these processes, the nuclei just sit there are watch the show, passively sitting by and never 

changing their identities.  In nuclear reactions, the roles of the subatomic particles are reversed.  

The electrons do not participate in the reactions, instead they stay in their orbitals while the 

protons and neutrons undergo changes. Nuclear reactions are accompanied by energy changes 

that are a million times greater than those in chemical reactions.  Energy changes that are so 

great that changes in mass are detectable.  Also, nuclear reaction yields and rates are not affected 
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by the same factors (e.g. pressure, temperature, and catalysts) that influence chemical reactions.  

When nuclei are unstable, they are termed radioactive. The spontaneous change in the nucleus of 

an unstable atom that results in the emission of radiation is called radioactivity and this process 

of change is often referred to as the decay of atoms. 

 Atoms of one element typically are converted into atoms of another element. 

 Protons, neutrons, and other particles are involved; orbital electrons rarely take part. 

 Reactions are accompanied by relatively large changes in energy and measurable changes 

in mass. 

 Reactions rates are affected by number of nuclei, but not by temperature, catalyst, or 

normally, the compound in which an element occurs. 

Two types of Nuclear Reactions are there as follows: 

• Fission : The splitting of nuclei 

• Fusion : The joining of nuclei (they fuse together) 

Both reactions involve extremely large amounts of energy 

Nuclear fission is the splitting of one heavy nucleus into two or smaller nuclei, as well as some 

sub-atomic particles and energy. A heavy nucleus is usually unstable, due to many positive 

protons pushing apart. 

When fission occurs energy is produced, more neutrons are given off and neutrons are used to 

make nuclei unstable. It is much easier to crash a neutral neutron than a positive proton into a 

nucleus to release energy. 
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 Delayed Neutrons 

 A very few neutrons (less than 1%) appear with an appreciable time delay from the subsequent 

decay of radioactive fission products called delayed neutrons. These are more vital for the 

effective control of the fission chain reaction. 

 

 Prompt Neutrons 

Some of the fission neutrons appear essentially and instantaneously (within 10
-14 

sec.) of the 

fission event called prompt neutrons. 

 Decay of Nucleus 

The decay of a nucleus is briefly explained in this section. Typical decays are  - decay, β-

decay, and γ-decay, which emit  -rays, β-rays, and γ-rays, respectively. An α-ray is a nucleus of 

4He , a β-ray is an electron, and a γ-ray is a high-energy photon. In β-decay, a positron may be 

emitted, which is called β+-decay. As a competitive process for γ-decay, internal conversion 

occurs when an orbital electron is ejected, rather than a γ-ray being emitted. By α-decay, Z and N 

both decrease by 2. When a positively charged particle is emitted from a nucleus, the particle 

should normally have to overcome the potential of the Coulomb repulsive force, since the 

nucleus also has a positive charge. Spontaneous fission is another important decay for heavy 

nuclei. In this case, a Coulomb repulsive force even stronger than for α-decay applies, and the 

masses of the emitted particles are large, therefore the parent nucleus must have a sufficiently 
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high energy. Since the neutron has no Coulomb barrier, a neutron can easily jump out of a 

nucleus if energy permits. Although it is not appropriate to call this decay, it is important in 

relation to the later-described delayed neutron, which accompanies nuclear fission. 

Gamma Emission: Gamma emission involves the radiation of high energy or gamma (γ) 

photons being emitted from an excited nucleus.  Those electrons cannot stay in the higher level 

indefinitely, the atom releases the energy absorbed, the electron falls, and the energy is released 

as a photon which is of a specific energy – usually in the UV or visible region, but also the IR.  A 

nucleus that is excited will need to release that energy also, and it does so by releasing a photon 

in the gamma region.  The gamma photon is of much higher energy (shorter wavelength) than a 

UV or visible photon.  For example, when uranium-238 undergoes alpha decay, a gamma ray is 

also emitted. 

238
92 U   →  0

0
4
2

234
90              HeTh   

The time rate of change of the number of original nuclei present at that time 

                                                                )(tN
dt

dN
  

where    Radioactive decay constant (sec
-1

) 

Here teNtN  0)(  where 0N = nuclei initially present. Radioactive half-life period is 

 2/1

0
0

2/1
2

)(
T

eN
N

TN


  with 


693.02ln
2/1 T . 

The fission products whose beta-decay yields a daughter nucleus which subsequently decays via 

delayed neutron emission as a delayed neutron precursor. There are six group for delayed 
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neutron precursor characterized into six classes approximately half-lives of 55sec., 22sec., 6sec., 

2sec., 0.5sec., 0.2sec. 

 Cross Section 

The probability of a neutron interacting with a nucleus for a particular reaction is dependent 

upon not only the kind of nucleus involved, but also the energy of the neutron.  Accordingly, the 

absorption of a thermal neutron in most materials is much more probable than the absorption of a 

fast neutron.  Also, the probability of interaction will vary depending upon the type of reaction 

involved. The probability of a particular reaction occurring between a neutron and a nucleus is 

called the microscopic cross section ( ) of the nucleus for the particular reaction.  This cross 

section will vary with the energy of the neutron.  The microscopic cross section may also be 

regarded as the effective area the nucleus presents to the neutron for the particular reaction.  The 

larger the effective area results the greater the probability for reaction. 

Because the microscopic cross section is an area, it is expressed in units of area, or square 

centimeters. A square centimeter is tremendously large in comparison to the effective area of a 

nucleus, and it has been suggested that a physicist once referred to the measure of a square 

centimeter as being "as big as a barn" when applied to nuclear processes. The name has persisted 

and microscopic cross sections are expressed in terms of barns. The relationship between barns 

and cm
2
 is shown below. 

                                                       1 barn = 10
-24 

cm
2
 

Whether a neutron will interact with a certain volume of material depends not only on the 

microscopic cross section of the individual nuclei but also on the number of nuclei within that 

volume. Therefore, it is necessary to define another kind of cross section known as the 



xiii 
 

macroscopic cross section (  ).  The macroscopic cross section is the probability of a given 

reaction occurring per unit travel of the neutron.   is related to the microscopic cross section (

) by the relationship shown below. 

                                                        N  

where      = macroscopic cross section (cm
-1

) 

               N = atom density of material (atoms/cm
3
) 

               = microscopic cross-section (cm
2
) 

The difference between the microscopic and macroscopic cross sections is the microscopic cross 

section ( ) represents the effective target area that a single nucleus presents to a bombarding 

particle.  The units are given in barns or cm
2
. The macroscopic cross section (  ) represents the 

effective target area that is presented by all of the nuclei contained in 1 cm
3
 of the material.  The 

units are given as 1/cm or cm
-1

. 

A neutron interacts with an atom of the material it enters in two basic ways.  It will either interact 

through a scattering interaction or through an absorption reaction.  The probability of a neutron 

being absorbed by a particular atom is the microscopic cross section for absorption, a . The 

probability of a neutron scattering off of a particular nucleus is the microscopic cross-section for 

scattering, s . The sum of the microscopic cross section for absorption and the microscopic 

cross section for scattering is the total microscopic cross section, t presented as                 

                                                        sat    .                   
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 Mean Free Path 

If a neutron has a certain probability of undergoing a particular interaction in one centimetre of 

travel, then the inverse of this value describes how far the neutron will travel (in the average 

case) before undergoing an interaction.  This average distance travelled by a neutron before 

interaction is known as the mean free path for that interaction and is represented by the symbol (

 ).  The relationship between the mean free path (  ) and the macroscopic cross section (  ) is  




1
 . 

 Diffusion Coefficient 

From diffusion theory, the diffusion coefficient is expressed in terms of macroscopic scattering 

cross section as 

                                                           
s

D



3

1
 

where s is the macroscopic scattering cross section. In a weakly absorbing medium where 

macroscopic absorption cross-section is much less than macroscopic scattering cross section i.e.                   

a << s , D becomes 
33

1 tr

tr

D





  

where tr is the transport mean free path (cm). 

 Neutron Flux 

To consider the number of neutrons existing in one cubic centimeter at any one instant and the 

total distance they travel each second while in that cubic centimeter.  The number of neutrons 
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existing in a cm
3
 of material at any instant is called neutron density and is represented by the 

symbol n with units of neutrons/cm
3
.  The total distance these neutrons can travel each second 

will be determined by their velocity. A good way of defining neutron flux ( ) is to consider it to 

be the total path length covered by all neutrons in one cubic centimetre during one second. 

Mathematically,  

                                                           vn  

where         Neutron flux (neutrons/cm
2
-sec) 

                 n Neutron density (neutrons/cm
3
) 

                  v  Neutron velocity (cm/sec) 

 Fick’s law and Neutron Diffusion Equation 

The process in which the concentration of a solute in one region is greater than in another of a 

solution, so the solute diffuses from the region of higher concentration to the region of lower 

concentration is called diffusion. 

Fick’s law states that the current density vector is proportional to the negative gradient of the 

flux. Thus Fick’s law for neutron diffusion is given by 

                                                          DJ   

where J is the neutron current density that is the net amount of neutrons that pass per unit time 

through a unit area, D is the diffusion coefficient,   is the neutron flux and  is the del or 

gradient operator. 
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The use of this law in reactor theory leads to the diffusion approximation. Diffusion theory is 

based on Fick’s Law and the Equation of Continuity equation. To derive the neutron diffusion 

equation we adopt the following assumptions: 

1. We use a one-speed or one-group approximation where the neutrons can be characterized by a 

single average kinetic energy. 

2. We characterize the neutron distribution in the reactor by the particle density )(tn  which is the 

number of neutrons per unit volume at a position r


at time t. Its relationship to the flux is           

                                                              )(),( tntr  


 

We consider an arbitrary volume V and write the balance equation or equation of continuity       
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The first term is expressed mathematically as 
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The production rate can be written as 

                                                             
V

dVtrS ),(


 

The absorption term is 

                                                            
V

a dVtrr ),()(


  

and the leakage term is 
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                                                              
V

dVtrJ ),(


 

where we converted the surface integral to a volume integral by use of Gauss’ Theorem or the 

divergence theorem. 

Substituting for the different terms in the balance equation we get 

                      


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

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dt

d
),(

1 



= 

V

dVtrS ),(


 
V

a dVtrr ),()(


  
V

dVtrJ ),(


 

or we can obtain 
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Since the volume V is arbitrary we can write 
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We now use the relationship between J and   (Fick’s law) to write the diffusion equation 
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This equation is the basis of much of the development in reactor theory using diffusion theory. 

 Reproduction Factor 

Most of the neutrons absorbed in the fuel cause fission, but some do not. The reproduction factor 

(η) is defined as the ratio of the number of fast neutrons produces by thermal fission to the 

number of thermal neutrons absorbed in the fuel. The reproduction factor is shown below.  
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                                     
fuel thein  absorbed neutrons thermal ofnumber 

fission thermalby  produced neutronsfast  ofnumber 
  

The reproduction factor can also be stated as a ratio of rates as 

                                     
fuel theby  neutrons  thermalof absorption of rate

fission thermalby  neutronsfast  of production of rate
 . 

 Effective Multiplication Factor 

The infinite multiplication factor can fully represent only a reactor that is infinitely large, 

because it assumes that no neutrons leak out of the reactor. To completely describe the neutron 

life cycle in a real, finite reactor, it is necessary to account for neutrons that leak out. The 

multiplication factor that takes leakage into account is the effective multiplication factor ( effk ), 

which is defined as the ratio of the neutrons produced by fission in one generation to the number 

of neutrons lost through absorption and leakage in the preceding generation. The effective 

multiplication factor may be expressed mathematically as  

                          effk   
generationpreceedinginleakageneutronandabsorptionneutron

generation onein fission  from productionneutron 
  

The condition where the neutron chain reaction is self-sustaining and the neutron population is 

neither increasing nor decreasing is referred to as the critical condition and can be expressed by 

the simple equation effk  = 1. If the neutron production is greater than the absorption and leakage, 

the reactor is called supercritical. In a supercritical reactor, effk  > 1, and the neutron flux 

increases each generation.  If, on the other hand, the neutron production is less than the 

absorption and leakage, the reactor is called subcritical. In a subcritical reactor, effk  < 1, this 

means that the flux decreases in each generation. 
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 Buckling 

The buckling is a measure of extent to which the flux curves or “buckles.” In a nuclear 

reactor, criticality is achieved when the rate of neutron leakage. Geometric buckling is a measure 

of neutron leakage, while material buckling is a measure of neutron production minus 

absorption. Thus, in the simplest case of a bare, homogeneous, steady state reactor, the geometric 

and material buckling must be equal.  

The diffusion equation is usually written as 

                                           ),(),(.
),(

trrD
t

tr 









 

where ),( tr


 is the density of the diffusing material at location r


 and time t and ),( rD


  is the 

collective diffusion coefficient for density   at location r


; and   represents the 

vector differential operator del. If the diffusion coefficient depends on the density then the 

equation is nonlinear, otherwise it is linear. 

If flux is not a function of time, then the buckling terms can be derived from the diffusion 

equation 

                                                    fa
k

D 
12  

where k is the criticality eigen value,  is the number of neutrons emitted per fission, f is the 

macroscopic fission cross-section and D is the diffusion coefficient. 

Rearranging the terms, the diffusion equation becomes: 
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where the diffusion length 
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We also can write 
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By diffusion theory, 
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Assuming the reactor is in a critical state ( k = 1), then geometric buckling is
D

B
af

g





2 .  

By equating the geometric and material buckling, one can determine the critical dimensions of a 

one region nuclear reactor. 

 One-group diffusion model- All the neutrons of the reaction characterized by a single 

kinetic energy of range from 10
-3

 to 10
7
 eV. 

 Multi-group Diffusion Model: Sophisticated model of the neutron density behaviour 

based on breaking up the range of neutron energies into intervals or “groups” and then 

describing the diffusion of neutrons in each of these groups separately, accounting for the 

transfer of neutrons between groups caused by scattering called multi-group diffusion 

model. 
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 Reactivity 

   Reactivity is a measure of the departure of a reactor from criticality. The reactivity is related to 

the value of effk . Reactivity is a useful concept to predict how the neutron population of a reactor 

will change over time.  

                                                        
eff

eff

k

k 1
  

ρ may be positive, zero, or negative, depending upon the value of effk . The larger the absolute 

value of reactivity in the reactor core, the further the reactor is from criticality. It may be 

convenient to think of reactivity as a measure of a reactor's departure from criticality. Such 

processes whereby the reactor operating conditions will affect the criticality of the core are 

known as feedback reactivity. In reactivities, step, ramp, zig-zag, sinusoidal, pulse and 

temperature feedback reactivity are used to solve neutron kinetic problems in nuclear reactor 

dynamics. 

 Mean generation time 

The mean generation time, Λ, is the average time from a neutron emission to a capture that 

results in fission. The mean generation time is different from the prompt neutron lifetime 

because the mean generation time only includes neutron absorptions that lead to fission reactions 

(not other absorption reactions). The two times are related by the following formula: 

                                                    
effk

l
  

Here, effk is the effective neutron multiplication factor.  
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 Nuclear Reactor Dynamics 

The study of the time-dependence of the related process involved in determining the core 

multiplication as a function of power level of the reactor is known as nuclear reactor dynamics. 

 Point Reactor Kinetic Model 

The one-group diffusion model we have been using to study reactor criticality is also capable of 

describing qualitatively the time behavior of a nuclear reactor, provided the effects of delayed 

neutrons. The model does not really treat the reactor as a point but rather merely assumes that the 

flux shape does not change with time. 

Delayed neutrons are extremely important for reactor time behavior. For thermal reactors and for 

fast reactors, prompt neutron lifetimes are 10
-4

sec and 10
-7

sec respectively. The reactor period 

predicted by this model is too small for effective control of reactor. 

The influence of the delayed neutron on the reactor, the effective lifetime of such neutrons given 

by their prompt lifetime + additional delay time 
1

i  characterizing the  -decay of their 

precursor is considerably longer than prompt l 10
-6

sec -10
-4

sec. Hence delayed neutrons 

substantially increase the time constant of a reactor so that effective control is possible. The 

neutron point kinetic model defined as 

                             i
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where i  Decay constant of the i
th

 - precursor group, i  fraction of all fission neutrons 

emitted per fission that appear from the i
th
 - precursor group,  

i
i  Total fraction of fission 

neutrons which are delayed. 

Nuclear energy is the only available source able to fulfil current and future energetic demands of 

mankind without polluting the Earth any further. Preceding its useful utilization, such as 

generation of electricity, materials irradiation or for medical purposes, its extraction within a 

nuclear reactor must occur. Design of nuclear reactors and analysis of their various operational 

modes is therefore a complicated task that encompasses several areas of science and engineering. 

At its start, however, determination of neutronic conditions within the reactor core plays a crucial 

role and received a substantial attention in the field of reactor physics in past decades. Main 

objective of such neutronic analyses is to describe and predict the states of the reactor under 

various circumstances and to find its optimal configuration, in which it is capable of long-term 

self-sustained operation with only a minimal human intervention. 

 

In neutron diffusion theory, equations that govern the dynamics of space-time and the neutron 

population are called kinetics equations. The kinetics equations are dividing into point kinetics 

equations and space kinetics equations. In this work, we will emphasize the point kinetic model, 

more specifically, variations in the neutron density for small time scales, or equivalently changes 

in criticality due to changes of nuclear parameter in small time intervals. The point kinetic 

equations describe only the behaviour of the neutron density with time, assuming total 

separability of time from spatial degrees of freedom but with an a priori known spatial shape of 

the density. The point kinetic model plays still a significant role in reactor physics and is used to 

estimate the power response of the reactor, allowing for control and intervention in the power 
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plant operation that may also be helpful to avoid the occurrence of incidents or accidents.  The 

new aspect is a fractional kinetics model, which reproduces the classical model and thus allows 

capturing effects that differ from the usually employed hypothesis of Fick. The fractional point 

kinetics model presented here is derived thoroughly and solved numerically, which hopefully 

will mark the beginning of an extensive research for future validation and applications of this 

kind of approach in nuclear reactor theory. The diffusion theory model of neutron transport has 

played a crucial role in reactor theory since it is simple enough to allow scientific insight, and it 

is sufficiently realistic to study many important design problems. The neutron transport equation 

models the transport of neutral particles in a scattering, fission, and absorption events with no 

self-interactions. Hence, the Point Kinetics Model is widely used in reactor dynamics because of 

the apparent simplicity of the resulting equations. 
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INTRODUCTION 

   
 

 

In Chapter 1, some analytical and numerical methods have been introduced to solve nuclear 

reactor kinetic problems. The analytical methods like Homotopy analysis method, Adomian 

decomposition method, Variational iteration method and Modified decomposition method have 

been used to obtain the approximate solution of neutron kinetic equations in the closed form of 

infinite convergent series in nuclear reactor dynamics. These analytical methods are providing us 

more convergent series solution in real physical problems. The numerical methods like Explicit 

finite difference method, Differential transform method, Multi-step differential transform 

method, Fractional differential transform method have been discussed to find the numerical 

solutions for neutron kinetic problems. These numerical techniques have several advantages 

including easy programming on a computer and the convenience with which they handle 

complex problems. 

 

In Chapter 2, One-group neutron diffusion equation has introduced. Variational Iteration 

Method (VIM) and Modified Decomposition method (MDM) have been applied to solve the 

analytical approximate solution of the Neutron Diffusion Equation with fixed source. The main 

properties of these methods lie in its flexibility and ability to solve linear as well as nonlinear 

equations accurately and conveniently. The explicit solution of the Neutron Diffusion equation 

has been presented in the closed form by an infinite series and then the numerical solution has 

been represented graphically. We have also obtained the solution for neutron diffusion equation 

in bare hemispherical and cylindrical reactors with considering zero-flux boundary condition and 
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extrapolated boundary condition. The solution for flux distribution with radiation boundary 

condition has also discussed. The comparison results for different angular flux have been shown. 

The critical radiuses for both symmetrical reactors have been obtained using these boundary 

conditions.  

 

In Chapter 3, the explicit finite difference method is applied to solve the fractional neutron point 

kinetic equation with the Grunwald- Letnikov (GL) definition. Fractional Neutron Point Kinetic 

Model has been analyzed for the dynamic behavior of the neutron motion in which the relaxation 

time associated with a variation in the neutron flux involves a fractional order acting as exponent 

of the relaxation time, to obtain the best operation of a nuclear reactor dynamics. Results for 

neutron dynamic behavior for subcritical reactivity, supercritical reactivity and critical reactivity 

and also for different values of fractional order have been presented and compared with the 

classical neutron point kinetic (NPK) equation. 

 

In Chapter 4, the multi-step differential transform method is applied to solve the classical and 

fractional order neutron point kinetic equation with the Caputo definition. The Differential 

Transform technique is one of the semi numerical analytical solution for solving a wide variety 

of differential equations and normally gets the solution in a series form. The multi-step DTM is 

treated as an algorithm in a sequence of intervals for finding simple and an accurate solution. 

Here, integer order and fractional neutron point kinetic equation have been solved using the new 

algorithm known as multi-step differential transform method (MDTM). Moreover, numerical 

examples with variable step reactivities, ramp reactivity and sinusoidal reactivity are used to 

illustrate the preciseness and effectiveness of the proposed method. 
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In Chapter 5, the numerical methods are applied to calculate the solution for stochastic neutron 

point-kinetic equations with sinusoidal reactivity in dynamical system of nuclear reactor. The 

resulting system of differential equations is solved for each time step-size. Using experimental 

data, the methods are investigated over initial conditions and with sinusoidal and pulse reactivity 

function. The computational results designate that these numerical approximation methods are 

straightforward, effective and easy for solving stochastic point-kinetic equations. We have also 

used explicit finite difference method, a numerical procedure which is efficiently calculating the 

solution for fractional stochastic neutron point kinetic equation (FSNPK) in the dynamical 

system of nuclear reactor with the Grunwald–Letnikov (GL) definition. Fractional stochastic 

neutron point kinetic model has been analysed for the dynamic behaviour of the neutron. The 

method is investigated over the experimental data, with given initial conditions and step 

reactivity. The computational results designate that this numerical approximation method is 

straightforward, effective and easy for solving fractional stochastic point kinetic equations. 

Numerical results for showing the behavior of neutron density and precursor concentration have 

been presented graphically for different values of fractional order. 

 

In Chapter 6, we have used a numerical procedure which is efficient for calculating the solution 

for nonlinear neutron point kinetic equation in the field of nuclear reactor dynamics. The explicit 

finite difference method is applied to solve both integer or classical order and fractional order 

nonlinear neutron point kinetic equation with Newtonian temperature feedback reactivity. 

Nonlinear Neutron Point Kinetic Model has been analyzed in the presence of temperature 

feedback reactivity. The numerical solution obtained by explicit finite difference scheme is an 
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approximate solution which is based upon neutron density, precursor concentrations of multi-

group delayed neutron and the reactivity function. The method is investigated over three sets of 

reactivity: step, ramp and temperature feedback reactivities like Newtonian temperature feedback 

reactivity.  The computational results designate that this numerical approximation method is 

straightforward and effective for solving nonlinear point kinetic equations. Numerical results 

citing the behavior of neutron density and results of this method with different types of reactivity 

have been presented graphically. The comparisons of results with other referred methods have 

also been discussed.  

 

In Chapter 7, the Haar wavelet operational method (HWOM) is proposed to obtain the 

numerical approximate solution of neutron point kinetic equation appeared in nuclear reactor 

with time-dependent and independent reactivity function. The numerical solution of point 

kinetics equation with a group of delayed neutrons is useful in predicting neutron density 

variation during the operation of a nuclear reactor. The continuous indication of the neutron 

density and its rate of change are important for the safe startup and operation of reactors. The 

present method has been applied to solve stiff point kinetics equations elegantly with step, ramp, 

zig-zag, sinusoidal and pulse reactivity insertions. This numerical method has turned out as an 

accurate computational technique for many applications. The accuracy of the obtained solutions 

are quite high even if the number of collocation points is small. By increasing the number of 

collocation points, the error of the approximation solution rapidly decreases. It manifests that the 

results obtained by the HWOM are in good agreement with other available results even for large 

time range and it is certainly simpler than other methods in open literature. 
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In Chapter 8, we have solved classical order and fractional order stationary neutron transport 

equation using two-dimensional Haar wavelet Collocation Method (HWCM) in a homogeneous 

and isotropic medium. Haar wavelet collocation method is efficient and powerful in solving wide 

class of linear and nonlinear differential equations. The proposed method is mathematically very 

simple, easy and fast. This chapter intends to provide the great utility of Haar wavelets to nuclear 

science problem. This chapter has also emphasized on the application of two-dimensional Haar 

wavelets for the numerical approximate solution of fractional order stationary neutron transport 

equation in homogeneous isotropic medium. To demonstrate about the efficiency and 

applicability of the method, two test problems have been discussed.  
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CHAPTER 1 
   
 

 

It is the intent of this chapter to provide a brief description of the analytical and numerical 

methods to obtain the solution of neutron point kinetic models in the nuclear dynamical 

system. The basic ideas of linear and non-linear analytical methods have been introduced 

to solve the kinetic equation in the field of nuclear reactor dynamics using Homotopy 

Analysis Method (HAM), Variational Iteration Method (VIM), Adomian Decomposition 

Method (ADM) etc. The numerical techniques like Differential Transform Method 

(DTM), Multi-step Differential Transform Method (MDTM), and Explicit Finite 

Difference Method etc. have been also applied to obtain the numerical approximation 

solution for neutron point kinetic equation in nuclear reactor dynamical system. 

1.1 Homotopy Analysis Method (HAM)  

Nonlinear equations are difficult to solve, especially anal differential equations, partial 

differential equations, differential-integral equations, differential-difference equations, and 

coupled equations. Unlike perturbation methods, the HAM is independent of small/large 

physical parameters, and provides us a simple way to ensure the convergence of solution 

series. The method was first devised by Shijun Liao in 1992 then more and more 

researchers have successfully applied this method to various nonlinear problems in science 

and engineering. 

We consider the following differential equation 

                                                   0)],([ txuN ,              (1.1) 
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where N is the nonlinear operator, x and t  are the independent variables and ),( txu  is an 

unknown function. For simplicity, we ignore all boundary or initial conditions which are 

treated in the same way. By means of generalizing Homotopy Analysis Method [1, 2], we 

first construct the zero
th

 order deformation equation 

                 )];,([),()],();,([)1( 0 qtxNtxHqhtxuqtxLq                          (1.2)
    

  

where ]1,0[q  is the embedding parameter, 0h  is an auxiliary parameter, L is an 

auxiliary linear operator, );,( qtx  is an unknown function, ),(0 txu is an initial guess of 

),( txu  and ),( txH is a non-zero auxiliary function. 

For 0q and 1q , the zero
th

 order deformation equation given by eq. (1.2) leads to 

                 ),()0;,( 0 txutx     and ),()1;,( txutx             (1.3) 

 when the value of q increases from 0 to 1, the solution );,( qtx varies from the initial 

guess ),(0 txu to the solution ),( txu . Expanding );,( qtx in Taylor’s series with respect to q

, we have, 

            





1

0 ),(),();,(
m

m
m qtxutxuqtx           (1.4) 

where     

                                   

0

);,(

!

1
),(







q

m

m

m
q

qtx

m
txu

 .          (1.5) 

The convergence of the series (1.4) is depending upon the auxiliary parameter h . If it is 

convergent at 1q , we get 
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                                     





1

0 ),(),(),(
m

m txutxutxu           (1.6)                              

which must be one of the solutions of the original differential equation.  Now we define 

the vector 

                    ),(,),,(),,(),,(),( 210 txutxutxutxutxu mm 


 .         (1.7) 

Differentiating the zero
th

 order deformation eq. (1.2) for m times with respect to q then 

dividing them by !m  and finally setting 0q , we obtain the following m
th

 order 

deformation equation  

                       )),((),()],(),([ 11 txutxhHtxutxuL mmmmm  


           (1.8) 

where           
0

1

1

1

)];,([

)!1(

1
)(















q

m

m

mm
q

qtxN

m
u


          (1.9)  

and                









1,1

1,0

m

m
m          (1.10) 

 

 

Now, the solution for m th
 order deformation eq. (1.8) by applying 1L on both sides, we 

get 

         ))],((),([),(),( 1
1

1 txutxhHLtxutxu mmmmm 


            (1.11)  

In this way, it is easy to obtain mu for 1m , at thM order, we have 

                          



M

m
m txutxu

0

),(),(          (1.12) 

when  M , we obtain an accurate approximation of the original eq.(1.1).  
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It provides a simple way to ensure the convergence of the solution, freedom to choose 

the basis functions of the desired solution, and flexibility in determining the linear 

operator of the homotopy.  

1.2 Adomian Decomposition Method (ADM) 

The Adomian Decomposition method (ADM) is a semi-analytical method for solving 

ordinary and partial nonlinear differential equations. The method was developed from the 

1970’s to the 1990’s by George Adomian. The main aim of this method has been 

superseded by more general theory of the Homotopy Analysis method. The vital aspect of 

the method is employment of the “Adomian Polynomials” which allow for solution 

convergence of the nonlinear portion of the equation, without simply linearizing the 

system. This algorithm provides the solution in a rapidly convergent series. 

Let us consider the general form of a differential equation [3]     

F gy                              (1.13) 

 where F is the non-linear differential operator with linear and non-linear terms. The 

differential operator is decomposed as   

                                F RL                         (1.14) 

 where  L  is  easily  invertible linear operator  and  R  is  the  remainder  of  the  linear 

operator. For our convenience L is taken as the highest order derivative then the eq. (1.13) 

can be written as             gNyRyLy                                    (1.15) 

where Ny corresponds to the non-linear term. Solving Ly from (1.15), we have 

                             NyRygLy                           (1.16) 

Because L is invertible, then 1L  is to be the integral operator 

            )()()()( 1111 NyLRyLgLLyL                           (1.17) 

http://en.wikipedia.org/wiki/Limit_of_a_sequence
http://en.wikipedia.org/wiki/Basis_functions
http://en.wikipedia.org/wiki/Linear_operator
http://en.wikipedia.org/wiki/Linear_operator
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 If L is a second order operator, then 1L  is a two-fold integral operator   

  
t t

dtdtL
0 0

1 )( and  )0()0()()(1 ytytyLyL   

Then eq. (1.17) for y yields, )()()()0()0( 111 NyLRyLgLytyy                      (1.18) 

Let us consider the unknown function )(ty in the infinite series as 







0

)(
n

nyty .                           (1.19) 

The non-linear term N(y) will be decomposed by the infinite series of Adomian 

polynomials nA
 

)0( n [3, 4] as 







0n

nANy                                       (1.20) 

 where nA ’s are obtained by 
0

0!

1





















 




 i

i
in

n

n yN
d

d

n
A                      (1.21) 

 Now, substituting (1.19) and (1.20) into (1.18), we obtain   































  















0

1

0 0

11 )()0()0(
n

n
n n

nn ALyRLgLytyy                     (1.22) 

Consequently we can obtain, 

)()0()0( 1
0 gLytyy   

)()( 0
1

0
1

1 ALyRLy    

)()( 1
1

1
1

2 ALyRLy    

……………………… 

)()( 11
1 nnn ALyRLy 
                         (1.23) 

and so on. 

Based on the Adomian Decomposition method, we shall consider the solution )(ty as 

n

n

k
kyy  





1

0

  with           )(lim tyn
n




  
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We can apply this method to many real physical problems, and the obtained results are of 

high degree of accuracy. In most of the problems, the practical solution n , the n-term 

approximation, is convergent and accurate even for small value of n.   

 

1.3 Modified Decomposition Method (MDM) 

A powerful modification of the Adomian decomposition methods (ADM) [3, 4] has been 

proposed by notable researcher Wazwaz [5]. A large amount of literature developed 

concerning Adomian Decomposition method, and the related modification to investigate 

various scientific models. 

We consider the general differential equation 

                                                             )(tgNuRuLu                     (1.24)                                                          

where L  is the operator of the highest-order derivative with respect to t  and R  is the 

remainder   of the linear operator. The nonlinear term is represented by Nu . 

Thus we obtain                                                 

                                             NuRutgLu  )(                       (1.25) 

Since L  is easily invertible linear operator, the inverse 1L  is assumed to be an integral 

operator given by 

                                                      
t

t dtL
0

1 )(                       (1.26) 

Operating the integral operator 1L  on both sides of eq. (1.25) we get 

                                  NuLRuLtgLu 111 )(                        (1.27) 

 where   is the solution of homogeneous equation 

     Lu=0                        (1.28)  
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and the integration constants involved in )(1 tgLf  are to be determined by the initial 

or boundary conditions of the corresponding problem. 

  

The Adomian Decomposition Method assumes that the unknown function ),( txu  can be 

expressed by an infinite series of the form 







0

),(),(
n

n txutxu                   (1.29)  

 

and the nonlinear operator  Nu  can be decomposed by an infinite series of polynomials 

given by 







0

)(
n

nAuN                 (1.30) 

               

 where nA  are the Adomian polynomials given by 

,)(
!

1

00 



 




 



 i

i
i

n

n

n uN
d

d

n
A       ,2,1,0n              (1.31) 

According to the modified decomposition method [5], the recursive scheme is given by 

10 ),( ftxu   

0
1

0
1

21 ),(),( ALtxRuLftxu                  (1.32) 

nnn ALtxRuLtxu 11
1 ),(),( 
  ,                    1n  

where the solution of the homogeneous eq. (1.28) is given by   

21 fff                               (1.33)  

If the zero
th

 component 0u is defined then the remaining components nu , 1n  can be 

determined completely such that each term is determined in term of the previous term and 
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the series solution is thus entirely determined. Finally, we approximate the solution ),( txu

by the truncated series. 







1

0

),(),(
N

n
nN txutx   and    ),(),(lim txutxN

N



                         (1.34) 

The method provides the solution in the form of a rapidly convergent series that may lead 

to the exact solution in the case of linear differential equations and to an efficient 

numerical solution with high accuracy for nonlinear differential equations. The 

convergence of the decomposition series has been investigated by several notable 

researchers [6, 7]. The method can significantly reduce the volume of computational work. 

In comparisons with the standard Adomian method, the modified algorithm gives better 

performance in many cases. The MDM accelerates the convergence of the series solution 

rapidly if compared with the standard Adomian decomposition method. 

1.4 Variational Iteration Method (VIM) 

Variational Iteration Method (VIM) has been favorably applied to various kinds of 

nonlinear problems. The main property of the method is in its flexibility and ability to 

solve nonlinear equations accurately and conveniently. Major applications to nonlinear 

diffusion equation, nonlinear fractional differential equations, nonlinear oscillations and 

nonlinear problems arising in various engineering applications are surveyed. The 

Variational Iteration Method was proposed by Ji-Huan He [8, 9] which successfully 

applied to autonomous ordinary and partial differential equations and other fields. The 

main advantages of this method are the correction functions can be constructed easily by 

the general Lagrange multipliers, which can be optimally determined by the variational 

theory. The application of restricted variations in correction functional makes it much 

easier to determine the multiplier. The initial approximation can be freely selected with 



9 
 

possible unknown constants which can be identified via various methods. The 

approximations obtained by this method are valid for not only for small parameter, but 

also for very large parameter.  

To illustrate the basic concept of variation iteration method [8-11] we consider the 

following general nonlinear ordinary differential equation given by  

)()()( tgtNutLu                             (1.35)                                                                                                  

where L  is  a linear operator, N  is a nonlinear operator and )(tg  is a known analytical 

function. According to He’s variational iteration method; we can construct the correction 

functional as follows  

                                 

t

nnnn dguNLututu
0

1 ))()(~)(()()(                      (1.36) 

where 0u is an initial approximation with possible unknowns,   is a general Lagrange 

multiplier  and nu~  is considered as a restricted variation, i.e., 0~ nu . The Lagrange 

multiplier   can be determined from the stationary condition of the correction functional

01 nu . 

Being different from the other non-linear analytical methods, such as perturbation 

methods, this method does not depend on small or large parameters, such that it can find 

wide application in non-linear problems without linearization, discretization or small 

perturbations. 

 

1.5 Explicit Finite Difference Method (EFDM) 

Finite difference methods are approximate in the sense that derivatives at a point are 

approximated by difference quotients over a small interval [12]. 

Let us consider the heat conduction equation 
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2

2

x

u

t

u









                         (1.37) 

Using finite difference approximation method, eq. (1.37) can be discretized into 

                                   
2

,1,,1,1, 2

h

uuu

k

uu jijijijiji  



                        (1.38) 

where 

,...),2,1,0(  iihxi  

and 

,...).2,1,0(  jjkt j  

Then eq. (1.38) can be written as 

jijijiji ruurruu ,1,,11, )21(                   (1.39) 

where 
22 h

k

x

t
r 




 ,  

and eq. (1.39) gives an explicit formula for the unknown “temperature” 1, jiu  at the 

thji )1,(   mesh point in terms of known “temperatures” along the j
th

 time-row. 

Similarly, next we consider fractional diffusion equation [13] 

),(),(
2

2
1

0 txu
x

DKtxu
t

t







 
                (1.40) 

where  1
0 tD  is the fractional derivative defined through the Riemann-Liouville operator. 

For any function )(tf  can be expressed in the form of a power series. The fractional 
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derivative of order 1  at any point inside the convergence region of the power series can 

be written using Grunwald-Letnikov fractional derivative in the form of 








 
]/[

0

)1(

10

1
0 )(

1
lim)(

ht

k
k

h
t khtfw

h
tfD 



 ,               (1.41) 

where ]/[ ht  means the integer part of ht / . The Grunwald-Letnikov definition is simply a 

generalization of the ordinary discretization formulas for integer order derivatives.  

Using explicit difference scheme, eq. (1.40) can be discretized into 

 








 
m

k

km
j

km
j

km
jk

m
j

m
j uuuwSuu

0

)(
1

)()(
1

)1(1 2
              (1.42) 

     where xjx j   for ).2,1,0( j , tmtm  for ),,2,1,0( m  and )(),( m
jmj utxu  stands for 

the numerical estimate of the exact value of ),( txu  at the point ),( mj tx . Here, 

])(/[ 21 xhtKS  
 . In this scheme, 1m

ju , for every given position j, is given explicitly 

in terms of all the previous states n
ju , mn ,,1,0  . 

1.6 Differential Transform Method (DTM) 

Many problems in science and engineering fields can be described by the ordinary and 

partial differential equations. A variety of numerical and analytical methods have been 

developed to obtain accurate approximate and analytic solutions for the problems in the 

literature.  

The classical Taylor series method is one of the earliest analytic techniques to many 

problems but it requires a lot of symbolic calculation for the derivatives of functions and 

for the higher order derivatives. The updated version of the Taylor series is called 

differential Transform method. The concept of differential transform method was first 
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proposed by Zhou in 1986[14]. The DTM is very effective and powerful solver for solving 

various kinds of differential equations.  The main advantage of this method is that it can 

be applied directly to linear and nonlinear differential equations without requiring 

linearization, discretization or perturbation. 

The differential transform of )(tf  can be defined as follows                             

                       

0

)(

!

1
)(

tt

k

k

dt

tfd

k
kF











                (1.43) 

Here  )(kF  is the transformed function of )(tf . The inverse differential transform of 

)(kF  is defined by 

                                





0

0 ))(()(
k

kttkFtf                         (1.44) 

From eqs. (1.43) and (1.44), we get 

                        

0
0

0 )(

!

)(
)(

tt

k

k

k

k

dt

tfd

k

tt
tf














   .                     (1.45) 

It implies that the concept of differential transform is derived from Taylor series 

expansion, but the method never evaluates the derivatives symbolically.  

In particular, case when 00 t , which is referred to Maclaurin series of )(tf  and it can be 

expressed as 





0

1 )()()(
k

k kFDTkFttf  

where  1DT stands for inverse differential transform.

 

The function )(tf  can be expressed by a finite series defined as follows 

                      



N

k

kttkFtf
0

0 ))(()(                           (1.46) 
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Here N is the finite sum of terms of the truncated series solution. The DTM is an 

important tool for solving different class of nonlinear problems. 

Table-1: The fundamental operations of differential transformation 

Properties Time function Transformed function 

 

1 

 

)()()( tvtutf    

 

)()()( kVkUkF    

 

2 

 

)()()( tvtutf   





k

l

lkVlUkF
0

)()()(  

3 

dt

tdu
tf

)(
)(   

)1()1()(  kUkkF

 

4 
m

m

dt

tud
tf

)(
)( 

 

)(
!

)!(
)( mkU

k

mk
kF 


  

5 mttf )(  

 

 

 
!

)1()1()(

!

1
)(

,0

,1
)(

)(

!

1
)(

0

k

tkmmm

dt

tfd

k
kF

mk

mk
mk

dt

tfd

k
kF

km

i

itt

k

k

t

k

k























 

6 )sin()(   ttf   

 






























i

k

itt

k

k

k

t

k

k

t
k

kdt

tfd

k
kF

k

kdt

tfd

k
kF

2
sin

!

)(

!

1
)(

2
sin

!

)(

!

1
)(

0

 

 

  

If the system considered has a solution in terms of the series expansion of known 

functions then using this powerful method, we can obtain the exact solution. DTM is an 

effective and reliable tool for the solution of system of ordinary differential equations. 

The method gives rapidly convergent series solution. The accuracy of the obtained 
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solution can be improved by taking more terms in the solution. In many cases, the series 

solution obtained with DTM can be written in exact closed form. This method reduces the 

computational difficulties of the other traditional methods and all the calculations can be 

done easily and efficiently. 

1.7 Multi-step differential transform method (MDTM) 

DTM is always used to provide the approximate solutions for a class of nonlinear 

problems in terms of convergent series with easily computable components. But also it has 

few drawbacks that the series solution converges in a very small region and it has slow 

convergent rate in the wider regions. To overcome this problem, we represent in this 

section the multi-step differential transform method. For describing this, let us consider 

the following nonlinear initial value problem,

  

                              0),...,,,( )(  puuutf ,             )( pu  is  p
th

 derivative of u.          (1.47) 

subject to the initial conditions  k
k cu )0()( , for 1,...,1,0  pk  

We find the solution over the interval ],0[ T . The approximate solution of the initial value 

problem can be expressed by the finite series 

                         



M

m

m
mtatu

0

)( ,     ],0[ Tt               (1.48) 

Assume that the interval ],0[ T  is divided into N subintervals  nn tt ,1 , Nn ,...,2,1  of equal 

step size NTh /  by using the node point nhtn  . The main idea of multi-step DTM is to 

apply first the DTM to eq.(1.47) over the interval   1,0 t , we obtain the following 

approximate solutions [15]. 

                      



1

0
11 )(

M

m

m
mtatu ,       ],0[ 1tt               (1.49) 
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using the initial conditions k

k
cu )0(

)(

1 . For 2n and at each subinterval  nn tt ,1  we use 

the initial conditions )()( 1

)(

11

)(

  n

k

nn

k

n tutu  and apply the DTM to eq.(1.47) over the 

interval  nn tt ,1 , where 0t  in Eq.(1.43) is replaced by 1nt . This process is repeated and 

generates a series of approximate solutions )(tun , Nn ,...,2,1 . Now 

 

       



1

0
1)()(

M

m

m
nnmn ttatu ,   ],[ 1 nn ttt               (1.50) 

 

where NMM  1 . Hence, the multi-step DTM assumes the following solution 
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The multi-step DTM [15-18] is a simple for computational techniques for all values of h. 

It can be easily shown that if the step size Th  , then multi-step DTM reduces to classical 

DTM. The main advantage of this new algorithm is that the obtained series solution 

converges for wide time regions.   

 

These analytical methods and numerical techniques are the most vital solver for ordinary 

as well as partial differential equations, linear and nonlinear problems and fractional 

differential equations appearing in the field of science and engineering. The numerical 

methods are iterative process by using which we can obtain the solution more accurately 

and also accuracy can be further improved when the step size of each subinterval 

becomes smaller. The approximate solutions obtained by the analytical methods are 

presented by a truncated form of infinite series. 
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1.8       Fractional Differential Transform Method (FDTM) 

The differential transform method (DTM) was first applied in the engineering domain by 

Zhou [14]. This method is a numerical method based on the Taylor series expansion 

which constructs an analytical solution in form of a polynomial. The traditional higher 

order Taylor series method requires symbolic computation. The Taylor series method is 

computationally taken long time for large orders. The DTM is an iterative procedure for 

obtaining analytic Taylor series solution of ordinary or partial differential equations. In 

this section we define the fractional differential transform method (FDTM) that is based 

on generalized Taylor series formula as 

  
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0
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)(
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k
x xfD
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,                         (1.52) 

where kDDDD xxx
k

x ,.....)(
0000

  -times, and the differential inverse transform of )(kF is 

defined as follows 
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If we substitute eq. (1.52) into eq. (1.53), we obtain 
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Hence, eq. (1.53) is the inverse fractional differential transform of eq. (1.52). 

In case of 1 , then the fractional differential transform in eq. (1.52) reduces to the 

classical differential transform.  

1.9 Wiener Process or Brownian motion Process 
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A standard Wiener process (often called Brownian motion) on the interval ],0[ T  is a 

continuous time stochastic process )(tW that depends continuously on ],0[ Tt  and 

satisfies the following properties [19-21] 

 

(i)    0)0( W (with probability 1). 

 

(ii) For Tts 0  the increment )()( sWtW  is normally distributed with mean

0))(( tWE , variance stsWtWE  2))()((
 

and covariance ),min())()(( stsWtWE  ; 

equivalently )()( sWtW   )1,0(~ Nst   where )1,0(N  denotes a normal distribution with 

zero mean and unit variance. 

 

(iii) For Tvuts 0 , the increments )()( sWtW   and )()( uWvW  are 

independent. For computational purpose, it is useful to consider discredited Brownian 

motion, where )(tW is specified at discrete t  values. We thus set NTt / for some 

positive integer N and let )( ii tWW   with titi  . We discretize the Wiener process with 

time-step t as iii dWWW  1 , Ni ,...,2,1 , where each )1,0(~ NtdWi  . 

 

Stochastic Differential Equation (SDE) models play a prominent role in a range of 

application areas, including biology, chemistry, epidemiology, mechanics, 

microelectronics, economics and finance. 

An Itô -process (or stochastic integral) }0,{  tXX t has the form [19-21] 

 
t

ss

t

st dWXbdsXaXX
00

0 )()( , for 0t               (1.54) 
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It consists of an initial value 00 xX  , which may be random, a slowly varying continuous 

component called the drift and rapid varying continuous random component called the 

diffusion. The second integral in eq. (1.54) is an Itô stochastic integral with respect to the 

Wiener process }0,{  tWW t . The integral equation in eq. (1.54) is often written in the 

differential form  

tttt dWXbdtXadX )()(  ,                (1.55) 

then eq. (1.55) is called Stochastic Differential Equation (or Itô Stochastic Differential 

Equation ). Here we describe Euler-Maruyama Method and the order 1.5 Strong Taylor 

methods to simulate a stochastic point kinetic equation. 

 

1.10    Euler-Maruyama Method 

The Euler-Maruyama approximation is the simplest time discrete approximations of an 

Itô process. Let  Y  be an Itô process on  Tt ,0  satisfying the stochastic differential 

equation (SDE) 









00

),(),(

YY

dWYbdYadY

t

 

                                                                                  

(1.56) 

For a given time-discretization Tt n   100 ,                      (1.57) 

an Euler approximation is a continuous time stochastic process TtX  0),(  satisfying 

the iterative scheme [20, 21] 

111 ),(),(   nnnnnnnn WXbXaXX              (1.58) 

for 1,...,2,1,0  Nn   

with initial value  
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)( 00 XX   

where )( nn XX  , nnn    11  and )()( 11 nnn WWW    . Here, each random 

number nW is computed as nnnW   where n is chosen from standard normal 

distribution )1,0(N .  

We have considered the equidistant discretized times 

 nn 0  with 
N

T
n

)( 0 for some integer N large enough so that )1,0( . 

1.11 The order 1.5 strong Taylor Method 

Here we consider Taylor approximation having strong order 5.1 . The order 1.5 strong 

Taylor scheme can be obtained by adding more terms from Itô -Taylor expansion to the 

Milstein scheme [20, 21]. The order 1.5 strong Itô -Taylor scheme is  

222
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1
nxxxnxnnxnnnn abaaZbaWbbWbaYY   

nnnxxxnnnxxx WWbbbbZWbbab  )
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1
)((

2

1
))(

2

1
( 222

            (1.59) 

for 1,...,2,1,0  Nn  

with initial value 

)( 00 YY  and nn   

Here, partial derivatives are denoted by subscripts and the random variable nZ  is 

normally distributed with mean 0)(  nZE  and variance 
32

3

1
)( nnZE   and correlated 

with nW  by covariance 
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2

2

1
)( nnn WZE  .  

We can generate nZ as 

)3/(
2

1
nnnn VWZ                           (1.60) 

where nV is chosen independently from )1,0(Nn . Here the approximation, )( nn YY 

is the continuous time stochastic process }),({ 0 TtY  , the time step-size 

1 nnn  and )()( 1 nnn WWW  . 
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CHAPTER 2 
   

 

 

 
2.1 Introduction 

The nuclear reactor forms the heart of a Nuclear Power Plant (NPP). Fundamental to a 

nuclear reactor are the subjects of nuclear physics and reactor physics which deal with the 

basic aspects of the physics design of nuclear reactors. This knowledge is essential for 

understanding the reactor behavior during, both normal operation as well as abnormal 

conditions. Nuclear engineering is an excellent technology by which tremendous amounts 

of energy is generated from a small amount of fuel. In addition to power generation, 

numerous applications are expected in the future. As well as being used in energy 

generation, neutrons are expected to be widely used as a medium in nuclear reactions. 

Here, nuclear energy means the energy released in nuclear fission. This occurs because of 

the absorption of neutrons by fissile material. Neutrons are released by nuclear fission, and 

since the number of neutrons released is sufficiently greater than 1, a chain reaction of 

nuclear fission can be established. This allows, in turn, for energy to be extracted from the 

process. The amount of extracted energy can be adjusted by controlling the number of 

neutrons. The higher the power density is raised, the greater the economic efficiency of the 

reactor. Ultimately, this means careful control of the neutron distribution. If there is an 

accident in a reactor system, the power output will run out of control. This situation is 

almost the same as an increase in the number of neutrons. Thus, the theory of nuclear 

reactors can be considered the study of the behavior of neutrons in a nuclear reactor. The 

study for design the nuclear reactors so that there is a balance between the production of 

neutron in fission reactions and the loss of neutrons due to capture or leakage. The study of 

such process is known as nuclear reactor theory or nuclear reactor physics [22-24]. 
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In nuclear physics, for purpose of optimizing the performance and regulating the safety of a 

nuclear reactor, it is important that the nuclear reactor run at a level of critical. To describe 

the state of criticality, we must understand the nature of nuclear power. Nuclear power is 

based upon a process called fission, a process in which a neutron approaches a fissile 

isotope, and its very proximity, as the neutron slows near atom, causes it to split into two or 

more pieces, generating fission products and generating even more neutrons called prompt 

and delayed neutrons. These neutrons collide with hydrogen in the water surrounding the 

fuel pins, depositing their energy and increasing the temperature of the water causing it to 

boil. The heat of the water or rather the stream is then used to power turbines and generate 

power.  

Therefore, the neutron diffusion equations (NDE) as well as neutron point kinetic equations 

(NPK) have been analyzed to study the population of neutron density in the system and 

precursor density or the population of fission products that results in delayed neutrons.  

2.2  Outline of the present study 

In this chapter, we have applied the effective analytical and numerical methods which 

discussed in Chapter 1 to obtain the solution for Neutron Diffusion Equation (NDE). The 

neutrons are here characterized by a single energy or speed, and the model allows preliminary 

design estimates.   

Now, we consider the time independent fixed source one group neutron diffusion equation 

[22] for a homogeneous region where geometry with the vacuum boundary conditions are 

valid and is given by 
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where )(r


 is the neutron flux, )(rS


 is the neutron source, 
a

is the absorption cross 

section and the diffusion constant D  is given by inverse diffusion length  Da /2 . 

We consider the neutron diffusion equation (NDE)
1
 with the fixed source for a two 

dimensional system with a square geometry, it is symmetric with respect to both x and y-

axes. In this scenario, neutron diffusion equation together with the boundary conditions 

given by eq. (2.1) reduces to  
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2.3 Application of VIM to obtain the analytical solution of NDE 

The variational iteration method (VIM) is a powerful method to investigate approximate 

solutions. It is based on the incorporation of a general Lagrange multiplier in the 

construction of correction functional for the equation. In addition, no linearization and 

perturbation is required by the method. The VIM method, which is also known as modified 

                                                           
1 S. Saha Ray and A. Patra, 2011, “Application of Modified decomposition method and Variational Iteration    

Method for the solution of the one group neutron diffusion equation with fixed source”,  Int. Journal of Nuclear 

Energy Science and Technology (Inderscience), Vol. 6, No. 4, 310-320. 
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general Lagrange’s multiplier method [8, 25], has been shown to solve effectively, easily 

and accurately a large class of nonlinear models of real physical problems.  

In this section to solve the Neutron Diffusion Equation eq. (2.1) we apply the VIM method. 

To illustrate the basic concept of variation iteration method [8, 9] we consider the 

following general nonlinear ordinary differential equation given by  

                                              )()()( tgtNutLu        

                                                                                                  

where L  is  a linear operator, N  is a nonlinear operator and )(tg  is a known analytical 

function. According to He’s variational iteration method; we can construct the correction 

functional as follows  

                                 

t

nnnn dguNLututu
0

1 ))()(~)(()()(     

where 0u is an initial approximation with possible unknowns,   is a general Lagrange 

multiplier  and nu~  is considered as a restricted variation, i.e., 0~ nu . The Lagrange 

multiplier   can be determined from the stationary condition of the correction functional

01 nu . 

 

Now, for solving neutron diffusion eq. (2.1) we construct a correction functional as follows 
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where

 

  is a general Lagrange multiplier [26] which can be identified optimally via 

variational theory, )0,(x is an initial approximation with possible unknowns, and ),(
~

yxn


is considered as the restricted variation i.e. 0
~
n . 
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Making the above correction functional stationary and to find the optimal value of  , we 

have 

 

0),(
~),(

~
),(

)(),(),(
0

2

2

2

2

2

1 





















  xd

D

S
yx

y

yx

x

yx
xyxyx

x

n
nn

nn 




            

(2.5)

  

which yields the following stationary conditions 

 

                                                           0)( x                (2.6)                     

                                                       0)( 
 xx

x                               (2.7) 

                                                        
0)(1 

 xx
x               (2.8) 

Eq. (2.6) is called Lagrange-Euler equation and eqs. (2.7), (2.8) are Natural Boundary 

conditions. 

The Lagrange multiplier can, therefore, be identified as  

                                                xxx )(                (2.9)

 

Considering the boundary conditions in eq. (2.3), we assume an initial approximation in the 

form of infinite Cosine series 
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Now, the eq. (2.10) satisfying the boundary condition at ay   yields that 
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For convenience, we consider the known force term in the same basis set with eq. (2.10), 

i.e. 


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ii yb
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S
                   (2.12)

 

where the orthogonalty property of the Fourier basis yields that  
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Using the eq. (2.9) and the initial approximation eq. (2.10), the first approximation is  
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The second approximation is 
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The third approximation is
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and in the similar manner, the rest of the approximations of the iteration results can be 

obtained. Here VIM has been successfully applied to find the approximate solution to the 

one-group neutron diffusion equation.    

2.4  Application of MDM to obtain the analytical solution of NDE 

In this section, we use the modified decomposition method (MDM) to obtain the 

approximate solution of one-group neutron diffusion equation (2.1). Large classes of linear 

and nonlinear differential equations, both ordinary as well as partial, can be solved by 

MDM. A reliable modification of Adomian decomposition method has been done by 

Wazwaz [5]. The decomposition method provides an effective procedure for analytical 

solution of a wide and general class of dynamical systems representing real physical 

problems [27-29]. This method efficiently works for initial-value or boundary-value 

problems and for linear or nonlinear, ordinary or partial differential equations. Moreover, 

we have the advantage of a single global method MDM for solving ordinary or partial 

differential equations as well as many types of other equations. 
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We rewrite the eq. (2.2) in the following operator form 
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where ),( yxf is the solution of 0),( yxLx . From MDM methodology [5], we assume the 

infinite series solution for ),( yx  as  
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From the recursive scheme eq. (1.32) of MDM, we obtain 
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In general    ),(1 yxn )],([)}],({[ 211 yxLyxLL nxnyx    ,     for all    1n   

Considering the boundary conditions, we assume an initial approximation in the form of 

Fourier cosine series 
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Now eq. (2.23) satisfying the boundary conditions at ay   yields that  
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For convenience, we consider the known force term in the same basis set with eq. (2.23), 

i.e. 
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where the orthogonalty property of Fourier basis yields that 
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and so on.  

In this manner, we can completely determine all the remaining components of the infinite 

series. Therefore, the solution of the neutron diffusion equation is given by 
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Now, applying the boundary condition at ax  , we obtain  
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This implies that 
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Consequently, we obtain 
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By substituting is  value given by eq. (2.26) together with eq. (2.31) in (2.28) yields 
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which is the exact solution [30]. In practical computation, we shall take 3-term approximation 

to ),( yx  viz. 210),(   yx  
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The modified decomposition method accelerates the convergence of the series solution 

rapidly, dramatically reduces the size of work, and provides the exact solution by using few 

number of iteration only. In view of the present analysis, the modified decomposition method 

can be employed for the solution of neutron diffusion equation with fixed source [31]. 

2.5  Numerical Results and Discussions for neutron diffusion equation            

In this present analysis, we consider a square reactor core with edge length 2a = 50 cm and 

apply VIM and MDM to obtain the numerical solution for one quadrant of the system which 

is sufficient owing to the symmetricity regarding the vacuum conditions at the left and upper 

boundaries together with the reflector conditions at the right and lower boundaries as 

expressed in eq. (2.2).  

 

In this numerical discussion, we assume the constant parameters of the reactor as presented in 

Table 1. 

  

Table-1:  Constants of the reactor 

 

Constants a (cm) D  (cm) a   (cm
-1

)        S 

Value    25   1.77764       1         1 
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Fig. 1.  Neutron Flux for y = 0 

 

                         

Fig. 2. Neutron Flux Distribution 

We present the numerically computed result obtained by VIM and MDM in Fig. 1 for y = 0 

and the Neutron Flux distribution ),( yx in Fig. 2 respectively. The computational results 

indicate that the two analytical methods like VIM and MDM, compared to the widely used 

analytic method of separation of variables, yields efficient and relatively straightforward 

expressions for the solution of neutron diffusion equation. 
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2.6  One-Group Neutron Diffusion Equation in Cylindrical and Hemispherical Reactors

  

In the present section, the nonlinear analytical Homotopy Analysis method (HAM) and 

Adomian decomposition method (ADM) have been implemented as means to solve one group 

neutron diffusion equation [22, 32] in hemispherical and cylindrical reactors
2
. This work 

provides the application of HAM and ADM to compute the critical radius and flux 

distribution of time-independent neutron diffusion equation for both symmetrical bodies. The 

different boundary conditions are utilized like zero flux at boundary as well as the zero flux at 

extrapolated boundary. The process of flux distribution takes place in two symmetrical 

reactors (see Figure 3). Figure 3(a) represents finite cylinder having height h and radius a, 

Figure 3(b) represents hemispherical geometry of radius a where the flux in this reactor is the 

function of both r and . 

 

                            

                                                           
2
 S. Saha Ray and A. Patra, 2011, Application of Homotopy Analysis Method and Adomian Decomposition 

Method for the Solution of Neutron Diffusion Equation in the Hemisphere and Cylindrical Reactors, Journal of 

Nuclear Engineering and Technology (STM), Vol. 1, Issue 1-3, pp. 1-14. 
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Fig. 3. Flux Distribution of Symmetrical Reactors through (a) Cylindrical Reactor; (b) 

Hemisphere geometry. 

2.6.1 Application of HAM to Cylindrical Reactor 

 

The homotopy analysis method (HAM) is used to formulate a new analytic solution of the 

neutron diffusion equation for cylindrical reactor. The method [1, 33, 34] has been proved 

useful for problems involving algebraic, linear/non-linear and ordinary/partial differential 

equations. Being an analytic recursive method, it provides a series sum solution. It has the 

advantage of offering a certain freedom for the choice of its arguments such as the initial 

guess, the auxiliary linear operator and the convergence control parameter, and it allows us to 

effectively control the rate and region of convergence of the series solution.  

To illustrate HAM, we consider the following differential equation   
 

0)],([ txuN ,                           (2.34) 

where N is the nonlinear operator, x and t  are the independent variables and ),( txu  is an 

unknown function. For simplicity, we ignore all boundary or initial conditions which are 

treated in the same way. By means of generalizing Homotopy Analysis Method [1, 33, 34], 

we first construct the zero
th

 order deformation equation 

                 )];,([),()],();,([)1( 0 qtxNtxHqhtxuqtxLq                           (2.35) 
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where ]1,0[q  is the embedding parameter, 0h  is an auxiliary parameter, L is an auxiliary 

linear operator, );,( qtx  is an unknown function, ),(0 txu is an initial guess of ),( txu  and 

),( txH is a non-zero auxiliary function. 

For 0q and 1q , the zero
th

 order deformation equation given by (2.35) leads to  

                 ),()0;,( 0 txutx     and   ),()1;,( txutx                                                              (2.36) 

when the value of q increases from 0 to 1, the solution );,( qtx varies from the initial guess 

),(0 txu to the solution ),( txu . Expanding );,( qtx in Taylor’s series with respect to q  we have 

            
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The convergence of the series (2.37) is depending upon the auxiliary parameter h . If it is 

convergent at 1q , we get 

                                     





1

0 ),(),(),(
m

m txutxutxu         (2.39)                             

  

which must be one of the solutions of the original differential equation.  Now we define the 

vector 

                    ),(,),,(),,(),,(),( 210 txutxutxutxutxu mm 


 .        (2.40) 
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Differentiating the zero
th

 order deformation eq. (2.35) for m times with respect to q  then 

dividing them by !m  and finally setting 0q , we obtain the following m th
 order deformation 

equation  

                       )),((),()],(),([ 11 txutxhHtxutxuL mmmmm  


                     (2.41) 
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(2.43)  

Now, the solution for m th
 order deformation eq. (2.41) by applying 1L on both sides, we get 

         ))],((),([),(),( 1
1

1 txutxhHLtxutxu mmmmm 


            (2.44)  

In this way, it is easy to obtain mu  for 1m , at thM order, we have 

                          



M

m
m txutxu

0

),(),(          (2.45) 

when  M , we obtain an accurate approximation of the original eq.(2.34).  

In the present analysis, we calculate the critical radius and flux distribution in a finite cylinder 

having height h and radius a as shown in Figure 3(a). 

                           

The time-independent diffusion equation in the nuclear reactor dynamics is given by 

                               0),(),( 22  zrBzr            (2.46) 

where the buckling of reactors 2B  is given by 
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2                 (2.47)  

where   Average number of neutrons emitted per fission 

          f  Macroscopic fission cross section 

          a  Macroscopic absorption cross section 

         D  Diffusion coefficient 

Using Laplacian in cylindrical coordinates, we obtain 
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Then for applying separation of variable method, let us consider 

 )()(),( zZrRzr                                    (2.49) 

Consequently, the two separated differential equations are as follows 
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where )0(2   is the separation constant. 

For solving the radial part of the finite cylinder, we can write Eq. (2.50) as  
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where  
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 222
B                           (2.53) 

Replacing R with  and considering 

 rx  ,                            (2.54) 

we obtain  

0)()()( 22  xxxxxx     
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Now, we will apply HAM in Eq. (2.55) by taking an initial approximation  

Cx )(0                                      (2.56) 

where C is a constant. 

The nth order deformation for Eq. (2.55) is obtained as 
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Now, the solution of the first deformation of Eq. (2.55) by considering 1h  and 1),( txH is 

given by 
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Without loss of generality, we define the differential operator 

 









dx

d
x

dx

d

x
L

1
                                                 (2.59) 

Here, we choose the inverse of the differential operator dxx
x
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L
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Therefore, we obtain the 1
st
 deformation equation as 
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Similarly, the solution for second deformation equation is  
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The solution for third deformation equation is 
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          6664
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Hence, we finally obtain the solution for the radial part of finite cylinder as 
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The eq. (2.63) can be written as 
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 , where rx   and  R                                              (2.64) 

Similarly, the solution for axial part which is given in eq. (2.51) obtained as 

 )cos()( zzZ                                           (2.65) 

Thus, the final solution of the time-independent diffusion eq. (2.46)   

           





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)()(),(
n

nn zZrRAzr                   (2.66) 

The numerical results are provided for one-speed fast neutrons in 
235

U. The results reveal that 

the homotopy analysis method provides an accurate alternative to the Legendre function based 

solutions for the cylindrical reactor geometry [35]. This also holds when HAM is applied for 

the fixed source neutron diffusion equations for which case the HAM produces the result in a 

rather straightforward manner compared to that of the separation of variables approach which 

is yield through tedious algebraic manipulations of complicated mathematical expressions. 

 

 2.6.2 Numerical Results for Cylindrical Reactor 

For providing the numerical results, 1 MeV neutrons diffusing in pure U235 are considered. 

The following data will be used [36, 37]. 
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  42.2 ,  bf 336.1 ,  bs 959.5 ,  bc 153.0 , 

 324100478.0  cmatomsNc  

The diffusion coefficient 
)3(

1
totalcN

D


 is equal to 0.9363 cm where csftotal    

Here, the absorption coefficient cfa    and corresponding macroscopic absorption 

cross section is aca N  . Similarly, the macroscopic fission cross section is fcf N  . 

In order to calculate the solution for the flux distribution, the above data will be used.  

2.6.3  Calculation for Critical Radius of Cylinder 

We consider the ZF boundary conditions (or flux is zero at the boundary i.e. the advective and 

diffusive fluxes must exactly balance) for obtaining the critical radius for finite cylinder. 

According to ZF boundary conditions, for the flux to vanish on the top and bottom surfaces of 

the cylinder, i.e., 

   0
2

, 
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

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
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r                                                               (2.67) 

Now, we apply the boundary conditions on the axial part 
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or we can write,   0
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Moreover, the eq. (2.69) yields     
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(2.70) 

Then, the corresponding Eigen values are          
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For the first zero of the solution of the axial part, i.e., m = 1, we can write  
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Next, we apply the boundary condition on the radial part 

 0)( caR                                                      (2.73) 

From Eq. (2.64), by calculating the first zero, we obtained 40483.2ca . 

Using the values of   and  , the critical radius depends upon critical heights (Table 2). Then 

buckling 2B for reactor from eq. (2.53), is 
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


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
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cc ha
B


                                      (2.74) 

Table 2:  Critical Radii for Corresponding Critical Heights. 

ch  ca at ZF ca  at EBC 

15 11.3144 9.44178 

20 9.4788 7.6062 

25 8.88551 7.01291 

30 8.60656 6.73396 
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35 8.45055 6.57795 

40 8.35371 6.48111 

45 8.28922 6.41662 

50 8.24399 6.37139 

55 8.21100 6.3384 

60 8.18617 6.31357 

 

The flux distribution in the finite cylinder is given by 
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                                     (2.75) 

where C is known as normalization constant. The maximized flux occurs at the center of the 

cylinder (r = 0, z = 0) and flux decreases when it is going towards any surface. Finally, the 

flux is zero at ZFcar ,  and
2

cH
z  . Table 2 cites calculated critical radii of a finite cylinder for 

a set of chosen critical height values. The smallest critical height ch
 
= 15 cm and 

corresponding critical radius is ca
 
= 11.3144 and ca

 
= 9.44178 at EBC. The flux 

distributions for a finite cylinder are shown in Figure 4. 
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                         Fig. 4. Flux Distribution of a Finite Circular Cylinder 

2.6.4           Solution for Bare Hemisphere using ADM 

 

The adomian decomposition method (ADM) is applied to formulate a new analytic solution of 

the neutron diffusion equation for a hemisphere. Different boundary conditions are 

investigated; including zero flux on boundary, zero flux on extrapolated boundary, and 

radiation boundary condition. Numerical results are provided for one-speed fast neutrons in 

U
235

. A comparison with Bessel function based solutions demonstrates that the method ADM 

can exactly reproduce the results more easily and efficiently. Let us consider the hemisphere 

as shown in Figure 3(b).                                                                   

The time-independent diffusion equation is  

 0),()(),(2   rrD af                            
(2.76) 

Considering the Laplacian in spherical coordinates and using  cos , Eq. (2.76) reduces to 
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(2.77) 

where the buckling of reactors 2B  is given by  

 
D

B
af 




2                                                    (2.78) 

Now, by applying the separation of variables method, let us consider )()(),(   rRr .  

Consequently, we get the differential equations as follows 

)1(
)(

)(

2)(

)(

22

2

22

 nnrB
dr

rdR

rR

r

dr

rRd

rR

r
                                                   (2.79) 
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
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                                        (2.80) 

For solving the radial part we apply ADM [3, 38]. To illustrate ADM, let us consider the 

general form of a differential equation  

F gy                                (2.81) 

 where F is the non-linear differential operator with linear and non-linear terms. The 

differential operator is decomposed as   

                                F RL                             (2.82) 

 where  L  is  easily  invertible linear operator  and  R  is  the  remainder  of  the  linear 

operator. For our convenience L is taken as the highest order derivative then the eq. (2.81) can 

be written as             gNyRyLy                            (2.83) 

where Ny corresponds to the non-linear term. Solving Ly from (2.83), we have 

                             NyRygLy                                                    (2.84) 

Because L is invertible, then 1L  is to be the integral operator 

 )()()()( 1111 NyLRyLgLLyL                                                                                     (2.85) 

If L is a second order operator, then 1L  is a two-fold integral operator   

  
t t

dtdtL
0 0

1 )( and  )0()0()()(1 ytytyLyL 

 

Then eq. (2.85) for y yields,  

)()()()0()0( 111 NyLRyLgLytyy                                                                         (2.86) 

Let us consider the unknown function )(ty in the infinite series as 







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)(
n

nyty .                                                     (2.87) 
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The non-linear term N(y) will be decomposed by the infinite series of Adomian polynomials 

nA
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nANy                                          (2.88) 

 where nA ’s are obtained by 
0

0!

1





















 




 i

i
in

n

n yN
d

d

n
A                                               (2.89) 

 Now, substituting (2.87) and (2.88) into (2.86), we obtained   
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Consequently we can obtain, 

)()0()0( 1
0 gLytyy   
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……………………… 

)()( 11
1 nnn ALyRLy 
                                                    (2.91) 

and so on. 

Based on the Adomian Decomposition method, we shall consider the solution )(ty as 

n

n

k
kyy  


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1

0

  with           )(lim tyn
n



  

We can apply this method to many real physical problems, and the obtained results are of high 

degree of accuracy.  In most of the problems, the practical solution n the n-term 

approximation is convergent and accurate even for small value of n.   

Here, we first consider Brx   and rewrite the Eq. (2.79) as 

0)())1((
)(

2
)( 2

2

2
2  xRnnx

dx

xdR
x

dx

xRd
x                                                           (2.92) 
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
                                                 (2.93) 

We compare eq. (2.93) with a general second order differential equation 

             )()()()()()( xhxfxbxfxaxf                 (2.94) 

 

Let 0)( x  be a solution for the corresponding homogeneous differential equation of eq. 

(2.94). 

By applying the method of variation of parameters, we obtain the general solution of eq. 

(2.94) as 

   dxdxxhxxE
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xCxCxf    )()()(

)()(

1
)(

)()(
)()()(

2221 





                      (2.95) 

where 
dxxa

exE
)(

)( ,  C1 and C2 are constants. 

In the above form 1L  is defined as an indefinite integral; for any other problem also we have 

to transform it into a definite integral according with the solution for our problem. 

 

We consider the Bessel equation in the form 

                       )()()(
1

)(
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2

xfxf
x

xf
x
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                     (2.96) 

The solution for the homogeneous part is   xx)( and considering  
)1(

2
1 







C  , C2=0, 

we obtain the solution of eq. (2.96) according to eq. (2.95) in the form of integral equation 

which is given by  
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The initial approximation which is the solution of homogeneous part of eq. (2.96) is 
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From above we get next approximation as 
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Continuing in this manner, we can find the solution in the series form given by 
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For this bare hemisphere, we consider nxx )(  is a solution for corresponding homogeneous 

equation (2.92).  

By applying the method of variation of parameters and with the help of integral Eq. (2.95), we 

obtain the general solution for Eq. (2.93) as 

dxdxxRxx
xx

xCxxR
x x
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where 2

2

)( xexE
dx

x 


 and   CC 1  is a constant and 2C = 0. 

The initial approximation is nCxxR )(0                        (2.101) 

Next, the first iterative value is 
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The second iterative value is
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In general, the solution for the differential equation (2.92) is 
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while the solution for angular part, viz., eq. (2.80) is just the Legendre polynomials 
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The final solution of Eq. (2.77) is therefore 

)()(),(
0

 n
n

nn PBrRCr 

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                                               (2.106) 

2.6.5        Numerical Results for Hemispherical Symmetry 

 

In order to provide numerical results, we adopt the same data as taken in Section 2.6.2. 

According to ZF boundary condition, for the flux to vanish on the angular part (on the flat 
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surface) 0 , the properties from Legendre’s polynomial implies that the even amplitudes 

must be equal to zero. 

On the other hand, applying the ZF boundary condition on the radial part 

)(BrRn = 0 

The first zero calculated using Eq. (2.104) is 4934.4cBa  

This reduces the summation in Eq. (2.106) to the simple form 
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Hence, we obtain, for hemisphere the critical radius is cma ZFc 085.15,  . Since the flux is 

assumed to converge to zero at Dac 2 using the EBC, then cma EBCc 185.13,  . 

2.6.6     Radiation Boundary Condition 

After applying the two simple boundary conditions like ZF and EBC, the system yields 

inaccurate results. Now, we will apply radiation boundary condition (RBC), which gave more 

accurate results for the critical radius. We consider the two hemispheres of radius a separated 

by distance 2b from their flat surfaces. The condition can be written in the form as [39, 40] 

  )(. rgn                              (2.108) 

where )(rg  varies over surface, the condition on the curved surface is 
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For the flat surface where
2


  , the condition becomes 
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By Marshak’s P1 boundary condition [39] 

D
g

2

1
1                                       (2.111) 

 
D

a
bg

g
2

2                                (2.112) 

where )(xg is given by [36, 37] 
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For a sphere b = 0 and hence x = 0, causing g and 2g  to vanish but in hemisphere, b and x go 

to infinity where g becomes unity (Table 3). 

In order to solve, ),(  r  we apply RBC on the flat surface 

  )0()()0()(
1

2 nnnnnn PBrRAgPBrRA
r

                                           (2.115) 

By properties of Legendre polynomials, 

evenisnPn ,0)0(   

oddisnPn ,0)0(   
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Using the recurrence relation 

 







 nn

n

n
n AgAnB

n

n
R 2212

0
2 )2/1(2

!

)2/1()1(

  

                                           
0

!

)2/1()1(

)14)(14(
)2(

0

2

12 









n

n

nn

R
nBA

n

n

n

n


                    (2.117)

 

nA , the amplitudes are related by 
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The odd order amplitudes can be written in terms of even one by 
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Similarly, by applying RBC on curved surface 
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or 
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To make computational implementation, we introduce the shifted Legendre polynomial 
 

)12()(
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  nn PP                   (2.124) 

which form a complete orthogonal set over 10   , while classical Legendre polynomial 

)(nP  forms an orthogonal set over 11    
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where )12()()12(
1

0

   kmnk PPdk                         (2.126)

 

Hence, Eq. (2.122) becomes 
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By interchanging order of summation, 0nk  for n < k, we obtain 
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which concludes,  0
0
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Now we separate the even and odd amplitudes and with use of eq. (2.119), 
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In order to get the numerical results by the cut-off value N, the infinite sum becomes 
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Therefore, the series in the general solution contained 2N + 2 terms  
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In order to calculate the amplitudes nA2  by Eq. (2.132), we obtained 
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where 11 A and 000 /1 A
                 

(2.136) 

The calculated flux is normalized to the volume averaged flux   
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                                      (2.137) 

where a = 11.80396 cm and using N = 22, the value of volume averaged flux is 0.633771. 

Table 3:    Critical Radius for Hemisphere in Two Different Boundary Conditions 

BC ADM 

Bessel Cassell and 

Williams (2004) 

Khasawneh, Dababneh and Odibat  

HPM (2009) 
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ZF 15.085 15.06 15.085 

EBC 13.185 13.19 13.185 

RBC 11.804 11.80397 11.804 

 

The numerical solution for flux distribution of a hemisphere at different angles is shown 

graphically in Figure 5. 

 

Fig. 5.   Flux distribution across a Bare Hemisphere along different angles. 

 

Using HAM and ADM, we successfully obtain the approximate solution of neutron flux for 

one-group diffusion equation [35] in the closed form of infinite convergent series in two 

symmetrical bodies.  

 

2.7  Conclusion 

In this Chapter, Variational Iteration Method and Modified Decomposition Method have been 

successfully applied to find the analytical approximate as well as numerical solutions of the 

Neutron Diffusion equation with fixed source. The decomposition method is straightforward, 

without restrictive assumptions and the components of the series solution can be easily 

computed using any mathematical symbolic package. The neutron diffusion equations in 
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symmetrical bodies like cylindrical reactor and hemisphere have been solved using Homotopy 

Aanalysis Method and Adomian Decomposition Method. The analytical approximate as well 

as numerical solutions of critical radius and flux distribution for bare hemisphere and 

cylindrical reactor have been also obtained very easily and accurately. The homotopy analysis 

method is a very powerful and efficient technique which yields analytical solutions for one-

group neutron diffusion equation. The decomposition method is easy to compute any kind of 

equation by providing more convergent series in real physical problems, which can be solved 

with the help of any mathematical package. Moreover, it neither requires any type of 

discretization for variables nor does it affect computational round off errors. The 

computational size of fast convergence for series solution will be reduced. We can solve many 

functional equations such as ordinary, partial differential equations, integral equations and so 

many other equations using these analytical methods. It does not require enough memory 

space in computer, is free from rounding off errors and discretization of space variables. By 

using the excellence of these methods, we can obtain the solutions for diffusion and kinetic 

equations in the dynamic system of nuclear reactor. 

 

 

 

 

 

 

 

 



57 
 

CHAPTER 3 
  
 

 

3.1       Introduction 

In this chapter, the brief description for fractional calculus and the numerical solution for 

fraction neutron point kinetic equation are discussed. The efficient and accurate numerical 

computation for fractional neutron point kinetic equation (FNPKE) with different values 

of reactivity is introduced. Fractional Neutron Point Kinetic Model has been analyzed for 

the dynamic behavior of the neutron motion in which the relaxation time associated with a 

variation in the neutron flux involves a fractional order acting as exponent of the 

relaxation time, to obtain the best operation of a nuclear reactor dynamics. Results for 

neutron dynamic behavior for subcritical reactivity, supercritical reactivity and critical 

reactivity and also for different values of fractional order have been presented and 

compared with the classical neutron point kinetic (CNPK).  

 

3.2 Brief Description for Fractional Calculus 

Fractional Calculus is three centuries old as the conventional calculus, but not very 

popular amongst science and or engineering community. The traditional integral and 

derivative are, to say the least, a staple for the technology professional, essential as a 

means of understanding and working with natural and artificial systems. Fractional 

Calculus is a branch of calculus that generalizes the derivative of a function to non-

integer order. The beauty of this subject is that fractional derivatives are not a local 

property. The fractional differential equations appear more and more frequently in 

different research areas and engineering applications. In recent years, considerable 
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interest in fractional differential equations has been stimulated due to their numerous 

applications in the areas of physics and engineering. Many important phenomena in 

electromagnetics, acoustics, viscoelasticity, electrochemistry, control theory, neutron 

point kinetic model, anomalous diffusion, Brownian motion, signal and image processing, 

fluid dynamics and material science  are well described by differential equations of 

fractional order.  

Fractional calculus is a field of applied mathematics that deals with derivatives and 

integrals of arbitrary orders. It is also known as generalized integral and differential 

calculus of arbitrary order (Kilbas et al. [41] and Sabatier et al. [42]). Fractional calculus 

was described by Gorenflo and Mainardi [43] as the field of mathematical analysis which 

deals with investigation and applications of integrals and derivatives of arbitrary order. 

And many great mathematician (pure and applied) such as Abel, Caputo, Euler, Fourier, 

Grünwald, Hadamard, Hardy, Heaviside, Holmgren, Laplace, Leibniz, Letnikov, 

Liouville, Riemann, Riesz and Weyl made major contributions to the theory of fractional 

calculus. The history of fractional calculus was started at the end of the 17th century and 

the birth of fractional calculus was due to a letter exchange. At that time scientific 

journals did not exist and Scientist were exchange their information through letters. The 

first conference on fractional calculus and its applications was organized in June 1974 by 

Ross and held at university of new Haven. 

 

In recent years, fractional calculus has become the focus of interest for many researchers 

in different disciplines of applied science and engineering because of the fact that a 

realistic modelling of a physical phenomenon can be successfully achieved by using 

fractional calculus. The fractional calculus has gained considerable importance during the 

past decades mainly due to its applications in diverse fields of science and engineering. 
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For the purpose of this paper the Caputo’s definition of fractional derivative will be used, 

taking the advantage of Caputo’s approach that the initial conditions for fractional 

differential equations [44] with Caputo’s derivatives take on the traditional form as for 

integer-order differential equations. For that reason we need a reliable and efficient 

technique for the solution of fractional differential equations. 

 

3.2.1 Definition - Riemann-Liouville integral and derivative operator 

The concept of non-integral order of integration can be traced by the philosopher and 

creator of modern calculus G. W. Leibniz made some remarks on the meaning and 

possibility of fractional derivative of order ½ in the late 17
th

 century. However a rigorous 

investigation was first carried out by Liouville in a series of papers from 1832-1837, 

where he defined first fractional integral. Later investigations and further developments 

by many others led to the construction of the integral-based Riemann-Liouville fractional 

integral operator, which has been a valuable cornerstone in fractional calculus ever since. 

Prior to Liouville and Riemann, Euler took the first step in the study of fractional 

integration when he studied the simple case of fractional integrals of monomials of 

arbitrary real order in the heuristic fashion of time; it has been said to have lead him to 

construct the Gamma function for fractional powers of the factorial. An early attempt by 

Liouville was later purified by the Swedish mathematician Holmgren [45], who in 1865 

made important contributions to the growing study of fractional calculus. But it was 

Riemann [46] who reconstructed it to fit Abel's integral equation, and thus made it vastly 

more useful. Today there exist many different forms of fractional integral operators, 

ranging from divided-difference types to infinite-sum types, but the Riemann-Liouville 

operator is still the most frequently used when fractional integration is performed.  
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The most frequently encountered definition of an integral of fractional order is the 

Riemann-Liouville integral [44], in which the fractional integral of order α (>0) is defined 

as  
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Left- Riemann-Liouville fractional derivative can be defined by 
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Fractional Riemann-Liouville derivatives have various interesting properties. For 

example the fractional derivative of a constant is not zero, namely 
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 3.2.2        Definition-Caputo Fractional Derivative 

There is another option for computing fractional derivatives; the Caputo fractional 

derivative. It was introduced by M. Caputo in his paper in the year 1967.
 
In contrast to the 

Riemann Liouville fractional derivative, when solving differential equations using 
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Caputo's definition [43, 44], it is not necessary to define the fractional order initial 

conditions. Caputo's definition is illustrated as follows 
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where the parameter α is the order of the derivative and is allowed to be real or even 

complex.  

For the Caputo’s derivative, we have 
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Similar to integer order differentiation Caputo’s derivative is linear. 
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if )(f  is continuous in [0, t] and )(g has continuous derivatives sufficient number of 

times in [0, t]. 

3.2.3 Grünwald- Letnikov definition of fractional derivatives 
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In mathematics, the Grünwald-Letnikov fractional order derivative is a basic extension of 

the derivative in fractional calculus that allows one to take the derivative a non-integer 

number of times. It was introduced by Anton Karl Grünwald (1838–1920) from Prague, 

in 1867, and by Aleksey Vasilievich Letnikov (1837-1888) in Moscow in 1868. 

Grünwald-Letnikov (GL) fractional derivative [41- 44] is defined by  
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In the field of nuclear engineering, the neutron diffusion and point kinetic equations are 

most vital models; they have been included to countless studies and applications under 

neutron dynamics and its effects. By the help of neutron diffusion concept we understand 

the complex behaviour of average neutron motion. From many reactor studies, we get the 

http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Derivative
http://en.wikipedia.org/wiki/Fractional_calculus
http://en.wikipedia.org/w/index.php?title=Anton_Karl_Gr%C3%BCnwald&action=edit&redlink=1
http://en.wikipedia.org/wiki/Prague
http://en.wikipedia.org/wiki/Aleksey_Letnikov
http://en.wikipedia.org/wiki/Moscow
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idea that neutron motion is a diffusion process. It is also assumed that the neutrons are in 

average motion diffused at very low or high neutron density. The concept of neutron 

transport as a diffusion process has only limited validation due to that neutron stream at 

relatively large distances between interactions. The process of neutron diffusion takes 

place in a very highly heterogeneous hierarchical configuration. Here, we propose a 

numerical scheme for the solution of fractional diffusion model as a constitutive equation 

of neutron current density. Fractional point kinetic equation has proved particularly useful 

in the context of anomalous slow diffusion. 

 

 

 3.3 Fractional Neutron Point Kinetic Equation and its Derivation 

The diffusion theory model of neutron transport has played a crucial role in reactor theory 

since it is simple enough to allow scientific insight, and it is sufficiently realistic to study 

many important design problems. The mathematical methods used to analyze such a 

model are the same as those applied in more sophisticated methods such as multi-group 

neutron transport theory. The neutron flux (ψ) and current (J) in the diffusion theory 

model are related in a simple way under certain conditions. This relationship between ψ 

and J is identical in form to a law used in the study of diffusion phenomena in liquids and 

gases: Fick’s law. The use of this law in reactor theory leads to the diffusion 

approximation, which is a result of a number of simplifying assumptions. On the other 

hand, higher-order neutron transport codes have always been deployed in nuclear 

engineering for mostly time-independent problems out-of-core shielding calculations.  
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Fractional point neutron kinetics (FPNK) model
3
  is based on the diffusion theory using 

all known theoretical arguments. The scope of the FPNK is to describe the neutron 

transient behavior in a highly heterogeneous configuration in nuclear reactors, in presence 

of strong neutron absorbers in the fuel, control rods and chemical shim in the coolant. In 

summary, there are many interesting problems to consider from the point of view of the 

fractional differential equations (FDEs), the challenge is the modeling and simulation of 

the new generation of nuclear reactors, as well as advanced molten salt reactor [47], 

where the old paradigms can no longer be valid.  

The fractional model retains the main dynamic characteristics of the neutron motion.  The 

physical interpretation of the fractional order is related with non-Fickian effects from the 

neutron diffusion equation point of view. 

 

To derive the fractional neutron point kinetic (NPK) equation [48-50] for point reactor, 

we consider with a source term given by 
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The one-group source term S is given by [23] 
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where       Neutron flux 

               S    Source term 

               Average no. of neutrons emitted per fission 

              D  Diffusion coefficient 

                                                           
3 S. Saha Ray and A. Patra, 2012, An Explicit Finite Difference Scheme for numerical solution of fractional 

neutron point kinetic equation, Annals of Nuclear Energy (Elsevier), Vol. 41, pp. 61-66. 
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 a  Macroscopic Absorption cross section 

               k Effective multiplication factor 

              ),(),,( trSStr  and ),(ˆˆ trCC ii  are all functions of position and time. 

By substituting eq. (3.16) in eq. (3.15), we obtain,  
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According to Glasstone and Sesonske (1981), 2  is replaced by 2gB , where 
2
gB is 

geometric buckling. Then eq. (3.17) can be written as 
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Now by using )(tn  , eq. (3.18) leads to 
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In order to solve the fractional point kinetic equation, we consider the following 

definition for nuclear parameters [23, 51] 
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The fractional equation for NPK equation is given by [49] 
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where   is the relaxation time,  is the anomalous diffusion order ( for sub-diffusion 

process : 10  ; while for super diffusion process : 21   ), n is the neutron density, 

iC  is the concentration of the i
th

 neutron delayed precursor, l is the prompt- neutron 

lifetime for infinite media ,   is the fraction of delayed neutrons.  

when 0 , the classical  NPK equation can be obtained as 
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The net rate of formation of the precursor of delayed neutrons corresponding to the i
th

 

group is given by  
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Eq. (3.20) and eq. (3.22) describe the neutron dynamics process in nuclear reactor and the 

delayed neutrons precursor of the i-th group respectively.  



67 
 

The numerical approximation of the solution of the fractional neutron point kinetic model 

is obtained applying the numerical method like Explicit Finite Difference Method [13, 

52].  

Considering one-group of delayed neutrons, the fractional NPK equation and initial 

conditions are given by 
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where     20   
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The precursor concentration balance equation is 
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The initial conditions for fractional neutron model are presented by 
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In order to analyze the effect of anomalous diffusion order ( ) and relaxation time ( ) on 

the behavior of the neutron density, the numerical model was implemented for the 

solution of kinetic equation through the simulation in a computer program.     

The nuclear parameters used were obtained from [24, 53],                                    
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where i  and i  are presented in Table 1, the parameter value for l  was obtained from 

Kinard and Allen [53]     s002.0  
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Table-1:  Neutron delayed fractions and decay constants [53] 

      i
th

 Group                        i       
                            i  

      Group 1                     0.000266                           0.0127 

      Group 2                     0.001491                           0.0317 

      Group 3                     0.001316                           0.1550 

      Group 4                     0.002849                           0.3110 

      Group 5                    0.0008960                          1.4000 

      Group 6                     0.000182                           3.8700 
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A series of numerical computations are carried out by using Explicit Finite Difference in 

order to obtain a best approximation for nuclear dynamics of fractional NPK model. We 

considered four cases of anomalous diffusion order ( ), viz. 99.0 ,  =0.98,  =0.97 

and  =0.96 for relaxation time  s410 ( onds sec1 ). 

 3.4   Application of Explicit Finite Difference Scheme for Fractional Neutron Point      

Kinetic Equation  

 

For the fractional model (3.23)-(3.26), let us take the time step size h. Using the definition 

of GL fractional derivative, the numerical approximation of the eq. (3.23)-(3.26), in view 

of the research work [13, 52], is 
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(3.28a)

 

     

For the precursor concentration balance equation the scheme is 

                                                           m
m

mm C
n

CCh 





 
 ][ 1
1         (3.28b) 

where  )( mm tnn  m-th approximation for neutron density at  time mt ,  )( mm tCC  m-

th approximation for precursor concentration at time mt . Here, 1)0( 0  nn ,





 0
0

n
C ,

mhtm  , ,2,1,0m  and 









j

j
j


 )1( , ,3,2,1,0j  

Now, eq. (3.28a) and eq. (3.28b) can be written respectively as 
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The above eq. (3.29) leads to implicit numerical iteration scheme. However, in this 

present work, we propose an explicit numerical scheme which leads from the time layer 

1mt  to mt  as follows 
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(3.30) 

where  ,3,2,1m . 

Precursor concentration balance equation is 

                                     1
1

1 


 


 m
m

mm hC
nh

CC 


,      ,3,2,1m           (3.31) 

3.5  Analysis for stability of Numerical Computation 

 

The stability of the numerical computation is calculated by taking the different time-step 

size h with different values of the anomalous diffusion order  and the relaxation time  . 

In order to obtain a stable result, a set of time-step sizes are considered by trial-and-error 

for different values of   and  . 
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Many numerical experiments have been done for getting a better solution for fractional 

NPK. In the present numerical study, we consider  =0.99,  =0.98,  =0.97 and 

=0.96 for relaxation time  s410 . The values of time-step size h are taken between

05.001.0  h . The simulation time was considered as 1s. The stability criterion in this 

analysis is related with 1% of the relative error to 10 n  at 1s for simulation time. 

                                       100%1
0





f

f

n

nn
   

where 
fn  is the neutron density which is calculated from fractional model. 

To exhibit the behavior of neutron density with  s410   and  =0.99, we consider h 

in the interval [0.01s, 0.05s]. By stability criteria, the relative error is 0.40% at h=0.01s, 

0.402% at h=0.025s and 0.405% at h=0.05s. To examine the behavior of neutron density 

with  s410   and  =0.98, we consider h in the interval [0.01s, 0.05s] where the 

curves are very similar with  =0.99. In this case, the relative error is 0.39% at h=0.01s, 

0.399 % at h=0.025s and 0.401% at h=0.05s. Thus, for numerical computation, we can 

increase the time-step size higher with respect to  =0.99.  It can be shown the neutron 

density behavior with  s410   and  =0.97, considering h in the interval [0.01s, 

0.05s], the curves are very similar to  =0.99,  =0.98 respectively. For the case  =0.97, 

the numerical scheme is also stable for time-step size h= 0.01s whose corresponding 

relative error is 0.39%. For the case when  =0.96 and h in the interval [0.01s, 0.05s], the 

relative error is 0.399% at h=0.01s, 0.392 % at h=0.025s and 0.395% at h=0.05s. 

Therefore, the above numerical experiment confirms the stability of our proposed 

numerical scheme for the solution of fractional NPK equation.  
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3.6 Numerical Experiments with Change of Reactivity 

The behavior of the fractional model with reactivity changes [49] is cited graphically in 

this section. The neutron density is analyzed by taking different values for anomalous 

diffusion order [49].  In the present analysis, we have taken the time step size 01.0h , 

025.0h  and 05.0h . The numerical experiments involve the insertion of three 

reactivity steps: 

 Case-I: 003.0  ( Positive Reactivity for Supercritical Reactor) 

 Case-II: 0     (Reactivity for Critical Reactor) 

 Case-III: 003.0    (Negative Reactivity for Subcritical Reactor) 

The fractional model was compared with a classical solution obtained by [22-24, 32] 

                   
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The anomalous diffusion order considered for this numerical scheme are  =0.99, 

=0.98,  =0.97 and  =0.96 for relaxation time  s410 . The relaxation time increases 

when  increases. 

Case I: Results of Positive Reactivity for Super-Critical Reactor 
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Fig.3.6.1. Comparison of Neutron Density behavior for Fractional and Classical NPK 

for 003.0 01.0h ,  s410  with =0.99,  =0.98,  =0.97 and  =0.96. 

 

Fig.3.6.2. Comparison of Neutron Density behavior for Fractional and Classical NPK 

for ,003.0 025.0h ,  s410  with =0.99,  =0.98,  =0.97 and  =0.96. 

 

 

Fig.3.6.3. Comparison of Neutron Density behavior for Fractional and Classical NPK 

for ,003.0 05.0h ,  s410  with =0.99,  =0.98,  =0.97 and  =0.96. 

Case II: Results of Reactivity for Critical Reactor 
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Fig.3.6.4. Comparison of Neutron Density behavior for Fractional and Classical NPK 

for 0 , 01.0h ,  s410  with =0.99,  =0.98,  =0.97 and  =0.96. 

 

Fig.3.6.5. Comparison of Neutron Density behavior for Fractional and Classical NPK 

for 0 , 025.0h ,  s410  with =0.99,  =0.98,  =0.97 and  =0.96. 

 

Fig.3.6.6. Comparison of Neutron Density behavior for Fractional and Classical NPK 

for 0 , 05.0h ,  s410  with =0.99,  =0.98,  =0.97 and  =0.96. 
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        Case III: Results of Negative Reactivity for Sub-Critical Reactor 

 

 Fig.3.6.7. Comparison of Neutron Density behavior for Fractional and Classical NPK for

003.0 01.0h ,  s410  with =0.99,  =0.98,  =0.97 and  =0.96. 

 

 Fig.3.6.8. Comparison of Neutron Density behavior for Fractional and Classical NPK for

003.0 , 025.0h ,  s410  with =0.99,  =0.98,  =0.97 and  =0.96. 
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 Fig.3.6.9. Comparison of Neutron Density behavior for Fractional and Classical NPK for

003.0 , 05.0h ,  s410  with =0.99,  =0.98,  =0.97 and  =0.96. 

These results exhibit the neutron dynamic behavior for positive reactivity for supercritical 

reactor as shown in fig. 3.6.1-3.6.3, critical reactor in fig. 3.6.4-3.6.6 and subcritical reactor 

in fig. 3.6.7-3.6.9 at negative reactivity for different values of time length steps and 

relaxation time. For critical reactor at 0 , solution for the fractional neutron point kinetic 

equation coincides with classical solution.   It is also compared with the classical NPK 

model. It can be observed from above figures (Figs. 3.6.1- Figs. 3.6.3) for positive 

reactivity and negative reactivity (Figs 3.6.7- Figs. 3.6.9) that the obtained results in the 

present numerical scheme are in good agreement with fig. 8.18 (for positive reactivity 

003.0 ) and fig. 8.21 (for negative reactivity 003.0 ) obtained in [49]. In 

comparison to Detrended Fluctuation Analysis (DFA) method proposed by Espinosa-

Paredes et al. [49], this Explicit Finite difference scheme is more convenient to use and 

efficient to calculate the numerical solution for fractional NPK Model. It is easily 

computed by using any mathematical software package having fewer rounds off errors. 

In [49], Espinosa- Paredes et al. have proposed a solution procedure which has been 

inherited from Edwards et al. [54]. In order to apply numerical approximation method for 

the solution of fractional point kinetic equation, they discretized fractional derivative using 

Diethelm’s method [55, 56]. In order to solve fractional neutron point kinetic equation, 

they used the numerical algorithm given by Edwards et al. [54]. In that numerical scheme, 

they represented the fractional kinetic model as a multi-term high order linear fractional 

differential equation. Then, it has been converted into a system of ordinary and fractional 

differential equation. In contrast to their method, in the present numerical scheme 

fractional derivative has been discretized by Grunwald- Letnikov derivative and the 
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fractional point kinetic equation has been converted directly into finite difference equation. 

Then it has been adjusted in the form of Explicit Finite Difference scheme. It is very much 

clear that, the present numerical scheme require less number of computational effort in 

compared to Espinosa-Paredes et al. [49]. 

3.7 Conclusion 

In the present chapter, the dynamics of neutron fractional point kinetic equation were 

studied. In this article, the numerical solution for one-group delayed neutron fractional 

point kinetic equation was determined by Explicit Finite Difference Method. The three 

cases for change of reactivity have been discussed with respect to nuclear reactors in this 

point kinetic model. The numerical experiments including comparison with classical NPK 

model were carried out for both positive and negative reactivity for different values of 

fractional order . The fractional model retains the main characteristics of neutron motion 

where relaxation time associated with rapid variation in neutron flux contains a fractional 

exponent to obtain the best approximation for nuclear reactor dynamics. The procedure of 

the numerical approximations to the solution of fractional NPK model is represented 

graphically using mathematical software. The numerical solutions obtained from Explicit 

Finite Difference exhibit close behaviour with Classical NPK model. It has been also 

observed that the obtained results in the present method are in good agreement with those 

obtained in [49]. This numerical method is very efficient and convenient technique for 

solving fractional NPK model. 
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CHAPTER 4 
  

 

 
 

4.1.      Introduction 

In the dynamical system of a nuclear reactor, the neutron point-kinetic equations are the 

coupled linear differential equations that are used to determine neutron density and 

delayed neutron precursor concentrations. These kinetic equations are the most vital 

model in nuclear engineering. The modelling of these equations involves the use of time 

dependent parameters [32]. The reactivity function and neutron source term are the 

parametric quantities of this essential system. The neutron density and delayed neutron 

precursor concentrations differ randomly with respect to time. At high power levels, the 

random behaviour is imperceptible. But at low power levels, such as at the beginning, 

random fluctuations in the neutron density and neutron precursor concentrations can be 

crucial. The proposed technique MDTM (Multi-step differential transform method) that 

we have used in this research work is based on a Taylor series expansion, which provides 

a solution in terms of convergent series with easily computable components. Here both 

classical and fractional order neutron point-kinetic equations have been analysed over 

step, ramp and sinusoidal reactivity functions. Fractional calculus generates the derivative 

and anti-derivative operations of differential and integral calculus [57-59] from non-

integer orders to the entire complex plane. The semi-analytical numerical technique that 

we applied in this research work, is the most transparent method available for the solution 

of classical as well as fractional neutron point kinetic equations. 

4.2.       Application of MDTM to classical Neutron Point Kinetic Equation 

In this section we consider the classical integer order neutron point kinetic equations for 

m delayed groups as follows [24, 53]  
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)(tn Time-dependent neutron density, th
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function. 

The classical neutron point kinetic equation is considered in matrix form as follows [60] 
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tS , where )(tq is the time-dependent neutron source term.

  

In this section, we will apply MDTM to obtain the solution for classical neutron point 

kinetic equation
4
 (4.3).  

Multi-step differential transform method can be described as follows: 

Let us consider the following nonlinear initial value problem

 

0),...,,,( )(  puuutf , )( pu is p
th

 derivative of u                       (4.4) 

subject to the initial conditions k
k cu )0()( , for 1,...,1,0  pk  

We find the solution over the interval ],0[ T . The approximate solution of the initial value 

problem can be expressed by the finite series, 
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Assume that the interval ],0[ T  is divided into N subintervals  nn tt ,1 , Nn ,...,2,1  of equal 

step size NTh /  by using the node point nhtn  . The main idea of multi-step DTM is to 

                                                           
4
 A. Patra and S. Saha Ray, 2013, “Multi-step Differential Transform method for Numerical Solution of 

Classical Neutron Point Kinetic Equation”, Computational Mathematics and Modeling (Springer), Vol. 

24, No. 4, 604-615. 
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apply first DTM to eq. (4.3) over the interval  1,0 t , we obtain the following approximate 

solutions 
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The multi-step DTM is a simple for computational techniques for all values of h. It can be 

easily shown that if the step size Th  , then multi-step DTM reduces to classical DTM. 

The main advantage of this new algorithm is that the obtained series solution converges 

for wide time regions.   

Here the time domain is divided into sub-domains for Ni ,...,2,1,0 and the approximate 

functions in each sub-domains are Nitxi ,...,2,1),( 


. 

By taking the differential transform method [15, 61, 62] of the eq. (4.3), we obtain 
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 For step reactivity, the differential transform scheme is 

)()()((
)1(

1
)1( kFkXBA

k
kX ii 


                (4.9) 

 For ramp reactivity and sinusoidal reactivity, the differential transform scheme is 
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The final value )( 10 tx
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of the first sub-domain is the initial value of second sub-domain, i.e; 
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

 . In this manner )( 2tx


 can be represented as 

 




p

r

r rXhtxtx
0

1212 )()()(


,            12 tth  .                         (4.12) 

Hence, the solution on the grid points 1it can be found as 






p

r
i

r
iii rXhtxtx

0
11 )()()(


,          ii tth  1 .                         (4.13) 

By using eqs. (4.9) and (4.10), we can obtain the solution for constant reactivity function 

and time- dependent reactivity function respectively.  

4.3     Numerical Results and Discussions for Classical neutron point kinetic model 

using different reactivity functions 
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In the present analysis, we consider the three cases of reactivity function such as step 

reactivity, ramp reactivity and sinusoidal reactivity. 

4.3.1 Results obtained for Step-Reactivity 

Let us consider the first example of nuclear reactor problem [53] with m=6 and neutron 

source free (q=0) delayed group of system with the following parameters: 

]87.3,4.1,311.0,115.0,0317.0,0127.0[i , 00002.0l , 007.0 , 

]000182.0,000896.0,002849.0,001316.0,001491.0,000266.0[i  

We consider, the problem for 0t with three step reactivity insertions 003.0 , 007.0

and 008.0 .  Here, we assume the initial condition )0(x


is 
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)0(                            (4.14) 

The results of classical neutron point kinetic equations for different time step-reactivity 

are presented in Table 1-3.The present method is compared with those for PCA method 

[53], CORE method [63], Taylor Method [64] and with the exact values [65]. Also these 

numerical results are cited by Figs. 1-3 for three step reactivities 003.0 , 007.0  and

008.0 . 

Table-1: Comparison Results at step-reactivity 003.0 for neutron density 

Time (s) PCA [53] Taylor [64] CORE [63] MDTM Exact [65] 
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Table-2: Comparison Results at step-reactivity 007.0 for neutron density 

Time (s) PCA [53] Taylor [64] CORE [63] MDTM Exact [65] 

t=0.01 4.5088 4.5086 4.5088 4.50886 4.5088 

t=0.5 3103459.5   3103447.5 

 

3103458.5   
31034589.5   

3103459.5   

t=2 11100591.2 

 
    

11100566.2   11100600.2   
111005916.2 

 

11100591.2   

 

Table-3: Comparison Results at step-reactivity, 008.0  for neutron density 

Time 

(s) 

PCA [53] Taylor [64] CORE [63] MDTM Exact [65] 

t=0.01 6.0229 6.2080 6.2029  6.20285 6.0229 

t=0.5    
3104104.1       

12101398.2     
12101071.2   

121010706.2      
3104104.1   

t=2 23101634.6      
46106255.5      

46102735.5    
461027345.5     

23101634.6   

 

t=1 2.2098 2.2098 2.2098 2.20984 2.2098 

t=10 8.0192 8.0192 8.0192 8.0192 8.0192 

t=20 1108297.2   1108297.2   1108297.2   
11082974.2   

11082974.2   
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                  Fig.1 Neutron density at step-reactivity 003.0
 

 

                      

Fig.2  Neutron density at step-reactivity 007.0  

 

                          

Fig. 3  Neutron density at step-reactivity 008.0
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4.3.2. Results obtained for Ramp-Reactivity 

 

Now we consider a ramp reactivity of 0.01$/sec and neutron source free (q=0) 

equilibrium system where the following parameters are used: 

]87.3,4.1,311.0,115.0,0317.0,0127.0[i  

]000182.0,000896.0,002849.0,001316.0,001491.0,000266.0[i  

00002.0l , 007.0  

with the same initial condition as given in eq.(4.14). 

The ramp reactivity function is tt  1.0)(  . The results of classical neutron point kinetic 

equations for ramp reactivity (time-dependent function) are presented in Table-4 in order 

to exhibit the comparison results of present method with PCA method [53], Taylor 

method [64], and with the exact values [65]. Also the numerical result for neutron density 

with ramp reactivity is cited in Fig. 4. 

Table-4: Comparison Results obtained with ramp reactivity for neutron density 

Time (s) PCA [53] Taylor [64] MDTM Exact [65] 

2t  1.3382 1.3382 1.3384 1.3382 

4t  2.2285 2.2285 2.2287 2.2284 

6t  5.5822 5.5823 5.5806 5.5821 

8t  42.790 42.789 42.545 42.786 

9t  487.61 487.52 471.78 487.52 
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Fig.4.  Neutron Density for ramp reactivity calculated with MDTM 

4.3.3. Results obtained for Sinusoidal-Reactivity 

Next we consider the last case of sinusoidal reactivity. In this case, we consider the 

following kinetic parameters: 

]01.3,14.1,301.0,111.0,0305.0,0124.0[i  

]000273.0,000748.0,002568.0,001274.0,001424.0,000215.0[i  

0005.0l , 006502.0  

The system is neutron source free (q=0) with the same initial condition as given in eq. 

(4.14). The sinusoidal reactivity (time-dependent) function is 









T

t
t


 sin)( where T is 

the half-life period (T=5sec.) 

The comparison results between the present method (MDTM) with CORE method [63], 

Taylor method [64] are shown in Table 5. Also the numerical results for neutron density 

with sinusoidal reactivity are cited in Fig. 5. 

Table-5: Results obtained with sinusoidal reactivity for neutron density 

Time (s) CORE [63] Taylor [64]  MDTM 
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2t  10.1475 11.3820 11.3325 

4t  96.7084 92.2761 90.044 

6t  16.9149 16.0317 15.5705 

8t  8.8964 8.6362 8.4531 

10t  13.1985 13.1987 12.9915 

 

 

 

 

Fig. 5.  Neutron Density for   sinusoidal reactivity calculated by MDTM 

 

4.4. Mathematical Model for Fractional Neutron Point Kinetic Equation 

Here we consider the fractional neutron point kinetic equations
5
 for m delayed groups 

with Caputo derivative of order  0(  and ) in the field of nuclear reactor 

dynamics as follows 

                  )()( tSxtBxA
dt

xd 







 
                  (4.15) 

                                                           
5
 Saha Ray, S. and Patra, A., 2014,  “Numerical Simulation for Solving Fractional Neutron Point Kinetic 

Equations using the Multi-step Differential Transform Method”, Physica Scripta (IOP), 89, 015204 (8pp). 
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)(tB  can be expressed as 
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and )(tS


 is defined as 
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4.5      Fractional Differential Transform Method

 
At the beginning, we expand the analytical function )(tf  in terms of a fractional power 

series as follows 
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                              





0

0 ))(()(
k

kttkFtf 
              (4.19) 

where 20   is the order of the fractional derivative and )(kF is the fractional 

differential transform of )(tf  given by 

              
00

))](()[(
)1(

1
)( tt

k
t tfD

k
kF 


 




                       (4.20) 

where 

00000
...)( tttt

k
t DDDDD  , the k-times-differentiable Caputo fractional derivative. 

Then, we can approximate the function )(tf  by the finite series 





N

k

kttkFtf
0

0 ))(()( 
                           (4.21) 

Here N is the finite number of terms in the truncated series solution. The basic properties 

of the fractional differential transform are given in Table-6. 

Table 6:  The fundamental operations of fractional differential transform 

Properties Time function Fractional Transformed Function 

1 )()()( thtgtf 
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4.6 Application of MDTM to Fractional Neutron Point Kinetic Equation 

 

In this section we will apply the DTM to obtain the solution for fractional neutron point 

kinetic eq. (4.15). To illustrate the basic idea of the DTM for solving system of fractional 

differential equation, we consider the form 

         )]([)( txNtxD ii         , ni ,...,2,1                           (4.22) 

where )]([ txNi  are the linear or nonlinear terms of fractional differential equation and

)(txD i
  is  - order Caputo fractional derivative of unknown function )(txi .  

     





0

0 ))(()(
k

k
ii ttkFtx                            (4.23) 

Taking the differential transform of eq. (4.23), we obtain 

  )(
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k

k
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,      ni ,...,2,1                        (4.24) 

where      
0

))(()(
)1(

1
)(
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k

i txND
k

txNDTM



 


 . 

Here eq. (4.24) is a recursive formula with )0(iF  as the value of initial condition. 

We divide the interval [0, T] into subintervals with time step t . For getting the solution 

in each sub interval and to satisfy the initial condition on each subinterval, the initial 

value )0(ix  will be changed for each subinterval, i.e. )0()( iiji Fctx   , where 

.1,...,2,1,0  nj To obtain the solution on every subinterval of equal length t , we assume 
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that the new initial condition is the solution in the previous interval. Thus to obtain the 

solution in interval ],[ 1jj tt , the initial conditions of this interval are 





N

m

m
jjijii ttmFtxc

0
1)()()(  ,  .,...,2,1 nj               (4.25) 

where  ic  is the initial condition in the interval ],[ 1 jj tt  . After applying the Differential 

transformation [15, 61, 62] to eq. (4.15), we obtain the numerical scheme as 

 

 For step reactivity, the differential transform scheme is 
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 For ramp reactivity and sinusoidal reactivity,  the differential transform scheme is 
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or we can write,  )()(  kpkF   where 

 














kp

kp
kp

,0

,1
)(  

From the initial condition, we can obtain that 00 )0()0( xxX


   



93 
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The final value )( 10 tx of the first sub-domain is the initial value of second sub-domain, i.e.  

)()( 10111 txctx
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 can be represented as 
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Hence, the solution with the grid points 1jt can be found as 
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0
11 )()()( 
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Using eq. (4.26) and (4.27), we can obtain the solution for the constant reactivity function 

and time-dependent reactivity function, respectively. 

 

4.7 Numerical Results and Discussions for Fractional Neutron Point Kinetic 

Equation 

In the present analysis, we consider the three cases of reactivity function such as step 

reactivity, ramp reactivity, and sinusoidal reactivity respectively. 

4.7.1.   Results obtained for Step-Reactivity 

Let us consider the first example of a nuclear reactor problem [53, 64] with m=6 and a 

neutron source free 0)( tq delayed group of a system with the following parameters: 

]87.3,4.1,311.0,115.0,0317.0,0127.0[i )( 1s , sl 00002.0 , 007.0 , 

]000182.0,000896.0,002849.0,001316.0,001491.0,000266.0[i  
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 We consider the problem for 0t  with three step reactivity insertions $003.0 ,

$007.0 , and $008.0 .  Here, we assume that the initial )0(x


equals       
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The results of fractional neutron point kinetic equations are presented in Tables 7-9 for 

different time with various step reactivities. We compute the numerical solution for 

taking step-size 0001.0h second at time 01.0t second, 05.0t second and 1t second 

with steps = 20000 which are also cited by Figs. 6-8. 

Table 7:  Results at subcritical-reactivity $003.0  for neutron density )(tn by using 

MDTM  

t  5.1  25.1  1  75.0  McMohan 

and Pierson, 

2010 (classical 

integer order) 

[64] 

0.01 1.01131 1.1225 1.65208 1.80478 N.A. 

0.5 1.39672 1.76907 1.99336 4.37265 N.A. 

1 1.58424 1.79325 2.20988 8.9838 2.2099 

10 1.78621 2.16011 8.0192 
    

6106548.1   8.0192 

 

Table 8: Results at critical reactivity $007.0  for neutron density )(tn by using MDTM 
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t  5.1    25.1  1  75.0  McMohan 

and Pierson, 

2010 (classical 

integer order) 

[64] 

0.01 1.02659 1.31201        4.54413    51.9663 4.5086 

0.5 2.31718 17.2111        5352.12 281081118.5 

 

3103447.5 

 

1 3.63692 38.1606 
    

61080784.1   
561010571.2       N.A. 

2 6.29591 120.46 
    

111005916.2   1111072997.2 

 

11100566.2 

 

 

Table 9:  Results at critical reactivity $008.0  for neutron density )(tn by using 

MDTM 

t  5.1  25.1  1  75.0  McMohan and 

Pierson, 2010 

(classical 

integer order) 

[64] 

0.01 1.03045 1.36463       6.2694          2491.81   6.2415 

0.5  2.65622 68.6659 121011821.2   
126101051.4   

11109422.6 

 

1  4.65868 756.72 231019596.6   
2521020782.2 

 

22101215.6 
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Fig. 6 (a). Neutron density for step reactivity $003.0 with  =1.5 

 

 

Fig. 6 (b). Neutron density for step reactivity $003.0 with  =1.25 

 

 

Fig. 6 (c). Neutron density for step reactivity $003.0 with  =1 
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Fig. 6 (d). Neutron density for step reactivity $003.0 with  =0.75 

  

 

 

Fig. 7 (a). Neutron density for step reactivity $007.0  with  =1.5 
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Fig. 7 (b). Neutron density for step reactivity $007.0  with  =1.25

 

Fig. 7 (c). Neutron density for step reactivity $007.0  with  =1

 

Fig. 7 (d). Neutron density for step reactivity $007.0  with  =0.75 

 

 

Fig. 8 (a). Neutron density for step reactivity $008.0  with  =1.5 
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Fig. 8 (b). Neutron density for step reactivity $008.0  with  =1.25

 

Fig. 8 (c). Neutron density for step reactivity $008.0  with  =1

 

Fig. 8 (d). Neutron density for step reactivity $008.0  with  =0.75 

 

Hence, from Tables 7-9, it can be observed that by taking three reactivities $003.0 , 

$007.0  and $008.0 , the numerical approximation results for neutron density 

obtained from multi-step differential transform method are good agreement with the 
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results obtained by Mc Mohan and Pierson [64] using Taylor series solution for classical 

order 1 . But using these three reactivities, there are no previous results exist in open 

literature for fractional order point kinetic equation.            

 

4.7.2    Results obtained for Ramp Reactivity 

 

Now we consider a ramp reactivity of 0.01$/sec and a neutron source free 0)( tq

equilibrium system where the following parameters are used [53, 64] 

).(sec]87.3,4.1,311.0,115.0,0317.0,0127.0[ 1i  

]000182.0,000896.0,002849.0,001316.0,001491.0,000266.0[i  

  .sec00002.0l , 007.0   

with the same initial condition as given in eq.(4.31).  

The ramp reactivity function is tt  1.0)(  . 

The numerical results for fractional neutron point kinetic equations with ramp reactivity 

(time-dependent function) are cited by Figs. 9-11 by using different . The comparison 

results between different  are shown in Table 10. 

Table 10:  Results obtained for ramp reactivity for neutron density using MDTM 

 Neutron Density  )(tn   

Time (s) 5.1  1  75.0  McMohan, and 

Pierson, 2010 

(classical integer 

order) [64] 
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2t  1.25661 1.3384 1.47755 1.3382 

4t  1.72456 2.2287 3.40974 2.2285 

6t  2.75227 5.5806 19.4696 5.5823 

8t  6.15687 42.545 1336 42.789 

9t  12.617 471.78 118901 487.52 

 

 

Fig. 9.  Neutron Density with ramp reactivity with 5.1 calculated using MDTM 

 

Fig. 10.  Neutron Density with ramp reactivity with 1 calculated using MDTM 



102 
 

 

Fig. 11.   Neutron Density with ramp reactivity with 75.0 calculated using MDTM 

Hence, the numerical approximation results for neutron density obtained from multi-step 

differential transform method for ramp reactivity are in good agreement with the results 

obtained by McMohan and Pierson [64] with the help of Taylor series solution at classical 

order 1 . But using ramp reactivity there are no previous results exist in open literature 

for fractional order point kinetic equation. 

4.7.3 Results obtained for Sinusoidal-Reactivity 

Next we consider the last case involving sinusoidal reactivity [53, 64]. In this case, we 

consider the following kinetic parameters: 

).(sec]01.3,14.1,301.0,111.0,0305.0,0124.0[ 1i  

]000273.0,000748.0,002568.0,001274.0,001424.0,000215.0[i  

.sec0005.0l , 006502.0   

The system is neutron source free 0)( tq with the same initial condition as given in eq. 

(4.31). The sinusoidal reactivity (time-dependent) function is 









T

t
t


 sin)(  , where T is 

the half-life period (T=5sec.). The numerical results for fractional neutron point kinetic 
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equations with sinusoidal reactivity (time-dependent function) are shown in Table-11 and 

also cited by Figs. 12 -14. 

Table 11:  Results obtained for neutron density with sinusoidal reactivity using MDTM 

 Neutron Density  )(tn   

Time (s) 5.1  1  75.0  McMohan, 

and Pierson, 

2010 (classical 

integer order) 

[64] 

2t  8.42634 11.3325 12.9717 11.3820 

4t  39.1603 90.044 124.065 92.2761 

6t  6.69124 15.5705 21.5457 16.0317 

8t  3.81628 8.4531 11.5648 8.6362 

10t  5.97965 12.9915 17.7996 13.1987 

 

 

 

Fig. 12.  Neutron Density with sinusoidal reactivity with 5.1  obtained by MDTM 
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Fig. 13. Neutron Density with sinusoidal reactivity with 1 obtained by MDTM 

 

Fig. 14.   Neutron Density with sinusoidal reactivity with 75.0  obtained by MDTM 

Thus the numerical approximation results for neutron density obtained from multi-step 

differential transform method for sinusoidal reactivity are in good agreement with the 

results obtained by Mc Mohan and Pierson [64] with the help of Taylor series solution at 

classical order 1 . But using ramp reactivity, there are no previous results exist in open 

literature for fractional order point kinetic equation. 

In the present chapter, both classical and fractional order neutron point kinetic equations 

with arbitrary order  have been solved using the multi-step differential transform 

method [66, 67]. The present method is easier and more efficient to provide the numerical 

solution for classical as well as fractional neutron point kinetic equations. This method is 
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a powerful solver for classical and fractional neutron point kinetic equation. The present 

method is quite easy to apply for obtaining approximate numerical solutions for time-

varying reactivities. Moreover, the accuracy can be further improved when the step size 

of each subinterval becomes smaller. 

 

4.8 Conclusion 

 

In this chapter, the classical and fractional order neutron point kinetic equations have 

been successfully solved by using multi-step differential transform method. From the 

obtained numerical results, it can be concluded that MDTM is conveniently applicable to 

neutron point kinetic equation. Moreover, it also shows that the present method is reliable 

and promising when compared with other existing methods. The multi-step differential 

transform method (MDTM) is clearly an effective and simple method for solving the 

classical and fractional order neutron point kinetic equation. It is extremely easy to apply 

the method. The method is more accurate to solve the problems with various types of 

reactivities. However, in this present method the more accurate results can be obtained by 

taking more terms in the series and smaller time step-size. Hence, the computational error 

is less. 
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CHAPTER 5 
    

 

5.1.       Introduction 

The point-kinetic equations are most essential model in the field of nuclear science and 

engineering. The modelling of these equations intimates the time-dependent behaviour of a 

nuclear reactor [24, 32, 53, 60]. Noise  in  reactors  can  be  described  by  conventional  Point  

Reactor  Kinetic Equations  (PRKE)  with  fluctuation  introduced  in some  of  the  

parameters. Such equations may be referred to as Stochastic Point Reactor Kinetic Equations.  

Power  reactor  noise analysis  may  be  viewed  as  study  of  a  reactor's  response  to  a  

stochastic  reactivity  or  source  input.  The difficulty  of solving  Stochastic  Point  Reactor  

Kinetic Equations  arises  from  the fact  that  they  are  nonlinear. The stochastic behaviour of 

a point reactor is modelled with a system of Ito stochastic differential equations. 

 

It is well known that the reactions in a nuclear system are not fully describable by 

deterministic laws. This fact, at the most fundamental level, is due to the laws of quantum 

mechanics, which only give probabilities of various interactions for a neutron, which are 

manifest in the interaction cross sections of atoms with neutrons. There are various situations 

which this probabilistic behaviour could be readily observed for a nuclear system, e.g. in the 

startup of the reactors, in zero power reactors, in most laboratory source-detector 

configurations, etc. There has been an extensive research effort to model this stochastic 

behaviour. Measuring higher order moments requires more data from the system for a given 

accuracy. Actually, most of the times in practice, one only measures the first and second order 

moments in a system, i.e. the mean and variance. 
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The standard deterministic point-kinetic model has been the subject of countless studies and 

applications to understand the neutron dynamics and its effects, such as developed of different 

methods for their solution [49, 50, 68-71]. The reactivity function and neutron source term are 

the parametric quantities of this vital system. The dynamical process explained by the point-

kinetic equations is stochastic in nature. The neutron density and delayed neutron precursor 

concentrations differ randomly with respect to time. At the levels of high power, the random 

behaviour is imperceptible. But at low-power levels, such as at the beginning, random 

fluctuation in the neutron density and neutron precursor concentrations can be crucial. 

 

The numerical solutions for neutron population density and sum of precursors concentration 

population density have been solved with stochastic Piecewise Constant Approximation 

(PCA) method and Monte Carlo computations by using different step reactivity functions 

[60]. The derivation and the solution for stochastic neutron point-kinetics equation have 

elaborately described in the work of [71] by considering the same parameters and different 

step reactivity with Euler– Maruyama method and strong order 1.5 Taylor method. It can be 

observed that the numerical methods like Euler-Maruyama method and strong order 1.5 

Taylor method are likely reliable with stochastic PCA method and Monte Carlo computations. 

Here, Euler–Maruyama method and Taylor 1.5 strong order approximations method have 

been applied efficiently and conveniently for the solution of stochastic point-kinetic equation 

with sinusoidal reactivity. The resulting systems of Stochastic Differential Equations (SDE) 

are solved over each time-step size in the partition. In the present investigation, the main 

attractive advantage, of these computational numerical methods, is their simplicity, efficiency 

and applicability. 
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In this research work, the numerical solution of Fractional Stochastic Neutron Point Kinetic 

Equation has been obtained very efficiently and elegantly. In the present research work, for 

the first time ever, the random behavior of neutron density and neutron precursor 

concentrations have been analyzed in fractional order. Here, a numerical procedure has been 

used for efficiently calculating the solution for fractional stochastic neutron point kinetic 

equation (FSNPK) in the dynamical system of nuclear reactor. The explicit finite difference 

method has been applied to solve the fractional stochastic neutron point kinetic equation with 

the Grunwald- Letnikov (GL) definition [44, 72]. Fractional Stochastic Neutron Point Kinetic 

Model has been analyzed for the dynamic behavior of the neutron. 

 

5.2. Classical order Stochastic Neutron Point Kinetic Model 
6
 

A point reactor is a reactor in which the spatial effects have been eliminated. This is obviously 

possible if the reactors length is infinite in all spatial dimensions. Study of a point reactor, i.e. 

studying the properties of Eq. (5.2.1), is desirable in the sense that it captures some of the 

most essential features of the reactor dynamics without involving into the complexities of 

integro-differential equations, i.e. the transport equation, or partial differential equations, i.e. 

the diffusion equation. 

 

In order to separate the birth and death process of neutron population, Hetrick [24] and Hayes 

and Allen [60] derived the deterministic point-kinetic equation as 

qcn
l

n
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
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


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6
 S. Saha Ray and A. Patra, 2012, “Numerical Solution for Stochastic Point Kinetics Equations with Sinusoidal 

Reactivity in Dynamical System of Nuclear Reactor”, Int. Journal of Nuclear Energy Science and Technology 

(InderScience), Vol. 7, No. 3, 231-242. 

 



109 
 

ii
ii cn

ldt

dc



 ,   mi ,,2,1   

Here, )(tn  is the population size of neutrons and )(tci is the population size of the ith neutron 

precursor. The rate of transformations from neutron precursors to the neutron population is 

 where the delayed constant is  and is the density of the ith type of precursor 

for . A source of neutrons extraneous to the fission process is represented by  

and is reactivity function, neutron generation time , is defined as 

 and  is the average number of neutrons emitted per fission. is the 

delayed-neutron fraction and is the prompt-neutron fraction The neutron reactions can 

be separated into three terms as follows  

 

,                             (5.2.2) 

The neutron birth rate due to fission is , where the denominator has the 

term  represents the number of neutrons (new born) produced in each fission 

process. The neutron death rate due to captures or leakage is . The 

transformation rate  represents the rate that the ith precursor is transformed into neutrons.  

For deriving the stochastic dynamical system, we consider for simplicity only one precursor 

i.e. , where is the total delayed neutron fraction for one precursor. 




m

i
iic

1

 i ),( trci

mi ,,2,1  )(tq

)(t
ak

l





1





1







ka

f  



m

i
i

1



)1( 

qcn
l

n
ldt

dn

tionstransforma

m

i
ii

birthsdeaths








 








 
 

   
1

11




ii
ii cn

ldt

dc



 mi ,,2,1 

))1(1(

1










l
b

))1(1( 

l
d

 


1

iic

1  



110 
 

The point kinetic equations for one precursor is   

                  
                  (5.2.3) 

Now, we consider for the small duration of time-interval  where probability of more than 

one occurred event is small. Let be the change of n and c1 in time  where the 

changes are assumed approximately normally distributed. For , the following system 

has been derived by the learned researcher Saha Ray [71]  

 

                          (5.2.4) 

where 

,      for  , ~ N(0, 1) 

and  

Here,  and are two Wiener process and  is the square root of the matrix
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The eq. (5.2.4) represents the stochastic point kinetic equation for one precursor.  

Now generalizing the above arguments to m precursors, we can obtain the following Itô 

stochastic differential equation system for m precursors 

                          (5.2.5) 

In the above eq. (5.2.5),  and are as follows 

 

and 

             (5.2.6)
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Â B̂







































m
m

m

l

l

l

l

A













00

0

0

00

ˆ

2
2

1
1

21









































mmmmm

mm

m

m

rbba

b

rba

bbra

aaa

B

1,2,

,1

22,32

1,23,211

21

ˆ















m

j
jj qcn

1



l




2)1(21 




112 
 

 

 

and 

 

If ,  then eq. (5.2.5) reduces to standard deterministic point-kinetic model.   

Hence, the stochastic point-kinetic equations for m delayed groups is defined as 

                                                       (5.2.7) 

with initial condition    

Here  and is given in eq. (5.2.6).                        (5.2.8) 

A is matrix given by 

                         (5.2.9) 
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                         (5.2.10) 

and is given as 

                                     (5.2.11) 

It can be noticed that  where A is a constant matrix. 

5.3. Numerical solution of  classical Stochastic Neutron Point Kinetic Equation 

5.3.1 Euler–Maruyama method for the solution of stochastic point-kinetic model 

The Euler-Maruyama approximation is the simplest time discrete approximations of an Itô 

process. Let  be an Itô process on  satisfying the stochastic differential equation 

(SDE) 

                                                                                   

(5.3.1.1) 

For a given time-discretization ,                    (5.3.1.2) 

an Euler approximation is a continuous time stochastic process  satisfying the 

iterative scheme                    (5.3.1.3) 
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with initial value  

where ,  and . Here, each random number 

is computed as where is chosen from standard normal distribution

.  

We have considered the equidistant discretized times 

 with for some integer N large enough so that . 

The Euler-Maruyama method is also known as order 0.5 strong Itô - Taylor approximation. 

By applying Euler Maruyama method to eq. (5.2.7) in view of eq. (5.3.1.1), we obtain the 

scheme as 

                      (5.3.1.4) 

where  and  

where  is a vector whose components are random numbers chosen from N(0,1). 

5.3.2. Strong order 1.5 Taylor Method for the Solution of Stochastic Point-Kinetic Model 

Here we consider Taylor approximation having strong order . The order 1.5 strong 

Taylor scheme can be obtained by adding more terms from Itô -Taylor expansion to the 

Milstein scheme [19, 21]. The order 1.5 strong Itô -Taylor scheme is  
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for  

with initial value 

and  

Here, partial derivatives are denoted by subscripts and the random variable  is normally 

distributed with mean  and variance  and correlated with  by 

covariance .  

We can generate as 

                        (5.3.2.2) 

where is chosen independently from . Here the approximation, is the 

continuous time stochastic process , the time step-size and 

. 

By applying Strong order 1.5 Taylor Approximation methods to eq. (5.2.7) in view of eq. 

(5.3.2.1) yielding 

        
(5.3.2.3) 

where  and . 
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5.4 Numerical Results and Discussions for the Solution of Stochastic Point-Kinetic 

Model 

At first, the one group delayed neutron point kinetics model of a reactor has been considered. 

In the present analysis, reactivity has been considered as sinusoidal reactivity function 

  in nuclear reactor [24, 53] with m=1 delayed group and the parameters are as 

follows (68 cents), sec
-1

, , neutron source ,

sec, a half-life period T=50sec and . The initial condition is . We 

observe through a period of 800 sec., there is a good agreement available between two present 

methods Euler Maruyama method and Strong 1.5 Taylor method. The computational results 

are shown by the following graphs in Fig.1-Fig.2 for neutron population density with respect 

to time with different time-step size at different trials. The neutron population density 

obtained by Euler-Maruyama Method and Strong 1.5 Order Taylor Method using a sinusoidal 

reactivity for t=800sec. with step-size h=0.001 at 100 trials are cited by Figs. 1(a) and 

(b).Then we reduce the number of trials to 30 and the neutron population density obtained by 

Euler-Maruyama Method and Strong 1.5 Order Taylor Method using a sinusoidal reactivity 

fort=800sec. with step-size h=0.001 are cited by Figs. 1(c) and (d). Similarly in Figs. 2 (a) and 

(b) the numerical computation of the neutron population density obtained by Euler-Maruyama 

Method and Strong 1.5 Order Taylor Method for t=800Sec. with step-size h=0.01at 100 trials 

are plotted. We have considered two random samples of neutrons at 25
th

 trial and 30
th

 trial of 

the total sample of 5000 trial for the solution. In comparison to the deterministic point kinetic 

model with sinusoidal reactivity given in the work of Kinard and Allen [53], the present 

numerical methods are more efficient and accurate to give the solution of stochastic neutron 

point kinetic equation with sinusoidal reactivity for one precursor.  
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       Fig.1. (a) 

                     

         Fig.1.(b) 
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           Fig.1. (c) 

 

           Fig.1. (d) 

Fig.1. (a) Neutron Population density obtained by Euler-Maruyama Method with step-size 

h=0.001at 100 trials, (b) Neutron density obtained by Strong 1.5 Order Taylor Method with 

step-size h=0.001at 100 trials, (c) Neutron Population density obtained by Euler-Maruyama 

Method with step-size h=0.001 at 30 trials, (d) Neutron density obtained by Strong 1.5 Order 

Taylor Method with step-size h=0.001at 30 trials. 
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       Fig.2. (a) 

                    

         Fig.2. (b) 

Fig. 2. (a) Neutron population density obtained by Euler-Maruyama Method with step-size 

h=0.01at 100 trials, (b) Neutron population density obtained by Strong 1.5 Order Taylor 

Method with step-size h=0.01at 100 trials. 
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Next, it has been considered the effect of pulse reactivity function
7
 [24, 32, 64] 

  in nuclear reactor with m=1 neutron precursor and the parameters 

used are as follows: sec
-1, , neutron source , sec. [64]. 

Mathematically, we can define neutron mean  and similarly mean of m-

group precursor  , where N is total number of trials. The initial 

condition is . We observe the behavior through a period of 1sec. The 

obtained numerical approximation results for mean neutron population and mean of m-

group precursor population  is given by Table-1 for time 0.001 sec., 0.1 sec. and 1 sec. 

with step size h=0.0001 at single trial. The mean of neutron population density and  the mean 

of sum of precursor density obtained by Euler-Maruyama Method and Strong 1.5 Order 

Taylor Method using a pulse reactivity for t=1sec. with step-size h=0.01 at 100 trials are cited 

by Figs. 3-6.  

 

Table-1 Comparison between Numerical Computational methods for one precursor  

 Euler-Maruyama 

Approximation 

Strong Order 1.5  

Taylor 

Approximation 

 1.98979 1.99135 

 84.528 84.5285 

                                                           
7 A. Patra and S. Saha Ray, 2014, “The Effect of Pulse Reactivity for Stochastic Neutron Point Kinetics 

Equation in Nuclear Reactor Dynamics”, Int. Journal of Nuclear Energy Science and Technology 

(Inderscience), Vol. 8, No. 2, pp. 117-130. 
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 522.98 525.137 

 212.141 212.78 

   

   

 

                           

          Fig. 3. Neutron Mean Population density obtained by using Euler-Maruyama Method 

 

 

 

Fig. 4. Neutron Mean Population density obtained by using Strong Order 1.5 Taylor 

Method 
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Fig. 5. Sum of Neutron Mean Precursor density obtained by using Euler-Maruyama Method 

          

                              

Fig. 6. Sum of Neutron Mean Precursor density obtained by using Strong Order 1.5 Taylor 

Method 

The main advantages of Euler-Maruyama method and strong order 1.5 Taylor method are 

firstly Piecewise Constant Approximation (PCA) [53, 60] over a partition is not required for 

reactivity function and source function. There is no need to obtain the eigenvalues and eigen 

vectors of point-kinetics matrices for getting the solution of stochastic point-kinetics equation. 

By use of inhour equation to calculate eigen values by finding roots of polynomial function 
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was presented in the work of Hetrick [24]. But it is very cumbersome and complicated 

procedure. In present methods, such types of unwieldy computations are not required. 

The limitation of the Euler–Maruyama method is that its order of convergence is , 

which is slower in comparison to strong order 1.5 Taylor method where order of convergence 

is . 

 

5.5  Application of Explicit Finite Difference method for solving Fractional order   

Stochastic Neutron Point Kinetic Model 
8
 

 

We consider the neutron point kinetic equations with Grunwald-Letnikov fractional time 

derivative [49, 50, 68-70] and having behavior of Itô type stochastic system [60, 71] for m 

group delayed neutron precursors, in the field of nuclear reactor dynamics, as follows 

       
 ,                                       (5.5.1) 

subject to initial condition .  

 

In nuclear reactor, at the lower power levels during the start-up of nuclear reactor operation, 

the random fluctuation in the neutron population density and neutron precursor concentrations 

have been observed and it is significant. Random behavior of neutron population and 

precursors concentrations played a vital role in the process of diffusion occurred inside the 

                                                           
8 S. Saha Ray and A. Patra, 2013, “Numerical Solution of Fractional Stochastic Neutron Point Kinetic Equation 

for Nuclear Reactor Dynamics”, Annals of Nuclear Energy (Elsevier), Vol. 54, pp. 154-161. 
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reactor [60]. If , the process is normal diffusion and when , then the diffusion 

process is anomalous diffusion.  

To examine the behavior of anomalous diffusion, we have considered the stochastic neutron 

point kinetic equation in fractional order. The study of random nature and anomalous 

diffusion has not been investigated by any researchers for fractional stochastic point kinetic 

equations (FSNPK).

 
 

Here,     

 

              (5.5.2) 

               (5.5.3) 

and is given as 

1 10 

























)(

)(

)(

)(

)( 2

1

tc

tc

tc

tn

tx

m





)1()1(

2
2

1
1

21

00

0

0

00









































mm
m

m

m

l

l

l

l

A























)1()1(
0000

0

000

0000

000
)(




























mm

l

t

B












)(tF




125 
 

                            (5.5.4) 

Let us take the time step size h. Using the definition of GL fractional derivative, the numerical 

approximation of the eq. (5.5.1), in view of the research work, [13, 50, 52], is 

             (5.5.5) 

The above eq. (5.5.5) leads to Implicit numerical iteration scheme. However, in this present 

work, we propose an explicit numerical scheme which leads from the time layer  to  as 

follows: 

          (5.5.6) 

where  . 

where  m-th approximation at  time  ,  ,  and ,

. Here  where  is chosen from N(0,1) and 

 with initial condition . 

5.6 Numerical Results and Discussions for Fractional Stochastic Neutron Point Kinetic 

Equation 

In this section, we consider the first example of nuclear reactor problems [60], sec.
-1 ,

, , neutron source , sec. and  for . The initial 

condition is . We applied explicit finite difference methods for 40 intervals 
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at time . The mean and standard deviation of and are presented in Table-2 

for different values of fractional order . The numerical results for the time period of  

are cited graphically with positive and negative reactivity by Figs. 7 to 10. For negative 

reactivity at , it can be observed from Figs. 7-8, the neutron population decreases 

with small time variation and for positive reactivity at , the neutron population 

gradually increases with time in Figs. 9-10. 

Moreover, for negative reactivity , Figs. 7 and 8 exhibit the comparison of neutron 

population behavior in case of fractional order  and classical integer order respectively. 

Similarly, for positive reactivity , Figs. 9 and 10 exhibit the comparison of neutron 

population behavior in case of fractional order and classical integer order respectively. 

Table-2    Mean and Standard deviation of Neutron and precursor for different values of    

                                                                             (Classical) 

 

             
162.236                    201.703                   267.868                       412.23

 

              
56.2242                   34.4135                   29.3493                       34.3918

 

            
21.0623                   46.2477                   117.343                       315.969

 

             
5.13641                   4.43681                   5.61876                       8.26569 
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Fig.7. Neutron Population density with  and   

         

       Fig.8. Neutron Population density with  and   

 

5.0 3/1

1 3/1
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       Fig.9. Neutron Population density with  and   

 

          

       Fig.10. Neutron Population density with  and   

 In the second example, we assume the initial condition as  

5.0 3/1

1 3/1
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The following parameters used in this example [53, 60]: 

 , , , , , 
 

and ]000182.0,000896.0,002849.0,001316.0,001491.0,000266.0[i  with 6m  delayed 

groups. The computational results at t = 0.1 is given in Table-3 respectively and the numerical 

results are presented graphically by Figs. 11 to 18. 

Table-3 Mean and Standard deviation of Neutron and precursor for different values of with 

003.0   

                                                                                 (Classical) 

 

                     6635.54                   356.469                       208.599                      
 

          
           7755.62                   664.685                       255.954         
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Fig.11. Neutron Population density with    

 

    Fig.12. Neutron Population density with    

       

                               Fig.13. Neutron Population density with  

25.0

5.0

75.0
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Fig.14. Neutron Population density with   

 

 

Fig.15. Sum of Neutron precursors population with    

 

1

25.0
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Fig.16. Sum of Neutron precursors population with    

 

Fig.17. Sum of Neutron precursors population with    

 

Fig.18. Sum of Neutron precursors population with    
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5.7  Analysis for Stability of numerical computation for Fractional Stochastic Neutron 

Point Kinetic Equation 

 

The stability of the numerical computation is calculated by taking the different time-step size 

h with different values of the anomalous diffusion order . In order to obtain a stable result, a 

set of time-step sizes are considered by trial-and-error for different values of . 

A series of numerical experiments have been done for getting a better solution for FSNPK. In 

the present numerical study, we consider , , , and . The values of 

time-step size h are taken between . The simulation time was considered as 

0.1sec. The stability criterion in this analysis is related with 0.01% of the relative error to

 at time 0.1sec. for simulation. 

                                         100%01.0
0

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where  is the neutron density which is calculated from fractional stochastic model. 

To exhibit the behavior of neutron density with , we consider h in the interval 

[0.005sec., 0.025sec.]. In order to check stability criteria, the relative error is 0.009403% at 

h=0.005sec., 0.009928% at h=0.01sec. and 0.0099998% at h=0.025sec. To examine the 

behavior of neutron density with , we consider h in the interval [0.005sec., 0.025sec.] 

where the numerical solutions are similar with . In this case, the relative error is 

0.0088019% at h=0.005sec., 0.008984 % at h=0.01sec. and 0.009141% at h=0.025sec.  It can 

be shown the neutron density behavior with by considering h in the interval 

[0.005sec., 0.025sec.]. For this case, the numerical scheme is also stable for time-step size h= 

0.005sec. whose corresponding relative error is 0.006554% whereas the relative error is 

0.006393% at h=0.01sec. and 0.006204% at h=0.025sec. For the case when  and h in the 

interval [0.005sec., 0.025sec.], the relative error is 0.004932% at h=0.005sec., 0.005230 % at 

h=0.01sec. and 0.002776% at h=0.025sec. Therefore, the above numerical experiment 
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confirms the stability of our numerical scheme for the solution of fractional stochastic neutron 

point kinetics equation (FSNPK).  

 

5.8 Conclusion 

The numerical methods like Euler Maruyama and Strong order 1.5 Taylor are clearly efficient 

and convenient for solving classical order stochastic neutron point kinetic equations [73, 74]. 

The methods are easily applicable to obtain the solution of stochastic neutron point kinetic 

equations with sinusoidal reactivity and pulse reactivity function. The obtained results exhibit 

its justification. This chapter shows the applicability of the two numerical stochastic methods 

like Euler Maruyama and Strong order 1.5 Taylor methods for the numerical solution of 

stochastic neutron point kinetic equation with sinusoidal reactivity and pulse reactivity for one 

precursor. The two present methods are quite easy to apply for obtaining accurate numerical 

solutions for time-varying reactivities like sinusoidal, and pulse reactivity. Moreover, the 

accuracy can be further improved when the smaller step size of each subinterval. 

In this present research work, the fractional stochastic neutron point kinetics equation also has 

been solved by using Explicit Finite Difference method [75]. The method in this investigation 

clearly explores an effective numerical method for solving the fractional stochastic point 

kinetics equation. The method is simple, efficient to calculate and accurate with fewer round 

off error. This method can be used as a powerful solver for fractional stochastic neutron point 

kinetic equation. The random behaviors of neutron density and neutron precursor 

concentrations have not been analyzed in fractional order before of this research work. The 

results of the numerical approximations for the solution of neutron population density and 

sum of precursors population are also cited graphically for different arbitrary values of . 

 


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CHAPTER 6 
   

 

6.1  Introduction 

The multi-group delayed neutron point kinetic equations in the presence of temperature 

feedback reactivity are a system of stiff nonlinear ordinary differential equations. The neutron 

flux and the delayed neutron precursor concentration are important parameters for the study in 

safety and transient behavior of the reactor power. The point kinetic equations of multi-group 

delayed neutrons with temperature feedback reactivity describe the neutron density 

representing the reactor power level, time-dependent reactivity, the precursors concentrations 

of multi-group of delayed neutrons and thermodynamic variables that enter into the reactivity 

equation. The solution of this system of equation is useful for providing an estimation for 

transient behavior of reactor power and other systems of variables of the reactor cores which 

are fairly tightly coupled. 

 

The fission neutrons are usually of different energies and move in different directions than the 

incident neutrons. Furthermore, there will generally be a change in the position, energy and 

direction of motion of the neutron. The interactions of neutrons with nuclei in a medium thus 

results in transfer of the neutrons from one location to another, from one energy to another 

and from one direction to another. Then neutron population distribution in nuclear reactor is 

described by transport equations. One of the simplest approximations to neutron transport that 

has been widely used in research and practice is the approximation given by diffusion theory. 

 

Reactivity is the most important parameter in nuclear reactor operation. When it is positive the 

reactor is supercritical, zero at criticality, and negative the reactor is subcritical. Reactivity can 
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be controlled in various ways: by adding or removing fuel; by changing the fraction of 

neutrons that leaks from the system; or by changing the amount of an absorber that competes 

with the fuel for neutrons. The amount of reactivity in a reactor core determines the change of 

neutron population and the reactor power. Hence reactivity plays a vital role in reactor control.  

 

In this present research work, explicit finite difference method [13, 50, 75]
 
has been applied 

for solving the classical order and fractional order point kinetics equations of multi-group 

delayed neutrons with temperature feedback reactivity. Fractional neutron point kinetic 

equation is useful in the context of anomalous diffusion phenomena due to highly 

heterogeneous configuration in nuclear reactors. Espinosa et al. [49] proposed a fractional 

diffusion model as a constitutive equation of the neutron current density. This fractional 

diffusion model can be applied where large variations of neutron cross sections normally 

prevent the use of classical diffusion equation, specifically the presence of strong neutron 

absorbers in the fuel, control rods, and the coolant when injected boron forces the reactor to 

shutdown. Espinosa et al. [49] proposed a solution procedure which has been inherited from 

Edwards et al. [54]. In contrast to their method, in the present numerical scheme fractional 

derivative has been discretized by Grunwald–Letnikov derivative and the fractional point 

kinetic equation has been converted directly into finite difference equation. Then it has been 

adjusted in the form of explicit finite difference scheme. The present numerical scheme is 

simple and efficient in compared to Espinosa-Paredes et al. [49].  Although Caputo derivative 

has been chosen by Espinosa et al. [49] but in numerical computation for discretizing the 

fractional derivative we have to apply Grunwald-Letnikov fractional derivative rather than 

Caputo derivative. It is very much clear that, the present numerical scheme requires less 

computational effort in compared to Generalization of the analytical exponential model 

(GAEM) [76] and Padé approximation method [77] for classical order . 1



137 
 

Due to the use of this finite difference numerical technique for solving coupled reactor kinetic 

equations, we apply Grunwald-Letnikov fractional derivative which is useful for discretizing 

the fractional derivative. The obtained results are presented graphically and also compared to 

the other methods exist in open literature for classical order at [76, 77].  

6.2 Classical order Nonlinear Neutron Point Kinetic Model 
9
 

The multi-group delayed neutron point kinetics equations [22, 23, 32] and the Newtonian 

temperature feedback reactivity are the stiff nonlinear ordinary differential equations which 

presented as 

 

                          (6. 2.1) 

,                           (6.2.2) 

and 

                            (6.2.3) 

where  the neutron density  

the reactivity as a function of time,  

 the total fraction of delayed neutrons, 

the fraction of i- group of delayed neutrons, 

 the decay constant of i-group of delayed neutrons, 

 the prompt neutron generation time, 

 the precursor concentrations of i
th

-group of delayed neutron, 

                                                           
9
 A. Patra and S. Saha Ray, “Solution for Nonlinear Neutron Point Kinetics Equation with Newtonian 

Temperature feedback reactivity in Nuclear Reactor dynamics”, Int. Journal of Nuclear Energy Science and 

Technology (Inderscience), Communicated. 
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m = the total number of delayed neutrons group, 

the impressed reactivity variation, 

 the shutdown coefficient of the reactor system. 

 

These equations have been the subject of extensive study using all kinds of approximations. 

We are interested here in the general problem, a time dependent reactivity function . It is 

well-known that these sets of ordinary differential equations are quite stiff. 

 

One of the important properties in a nuclear reactor is the reactivity, due to the fact that it is 

directly related to the control of the reactor. For safety analysis and transient behaviour of the 

reactor, the neutron population and the delayed neutron precursor concentration are important 

parameters to be studied. The start-up process of a nuclear reactor requires that reactivity is 

varied in the system by lifting the control rods discontinuously. In practice, the control rods 

are withdrawn at time intervals such that reactivity is introduced in the reactor core linearly, to 

allow criticality to be reached in a slow and safe manner.  

6.3 Numerical solution of  Nonlinear Neutron Point Kinetic Equation in presence of 

reactivity function 

 

Let us take the time step size h. Using the finite difference for time derivative, the numerical 

approximations of the eqs. (6.2.1) to (6.2.3), in view of the research work [13, 50, 75], have 

been obtained as 

                           (6.3.1) 
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                          (6.3.2) 

                           (6.3.3) 

The above eqs. (6.3.1) to (6.3.3) represent the explicit finite difference scheme which leads 

from the time layer  to  where .   

Here neutron density at time , 

 the precursor concentrations of i
th

-group of delayed neutron at time , 

 k-th approximation at  time  ,  , . Here  with initial 

condition . 

The main advantage of explicit finite difference method is that the method is relatively simple 

and easily computable. 

6.4 Numerical Results and Discussions for classical order Nonlinear Neutron Point  

Kinetic Equation 

In the present analysis, we discussed three cases of reactivity function [76, 78, 79] of step, 

ramp (positive and negative) and feedback reactivity. All results started from equilibrium 

conditions with neutron density  and  of delayed neutron precursors density

. In the following, each case will be discussed separately. The numerical 

results are presented in the Tables 1-4 and cited by graphically.  

6.4.1 Step-reactivity insertions 

In this case, for checking the efficiency of the numerical scheme, it is applied to the thermal 

reactor with the following parameters [78, 79]: 
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sec
-1

, sec
-1

, sec
-1

, sec
-1

, sec
-1

, sec
-

1
, , , , , , ,

, sec. The relative errors of neutron density with four cases of step 

reactivity -1.0$, -0.5$, +0.5$ and +1.0$ are presented in Table-1. The present scheme is an 

efficient numerical technique to obtain the solution for point kinetic equations with the step 

reactivity insertions. 

6.4.2 Ramp reactivity insertions 

  In this example, the numerical scheme is applied to the thermal reactor with the following 

parameters [78, 79]: 

sec
-1

, sec
-1

, sec
-1

, sec
-1

, sec
-1

, sec
-

1
, , , , , , , 

, sec. The neutron density of the thermal reactor with positive ramp 

reactivity is  and the negative ramp reactivity is whence the numerical 

results are cited in Table-2 and Table-3 respectively. 

6.4.3 Temperature Feedback Reactivity 

 In this case, the numerical scheme is applied to solve the point kinetic equations of delayed 

neutrons with the presence of Newtonian temperature feedback reactivity for U
235

-graphite 

reactor. The following parameters of U
235

-graphite reactor are used [76]: 

sec
-1

, sec
-1

, sec
-1

, sec
-1

, sec
-1

, sec
-

1
, , , , , , ,

. The value of generation time is sec, a takes the values 0.1, 0.01, 0.003 

0127.01  0317.02  115.03  311.04  40.15  87.36 

000285.01  0015975.02  00141.03  0030525.04  00096.05  000195.06 

0075.0 0005.0l

0127.01  0317.02  115.03  311.04  40.15  87.36 

000266.01  001491.02  001316.03  002849.04  000896.05  000182.06 

007.0 00002.0l

tt 1.0)(  tt 1.0)( 

0127.01  0317.02  115.03  311.04  40.15  87.36 

00246.01  001363.02  001203.03  002605.04  00819.05  00167.06 

0064.0 00005.0
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and b takes the values and . The numerical results obtained for feedback reactivity 

are presented in Table-4 and cited by Figs. 1-6. 

Table-1:   The relative errors and the exact neutron density n(t) (neutrons/cm
3
) of the thermal 

reactor with step reactivity for step-size h=0.0001s 

Reactivity 

($) 

Time (s) Exact Solution 

[79] 

Present numerical 

scheme Explicit Finite 

Difference Method 

Relative 

Errors 

 

-1.0 

 

0.1 

1.0 

10 

 

0.5205643 

0.4333335 

0.2361107 

 

0.520454 

0.433332 

0.23611 

 

 

0 

0 

 

-0.5 

 

0.1 

1.0 

10 

 

0.6989252 

0.6070536 

0.3960777 

 

0.698838 

0.607053 

0.396077 

 

 

0 

0 

 

+0.5 

 

0.1 

1.0 

10 

 

1.533113 

2.511494 

14.21503 

 

1.53323 

2.5115 

14.2148 

 

0 

0 

 

 

+1.0 

 

0.1 

0.5 

1.0 

 

2.515766 

10.36253 

32.18354 

 

2.51572 

10.3614 

32.176 

 

0 

0 

 

1110 1310

41011.2 

41024.1 

51061.1 

41034.2 
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Table-2:    The neutron density n(t) (neutrons/cm
3
) of the thermal reactors with a positive 

ramp reactivity (+0.1$/s) for step-size h=0.0001s 

Time 

(s) 

TSM [79] BBF [80] SCM [81] Explicit Finite Difference 

Method 

 

2.0 

4.0 

6.0 

8.0 

10.0 

 

1.3382 

2.2284 

5.5822 

42.789 

 

 

1.3382 

2.2284 

5.5820 

42.786 

 

 

1.3382 

2.2284 

5.5819 

42.788 

 

 

1.3382 

2.22842 

5.58192 

42.7817 

 

 

Table-3:    The neutron density n(t) (neutrons/cm
3
) of the thermal reactors with a negative 

ramp reactivity (-0.1$/s) for step-size h=0.0001s 

Time 

(s) 

TSM [79] GAEM [76] Padé [77] Explicit Finite Difference 

Method 

 

2.0 

4.0 

6.0 

8.0 

10.0 

 

0.791955 

0.612976 

0.474027 

0.369145 

0.290636 

 

0.792007 

0.613020 

0.474065 

0.369172 

0.290653 

 

0.792007 

0.613018 

0.474058 

0.369169 

0.290654 

 

0.792006 

0.613017 

0.474058 

0.369168 

0.290654 

 

Table-4:   The neutron density n(t) (neutrons/cm
3
) at the first peak of U

235
- reactor with 

feedback reactivity for step-size h=0.0001s 

5105143.4  5105041.4  5105391.4  51049850.4 
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a b Delayed Neutrons at the first peak Time of the first peak 

GAEM 

[76] 

Padé 

[77] 

Explicit 

Finite 

Difference 

Method 

GAEM 

[76] 

Padé 

[77] 

Explicit 

Finite 

Difference 

Method 

0.1  

 

 

 

 

 

 

 

0.224 

0.238 

0.224 

0.238 

0.2245 

0.2385 

0.01  

 

 

 

 

 

 

 

1.100 

1.149 

1.100 

1.149 

1.1014 

1.150 

0.003  

 

Not available Not available 
 

 

Not 

available 

Not 

available 

2.897 

2.996 

 

 

               

                         Fig. 1. Neutron density n(t) (neutrons/cm
3
) for  and  

 

1110

1310

11104202.2 

13109057.2 

11104197.2 

13109055.2 

111042275.2 

13109037.2 

1110

1310

10100103.2 

12104882.2 

10100107.2 

12104890.2 

101002264.2 

12105043.2 

1110

1310

91024943.5 

111073756.6 

1.0a
1110b
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                      Fig. 2. Neutron density n(t) (neutrons/cm
3
) for  and  

 

                                      

                                 Fig. 3. Neutron density n(t) (neutrons/cm
3
)  for  and  

1.0a
1310b

01.0a
1110b
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                        Fig.4. Neutron density n(t) (neutrons/cm
3
) for  and  

           

                                   Fig.5. Neutron density n(t) (neutrons/cm
3
) for  and  

01.0a
1310b

003.0a
1110b
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                             Fig.6. Neutron density n(t) (neutrons/cm
3
) for  and  

 

The objective of this study was to develop an accurate and computationally efficient method 

(Explicit finite difference scheme) for solving time-dependent reactor dynamics equations 

with Newtonian temperature feedback. To test the developed solution and to prove the 

validity of the method for application purposes, a comparison with the other conventional 

methods indicates the superiority of the proposed explicit finite difference method (EFDM). 

 

6.5    Mathematical Model for Nonlinear Fractional Neutron Point Kinetics Equation 
10

 

 

The fractional calculus was first anticipated by Leibnitz, one of the founders of standard 

calculus, in a letter written in 1695. Now-a-days real physical problems are best modeled by 

Fractional Calculus. This calculus involves different definitions of the fractional operators viz. 

the Riemann- Liouville fractional derivative, Caputo derivative, Riesz derivative and 

                                                           
10 A. Patra and S. Saha Ray, “On the Solution of Nonlinear Fractional Neutron Point Kinetics Equation with 

Newtonian Temperature feedback reactivity”, Nuclear Technology (American Nuclear Society), Accepted. 

 

003.0a
1310b
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Grünwald- Letnikov fractional derivative [44, 82]. The non-integer order of calculus has 

gained considerable importance during the past decades mainly due to its applications in 

diverse fields of science and engineering.  

Here, we consider Grunwald- Letnikov definition of fractional derivative which is defined as 

                                                          (6.5.1) 

where        

                  and   ,        

 

Fractional neutron point kinetic equation is useful in the context of anomalous diffusion 

phenomena due to highly heterogeneous configuration in nuclear reactors.  The multi-group 

delayed fractional order  neutron point kinetics equations [83]
 

with Newtonian 

temperature feedback reactivity are the stiff nonlinear ordinary differential equations [22-24, 

32] which is presented as 

                           (6.5.2) 

,                                      (6.5.3) 

and                                       (6.5.4) 

where  the neutron density  

the reactivity as a function of time,  
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the fraction of i
th

 - group of delayed neutrons, 

 the decay constant of i
th

 -group of delayed neutrons, 

 the prompt neutron generation time, 

 the precursor concentrations of i
th

-group of delayed neutron, 

m = the total number of delayed neutrons group, 

the impressed reactivity variation, 

 the shutdown coefficient of the reactor system. 

6.6 Application of Explicit Finite Difference Method (EFDM) for solving Fractional 

order Nonlinear Neutron Point Kinetic Model 

 

Let us take the time step size h. Using the finite difference for time derivative, the numerical 

approximations of the eqs. (6.5.2) to (6.5.4), in view of the research work [13, 50, 75], have 

been obtained as 

              (6.6.1) 

,                                        (6.6.2) 

                                     (6.6.3) 

The above eqs. (6.6.1) - (6.6.3) leads to implicit numerical iteration scheme owing to the fact 

that explicit finite difference method is relatively simple and computationally fast. In this 

present work, we propose an explicit numerical scheme which leads from the time layer  

to  as follows 
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                                    (6.6.4) 

where  r-th approximation of neutron density at time , 

 with initial condition .  

 the precursor concentrations of i
th

-group of delayed neutron at time , 

 r-th approximation of feedback reactivity function, 

,  and ,  and . 

The main advantage of explicit finite difference method is that the method is relatively simple 

and easily computable. 

6.7 Numerical Results and Discussions for Fractional Nonlinear Neutron  Point Kinetic 

Equation with temperature feedback reactivity function 

 

In this case, the numerical scheme explicit finite difference is applied to solve the fractional 

order ( and ) point kinetic equations with delayed neutrons in presence of 

Newtonian temperature feedback reactivity for U
235

-graphite reactor. The Newtonian 

temperature feedback reactivity which is dependent on time and neutron density is given by

, where the first term represents the impressed reactivity variation and b 

presents the shutdown coefficient of the reactor system. The point kinetics equation with 

temperature feedback corresponds to a stiff system of nonlinear differential equations for the 

neutron density and delayed precursor concentrations. The computed solutions of the present 

point kinetics equations provide information on the dynamics of nuclear reactor operation in 
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presence of Newtonian temperature feedback reactivity. The following parameters of U
235

-

graphite reactor are used [76, 84] 

sec
-1

, sec
-1

, sec
-1

, sec
-1

, sec
-1

, 

sec
-1

, , , , , , ,

. The value of generation time is sec., a takes the values 0.1, 0.01 and b 

takes the values and . We have considered the values for fractional order  0.5, 

0.75, 1.25 and 1.5 respectively. If , the process is normal diffusion and when , 

then the diffusion process is anomalous diffusion. The fractional neutron point kinetics 

equation considering temperature feedback to reactivity with Newtonian temperature 

approximation is analyzed in this present paper. The numerical results obtained for neutron 

density of delayed neutrons in fractional order neutron point kinetics equation with feedback 

reactivity are introduced in Table-5 and with classical order in Table 6. The maximum 

peak for the neutron density can be observed from Figs. 7-14 in four cases of fractional order 

 and using in presence of and .  

 

The behavior of the neutron density after the peak in cited Figs. 7-14 indicates that the system 

asymptotically leads to equilibrium state. In Fig. 13, the second peak tries to get the 

equilibrium state and in Fig. 12 after 1.6 second the system follows equilibrium state. From 

Figs 8-14, it can be observed that the neutron density of delayed neutron tries to follow 

equilibrium behavior after a high density in first peak. The obtained results from explicit finite 

difference scheme for neutron density using temperature feedback reactivity have been 

compared with Generalization of the analytical exponential method (GAEM) [76] and Padé 

approximation method [77] for classical order . Moreover, the absolute errors of the 

proposed scheme with respect to Generalization of the analytical exponential method 

0127.01  0317.02  115.03  311.04  40.15  87.36 

00246.01  001363.02  001203.03  002605.04  00819.05  00167.06 

0064.0 5105 l

1110 1310 

1 10 

1

25.1,75.0,5.0 75.1 01.0a
1110b 1310b

1
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(GAEM) [76] and Padé approximation method [77] have been presented in Table 7. In our 

present research work, for the first time ever, we have been analysed the behaviour of the first 

peak of the neutron density in fractional order using temperature feedback reactivity. 

 

Table-5:     The neutron density n(t) at the first peak of U
235

- reactor with feedback reactivity 

for   fractional order point kinetic equation when step-size h=0.0001sec. 

a 

 

b 

 

Delayed Neutron at the first peak by 

Explicit Finite Difference Method 

                

Time of the first peak by Explicit 

Finite Difference Method 

      

 0.1 

  

 

 

 

    

  

0.0919     0.1391    0.3549    0.5144 

0.0939    0.1451    0.3833    0.5641 

 

0.01 

 

 

 

 

 

0.754      0.8938    1.377   1.702 

    0.763     0.917       1.4     1.832  

 

 

Table-6:   The neutron density n(t) (neutrons/cm
3
) at the first peak of U

235
- reactor with 

feedback reactivity taking step-size h=0.0001s for classical order  

a b Delayed Neutrons at the first peak Time of the first peak 

GAEM 

[76] 

Padé 

[77] 

Explicit 

Finite 

Difference 

GAEM 

 [76] 

Padé 

[77] 

Explicit 

Finite 

Difference 

5.0 75.0 25.1 5.1 5.0 75.0 25.1 5.1

1110

1310

1110042.2  1110138.2  1110862.2  1110113.3 

1310548.2  1310592.2 
1310420.3  13107511.3 

1110 1010401.1  1010690.1  10104605.2 
10108465.2 

1310 12107847.1 
1210113.2  1210039.3  12104975.3 

1



152 
 

Method Method 

0.1  

 

 

 

 

 

 

 

0.224 

0.238 

0.224 

0.238 

0.2245 

0.2385 

0.01  

 

 

 

 

 

 

 

1.100 

1.149 

1.100 

1.149 

1.1014 

1.150 

 

Table-7:   Absolute Errors for neutron density n(t) (neutrons/cm
3
) at the first peak of U

235
- 

reactor in presence of feedback reactivity taking step-size h=0.0001s for classical order  

a b Delayed Neutrons at the first 

peak 

Time of the first peak 

  

Absolute  Error 

of Present 

method 

(EFDM)  with 

regard to 

GAEM  

[76]
 

 

Absolute  

Error of 

Present 

method 

(EFDM)  with 

regard to 
 

 Padé [77]
 

 

Absolute  

Error of 

Present 

method 

(EFDM)  with 

regard to 

GAEM [76] 

Absolute  Error of 

Present method 

(EFDM)  with  

regard to  Padé 

 [77]
 

 

0.1  

 

 

 

 

 

0.0005 

0.0005 

 

0.0005 

0.0005 

 

0.01    0.0014 0.0014 

1110

1310

11104202.2 

13109057.2 

11104197.2 

13109055.2 

111042275.2 

13109037.2 

1110

1310

10100103.2 

12104882.2 

10100107.2 

12104890.2 

101002264.2 

12105043.2 

1

1110

1310

111000255.0 

1310002.0 

111000305.0 

13100018.0 

1110 101001234.0  10100119.0 
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   0.001 0.001 

 

 

 

                  

Fig. 7. Neutron Density of delayed neutron for  with and  

      

Fig. 8. Neutron Density of delayed neutron for  with and  

1310 12100161.0  12100153.0 

5.0 01.0a 1110b

5.0 01.0a 1310b
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Fig. 9. Neutron Density of delayed neutron for  with and  

 

                       

Fig. 10. Neutron Density of delayed neutron for  with and  

 

75.0 01.0a 1110b

75.0 01.0a 1310b
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Fig. 11. Neutron Density of delayed neutron for  with and  

               

Fig. 12. Neutron Density of delayed neutron for  with and  

                    

Fig.13. Neutron Density of delayed neutron for  with and  

25.1 01.0a 1110b

25.1 01.0a 1310b

5.1 01.0a 1110b
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   Fig. 14. Neutron Density of delayed neutron for  with and  

6.8 Computational Error Analysis for Fractional order Nonlinear Neutron Point 

Kinetic Equation 

 

 Grunwald-Letnikov fractional derivative presented in eq. (6.5.1) is important for discretizing 

fractional derivative   numerically in a simple and efficient way: 

, where p is the order of approximation. 

The truncation error in eq. (6.6.1) is  

   

Again, the truncating error in eq. (6.6.2) is  
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And finally the truncating error in eq. (6.6.3) is 

.  

Therefore, we finally get the total truncation error for eqns. (6.6.1)-(6.6.3) as follows 

= + +   

Hence, we obtain the computational error as and eventually it tends to zero as . 

Moreover, it shows that the computational overhead is less for the proposed explicit finite 

difference scheme. 

6.9      Conclusion 

The objective of this study is to develop an accurate and computationally efficient method for 

solving time-dependent reactor dynamics equations. The numerical solutions of integer and 

fractional order nonlinear point kinetic equations with multi-group of delayed neutrons are 

presented. The explicit finite difference method constitutes an easy algorithm that provides the 

results with sufficient accuracy for most applications and is being both conceptually and 

structurally simple.   The method is simple, efficient to calculate and accurate with fewer 

computational error. Results of this method are compared with other available methods from 

which it can be concluded that the method is simple and computationally fast. To assess utility 

of the developed technique, different cases of reactivity were studied. 

 

The numerical solutions for both classical and fractional order point kinetic equations [83] 

with multi-group of delayed neutrons are presented in presence of Newtonian Temperature 

feedback reactivity. To predict the dynamical behavior for U
235

 reactors with time-dependent 

reactivity function and to obtain the solution of multi-group delayed neutron point kinetic 
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equation [67, 71], this numerical scheme (EFDM) is simple and efficient method. This 

numerical technique gives a good result for the nonlinear neutron point kinetic equations with 

time-dependent reactivity function. The method is simple, efficient to calculate and accurate 

with fewer computational error. The obtained results exhibit its justification. In Table 6, the 

solutions of classical order ( ) point kinetic equations using Newtonian temperature 

feedback reactivity have been compared with the results available in [76, 77]. From Table 6, it 

can be observed that there is a very good agreement of results between the present method and 

the methods viz. Generalized analytical exponential method and also Padé approximation 

method applied in [76, 77]. The authors have cited the computed absolute errors for their 

proposed numerical scheme with regard to the other reference results exist in open literature in 

Table 7 for classical integer order (i.e. ). In this aspect, it can be concluded that the 

present method is very simple and efficient technique. The present analysis exhibits that the 

featured method is applicable equally well to nonlinear problem in which the reactivity 

depends on the neutron density through temperature feedback. This research work shows the 

applicability of the explicit finite difference method for the numerical solution of nonlinear 

classical and fractional order neutron point kinetic equation. The results representing the 

numerical approximate solutions of neutron density involving feedback reactivity have been 

cited graphically.  

 

   

 

 

 

1

1
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CHAPTER 7 
  
 
 
 
7.1  Introduction 

 

The numerical solution of point kinetics equation with a group of delayed neutrons is useful in 

predicting neutron density variation during the operation of a nuclear reactor. The continuous 

indication of the neutron density and its rate of change are important for the safe startup and 

operation of reactors. The Haar wavelet operational method (HWOM) has been proposed to 

obtain the numerical approximate solution of neutron point kinetic equation appeared in 

nuclear reactor with time-dependent and independent reactivity function. The present method 

has been applied to solve stiff point kinetics equations elegantly with step, ramp, zig-zag, 

sinusoidal and pulse reactivity insertions. This numerical method has turned out as an accurate 

computational technique for many applications. In dynamical system of nuclear reactor, the 

point-kinetic equations are the coupled linear differential equations for neutron density and 

delayed neutron precursor concentrations. These equations which expresses the time 

dependence of the neutron population and the decay of the delayed neutron precursors within 

a reactor are first order and linear, and essentially describe the change in neutron population 

within the reactor due to a change in reactivity. As reactivity is directly related to the control 

of the reactor, so it is the important property in a nuclear reactor. For purpose of safety 

analysis and transient behavior of the reactor, the neutron population and the delayed neutron 

precursor concentration are important parameters to be studied. An important property of the 

kinetics equations is the stiffness of the system. The stiffness is a severe problem in numerical 

solutions of the point kinetics equations and it necessarily requires the need for small time 

steps in a computational scheme. 
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Aboanber and Nahla [77] presented an analytical Padé approximate solution for group of six 

delayed neutrons with constant, ramp and temperature feedback reactivity insertions. Again 

Aboanber and Nahla [85, 86] presented the solution of a point kinetic equation with 

exponential mode analysis and generalization of analytical inversion method. Kinard and 

Allen [53] described the numerical solution based on PCA (Piecewise Constant 

Approximation) for the point kinetic equations in nuclear reactor dynamics. Nahla [76-79] 

presented the analytical methods to solve nonlinear point kinetic equations and generalized 

power series solution for neutron point kinetic equation has been proposed by Hamada [87]. A 

numerical integral method that efficiently provides the solution of the point kinetics equations 

by using the better basis function (BBF) for the approximation of the neutron density in one 

time step integrations has been described and investigated by Li et al [80]. Chao and Attard 

[81] proposed the stiffness confinement method (SCM) for solving the kinetic equations to 

overcome the stiffness problem in reactor kinetics. 

 

Quintero-Leyva [63] has also solved the neutron point kinetic equation by a numerical 

algorithm CORE for a lumped and temperature feedback. Using very simple technique like 

backward Euler finite difference method (BEFD), Ganapol [88] has also solved neutron point 

kinetic equation. Mc. Mohan and Pierson [64] has also solved neutron point kinetic equation 

using Taylor series method (TSM) involving reactivity functions. Again Picca et al. [89] has 

solved neutron point kinetic equation by applying enhanced piecewise constant approximation 

(EPCA) involving both linear and non-linear reactivity insertion. 

 

Wavelet analysis is a newly developed mathematical tool for applied analysis, image 

manipulation and numerical analysis. Wavelets have been applied in numerous disciplines 
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such as image compression, data compression, and many more [90, 91]. Among the different 

wavelet families mathematically most simple are the Haar wavelets [92]. 

Haar functions have been used from 1910 when they were introduced by the Hungarian 

mathematician Alfred Haar [93]. The Haar transform is one of the earliest examples of what is 

known now as a compact, dyadic, orthonormal wavelet transform. The Haar function, being 

an odd rectangular pulse pair, is the simplest and oldest orthonormal wavelet with compact 

support. In the meantime, several definitions of the Haar functions and various generalizations 

have been published and used. They were intended to adapt this concept to some practical 

applications, as well as to extend its application to different classes of signals. Thanks to their 

useful features and possibility to provide a local analysis of signals, the Haar functions appear 

very attractive in many applications as for example, image coding, edge extraction, and binary 

logic design. 

  

Haar wavelets are made up of pairs of piecewise constant functions and mathematically the 

simpliest orthonormal wavelets with a compact support. Due to the mathematical simplicity 

the Haar wavelets method has turned out to be an effective tool for solving differential and 

integral equations. The Haar wavelets have the following features: (1) Orthogonal and 

normalization, (2) having closed support and (3) the simple expression [94, 95]. Due to its 

simplicity, the Haar wavelets are very effective for solving differential and integral equations. 

It is worthwhile attempt to develop the numerical scheme for the solution of the point reactor 

kinetic equations. The importance of this scheme is that it can usually be applied to more 

realistic mathematical or physical models. Therefore, the main focus of the present paper is 

the application of Haar wavelet technique for solving the problem of coupled point kinetic 

equations with reactivity function in nuclear reactor dynamics. 
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In this present work, Haar wavelet operational method for solving the point kinetics equation 

with a group of six-delayed neutrons has been applied. The obtained numerical approximation 

results of this method are then compared with the referenced methods for different reactivities. 

In the present investigation, the main attractive advantage of this computational numerical 

method is its simplicity, efficiency and applicability. 

 

7.2   Haar Wavelets 

 

Haar wavelets are the simplest wavelets among various types of wavelets. They are step 

functions on the real line that can take only three values -1, 0 and 1. The method has been 

used for being its simpler, fast and computationally attractive feature. The Haar functions are 

the family of switched rectangular waveforms where amplitudes can differ from one function 

to another function. Usually the Haar wavelets are defined for the interval but in 

general case , we divide the interval [A, B] into m equal subintervals; each of width

. In this case, the orthogonal set of Haar functions are defined in the interval 

[A, B] by [95] 

                                            

                    and                                        (7.2.1) 
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                         , 

, and J  is a positive integer, called the maximum level of resolution. Here, j 

and k represent the integer decomposition of the index i. i.e. ,  and 

 

7.3  Function Approximation and Operational Matrix of the general order Integration 

 

 Any function  can be expanded in Haar series as 

,        where  .                              (7.3.1) 

If  is approximated as piecewise constant in each subinterval, the sum in eq. (7.3.1) may 

be terminated after m terms and consequently we can write discrete version in the matrix form 

as 

 ,                             (7.3.2) 

for collocation points  ,                        (7.3.3) 

where  and are the m-dimensional row vectors. 

 Here H is the Haar wavelet matrix of order m defined by , i.e. 

,                          (7.3.4) 

where  are the discrete form of the Haar wavelet bases. 
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Operational matrix of the general order integration 

The integration of the  can be approximated by Chen and Hsiao 

[96]  

,                           (7.3.5) 

where Q called as Haar wavelet operational matrix of integration which is a square matrix of 

m-dimension. To derive the Haar wavelet operational matrix of the general order of 

integration, we recall the fractional integral of order which is defined by Podlubny [44] 

,    ,  R
 +

  ,                       (7.3.6) 

where R
 +  

is the set of positive real numbers. 

The Haar wavelet operational matrix  for integration of the general order  is given by 
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                          (7.3.9) 

where 

, 

, 

, 

for , and J is, a positive integer, called the maximum level of resolution. 

Here, j and k represent the integer decomposition of the index i. i.e. ,  and 

 

7.4 Application of Haar wavelet Operational Method for solving Neutron Point Kinetics 

Equation 
11

 

The point reactor kinetic equations without effect of the extraneous neutron source are given 

by [24, 32] 

                                             (7.4.1) 

                   ,                                          (7.4.2) 

                                                           
11

 A. Patra and S. Saha Ray, 2014, “A Numerical Approach based on Haar wavelet operational method to solve 

Neutron Point Kinetics Equation involving Imposed Reactivity Insertions”, Annals of Nuclear Energy 

(Elsevier), Vol. 68, pp. 112-117. 
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with the initial condition  and ,  for   

where  is the time-dependent neutron density,  is the  precursor density,  is the 

time-dependent reactivity function,  is the  delayed fraction and is the total 

delayed fraction,  is the neutron generation time, and  is the  group decay constant. 

Let us divide the interval [A, B] into m equal subintervals; each of width . We 

assume, 

                                      (7.4.3) 

Integrating eq. (7.4.3) from 0 to t, we can derive that  

                                                                                               (7.4.4) 

where  is given by in eq. (7.3.9) for . 

Next, we consider  

                           (7.4.5) 

From eq. (7.4.5), we can again derive that .                               (7.4.6) 

Here also  is given by in eq. (7.3.9) for .  

Now, we substitute all these eqs. (7.4.3)-(7.4.6) together in eq. (7.4.1) and (7.4.2), we 

obtained the following numerical scheme as [97] 
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and  

                      (7.4.8) 

By considering all the wavelet collocation points , , we may 

obtain the system of m-number of algebraic equations. By solving these system of equations 

using any mathematical software, we can obtained the Haar coefficients  and  . Then we 

can find the approximate solution for neutron density . The main advantage of the Haar 

wavelet operational method is that it always converts the system of equations into set of 

algebraic equations which can be easily solvable by any mathematical software. The 

limitation of this wavelet method is only that it requires high level of resolution for large time 

duration. 

7.5 Numerical Results and Discussions 

 

In this chapter, the Haar wavelet operational method has been used for numerical solution of 

the point reactor kinetic Eq. (7.4.1) and (7.4.2). In the present analysis, the above numerical 

method has been applied to solve the point kinetics equations with group six delayed neutrons. 

The four types of cases involving step, ramp, zig-zag and sinusoidal reactivates have been 

presented. The values for and and neutron generation time l for the reactor have been 

taken from Ganapol [88]. All results started from equilibrium conditions with neutron density 

 and  of delayed neutron precursors density . In the following, 

each case will be discussed separately. 

7.5.1  Step Reactivity Insertions 
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To check the accuracy of Haar wavelet method, it has been applied to the thermal reactor with 

the following parameters obtained from Ganapol [88]: , , 

, , , , 

,  and 

. The obtained results justify that Haar wavelet operational method is an 

accurate and efficient computational technique for solving point kinetic equation using step 

reactivity insertions.  

Table 1 represents the solution for neutron density involving step reactivity -1.0$, -0.5$, +0.5$ 

and +1.0$ using Haar wavelet operational method (HWOM) and consequently the obtained 

results have been compared with backward Euler finite difference method (BEFD) [88] taking 

level of resolution J = 8.  

Table-1:   Neutron density n(t) of the thermal reactor with step reactivity insertions 

 ($)                   t (s)                         HWOM with                                BEFD [88] 

                             0.1                          5.20563444767E-01                            5.205642866E-01                        

 -1.0                     1.0                          4.33333406022E-01                            4.333334453E-01                         

                             10                           2.36110396447E-01                           2.361106508E-01  

                            100                        2.86673059802E-02                            2.866764245E-02 

                              0.1                        6.989247254605E-01                         6.989252256E-01                          

   -0.5                    1.0                        6.070535313626E-01                          6.070535656E-01                           

                              10                        3.960774713631E-01                          3.960776907E-01                           

                             100                       7.158236238460E-02                          7.158285444E-02 

1
1 .sec0127.0  1

2 .sec0317.0 

1
3 .sec115.0  1

4 .sec311.0  1
5 .sec40.1  1

6 .sec87.3  0075.0

,00141.0,0015975.0,000285.0 321   0030525.04  000195.0,00096.0 65  

.sec0005.0l

 8
2m



169 
 

                              0.1                       1.53311290367E+00                          1.53311264E+00                                            

  +0.5                     1.0                       2.51149468921E+00                          2.511494291E+00                            

                              10                        1.42151199462E+01                          1.421502524E+01   

                              100                      8.05861718287E+07                          8.006143562E+07 

                              0.1                       2.51576625250E+00                         2.515766141E+00                         

 +1.0                      0.5                       1.036255172721E+01                       1.036253381E+01                          

                              1.0                       3.218390468938E+01                       3.218354095E+01 

                              10                        3. 282476942940E+09                      3.246978898E+09                             

 

7.5.2  Ramp Reactivity Insertions 

In this case, Haar wavelet method has applied to the thermal reactor with the following 

parameters obtained from Nahla [78, 79] and Ganapol [88]: , 

, , , , , ,

,

. Two cases of ramp reactivity, one is positive and another is negative ramp, are 

introduced. 

7.5.2.1 Positive ramp reactivity 

Here, the neutron density of the thermal reactor with positive ramp reactivity  is 

introduced. The numerical solution of neutron density with positive ramp reactivity obtained 

from HWOM with m=1024 number of collocation points cited in Table 2. Also Table 2 

represents the comparison results with Taylor series method (TSM) [64], Better Basis function 

(BBF) [80], stiffness confinement method (SCM) [81] and with backward Euler finite 

difference method (BEFD) [88]. It can be observed that there is a good agreement between the 

1
1 .sec0127.0 
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obtained results and the other available results. More accurate results for large time can be 

obtained with increase of collocation points. 

Table-2:    The neutron density n(t) of the thermal reactor with  positive ramp reactivity 

(+0.1$/s)  

Time (s)      TSM[64]          BBF[80]            SCM[81]          HWOM with m =1024         BEFD[88] 

   

   2.0          1.3382E+00       1.3382E+00       1.3382E+00        1.338200011E+00           1.338200050E+00 

   4.0          2.2284E+00       2.2284E+00       2.2284E+00         2.228441300E+00          2.228441897E+00 

   6.0         5.5822E+00        5.5820E+00       5.5819E+00         5.582043255E+00         5.582052449E+00 

   8.0         4.2789E+01       4.2786E+01        4.2788E+01         4.278584501E+01         4.278629573E+01 

  10.0        4.5143E+05       4.5041E+05        4.5391E+05         4.522953180E+05         4.511636239E+05 

11.0            N.A.                     N.A.                  N.A.              1.828233653E+16         1.792213607E+16 

 

7.5.2.2 Negative ramp reactivity 

The neutron density of the thermal reactor with a negative ramp reactivity, , has 

been exhibited in Table 3. Table 3 cites the solution for neutron density with negative ramp 

reactivity obtained from HWOM and the comparison with Taylor series method (TSM) [64], 

generalized analytical exponential method [76] and Padé approximation method [77] taking 

m=1024 number of collocation points. Thus, it can be also observed that there is a good 

agreement between the obtained results and the other available results.  

tt 10.)( 
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Table-3:    The neutron density n(t) of the thermal reactor with  negative ramp reactivity (-

0.1$/s)  

Time (s)        TSM[64]           GAEM[76]           Padé [77]                   HWOM with m =1024 

 

2.0               7.91955E-01          7.92007E-01        7.92007E-01               7.920047444289586E-01 

 

4.0               6.12976E-01          6.13020E-01        6.13018E-01                6.13015745981558E-01                   

 

6.0             4.74027E-01         4.74065E-01        4.74058E-01                4.74056567958244E-01 

 

8.0             3.69145E-01         3.69172E-01         3.69169E-01               3.69167718232784E-01 

 

10.0           2.90636E-01         2.90653E-01        2.90654E-01                 2.90653117814878E-01 

 

11.0                  N.A.                        N.A.                  N.A.                       2.59129648117922E-01 

 

 

7.5.3  Zig-zag Reactivity 

In this case, a zig-zag reactivity function for the thermal reactor has been considered as 

follows 

 

where the kinetic parameters are taken from Picca et al [89] 
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, , , , ,

, ,

. 

Table 4 represents the numerical solution for neutron density involving zig-zag reactivity 

obtained from Haar wavelet operational method (HWOM) by considering level of resolution J 

= 8. Simultaneously the obtained results have been also compared with enhanced piecewise 

constant approximation (EPCA) [89].  

Table-4:     The neutron density n(t) of the thermal reactors with zig-zag ramp reactivity   

Time (s)                     EPCA[89]                           HWOM with m=256 

0.5                       1.721422424E+00                     1.721419616600E+00 

1                          1.211127414E+00                     1.211121251790E+00 

1.5                       1.892226142E+00                     1.892197202560E+00 

2                          2.521600530E+00                     2.521593863891E+00 

10                        1.204710536E+01                     1.204676703380E+01 

100                      6.815556889E+07                     6.792200468046E+07 

 

7.5.4  Sinusoidal Reactivity Insertion 
12

 

7.5.4.1   For group of one delayed neutron 

                                                           
12

 A. Patra and S. Saha Ray, “Numerical Simulation based on Haar Wavelet Operational Matrix method for 

solving Point Kinetics Equations involving Sinusoidal and Pulse reactivity”, Annals of Nuclear Energy 

(Elsevier), Communicated. 
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To check the accuracy of Haar wavelet method with nonlinear reactivity insertion, it is applied 

to the fast reactor with the following parameters obtained from Ganapol [88]: , 

, , . The reactivity is a time-dependent function of 

the form . The numerical results obtained for neutron density using sinusoidal 

reactivity have been presented in Table-5. The obtained results justify that Haar wavelet 

operational method is an accurate and efficient computational technique for solving point 

kinetic equation in presence of nonlinear sinusoidal reactivity insertion. It can be observed 

that there is a good agreement between the obtained results and the other available method 

results [88]. More accurate results for large time can be obtained with increase of collocation 

points viz. high level of resolution. Fig. 1 cites the neutron density for sinusoidal reactivity 

obtained by Haar wavelet method. 

Table-5:    The neutron density n(t) of the fast reactor with sinusoidal reactivity   

               Time (s)                     BEFD [88]                          HWOM with m=256 

 

10                      2.065383519E+00                    2.065379972801E+00 

20                      8.854133921E+00                    8.854133966731E+00 

30                      4.064354222E+01                   4.064695450288E+01 

  40                       6.135607517E+01                   6.1364077105064E+01 

               50                        4.610628770E+01                     4.6114226208650E+01 

  60                      2.912634840E+01                    2.9133486699766E+01 

1
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  70                      1.895177042E+01                    1.8958245424550E+01 

  80                      1.393829211E+01                   1.3944612597243E+01 

  90                      1.253353406E+01                    1.2540632819535E+01 

  100                     1.544816514E+01                    1.5480673682222E+01 

 

                

Fig. 1. Neutron density for sinusoidal reactivity 

 

7.5.4.2 For group of six delayed neutron 

To check the accuracy of Haar wavelet method, it is applied to the thermal reactor with the 

following parametres from McMohan and Pierson [64] and Patra and Saha Ray [66]:    

,

,

, ,  The reactivity is a time-dependent function of the form

1
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. The numerical results obtained for neutron density using sinusoidal 

reactivity have been presented in Table-6. The obtained results justify that Haar wavelet 

method is an efficient computational technique for solving point kinetic equation using 

sinusoidal reactivity insertions. It can be observed that there is a good agreement between the 

obtained results and the other available method results [63, 64]. More accurate results for 

large time can be obtained with increase of collocation points. Fig. 2 cites the neutron density 

for sinusoidal reactivity obtained by Haar wavelet method. 

Table-6:   Results obtained for neutron density n(t) with sinusoidal reactivity function 

Time (s) Taylor 

[64] 

CORE 

[63] 

Haar wavelet 

operational method 

with collocation 

points m=32 

 

2.0 

4.0 

6.0 

8.0 

10.0 

 

11.3820 

92.2761 

16.9149 

8.8964 

13.1985 

 

10.1475 

96.7084 

16.9149 

8.8964 

13.1985 

 

11.3131 

90.3934 

15.6511 

8.52265 

13.1255 
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Fig.2. Neutron Density for sinusoidal reactivity calculated with the Haar Wavelet Method 

7.5.5  Pulse Reactivity Insertion 

In the present case, we consider the effect of pulse reactivity function [89] 

  in nuclear reactor for one group delayed neutron i.e. M=1 and the 

parameters are used as follows from [89] : , , neutron source 

,  The results for neutron density using pulse reactivity is cited in Table 7 

and illustrated in Fig. 3.  It can be observed that there is a good agreement between the 

obtained results and the other available method results [89, 98]. This curve has the expected 

shape for pulse reactivity. Here, we consider the number of collocation points m=32.  

Table-7:   Results obtained for neutron density n(t) with pulse reactivity function 

Time (s) EPCA 

[89] 

CATS 

[98] 

Present Haar 

wavelet method 














1,0

1),(4
)(

22

t

te
t

t


1
1 .sec077.0    006502.01

0q .sec105 4l



177 
 

0.5 

0.8 

1 

2 

3 

 

9.38004427E+06 

1.69477616E+08 

1.075131704E+08 

4.834117624E+06 

4.833903589E+06 

9.380044272E+06 

1.694776161E+08 

1.075131704E+08 

4.834106369E+06 

4.833892339E+06 

9.383312098E+06 

1.6963295571E+08 

1.07551610768E+08 

4.8410195087E+06 

4.8516408749E+06 

 

 

       

Fig. 3. Neutron density calculated using the Haar Wavelet Method in response to pulse 

reactivity. 

 

7.6 Convergence Analysis and Error estimation 

In this section, we have introduced the error analysis for the Haar wavelet method. 

Lemma: 
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Let, be a continuous function defined in (0,1]. Then the error norm at level 

resolution satisfies the following inequalities 

,  

where ,  and . Here M is a positive number related to the level 

resolution of the wavelet given by . 

 Proof: 

,   

where   ,      for  
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Therefore, applying Mean Value Theorem 

 

. 

   where    and  

Consequently, , 

applying Lagrange’s Mean Value Theorem, where .  

This implies, 

  

        , since 
 

         
 

Therefore                                                         

       
                         (7.6.1) 

From eq. (7.6.1), it can be observed that the error bound is inversely proportional to the level 

of resolution J. So, more accurate result can be obtained by increasing the level of resolution.  
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7.7 Conclusion 

A numerical approximate solution has been presented in this chapter to explore the behavior 

of neutron density using reactivity functions. It can be seen that the proposed numerical 

method Haar Wavelet Operational Method certainly perform quite well. To predict the 

dynamical behavior for thermal and fast reactors with constant and time-dependent reactivity 

function and to obtain the solution of neutron point kinetic equation, the numerical method 

viz. Haar wavelet operational method is undoubtedly very simple and efficient. This 

numerical technique provides a good result for the point reactor kinetic equations with a 

constant and time-dependent reactivity function. Results of this method have been compared 

with other available methods exist in open literature in order to show justification of the 

present method. The cited comparisons revealed that the obtained numerical solutions agree 

well with the other solutions in open literature.  

The accuracy of the obtained solutions are quite high even if the number of collocation points 

is small. By increasing the number of collocation points, the error of the approximation 

solution rapidly decreases. In a systematic comparison with other existing methods, it may be 

concluded that the present method is simple and efficient. This method is applied to different 

types of reactivity in order to check the validity of the proposed method. Moreover, the 

obtained approximate results have been also compared with other available numerical results 

exist in open literature.  It manifests that the results obtained by the Haar Wavelet Operational 

Method are in good agreement with other available results even for large time range and it is 

certainly simpler than other methods in open literature. Haar wavelets are preferred due to 

their useful properties such as simple applicability, orthogonality and compact support. Haar 

Wavelet Operational Method needs less computational effort as the major blocks of Haar 

Wavelet Operational Method are calculated only once and used in the subsequent 
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computations repeatedly. Simply availability and fast convergence of the Haar wavelets 

provide a solid foundation for highly linear as well as nonlinear problems of differential 

equations. This proposed method with far less degrees of freedom and small computational 

overhead provides better solution. It can be concluded that this method is quite suitable, 

accurate, and efficient in comparison to other classical methods. The pertinent feature of the 

method is that the errors for solutions may be reduced for large value of m viz. m=1024 or 

more number of collocation points. The main advantage of this method is that it transfers the 

whole scheme into a system of algebraic equations by virtue of it the computation is very easy 

and simple in compared to other methods. This paper shows the applicability of the Haar 

wavelet method for the numerical solution of neutron point kinetic equation in nuclear reactor 

dynamics. The obtained results manifest plausibility of the Haar wavelet method for neutron 

point kinetic equations.  
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CHAPTER 8 
   

 

  

8.1     Introduction 

 

The neutron transport denotes the study of the motions and interactions of neutrons with atom 

nuclei of the medium. The fractional neutron transport equation represents a linear case of the 

Boltzmann equation and it has many applications in physics as well as in engineering. The 

neutron transport model in a nuclear reactor is anomalous diffusion process. Anomalous diffusion is 

different from the normal diffusion and is characterized by features like, slower or faster movement of 

diffusing particles. A useful characterization of the diffusion process is again through the scaling of the 

mean square displacement with time, which can be defined as 1,~)(2 ttx .  Diffusion is then 

classified through the scaling index γ. The case γ = 1 is normal diffusion, all other cases are termed 

anomalous. The cases γ > 1 form the family of super-diffusive processes, including the particular case 

γ = 2, which is called ballistic diffusion, and the cases γ < 1 are the sub-diffusive processes.  Hence, 

the solution of the fractional order transport model characterizes the dynamics of an 

anomalous process [99-101]. 

 

The motivation of this research work is to solve a typical problem of the mathematical-

physics: the solving a neutral particle transport equation that has numerous applications in 

physics [102, 103]. In nuclear reactor, neutrons are generated by fission of the nucleus and 

they are named as fast neutrons with an average speed equal to m/s. In the thermal 

nuclear reactor, fast neutrons are subjected to a slowness process, decreasing their energy until 

they are in a state of equilibrium with the other atoms in the environment. The main goal in 

reactor theory is to find neutron profile within the nuclear reactor core, and hence the power 

7102
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distribution. The flux profile can be mathematically identified by the solution of an integro-

differential equation known as neutron transport equation. 

Integro-differential equations (IDEs) have many applications in different fields of mechanical 

[104], nuclear engineering, chemistry, astronomy, biology, economics, potential theory and 

electrostatics. An exact solution of this integro-differential equation was found only in the 

particular cases. In many cases analytical solutions of IDEs is unwieldy task; therefore our 

aim is focused on exploring accurate and efficient numerical method [105].  

 

In this study, we consider a linear form of Boltzmann equation with a source function of the 

form . To obtain the solution of this stationary transport 

equation, we have applied two-dimensional Haar wavelet transform method. Some numerical 

examples illustrate the advantage of this method applied to stationary transport equation. 

Analysis of wavelet theory is a new branch of mathematics and widely applied in signal 

analysis, image processing and numerical analysis etc. [106, 107]. Among the different 

wavelet families, mathematically most simple are the Haar wavelets [108]. In 1910, Alfred 

Haar introduced the notion of wavelets. Haar wavelets have the properties of orthogonality 

and normalization having close support and the simple expression [94, 95, 97]. Due to its 

simplicity, the Haar wavelets are very efficient and effective tool for solving both differential 

and integral equations. 

8.2 Formulation of Neutron Transport Equation model 

                        (8.2.1) 

with  
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where total cross-section;  with are the components of differential 

scattering cross section,  are the Legendre polynomial of degree k and source 

function. 

Here, we consider the integro-differential equation for stationary case of transport theory 

[102] by considering 1t ,   and ),(2)( xfxq   in eq. (8.2.1), which yields the 

integral-differential equation for the stationary case of transport theory [103] 

,                         (8.2.2) 

,  

with the following boundary conditions: 

if   and if                          (8.2.3) 

where is the neutron density which migrate in a direction which makes an angle with 

the x-axis and ;  is a given source function. 

Now, we split the eq. (8.2.2) into two equations using the following notations 

 if  and ),(   x  if                         (8.2.4) 

By denoting, , we can obtain  

 

In view of eq. (8.2.4), the eq. (8.2.2) can be written as 
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 for                        (8.2.5) 

 for                       (8.2.6) 

with the boundary conditions , . 

Adding and subtracting the eqs. (8.2.5) and (8.2.6) and then introducing the following 

notations, we obtain 

, , and                         (8.2.7) 

We also obtain the following system 

,                           (8.2.8) 

                                (8.2.9) 

along with the following boundary conditions 

                            (8.2.10) 

Eliminating the value of v from eqs. (8.2.8) and (8.2.9), we rewrite the problem (8.2.8)-

(8.2.10) in the following form 

                       (8.2.11) 

,                    (8.2.12) 
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,                         (8.2.13) 

where . 

8.3   Mathematical model of the stationary neutron transport equation in a homogeneous 

isotropic medium 

Let us consider the stationary transport equation 

                         (8.3.1) 

where                                     (8.3.2) 

with be an odd function and  be an even function.  

The equation is accompanied by boundary conditions: 

if   and if  

According to the notations introduced in eq. (8.2.7), the functions g and r can be obtained as 

  and                          (8.3.3) 

and u satisfies the equation 
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.                         (8.3.6) 

In particular case, we consider the source function 

 

where  

 and . 

According to eqs. (8.3.3), the functions g and r will be  

  and    

and u satiesfies the equation 

                        (8.3.7) 

The boundary conditions become now 

,                          (8.3.8) 

Here, in this case the exact solution is and .  
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8.4   Application of two-dimensional Haar wavelet collocation method to solve stationary 

neutron transport equation
13

 

Let us divide the intervals and  into m equal subintervals each of width and 

respectively. We assume, 

                         (8.4.1) 

Integrating eq. (8.4.1) two times from 0 to x, we can obtain 

                          (8.4.2) 

where  is given by in eq. (7.3.7) for . 

Substitute in eq. (8.4.2), we can obtain 

 .                             (8.4.3) 

Similarly at the boundary , we have 

                         (8.4.4) 

Next, together with eq. (8.4.3) and (8.4.4), we have 

                        (8.4.5) 

                                                           
13 A. Patra and S. Saha Ray, 2014. “Two-dimensional Haar wavelet Collocation method for the solution of 

Stationary Neutron Transport Equation in a Homogeneous Isotropic medium”, Annals of Nuclear Energy 

(Elsevier), 70, pp. 30-35. 
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Now, by using eqs. (8.4.3) and (8.4.5) in eq. (8.4.2), we can obtain the approximate solution 

                 (8.4.6) 

In view of conditions (8.2.2) and (8.3.8), we assume the boundary conditions  

  and                            (8.4.7) 

Now by putting eqs. (8.4.7) into eq. (8.4.6), we have 

                                  (8.4.8) 

Then by using eq. (8.4.1) and (8.4.8) into eq. (8.3.7), we obtain the numerical scheme as  
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where          

By considering all the wavelet collocation points  for and 

 for , we may obtain the system of -number of algebraic 

equations involving unknown coefficients  . By solving these system of equations using 

any mathematical software, we can obtained the Haar coefficients  . Hence we can obtain 

the approximate solution for neutron density or  for stationary neutron transport 

equation. 

8.5   Numerical results and discussions for stationary integer-order neutron transport 

equation 

Let us consider the numerical example for stationary neutron transport equation [103] 

 

where  and  with boundary conditions 

. 

We obtain the numerical approximate solutions for neutron density for  and with = 

0.2, 0.4, 0.6 and 0.8. Here, we compare the numerical results with the exact solutions and the 

absolute errors thus obtained are shown in Tables 1-4. Figures 1-7 cite the graphical 

comparison between the exact and numerical solutions for different values of x and . Here, 

we have considered m=16 and m=32. 
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Table 1: Numerical solution for neutron density at   

 2.0   

x  
eapproximatu  at 

16m  

 

eapproximatu  at 

32m  

 

exactu  Absolute 

Error 

for 16m  

Absolute 

Error 

for 32m  

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0 

0.0145110 

0.0276062 

0.0379918 

0.0446648 

0.0469623 

0.0446648 

0.0379918 

0.0276062 

0.0145110 

 

0 

0.0126787 

0.0241160 

0.0331925 

0.0390202 

0.0410283 

0.0390202 

0.0331925 

0.0241160 

0.0126787 

0 

0 

0.0123607 

0.0235114 

0.0323607 

0.0380423 

0.04 

0.0380423 

0.0323607 

0.0235114 

0.0123607 

 

0 

0.00215028 

0.00409481 

0.00563116 

0.00662251 

0.00696235 

0.00662251 

0.00563116 

0.00409481 

0.00215028 

 

0 

0.000318068 

0.000604573 

0.000831859 

0.000977905 

0.001028320 

0.000977905 

0.000831859 

0.000604573 

0.000318068 

 

 

Table 2: Numerical solution for neutron density at   

 4.0   

x  
eapproximatu  at 

16m  

 

eapproximatu  at 

32m  

 

exactu  Absolute 

Error 

for 16m  

Absolute 

Error 

for 32m  

2.0

161055112.5  171026622.2  171081733.7  171026622.2 

4.0



192 
 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0 

0.050795 

0.096634 

0.132989 

0.156347 

0.164390 

0.156347 

0.132989 

0.096634 

0.050795 

 

0 

0.047102 

0.089593 

0.123313 

0.144963 

0.152424 

0.144963 

0.123313 

0.089593 

0.047102 

 

0 

0.0494427 

0.0940456 

0.1294430 

0.1521690 

0.16 

0.1521690 

0.1294430 

0.0940456 

0.0494427 

 

0 

0.00135228 

0.00258878 

0.00354611 

0.00417811 

0.00438973 

0.00417811 

0.00354611 

0.00258878 

0.00135228 

 

0 

0.00234008 

0.00445269 

0.00612958 

0.00720577 

0.00757626 

0.00720577 

0.00612958 

0.00445269 

0.00234008 

 

 

Table 3: Numerical solution for neutron density at   

 6.0   

x  
eapproximatu  at 

16m  

 

eapproximatu  at 

32m  

 

exactu  Absolute 

Error 

for 16m  

Absolute 

Error 

for 32m  

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0 

0.108707 

0.206809 

0.284611 

0.334601 

0.351813 

0.334601 

0.284611 

0 

0.114695 

0.218159 

0.300268 

0.352986 

0.371152 

0.352986 

0.300268 

0 

0.111246 

0.211603 

0.291246 

0.34238 

0.36 

0.34238 

0.291246 

0 

0.00253901 

0.00479398 

0.00663480 

0.00777956 

0.00818717 

0.00777956 

0.00663480 

0 

0.00344893 

0.00655639 

0.00902171 

0.01060560 

0.01115220 

0.01060560 

0.00902171 

16101103.1  161011022.1  171006486.9  171001671.2  171003737.2 

6.0
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0.8 

0.9 

1 

0.206809 

0.108707 

 

0.218159 

0.114695 

0 

0.211603 

0.111246 

 

0.00479398 

0.00253901 

 

0.00655639 

0.00344893 

 

 

Table 4: Numerical solution for neutron density at   

 8.0  

x  
eapproximatu  at 32m  

 

exactu  Absolute Error 

for 32m  

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0 

0.188276 

0.358184 

0.492935 

0.579515 

0.609326 

0.579515 

0.492935 

0.358184 

0.188276 

 

0 

0.197771 

0.376183 

0.517771 

0.608676 

0.64 

0.608676 

0.517771 

0.376183 

0.197771 

 

0 

0.0094945 

0.0179982 

0.0248355 

0.0291610 

0.0306743 

0.0291610 

0.0248355 

0.0179982 

0.0094953 

 

 

 

161044089.4  161003959.2  16104013.2  161003959.2 

8.0

161044089.4  161062594.3  171014947.8 
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Fig. 1. Comparison between exact and numerical approximate solutions for neutron density at 

= 0.2 and  

 

 Fig. 2. Comparison between exact and numerical approximate solutions for neutron density at 

=0.4 and m=16. 

 

 .16m


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Fig. 3. Comparison between exact and numerical approximate solutions for neutron density at 

=0.6 and m=16. 

 

 Fig. 4. Comparison between exact and numerical approximate solutions for neutron density at 

= 0.2 and m=32. 

 

 Fig. 5. Comparison between exact and numerical approximate solutions for neutron density at 

= 0.4 and m=32 






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 Fig. 6. Comparison between exact and numerical approximate solutions for neutron density at 

= 0.6 and m=32. 

 

Fig. 7. Comparison between exact and numerical approximate solutions for neutron density at 

 = 0.8 and m=32. 

8.6     Mathematical Model for fractional order Stationary Neutron Transport Equation 

The fractional order neutron transport is the process of anomalous diffusion. This model 

removes the lacunae of the conventional integer-order model of neutron movements. This 

research analysis based on Haar wavelet is probably being performed for the first time for the 

fractional order model of steady state neutron transport. The analysis carried out in this paper 

thus forms a crucial step in the process of development of fractional-order transport model for 

a nuclear reactor. 




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In view of eq. (8.2.11), let us consider the fractional order  stationary neutron transport 

equation 

 ,                             (8.6.1) 

with the boundary conditions 

,                           (8.6.2) 

,                            (8.6.3) 

where . 

 Case-I 

In this case, we consider the source function  

                         (8.6.4) 

According to eqs. (8.2.7), the functions g and r can be defined as  

  and .   

Therefore, u satisfies the equation 

                       (8.6.5) 

The boundary conditions become now 
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,                          (8.6.6) 

Here, the integer order i.e. classical solution [103] is 

                                          (8.6.7) 

 Case-II 

In this case, we consider the source function as  

                        (8.6.8) 

Therefore, according to eqs. (8.2.7), the functions g and r will be  

  and .   

Therefore, u satisfies the equation 

                      (8.6.9) 

The boundary conditions become now 

,                                                 (8.6.10) 

In this case, the integer order, i.e. classical solution is [109]  

.                     (8.6.11) 
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8.7   Application of Two-dimensional Haar Wavelet Collocation Method to fractional order 

Stationary Neutron transport equation
14

 

Let us divide the intervals and  into m equal subintervals each of width and 

respectively. We assume, 

                        (8.7.1) 

Operating Riemann-Liouville fractional integral operator both sides of eq. (8.7.1), we 

obtain 

                        (8.7.2) 

where is given by in eq. (7.3.7) for . 

Substituting  into eq. (8.7.2), we can obtain 

 .                            (8.7.3) 

Similarly at the boundary , we have 

                        (8.7.4) 

Next, together with eqs. eq. (8.7.3) and (8.7.4), we have 

                         (8.7.5) 

                                                           
14

 S. Saha Ray and A. Patra., 2014. “Numerical Simulation for Fractional order Stationary Neutron Transport 

Equation using Two-dimensional Haar wavelet Collocation method”, Nuclear Engineering and Design 

(Elsevier), Communicated. 
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Now, by using eqs. (8.7.3) and (8.7.5) in eq. (8.7.2), we can obtain the approximate solution 

         (8.7.6) 

In view of conditions (8.2.2) and (8.6.10), we assume the boundary conditions  

                            (8.7.7) 

Now by putting eqs. (8.7.7) into eq. (8.7.6), we have 

                       (8.7.8) 

Then by using eq. (8.7.1) and (8.7.8) into eqs. (8.6.5) and (8.6.9), we obtain the numerical 

scheme for Case-I as  

 

 

                                (8.7.9)

 

and we also obtain the numerical scheme for Case-II as , 
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                          (8.7.10)

 

where          

By considering all the wavelet collocation points  for and 

 for , we may obtain the system of -number of algebraic 

equations involving unknown coefficients  . By solving this system of equations, we 

obtain the Haar coefficients  . Hence we can obtain an approximate solution for neutron 

density or  for fractional order stationary neutron transport equation. 

8.8      Numerical Results and Discussions for fractional order neutron transport equation 

In the present section, we have considered two test problems for the solution of fractional 

order stationary neutron transport equation [103, 109]. In Case-I and Case-II, we obtain 

approximate numerical solutions  for neutron density for ]1,0[x  with  = 0.2, 0.4, 0.6, 0.8 

and   = 0.3, 0.5, 0.7 and 0.9 respectively.  Here, we compare the numerical results with the 

exact or integer order classical solutions by considering fractional order 98.1,96.1,94.1 and 

2. For Case-I, the numerical solution obtained by Haar wavelet collocation method have been 

displayed in Tables 5-8 and for Case-II, the numerical solution obtained by Haar wavelet 

collocation method has been displayed in Tables 9-12. Here, in both cases we have taken 

16m . Figs. 8(a)-(d) and Figs. 9(a)-(d) show the graphical comparison between the classical 

and numerical approximate solutions for the two test problems respectively. In both the test 

problems, from Tables 5-12  it can be shown that the value of  angular flux of neutrons   

increases with increase value of  . In practical applications it should be concluded that the 

value of the density is equal to zero when the direction of the movement of particles makes an 
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angle of 90 degrees to the x-axis.  Figs. 8(a)-(d) and Figs. 9(a)-(d) have shown that the 

solution has vanished at the physical domain. Fig. 10(a)-(b) and Fig. 11(a)-(b) display the 

convertgence plot of absolute error for increasing collocation points m=16 and 32 in Case-I 

and Case-II respectively. 

 

  Table 5: Numerical solution of neutron density when  for Case-I 

x  2.0 and 16m  
classicalclassical u

 given in  

eq. (8.6.7) 

Approximate solution of u for fractional order 

94.1  96.1  98.1  2  

 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

 

0 

0.018967 

0.035522 

0.047793 

0.054643 

0.055636 

0.051071 

0.041835 

0.029273 

0.014864 

1.665E-16 

 

0 

0.017470 

0.032889 

0.044580 

0.051439 

0.052936 

0.049175 

0.040804 

0.028927 

0.014867 

5.551E-17 

 

0 

0.015984 

0.030248 

0.041309 

0.048108 

0.050039 

0.047033 

0.039517 

0.028367 

0.014748 

2.775E-17 

 

 

0 

0.014511 

0.027606 

0.037991 

0.044664 

0.046962 

0.044664 

0.037991 

0.027606 

0.014511 

2.775E-17 

 

0 

0.012360 

0.023511 

0.032360 

0.038042 

0.041031 

0.038042 

0.032360 

0.023511 

0.012360 

2.266E-17 

 

Table 6: Numerical solution of neutron density when  for Case-I 

2.0

4.0
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x  4.0  and 16m  
classicalclassical u  

given in  

eq. (8.6.7) 

Approximate solution of u for fractional order 

94.1  96.1  98.1  2  

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0 

0.055022 

0.104035 

0.141999 

0.165340 

0.171963 

0.161591 

0.135634 

0.097132 

0.050239 

9.064E-17 

 

0 

0.053607 

0.101578 

0.139043 

0.162439 

0.169584 

0.160023 

0.134940 

0.097127 

0.050521 

3.330E-16 

 

0 

0.052197 

0.099108 

0.136036 

0.159437 

0.167054 

0.158270 

0.134054 

0.096957 

0.050704 

0 

0 

0.050795 

0.096634 

0.132989 

0.156347 

0.064390 

0.156347 

0.132989 

0.096634 

0.050795 

0 

0 

0.049442 

0.094045 

0.129443 

0.152169 

0.161100 

0.152169 

0.129443 

0.094045 

0.049442 

9.0648E-17 

 

 

Table 7: Numerical solution of neutron density when  for Case-I 

x  6.0 and 16m  
classicalclassical u  

given in  

eq. (8.6.7) 

Approximate solution of u for fractional order 

94.1  96.1  98.1  2  

0 

0.1 

0.2 

0.3 

0 

0.115270 

0.218149 

0.298169 

0 

0.113072 

0.214376 

0.293702 

0 

0.110883 

0.210594 

0.289180 

0 

0.108707 

0.206809 

0.284611 

0 

0.111246 

0.211603 

0.291246 

6.0
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0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0.347777 

0.362414 

0.341260 

0.287031 

0.205932 

0.106660 

2.224E-16 

 

0.343499 

0.359056 

0.339261 

0.286459 

0.206430 

0.107470 

0 

0.339103 

0.355517 

0.337036 

0.285648 

0.206718 

0.108151 

0 

0.334601 

0.351813 

0.334601 

0.284611 

0.206809 

0.108707 

4.440E-16 

 

0.342380 

0.360102 

0.342380 

0.291246 

0.211603 

0.111246 

2.266E-17 

 

 

Table 8: Numerical solution of neutron density when  for Case-I 

x  8.0 and 16m  
classicalclassical u  

given in  

eq. (8.6.7) 

Approximate solution of u for fractional order 

94.1  96.1  98.1  2  

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0 

0.198969 

0.376595 

0.514830 

0.600624 

0.626066 

0.589683 

0.496110 

0.356021 

0.184429 

0 

0 

0.195385 

0.370464 

0.507608 

0.593758 

0.620751 

0.586629 

0.495410 

0.357059 

0.185910 

2.220E-16 

0 

0.191820 

0.364325 

0.500306 

0.586716 

0.615164 

0.588323 

0.494346 

0.357776 

0.187190 

2.220E-16 

 

0 

0.188276 

0.358184 

0.492935 

0.579515 

0.609326 

0.579515 

0.492935 

0.358184 

0.188276 

0 

0 

0.197771 

0.376183 

0.517771 

0.608676 

0.640001 

0.608676 

0.517771 

0.376183 

0.197771 

3.623E-16 

 

8.0
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Table 9: Numerical solution of neutron density when  for Case-II 

x  3.0 and 16m  
classicalclassical u  

given in  

eq. (8.6.11) 

Approximate solution of u for fractional order 

94.1  96.1  98.1  2  

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0 

0.015777 

0.044167 

0.074620 

0.096080 

0.100511 

0.086444 

0.059151 

0.028955 

0.006682 

9.714E-17 

 

0 

0.012747 

0.038002 

0.066278 

0.087184 

0.092802 

0.081151 

0.056593 

0.028475 

0.007048 

6.938E-18 

0 

0.009854 

0.032073 

0.058163 

0.078388 

0.084993 

0.075559 

0.053621 

0.027605 

0.007180 

6.938E-18 

0 

0.007094 

0.026378 

0.050283 

0.069717 

0.077123 

0.069717 

0.050283 

0.026378 

0.007094 

3.035E-17 

 

0 

0.008594 

0.031094 

0.058905 

0.081405 

0.090012  

0.081405 

0.058905 

0.031094 

0.008594 

2.888E-19 

 

  

Table 10: Numerical solution of neutron density when for Case-II 

x  5.0 and 16m  
classicalclassical u  

given in  

eq. (8.6.11) 

Approximate solution of u for fractional order 

94.1  96.1  98.1  2  

3.0

5.0
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0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0 

0.035669 

0.118640 

0.215028 

0.288103 

0.309460 

0.271311 

0.188134 

0.092364 

0.020262 

1.942E-16 

0 

0.032509 

0.111055 

0.204108 

0.276323 

0.299676 

0.265558 

0.186868 

0.094211 

0.022630 

1.179E-16 

0 

0.029496 

0.103752 

0.193483 

0.264715 

0.289851 

0.259541 

0.185196 

0.095653 

0.024746 

9.194E-17 

0 

0.026624 

0.096716 

0.183154 

0.253296 

0.280010 

0.253296 

0.183154 

0.096716 

0.026624 

5.052E-17 

0 

0.023872 

0.086372 

0.163627 

0.226127 

0.250420 

0.226127 

0.163627 

0.086372 

0.023872 

0 

 

Table 11: Numerical solution of neutron density when for Case-II 

x  7.0 and 16m  
classicalclassical u  

given in  

eq. (8.6.11) 

Approximate solution of u for fractional order 

94.1  96.1  98.1  2  

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0 

0.062774 

0.212450 

0.387385 

0.520599 

0.560127 

0.491478 

0.340763 

0.166944 

0 

0.057931 

0.200322 

0.369697 

0.501516 

0.544511 

0.482783 

0.339704 

0.171045 

0 

0.053321 

0.188649 

0.352498 

0.482740 

0.528864 

0.473703 

0.338031 

0.174526 

0 

0.048928 

0.177420 

0.335786 

0.464282 

0.513218 

0.464282 

0.335786 

0.177420 

0 

0.046790 

0.169291 

0.320709 

0.443209 

0.492200 

0.443209 

0.320709 

0.169291 

7.0
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0.9 

1 

0.036162 

2.567E-16 

0.040802 

2.046E-16 

0.045052 

1.249E-16 

0.048928 

1.110E-16 

0.046790 

0 

 

Table 12: Numerical solution of neutron density when for Case-II 

x  9.0 and 16m  
classicalclassical u  

given in  

eq. (8.6.11) 

Approximate solution of u for fractional order 

94.1  96.1  98.1  2  

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0 

0.099190 

0.336621 

0.614366 

0.825999 

0.888904 

0.780004 

0.540735 

0.264761 

0.057183 

3.198E-16 

0 

0.091723 

0.317767 

0.586809 

0.796276 

0.864663 

0.766671 

0.539414 

0.271508 

0.064668 

2.081E-16 

0 

0.084614 

0.299627 

0.560021 

0.767040 

0.840385 

0.752752 

0.537147 

0.277298 

0.071547 

2.775E-17 

0 

0.077846 

0.282178 

0.533993 

0.738306 

0.816115 

0.738306 

0.533993 

0.282178 

0.077846 

3.156E-16 

0 

0.077348 

0.279848 

0.530152 

0.732652 

0.810001 

0.732652 

0.530152 

0.279848 

0.077348 

0 

 

 

9.0



208 
 

 

(a) 

   

(b) 

 

(c) 
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  (d) 

Fig. 8. Comparison between classical and fractional-order numerical Haar solutions with 

for neutron density in Case-I (a)  (b)  (c)  (d) .   

     

 

  (a) 

 

16m 2.0 4.0 6.0 8.0
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  (b) 

 

                           

  

 (c) 
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(d) 

Fig. 9. Comparison between classical and fractional-order numerical Haar solutions with 

for neutron density in Case-II (a)  (b)  (c)  (d) .   

 

(a) 

 

(b) 

16m 3.0 5.0 7.0 9.0
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Fig. 10. Absolute Error for neutron density in Case-I at (a)  = 0.2 (b)  = 0.4 . 

 

(a) 

 

(b) 

Figure 4. Absolute Error for neutron density in Case-II at (a)   = 0.3 (b)  = 0.5 . 

 

8.9       Convergence Analysis of Two-dimensional Haar Wavelet Method 

In this section, we have introduced the error analysis for the two-dimensional Haar wavelet 

method. 

We assume that, and there exist ; for which  ]),[],([),( 2 babaCyxf  0M
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, . 

Next, we may proceed as follows, suppose ,  

where, ,  and ,  . 

Then,  

. 

From Perseval’s formula, we have 
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Using the mean value theorem of  integral calculus we have, 

                                         

. 

Hence, we obtain 

                       . 

Again by using the mean value theorem, 

                      .

 

Using Lagrange’s mean value theorem, 

                                              where   
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      Next,             
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Similarly, we have 

 











1

112

2

342

2

10

22
3

)(4

j

j

jn

jM
l

ab









1

242

2

10

22
3

)(4

j

jM
l

ab

)1(242

2

10

2
3

4
2

3

)(4 








 M

l

ab

42

22

10

2
)(

9

16 








 M

kl

ab

2

22

10)(

144

16
M

kl

ab 










  




















kn

l

m
ji

kn

l

m
nm

Mab
c

1

0
433

210
1

0

2

2

)(
 

















 0

3
112

1212
43

210

2
2

)(

i

i
i

imn
j

Mab
















 0

32

12
43

210

)22(
2

)(

i

ii

n
j

Mab











 









112

2

3

1

2104 2)(2
21

52 j

jn

j

j

Mab

















1

2210 2)(
336

52

j

jMab

































)
2

1
1(

2
)(

336

52

2

)1(2
210



Mab

2

210

252

)(52

k

Mab 




217 
 

                                                     . 

Then 

 + + . 

    Hence, we obtain            

   As and  we can get  . 

8.10 Conclusion 

In the present research work, we have successfully applied Haar Wavelet Collocation Method 

(HWCM) to obtain the numerical approximation solution for classical order [110] and 

fractional order stationary neutron transport equation in a homogeneous isotropic medium. 

The cited numerical examples well establish that there is a good agreement of results in 

comparison to the classical solutions. By analyzing the Tables 1-12, it can be concluded that if 

we increase the number of collocation point m, we can get more accurate solution for transport 

problems. This research work proves the validity and the great potential applicability of Haar 

wavelet collocation method (HWCM) for solving both classical and fractional order stationary 

neutron transport equation. 
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