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ABSTRACT 

 

In the present project, (Ba0.9Ca0.1)(Ti1-xSnx)O3(x=0.06, 0.08 and 0.1) lead-free ceramics were 

synthesized by conventional solid state route. XRD analysis of calcined sample shows formation 

of perovskite phase. The BZT- BCT ceramic samples were calcined and sintered at lower 

temperatures 1300
o
C and 1350

o
C, respectively which was lower compared to the previous 

reported literature. The average particle size was found to be 0.5-1µm from FESEM analysis. 

Dielectric measurements of the sintered sample were carried out for the compositions over the 

frequency range of 42 Hz -1MHz and temperature range from 28
o
C to 100

o
C. Each sample 

showed a maximum dielectric constant at the Curie temperature (TC). With increase in the value 

of ‗x‘ from 0.06 to 0.1 the composition had shown decrease in the Curie temperature values 

which were 85
o
C, 40

o
C and 30

o
C respectively. The dielectric and piezoelectric properties of our 

sintered samples are comparable to those of conventionally prepared (Ba0.9Ca0.1)(Ti1-xSnx)O3 

ceramics reported earlier. These ceramics are potential candidates for the lead-free piezoelectric 

applications.  
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1. Introduction 

Piezoelectric ceramics are widely used as actuators, resonators, and spark igniters. Lead 

zirconate titanate (PZT) ceramics are the most widely used piezoelectric materials due to their 

superior piezoelectric properties close to the morphotropic phase boundary (MPB) between 

rhombohedral and tetragonal phases. Nevertheless, PZTs are not environmental friendly for their 

lead oxide toxicity. Because of global environmental concerns, there is currently a strong push to 

invent lead-free piezoelectrics for device engineering [1-3]. 

During the last two decades, a series of typical lead-free systems such as BaTiO3 (BT), 

(Bi0.5Na0.5)TiO3 (BNT) and (K0.5Na0.5)NbO3 (KNN) based ceramics have been investigated to 

substitute the PZT[4-5].Till date the properties of developed lead free piezoelectrics are not 

comparable to that of PZT based compositions. KNN based system suffers from alkali 

evaporation during sintering, poor sinterability, moisture sensitivity of the raw materials. BNT 

based system suffers from high leakage current. Among those systems, the BaTiO3-based 

ceramics which exhibit excellent electric properties are one of promising candidate to replace the 

PZT-based ceramics. 

Recently, invention of high dielectric and piezoelectric properties in 0.5Ba(Zr0.2Ti0.8)O3–

0.5(Ba0.7Ca0.3)TiO3(BZT–0.5BCT) [This composition can be represented by 

(Ba0.85Ca0.15)(Zr0.1Ti0.9)O3], attracted  much attention to develop BaTiO3- based leadfree 

piezoelectric materials. The enhanced dielectric and piezoelectric properties are due to the 

coexistence of different polymorphic phases. Sn-modifications in BaTiO3 produce similar effect 

like Zr-substitution [6]. It will be interesting to study whether similar high dielectric and 

piezoelectric properties can be obtained in Sn, Ca co-modified BaTiO3. 

   

1.1 BaTiO3 Ceramics  

BaTiO3  is  isostructural  with  the  mineral  perovskite  (CaTiO3)  and  so  is  referred  to  as  

‗perovskite‘. In perovskite structure, ABO3 where ‗A‘ and ‗B‘ are cation elements or mixture of 

two or more cation elements. In the ideal perovskite crystal structure shown in Fig 1.1, if ‗A‘ 

atom is taken at the corner of the cube, then ‗B‘ atom resides in the body centre and an oxygen 

atom at each face Centre of the cube. 
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Figure 1.1 Schematic view of the perovskite ABO3 unit cell for cubic BaTiO3 

 

 For BaTiO3, above its Curie point (approximately 130
o
C) the unit cell is cubic. Below the 

Curie point the structure is slightly distorted to the tetragonal form with a dipole moment along c 

direction. Other transformations occur at temperatures close to 0
o
C and -90

o
C: below 5

o
C the 

unit cell is orthorhombic with the polar axis parallel to a face diagonal and below -90
o
C it is 

rhombohedral with the polar axis along a body diagonal. The various phases of BaTiO3 is shown 

in fig 1.2 

 

Figure 1.2 various phases of BaTiO3 . 

Variation of dielectric constant, spontaneous polarization and lattice parameter in 

different phases of BaTiO3 is shown in the fig.1.3. The tetragonal phase of BaTiO3 has been the 

object of most investigations as this phase is stable at and above room temperature.  
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Figure 1.3 various lattice parameters and dielectric constant in different phases of BaTiO3  

A large  number  of A/B site substitutions in  barium titanate  based  solid  solutions have  been  

investigated  for  optimizing  the  dielectric  properties  and  shifting  the  Curie  temperature  in  

desired temperature range for applications. These includes Sr
2+

, Ca
2+

,Bi
3+

 etc. at A site and Zr
4+

, 

Sn
4+

, Nb
5+

etc. at B site [1] 

 

1.2 Curie temperature (TC) 

Ferroelectric crystals exhibit electric dipole moments even in the absence of an external 

electric field below a certain temperature and a paraelectric behavior above this temperature. 

This temperature of structural phase transition from a high-temperature non ferroelectric 
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paraelectric phase to a low-temperature ferroelectric phase is called the Curie temperature (Tc). 

[7]  

 

 

 

 

 

 

 

 

Figure 1.4   Idealized permittivity of ferroelectric material as a function of temperature. 

 

In ferroelectrics dominated by a displacive phase transition, such as perovskite materials, 

the temperature dependence of the permittivity varies for 1st and 2nd order phase transitions. 

Fig. 1.4 illustrates the temperature dependence of the permittivity for displacive ferroelectric 

materials exhibiting first or second order phase transitions. Second order phase transitions, which 

are common for rhombohedral compositions, are generally characterized by a broad peak in 

permittivity. Ferroelectrics undergoing first order phase transitions, typical of tetragonal 

perovskite materials, however show a fairly flat permittivity with increasing temperature right up 

to the Tc. 

The reciprocal permittivity 1/ε is known to be linear with respect to the temperature in a wide 

range in the paraelectric phase (so-called Curie-Weiss law), 

 

where C is the Curie-Weiss constant and T0 the Curie-Weiss temperature. T0 is slightly lower 

than the exact transition temperature Tc. For displacive transitions (e.g., BaTiO3, PbTiO3, 

KNbO3), the Curie Constant is very high (~ 10
4
 – 10

5
K) and the paraelectric phase is 

0TT

C



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microscopically nonpolar. For order-disorder transition (e.g., TGS, KH2PO4), the Curie constant 

is of the order of T0 and the paraelectric phase is nonpolar on macroscopic or thermally averaged 

sense. The reorientable component of the spontaneous polarization of ferroelectric materials falls 

to zero at the Curie temperature.  

1.3 Hysteresis loop 

Hysteresis loop is the most generally accepted method to understand ferroelectric 

materials [8]. In principle, every ferroelectric material has its own unique hysteresis loop, as a 

fingerprint. Through the hysteresis loops, the ferroelectricity could be identified directly. Fig.1.5 

is a typical ferroelectric hysteresis loop, through which the characteristic parameters, such as 

spontaneous polarization (Ps), remnant polarization (Pr) and coercive field (Ec) can be 

determined. Owing to the requirement of the energy minima, the grains in polycrystalline 

materials are always splitting into many domains. The directions of the domains are randomly 

distributed in such a way to lead to zero net macroscopic polarization. When the external field 

exceeds the Ec, the polycrystalline ferroelectric ceramic may be brought into a polar state. 

Macroscopic polarization is induced gradually by increasing the electric field strength. The 

drastic variation in the polarization in the vicinity of Ec is mainly attributed to the polarization 

reversal (domain switching), while at high field end, the polarization is saturated and the material 

behaves as a linear dielectric. When the electric field strength starts to decrease, some domains 

would back-switch, but at zero field the net polarization is nonzero, leading to the remnant 

polarization Pr. To obtain a zero polarization, an electric field with opposite direction is needed. 

Such field strength is called the coercive field (or coercivity). With increasing the opposite field 

strength, a similar rearrangement of the polarization is observed in the negative field part. For 

ferroelectric materials, the spontaneous  polarization Ps may be estimated by intercepting the 

polarization axis with the extrapolated linear segment.  
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 Figure 1.5 A typical hysteresis loop in ferroelectrics and corresponding domain reversal 

(polarization rotation)  

1.4 Lead free ferroelectric ceramics 

Till date the properties of developed lead free piezoelectrics are not comparable to that of 

PZT based compositions. BaTiO3 is a model ferroelectric mostly utilized for capacitor and 

thermistor applications [2, 9, 10].The breakthrough made by Xue et al. in BaTiO3-based 

ceramics with co-dopants of Ca and Sn has offered a significant impact on the development of 

lead-free piezoceramics[11]. The pure BaTiO3 ceramics are normally associated with a poor 

piezoelectric coefficient d33 as low as 191 pCN
−1

 [2], the value reported by Xue et al.[11] 

reached more than 500 pC/N, comparable to that of soft PZT ceramics. The proposed origin of 

high piezoelectricity was formation of MPB between Ba(Ti0.88Sn0.12)O3-

0.3(Ba0.7Ca0.3)TiO3[BTS- 0.3BCT].  

 

 

 

 

 

. 
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2.1 Literature Review: 

 Calcium is most commonly doped in the BaTiO3 ceramics. It has been reported that Ca
2+

 can 

occupy both Ba
2+

 and Ti
4+

 sites [12-14] Phase relations in BaTiO3–CaTiO3 system were studied 

by Devries and Roy [15]. According to their phase diagram, CaTiO3 up to ∼18mol% forms a 

homogenous solid solution with BaTiO3 at 1400°C. 

 Berlincourt and Kulesar [16] et al. found that the Ca substitution in BaTiO3 ceramic caused 

only negligible changes in the Curie temperature but strongly lower the tetragonal–orthorhombic 

transition temperature, which improved the temperature stability of piezoelectric/electostrictive 

properties.  

 Mitsui et al and Jaffe et al. [17,2], from the dielectric and X-ray diffraction (XRD) 

studies,  demonstrated that the Curie point of Bal-xCaxTiO3,(BCT) increases from 130°C for pure  

BaTiO3 up to 136.1°C for x=0.08 and then  decreases slightly for continuous increase in Ca 

concentration up to 25%.  

 Zhang et al reported the phase transition temperature of Ca
2+

 doped BaTiO3 ceramics. Phase 

transition temperature of A and B site Ca
+2

 doped BaTiO3 ceramics are shown in Fig 2.1 [18]. 

Low level of Ca
2+

 doping on B site (≤4at %) in BaTiO3 have a dramatic and detrimental effect on 

Tc and grain conductivity. Ca
2+

 doping on A-site in BaTiO3 showed the desired enhancement of 

Tc. 

  

 

 

 

 

Figure 2.1 Phase transition temperature vs Ca content for Ba1−xCaxTiO3 (BCT), and 

BaTi1−xCaxO3−x(BTC) Inset shows c/a vs Ca content for BCT and BTC. 

Sn
4+ 

replaces Ti
4+

 and forms a Ba(Ti1-xSnx)O3, BSnT solid solution, which shows diffuse phase-

transition behavior and a controllable curie temperature [19]. The Partial replacement of Ti
4+ 

with 

Sn
4+

 decreases the Curie temperature (Tc). BaSn0.3Ti0.7O3 was a typical relaxor ferroelectric and 
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BaSn0.2Ti0.8O3 was a quasi-relaxation ferroelectric that is intermediate between a normal 

ferroelectric and a relaxor ferroelectric in its properties [20]. The paraelectric–ferroelectric phase 

transition temperature of BaSn0.1Ti0.9O3 and BaSn0.15Ti0.85O3 were 40°C and 5°C, respectively 

[21].  

Li et al[22] studied Large Piezoelectric Coefficient in (Ba1-xCax)(Ti0.96Sn0.04)O3 Lead-

Free Ceramics and found that At room temperature, a polymorphic phase transition from 

orthorhombic phase to tetragonal phase was identified in the composition range of 0.01 <x<0.03. 

They used solid state synthesis route for powder preparation and calcined the powder at 1200
0
C 

for 4hrs & sintering temperature was used 1500
0
C for 4 hr. Polarization versus electric field of 

the BCST ceramics can be seen that the coercive fields increase with increasing Ca content. The 

remnant polarizations increase to a maximum value of 13.2μC/cm
2
 at x=0.02 and then decrease. 

At a curie temperature of around 80
0
C a maximum value of relative permittivity of 15000 was 

observed. 

W. Li et al. [23] studied Enhanced ferroelectric properties in (Ba1−xCax)(Ti0.94Sn0.06)O3 

lead-free ceramics and found that at room temperature a polymorphic phase transition (PPT) 

from orthorhombic phase to tetragonal phase was identified in the composition range of 0.02 <x< 

0.04.They used solid synthesis route for powder preparation and calcined the powder at 1200
0
C 

for 4hrs & sintering temperature was used 1500
0
C for 4 hr for 15mm dia pellets. SEM 

micrographs of the BCST ceramics at x= 0.01 showed that inhomogeneous and some pores exist 

in the grain boundary. For the samples at x= 0.02 and 0.03, the microstructure is homogeneous 

and no pore exists in the grain boundary. For the sample at x= 0.04, the microstructure is 

inhomogeneous and the grain size becomes small. With the increase of Ca content, remnant 

polarizations of the BCST ceramics increase to a maximum value 12.22lµC/cm
2 

. At a curie 

temperature of around 80
0
C a maximum value of relative permittivity of 6900 was noted for x= 

0.02. 

Zhu et al [24] studied Enhanced Piezoelectric Properties of (Ba1-xCax)(Ti0.92Sn0.08)O3 

Lead-Free Ceramics and found that At room temperature, a polymorphic phase transition from 

orthorhombic phase to tetragonal phase was confirmed by the XRD patterns in the composition 

range of 0.04≤x≤0.06. They used solid synthesis route for powder preparation and calcined the 

powder at 1300
0
C for 4hrs & sintering temperature was used 1480

0
C for 4 hr . SEM micrographs 
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of the ceramics show that the small grains grow close to the big ones with increasing x from 0.00 

to 0.05. TC of samples was increased from 58°C to 64°C by adding Ca
2+

 ions from 0.00 to 0.06. 

For the ceramic at x=0.05 at room temperature, whereby excellent electrical properties: €r 

=23000, Pr =10.65lµc/cm2. 

 

 

2.2 Summary of literature review and scope of the work: 

 Barium titanate (BaTiO3)-based ceramics is considered to be one of promising lead-free 

ferroelectric ceramics of interest in the context of capacitor and piezoelectric transducer. 

However, the BaTiO3 in its pure form has exhibits the small permittivity, the poor 

piezoelectric properties and low Curie temperature have been the main obstacle for their 

wider commercial application.  

 Chemical substitutions at the Ba
2+

 and Ti
4+

 sites are made to tailor the properties to meet a 

variety of device and performance requirements. 

 Attempts to obtain good dielectric and piezoelectric property of BaTiO3-based ceramics 

by co-doping Sn and Ca ions have been studied. It is to be mentioned that optimization of 

the doping content is important to obtain good piezoelectric property in the 

(Ba,Ca)(Ti,Sn)O3 system. 

 It is reported that (Ba0.9Ca0.1)(Ti0.94Sn0.08)O3 solid solution shows good dielectric and 

piezoelectric property. Keeping Ca-content fixed, variation of Sn content has to be 

studied. 

 Solid state synthesis route is very easy and cheapest route. 

In the present work (Ba0.9Ca0.1)(Ti1-XSnX)O3 (x=0.06, 0.08, 0.1) lead-free  ceramics were  

fabricated  by  conventional  solid  state  synthesis  method  and  their  structure,  densification,  

electrical properties were studied systematically. 
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2.3 Statement of the Problem: 

1. To synthesize a phase pure  solid solution of (Ba0.9Ca0.1)(Ti1-XSnX)O3 by solid state 

reaction route taking x=0.06,0.08 & 0.1  

2. To study the sintering behavior of (Ba0.9Ca0.1)(Ti1-XSnX)O3 by varying sintering 

temperature. 

3. To study the dielectric behavior of sintered ceramics. 

4. To study the P-E loop of ceramics. 

5. To study the piezoelectric properties of ceramics at room temperature. 

6. To study the microstructure by FESEM. 
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3. Experimental Procedure 

3.1 The raw materials used for synthesis of (Ba0.9Ca0.1)(Ti1-XSnX)O3: 

 Barium Carbonate(BaCO3) 

 Calcium Carbonate(CaCO3) 

 Titanium Dioxide(TiO2) 

 Stannic Oxide(SnO2) 

 

3.2 Powder preparation by solid state synthesis: 

Solid state synthesis method was adopted to produce powder for samples. (Ba0.9Ca0.1)(Ti1-XSnX)O3 was 

prepared with x=0, 0.06, 0.08, 0.1.  For powder preparation high purity Sigma Aldrich chemicals of 

barium carbonate (BaCO3) powder, calcium carbonate (CaCO3) powder, titanium dioxide (TiO2) powder, 

and stannic oxide (SnO2) powders were used.  The powders were weighed and milled for 12h, using pot 

milling with zirconia balls and isopropyl alcohol media after which the mixture was dried under IR lamp. 

For a batch of 15gm 60ml of propanol was added. 

Different sample compositions: 

1. For 15 gms (Ba0.9Ca0.1)(Ti1-XSnX)O3 sample compositions – 

Table 1  

 

 X=0.06 

 

X=0.08 

 

X=0.1 

 

BaCO3 11.6990 gm 11.6275 gm 11.5560 gm 

CaCO3 0.6592 gm 0.6552 gm 0.6512 gm 

TiO2 4.9451 gm 4.8103 gm 4.6768 gm 

SnO2 0.5955 gm 0.7893 gm 0.9805 gm 

 

3.3 Calcination of powder: 

The powder was ground in agate mortar and dried properly and then calcined in alumina crucible 

at 1300
0
C for 4 hours. The calcinations help in driving out all volatile and gaseous material from 

powder. After calcination the powders were ground and stored. 
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3.4 Particle Size Analysis  

A laser diffraction method with a multiple scattering technique has been used to 

determine the particle size distribution of the powder.  The relation between particle size and 

scattering angle is such that large particles scatter light at low angles while small particles scatter 

light at high angles. In order to find out the particles size distribution, the BaTiO3 based powders 

were dispersed in water by ultrasonic processor [Vibronics, model:VPLP1].Then experiment was 

carried out in computer controlled particle size analyzer [ZETA Sizers Nanoseries (Malvern 

Instruments Nano ZS)] to find out the particles size distribution. 

3.5 XRD of Calcined powder: 

Calcined powders of all composition were subjected to phase analysis by X-ray diffraction ( 

REGAKU,JAPAN). This is done to know the different phases present in the calcined powder. 

The angle range was 15
0
-80

0
.and the scan mode 3

0
/min using Cu Kα (0.154nm) radiation. 

Throughout the process, the generator voltage and current was fixed at 35KV and 25mA. Phases 

present in the samples was identified by the search-match facility available with Philips X`Pert 

High Score Software. 

3.6 Pelletisation: 

The Calcined powder was mixed with 3% PVA solution (for binding).  It was mixed in an agate 

mortar and left to dry. After drying it was scraped and grounded to fine powder. The different 

compositions powder were separately packed after being weighed (around 0.7 gm).The powder 

was then pressed into pellets by uniaxial compaction with load of 4 ton and 90 seconds dwelling 

time. 

3.6 Sintering of pellets: 

Then pellets were sintered at different temperature (1350
0
C.and 1400

0
C) for a soaking period of 

4 hours and taken for further characterization.1350
0
C firing was done in a chamber furnace and 

1400
0
C firing was done in a raising hearth furnace. Platinum substrate was used for sintering. 

After firing pellets appearance were monitored. 

. 
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3.7 Measurement of density: 

The bulk densities of the sintered pellets were measured by Archimedes principle using vacuum 

method in Kerosene medium (specific, gravity. 0.81715). The dry weight, soaked weight and 

suspended weight were measured. The densities of pallets were calculated by formula: 

 Bulk Density = {dry weight/ (soaked weight – suspended weight)} *0.81 

3.8 Micro structural analysis by FESEM: 

The sintered pellets were taken for SEM analysis. FESEM (Field Emission Scanning Electron 

Microscope, Nova Nano SEM/FEI).instrument was used. The pellets were gold coated in a 

sputtering coater. Then they were loaded for analysis. This analysis helps  us  to  know  the  

complete  microstructure  of  the  sintered  sample. 

3.9 Dielectric Measurement: 

For  dielectric  measurement,  samples  were  polished by emery paper 400 microns and  then  

ultrasonicated  using  acetone to wash away the fine debris  on the pellet surface. The clean 

samples  were electroded with silver paste followed by  curing  at 550
0
C for 30min.Dielectric 

measurement was carried out using HIOKI LCR (3532-50) meter in  frequency range of 42 Hz to 

1MHz. 

Dielectric behavior has also been studied as a function of temperature with the 

temperature ranging from room temperature to 100
o
C. The samples were placed in between two 

platinum sheets each of which is connected to a platinum wire. The whole arrangement was 

covered with an alumina tube. A small force was applied by a spring to ensure good contact to 

the sample electrodes. The temperature of the specimen was controlled using a carbolite furnace 

at a heating rate of 2
o
C/min. 

The relative permittivity (εr) is calculated from the measured values of capacitance and 

physical dimension of the specimen. The relations are expressed as [Hewlett Packard, 1987]: 
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where εr the relative permittivity of the piezoelectric material, ε0 is the relative permittivity of 

free space (8.854 × 10
-12

 F/m), t is the distance between electrodes (m), A is the area of the 

electrodes (m
2
). 

3.10 Ferroelectric Measurement: 

The Polarization hysteresis measurement (P-E loop) was carried out by an automatic P-E 

loop tracer (Marine India, Electronics). All the measurements were carried out at room 

temperature The polarization hysteresis measurements based on standard Sawyer- Tower circuit 

In order to avoid dielectric breakdown in air, silicon oil with a high dielectric strength is used to 

cover the sample. An approximate value of the electric field strength in the sample is obtained 

with the input voltage and the sample thickness.  

3.11 Piezoelectric coefficient (d33) measurement: 

For the piezoelectric measurements, the pellet samples were first poled in silicon oil 

under an applied different field at room temperature for 20min. The pellets were poled in a silicon 

oil bath under a dc field of 800V/mm for 20min.The d33 coefficients of the poled samples were 

measured after 24h with a d33 meter (YE2730A d33 Meter, APC International Ltd.). A force of 

0.25N is applied to the sample and the corresponding d33 coefficient is measured.  
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Figure 4(a-d) X-ray diffraction patterns of  Ba0.9Ca0.1(Ti1-xSnx)O3ceramic (a) calcined at 1300°C 

(b) sintered at 1350
o
C/4hrs (c) and (d)selected region of X-ray diffraction patterns in the range of  

31-32.5, 65-67
o
.  

Figure 4(a) shows the X-ray diffraction patterns of Ba0.9Ca0.1(Ti1-xSnx)O3 ceramics calcined at 

1300
o
C /4h. It can be observed that all compositions exhibit the pure perovskite structure and no 

secondary phase was observed. It suggests that Ca
2+

 and Sn
4+

 diffuse into the BaTiO3 lattice to 

form a complete solid solution [25].  Figure 4(b) shows the X-ray diffraction patterns of 

Ba0.9Ca0.1(Ti1-xSnx)O3ceramics sintered at 1350
o
C /4h. It is observed that all the compositions 

exhibit the perovskite structure. Moreover, it is clear from the magnified X-ray pattern in the 

range of 31-32.5
o
 that the position of the diffraction peaks shift towards the lower diffraction 

angles with increase in Sn
4+

 content. The shifting of the diffraction peaks to lower diffraction 

angles indicate the increase in lattice dimension and the distortion of crystal lattice. It may be 

due to the occupation of larger size Sn
4+

(0.83 Å) in Ti
4+

(0.605Å) site. X-ray analysis of 

Ba0.9Ca0.1(Ti1-xSnx)O3 shows presence of both tetragonal and orthorhombic phase, which is 

feature  with splitting of  the  (002)/(200) peak  at around 2θ of 44-46°   and (220)/(202)  peak 

around 2θ of 65-67°. It can also match with JCPDS No. 89-1428 and 81-2200 respectively 
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Figure 4(c) and (d): Selected region of X-ray diffraction patterns in the range of  

31-32.5, 65-67
o
. 
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Figure 4.2: FESEM micrograph of the Ba0.9Ca0.1(Ti0.94Sn0.06)O3 powder calcined at 

1300°C/4h. 

[22].The coexistence of tetragonal and orthorhombic phases at room temperature was also 

reported by the other researchers [24]. 

 

 

 

 

 

 

 

 

 

Figure 4.2 shows the FESEM micrograph of the Ba0.9Ca0.1(Ti0.94Sn0.06)O3 powder calcined at 

1300°C. It can be observed that powders are agglomerated and spherical to irregular in shape 

with average particle size of 0.5-1µm. 
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Table-2(Bulk density of sintered pellets) 

 

 

Table-2 depicts the sintered density of the Ba0.9Ca0.1(Ti1-xSnx)O3ceramics at two different 

sintering temperatures of 1350°C and 1400°C. It was found that density increases with increase 

the Sn content up to x=0.08 after that decreases. The highest density was achieved in 

Ba0.9Ca0.1(Ti0.92Sn0.08)O3ceramic is 5.58gm/cc  sintered at 1350°C which is more than 92 % of 

theoretical density. The density decreases with increase in sintering temperature from 1350°C to 

1400°C. 

 

 

 

 

 

 

 

 

Composition Bulk density (gm/cc) Relative density (%) 

 1350/4h 1400/4h 1350/4h 1400/4h 

(Ba0.9Ca0.1)(Ti0.94Sn0.06)O3 5.47 5.34 91.1 89.0 

(Ba0.9Ca0.1)(Ti0.92Sn0.08)O3 5.58 5.54 93.0 92.3 

(Ba0.9Ca0.1)(Ti0.90Sn0.10)O3 5.34 5.11 89.0 85.2 

(a) 
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Figure 4.3 (a-c) FESEM micrographs of Ba0.9Ca0.1(Ti1-xSnx)O3ceramics sintered at 1350
o
C/4h. 

 

 

 

(c) 

(b) 
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Figure 4.3 (a-c) shows the FESEM micrographs of Ba0.9Ca0.1(Ti1-xSnx)O3 ceramics sintered at 

1350
o
C for 4h.The average grain sizes are in the range of 5.5-11.8µm, 4.0-11.8µm, 5.9-15.6µm 

for x=0.06, x=0.08 and x=0.1, respectively. All the compositions show dense microstructures. 

The grain sizes are increases with increase in Sn content. The bimodal microstructure with big 

grain surrounded by many small grains are observed at x=0.06 which due to the discontinuous 

grain growth [26]. 

 

 

 

 

 

 

Figure 4.4 Room temperature relative permittivity and dissipation factor (tanδ) as the function of 

frequency for Ba0.9Ca0.1(Ti1-xSnx)O3ceramics sintered at 1350°C/4h 

 

 

 

 

 

Figure 4.5 Room temperature relative permittivity and dissipation factor (tanδ) as the function of 

frequency for Ba0.9Ca0.1(Ti1-xSnx)O3ceramics sintered at 1400°C/4h. 
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Figure 4.4 shows the room temperature relative permittivity and dissipation factor (tanδ) as the 

function of frequency for Ba0.9Ca0.1(Ti1-xSnx)O3 ceramics sintered at 1350°C/4h. The Relative 

permittivity are 3588, 5293, 6632 for x=0.06, x=0.08 and x=0.1, respectively. It can be observed 

that the relative permittivity increases with increase in Sn content without the major change in 

loss tangent. These values are at par with that of reported result [27]. The relative permittivity 

and dissipation factor decreases with increasing sintering temperature as shown in fig 4.5. The 

lower relative permittivity at 1400°C may be due to lower density as compared to 1350°C 

sintered sample. The increment in permittivity with increase in Sn concentration can be 

explained by the increase in domain wall vibration (called the orientation polarization) and 

lattice vibration (ionic polarization) of the ceramics. 

 

 

 

 

 

  

Fig 4.6 Temperature dependence of relative permittivity for the Ba0.9Ca0.1(Ti1-xSnx)O3ceramics. 

Temperature dependence of relative permittivity for the Ba0.9Ca0.1(Ti1-xSnx)O3 ceramics is shown 

in Fig. 4.6.The phase transition (ferroelectric to  paraelectric  phase transition ) temperature are 
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reported literatures [27]. Since Sn
4+

 has larger ionic size as compared to Ti
4+

, the addition of Sn 

increases the chemical pressure imposed on the surrounding lattice and therefore results in lower 

Tc and lower maximum dielectric constant. 

 

Table-3 

Room temperature relative permittivity and dielectric loss of different compositions 

Composition  Dielectric properties at room 

temp at 1kHz(1350°C) 

Dielectric properties at room 

temp at 1kHz(1400°C) 

  εr Tanδ εr tanδ 

(Ba
0.9

Ca
0.1

)(Ti
0.94

Sn
0.06

)O
3
 3588 0.029 2890 0.03 

(Ba
0.9

Ca
0.1

)(Ti
0.92

Sn
0.08

)O
3
 5293 0.033 4290 0.019 

(Ba
0.9

Ca
0.1

)(Ti
0.90

Sn
0.10

)O
3
 6632 0.037 4808 0.029 
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Fig 4.7 polarization-electric field characterization of the Ba0.9Ca0.1(Ti1-xSnx)O3ceramics at room 

temperature 

 Fig 4.7 shows the polarization-electric field characterization of the Ba0.9Ca0.1(Ti1-

xSnx)O3ceramics at room temperature. It is found that the remnant polarization (Pr) and coercive 

fields (Ec) decreases with increasing Sn content. Well saturated hysteresis loops with regular 

shape can be observed for Ba0.9Ca0.1(Ti0.94Sn0.06)O3ceramics. Piezoelectric coefficient (d33) value 

of Ba0.9Ca0.1(Ti1-xSnx)O3ceramics are shown in table 4. The d33 of Ba0.9Ca0.1(Ti1-xSnx)O3ceramics 

are 207,120 and 107pC/N for x=0.06, x=0.08 and x=0.1, respectively, which  is lower than that 

of the reported literature [27]. The small grain size in the sintered sample may be the reason for 

lower d33 in our sample. The d33 value gradually decreases with increase in Sn content due to the 

appearance of more paraelectric phase in the sintered ceramics.  
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Table – 4 

Ferroelectric and piezoelectric properties of sintered pellets 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Composition fired at 

1350°C/4h 

Ferroelectric  properties at room temp at  

50Hz 

Piezoelectric 

Properties 

 Pr Ec Ps d33 

 

(Ba0.9Ca0.1)(Ti0.94Sn0.06)O3 4.9 1.87 10.72 207 

(Ba0.9Ca0.1)(Ti0.92Sn0.08)O3 2.32 0.49 5.72 120 

(Ba0.9Ca0.1)(Ti0.90Sn0.10)O3 2.52 0.46 4.80 109 
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Conclusion: 

(Ba0.9Ca0.1)(Ti1-xSnx)O3 (x=0.06, 0.08 and 0.1) ceramics have been successfully prepared by a 

solid state method. Their phase formation, dielectric, ferroelectric and piezoelectric properties 

have been studied. It was found that the phase pure (Ba0.9Ca0.1)(Ti1-xSnx)O3can be prepared at 

1300°C by simple solid state mixing method. Powders can be sintered to more than 92% of the 

theoretical density at 1350
o
C. The room temperature dielectric constant increases with increase 

in Sn
4+

 content and loss factor have less than 3.5%.The Curie temperature (Tc), piezoelectric 

coefficient, Pr and Ec decreases with increase in Sn
4+

 content. The highest piezoelectric 

coefficient (d33=207pC/N) and dielectric constant (3588) was obtained for 

(Ba0.9Ca0.1)(Ti0.94Sn0.06)O3ceramics. The results indicate that (Ba0.9Ca0.1)(Ti0.94Sn0.06)O3ceramics 

are promising candidate for the lead-free piezoelectric applications. 
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