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ABSTRACT 

 
 

Static and dynamic problems with deterministic structural parameters are well studied. In 

this regard, good number of investigations have been done by many authors. Usually, 

structural analysis depends upon the system parameters such as mass, geometry, material 

properties, external loads and boundary conditions which are defined exactly or 

considered as deterministic. But, rather than the deterministic or exact values we may 

have only the vague, imprecise and incomplete informations about the variables and 

parameters being a result of errors in measurements, observations, experiments, applying 

different operating conditions or it may be due to maintenance induced errors, etc. which 

are uncertain in nature. Hence, it is an important issue to model these types of 

uncertainties. Basically these may be modelled through a probabilistic, interval or fuzzy 

approach. Unfortunately, probabilistic methods may not be able to deliver reliable results 

at the required precision without sufficient experimental data. It may be due to the 

probability density functions involved in it. As such, in recent decades, interval analysis 

and fuzzy theory are becoming powerful tools. In these approaches, the uncertain 

variables and parameters are represented by interval and fuzzy numbers, vectors or 

matrices. 

In general, structural problems for uncertain static analysis with interval or fuzzy 

parameters simplify to interval or fuzzy system of linear equations whereas interval or 

fuzzy eigenvalue problem may be obtained for the dynamic analysis. Accordingly, this 

thesis develops new methods for finding the solution of fuzzy and interval system of 

linear equations and eigenvalue problems. Various methods based on fuzzy centre, radius, 

addition, subtraction, linear programming approach and double parametric form of fuzzy 

numbers have been proposed for the solution of system of linear equations with fuzzy 

parameters. An algorithm based on fuzzy centre has been proposed for solving the 

generalized fuzzy eigenvalue problem. Moreover, a fuzzy based iterative scheme with 

Taylor series expansion has been developed for the identification of structural parameters 

from uncertain dynamic data. Also, dynamic responses of fractionally damped discrete 

and continuous structural systems with crisp and fuzzy initial conditions have been 

obtained using homotopy perturbation method based on the proposed double parametric 

form of fuzzy numbers.   
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Numerical examples and application problems are solved to demonstrate the 

efficiency and capabilities of the developed methods. In this regard, imprecisely defined 

structures such as bar, beam, truss, simplified bridge, rectangular sheet with 

fuzzy/interval material and geometric properties along with uncertain external forces have 

been considered for the static analysis. Fuzzy and interval finite element method have 

been applied to obtain the uncertain static responses. Structural problems viz. multistorey 

shear building, spring mass mechanical system and stepped beam structures with 

uncertain structural parameters have been considered for dynamic analysis. In the 

identification problem, column stiffnesses of a multistorey frame structure have been 

identified using uncertain dynamic data based on the proposed algorithm. In order to get 

the dynamic responses, a single degree of freedom fractionally damped spring-mass 

mechanical system and fractionally damped viscoelastic continuous beam with crisp and 

fuzzy initial conditions are also investigated. Obtained results are compared in special 

cases for the validation of proposed methods. 

 

Keywords: Fuzzy set, fuzzy number, fuzzy centre, fuzzy radius,  cut, double 

parametric form of fuzzy numbers, fuzzy and fully fuzzy system of linear equations, 

fuzzy eigenvalue problem, fuzzy and interval finite element method, bar, beam, truss, 

simplified bridge, spring-mass system, shear building, multistory frame, Taylor series, 

fractional derivative, fuzzy initial condition, Homotopy Perturbation Method (HPM).
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Chapter 1 

Introduction 

 

Design and analysis of structures play a vital role in the field of structural engineering. 

Most of the structures fail due to the poor design. Normally a design process involves the 

system parameters such as mass, geometry, material properties, external loads and 

boundary conditions which are defined exactly or considered as deterministic. But rather 

than the deterministic or exact value, we may have only the vague, imprecise and 

incomplete information about the variables and parameters being a result of errors in 

measurement, observation, experiment, applying different operating condition or it may 

be due to maintenance induced error, etc. which are uncertain in nature. Moreover, 

variations in the structural response arises (Muhanna and Mullen 1999; Rama Rao 2004; 

Zhang 2005) due to the uncertainties involved in material and geometric properties, 

service loads or boundary conditions. Hence, it is an important issue to model these 

engineering systems with uncertainties. As such, computationally efficient methods need 

to be developed accordingly. There are various ways to classify these uncertainties, but 

mainly in engineering practice these can be categorized (Zhang 2005) as “aleatory” and 

“epistemic” uncertainty. 

Aleatory uncertainty mainly deals with stochastic or statistical uncertainty which 

occurs due to the natural randomness in the process. It is generally expressed by a 

probability density or frequency distribution function. For the estimation of the 

distribution, it requires sufficient information about the variables and parameters involved 

in it. But, epistemic uncertainty refers to the uncertainty when we have lack of knowledge 

or incomplete information about the variables and parameters is present. In general, 

probabilistic approaches are extensively used to model aleatory uncertainty, but to 

represent epistemic uncertainty using probabilistic methods is often a subject of debate 

(Elishakoff 1995; Ben-Haim 1994; Ferson and Ginzburg 1996; Ferson 1996; Ferson et al. 

2003). Therefore, various researchers investigated non-probabilistic approaches such as 

fuzzy set theory (Zadeh 1965), interval analysis (Moore 1966), convex model (Ben-Haim 

and Elishakoff 1990), Dempster-Shafer evidence theory (Dempster 1967; Shafer 1976), 

imprecise probabilities (Walley 1991) and so on to define epistemic uncertainty. Among 
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these, fuzzy and interval theory have been used in this research for the uncertainty 

analysis of structures. Accordingly, in the following sections, the probabilistic concept, 

interval approach and fuzzy set theory are introduced and discussed with respect to the 

structural mechanics under uncertainty. 

 

1.1. Probabilistic Concept 

 

Probability theory is concerned with the analysis of (natural) random phenomena. The 

main objects of probability theory are described by random variables and stochastic 

process. Random variables are the variables subject to changes due to the randomness 

involved in it. Stochastic process is the collection of all random values, which are often 

used to represent the evolution of random variables or systems over time. For uncertainty 

analysis, Monte Carlo simulation method, first order and second order reliability methods 

(FORM and SORM) and response surface methods are frequently used. In probabilistic 

practice, the variables of uncertain nature are assumed as random variables with joint 

probability density functions.  However, if the structural parameters and the external load 

are modeled as random variables with known probability density functions, the response 

of the structure can be predicted using the theory of probability and stochastic processes 

which have been studied by several authors such as Elishakoff (1983). Elishakoff and 

Colombi (1993) have also combined probabilistic and convex models to study 

uncertainty. 

The probabilistic concept is well established for the extension of the deterministic 

finite element method towards uncertain assessment. This has led to a number of 

probabilistic and stochastic finite element procedures (Kiureghian and Ke 1988; 

Besterfield et al. 1990; Haldar and Mohadevan 2000; Antonio and Hoffbauer 2010). In 

addition, Vanmarcke and Grigoriu (1983) developed stochastic finite element method for 

simple beam problems. Modal approaches have been applied (Van den Nieuwenhof and 

Coyette 2003) for the stochastic finite element analysis of structures with material and 

geometric uncertainties. Unfortunately, probabilistic methods may not be able to deliver 

reliable results at the required precision without sufficient experimental data (Ben-Haim 

1994; Elishakoff 2000). It may be due to the probability density functions involved in it. 

As such, interval and fuzzy theories are becoming powerful tools in recent decades for 

many real life applications. In these approaches, the uncertain variables and parameters 

are represented by interval and fuzzy numbers, vectors or matrices. 
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1.2. Interval Approach 

 

Interval analysis was first introduced by Moore (1966) and subsequently various aspects 

of interval analysis along with applications are further explained by Moore (1979). 

Thereafter, several excellent books  have also been written by various authors related to 

interval analysis, e.g. Alefeld and Herzberger 1983; Hansen 1992b; Neumaier 1990; 

Moore 2009 and it has been applied in a variety of science and engineering problems. In 

general, structural problems are static or dynamic in nature. As such, under interval 

uncertainty, static problems turn out to be an interval system of linear equations and the 

dynamic problems to be an interval eigenvalue problem. Accordingly, in the following 

paragraphs, interval system of linear equations and interval eigenvalue problems are first 

discussed. 

 

1.2.1. Interval system of linear equations 

 

System of linear equations with interval parameters can be defined as interval system of 

linear equations. In the system, elements of the coefficient matrix, right hand side vector 

and unknown vector are considered as interval number. In this regard, (Rohn 1989; 

Neumaier 1990; Rump 1992; Hansen 1992a) investigated various methodologies for the 

solution of interval system of linear equations. Rohn (1989) applied iterative methods in 

the solution process. An excellent book has been written by Neumaier (1990) in this 

regard. By modifying the algorithm proposed by Neumaier (1990), Rump (1992) has 

developed an iterative technique with the necessary and sufficient conditions for stopping 

criteria. Interval Newton’s method has been applied by Hansen (1992a) for the solution of 

such systems. Rohn and Kreinovich (1995) proved that it is NP-hard to compute the exact 

component wise bounds on solutions of all the interval linear systems. Some topological 

and graph theoretical properties have been incorporated by Jansson (1997) for the 

solution set of linear algebraic systems with interval coefficients. There, the author found 

the exact bound of the solution. Aberth (1997) used a linear programming method to 

obtain the solution of linear interval equations. Skalna (2003) investigated the solution of 

linear equations of structural mechanics with interval parameters. Polyak and Nazin 

(2004) introduced a solution methodology to find “the best” interval solution of an 

interval algebraic system of linear equations. Skalna (2006) presented a new method to 

find the tight enclosure of the solution bound of system of a linear equations depending 
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linearly on interval parameters. Neumaier and Pownuk (2007) have studied the solution 

of linear systems with large uncertainties with an application of truss structure. A 

technique for the non-negative solution of interval linear systems have been developed by 

Shary (2011) constructing the maximal inner estimation of the solution set. An algorithm 

for computing the hull of the solution set of interval linear equations has been developed 

by Rohn (2011). Myskova (2005, 2012) studied the solution of interval equation using 

max-plus algebra. A new approach based on the concept of inclusion principle for 

obtaining the algebraic solution of interval linear systems has been presented by 

Allahviranloo and Ghanbari (2012a). Recently, weak and strong solvability of interval 

linear systems of equations and inequalities have been studied by Hladik (2013b). Kolev 

(2014) resolved the interval hull solution of linear interval parameter system using an 

iterative scheme. 

  

1.2.2. Interval eigenvalue problems 

 

Interval eigenvalue problems have a great importance for studying the uncertainty 

quantification of real life problems. There exist various well known methods to handle 

deterministic eigenvalue problems. But solution methods of interval eigenvalue problems 

are scarce. As such, related problems are reviewed below. 

An efficient method to solve the standard interval eigenvalue problem has been 

studied by Deif (1991). In their approach, the authors have used nonlinear programming 

and eigenvalue inequalities with the assumption that the signs of the components of 

eigenvectors remain invariant. Hertz (1992) investigated the stability analysis of dynamic 

symmetric interval systems in the field of control theory, as it depends on the bounds of 

extreme eigenvalue. Rohn and Deif (1992) proposed a method for obtaining the real 

eigenvalue of an interval matrix using the sign of central eigenvectors. Real eigenvalues 

of singular interval matrices have been studied by Rohn (1993). Qiu et al. (2001b) 

presented an approximate method based on interval perturbation theory for the standard 

interval eigenvalue problem of real non-symmetric interval matrices. Modares et al. 

(2006) dealt with the interval eigenvalue problem for the frequency analysis of a structure 

with uncertain structural parameter. Outer estimation of interval solution of the 

eigenvalue problem using affine interval approximation has been addressed by Kolev 

(2006). Leng and He (2007) have proposed a method to solve the generalized interval 

eigenvalue value problem by using the perturbation theory.  

http://link.springer.com/search?facet-author=%22T.+Allahviranloo%22
http://link.springer.com/search?facet-author=%22M.+Ghanbari%22
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Recently, interval eigenvalue problems have also been addressed by various other 

authors. Leng et al. (2008) proposed an algorithm using interval centre and radius for 

computing the exact real eigenvalue bounds of standard interval eigenvalue problems. 

Next, Leng and He (2010) extended the approach of Leng et al. (2008) to generalize 

interval eigenvalue problems. Hladik et al. (2010) computed the outer approximation of 

the eigenvalue sets of general and symmetric interval matrices. Also Hladik et al. (2011b) 

presented an inner approximation algorithm to estimate the exact bounds of interval 

eigenvalue. Moreover, they have (Hladik et al. 2011a) also proposed a filtering method 

for the approximation of real eigenvalue set of an interval matrix. Matcovschi et al. 

(2012) analyzed a procedure based on global optimization to evaluate the right bounds of 

the eigenvalue ranges of interval matrices. Eigenvalue bounds for both real and complex 

interval matrices are examined by Hladik (2013a). Very recently, based on some known 

sufficient conditions for the regularity of interval matrices, Leng (2014) developed an 

algorithm to solve both standard and generalized real interval eigenvalue problems. 

 

1.2.3. Uncertainty analysis of structures through interval approach 

 

In this section, literature related to structural analysis under interval uncertainty are 

reviewed to have a better insight. If only incomplete information is available, it is 

possible to establish the minimum and maximum favorable response of the structures 

using interval analysis (Ben-Haim and Elishakoff 1990; Ganzerli and Pantelides 2000).  

Firstly, literatures related to static analysis of structures with interval parameters 

are reviewed. As such, static analysis of structures under interval uncertainty has been 

studied by Rao and Berke (1997). In their approach, Gaussian elimination and 

combinatorial approach is used to obtain the solution of interval linear system of 

equations. Qiu and Elishakoff (1998) studied the anti-optimization analysis of structures 

through interval. They reported that the numerical results obtained by subinterval 

perturbation method yields tighter bounds than interval perturbation method. Kulpa et al. 

(1998) presented the application of interval methods in (qualitative) mechanical systems 

viz. truss and frame structures with parameter uncertainties. Chen and Yang (2000) 

developed a new interval finite element method to solve the uncertain problems of beam 

structures where the beam characteristics are assumed as interval parameters. Shu-xiang 

and Zhen-zhou (2001) studied the static linear interval finite element method and 

proposed a solution procedure using interval arithmetic for solving interval system of 
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linear equations. They applied the method for the uncertainty analysis of a six bar truss 

structure. Mc Williams (2001) reported the anti-optimization technique for structures 

using interval analysis. Muhanna and Mullen (2001) and Qiu (2003) used interval finite 

element method to obtain interval static response of structures considering the parameters 

as interval. Skalna (2003) presented solution methods for solving interval system of linear 

equations by improving the approach of Rump and Neumaier and applied those methods 

for the uncertain static response of truss structures. Next, Muhanna et al. (2005) reported 

interval static responses where they have used an element by element technique in the 

solution procedure. Qiu et al. (2006) developed two new techniques for the estimation of 

interval static displacement of structures. In their study, vertex solution theorem with 

Cramer’s rule has been used to find the upper and lower bounds of the solution set of 

linear interval equations. A three-stepped beam and a 10-bar truss have been taken into 

consideration to illustrate the computational aspects of their proposed methods. Neumaier 

and Pownuk (2007) studied the solution procedure for interval linear systems with large 

uncertainties with the applications to truss structures. Sub interval perturbed finite 

element method and anti-slide stability analysis methods were studied by Guo-jian and 

Jing-bo (2007) and the formula for computing the bounds of stability factor has been 

given. Muhanna et al. (2007) presented an interval approach for the treatment of uncertain 

parameter for linear static structural mechanics problems where uncertain parameters are 

introduced in the form of unknown but bounded quantities (intervals). They applied 

interval finite element method to analyze the system response under uncertain stiffness 

and loading. A new method called the interval factor method in the finite element analysis 

of truss structures with interval parameters has been proposed by Gao (2007). Very 

recently, Wang and Qiu (2013) proposed a method to obtain the exact solution of interval 

system of linear equations by converting the interval system into some deterministic 

systems. They have considered a six-bar truss example to validate the developed method. 

Modified interval and sub interval perturbation method for uncertain static analysis of 

structures with interval parameters has been presented by Xia and Yu (2014). This study 

avoids the unpredictable effect of neglecting the higher-order terms of Neumann series 

applied in the traditional interval perturbation method. 

Next, literature related to dynamic analysis of structures under interval uncertainty 

are cited and discussed. In this regard, Qiu et al. (1994) applied matrix perturbation 

theory for the vibration analysis of a multi storey frame structure with interval 

parameters. A method has been proposed by Chen et al. (1995) for computing the upper 
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and lower bounds of frequencies of structures with interval parameters. Rayleigh quotient 

and max-min theorem of eigenvalues have been used by them in their approach. Interval 

analysis for vibrating systems has been discussed by Dimarogonas (1995) and Qiu et al. 

(1995a). The Rayleigh quotient iteration method has also been applied by Qiu et al. 

(1995b) for the vibration analysis. Based on the interval finite element method, Yang et 

al. (2001) presented a new method to determine the bounds of complex eigenvalues of a 

damping structure with interval uncertainty. Interval finite element method has been used 

by Chen et al. (2003) for interval eigenvalue analysis for structures. Moens and 

Vandepitte (2004) studied an interval finite element approach for the calculation of 

envelope frequency response functions. Chen and Wu (2004a, 2004b) presented an 

interval optimization method for the dynamic response of structures with interval 

parameters. They derived a method by combining the interval extension of a function and 

the perturbation theory for finding interval dynamic response of a truss and a frame 

structure. Qiu and Wang (2005a) proposed solution theorems for the standard eigenvalue 

problem of structures with interval parameters. Vertex method has been used by Qiu et al. 

(2005) for finding the eigenvalue bounds of structures. They have compared the results 

obtained by the eigenvalue inclusion principle and the interval perturbation method. Qiu 

and Wang (2005b) presented vertex and interval perturbation methods for the generalized 

complex eigenvalue problem with bounded uncertainties of damped structure. A 

numerical example of a seven degree of freedom spring-damping-mass system has been 

considered by them. Modares et al. (2006) analysed the uncertain frequency of a 

structural system with bounded uncertainty. An interval (set theoretic) approach has been 

used by them for the uncertainty quantification. Modal analysis of structures with 

uncertain-but-bounded parameters via interval analysis has been investigated by Sim et al. 

(2007). Gao (2007) computed natural frequency and mode shape of structures for both 

random and interval parameter using random and interval factor method. They have 

considered truss structure for the analysis. Eigenvalue and frequency response function 

analysis of structures with uncertain parameters using interval finite element method have 

been studied by Gersem et al. (2007). Random Factor Method (RFM) and Interval Factor 

Method (IFM) have been used by Wei (2007) for finding the natural frequency and mode 

shape of truss structures with uncertain parameters. They have compared the structural 

natural frequency and mode shape solutions between RFM and IFM for truss structures. 

Frequency response function of uncertain structure with interval parameters has been 

studied by Moens et al. (2007) using interval finite element method, which is based on a 



8 

 

hybrid interval and modal superposition principle. A spring–mass system with damping 

has been taken into consideration for the analysis. To compute the interval eigenvalue 

bounds of structures, Leng and He (2007) used perturbation theory. Recently, Modares 

and Mullen (2014) investigated the dynamic spectrum analysis of structures viz. spring 

mass system and truss with interval uncertainty.  

 

1.3. Fuzzy Set Theory 

 

Fuzzy set theoretical concept was first developed by Zadeh (1965) and is further widely 

used for the uncertain analysis of various science and engineering problems. Moreover, 

several excellent books (Dubois and Prade 1980; Kaufmann and Gupta 1985; Ross 2004; 

Hanss 2005; Zimmermann 2001; Chakraverty 2014) have also been written related to 

this. These books presented an extensive review and various aspects of fuzzy theory along 

with applications. However, for uncertain static and dynamic analysis of structures with 

fuzzy parameters and external loads, the corresponding problem converts to fuzzy 

algebraic linear systems or eigenvalue problems in general. As such, in the following 

paragraphs, literatures related to fuzzy linear systems, eigenvalue problem and their 

applications to structures are discussed. It is a gigantic task to include all the literatures 

available, so only important and related references are cited below. 

 

1.3.1. Fuzzy linear systems 

 

As mentioned earlier, the system of linear equations has great applications in real life 

problems. It is simple and straight forward when the variables are defined as deterministic 

or crisp. But in actual case, the parameters may be uncertain or a vague estimation about 

the variables is known. Therefore, to overcome the uncertainty and vagueness, one may 

use the fuzzy numbers in place of the crisp numbers. Thus, the crisp system of linear 

equations becomes a Fuzzy System of Linear Equations (FSLE) or Fully Fuzzy System of 

Linear Equations (FFSLE). There is a difference between a fuzzy linear system and fully 

fuzzy linear system. The coefficient matrix is treated as crisp in the fuzzy linear system, 

but in the fully fuzzy linear system, the parameters as well as variables are considered to 

be fuzzy numbers.  

Fuzzy system of linear equations was studied by Friedman et al. (1998). An 

embedding approach has been used by them in the solution process. They have converted 
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nn  fuzzy linear system to nn 22   crisp system of linear equations to obtain the final 

solution. A method for solving fuzzy linear systems using fuzzy centre has been 

developed by Abbasbandy and Alavi (2005). Asady et al. (2005) considered nm  fuzzy 

general linear systems where they have assumed nm  . Conjugate gradient method has 

been considered by Abbasbandy et al. (2005) for the solution of fuzzy symmetric positive 

definite system of linear equations. Steepest descent method for the solution of fuzzy 

system of linear equations has been applied by Abbasbandy and Jafarian (2006). Nehi et 

al. (2006) solved a fuzzy linear system by solving its canonical form. In addition to this, 

Wang and Zheng (2006a) and Zheng and Wang (2006) presented various methods for the 

solution of FSLE. Wang and Zheng (2006a) studied an inconsistent fuzzy linear system 

whereas Zheng and Wang (2006) investigated the solution of nm  fuzzy general linear 

systems using an embedding approach. They have used the matrix inversion in the 

methodology. Allahviranloo and Kermani (2006) incorporated pseudo inverse properties 

in the solution process. Abbasbandy et al. (2008) investigated the existence of a minimal 

solution of general dual fuzzy linear systems. Necessary and sufficient conditions for the 

existence of minimal solution are also given by them. Horcik (2008) has applied interval 

theory for the solution of a system of linear equations with fuzzy numbers. Garg and 

Singh (2008) introduced Gaussian fuzzy number in the solution of fuzzy system of 

equations. Sun and Guo (2009) proposed a solution methodology along with its necessary 

and sufficient condition for FSLE. In addition to these, various other methods for the 

solution of FSLE have also been presented by different authors (Wang et al. 2009; Li et 

al. 2010; Senthilkumar and Rajendran 2011a). Ghanbari and Amiri (2010) used ranking 

functions and ABS algorithms for the solutions of LR fuzzy linear systems. Allahviranloo 

and Salahshour (2011) studied a simple and practical method to solve FSLE using 1-cut 

of fuzzy numbers. Also, they have presented the maximal and minimal solution of the 

system. Ezzati (2011) proposed an embedding approach for solving fuzzy linear systems 

including existence and uniqueness. Allahviranloo and Ghanbari (2012b) also studied the 

algebraic solution of fuzzy linear systems using interval theory. Amirfakhrian (2012) used 

fuzzy distance approach for the solution. Very recently, Chakraverty and Behera (2013b) 

investigated the solution using fuzzy centre and radius. Also, fuzzy addition and 

subtraction concepts have been incorporated by Behera and Chakraverty (2013f) for the 

solution of FSLE.  

Numerous numerical and semi analytical methods have also been investigated by 

different authors for handling such problems. In view of this, Adomian decomposition 
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method for FSLE has been taken into consideration by Allahviranloo (2005a, 2005b). 

Successive over relaxation methods for fuzzy linear systems has also been used by Wang 

and Zheng (2006b). Block Jacobi two stage methods with Gauss Seidel inner iterations 

has been implemented by Allahviranloo et al. (2006) for the solution of fuzzy systems. 

Dehghan and Hashemi (2006a) applied iterative methods and Abbasbandy et al. (2006) 

used LU decomposition method for solving fuzzy system of linear equations. Wang and 

Zheng (2007) used block iterative methods for fuzzy linear systems. Splitting iterative 

methods for fuzzy system of linear equations have been applied by Yin and Wang (2009). 

Homotopy analysis method has been applied by Jafari et al. (2009) for solving fuzzy 

system of linear equations. Tian et al. (2010) pursued perturbation analysis of fuzzy linear 

systems. Guo and Gong (2010) considered block Gaussian elimination method for the 

solution of fuzzy matrix equations. Fuzzy least square method has been presented by 

Gong and Guo (2011). Miao (2011) applied block homotopy perturbation method for 

solving fuzzy linear systems. Modified Adomian decomposition method for the solution 

of fuzzy polynomial equations has been studied by Otadi and Mosleh (2011b).  

Next, fuzzy complex number was first proposed by Buckley (1989). Qiu et 

al. (2000, 2001a) discussed the sequence and series of fuzzy complex numbers and their 

convergence. Solution of fuzzy complex system of linear equations was described by 

Rahgooy et al. (2009) and applied to a circuit analysis problem. Jahantigh et 

al. (2010) developed a numerical procedure for solving complex fuzzy linear systems. 

Behera and Chakraverty (2012) proposed a new and simple centre and radius based 

method for solving fuzzy real and complex system of linear equations. Also, Behera and 

chakraverty (2013b, 2014a) proposed fuzzy arithmetic based methods for fuzzy complex 

system. 

On the other hand, FFSLE is becoming an important upcoming area of research 

due to the vast applications in engineering and science problems. Accordingly, Buckley 

and Qu (1991) solved a fully fuzzy system of linear equations. In this respect, several 

computational and iterative techniques may be found in Dehghan et al. (2006, 2007). 

Decomposition procedure has been implemented by Dehghan and Hashemi (2006b). In 

Vroman et al. (2007a, 2007b), the authors have used parametric functions to obtain the 

solution. Abbasbandy et al. (2008) presented the minimal solution of general dual fuzzy 

linear systems. Homomorphic solution of FFSLE has been developed by Allahviranloo et 

al. (2008). They have obtained the fuzzy solution by converting the original system into 
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three crisp systems of linear equations. Kumar et al. (2011) considered a generalised fully 

fuzzy linear system with unrestricted fuzzy coefficient matrix. Iterative Jacobi and Gauss-

Seidel methods have been considered for the numerical approximation of the solution by 

Liu (2010). Senthilkumar and Rajendran (2011b) used Cholesky method for finding the 

non-negative solution of a symmetric fully fuzzy linear system. Allahviranloo et al. 

(2011) found the maximal and minimal symmetric solutions of fully fuzzy linear systems 

using 1-cut approach. Ezzati et al. (2012) studied the positive solution of a generalised 

fully fuzzy linear system and proved that a positive system always has a solution. 

Numerical solutions of fully fuzzy linear systems in dual form have also been 

investigated by Salahshour and Nejad (2013). Moloudzadeh et al. (2013) described a new 

method for solving an arbitrary fully fuzzy linear system with triangular fuzzy numbers. 

They have imposed 0-cut and 1-cut techniques in their methodology. Otadi and Mosleh 

(2011a) and Mosleh (2013) evaluated the numerical solution of dual fully fuzzy linear 

systems and FFSLE by fuzzy neural network technique respectively. 

Moreover, Buckley (1992) explained the use of fuzzy equations in economics and 

finance problems too. Numerical solution of fuzzy system of linear equations has been 

applied by Rao and Chen (1998) in the field of structural mechanics. Muzzioli and 

Reynaerts (2007) applied fuzzy linear systems in financial applications. For uncertain 

static response of structures, Skalna et al. (2008) also described the solution of fuzzy 

system of equations.  

 

1.3.2. Fuzzy eigenvalue problem 

 

A little effort has been made to find the solution of fuzzy eigenvalue problems. As such, 

Chiao (1998) used Zadeh’s extension principle for finding the solution of fuzzy 

generalized eigenvalue problems. Salahshour et al. (2012b) computed eigenvalues and 

eigenvectors of a standard fuzzy eigenvalue problem. They have obtained the eigenvalue 

by determining the maximal and minimal solution of the corresponding system. 

Allahviranloo and Hooshangian (2013) have developed a new method for solving 

standard fuzzy eigenvalue problems. They have used the core solution of the considered 

system in their methodology to obtain the solution bounds.  
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1.3.3. Uncertainty analysis of structures through fuzzy theory 

 

In this regard, nonlinear membership function for fuzzy optimization of mechanical and 

structural systems is discussed in Dhingra et al. (1992). An excellent review paper 

discussing the concepts and developments of structural analysis with fuzzy uncertainty 

has been studied by Moller et al. (2000). Fuzzy behavior of mechanical systems with 

uncertain boundary conditions has been investigated by Chekri et al. (2000). 

Transformation method has been applied for the analysis of structural systems with 

uncertain parameters by Hanss (2002). In this regard, an important book has been written 

by Hanss (2005) in which applications of fuzzy arithmetic has been used in a variety of 

engineering problems. Massa et al. (2006) presented an efficient method for the static 

design of imprecise structures with fuzzy data. Rao et al. (2010) investigated the transient 

response of structures with fuzzy structural parameters. Fuzzy arithmetical approach has 

been used for modeling and analysis of uncertain systems of automotive crash and 

landslide failure by Hanss and Turrin (2010). In both applications, epistemic uncertainties 

are considered which arise from lack of knowledge. Recently, Farkas et al. (2012) 

presented an optimization study of a vehicle bumper subsystem with fuzzy parameters. 

Various generalized models of uncertainty have been applied to finite element methods 

too for solving the structural problems with fuzzy parameters. As such few papers that are 

related to Fuzzy Finite Element Method (FFEM) are discussed next. 

First, few important literatures related to fuzzy static analyses of structures are 

described. Accordingly, fuzzy finite element approach has been applied to study static 

response of structural systems with imprecisely defined parameters by Rao and Sawyer 

(1995). Fuzzy finite element method has also been developed by Muhanna and Mullen 

(1999) for mechanics problems using alpha cut technique. Mullen and Muhanna (1999) 

introduced a new treatment of load uncertainties in structural problems based on fuzzy set 

theory. Hanss and Willner (2000) used fuzzy arithmetic approach for the static solution of 

a bar with fuzzy parameters. Rao and Reddy (2007) considered a cable-stayed bridge with 

multiple uncertainties to obtain fuzzy static responses of structures using fuzzy finite 

element approach. Fuzzy finite element method has been applied by Skalna et al. (2008) 

for the uncertain static problems of structural mechanics such as cantilever truss structure 

and two bay two floor frame. Verhaeghe et al. (2010) presented interval based 

computation with fuzzy finite element analysis to explain the static analysis of structures. 
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Balu and Rao (2011a, 2011b) investigated static analysis of structural problems with 

fuzzy parameters. They have used High Dimensional Model Representation (HDMR) 

along with finite element method for the analysis. Balu and Rao (2012) also investigated 

both static and dynamic responses of structures using FFEM with HDMR. Recently, 

Behera and Chakraverty (2013a, 2013c, 2013d) obtained uncertain static responses of 

imprecisely defined structures such as bar, beam, truss and simplified bridge using fuzzy 

finite element method. Fuzzy arithmetic based computations have been used by them for 

the solution. 

 Next, literatures related to uncertain dynamic analysis of structures with fuzzy 

parameters are reviewed. As such, Chen and Rao (1997) proposed a fuzzy finite element 

approach for the vibration analysis of imprecisely defined systems. Akpan et al. (2001a) 

derived fuzzy finite element method for the dynamic analysis of smart structures. Both 

fuzzy static and dynamic analysis of structures have also been explained by Akpan et al. 

(2001b) using fuzzy finite element approach. Vertex method and VAST software has 

been used for fuzzy finite element analysis. Donders et al. (2005) proposed a Short 

Transformation Method (STM) for the uncertainty assessment of dynamic response of 

structures. A clamped plate and a car front cradle with uncertain design parameters are 

demonstrated by them. Interval and fuzzy finite element method for the eigenvalue and 

frequency response function analysis of structures with uncertain parameters have been 

studied by Gersem et al. (2007). Fuzzy eigenvalues and eigenvectors of a finite element 

model with fuzzy parameters have been determined by Massa et al. (2008). Giannini and 

Hanss (2008) applied the transformation method to characterize the dynamic behavior of 

the structure with fuzzy parameters. They have considered a beam problem to show the 

performance of the proposed method. An optimization algorithm has been developed by 

Munck et al. (2008) for obtaining response surface by calculating fuzzy envelope and 

response functions. Morales et al. (2012) used fuzzy finite element method for active 

vibration control of uncertain structures. This work provides a tool for studying the 

influence of uncertainty propagation on both stability and performance of a vibration 

control system. Xia and Friswell (2014) proposed a method, based on the fundamental 

perturbation principle and vertex theory to solve fuzzy eigenvalue problem. They have 

verified the method by considering a simple cantilever beam. 

In recent years, fractional order differential equations have also been used to 

model physical and engineering problems. Since, it is too difficult to obtain the exact 
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solution of fractional differential equations, one may need a reliable and efficient 

numerical technique for the solution of fractional differential equations. Many important 

works have been reported regarding fractional calculus in the last few decades. Related to 

this field, several excellent books have also been written by different authors representing 

the scope and various aspects of fractional calculus such as in Miller and Ross (1993), 

Oldham and Spanier (1974), Kiryakov (1993) and Podlubny (1999). These books give an 

extensive review on fractional derivative and fractional differential equations which may 

help the reader in understating the basic concepts of fractional calculus. In this regard, 

many authors have developed various methods to solve fractional ordinary and partial 

differential equations and integral equations of physical systems. However, few related 

papers are cited here. Suarez and Shokooh (1997) used an eigenvector expansion method 

for the solution of a mechanical spring-mass system containing fractional derivatives. The 

same type of problem has also been studied by Yuan and Agrawal (2002) when the 

damping factor is defined as fractional. Very recently, Behera and Chakraverty (2013e), 

and Chakraverty and Behera (2013a) applied homotopy perturbation method to solve a 

fractionally damped beam and spring-mass system respectively. In these studies, variables 

and parameters are considered as deterministic in nature. 

On the other hand, very few work has been carried out when uncertainty has been 

taken into consideration for the structural system when damping factor is defined as 

fractional. Both fractional and uncertainty play an important role in the structural 

modeling and design. Hence, an attempt has been made to combine both for a better 

analysis. Some recent useful contributions on the theory of Fuzzy Fractional Differential 

Equations (FFDEs) may be seen in (Agarwal et al. 2010; Jeong 2010; Arshad and 

Lupulescu 2011; Mohammed et al. 2011; Allahviranloo et al. 2012; Salahshour et al. 

2012a; Ahmadian et al. 2013; Mazandarani and Kamyad 2013; Ahmad et al. 2013; 

Arshad 2013; Takaci et al. 2014). The concept of FFDEs was first introduced by Agrawal 

et al. (2010). Mohammed et al. (2011) applied differential transform method for solving 

fuzzy fractional initial value problems. Allahviranloo et al. (2012) studied the explicit 

solution of fractional differential equations with uncertainty. Salahshour et al. (2012a) 

developed Riemann-Liouville differentiability using Hukuhara difference called 

Riemann-Liouville H-differentiability and solved FFDEs by Laplace transform. A Jacobi 

operational matrix has been studied by Ahmadian et al. (2013) for solving a fuzzy linear 

fractional differential equation. Mazandarani and Kamyad (2013) applied modified 

fractional Euler method for solving fuzzy fractional initial value problem. Ahmad et al. 
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(2013) studied the solution of FFDEs using Zadeh’s extension principle. The exact and 

approximate solutions of FFDEs are obtained by Takaci et al. (2014) under the Caputo 

Hukuhara differentiability. In addition to these, Ghaemi et al. (2013) solved a fuzzy 

fractional kinetic equation of acid hydrolysis reaction. Salah et al. (2013) applied 

homotopy analysis transform method for the solution of fuzzy fractional heat equation. 

Recently, Behera and Chakraverty (2014b) investigated the uncertain semi analytical 

solution of a fuzzy fractionally damped mechanical spring mass system.  

 

1.4. Gaps 

 

Static and dynamic problems with deterministic structural parameters are well studied. In 

this regard, good number of research papers have been written by different authors. As 

mentioned earlier, the involved parameters or variables may have some type of 

uncertainty due to errors in the measurement, observation, experiment, applying different 

operating condition or it may be maintenance induced error. Recntly, these uncertain 

variables and parameters are represented by interval and fuzzy numbers, vectors or 

matrices. 

In general, uncertain static problems with interval or fuzzy parameters simplify to 

interval or fuzzy system of equations whereas dynamic problems convert to interval or 

fuzzy eigenvalue problems. In this respect, few authors have developed different methods 

for the solution of these type of problems. But sometimes, the existing methods are not 

computationally efficient and general to deliver the solution. These methods may have 

various disadvantages like number of iterations, triangularisation, finding more number of 

determinants, etc. Review of literature reveals that very little effort has also been made 

for dynamical problem of parameter identification from uncertain dynamic data. 

Moreover, structural systems governed by crisp fractional differential equations have 

been studied by many authors. But very limited studies have been done for fuzzy 

fractional differential equations. For solving a fuzzy fractionally damped system, we may 

get a coupled system of crisp fractional differential equations using the existing fuzzy 

approach. This may be time consuming to solve. Hence, efficient methods have to be 

developed to obtain the solution of such systems with reduced computational cost. 

As such, there are many gaps in the above focused problems. It is known that 

interval and fuzzy computations are themselves very complex to handle. As for a simple 

example, the subtraction of two equal intervals (fuzzy numbers) does not give a zero 
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interval (fuzzy number). Also, intersection of a fuzzy set with its complement is not null. 

Similarly, union of a fuzzy set with its complement is not the universal set. Having these 

in mind, one has to develop efficient algorithms or methods very carefully to handle these 

problems. 

 

1.5. Aims and Objectives 

 

Recently, effort has been made by various researchers to solve these type of problems but 

a lot of important information is still missing in the existing literature. Further, some of 

the known methods are computationally expensive. The purpose of the present work is to 

fill these gaps. In view of the above, our aim in this research is to develop new methods 

for solving fuzzy/interval algebraic system of equations and eigenvalue problems. 

Proposed methods are validated by studying uncertain static and dynamic analysis of 

structural systems. Parameter identification of multi storey frame structures from 

uncertain dynamic data are also taken into consideration. Then, solution of fractionally 

damped discrete and continuous system with crisp parameters are analysed. Lastly, 

dynamic responses of the above considered fractionally damped systems with fuzzy 

initial conditions are investigated. As such, the broad objectives related to the present 

research may be summarized as below: 

 

 new methods to solve fuzzy complex system of linear equations; 

 new methods to solve fuzzy real system of linear equations; 

 non-negative solution of fully fuzzy system of linear equations using proposed double 

parametric form of fuzzy numbers; 

 generalised solution of fully fuzzy system of linear equations using linear 

programming problem approach; 

 new algorithm for solving fuzzy generalized eigenvalue problem; 

 validation of the proposed methods through uncertain static and dynamic problems of  

structures; 

 identification of system parameters of multistorey frame structure from uncertain 

dynamic data; 

 solution of crisp fractionally damped discrete and continuous system; 

 uncertain dynamic responses of above fractionally damped discrete and continuous 

systems with uncertain initial conditions.   
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1.6. Organisation of the Thesis 

 

Present work, deals with the uncertainty analysis of structures through fuzzy and interval 

approach. Accordingly, this thesis consists of ten chapters which investigate new methods 

for fuzzy algebraic system of equations, eigenvalue problems, fuzzy fractional differential 

equations and system identification along with application problems. In view of this, the 

contents of the ten chapters of the thesis are organized in the following manner.  

Chapter 1 (that in the present chapter) addresses the background of interval and 

fuzzy set theory along with an overview of its application in the field of structural 

mechanics. Related literatures are systematically reviewed here. Gaps as well as aim and 

objectives of the present study are also included here. 

In Chapter 2 we recall definitions and details about interval and fuzzy 

computations relevant to the present investigation. 

Chapter 3 proposes various methods for solving uncertain algebraic system of 

linear equations. As such, fuzzy complex and real system of linear equations, nonnegative 

solution of fully fuzzy system of linear equations and generalized fully fuzzy system of 

linear equations are taken into consideration. Fuzzy addition, subtraction, centre, radius, 

width and a newly developed double parametric form of fuzzy numbers have been used in 

the solution process. Linear programming problem has also been applied for the solution 

of fully fuzzy linear system.  

Next, in Chapter 4, static analysis of imprecisely defined structures has been 

investigated using the proposed methodologies discussed in Chapter 3. Fuzzy and interval 

finite element methods have also been applied here to obtain the uncertain static 

responses of structures. In this chapter we have validated the proposed methods by 

analysing the static problems of structures such as bar, beam, truss, simplified bridge, thin 

plate and rectangular sheet with fuzzy/interval material and geometric properties along 

with uncertain external forces. 

Chapter 5 presents algorithm for solving uncertain generalized eigenvalue 

problem to obtain the uncertain vibration characteristics of an imprecisely defined 

structure. The structural parameters viz. the material and geometrical properties are 

considered as uncertain and have been taken as fuzzy numbers in term of triangular and 

trapezoidal convex normalized fuzzy sets. In the proposed algorithm, fuzzy computations 
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are handled through fuzzy arithmetic with the alpha cut form of fuzzy numbers. For 

verification, a lumped mass structural system viz. multistorey shear building, spring mass 

mechanical system and stepped beam structures have been analysed. Computed frequency 

parameters and corresponding mode shapes are compared with the existing results in 

special cases. Also, this chapter investigates the identification procedure of the column 

stiffness of multistorey frame structures by using the prior known uncertain parameters 

and dynamic data. Uncertainties are modelled through triangular convex normalized 

fuzzy sets. Bounds of the identified uncertain stiffness are obtained by using a proposed 

fuzzy based iteration algorithm associated with the Taylor series expansion. Example 

problems are solved to demonstrate the reliability and efficiency of the identification 

process.  

Chapter 6 investigates the numerical solution of a fractionally damped dynamic 

system. A single degree of freedom spring-mass mechanical system with fractional 

damping of order 1/2 is considered for the analysis. Homotopy Perturbation Method 

(HPM) is used to compute the dynamic responses of the system subjected to unit step and 

unit impulse loads. Obtained results are depicted in terms of plots. Comparisons are made 

with Podlunby (1999), Suarez and Shokooh (1997) and Yan and Agrawal (2002) to show 

the effectiveness and validation of the present analysis. 

Chapter 7 introduces the numerical solution of a viscoelastic continuous beam 

whose damping behaviours are defined in terms of fractional derivatives of arbitrary 

order. HPM has been used to obtain the dynamic responses. Unit step and impulse 

function responses are considered for the analysis. Results are depicted in terms of plots 

and comparisons are made with the analytical solutions obtained by Zu-feng and Xiao-

yan (2007). 

Chapter 8 describes the numerical solution of imprecisely defined fractional order 

discrete system, subjected to unit impulse and step loads. A mechanical spring mass 

system having fractional damping of order 2/1  with fuzzy initial condition has been 

taken into consideration. Fuzziness appeared in the initial conditions are modeled through 

different types of convex normalised fuzzy sets viz. triangular, trapezoidal and Gaussian 

fuzzy numbers. Homotopy perturbation method is used with fuzzy based approach to 

obtain the uncertain impulse response. Numerical examples are solved by symbolic 

computations and those are validated in crisp cases. 
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In Chapter 9, fuzzy fractionally damped beam has been studied using the double 

parametric form of fuzzy numbers subject to unit step and impulse loads. Triangular 

convex normalized fuzzy sets are used for the analysis. Using the alpha cut form, 

corresponding beam equation is first converted to an interval based equation. Next, it has 

been transformed to crisp form by applying double parametric form of fuzzy numbers. 

Finally, HPM is used for obtaining the fuzzy response. Various numerical examples are 

taken into consideration and the results are compared in special cases. 

Based on the present work, Chapter 10 summarizes the main findings and 

conclusions of the study. Finally, suggestions for future work are incorporated. 



   

 

 

 

 

 

 

 

 

Chapter 2 

 

Preliminaries
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Chapter 2    

Preliminaries 

 

This chapter presents the notations, definitions of interval, fuzzy numbers viz. triangular, 

trapezoidal and Gaussian, double parametric form of fuzzy numbers, Riemann–Liouville 

integral, Caputo derivative, theorem and lemma related to fuzzy/fuzzy fractional 

differential equations, homotopy perturbation method and fuzzy/interval arithmetic, 

which are relevant to the present investigation. Several excellent books related to this 

have also been written by different authors representing the scope and various aspects of 

interval and fuzzy set theory such as in (Jaulin et al. 2001; Zimmermann 2001; Ross 

2004; Moore 2009; Chakraverty 2014). These books also give an extensive review on 

fuzzy set theory and its applications which may help the reader in understating the basic 

concepts of fuzzy set theory and its application. 

 

Definition 2.1 Interval 

An interval x~  is denoted by ],[ xx  on the set of real numbers R  given by  

     }:{],[~ xxxRxxxx  .            (2.1) 

 

Here we have only considered closed intervals throughout this thesis, although there 

exists various other types of intervals such as open and half open intervals. x  and x  are 

known as the left and right endpoints of the interval x~  in the above expression (2.1) 

respectively. 

Let us now consider two arbitrary intervals ],[~ xxx   and ],[~ yyy  . These two intervals 

are said to be equal if they are in the same set. Mathematically, it only happens when 

corresponding end points are equal. Hence, one may write  

yx ~~   if and only if yx   and yx  .       (2.2) 

For the above two arbitrary intervals ],[~ xxx   and ],[~ yyy  , interval arithmetic 

operations such as addition (+), subtraction (-), multiplication ( ) and division (/) are 

defined as follows: 

] ,[~~ yxyxyx  ,                 (2.3) 
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] ,[~~ yxyxyx  ,                          (2.4) 

          SSyx max,min~~  , where },,,{ yxyxyxyxS  ,           (2.5) 

and ]
1

,
1

[],[~/~

yy
xxyx   if y~0 .            (2.6) 

Now if k  is a real number and ],[~ xxx   is an interval, then the multiplication of them 

are given by  










.0],,[

,0],,[~

kxkxk

kxkxk
xk          (2.7) 

 

Definition 2.2 Fuzzy Set 

A fuzzy set U
~

 on the real line R  is defined as the set of ordered pairs such that   

           ]}1 ,0[)(,|))(,{(
~

~~  xRxxxU
UU
 ,                  (2.8) 

where, )(~ x
U

  is called the membership function. 

 

Definition 2.3 Fuzzy Number 

A fuzzy number U
~

 is a convex normalised fuzzy set U
~

 of the real line R  such that  

}],1,0[:)({ ~ Rx   Rx
U

             (2.9) 

where, 
U
~  is called the membership function and it is piecewise continuous. 

 

There exists a variety of fuzzy numbers. But in this study we have used only the 

triangular, trapezoidal and Gaussian fuzzy numbers. So, we define these three fuzzy 

numbers below.  

 

Definition 2.4 Triangular Fuzzy Number (TFN) 

A triangular fuzzy number U
~

 is a convex normalized fuzzy set U
~

 of the real line R  such 

that  

 There exists exactly one Rx 0  with 1)( 0~ x
U

  ( 0x is called the mean value of U ), 

where 
U
~  is called the membership function of the fuzzy set. 

 )(~ x
U

  is piecewise continuous. 
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Let us consider an arbitrary triangular fuzzy number ),,(
~

c b aU   as shown in Fig. 2.1. 

The membership function 
U
~  of U

~
 will be defined as follows 

   































.          ,0      

          ,

          ,

           ,0       

)(~

cx

cxb
bc

xc

bxa
ab

ax

ax

x
U

                  (2.10) 

The triangular fuzzy number ),,(
~

c b aU   can be represented with an ordered pair of 

functions through  cut approach viz. 

])( ,)[()](),([ cbcaabuu    where, ]1 ,0[ . 

  

            Fig. 2.1 Triangular fuzzy number 

 

Definition 2.5 Trapezoidal Fuzzy Number (TrFN) 

We have now considered an arbitrary trapezoidal fuzzy number ),,,(
~

dc b aU   as given 

in Fig. 2.2. The membership function 
U
~  of U

~
 will be interpreted as follows  

 


















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
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


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dxc
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x
U
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The trapezoidal fuzzy number ),,,(
~

dc b aU   can be represented with an ordered pair of 

functions through  cut approach that is 

])( ,)[()](),([ dcdaabuu    where, ]1 ,0[ . 

 

                   Fig. 2.2 Trapezoidal fuzzy number 

 

Definition 2.6 Gaussian Fuzzy Number (GFN)  

Let us define an arbitrary asymmetrical Gaussian fuzzy number, ).,,(
~

rl   rU   The 

membership function 
U
~  of U

~
 will be as follows 

         Rx

rxrx

rxrx
x

r

l
U












       

   for   ]2/)(exp[

   for   ]2/)(exp[
)(

22

22

~




    (2.12) 

where, the modal value is denoted as r  and rl   , denote the left-hand and right-hand 

spreads (fuzziness) corresponding to the Gaussian distribution.  

 

For symmetric Gaussian fuzzy number, the left-hand and right-hand spreads are equal i.e. 

  rl . So the symmetric Gaussian fuzzy number may be written as ) , ,(
~

rU   

and corresponding membership function may be defined as })(exp{)( 2~ rxx
U

   

Rx  where, .2/1 2   The symmetric Gaussian fuzzy number in parametric form 

as shown in Fig. 2.3 can be represented as 























)(log
 ,

)(log
)]( ),([

~ ee rruuU  where,  [0, 1].  
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Fig. 2.3 Gaussian fuzzy number 

 

For all the above type of fuzzy numbers, the left and right bounds (lower or upper 

bounds) of the fuzzy numbers satisfy the following requirements 

 )(u  is a bounded left continuous non-decreasing function over  [0, 1]. 

 )(u  is a  bounded right continuous non-increasing function over [0, 1]. 

 .10 ,)()(   uu  

 

Definition 2.7 Double Parametric form of Fuzzy Number 

Using the  cut approach as discussed in (Definition 2.4 to 2.6) for all the fuzzy 

numbers, we have )].(),([
~

 uuU   Now, one may write this as a crisp number with 

double parametric form as   )()()() ,(
~

 uuuU   where   and ]1 ,0[ .  

And to obtain the lower and upper bounds of the solution in single parametric form, we 

may put 0  and 1 respectively. This may be represented as )()0 ,(
~

 uU   and 

)()1 ,(
~

 uU  . 

 

Definition 2.8 Fuzzy Centre 

Fuzzy centre of an arbitrary fuzzy number )](),([~  xxx   is defined as

2

)()(~  xx
x c 

   for all 10  . 
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Definition 2.9 Fuzzy Radius 

Fuzzy radius of an arbitrary fuzzy number )](),([~  xxx   is defined as 

2

)()(~  xx
x


   for all 10  . 

 

For any two arbitrary fuzzy numbers )](),([~  xxx  , )](),([~  yyy   and scalar k , 

the fuzzy arithmetic is similar to the interval arithmetic as defined above. 

 

Definition 2.10 Positive Fuzzy Number 

A fuzzy number U
~

 is said to be positive, denoted by 0
~
U  if its membership function 

)(~ x
U

  satisfies 0,0)(~  xx
U
 . 

 

Definition 2.11 Non-negative Fuzzy Number 

A fuzzy number U
~

 is said to be non-negative, denoted by 0
~
U  if its membership 

function )(~ x
U

  satisfies 0,0)(~  xx
U
 . 

 

Definition 2.12 Fuzzy Complex Number 

An arbitrary fuzzy complex number may be represented as ,~~~
qipX   where 

)](),([~  ppp   and )](),([~  qqq   are two real fuzzy numbers, for all .10   

 

As such, the above can be written as 

)].()(),()([)](),([)](),([
~

 qipqipqqippX   

Now writing ],[
~

XXX   it gives )()(  qipX   and )()(  qipX  . 

 

Definition 2.13 Fuzzy Matrix 

A matrix )~(]
~

[ kjaA   is called a fuzzy matrix, if each element of  ]
~

[A  is a fuzzy number. 

A fuzzy matrix ]
~

[A  will be non-negative, denoted by 0]
~

[ A , if each element of ]
~

[A  

will be a non-negative fuzzy number. 

 

Definition 2.14 Fuzzy System of Linear Equations 

The nn  fuzzy system of linear equations can be represented as 
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11212111
~~~~ bxaxaxa nn    

22222121
~~~~ bxaxaxa nn    

                                                      (2.13) 

 nnnnnn bxaxaxa
~~~~

2211   . 

In matrix notation, the above system may be written as },
~

{}
~

]{[ bXA   where the 

coefficient matrix )(][ kjaA  , nk 1 , nj   is a crisp real nn  matrix, }
~

{}
~

{ kbb  , 

k1  is a column vector of fuzzy number and }~{}
~

{ jxX   is the vector of fuzzy 

unknown. 

 

Definition 2.15 Fully Fuzzy System of Linear Equations 

The nn  fully fuzzy system of linear equations can be represented as 

11212111
~~~~~~~ bxaxaxa nn    

22222121
~~~~~~~ bxaxaxa nn    

                                                 (2.14) 

 nnnnnn bxaxaxa
~~~~~~~

2211   . 

In matrix notation, the above system may be written as },
~

{}
~

]{
~

[ bXA  where the 

coefficient matrix )~(]
~

[ kjaA  , nk 1 , nj    is a fuzzy nn   matrix, }
~

{}
~

{ kbb  , 

k1  is a column vector of fuzzy number and }~{}
~

{ jxX   is the vector of fuzzy 

unknown. 

 

Definition 2.16 Caputo Derivative  

The fractional derivative of )(tf  in the Caputo sense is defined as below 

     























 



.,),(

,1,
)(

)(

)(

1

)()(

0

1

)(

Nmmtf
dt

d

Nmmm
t

df

m

tfDJtfD

m

m

t

m

m

mm








 



             (2.15) 

 

Some basic properties of the fractional operator are  
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(i) 0,),()(    tfJtfJJ  

(ii) 0 ,1  ,0 ,
)1(

)1(
)( 














t-
t

tJ 


 
 . 

 

 Homotopy Perturbation Method (HPM) 

 

To illustrate the basic ideas of this method (He 1999; He 2000), we consider the 

following nonlinear differential equation of the form. 

,,0)()(  rrfuA         (2.16) 

with the boundary condition 

               











t

n

u
uB ,0,       (2.17) 

where, A  is a general differential operator, B  a boundary operator, )(rf  a known 

analytical function and   is the boundary of the domain  . A  can be divided  into two 

parts which are L  and N , where L  is linear and N is nonlinear. Therefore, Eq. (2.16) 

may be written as follows:  

.,0)()()(  rrfuNuL      (2.18) 

By the homotopy technique, we construct a homotopy   RprU  1,0:),(  , which 

satisfies: 

                ,,1,0,0)()()()()1(),( 0  rprfUApvLULppUH     (2.19) 

or 

  ,0)()()()()(),( 00  rfUNpvpLvLULpUH        (2.20) 

where, r  and ]1,0[p  is an imbedding parameter, 0v  is an initial approximation of 

Eq. (2.16). Hence, it is obvious that  

             ,0)()()0,( 0  vLULUH       (2.21) 

             ,0)()()1,(  rfUAUH       (2.22) 

and the changing process of p  from 0 to 1, is just that of ),( prU  from )(0 rv  to )(ru . In 

topology, this is called deformation, and )()( 0vLUL  , )()( rfUA   are called 

homotopic. Applying the perturbation technique due to the fact that 10  p  can be 

considered as a small parameter, we can assume that the solution of Eq. (2.19) or (2.20) 

can be represented as a power series in p  as follows,   
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 3
3

2
2

10 upuppuuU      (2.23) 

when 1p , Eq. (2.19) or (2.20) corresponds to Eqs. (2.16) and (2.23) and becomes the 

approximate solution of Eq. (2.19), i.e., 




3210
1

lim uuuuUu
p

     (2.24) 

The convergence of the series (2.24) has been proved in He (1999, 2000). 

.
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Chapter 3  

Uncertain Algebraic System of Linear Equations 

 

Design and analysis of various science and engineering problems require the solution of 

linear system of equations. For example, the finite element formulation of equilibrium and 

steady state problems lead to an algebraic system of linear equations. For the sake of 

simplicity, variables and parameters of these systems are defined exactly or considered as 

deterministic in the modelling. But in actual practice, the parameters and variables may 

be uncertain or vague because those are found in general by some experiment or 

experience. As mentioned in the previous chapters, the uncertainty may be handled by 

interval and fuzzy numbers. 

In general, uncertain system of linear equations with fuzzy number can be 

categorized as:  

 Fuzzy System of Linear Equations (FSLE) 

 Fully Fuzzy System of Linear Equations (FFSLE). 

There is a difference between FSLE and FFSLE. The coefficient matrix is treated 

as deterministic in the fuzzy system of linear equations, but in the fully fuzzy system of 

linear equations all the parameters and variables are considered to be fuzzy numbers. 

Literature review given in Chapter 1 reveals that there are many shortcomings in the 

existing methods. As such, it is an important issue to develop mathematical models and 

numerical techniques that would appropriately treat the general fuzzy or fully fuzzy linear 

systems. This chapter aims to propose new methods for fuzzy and fully fuzzy system of 

linear equations in the following sections. 

 

3.1. Fuzzy System of Linear Equations (FSLE) 

 

Depending upon the nature of fuzzy number viz. real or complex fuzzy number, FSLE 

can be defined as 

 

 Fuzzy complex system of linear equations 

 Fuzzy real system of linear equations. 
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Here, we have considered both fuzzy complex and fuzzy real system of linear equations. 

Two methods have been proposed with related theorems for fuzzy complex system of 

linear equations and five methods for fuzzy real system of linear equations. 

 

3.1.1. Fuzzy complex system of linear equations 

 

The nn  fuzzy complex system of linear equations may be considered as 

11212111
~~~~ wzczczc nn  

 

22222121
~~~~ wzczczc nn  

 

                                         (3.1) 

.~~~~
2211 nnnnnn wzczczc  

 

In matrix notation, we may then write the above as },
~

{}
~

]{[ WZC  where the coefficient 

matrix )(][ kjcC  , nk 1 , nj   is a complex nn  matrix, }~{}
~

{ kwW  , k1  is a 

column vector of fuzzy complex number and }~{}
~

{ jzZ   is the vector of fuzzy complex 

unknown.  

System (3.1) can be represented as  

      .,,2,1for ,~~

1

nkwzc k

n

j

jkj 


                      (3.2) 

The complex coefficient matrix, fuzzy complex unknown and the right hand fuzzy 

complex number vector may be written respectively as 

kjkjkj ibac  , 

)](),([)](),([~~~~
 jjjjjjj qqippqipzZ    

and )](),([)](),([~~~~
 kkkkkkk vviuuviuwW  . 

Writing )](),([],[
~

 jj zzZZZ   and )](),([],[
~

 kk wwWWW   we have 

),()()(

),()()(





jjj

jjj

qipzZ

qipzZ




       (3.3a) 

and 

).()()(

),()()(





kkk

kkk

viuwW

viuwW




         (3.3b) 
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Next, the following equation is obtained by substituting Z
~

 and W
~

 in Eq. (3.2)  

.,,2,1for )],(),([)](),([)(

1

nkwwzziba kkjj

n

j

kjkj 


            (3.4) 

Substituting the expressions of (3.3a) and (3.3b) in Eq. (3.4) one may get 

)]()(),()([)]()(),()([)(

1

 kkkkjjjj

n

j

kjkj viuviuqipqipiba 


. 

The above equation can now be written as 

)].()(),()([

)]()(),()([)]()(),()([

11





kkkk

n

j

jjjjkjjjjj

n

j

kj

viuviu

qipqipbiqipqipa



 


 

Here, kja  and kjb  both may be positive and/or negative. To handle the positive and 

negative values of kja  and kjb , the above equation is written as below (Eqs. (3.5) and 

(3.6)) 

           

 

  )()()()()()(

)()()()(

00

00





kk

kjb

jjkj

kjb
jjkj

kja

jjkj

kja
jjkj

viuqipbqipbi

qipaqipa























 






















 








(3.5) 

and 

          

 

  ),()()()()()(

)()()()(

00

00





kk

kjb

jjkj

kjb
jjkj

kja

jjkj

kja
jjkj

viuqipbqipbi

qipaqipa























 






















 








(3.6) 

where 

 

 












 






 

00

00

,)()()()()(

,)()()()()(

kjb

jjkj

kjb
jjkjk

kja

jjkj

kja
jjkjk

qipbqipbv

qipaqipau





          (3.7) 
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and 

            

 

  .)()()()()(

,)()()()()(

00

00














 






 

kjb

jjkj

kjb
jjkjk

kja

jjkj

kja
jjkjk

qipbqipbv

qipaqipau





          (3.8) 

 

 (Method 1) Fuzzy complex centre based method 

 

A new method has been proposed using the fuzzy complex centre. Firstly, the fuzzy 

centre solution is obtained and then the lower bound is written in terms of fuzzy centre 

and upper bound. From this we find the upper bound of the fuzzy solution. Similarly, 

lower bound can be obtained. Few theorems related to the investigation are stated and 

proved. 

  

Our aim is now to solve Eq. (3.2) in terms of fuzzy complex centre. One may write Eq. 

(3.2) using centre as  

      .,,2,1for ,~~)(

1

nkwziba
c

k
c

j

n

j

kjkj 


        (3.9) 

Here, 
c

j
c

j
c

j qipz ~~~   and c
k

c
k

c
k viuw ~~~  , where 

,
2

)()(~  jjc
j

pp
p


  ,

2

)()(~  jjc
j

qq
q


  

2

)()(~  kkc
k

uu
u


   and 

2

)()(~  kkc
k

vv
v


 . 

Eq. (3.9) reduces to the following equation using fuzzy centre expressions  

.~~~~~~

1 11 1

c
k

c
k

n

j

c
j

n

j

kj
c

jkj

n

j

c
j

n

j

kj
c

jkj viupbqaiqbpa 

































   
  

 

Equating the real and imaginary part of the above equation we have  

c
k

n

j

c
j

n

j

kj
c

jkj uqbpa ~~~

1 1

 
 

 

and 
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 
 



n

j

c
k

c
j

n

j

kj
c

jkj vpbqa

1 1

.~~~  

The above two equations are now in crisp (deterministic) form so one may solve it easily 

to obtain c
jp~  and c

jq~ . Correspondingly, the centre solution of complex fuzzy system of 

linear equations may be written as .~~~ c
j

c
j

c
j qipz    

 

Few theorems are now stated and proved below related to the proposed method. 

 

Theorem 3.1 The monotonic increasing solution vector }{ jz  can be obtained by 

replacing }{ jz   in terms of c
jz~  and }{ jz  in Eq. (3.4). 

 

Proof. As per the definition of complex fuzzy centre, 
2

~ jjc
j

zz
z


 .  From this, jz  can 

be written in terms of c
jz~  and jz  as .~2 j

c
jj zzz   

Substituting jz  in Eq. (3.4) we have  

                  .,,2,1for ],,[]~2,[)(

1

nkwwzzziba kkj
c

jj

n

j

kjkj 


                  (3.10) 

Eq. (3.10) is now represented equivalently for the expressions of  jz , c
jz~ , kw  and kw  

as 

               

)].()(),()([

))]()(()~~(2),()([

))]()(()~~(2),()([

1

1







kkkk

jj

c
j

c
jjj

n

j

kj

jj

c
j

c
jjj

n

j

kj

viuviu

qipqipqipbi

qipqipqipa















                  (3.11) 

 

Next, Eq. (3.11) is expressed into the following two crisp complex systems (Eqs. 3.12 and 

3.13) by equating the left and right bounds respectively  
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 

 

)()(

))()(()~~(2))()((

))()(()~~(2))()((

00

00







kk

jj

c
j

c
j

b

kjjj
b

kj

jj

c
j

c
j

a

kjjj
a

kj

viu

qipqipbqipbi

qipqipaqipa

kjkj

kjkj































 

                                                                                                                                      (3.12) 

and 

       

 

 

)()(

))()(())()(()~~(2

))()(())()(()~~(2

00

00







kk

jj
b

kjjj

c
j

c
j

b

kj

jj
a

kjjj

c
j

c
j

a

kj

viu

qipbqipqipbi

qipaqipqipa

kjkj

kjkj































 

                                                                                                                          (3.13) 

Now, any one of the above two systems viz. Eq. (3.12) or (3.13) may be solved to obtain 

)(
j

p  and )(
j

q . Which give the solution jz  as )()( 
jj

qip  . This proves the 

Theorem 3.1.                                                                                                       □ 

 

Note: Solution of any one of the above two systems (Eq. 3.12 or 3.13) gives the same 

result, which is proved in the following theorem. 

 

Theorem 3.2 For a fuzzy complex linear system defined by Eq. (3.1), if the upper bound 

of the fuzzy complex variable jz~  that is }{ jz  is replaced by lower bound with fuzzy 

complex centre, where the system (3.1) is first solved by total fuzzy centre (that is a crisp 

complex system), the set of equations thus obtained in terms of left and right bound of the 

fuzzy complex interval equations are exactly same. 

 

Proof. In Theorem 3.1, it is seen that the fuzzy complex system (3.11) can be written as 

crisp complex systems (3.12) and (3.13) equivalently for left and right bound 

respectively. Now, it has to be shown that the two systems (3.12) and (3.13) are the same 

or in the other words, the solution given by the respective systems are equal.   
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As the values of kja , kjb , c
jp~ , c

jq~ , )(ku  and )(kv  are known, so rearranging Eq. 

(3.12) and separating the real and imaginary parts of the system gives the following 

systems 
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and  
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         (3.15) 

Similarly, expanding Eq. (3.13) as above by separating the real and imaginary parts we 

get Eqs. (3.16) and (3.17) as follows 
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and 

                   

)(~2~2

)()()()(

00

0000





k
c

j

b

kj
c

j

a

kj

j
b

kjj
b

kjj
a

kjj
a

kj

vpbqa

pbpbqaqa

kjkj

kjkjkjkj






























         (3.17) 

 

For proving the theorem it is necessary to show that the Eqs. (3.14) and (3.15) are the 

same as the Eqs. (3.16) and (3.17) respectively. Comparing Eq. (3.14) with Eq. (3.16) and 

Eq. (3.15) with Eq. (3.17), it is observed that the left hand sides of the equations are 

equal. So, for proving the theorem, it is now sufficient to show that the right hand sides of 

the equations are equal i.e. to show  
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                                                                                                                                      (3.18) 

and 

    )(~2~2~2~2)(

0000

 k
c

j

b

kj
c

j

a

kj
c

j

b

kj
c

j

a

kjk vpbqapbqav

kjkjkjkj



































 


     

                                                                                                                                      (3.19) 

Let us first consider the left hand side of Eq. (3.18) as 
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Now, )(ku can be represented as )(~2 k
c

k uu  , where 

.~~~
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Expression of  c
ku~  contains all real values of kja  and kjb  so, c

ku~  may be expressed as  

.~~~~

0000

c
j

b

kj
c

j

b

kj
c

j

a

kj
c

j

a

kj qbqbpapa

kjkjkjkj




  

Consequently, we may have   
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Substituting the above value of )(ku  in Eq. (3.20) we have 
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Simplifying the above equation it turns out to be  
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                                (3.21) 

 

We may see that Eq. (3.21) is same as that of Eq. (3.20). This implies that Eq. (3.18) 

holds good. Similarly, Eq. (3.19) can also be shown to hold.  

Thus Theorem 3.2 is proved.                                                                                               □ 

 

Theorem 3.3 The monotonic decreasing solution vector }{ jz  can be obtained by 

replacing }{ jz   in terms of c
jz~  and }{ jz  in Eq. (3.4). 

 

Proof. The proof is straight forward as Theorem 3.1.                          □ 

 

Theorem 3.4 For a fuzzy complex linear system defined by Eq. (3.1), if the lower bound 

of the fuzzy complex variable jz~  (that is }{ jz ) is replaced by upper bound with fuzzy 

complex centre, where the system (3.1) is first solved by total fuzzy centre (that is a crisp 

complex system), the set of equations thus obtained in terms of left and right bounds of 

the fuzzy complex interval equations are exactly same. 

 

Proof. The proof is similar to Theorem 3.2.                           □ 

 

 (Method 2) Addition and subtraction of fuzzy complex numbers based method 

 

In this section, a new and simple solution method is proposed here for solving general 

fuzzy complex system of linear equations. In this method, the general system is initially 

solved by adding and subtracting the left and right bounds of the fuzzy complex unknown 

and right hand side fuzzy complex vector respectively. Then, obtained solutions are used 

to get the final solution of the original system. Two theorems are stated and proved below 

related to Method 2. 

  

Theorem 3.5 If },
~

{}
~

]{[ WZC   then }{ ZZ   is the solution vector of the system

}.{}]{[ WWZZC   
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Proof. Let us consider the expression in the left hand side of the system

}{}]{[ WWZZC   as   

.,,2,1for )},()({)(

1

nkzziba jj

n

j

kjkj 


  

This is equivalent to the following  
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The above expression can be written as  
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Explicitly, now we have the following,  

)()( TSiNM   

where  
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0 0
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0 0

)()()()(
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
 

0 0

)()()()(

kjb kjb

jjkjjjkj qipbqipbT  . 

Using the values of )(ku , )(ku , )(kv  and )(kv  from Eqs. (3.7) and ( 3.8) and 

rearranging, we get, 

)}.()({)}()({  kkkk viuviu   

Following Eq. (3.3b) it gives 

}.{)}()({ WWww kk    

Thus we have  
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}{}]{[ WWZZC   

and it is concluded that }{ ZZ   is the solution vector of the given system.                       □ 

 

Theorem 3.6 If },
~

{}
~

]{[ WZC  then }{ ZZ   is the solution vector of the system

}.{}]{[ * WWZZC   Here ),(][ **
kjcC   where, kjkjkj ibac ***   are the elements 

of ][C  by changing all the negative real and imaginary part of the elements (if those exist) 

into positive. Here, all 0* kja  and 0* kjb .  

 

Proof. Let us first consider the left hand side of the system }{}]{[ * WWZZC   as 
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Equivalent expression (by using Eq. (3.3a)) may be written as  
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The above equation may now be expressed as  
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So we may write 
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Next we consider the right hand side of the system }{}]{[ * WWZZC   and the same 

may be represented as (using Eq. (3.3b)) )}.()({  kk ww   

Substituting the expressions of )(kw  and )(kw  from Eq. (3.3b) in the above, one may 

get  
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)}.()()()({  kkkk viuviu   

Using the values of )(),(),(  kkk vuu and )(kv from Eqs. (3.7) and (3.8) in the 

above expression we get 
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By changing all negative coefficients into positive, the above expression becomes 

)()( **** TSiNM   
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It may now equivalently be written as 
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Therefore, we have 
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                     (3.23)

 

and finally Eqs. (3.22) and (3.23) give 

}.{}]{[ * WWZZC   

Thus }{ ZZ   is the solution vector of the given system.                         □ 

 

In the proposed method, Theorems 3.5 and 3.6 are used to obtain the solution vector 

}{ ZZ   and }{ ZZ   respectively. Then solving the solution vectors }{ ZZ   and 

}{ ZZ   one may obtain Z  and Z .  

 

To verify the above proposed methods (Methods 1 and 2 for fuzzy complex system of 

linear equations) a mathematical example has been taken into consideration as below.  

 

Example 3.1 Let us consider 22  complex fuzzy linear system as (Rahgooy et al. 2009) 

]1,1[]6,4[~)56(~)5.710( 21   izizi  

].1,3[],2[~)316(~)56( 21   izizi   

 

Solution by Method 1: 

 

For fuzzy complex centre, the above system can be represented as  

 5~)56(~)5.710( 21 
cc

zizi  

.21~)316(~)56( 21 izizi
cc

   
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Solving this system for fuzzy complex centre solution we have 108.03452.0~
1 iz
c

  and 

2072.00654.0~
2 iz

c
 . 

Using the fuzzy complex centre, the left bounds of the solution vector can be obtained by 

Theorem 3.1 as 

)0378.00708.0()0378.03164.0(1   iz  

)0307.02380.0()0307.00347.0(2   iz . 

Similarly Theorem 3.3 with fuzzy complex centre gives the upper bounds of the solution 

vector as  

)0378.01464.0()0378.03920.0(1   iz  

).0307.01765.0()0307.00961.0(2   iz  

Finally, the solution may be written as 

]0378.01464.0,0378.00708.0[]0378.03920.0,0378.03164.0[~
1   iz  

and 

].0307.01765.0,0307.02380.0[]0307.00961.0,0307.00347.0[~
2   iz  

 

Solution by Method 2: 

 

Applying Theorems 3.5 and 3.6, we have the solution vectors as  
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)0756.00756.0()0756.00756.0(

22

11





i

i

zz

zz
  

respectively. 

Solving the corresponding vector elements we have   

)0378.00708.0()0378.03164.0(1   iz  

)0378.01464.0()0378.03920.0(1   iz  

)0307.02380.0()0307.00347.0(2   iz  

).0307.01765.0()0307.00961.0(2   iz  

As such, the solution may finally be written as 

]0378.01464.0,0378.00708.0[]0378.03920.0,0378.03164.0[~
1   iz  
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and 

].0307.01765.0,0307.02380.0[]0307.00961.0,0307.00347.0[~
2   iz  

 

Obtained results are compared with Rahgooy et al. (2009) and found to be in good 

agreement.  

 

3.1.2. Fuzzy real system of linear equations 

 

The nn  fuzzy system of linear equations may be written as  

11212111
~~~~ bxaxaxa nn    

22222121
~~~~ bxaxaxa nn    

                                                                  (3.24) 

nnnnnn bxaxaxa
~~~~

2211   . 

In matrix notation, the above system may be written as },
~

{}
~

]{[ bXA  where the 

coefficient matrix )(][ kjaA  , nk 1 , nj    is a crisp real nn   matrix, }
~

{}
~

{ kbb  , 

k1  is a column vector of fuzzy number and }~{}
~

{ jxX   is the vector of fuzzy 

unknown. 

The above system }
~

{}
~

]{[ bXA   can be written as  






n

j

kjkj bxa

1

,
~~   for .,,2,1 nk        (3.25) 

As per the  cut form, we may write the real fuzzy unknown and the right hand real 

fuzzy number vector as )]( ),([)(~~  jjjj xxxx   and )].( ),([)(
~~

 kkkk bbbb   

Substituting these expressions in Eq. (3.25), we have 

 




n

j

kkjjkj bbxxa

1

,)]( ),([)]( ),([    for .,,2,1 nk               (3.26) 

Eq. (3.26) can equivalently be written as the following two equations  

       )()()(

00

 k

a

jkjj

a

kj bxaxa

kjkj




              (3.27) 

and 
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       )()()(

00

 k

a

jkjj

a

kj bxaxa

kjkj




         (3.28) 

In the following section, new methods are proposed for solving the fuzzy system of linear 

equations as defined in Eq. (3.24). 

 

 (Method 1) Method based on fuzzy left and right spread of fuzzy number with 

core solution 

 

Here, a new method has been proposed to solve fuzzy system of linear equations. It is 

worth mentioning that, the method is only valid for triangular and Gaussian fuzzy number 

matrices. First, the system has been solved for the core solution and then it is used to 

obtain left and right spreads to have the final solution. 

Now, 1 – cut (for 1 ) of the system (3.26) can be written as 

)]1(),1([)]1(),1([

1

kkjj

n

j

kj bbxxa 


.     (3.29) 

One may obtain )1(~
jx  by solving Eq. (3.25). Here, )1(~

jx  is known as the core of )(~ jx . 

Eq. (3.29) in general (for triangular or Gaussian fuzzy number matrix) converted to a 

crisp system for the core solution. So we have )1()1( kk bb   and )1(~)1()1( jjj xxx  . 

Solution vector )(~ jx  can be represented for triangular or Gaussian fuzzy number as 

)]()1(~),()1(~[   jj xx  

where )(  and )(  are left and right spreads of the solution vector for ]1,0[ , 

which are to be determined. 

As such, Eq. (3.24) can be expressed for triangular or Gaussian fuzzy number as  

  )](),([)]()1(~),()1(~[

1

 kkjj

n

j

kj bbxxa 


.        (3.30) 

Hence, Eq. (3.30) may equivalently be written as the following two equations  

    )()()1(~)()1(~

00

 k

kja

jkjj

kja

kj bxaxa  


            (3.31) 

and 



45 

 

    )()()1(~)()1(~

00

 k

kja

jkjj

kja

kj bxaxa  


            (3.32) 

Finally, Eqs. (3.31) and (3.32) are solved to find the left and right spread viz. )( and 

)(  of the solution vector. Hence, for triangular or Gaussian fuzzy number system, the 

solution vector can be written as )]()1(~),()1(~[   jj xx . 

This method is not in general for all fuzzy numbers. Therefore, to overcome the 

limitations of the above method, the following methods are developed. 

 

 (Method 2) Fuzzy centre and radius based method 

 

First, the system is solved in terms of fuzzy centre then this solution is used to get the 

radius of the final solution. Related theorems are stated and proven below.  

 

Theorem 3.7 Let X
~

 be a fuzzy solution of fuzzy system of linear equations (viz. Eq. 

(3.24)) where ][A  is the crisp real nn  nonsingular matrix and }
~

{b  is a fuzzy number 

vector. Then }{ cX is the solution vector of the crisp system 

}{}]{[ cc bXA   

where }2/))()({(}{  jj
c xxX   and }2/))()({(}{  kk

c bbb  . 

 

Proof. Let us now first consider the left hand side of the system }{}]{[ cc bXA  .  

Hence, one may write }]{[ cXA  as  

},2/))()({(

1

 jj

n

j

kj xxa 


 for .,,2,1 nk   

This can be written as 

. xxaxxa jj

  kja

kjjj

kja

kj }2/))()({(}2/))()({(

00

  


 

It is equivalent to 

.
2

)(

2

)(

2

)(

2

)(

0000






kja

j
kj

j

kja

kj

kja

j
kj

j

kja

kj

x
a

x
a

x
a

x
a


   (3.33) 
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By combining first with fourth term and second with third term in the above equation and 

using Eqs. (3.27) and (3.28) we get 

}{}2/))()({( c
kk bb b   . 

Thus, we have }{}]{[ cc bXA  . which proves that }{ cX is the solution vector of the 

system }{}]{[ cc bXA  .                                    □ 

 

Unknown fuzzy number vector }~{ jx  and the right hand side fuzzy number vector }
~

{ kb  of 

the system (3.25), using fuzzy centre and radius can be represented respectively as 

]} ,{[)]}( ),({[}~{ j
c
jj

c
jjjj xxxxxxx    

and 

]}. ,{[)]}( ),({[}
~

{ k
c
kk

c
kkkk bbbbbbb    

Substituting the expression for left and right bound of }~{ jx  in Eqs. (3.27) and (3.28) we 

have 

    )()()(

00

 k

kja

j
c
jkjj

c
j

kja

kj bxxaxxa  


    (3.34) 

and 

    ).()()(

00

 k

kja

j
c
jkjj

c
j

kja

kj bxxaxxa  


    (3.35) 

Let us now substitute the value of }{ c
jx  of Theorem 3.7 in Eqs. (3.34) and (3.35) and 

solve any one of the above system (viz. Eq. (3.34) or (3.35)) to obtain jx . This gives the 

solution ]. ,[~
j

c
jj

c
jj xxxxx   It is important now to show that the solution vector 

}{ jx  obtained by Eq. (3.34) or (3.35) is same. This is illustrated in the following 

theorem.  

 

Theorem 3.8 Crisp linear systems (viz. Eqs. 3.34 and 3.35) give exactly same radius 

when the left and right bounds of the fuzzy variables are replaced by centre solution of 

Eq. (3.25). 

 

Proof.  Let us first consider Eq. (3.34)  
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).()()(

00

 k

kja

j
c
jkjj

c
j

kja

kj bxxaxxa  


 

The above expression may equivalently be written as 

.

00 00

k
c
kj

kja

kj

kja

j

kja

kj
c
jkj

c
j

kja

kj bbxaxaxaxa    
 

      (3.36) 

The central fuzzy system }{}]{[ cc bXA   is written as 






n

j

c
k

c
jkj  bxa

1

.  

It may now be equivalently expressed as 

.

00

c
k

kja

c
jkj

c
j

kja

kj bxaxa  


 

Substituting this in Eq. (3.32) one may have 

k

kja

jkjj

kja

kj bxaxa   
 00

. 

This can be represented as 

         .

00

k

kja

jkjj

kja

kj bxaxa   


     (3.37) 

From this, one may conclude that Eq. (3.34) is equivalent to Eq. (3.37). Similarly, it can 

also be proved that Eq. (3.35) is also equivalent to Eq. (3.37). Hence, it may be concluded 

that Eqs. (3.34) and (3.35) are exactly same. Thus Theorem 3.8 is proved.                        □ 

 

 (Method 3) Fuzzy addition and subtraction based method 

 

In this method, the coefficient matrix has been considered as real crisp, whereas the 

unknown variable vector and right hand side vector are considered as fuzzy. The general 

system is initially solved by adding and subtracting the left and right bounds of the 

vectors respectively. Conditions for consistent and computational complexity analysis are 

also presented.  

For this case, let us now define 

)]( ),([],[
~

j  xxXXX j  and )].( ),([],[
~

 kk bbbbb   

 In this regard, related theorems are now stated and proved below. 
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Theorem 3.9 If }
~

{}
~

]{[ bXA  , then }{ XX   is the solution vector of the system 

}{}]{[ bbXXA  . 

 

Proof. Let us consider the right hand side of the system }{}]{[ bbXXA   as  

}]{[ XXA  . 

One may write }]{[ XXA   as 






n

j

jkj xxa

1

j )]( )([   for .,,2,1 nk   

The above can be represented as  

. )}()({)}()({

0  0

 jj

kja

kjjj

kja

kj xxaxxa  


 

This is equivalent to 

.)()()()(

0000






kja

jkjj

kja

kj

kja

jkjj

kja

kj xaxaxaxa   

Using Eqs. (3. 27) and (3.28), the above expression can be written as 

][)]( )([ bbbb kk   . 

Accordingly, one may conclude }{}]{[ bbXXA  . This proves }{ XX   is a 

solution vector of the system }{}]{[ bbXXA  .                         □ 

 

Theorem 3.10 If }
~

{}
~

]{[ bXA  , then }{ XX   is the solution vector of the system 

}{}]{[ * bbXXA  , where )(][ **
kjaA  . Here, 0* kja are the elements of ][A  but 

changing all negative elements (if those exist) into positive. 

 

Proof. Let us consider the expression }]{[ * XXA  , which may be written as  






n

j

jkj xxa

1

j
* )]( )([   for .,,2,1 nk   

This can be expressed as 




n

j

kj

n

j

jkj xaxa

1

j
*

1

* )()(  . 

One may get then  
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            




n

j

kj

n

j

jkj xaxaXXA

1

j
*

1

** )()(}]{[  .    (3.38) 

By subtracting Eq. (3.28) from Eq. (3.27), it gives 

)()()()()}()({

0000

 




kja

jkjj

kja

kj

kja

jkjj

kja

kjkk xaxaxaxabb

 

     )()()()(

0000

 j

kja

kjj

kja

kjj

kja

kjj

kja

kj xaxaxaxa 


  

   

































 


)()()()(

0000

 j

kja

kjj

kja

kjj

kja

kjj

kja

kj xaxaxaxa  

Here, all 0kja , so one may write the above expression as 






n

j

kj

n

j

jkjkk xaxabb

1

j
*

1

* )()()}()({  .      (3.39) 

From Eqs. (3.38) and (3.39) we have 

}{)}()({}]{[ * bbbbXXA kk   . 

Hence, it can be concluded that }{ XX   is the solution vector of the discussed system as 

mentioned. Thus the theorem is proved.                                  □ 

 

It may be noted that, Theorems 1 and 2 may be utilised to obtain the solution vector 

}{ XX   and }{ XX   respectively. Then solving the solution vectors }{ XX   and 

}{ XX   one, may obtain }{X  and }{X . 

 

Here, it is interesting to note that if a fuzzy system of linear equations has no solution or 

inconsistent, then the converted crisp systems also have no solution or inconsistent and 

vice versa. One related theorem is stated and proved below. 

 

Theorem 3.11 Fuzzy system of linear equations }
~

{}
~

]{[ bXA   is inconsistent iff 

}{}]{[ bbXXA   and }{}]{[ * bbXXA   are inconsistent. 
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Proof. First we will prove the necessary part of the theorem. Let us consider the system 

}
~

{}
~

]{[ bXA   be consistent. Using fuzzy centre, }
~

{}
~

]{[ bXA   can be represented as  

        }{}]{[ cc bXA  ,         (3.40) 

where 
2

XX
X c 

  and 
2

bb
bc 

 . 

One may conclude that Eq. (3.40) is also inconsistent because }{ cX is the middle point of 

}
~

{X . From Eq. (3.40), we may conclude that }{}]{[ bbXXA  is inconsistent. 

Next, the system }
~

{}
~

]{[ bXA   can be represented by radius of the fuzzy solution as  

}{}]{[ * bXA  , where 






 


2

}{
XX

X  and 






 


2

}{
bb

b . 

So 






 








 

22
][ * bbXX

A  is inconsistent, because }{ X  is the radius of the solution. 

From this, we conclude that  }{}]{[ * bbXXA   is inconsistent. Hence, necessary 

part holds good. 

Conversely, we will proceed for the proof of sufficient part of the theorem. Let us now 

consider }{}]{[ bbXXA   and }{}]{[ * bbXXA   are inconsistent. Now, we 

have to prove }
~

{}
~

]{[ bXA   is inconsistent. 

}{}]{[ bbXXA   can be equivalently written as 






 








 

22
][

bbXX
A  and 

accordingly we have }{}]{[ cc bXA  . Hence, the centre solution of }
~

{}
~

]{[ bXA   is 

inconsistent as this is the equivalent from of }{}]{[ bbXXA  . According to Method 

2 of Section 3.2.1, solution vector ],[ XX  can be represented as ]. ,[ XXXX cc   

As the centre solution is inconsistent, hence }
~

{}
~

]{[ bXA   is inconsistent because one 

may not proceed for ]. ,[ XXXX cc   This proves the sufficient part.            □ 

 

Similarly, one may have the condition for consistency of the fuzzy linear system of 

equations. The related theorem may be proposed as below. 
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Theorem 3.12 The fuzzy system of linear equations }
~

{}
~

]{[ bXA   is consistent iff 

}{}]{[ bbXXA   and }{}]{[ * bbXXA   are consistent. 

 

Proof. The proof is straight forward as Theorem 3.11.                         □ 

 

Computational complexities are investigated for this method. Similar interpretations may 

be made for other methods too. For computational complexity, the present method is 

compared with standard method of Friedman et al. (1998). First study related to fuzzy 

system of linear equations has been done by Friedman et al. (1998). In Friedman et al. 

(1998), they used an embedding approach where nn  fuzzy system of linear equations is 

converted to 2n × 2n crisp system of linear equations. Then solving the nn 22   crisp 

system of linear equations, they found the final solution of fuzzy system of linear 

equations. For large systems, one may use Gaussian elimination method (or any other) for 

the solution. If it is Gaussian elimination, then the total number of operations needed to 

solve nn 22   crisp system of linear equations is equivalent to the aggregation of 

operation count for forward and backward substitution. According to Kreyszig (2004), the 

total number of operations involved in the Gaussian elimination procedure is equivalent 

to 23 4
3

16
nn  . 

But in the present procedure, first the system is solved by Theorems 3.9 and 3.10. 

That means, first we have to solve two nn  crisp systems of linear equations. So for this, 

the number of operations involved to find the numerical solution using Gaussian 

elimination procedure is 23 2
3

4
nn  . After getting }{ XX   and }{ XX   from 

Theorems 3.9 and 3.10, again we have to solve n  times 22  system of linear equations 

to find the corresponding fuzzy solution. So here, the number of operations involved is 

equal to n
3

20
. Hence for the present method, the total number of operations involved is 

nnn
3

20
2

3

4 23 







 . 

To have a feeling of the number of operations, let us consider a 100100  fuzzy 

system of linear equations. The operation count for both the methods are computed by 

following the procedure as above and are cited in Fig. 3.1. One may notice from Fig. 3.1 

that for large systems the number of operations count for the present method is less than 
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the method of Friedman et al. (1998). So we may conclude that the present method may 

be computationally efficient. 

 

Fig. 3.1 Comparison plot of operations count between the present method (Method 3) and 

Friedman et al. (1998) 

 

Remark 3.1 In the following method (Method 4), centre and radius of fuzzy numbers are 

computed separately to obtain the final solution. This method is similar to the above 

method. Related theorem is stated and proved below. 

 

 (Method 4) Another method based on fuzzy centre and radius  

 

In this section, first we have to compute the fuzzy centre solution }{ cX  using the 

proposed Theorem 3.7. Next, using the following theorem, one may obtain the radius 

}{ X  of fuzzy solution directly.  

 

Theorem 3.13 If }
~

{}
~

]{[ bXA   then }{ X  is the solution vector of the system 

}{}]{[ bXA   

 where 
2

)()(  jj xx
X


 , 

2

)()(  kk bb
b


  and )(][ **

kjaA  . Here 0* kja  are 

the elements of ][A  but changing all negative elements (if those exist) into positive.  

 

Proof. The proof of the theorem is equivalent to Theorem 3.10.                        □ 



53 

 

Hence using the centre and radius of the fuzzy solution, we may write the final solution as  

]. ,[ j
c
jj

c
j xxxx   

 

Remark 3.2 Next, a new methodology (Method 5) is presented using the concept of 

fuzzy addition. Hence, related theorems are stated and proved accordingly for the 

completeness of the present study as follows. 

 

 (Method 5) Fuzzy addition based method 

 

Using Theorem 3.9, one can find the solution vector }{ XX   of the system 

}.{}]{[ bbXXA   Let us consider the solution vector }{ XX   as )}.({}{ jPP   

So, this can be written as )}.({)}()({  jjj Pxx  The lower and upper bounds of the 

solution vector may be obtained as  

)}()({)}({  jjj xPx   and )}()({)}({  jjj xPx   

respectively. 

 

Theorem 3.14 The monotonic increasing solution vector )}({ jx  can be obtained by 

replacing )}({ jx   in terms of )}({ jx  and )}({ jP  in Eq. (3.26). 

 

Proof. We get two crisp systems (3.27) and (3.28) from Eq. (3.26). Substituting 

)}()({)}({  jjj xPx   in any one of these equations and solving we may find 

)}.({ jx  So this proves the theorem.                           □ 

 

Theorem 3.15 Crisp linear systems (viz. Eqs. 3.27 and 3.28) give exactly the same 

)}({ jx  when the upper bound of the fuzzy variable )}({ jx  is replaced by 

)}()({  jj xP  in Eq. (3.26). 

 

Proof.  Let us first consider Eq. (3.27),  

).()()(

00

 k

kja

jkj

kja

jkj bxaxa  

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Substituting )}()({)}({  jjj xPx   in the above equation we have 

).()}()({)(

00

 k

kja

jjkj

kja

jkj bxPaxa  


 

The above expression may equivalently be written as  

                ).()}({)}({)(

0 00

 k

kja kja

jkjjkj

kja

jkj bxaPaxa   
 

        (3.41) 

Which may be expressed as 

                                     ).()}({)(

00

 k

kja

jkj

kja

jkj bPaxa  


                   (3.42) 

But, the fuzzy system }{}]{[ bbXXA   gives 

)}.()({)}()({

1

 kk

n

j

jjkj bbxxa 


 

This can be expressed as 

)}()({)}()({)}()({

00

 kk

kja

jjkj

kja

jjkj bbxxaxxa  


. 

Introducing )(jP we get 

)}.()({)}({)}({

00

 kk

kja

jkj

kja

jkj bbPaPa  


 

This is similar to 

.)}({)}()({)}({

00






kja

jkjkk

kja

jkj PabbPa   

Substituting the above in Eq. (3.42) we have 

                               ).()}({)(

00

 k

kja

jkjj

kja

kj bPaxa  


                          (3.43) 

One may see that Eq. (3.27) is equivalent to Eq. (3.43). Similarly, one may prove that Eq. 

(3.28) is equivalent to Eq. (3.43). Hence, it may be concluded that Eqs. (3.27) and (3.28) 

are exactly same. Thus Theorem 3.15 is proved.                                 □ 

 

Theorem 3.16 The monotonic decreasing solution vector )}({ jx  can be obtained by 

replacing )}({ jx  in terms of  )}({ jx  and )}({ jP  in Eq. (3.26). 
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Proof. The proof is straight forward as Theorem 3.14.                                 □ 

 

Theorem 3.17 Crisp linear systems (viz. Eqs. 3.27 and 3.28) give exactly same )}({ jx  

when the lower bound of the fuzzy variable )}({ jx  is replaced by )}.({)}({  jj xP   

 

Proof. The proof is straight forward as Theorem 3.15.                                  □ 

 

To validate the proposed methods (Methods 1 to 5) for fuzzy real system of linear 

equations, a numerical problem has been solved in Example 3.2.  

 

Example 3.2 Let us consider a 33  real Gaussian fuzzy system as (Garg and Singh 

2008) 

]log5020 ,log5020[~~2~4 321  eexxx   

]log10016 ,log10016[~6~7~2 321  eexxx   

].log10044 ,log10044[~10~6~
321  eexxx        

       

Using the proposed Methods 1 to 5 for real fuzzy system of linear equations we obtain the 

solution as 

 









  eeeex log

113

90
log2

113

170
4  ,log

113

90
log2

113

170
4~

1 , 









  eeeex log

113

170
log2

113

70
  ,log

113

170
log2

113

70~
2  and 

.log
113

20
log2

113

25
 4 ,log

113

20
log2

113

25
4~

3 







  eeeex  

 

Obtained results are compared with Garg and Singh (2008) and found to be in good 

agreement. The results are also depicted in Table 3.1. It may be noted that the results 

obtained by the proposed methods exactly satisfy the fuzzy system. Whereas results 

obtained by Garg and Singh (2008) are a little bit far form the exact solution.  
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Table 3.1 Solution of Example 3.2  

Solution 

bound 

Present method (s) Garg and Singh (2008) 

)(1 x  
 ee log

113

90
log2

113

170
4    ee log100

88

7
log50

10

3
4   

)(1 x  
 ee log

113

90
log2

113

170
4    ee log100

88

7
log50

10

3
4   

)(2 x  
 ee log

113

170
log2

113

70
   ee log100

20

3
log50

8

1
  

)(2 x  
 ee log

113

170
log2

113

70
   ee log100

93

14
log50

8

1
  

)(3 x  
 ee log

113

20
log2

113

25
4    ee log100

56

1
log50

45

2
4   

)(3 x  
 ee log

113

20
log2

113

25
4    ee log100

56

1
log50

68

3
4   

 

One may note that all the proposed methods give exactly same results but the way these 

handle the problem is different with different computational efforts.  

 

3.2. Fully Fuzzy System of Linear Equations (FFSLE) 

 

Depending on the nature of the fuzzy number viz. real or complex fuzzy number, FFSLE 

can be defined as 

 Fully fuzzy complex system of linear equations 

 Fully fuzzy real system of linear equations. 

But here, we have discussed only the fully fuzzy real system of linear equations in the 

following sections. 

 

3.2.1. Fully fuzzy real system of linear equations 

 

The nn  fully fuzzy real system of linear equations may be written as  

 

      

.
~~~~~~~

,
~~~~~~~

,
~~~~~~~

2211

22222121

11212111

nnnnnn

nn

nn

bxaxaxa

bxaxaxa

bxaxaxa















      (3.44) 
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In matrix notation, the above system may be presented as }
~

{}
~

]{
~

[ bXA  , where the 

coefficient matrix njkaA kj  ,1),~(]
~

[  is a fuzzy nn  matrix, kbb k  1},
~

{}
~

{  is a 

column vector of fuzzy numbers and }~{}
~

{ jxX   is the vector of fuzzy unknowns. 

 

3.2.1.1. Non-negative solution of fully fuzzy system of linear equations with non-

negative fuzzy coefficient matrix 

 

Here two new methods are presented. The fuzzy system has been converted to a crisp 

system of linear equations by using single and double parametric form of fuzzy numbers 

to obtain the non-negative solution. Double parametric form of fuzzy numbers is defined 

and applied for the first time in this thesis. Using single parametric form, the nn  fully 

fuzzy system of linear equations has been converted to a nn 22   crisp system of linear 

equations. On the other hand, double parametric form of fuzzy numbers converts the 

nn  fully fuzzy system of linear equations to a crisp system of same order.  

In this section, we have to obtain a non-negative solution of a fully fuzzy linear system 

viz. }
~

{}
~

]{
~

[ bXA  , where we have assumed XA
~

,
~

 and 0
~
b .  

 

 Limitations of the existing (known) methods 

 

Here we have pointed out some short comings of the existing methods to solve the 

considered fully fuzzy system of linear equations. 

 

1. Das and Chakraverty (2012) studied the solution of nn  fully fuzzy system of linear 

equations by converting it into a nn 22   crisp system of linear equations. The 

matrices involved in the corresponding system are considered as positive. 

2. Cholesky decomposition was adopted by Senthilkumar and Rajendran (2011b) for the 

solution of a symmetric fully fuzzy system of linear equations. Here, positive matrices 

are considered and the elements are assumed as triangular fuzzy number. In this 

method, symmetric coefficient matrix has been decomposed into two matrices and 

then the solution was obtained in three steps. 

3. Fully fuzzy linear systems has also been solved by linear programming approach, 

Gauss elimination method, Cramer’s rule, etc. (Dehghan et al. 2006 and 2007). These 
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computational methods have various disadvantages like number of iterations, 

triangularisation and finding value of large number of determinants, etc.  

 

To overcome these drawbacks, we have introduced two new methods for solving fully 

fuzzy linear systems based on single and double parametric form of fuzzy numbers.  

 

 (Method 1) Single parametric form based method 

 

The above system,  can be represented as  

    nkbxa kj

n

j

kj ,,2,1for
~~~

1




.     (3.45) 

Using the parametric form of fuzzy number we may write the elements of the fuzzy 

coefficient matrix, real fuzzy unknown and the right hand real fuzzy number vector as 

)](),([~  kjkjkj aaa  , )](),([~  jjj xxx   and )](),([
~

 kkk bbb   respectively. 

Substituting the above expressions in Eq. (3.45), one may obtain  

nkbbxxaa kkjj

n

j

kjkj ,,2,1for)](),([)](),([)](),([

1




     (3.46) 

By applying standard rule of fuzzy arithmetic, Eq. (3.46) can equivalently be expressed as 

the following two crisp equations 

           )()()(

1

 k

n

j

jkj bxa 


     (3.47) 

and 

             )()()(

1

 k

n

j

jkj bxa 


.       (3.48) 

One may write explicitly the combined form of Eqs. (3.47) and (3.48) as  



























q

p

z

y

DO

OS
                     (3.49) 

where, 

}
~

{}
~

]{
~

[ bXA 
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





















)()()(

)()()(

)()()(

21

22221

11211







nnnn

n

n

aaa

aaa

aaa

S









, 























)()()(

)()()(

)()()(

21

22221

11211







nnnn

n

n

aaa

aaa

aaa

D









, 























)(

)(

)(

2

1







nx

x

x

y


,























)(

)(

)(

2

1







nx

x

x

z


, 























)(

)(

)(

2

1







nb

b

b

p


, 























)(

)(

)(

2

1







nb

b

b

q


 

and O  represents nn  zero matrix. 

Now one may solve either Eqs. (3.47) and (3.48) separately or Eq. (3.49) directly to 

obtain the lower and upper bounds of the solution vector.  

One may note that the procedure converts the fuzzy system to crisp system for the 

solution. Here we have to solve either two nn  crisp system separately or a single  

nn 22   system. Hence to reduce the computational cost, a new approach is proposed in 

the following section based on double parametric form of fuzzy numbers. 

 

 (Method 2) Double parametric form based method 

 

We have Eq. (3.46) in single parametric form as 

nkbbxxaa kkjj

n

j

kjkj ,,2,1for)](),([)](),([)](),([

1




 . 

Using the double parametric form of fuzzy numbers, the elements of the fuzzy coefficient 

matrix, fuzzy unknown vector and right hand side fuzzy number vector of the above 

system can be expressed respectively as  

)())()(()](),([  kjkjkjkjkj aaaaa  , 

)())()(()](),([  jjjjj xxxxx    

and . 

Substituting these expressions in the above system (Eq. (3.46)) we may have  

)())()(()](),([  kkkkk bbbbb 
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).())()((

)}())()(({)}())()(({

1





kkk

jjj

n

j

kjkjkj

bbb

xxxaaa






   (3.50) 

Let us define ),(~)())()((  jjjj xxxx   and then we substitute this in Eq. 

(3.50) to get 

       )())()(()},(~{)}())()(({

1

 kkkj

n

j

kjkjkj bbbxaaa 


.    (3.51) 

Eq. (3.51) is now symbolically solved to obtain ),(~ jx . After getting the expression of 

),(~ jx , one may substitute 0  and 1 to get the lower and upper bounds of the fuzzy 

solution vector respectively. Accordingly, this gives 

)()0,(~  jj xx   and )()1,(~  jj xx  . 

The order of the main system remains unaltered in this solution procedure. So the method 

is computationally efficient in comparison with other methods. Also, the method is 

straight forward and easy to handle because the fuzzy system turns into a crisp system 

using double parametric form of fuzzy numbers. 

 

 Existence of a suitable solution 

 

A theorem is stated and proved as below for the existence of a solution. Using the double 

parametric form of the fuzzy number, one may express the non-negative system (3.45) as  

      )},(
~

{)},(
~

)]{,(
~

[  bXA  .           (3.52) 

 

Theorem 3.18 Let 0),(
~

A , 0),(
~

b  and ),(
~

A correspond to a permutation 

matrix. Then the non-negative fully fuzzy system of linear equations has a non-negative 

consistent fuzzy solution. 

 

Proof. Hypotheses imply that 1)],(
~

[ A exists as non-negative matrix (DeMarr 1972). 

So we have 0)},(
~

{)],(
~

[)},(
~

{ 1    bAX . Hence one may conclude that 

)},(
~

{ X  is a non-negative solution of the required system.                       □ 
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To illustrate the applicability and effectiveness of the proposed methods an example 

problem has been solved below. 

 

Example 3.3 Let us consider a 22  fully fuzzy system of linear equations 

(Allahviranloo and Mikaeilvand 2011, Dehegan et al. 2006) 

 

]1767,1040[~]28,5[~]6,4[ 21   xx , 

]755,543[~]5,4[~]7,6[ 21   xx . 

 

 Solution using single parametric form:  By Eqs. (3.47) and (3.48) this can be 

written as  

 1040)()5()()4( 21  xx , 

 543)(4)()6( 21  xx , 

 1767)()28()()6( 21  xx , 

 755)()5()(7 21  xx . 

In matrix notation the above system can be written as 







































































































755

1767

543

1040

)(

)(

)(

)(

5700

28600

0046

0054

2

1

2

1

x

x

x

x

. 

Now solving the above system of linear equations one may have 

147

55285
)(

2

2

1








x , 

147

68375
)(

2

2

2








x , 

263

105143
)(

2

2

1








x  and 

263

139227
)(

2

2

2








x . 

Then we get the elements of the fuzzy solution vector as  
























263

105143
,

147

55285
)](),([~

2

2

2

2

111







 xxx , 

and 
























263

139227
,

147

68375
)](),([~

2

2

2

2

222







 xxx . 
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 Solution using double parametric form: The original system can be represented by 

using the double parametric form of fuzzy numbers as  

),1040())1040()1767((

)}())()(()}{5())5()28(({

)}())()(()}{4())4()6(({

222

111













xxx

xxx

 

).543())543()755((

)}())()((}{4)4)5(({

)}())()(()}{6())6(7({

222

111













xxx

xxx

 

Let us consider ),(~)())()((  jjjj xxxx   for 2,1j . So, substituting this 

value in the above system, it can be represented as 

),1040())1040()1767((

),(~)}5())5()28(({),(~)}4())4()6(({ 21







 xx
 

).543())543()755((

),(~}4)4)5(({),(~)}6())6(7({ 21







 xx
 

Solving the above, one may get  

14117823

554192824185179
),(~

222222

222222

1








x , 

14117823

68683375365153
),(~

222222

222222

2








x . 

Substituting 0  and 1 in ),(~
1 x , one may get the lower and upper bounds of the 

fuzzy solution respectively as 

147

55285
)()0,(~

2

2

11








 xx  and 

263

105143
)()1,(~

2

2

11








 xx . 

Similarly, substituting  0  and 1 in  ),(~
2 x  we have 

147

68375
)()0,(~

2

2

22








 xx  and 

263

139227
)()1,(~

2

2

22








 xx . 

Allahviranloo and Mikaeilvand (2011) and Dehghan et al. (2006) have also solved this 

problem. Hence results obtained by the proposed methods are compared with results of 



63 

 

Allahviranloo and Mikaeilvand (2011) and Dehghan et al. (2006) and are shown in Table 

3.2. 

 

Table 3.2 Comparison between Allahviranloo and Mikaeilvand (2011), Dehghan et al. 

(2006) and present method(s) 

Solution 

bounds 

Allahviranloo and 

Mikaeilvand (2011) 

Dehghan et 

al. (2006) 

Present method(s) 

)(1 x  

147

55285

2

2








 

1111

43 
  

147

55285

2

2








 

)(1 x  

263

105143

2

2








 

4  

263

105143

2

2








 

)(2 x  

147

68375

2

2








 

1111

54 
  

147

68375

2

2








 

)(2 x  

263

139227

2

2








 

44

21 
  

263

139227

2

2








 

 

It is interesting to note that the method of Dehghan et al. (2006) gives the approximate 

solution, wherever proposed methods give exact solution. Also, one may notice that the 

results obtained by the present methods are exactly the same as Allahviranloo and 

Mikaeilvand (2011).  

 

3.2.1.2. Non-negative solution of fully fuzzy system of linear equations with 

unrestricted fuzzy coefficient matrix 

 

Here we have considered the fully fuzzy real system of linear equations as defined in Eq. 

(3.44). We assume that 0}
~

{ X  and there is no restriction on the fuzzy coefficient matrix 

and right hand side fuzzy column vector. 

From Eq. (3.44) we have  

)](),([)](),([)](),([

1

 kkjj

n

j

kjkj bbxxaa 


.      

Applying the standard fuzzy arithmetic we can write the above equation as  

                                




0)(0)(

)()()()()(





kjkj a

kjkj

a

jkj bxaxa                     (3.53) 

and 
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                                   




0)(0)(

)()()()()(





kjkj a

kjkj

a

jkj bxaxa .                   (3.54) 

Eqs. (3.53) and (3.54) are then written in matrix form as 

                                                





























n

m

t

s

FF

EE
             (3.55) 

where  























)()()(

)()()(

)()()(

21

22221

11211







nnnn

n

n

aaa

aaa

aaa

E









, 























)()()(

)()()(

)()()(

21

22221

11211







nnnn

n

n

aaa

aaa

aaa

F









, 























)(

)(

)(

2

1







nx

x

x

s


, 























)(

)(

)(

2

1







nx

x

x

t


, 























)(

)(

)(

2

1







nb

b

b

m


  

and 























)(

)(

)(

2

1







nb

b

b

n


. 

Solving the above crisp system of linear equations, one may get the lower and upper 

bound of the fuzzy solution vector. The non-positive solution of the fully fuzzy system of 

linear equations may be obtained in the similar manner.  
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3.2.1.3. Generalised fully fuzzy system of linear equations with unrestricted fuzzy  

coefficient matrix 

 

We consider the fully fuzzy system as },
~

{}
~

]{
~

[ bXA  where the coefficient matrix 

njnkaA kj   ,1 ),~(]
~

[  is a fuzzy nn   matrix,  kbb k  1 },
~

{}
~

{  is a column vector 

of fuzzy numbers and }~{}
~

{ jxX   is the vector of fuzzy unknowns. We assume jx~0 . 

That means zero is not an inner point of the elements of unknown solution vector. As 

such, a new method is proposed based on a linear programming problem approach. First 

the sign of the solution vector is determined and then interval based fuzzy arithmetic is 

used in linear programming approach. To show the effectiveness of the proposed method, 

an example problem viz. Example 3.4 has been considered.  

 

 Limitations of the existing (known) methods  

 

In this section we have pointed out some short comings of the existing methods for 

solving fuzzy and fully fuzzy system of linear equations. 

 

1. There exist different solution procedures (Behera and Chakraverty 2012, Abbasbandy 

and Jafarian 2006, Abbasbandy et al. 2005, Allahviranloo 2005a and 2005b, Sun and 

Guo 2009, Yin and Wang 2009, Friedman et al. 1998) for fuzzy system of linear 

equations where the coefficient matrices are considered as crisp real matrix. These 

methods are not applicable when the system is fully fuzzy. 

2. Various methodologies (Das and Chakraverty 2012, Senthilkumar and Rajendran 

2011, Dehgan et al. 2006 and 2007, Muzzioli and Reynaerts 2007, Otadi and Mosleh 

2012, Allahviranloo and Mikaeilvand 2011) have been proposed to solve FFSLE 

where all the elements of fuzzy matrices are considered as non-negative. The existing 

methods are not suitable to solve when one may consider non-positive matrix 

elements as defined in Example 3.4. 

3. Recently (Otadi and Mosleh 2012, Babbar et al. 2013) proposed solution technique 

for FFSLE. There is no restriction for the coefficient matrix. But the authors have 

found the non-negative solution of fuzzy system of equations. These methods are not 

applicable when the unknown solution vector consists of only non-positive elements 

or both non-negative and non-positive elements.  
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As such, we propose now a new method based on linear programming problem approach 

which may avoid the above limitations. 

 

 Proposed method  

 

Eq. (3.44) may be written as  

                                   




n

j

kjkj bxa

1

,
~~~   for nk ,,2,1  .        (3.56) 

Let us now define the solution set for the system (3.56) as follows 

}
~

and~where|{

1

kk

n

j

kjkjkjkjj bbaabxax  


.    (3.57) 

In parametric form, we may write the fuzzy coefficient matrix, real fuzzy unknown and 

the right hand real fuzzy number vector as )],(),([)(~~  kjkjkjkj aaaa 

)](),([)(~~  jjjj xxxx   and )](),([)(
~~

 kkkk bbbb   respectively. Substituting 

the above expressions in Eq. (3.56), one may have 

          




n

j

kjkj bxa

1

),(
~

)(~)(~    for ..,,2,1 nk         (3.58) 

or 

           )].(),([)](),([)](),([

1

 kkjj

n

j

kjkj bbxxaa 


                    (3.59) 

From Eq. (3.59) one may predict the sign of the elements of solution vector by the 

following Theorem.  

 

Theorem 3.19 If 




n

j

kjkj bxa

1

,
~~~   for nk 1  where jx~0 , then sign of the elements 

of the fuzzy solution vector can be predicted by solving




n

j

c
kj

c
kj bxa

1

~~ where 

2

)()(
~

 kjkjc
kj

aa
a


 , 

2

)()(~  kkc
k

bb
b


 . 
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Proof.  The solution jx  can be obtained by solving the crisp system 




n

j

c
kj

c
kj bxa

1

~~ . 

From the definition of the solution set of Eq. (3.56), one may easily conclude that jx        

( nj 1 ) are the inner points of jx~ . Also we know that jx~0 . Hence one may predict 

the sign of the elements of fuzzy solution vector accordingly.                      □ 

 

It may be noted that the fuzzy solution vector may contain non-negative, non-positive or 

both non-negative and non-positive elements. As such, the following theorems may be 

applied to handle such situations. 

 

Theorem 3.20 If the elements of jx  for nj 1 , are non-negative (non-positive) then 

the elements of fuzzy solution vector jx~  are non-negative (non-positive). 

 

Proof. The proof of the theorem is straight forward.               □ 

 

Theorem 3.21 If jx  contains both non-negative and non-positive elements, that is jx  for 

}1|{ kjNj   are non-negative and for }1|{ njkNj   are non-positive for 

all i , where ni 1  and N  is the natural number, then the fuzzy solution vector jx~  for 

}1|{ kjNj   are non-negative and for }1|{ njkNj   are non-positive for 

all i . 

 

Proof. The proof of the theorem is again straight forward.              □ 

 

In general, we have three cases with respect to the sign of the elements viz. 

 

Case A: All jx~  are non-negative, 

Case B: All jx~  are non-positive, 

Case C: Few jx~  are non-negative and few are non-positive.  

 

Next we will discuss below the solution procedure for all the above cases: 
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Case A:  In this case we have considered all jx~  are non-negative. So, Eq. (3.59) may be 

written as 

   
)].(),([)](),([)](),([

)](),([)](),([)](),([)](),([

~0

0~0~





kkjj

kja

kjkj

jj

kja

kjkjjj

kja

kjkj

bbxxaa

xxaaxxaa












(3.60) 

Applying the general rule of fuzzy multiplication we get 

       
)].(),([)]()(),()([

)]()(),()([)]()(),()([

~0

0~0~





kk

kja

jkjjkj

kja

jkjjkj

kja

jkjjkj

bbxaxa

xaxaxaxa












   (3.61) 

This can be written as 

  

























)()()()()()()(

)()()()()()()(

)(~00)(~0)(~

)(~00)(~0)(~









k

kja

jkj

kja

jkj

kja

jkj

k

kja

jkj

kja

jkj

kja

jkj

bxaxaxa

bxaxaxa

 (3.62) 

Let us now denote the system (3.62) as 

      ,1for

,

1

,

1
nk

hq

gw

k

n

j

kj

k

n

j

kj




























                (3.63) 

where 




)(~00)(~0)(~1

)()()()()()(





kja

jkj

kja

jkj

kja

jkj

n

k

kj xaxaxaw , 






)(~00)(~0)(~1

)()()()()()(





kja

jkj

kja

jkj

kja

jkj

n

k

kj xaxaxaq , )(kk bg   

and )(kk bh  . 

Eq. (3.63) is converted to the following Linear Programming Problem (LPP) where we 

have introduced the artificial variables sr  for nnns 2,1,,,2,1   ,  

Minimize: nrrr 221    
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Subject to:            ,11

1

1 grw

n

j

j 


 

,22

1

2 grw

n

j

j 


 

  

,

1

nn

n

j

nj grw 


 

        ,11

1

1 hrq n

n

j

j  



       (3.64) 

,22

1

2 hrq n

n

j

j  



  

  

nn

n

j

nj hrq 


2

1

, 

with the non-negative restrictions )(),(  jj xx  and sr  for nnns 2,1,,,2,1    0 . 

Then the LPP (3.64) is solved and artificial variables are eliminated to have the optimum 

solution.  

 

Case B: In this case we consider all jx~  are non-positive. Eq. (3.63) can similarly be 

written as  

)].(),([)](),([)](),([

)](),([)](),([)](),([)](),([

~0

0~0~





kkjj

kja

kjkj

jj

kja

kjkjjj

kja

kjkj

bbxxaa

xxaaxxaa












   (3.65) 

By changing all non-positive variables to non-negative we have 

            
)](),([)](),([)](),([

)](),([)](),([)](),([)](),([

~0

0~0~





kkjj

kjc

kjkj

jj

kjc

kjkjjj

kjc

kjkj

bbyycc

yyccyycc












   (3.66) 
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where  )](),([)](),([  jjjj
xxyy  and )](),([)](),([  kjkjkjkj aacc  . 

Applying the general rule of fuzzy multiplication we get  

)](),([)]()(),()([

)]()(),()([)]()(),()([

~0

0~0~





kk

kjc

jkjjkj

kjc

jkjjkj

kjc
jkjjkj

bbycyc

ycycycyc












        (3.67) 

Eq. (3.67) can equivalently be written as 

























)()()()()()()(

)()()()()()()(

~00~0~

~00~0~





k

kjc

jkj

kjc

jkj

kjc
jkj

k

kjc

jkj

kjc
jkj

kjc

jkj

bycycyc

bycycyc

    (3.68) 

As in Case A, we represent the above system as  

,1for

,

1

*

,

1

*

nk

hq

gw

k

n

j

kj

k

n

j

kj




























       (3.69) 

where  




kjc

jkj

kjc
jkj

kjc

jkj

n

k

kj ycycycw
~00~0~1

* )()()()()()(  , 






kjc

jkj

kjc

jkj

kjc
jkj

n

k

kj ycycycq
~00~0~1

* )()()()()()(  , )(kk bg   and 

)(kk bh  . 

The following LPP from the above system may be solved to have the corresponding fuzzy 

solution vector. 

 

Minimize: nrrr 221    
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with the non-negative restrictions )(),(  jj
yy  and sr  for nnns 2,1,,,2,1    0 . 

 

Case C: Finally the solution vector jx~  is assumed to contain both non-negative and non-

positive fuzzy numbers. We consider jx~  for }1|{ ijNj   as non-negative and for 

}1|{ njiNj   as non-positive for all k , where nk 1  and N  is the natural 

number. As such from Eq. (3.58) we have 
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The above equation is expressed as 
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i
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             (3.72) 

Eq. (3.72) is converted to the following crisp system in the similar fashion as discussed in 

previous two cases 
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This may again be written as 
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Corresponding LPP for the above system (3.74) is 

Minimize: nrrr 221    

Subject to: 
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with the non-negative restrictions that is )(),(),(),(  jjjj yyxx  and sr  for 

nnns 2,1,,,2,1    0 . 

Again the LPP (3.75) may be solved to have the required solution vector. 

 

In order to validate the above method, the following example has been considered. 

 

Example 3.4 Let us consider a 22  fully fuzzy system of linear equations  

 

)14,2,13(~)3,2,2(~)4,3,2( 21  xx  

)0,4,14(~)5,4,4(~)2,2,1( 21  xx  

 

The above system with  cut form may be represented as  

 

]1412,1315[)](),(][3,24[)](),(][4,25[ 2211   xxxx  

]4,1410[)](),(][5,4[)](),(][2,1[ 2211   xxxx  

 

Using the proposed method (discussed in 3.2.1.3) we have 

)2,2,1(~
1 x  and )1,2,3(~

2 x . 

 

It may be noted that fuzzy arithmetic and linear programming concept are used in the 

solution procedure. There is no restriction on the coefficient matrix of the corresponding 

system. The method is found to be efficient when the elements of the fuzzy solution 

vector are both non-negative and non-positive. 

 

In this chapter we propose various methods depending on FSLE or FFSLE. All the 

methods are validated and applied to different static problems in the next chapter. 



   

 

 

 

Chapter 4 

 

Uncertain Static Analysis of Structural Problems 
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Chapter 4 

Uncertain Static Analysis of Structural Problems 

 

In this chapter, static analysis of imprecisely defined structures has been investigated 

using the proposed methodologies discussed in Chapter 3. Finite element method with 

interval or fuzzy uncertainties viz. Interval or Fuzzy Finite Element Method 

(IFEM/FFEM) has also been applied here to obtain uncertain static response of structures. 

Corrresponding compuutations have been done in MATLAB environment. IFEM or 

FFEM converts the problem into system of linear equations with interval or fuzzy 

uncertainties for the static analysis. In the following sections, we have considered 

different types of structural problems such as bar, beam, truss and rectangular sheet with 

interval/fuzzy material and geometric properties or external forces.  

 

4.1. Uncertain Static Analysis of Bar 

 

Finite element solution of stepped rectangular (non-homogeneous) bar with deterministic 

material properties is well established. However, the properties of the material or 

geometry are actually uncertain in nature due to bias or subjectivity introduced during the 

experiment. The type of uncertainty associated with the material properties may always 

be quantified using interval/fuzzy set theory. Here, numerical estimation of fuzzy static 

displacements of a fixed free stepped rectangular bar is considered. The material and 

geometric properties of the bar are taken as fuzzy with fuzzy nodal force at the ends. 

Triangular convex normalized fuzzy sets are used for the present analysis. 

Let us now consider a three stepped bar as shown in Fig. 4.1. This was previously 

considered by (Balu and Rao 2012). Similar type of study has been reported in (Akpan et 

al. 2001a, Rao and Sawyer 1995). For the uncertain static response, three different cases 

have been considered here. The input variables for all the cases are shown in Table 4.1. In 

Case 1(a), only the load 3P  is fuzzy. In Case 1(b), the load  3P  as well as the Young’s 

modulus  iE  are having fuzziness and in Case 1(c), all the properties viz., cross 

sectional area  ,iA  length  ,iL Young’s modulus for the bar elements and the load 
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applied at free end are taken as fuzzy. Here, i  varies from 1 to 3 due to three element 

discretization of the bar.  

All the fuzzy variables are assumed as triangular fuzzy number viz.   .,, cba  Through  -

cut approach, this can be represented as ])(,)[( cbcaab    where ].1,0[  

This defines a triangular membership function, where a  and c  are the lower and upper 

bounds of the fuzzy number at 0  and b  is the exact or crisp value at .1  

Using the proposed methodologies obtained fuzzy translational displacement at 

nodes 2, 3 and 4 are depicted in Figs. 4.2, 4.3 and 4.4 respectively for all the cases. For 

Case 1(a), Method 5 of Section 3.1.2 and for Cases (1b) and 1(c), method proposed in 

Section 3.2.1.2 have been used for finding the solution. From Figs. 4.2 and 4.4, one can 

observe that the larger width is obtained for both the figures when fuzziness appears only 

in the applied external load viz. for Case 1(a). The spread in the fuzzy displacements 

gradually decreases when we have introduced fuzziness in the stiffness matrix viz. for 

Cases 1(b) and 1(c) respectively. But Fig. 4.3 shows that the translational displacement at 

node 3 gives weak fuzzy responses obtained for all the cases. Fig. 4.3 demonstrates the 

opposite behaviour compared to Figs. 4.2 and 4.4 that is the spread of the fuzzy responses 

are gradually increasing when we introduce fuzziness in the stiffness matrix. It also gives 

the smaller width for Case 1(a), that is when only fuzziness appears in the external load. 

Fuzzy displacements obtained at the free end gives similar behaviour as the observations 

reported in (Rao and Sawyer 1995). The proposed methods estimate narrow bounds for 

the structural responses. 

Table 4.1 Data of three-stepped bar with triangular fuzzy number 

Parameters Case 1(a) Case 1(b) Case 1(c) 

1A (in.
2
) 3.00 3.00 (2.99,3.00,3.01) 

2A (in.
2
) 2.00 2.00 (1.99,2.00,2.01) 

3A (in.
2
) 1.00 1.00 (0.99,1.00,1.01) 

1L (in.) 12.00 12.00 (11.95,12.00,12.05) 

2L (in.) 10.00 10.00 (9.95,10.00,10.05) 

3L (in.) 6.00 6.00 (5.95,6.00,6.05) 

321 ,, EEE

(psi) 

3.0e7 (2.8e7,3.0e7,3.1e7) (2.8e7,3.0e7,3.1e7) 

3P (lb) (7500,10000,12500) (7500,10000,12500) (7500,10000,12500) 
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Fig. 4.1 Discretization of a stepped bar into three elements with force applied at the 

free end 

 

Fig. 4.2 Fuzzy translational displacement at node 2 of three stepped bar 

 

Fig. 4.3 Fuzzy translational displacement at node 3 of three stepped bar 
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Fig. 4.4 Fuzzy translational displacement at node 4 of three stepped bar 

 

4.2. Uncertain Static Analysis of Beam 

 

In this section, we have considered both homogeneous and non-homogeneous beam for 

uncertain static response analysis. For homogeneous beam, both applied forces and 

material properties are assumed as uncertain. But for non-homogeneous beam, only nodal 

forces are taken as uncertain. Numerical results for these beam structures with various 

types of uncertain loads and material properties in term of crisp, interval, triangular, 

trapezoidal and Gaussian fuzzy numbers are presented.  

 

4.2.1. Homogeneous beam with various type of uncertain forces  

 

Homogeneous beam structures with respect to different types of uncertain loading 

conditions viz. uniform distributed load and nodal forces have been considered for the 

uncertain static responses. The material properties of the beam are taken as crisp. Here, 

the proposed methods (viz. Methods 2 and 4 of Section 3.1.2) have been used to obtain 

the uncertain static response.  

We will demonstrate the use of developed methods for computing the fuzzy static 

response of beam structures as shown in the following example problems. Only the 

vertical displacement ju~ , for 5,3,1j  and angle of rotation ju~ , for 6,4,2j  of nodes 

are considered due to two element discretization of the beam structure.  
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 Beam with uncertain concentrated force 

 

Let us consider a beam having length m10L  as shown in Fig. 4.5 (a) (Bhavikati 2005). 

The beam is fixed at one end and supported by a roller at the other end and carries a 

concentrated load at the centre of the span. Here, Young’s modulus and moment of inertia 

of material are taken as 26 kN/m10200E  and 46 m1024 I  respectively. The 

beam is discretized into two elements as shown in Fig. 4.5 (b) and concentrated load acts 

at node two. For each section of the beam, Young’s modulus, Moment of inertia and 

length are respectively considered as 26)( kN/m10200iE , 46)( m1024 iI  and 

m5)( il  for 2,1i . 

Due to uncertain nodal force p~  at node 2, nodal force vector can be written as 

TrF ]000~00[
~
 where, pr ~~  . 

 

Different cases have been investigated by assuming load acting on beam as crisp, interval, 

and fuzzy numbers respectively as given below in Cases 2(a) to 2(c). 

 

Case 2(a): Nodal force as crisp 

As such we have considered the force at node 2 as kN20~  pp  (Bhavikati 2005).  

 

Case 2(b): Nodal force as interval 

Here we have taken nodal force as N],[~ cccc ppppp   , where kN20cp  and 

  is the uncertain factor and varies in some region so that we can check the static 

displacements bounds with changing  .  

 

Case 2(c): Nodal force as fuzzy 

Next, force at node 2 are considered as triangular, trapezoidal and Gaussian fuzzy 

numbers respectively as  

kN)30,20,10(~ p , kN)30,25,15,10(~ p  and kN)10,10,20(~ p . 

 

Using usual finite element method for Case 2(a), one may obtain the static responses as

m03798.0~ )3()3(  uu , m00325.0~ )4()4(  uu  and m01302.0~ )6()6(  uu . 
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Obtained results for crisp parameters are compared with the crisp solution of Bhavikati 

(2005) and are found to be exactly same. Next, finite element method with interval 

uncertainty that is interval finite element method for Case 2(b) converts the problem to an 

interval system of linear equations. This can be solved using the proposed methods by 

considering 0  in the considered fuzzy system of linear equations. Obtained results 

are shown in Figs. 4.6 to 4.8 with   varying from 0% to 1%. To be more illustrative, 

Table 4.2 lists the bounds of static response of beam using the presented method when 

%1 . Lastly for Case 2(c), obtained results are shown in Figs. 4.9 to 4.17. The lower 

and upper bounds of fuzzy static responses are given in Tables 4.3 to 4.5. 

 

 

 

 

   

 

Fig. 4.5 Two element discretization of beam with concentrated force at node 2 

 

From the results it can be noticed that maximum uncertainty width has been obtained for 

vertical displacements at node 2. For angle of rotation, maximum uncertainty has been 

obtained at node 3 and minimum at node 2. Also it is interesting to note that the 

uncertainty width gradually increases for all the static responses by increasing the 

uncertainty factor  . 

 



80 

 

 

Fig. 4.6 Lower and upper bounds of the vertical displacement at node 2 versus the 

uncertain factor   (beam with uncertain concentrated force) 

      

Fig. 4.7 Lower and upper bounds of the angle of rotation at node 2 versus the uncertain 

factor   (beam with uncertain concentrated force) 

 

Fig. 4.8 Lower and upper bounds of the angle of rotation at node 3 versus the uncertain 

factor   (beam with uncertain concentrated force) 
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Fig. 4.9 Lower and upper bounds of vertical displacement at node 2 for triangular fuzzy 

forces (beam with uncertain concentrated force) 

 

Fig. 4.10 Lower and upper bounds of angle of rotation at node 2 for triangular fuzzy 

forces (beam with uncertain concentrated force) 

 

Fig. 4.11 Lower and upper bounds of angle of rotation at node 3 for triangular fuzzy 

forces (beam with uncertain concentrated force) 
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Fig. 4.12 Lower and upper bounds of vertical displacement at node 2 for trapezoidal 

fuzzy forces (beam with uncertain concentrated force) 

 

Fig 4.13 Lower and upper bounds of angle of rotation at node 2 for trapezoidal fuzzy 

forces (beam with uncertain concentrated force) 

 

Fig. 4.14 Lower and upper bounds of angle of rotation at node 3 for trapezoidal fuzzy 

forces (beam with uncertain concentrated force) 
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Fig. 4.15 Lower and upper bounds of vertical displacement at node 2 for Gaussian fuzzy 

forces (beam with uncertain concentrated force) 

 

Fig. 4.16 Lower and upper bounds of angle of rotation at node 2 for Gaussian fuzzy 

forces (beam with uncertain concentrated force) 

 

Fig. 4.17 Lower and upper bounds of angle of rotation at node 3 for Gaussian fuzzy 

forces (beam with uncertain concentrated force) 
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Table 4.2 Interval static responses (beam with uncertain concentrated force) with 

uncertain factor %1  

u  i
u  iu  

3~u  -0.0384 -0.0376 

4~u  -0.0033 -0.0032 

6~u  0.0132 0.0129 

 

Table 4.3 Lower and upper bounds of fuzzy static response (beam with uncertain 

concentrated force) for triangular fuzzy nodal force  

  0 0.2 0.8 1 

3
u  -0.0570 -0.0532 -0.0418 -0.0380 

3u  -0.0190 -0.0228 -0.0342 -0.0380 

4
u  -0.0049 -0.0046 -0.0036 -0.0033 

4u  -0.0016 -0.0020 -0.0029 -0.0033 

6
u  0.0195 0.0182 0.0143 0.0130 

6u  0.0065 0.0078 0.0117 0.0130 

 

Table 4.4 Lower and upper bounds of fuzzy static response (beam with uncertain 

concentrated force) for trapezoidal fuzzy nodal force  

  0 0.2 0.8 1 

3
u  -0.0570 -0.0551 -0.0494 -0.0475 

3u  -0.0190 -0.0209 -0.0266 -0.0285 

4
u  -0.0049 -0.0047 -0.0042 -0.0041 

4u  -0.0016 -0.0018 -0.0023 -0.0024 

6
u  0.0195 0.0189 0.0169 0.0163 

6u  0.0065 0.0072 0.0091 0.0098 

 

Table 4.5 Lower and upper bounds of fuzzy static response (beam with uncertain 

concentrated force) for Gaussian fuzzy nodal force 

  0.1 0.4 0.7 1 

3
u  -0.0787 -0.0637    -0.0540 -0.0380 

3u  0.0028 -0.0123    -0.0219 -0.0380 

4
u  -0.0067 -0.0055    -0.0046 -0.0033 

4u  0.0002 -0.0011    -0.0019 -0.0033 

6
u  0.0270 0.0218     0.0185 0.0130 

6u  -0.0010     0.0042     0.0075 0.0130 
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 Beam with uncertain uniformly distributed force 

 

A beam structure has been considered as shown in Fig. 4.18. Two different uniformly 

distributed loads p~   and q~  act on elements 1 and 2 respectively. For each section, 

Young’s modulus, Moment of inertia and length are assumed respectively as 

28)( kN/m102iE , 46)( m105 iI and m5)( il  for 2,1i  (Bhavikati 2005). 

Due to uncertain uniform distributed load as defined in Cases 3(a) to 3(c), the 

fuzzy/interval load vector for element one and two may be written respectively as  

 
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Assembling the above, we have the load vector 

 

   

 


























































12

~

2

~

12

~

12

~

2

~

2

~

12

~

2

~

~

2)2(

)2(

2)2(2)1(

)2()1(

2)1(

)1(

ls

ls

lslr

lslr

lr

lr

F  

 

Case 3(a): Uniformly distributed loads as crisp 

The uniformly distributed loads are considered as crisp (Bhavikati 2005) viz. 

kN/m12~  pp   and  kN/m24~  qq .  
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Case 3(b): Uniformly distributed loads as interval 

The uniformly distributed loads as intervals are kN/m],[~ cccc ppppp    and 

kN/m],[~ cccc qqqqq    where, kN12cp   and  kN24cq .   is the uncertain 

factor as defined earlier.  

 

Case 3(c): Uniformly distributed loads as fuzzy 

The uniformly distributed loads are taken as triangular fuzzy numbers that are 

kN/m)20,12,4(~ p  and kN/m)28,24,20(~ q and also as Gaussian fuzzy numbers such 

as kN/m)10,10,12(~ p  and kN/m)10,10,24(~ q .  

 

Using finite element analysis for case 3(a), one may obtain the static response as 

m0357142.0~ )4()4(  uu  and m0803571.0~ )6()6(  uu . Obtained results for crisp 

parameters are found to be the same with the crisp solution of Bhavikati (2005). Results 

for Case 3(b) are shown in Figs. 4.19 and 4.20 with   varying from 0% to 1%. To be 

more illustrative, Table 4.6 lists the bounds of static response of beam using the presented 

method when %1 . Figs. 4.21 to 4.24 represent the fuzzy static responses of structures 

for triangular and Gaussian fuzzy loads as defined in Case 3(c). Lower and upper bounds 

of Gaussian fuzzy static responses are given in Tables 4.7 and 4.8. From the results, it can 

be concluded that uncertainty width of the angle of rotation at node 2 is less than the 

angle of rotation at node 3.  

 

 

       

Fig. 4.18 Two element discretization of beam with uniform distributed load 
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 Fig. 4.19 Lower and upper bounds of the angle of rotation at node 2 versus the uncertain 

factor   (beam with uncertain uniformly distributed force) 

 

  Fig. 4.20 Lower and upper bounds of the angle of rotation at node 3 versus the uncertain 

factor   (beam with uncertain uniformly distributed force) 

 

Fig. 4.21 Lower and upper bounds of angle of rotation at node 2 for triangular fuzzy 

forces (beam with uncertain uniformly distributed force) 
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Fig. 4.22 Lower and upper bounds of angle of rotation at node 3 for triangular fuzzy 

forces (beam with uncertain uniformly distributed force) 

 

Fig. 4.23 Lower and upper bounds of angle of rotation at node 2 for Gaussian fuzzy 

forces (beam with uncertain uniformly distributed force) 

 

Fig. 4.24 Lower and upper bounds of angle of rotation at node 3 for Gaussian fuzzy 

forces (beam with uncertain uniformly distributed force) 
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Table 4.6 Interval static responses (beam with uncertain uniformly distributed force) with 

uncertain factor  %1  

u  i
u  iu  

4~u  -0.0361 -0.0354 

6~u  0.0799 0.0808 

 

Table 4.7 Lower and upper bounds of fuzzy static response (beam with uncertain 

uniformly distributed force) for triangular fuzzy nodal force 

  0 0.2 0.8 1 

4
u     -0.0506    -0.0476  -0.0387    -0.0357 

4u     -0.0208    -0.0238    -0.0327      -0.0357 

6
u      0.0774     0.0780   0.0798    0.0804 

6u      0.0833     0.0827      0.0810     0.0804 

 

Table 4.8 Lower and upper bounds of fuzzy static response (beam with uncertain 

uniformly distributed force) for Gaussian fuzzy nodal force 

  0.1 0.4 0.7 1 

4
u  -0.0836 -0.0659 -0.0546 -0.0357 

4u  0.0122 -0.0055 -0.0169 -0.0357 

6
u  0.0484 0.0602 0.0678 0.0804 

6u  0.1123 0.1005 0.0929 0.0804 

 

 Beam with uncertain nodal and uniformly distributed forces 

 

In this example, we have considered a beam as shown in Fig. 4.25 (Bhavikati 2005). 

Uncertain nodal force p~  and uniformly distributed load q~  are acting on the beam. Cases 

4(a) to 4(c) define the value of these uncertainties. The beam has been discretized in two 

elements. For each section of the beam, Young’s modulus and moment of inertia are 

assumed as 26)( kN/m10200iE  and 46)( m1024 iI  respectively. Length of the 
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first and second elements respectively are m4)1( l  and m6)2( l . Due to uncertain 

nodal force  p~   at node 2, the nodal force vector can be written as  

TrF ]000~00[
~
1  where, pr ~~  . 

For uncertain uniform distributed load q~ , the load vector for element one and two may 

again be written respectively as 
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and the assembled load vector are obtained as 
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Case 4(a): Applied forces as crisp 

Loads are taken as crisp where, kN100~  pp  and kN/m20~  qq  (Bhavikati 2005).  

 

Case 4(b): Applied forces as interval 

Now we consider the loads as interval such as kN],[~ cccc ppppp    and 

kN/m],[~ cccc qqqqq   , where kN100cp  and kN/m20cq .   is the 

uncertainty factor. 
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Case 4(c): Applied forces as fuzzy  

Again, three types of loads are taken into consideration in terms of triangular, trapezoidal 

and Gaussian fuzzy numbers. Thus, the values of the fuzzy loads are considered as 

kN)110,100,90(~ p , kN/m)30,20,10(~ q ; 

 kN)110,105,95,90(~ p , kN/m)30,25,15,10(~ q  

and  kN)10,10,100(~ p , kN/m)10,10,20(~ q  respectively. 

 

Using usual finite element analysis for Case 4(a), one may obtain the static responses as  

m32733324.0~ )3()3(  uu , 

m07244438.0~ )4()4(  uu  

and m1368055.0~ )6()6(  uu . 

Obtained results for crisp parameters are compared with the solution of Bhavikati (2005) 

and these are found to be in good agreement. Next, results for Case 4(b) are shown in 

Figs. 4.26 to 4.28 with   varying from 0% to 1%. Also, Table 4.9 lists the bounds of 

static responses when %1 . For Case 4(c), results are shown in Figs. 4.29 to 4.37. The 

lower and upper bounds of fuzzy static responses are given in Tables 4.10 to 4.12. From 

the results, one may observe that maximum uncertainty has been obtained for vertical 

displacement at node 2 for all the cases. At node 2, maximum uncertainty has been 

obtained for angle of rotation and minimum at node 3.   

 

     

Fig. 4.25 Two element discretization of beam with both nodal force and uniform 

distributed load 
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Fig. 4.26 Lower and upper bounds of the vertical displacement at node 2 versus the 

uncertain factor   (beam with both nodal and uniformly distributed forces) 

 

 Fig. 4.27 Lower and upper bounds of the angle of rotation at node 2 versus the uncertain 

factor   (beam with both nodal and uniformly distributed forces) 

 

Fig. 4.28 Lower and upper bounds of the angle of rotation at node 3 versus the uncertain 

factor   (beam with both nodal and uniformly distributed forces) 
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Fig. 4.29 Lower and upper bounds of vertical displacement at node 2 for triangular fuzzy 

forces (beam with both nodal and uniformly distributed forces) 

 

Fig. 4.30 Lower and upper bounds of angle of rotation at node 2 for triangular fuzzy 

forces (beam with both nodal and uniformly distributed forces) 

 

Fig. 4.31 Lower and upper bounds of angle of rotation at node 3 for triangular fuzzy 

forces (beam with both nodal and uniformly distributed forces) 
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 Fig. 4.32 Lower and upper bounds of vertical displacement at node 2 for trapezoidal 

fuzzy forces (beam with both nodal and uniformly distributed forces) 

 

 Fig. 4.33 Lower and upper bounds of angle of rotation at node 2 for trapezoidal fuzzy 

forces (beam with both nodal and uniformly distributed forces) 

 

Fig. 4.34 Lower and upper bounds of angle of rotation at node 3 for trapezoidal fuzzy 

forces (beam with both nodal and uniformly distributed forces) 
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Fig. 4.35 Lower and upper bounds of vertical displacement at node 2 for Gaussian fuzzy 

forces (beam with both nodal and uniformly distributed forces) 

 

Fig. 4.36 Lower and upper bounds of angle of rotation at node 2 for Gaussian fuzzy 

forces (beam with both nodal and uniformly distributed forces) 

 

Fig. 4.37 Lower and upper bounds of angle of rotation at node 3 for Gaussian fuzzy 

forces (beam with both nodal and uniformly distributed forces) 
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Table 4.9 Interval static responses (beam with both nodal and uniformly distributed 

forces) with uncertain factor %1  

u  i
u  iu  

3~u  -0.3328 -0.3218 

4~u  -0.0749 -0.0700 

6~u  0.1392 0.1344 

 

Table 4.10 Lower and upper bounds of fuzzy static response for triangular fuzzy nodal 

force (beam with both nodal and uniformly distributed forces) 

  0 0.2 0.8 1 

3
u  -0.4109 -0.3942 -0.3440 -0.3273 

3u  -0.2438 -0.2605 -0.3106 -0.3273 

4
u  -0.0926 -0.0886 -0.0765 -0.0724 

4u  -0.0523 -0.0563 -0.0684 -0.0724 

6
u  0.1584 0.1541 0.1411 0.1368 

6u  0.1152 0.1195 0.1325 0.1368 

 

Table 4.11 Lower and upper bounds of fuzzy static response for trapezoidal fuzzy nodal 

force (beam with both nodal and uniformly distributed forces) 

  0 0.2 0.8 1 

3
u  -0.4109 -0.4025 -0.3775 -0.3691 

3u  -0.2438 -0.2522 -0.2772 -0.2856 

4
u  -0.0926 -0.0906 -0.0846 -0.0825 

4u  -0.0523 -0.0543 -0.0603 -0.0624 

6
u  0.1584 0.1562 0.1498 0.1476 

6u  0.1152 0.1174 0.1238 0.1260 
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Table 4.12 Lower and upper bounds of fuzzy static response for Gaussian fuzzy nodal 

force (beam with both nodal and uniformly distributed forces) 

  0.1 0.4 0.7 1 

3
u  -0.5066 -0.4404 -0.3831 -0.3273 

3u  -0.1481 -0.2143 -0.2568 -0.3273 

4
u  -0.1157 -0.0998 -0.0895 -0.0724 

4u  -0.0291 -0.0451 -0.0554 -0.0724 

6
u  0.1832 0.1660 0.1550 0.1368 

6u  0.0905 0.1076 0.1186 0.1368 

 

4.2.2. Homogeneous beam with uncertain material properties and force  

 

A fixed-fixed beam has been considered to compute fuzzy static response as shown in 

Fig. 4.38 using the proposed methodologies (Method 5 of Section 3.1.2 and the method 

proposed in Section 3.2.1.2). This problem has been studied by Rao and Swayer (1995). 

Later on, Akpan et al. (2001a) and Balu and Rao (2012) also investigated the same 

problem. Three cases have been considered for the analysis. For Case 5(a), Method 5 of 

Section 3.1.2 and for Cases 5(b) and 5(c), method proposed in Section 3.2.1.2 have been 

used. In Case 5(a), only the load is considered as fuzzy and is represented by the triplet 

(360,400,440). In Case 5(b), the modulus of elasticity represented by triplet (2.94e7, 

3.0e7, 3.06e7) has been considered as the only fuzzy variable. In Case 5(c), both  load 

and  modulus of elasticity have been considered as fuzzy. The model parameters for each 

case are listed in the form of triangular fuzzy numbers in Table 4.13. Two elements were 

used in each case.  

 

Fuzzy vertical displacements and angle of rotations at the mid-span of the beam 

are shown in Figs. 4.39 and 4.40 respectively for all the cases. Results obtained by the 

proposed methods agree well with Balu and Rao (2012). Observing Fig. 4.39 it may be 

seen that spread of the fuzzy vertical displacements for Case 5(b) is smaller where as for 

Case 5(a) it is larger. The spread for Case 5(c) is smaller than Case 5(a) but greater than 

Case 5(b). Similar observations may be made for fuzzy angle of rotations which is 

depicted in Fig. 4.40. In this case, smaller width is obtained for Case 5(c) and the larger 

width is seen for Case 5(a). Here, width of Case 5(b) is smaller than Case 5(a) but greater 

than Case 5(c). 
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Fig. 4.38 Configuration of fixed-fixed beam 

 

 

Fig. 4.39 Fuzzy vertical displacement at the mid span of fixed-fixed beam 

 

 

Fig. 4.40 Fuzzy angle of rotation at the mid span of fixed-fixed beam  
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Table 4.13 Data for beam examples as triangular fuzzy numbers  

Parameters Case 5(a) Case 5(b) Case 5(c) 

L (in.) 400 400 400 

I (in.
4
) 3.0e3 3.0e3 3.0e3 

E (psi) 3.0e7 (2.94e7,3.0e7,3.06e7) (2.94e7,3.0e7,3.06e7) 

P (lb/in.) (360,400,440) 400 (360,400,440) 

 

4.2.3. Non-homogeneous (stepped rectangular) beam with various type of uncertain 

force 

 

For uncertain static displacements, a three-stepped fixed free rectangular beam (non-

homogeneous) as shown in Fig. 4.41 with uncertain nodal force has been considered. 

Uncertain force has been applied at the end node. Material properties of the beam have 

been taken as crisp. Here, Method 3 of Section 3.1.2 (Chapter 3) has been used in the 

solution process.  

Let us  denote the vertical displacement as ju~  for 7,5,3,1j  and angle of rotation as ju~  

for 8,6,4,2j . The beam is subject to the external load acting on node 4. Here, Young’s 

modulus and length of the three sections are assumed as crisp variables (Qiu et al. 2006) 

and taken as 211)( N/m100.2 iE  and m0.1)( il for .3,2,1i  Moment of inertia for 

each section of the beam are also taken as crisp viz. 44)1( m102575.2 I , 

45)2( m107167.6 I  and 46)3( m105835.8 I . With the above material 

properties, the external load acting at node four is taken as crisp, interval, triangular, 

trapezoidal and Gaussian fuzzy number as discussed in Cases 6(a) to 6(e) (below) 

respectively.   

               

        Fig. 4.41 A three-stepped beam 
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Case 6(a): Nodal force as crisp 

The nodal force at node 4 is crisp (Qiu et al. 2006) that is N1000
~
P .  

 

Case 6(b): Nodal force as interval  

The nodal force at node 4 as interval that is ],[
~ cccc PPPPP   , where 

N1000cP  and   is the uncertain factor. 

 

Case 6(c): Nodal force as triangular fuzzy number  

Next, we consider the nodal force at node 4 as triangular fuzzy number that is 

N)1010,1000,990(
~
P .  

 

Case 6(d): Nodal force as trapezoidal fuzzy number  

In this case, the nodal force at node 4 is considered as trapezoidal fuzzy number that is

N)1010,1005,995,990(
~
P .  

 

Case 6(e): Nodal force as Gaussian fuzzy number 

Here, the nodal force is considered at node 4 as Gaussian fuzzy number that is

N)10,10,1000(
~
P .  

For Case 6(a), one may obtain the crisp static responses as m10295.~ 433  uu , 

m10554.~ 444  uu , m10469.1~ 455  uu , m10670.1~ 466  uu ,

m10081.5~ 477  uu  and m10533.4~ 488  uu . 

Results for crisp parameters are compared with the crisp solution of Qiu et al. (2006) and 

are found to be the same. Obtained results for Case 6(b) are shown in Figs. 4.42 to 4.44 

with   varying from %0  to %1 . Table 4.14 lists the bounds of static response of beam 

when %1 . Lower and upper bounds of fuzzy static response are given in Tables 4.15 

and 4.16 for Cases 6(c) and 6(d) respectively. Lastly for Case 6(e), the responses are 

shown in Figs. 4.45 to 4.47. These problems have also been solved by the Method 2 of 

Section 3.1.2 (Chapter 3) and Friedman et al. (1998) and are found to be in good 

agreement. 

One may notice with crisp parameters that, vertical displacement and angle of 

rotation at node four are maximum and at node two those are minimum. For interval 
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parameter, the lower and upper bounds of the vertical displacement and angle of rotation 

at the nodes four and two are maximum and minimum respectively. But the uncertainty of 

vertical displacement at node four is found to be maximum and the uncertainty at node 

three is minimum. Similarly, uncertainty for angle of rotation at node two is maximum 

and at node three it is minimum. 

Lower and upper bounds of the vertical displacement and angle of rotation at 

nodes four and two are maximum and minimum respectively subject to triangular and 

trapezoidal nodal forces (for each  ). Although the fuzzy bounds of vertical 

displacement and angle of rotation at nodes four and two are maximum and minimum but 

maximum and minimum uncertainty width for vertical displacement at node four and 

node three are found. Similarly, one may see that there are maximum uncertainty for 

angle of rotation at node two and minimum uncertainty at node three. 

As pointed out earlier, Gaussian fuzzy membership functions for the uncertain 

parameter are also used here. However, from a computational point of view, we discard 

the membership of less than 0.1 as it does not affect the system much and the graph of the 

membership has been considered to fall straight to zero from that point. For each  , 

lower and upper bounds of the vertical displacement and angle of rotation at nodes four 

and two are maximum and minimum respectively. As in previous cases, we obtain 

maximum uncertainty for vertical displacement at node four and minimum uncertainty at 

node three. Similarly, interpretation may be done for angle of rotation. Also, it is 

interesting to note that the uncertainty factor %0  in interval parameter and 1  for 

triangular and Gaussian fuzzy parameters gives the same static response as is obtained for 

crisp parameter. 

 

(a) 
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(b) 

Fig. 4.42 Plot of lower and upper bounds of the (a) vertical displacement and (b) angle of 

rotation at node 2 versus the uncertain factor   

 

(a) 

 
(b) 

Fig. 4.43 Plot of lower and upper bounds of the (a) vertical displacement and (b) angle of 

rotation at node 3 versus the uncertain factor   
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(a) 

 

 
(b) 

Fig. 4.44 Plot of lower and upper bounds of the (a) vertical displacement and (b) angle of 

rotation at node 4 versus the uncertain factor   

 

Table 4.14 Interval static responses of three-stepped beam with uncertain factor %1  

u  i
u  

iu  

3u  -.2955619257e-4 -.2950619207e-4 

4u  -.5537914010e-4 -.5536283111e-4 

5u  -.1469257133e-3 -.1469475057e-3 

6u  -.1668174485e-3 -.1672484764e-3 

7u  -.5103086790e-3 -.5059724389e-3 

8u  -.4551613641e-3 -.4614175217e-3 
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Table 4.15 Lower and upper bounds of fuzzy static response for triangular fuzzy nodal 

force 

  0 0.2 0.8 1 

3
u  -.2955619257e-4 -.2955119252e-4 -.2953619237e-4  -.2953119232e-4 

3u   -.2950619207e-4 -.2951119212e-4 -.2952619227e-4  -.2953119232e-4 

4
u   -.5537914010e-4  -.5537750920e-4  -.5537261650e-4  -.5537098560e-4 

4u   -.5536283111e-4  -.5536446201e-4  -.5536935471e-4  -.5537098560e-4 

5
u   -.1469257133e-3  -.1469278926e-3  -.1469344303e-3  -.1469366095e-3 

5u   -.1469475057e-3  -.1469453264e-3  -.1469387887e-3  -.1469366095e-3 

6
u   -.1668174485e-3  -.1668605513e-3  -.1669898597e-3  -.1670329625e-3 

6u   -.1672484764e-3  -.1672053736e-3  -.1670760652e-3  -.1670329625e-3 

7
u   -.5103086790e-3  -.5098750550e-3  -.5085741830e-3  -.5081405590e-3 

7u   -.5059724389e-3  -.5064060629e-3  -.5077069349e-3  -.5081405590e-3 

8
u   -.4551613641e-3  -.4557869799e-3  -.4576638272e-3  -.4582894429e-3 

8u   -.4614175217e-3  -.4607919059e-3  -.4589150586e-3  -.4582894429e-3 

 

 

Table 4.16 Lower and upper bounds of fuzzy static response for trapezoidal fuzzy nodal 

force 

  0 0.2 0.8 1 

3
u  -.2955619257e-4 -.2955369254e-4 -.2954619247e-4 -.2954369244e-4 

3u  -.2950619207e-4 -.2950869210e-4 -.2951619217e-4  -.2951869220e-4 

4
u   -.5537914010e-4  -.5537832465e-4  -.5537587830e-4  -.5537506285e-4 

4u   -.5536283111e-4  -.5536364656e-4  -.5536609291e-4  -.5536690836e-4 

5
u   -.1469257133e-3  -.1469268029e-3  -.1469300718e-3  -.1469311614e-3 

5u   -.1469475057e-3  -.1469464161e-3  -.1469431472e-3  -.1469420576e-3 

6
u   -.1668174485e-3  -.1668389999e-3  -.1669036541e-3  -.1669252055e-3 

6u   -.1672484764e-3  -.1672269250e-3  -.1671622708e-3  -.1671407194e-3 

7
u   -.5103086790e-3  -.5100918670e-3  -.5094414310e-3  -.5092246190e-3 

7u   -.5059724389e-3  -.5061892509e-3  -.5068396869e-3  -.5070564989e-3 

8
u   -.4551613641e-3  -.4554741720e-3  -.4564125956e-3  -.4567254035e-3 

8u   -.4614175217e-3  -.4611047138e-3  -.4601662902e-3  -.4598534823e-3 
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(a) 

 
(b) 

Fig. 4.45 Lower and upper bounds of (a) vertical displacement and (b) angle of rotation at 

node 2 for Gaussian fuzzy force 

 
(a) 
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(b) 

Fig. 4.46 Lower and upper bounds of (a) vertical displacement and (b) angle of rotation at 

node 3 for Gaussian fuzzy force 

 
(a) 

 
(b) 

Fig. 4.47 Lower and upper bounds of (a) vertical displacement and (b) angle of rotation at 

node 4 for Gaussian fuzzy force 
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4.3. Uncertain Static Analysis of Truss 

 

In this section, different type of truss viz. three bar truss, six bar truss and fifteen bar truss 

structures have been analysed for the uncertain static responses. In the following 

paragraphs, first a three bar truss structure with uncertain nodal forces have been 

investigated, where material and geometrical properties are taken as crisp. Next, a six bar 

truss structure with material and geometric properties along with the nodal force are all 

taken as fuzzy. Lastly, a fifteen bar truss structure with uncertain nodal forces have been 

considered where material and geometric properties are taken as crisp .  

 

4.3.1. A three-bar truss with uncertain nodal force 

 

A three-bar truss as shown in Fig. 4.48 has been taken into consideration. Only the 

horizontal ( ju~  for 5,3,1j ) and vertical displacements ( ju~  for 6,4,2j ) of nodes are 

considered. The truss is subject to the external load acting on node 3. Young’s modulus 

and length of the three sections are considered here as crisp variables and are taken as 

Gpa200)( iE  for 3,2,1i  and mm800)1( l , mm2400)3()2(  ll  (Bhavikati, 

2005). The cross sectional area of the three members of truss is also taken as crisp viz. 

2)1( mm1500A , 2)2( mm2000A  and 2)3( mm2000A . With these material and 

geometric properties, the external load acting at node three are considered as crisp, 

interval and trapezoidal fuzzy numbers in Cases 7(a) to 7(c) respectively. Here, uncertain 

responses have been computed by Method 3 of Section 3.1.2. 

 

Fig. 4.48 A three-bar truss 
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Case 7(a): Nodal force as crisp 

Let us consider the force at node 3 as crisp that is kN150
~
P .  

 

Case 7(b): Nodal force as interval 

Here, the nodal force has been taken as interval that is kN],[
~ cccc PPPPP   , 

where kN150cP  and   is the uncertain factor.  

 

Case 7(c): Nodal force as trapezoidal fuzzy number  

In this case, the nodal force at node 3 has been considered as trapezoidal fuzzy number 

that is kN)160,155,145,140(
~
P .  

 

For Case 7(a) one may obtain the static responses as mm2.0~ 33  uu , 

mm1.0~55  uu  and mm312132.0~ 66  uu  using usual finite element analysis. 

Obtained results are compared with the results of Bhavikati (2005) and found to be equal. 

Computed results for Case 7(b) are shown in Figs. 4.49 and 4.50 with   changing from 

0% to 25%. This problem has also been solved using Method 2 of Section 3.1.2 (Chapter 

3) and Friedman et al. (1998) with uncertainty factor %10 . Results obtained by these 

methods are compared in Table 4.17. Fuzzy static responses for Case 7(c) are depicted in 

Figs. 4.51 and 4.52.  

 

Table 4.17 Interval static responses of three-bar truss with uncertain factor %10  

)mm(~u  i
u  

iu  

Method 3 

of Section 

3.1.2 

Method 2 

of Section 

3.1.2 

Friedman 

et al. 

(1998) 

Method 3 

of Section 

3.1.2 

Method 2 

of Section 

3.1.2 

Friedman 

et al. 

(1998) 

3~u  0.22 0.22 0.22 0.18 0.18 0.18 

5~u  0.09 0.09 0.09 0.11 0.11 0.11 

6~u  -0.3433 -0.3433 -0.3433 -0.2809 -0.2809 -0.2809 
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Fig. 4.49 Lower and upper bounds of the horizontal displacement at node 2 versus the 

uncertain factor   for three-bar truss 

 

(a) 

 

(b) 

 Fig. 4.50 Lower and upper bounds of (a) horizontal displacement and (b) vertical 

displacement at node 3 versus the uncertain factor   for three-bar truss 
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Fig. 4.51 Lower and upper bounds of horizontal displacement at node 2 for trapezoidal 

fuzzy force of three-bar truss 

  

(a) 

 

(b) 

Fig. 4.52 Lower and upper bounds of (a) horizontal displacement and (b) vertical 

displacement at node 3 for trapezoidal fuzzy force of three-bar truss 
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In this example, one may notice (for crisp parameters) that horizontal 

displacement at node two is maximum. For trapezoidal nodal force, the lower and upper 

bounds of the horizontal displacement at node two are maximum. Here, maximum 

uncertainty at node two is obtained for horizontal displacements.  

 

4.3.2. A six-bar truss with uncertain material, geometric properties and applied 

load  

 

In this example, a 6-bar truss structure shown in Fig. 4.53 has been considered. The 

structure consists of 6 elements. Material, geometric properties and the applied load 

parameter P
~

 are assumed as uncertain. The values of the input variables for the present 

analysis are shown in Table 4.18 for different cases. Here, the proposed method (Section 

3.2.1.3 of Chapter 3) has been used to obtain the uncertain static responses of the 

structure. 

 

Fig. 4.53 Six-bar truss structure 

 

In Case 8(a), the input parameters are considered as crisp value. Applied load parameter 

is only assumed as uncertain in Case 8(b). Cross sectional area for elements 5 and 6 along 

with load parameter are considered as fuzzy in Case 8(c). Lastly in Case 8(d), all the input 

variables are assumed as uncertain.  

Usual finite element method for static analysis of structures with crisp parameters 

converts the problem into an algebraic system of linear equations. Hence, the 



112 

 

corresponding equilibrium equation for the present problem, for Case 8(a) of Table 4.18 

is represented as  

FK  , 

where K , F  and   are the reduced stiffness matrix, load and displacements vector 

respectively.   

Here, 


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




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


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
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
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
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
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


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  to be determined. We have assumed, ii AA 
~

, ii EE 
~

 and 

PP 
~

 for all i 1 to 6. 

Substituting the corresponding values in the above expression as defined in Case 8(a) one 

may have  

)N/mm(

40362010584000

1058404293800350000

00403620105840

0350000105840429380

























K , )N(

30750

51250

41000

20500





















F .  

 

As such, horizontal and vertical displacements at nodes 2 and 3 for Case 8(a) along with 

the comparison of Shu-xiang and Zhen-zhou (2001) and Qiu and Elishakoff (1998) are 

shown in Table 4.19. Obtained results are found to be in good agreement. Next, for Cases 

8(b), 8(c) and 8(d), fuzzy finite element method is used with the proposed methodology 

of Section 3.2.1.3 to compute the uncertain static displacements. Corresponding results 

are depicted in Figs. 4.54 to 4.57. For special case 0 , obtained results for Case 8(c) 

are also compared with Shu-xiang and Zhen-zhou (2001) and Qiu and Elishakoff (1998). 

These are depicted in Table 4.20 and again a good agreement may be seen. 
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Table 4.18 Input data of 6 bar truss structure 

Parameters Case 8(a)  Case 8(b) Case 8(c) Case 8(d) 

Modulus of elasticity iE
~

 for i   

1 to 6 all elements )kN/m( 2  

8101.2   8101.2   8101.2   )102.2,101.2,102( 888   

Cross sectional area iA
~

, for i 1 

to  4 )m( 2  

3100.1   3100.1   3100.1   )101.1,100.1,109.0( 333    

Cross sectional area of all other 

elements viz. 5
~
A  and 6

~
A  )m( 2  

31005.1   31005.1   )101.1,1005.1,101( 333    )101.1,1005.1,101( 333    

P
~

)kN(  20.5 )21,5.20,20(  )21,5.20,20(  )21,5.20,20(  
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Fig. 4.54 Horizontal displacement at node 2 for 6 bar truss structure 

 

     
Fig. 4.55 Vertical displacement at node 2 for 6 bar truss structure 

 

 
Fig. 4.56 Horizontal displacement at node 3 for 6 bar truss structure 
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Fig. 4.57 Vertical displacement at node 3 for 6 bar truss structure 

 

Table 4.19 Horizontal and vertical displacement of six- bar truss structure for Case 8(a) 

Displacements 

)mm(  

Shu-xiang and 

Zhen-zhou (2001) 

Qiu and Elishakoff 

(1998) 

Present method 

2x  0.8778 0.86 0.8585 

2y  0.3345 0.33 0.3267 

3x  0.9148 0.90 0.8958 

3y  -0.3171 -0.31 -0.3111 

 

   Table 4.20 Uncertain but bounded displacements of 6 bar truss structure of Case 8(c) 

for 0  

Displacements 

)mm(  

Shu-xiang and 

Zhen-zhou (2001) 

Qiu and Elishakoff  

(1998) 

Present method 

2
~x  [0.7355,1.0201] [0.69, 1.03] [ 0.8469,0.8687] 

2
~y  [0.2782,0.3908] [0.26,0.40] [0.3158,0.3374] 

3
~x  [0.7730,1.0566] [0.73,1.07] [ 0.8910,0.8992] 

3
~y  [-0.3623,-0.2719] [-0.38,-0.24] [ -0.3268, -0.2956] 

 

One may notice from the results of six bar truss for Case 8(a) as depicted in Table 4.19 

that horizontal and vertical displacements at node three are maximum and minimum 
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respectively.  From Table 4.20, for interval parameter (special case of Case 8(c) for 

0 ), uncertainty in the horizontal displacement at node two is found to be maximum 

and minimum at node three. Uncertainty in the vertical displacement at node three is 

maximum and minimum at node two. From Figs. 4.54 to 4.57, one can observe that larger 

width is obtained when fuzziness appears for all the parameters (Case 8(d)). It can clearly 

be seen from Figs. 4.54, 4.55 and 4.57 that minimum width is obtained for the 

displacements when fuzziness appears only in external load (Case 8(b)), and spread in the 

fuzzy displacements gradually increases when we have introduced fuzziness in the cross 

sectional area along with other parameters viz. for Cases 8(c) and 8(d) respectively. But 

in Fig. 4.56, minimum spread is obtained for Case 8(c). As discussed above, obtained 

results are compared in Table 4.20 with the results of existing methods (Shu-xiang and 

Zhen-zhou (2001) and Qiu and Elishakoff (1998)) in special cases to show the 

effectiveness of the proposed method. Moreover, we found that the proposed solution 

method estimates narrow bounds for the structural responses. 

 

4.3.3. Truss with fifteen elements with uncertain nodal forces 

 

A 15 bar truss structure (simplified bridge) as shown in Fig. 4.58 is considered. The 

structure consists of fifteen elements. Horizontal and vertical loads are applied at nodes 3 

and 5 respectively. Material and geometric properties of the structure are considered as 

deterministic (crisp value). Forces applied at the nodes are taken as uncertain and let us 

first assume these as interval. Two different Cases 9(a) and 9(b) have been considered 

depending upon the input variables as shown in Table 4.21.  

 

Fig. 4.58 Truss with fifteen elements 

Using finite element method for Case 9(a), maximum horizontal and vertical 

displacements at nodes 3 and 5 are obtained as m1459.0  and m4070.0  respectively. 
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For Case 9(b), varying   from 0% to 15%, bounds for horizontal and vertical 

displacements at nodes 3 and 5 are computed using Method 3 of Section 3.1.2 and are 

depicted in Figs. 4.59 and 4.60 respectively. The problem is also solved for %30  

using Methods 2 and 3 of Section 3.1.2 and Friedman et al. (1998) which are shown in 

Table 4.22. 

 

Table 4.21 Data of 15 bar truss with forces as crisp and interval value 

Parameters Case 9(a)  Case 9(b) 

Cross sectional area 1A , 2A ,

3A , 13A , 14A , 15A )m( 2  

51010   51010   

Cross sectional area of all 

other elements )m( 2  

5106   5106   

1
~
P )N(  310150  

)]10150(10150

),10150(10150[

33

33








 

2
~
P )N(  310250  

)]10250(10250

),10250(10250[

33

33








 

Modulus of elasticity of all 

elements )N/m( 2  

11102  11102  

 

 

Fig. 4.59 Lower and upper bounds of horizontal displacement at node 3 for interval force 

of 15-bar truss 
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Fig. 4.60 Lower and upper bounds of vertical displacement at node 5 for interval force of 

15-bar truss 

 

Table 4.22 Interval static responses of 15-bar truss with uncertain factor  %30  

)m(~u  i
u  

iu  

Method 2 

of 

Section 

3.1.2 

Method 

3 of 

Section 

3.1.2 

Friedman 

et al. 

(1998) 

Method 2 

of 

Section 

3.1.2 

Method 3 

of 

Section 

3.1.2 

Friedman 

et al. 

(1998) 

3~u  0.1217 0.1217 0.1217 0.1702 0.1702 0.1702 

5~u  -0.3126 -0.3126 -0.3126 -0.5014 -0.5014 -0.5014 

 

Next, forces applied at the nodes are taken as Gaussian and trapezoidal fuzzy numbers. 

Three different cases have been considered for both trapezoidal and Gaussian fuzzy nodal 

force varying the uncertainty width. The input variables for various cases are shown in 

Tables 4.23 and 4.24 respectively for Gaussian and trapezoidal fuzzy nodal force.  

For Gaussian fuzzy forces as given in Cases 10(a), 10(b) and 10(c) of Table 4.23, 

fuzzy finite element method has been used with the Methods 1 and 4 of Section 3.1.2.  

Solution bounds for horizontal and vertical displacements at nodes 3 and 5 are computed 

and depicted in Figs. 4.61 and 4.62 respectively. Similarly for trapezoidal fuzzy, 

horizontal and vertical displacements at nodes 3 and 5 are obtained using the Methods 2 

and 4 of Section 3.1.2 and are shown in Figs. 4.63 and 4.64 respectively. 
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Table 4.23 Data of 15 bar truss element with forces as Gaussian fuzzy numbers 

Parameters Case 10(a) Case 10(b) Case 10(c) 

Cross sectional area 1A , 

2A , 3A , 13A , 14A , 15A

)m( 2  

51010   51010   51010   

Cross sectional area of 

all other element )m( 2  

5106   5106   5106   

1
~
P )N(  )105,105,10150( 333   )1010,1010,10150( 333   )1015,1015,10150( 333   

2
~
P )N(  )105,105,10250( 333   )1010,1010,10250( 333   )1015,1015,10250( 333   

Modulus of elasticity of 

all elements )N/m( 2  

11102  11102  11102  
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Table 4.24 Data of 15 bar truss element with forces as trapezoidal fuzzy numbers 

Parameters Case 11(a) Case 11(b) Case 11(c) 

Cross sectional area 1A , 

2A , 3A , 13A , 14A , 15A

)m( 2  

51010   51010   51010   

Cross sectional area of all 

other element )m( 2  

5106   5106   5106   

1
~
P )N(  

)]10155()102(

),10145()102[(

33

33








 

)]10160()105(

),10140()105[(

33

33








 

)]10165()105(

),10135()105[(

33

33








 

2
~
P )N(  

)]10255()102(

),10245()102[(

33

33








 

)]10260()105(

),10240()105[(

33

33








 

)]10265()105(

),10235()105[(

33

33








 

Modulus of elasticity of 

all elements )N/m( 2  

11102  11102  11102  
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Fig. 4.61 Gaussian fuzzy horizontal displacement at node 3 for 15 bar truss 

 

 
Fig. 4.62 Gaussian fuzzy vertical displacements at node 5 for 15 bar truss 

 

 
Fig. 4.63 Trapezoidal fuzzy horizontal displacements at node 3 for 15 bar truss 
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Fig. 4.64 Trapezoidal fuzzy vertical displacements at node 5 for 15 bar truss 

 

It is worth mentioning that the results obtained by the Methods 1 and 4 are found to be 

exactly the same for Gaussian fuzzy load. Similarly, results obtained by Methods 2 and 4   

for trapezoidal fuzzy load are also the same. Here, one may see that the uncertainty 

spread gradually increases by increasing the uncertainty spread of input parameter viz. 

fuzzy nodal forces.  

 

4.4. Uncertain Static Analysis of Rectangular Sheet  

 

A uniform rectangular sheet as shown in Fig. 4.65 is considered. One of the ends is fixed 

and in the other end, uniform force q~  is applied. Applied force and elastic modulus are 

considered as uncertain. Input for all the variables and parameters are shown in Table 

4.25 for different cases viz. Cases 12(a) to 12(e). 

Applying usual finite element method with crisp parameters with the boundary 

conditions, the reduced equilibrium equation for the above structure may be obtained as  

FK  , 

where  
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Here we have assumed EE 
~

 and qq ~ . 

 

(a) 

   

(b) 

Fig. 4.65 (a) The applied force and (b) finite elements of the rectangular sheet 

 

Solving the corresponding system with the input values as defined in Case 12(a), crisp 

displacements along with the comparison of existing results are given in Table 4.26. Next, 

for Cases 12(b) to 12(d), Methods 2 to 5 of Section 3.1.2 have been used. For Case 12(b), 

obtained interval displacements are shown in Table 4.27. For Case 12(c), we have 

supposed the uniformly applied force N/m],[~ cccc qqqqq    as intervals where 

N/m1000cq  and   is the uncertainty factor so that we can check the static 

displacement bounds with changing  . Obtained results for this are shown in Figs. 4.66 

to 4.69, varying   from %0  to %25 . To be more illustrative, Table 4.28 lists the bounds 

of static response of rectangular sheet when %5 , %10  and %15 . It is worth 

mentioning that Case 12(c) has also been solved by Friedman et al. (1998). The results 

obtained by these methods are compared with the present results and are shown in Table 

4.29 for uncertainty factor %20 . It can be observed that the uncertainty widths of the 

displacements gradually increase with the increase of uncertainty factor  . Results for 

Case 12(d) are depicted in Table 4.30. Lastly, method described in Section 3.2.1.3 has 

been applied for Case 12(e) and corresponding results are given in Table 4.31.
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Table 4.25 Input data of rectangular sheet 

Parameters Case 12(a)  Case 12(b) Case 12(c) Case 12(d) Case 12(e) 

Thickness h

)mm(  

1 1 1 1 1 

Length )m(  2 2 2 2 2 

Width )m(  1 1 1 1 1 

Modulus of 

elasticity E
~

 

)N/m( 2  

910206  910206  910206  910206  910)208,206,204(   

Poison ratio   1/3 1/3 1/3 1/3 1/3 

q~ )kN/m(  1 ]02.1,98.0[  ],[ cccc qqqq    )01.1,1,99.0(  )01.1,1,99.0(  
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Table 4.26 Horizontal and vertical displacement of rectangular sheet for Case 12(a)  

Displacements 

)(m  

Huang and Li 

(2005) 

Li et al. (2003) Present method 

2x  9.6295e-006 9.6295e-006 0.9629e-005 

2y  1.7298e-006 1.7298e-006 0.1730e-005 

3x  8.7069e-006 8.7069e-006 0.8707e-005 

3y  0.1153e-006 0.1153e-006 0.0115e-005 

 

Table 4.27 Interval displacements of rectangular sheet structure (Case 12(b)) with forces as 

interval value  

 

 

 

 

Fig. 4.66 Solution bound for 2
~x  (Case 12(c)) 

Interval displacements )m(  

2
~x  [9.538e-006, 9.721 e-006] 

2
~y  [1.907 e-006,1.552 e-006] 

3
~x  [8.634 e-006, 8.780 e-006] 

3
~y  [-0.364e-006, 2.652 e-006] 
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Fig. 4.67 Solution bound for 2

~y  (Case 12(c)) 

 
Fig. 4.68 Solution bound for 3

~x  (Case 12(c)) 

 
Fig. 4.69 Solution bound for 3

~y (Case 12(c)) 
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Table 4.28 Interval static responses for rectangular sheet (Case 12(c)) with uncertain factor  

%5 , %10  and %15  

Interval 

displacements  

%5  %10  %15  

2
~x  [9.4017e-006,  

9.8572e-006] 

[9.1739e-006, 

 1.0085e-005] 

[8.9462e-006, 

 1.0313e-005] 

2
~y  [2.1738e-006, 

 1.2858e-006] 

[2.6178e-006, 

 8.4186e-007] 

[3.0618e-006,  

3.9786e-007] 

3
~x  [8.5252e-006,  

8.8885e-006] 

[8.3436e-006, 

 9.0701e-006] 

[8.1620e-006,  

9.2518e-006] 

3
~y  [-2.5948e-007,  

4.9012e-007] 

[-6.3428e-007, 

 8.6492e-007] 

[-1.0091e-006,  

1.2397e-006] 

 

Table 4.29 Interval static responses for rectangular sheet (Case 12(c)) with uncertain factor  

%20  

Interval 

displacements  

%20  

Present method(s) Friedman et al. (1998) 

2
~x  [8.7184e-006, 1.0541e-005] [8.7184e-006, 1.0541e-005] 

2
~y  [3.5058e-006,     -4.6129e-008] [3.5058e-006, -4.6129e-008] 

3
~x  [7.9803e-006, 9.4334e-006] [7.9803e-006, 9.4334e-006] 

3
~y  [-1.3839e-006, 1.6145e-006] [-1.3839e-006, 1.6145e-006] 

 

Table 4.30 Lower and upper bounds of fuzzy static responses of rectangular sheet for Case 

12(d)  

  0 0.2 0.6 0.8 1 

2x  0.9584e-005 0.9593e-005 0.9611e-005 0.9620e-005 0.9629e-005 

2x  0.9675e-005 0.9666e-005 0.9648e-005 0.9639e-005 0.9629e-005 

2
y  0.1641e-005 0.1659e-005 0.1694e-005 0.1712e-005 0.1730e-005 

2y  0.1819e-005 0.1801e-005 0.1765e-005 0.1748e-005 0.1730-005 

3x  0.8671e-005 0.8678e-005 0.8692e-005 0.8700e-005 0.8707e-005 

3x  0.8743e-005 0.8736e-005 0.8721e-005 0.8714e-005 0.8707e-005 

3
y  0.0040e-005 0.0055e-005 0.0085e-005 0.0100e-005 0.0115e-005 

3y  0.0190e-005 0.0175e-005 0.0145e-005 0.0130e-005 0.0115e-005 
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Table 4.31 Lower and upper bounds of fuzzy static responses of rectangular sheet for Case 

12(e) 

  0 0.2 0.6 0.8 1 

2x  0.9582e-005 0.9591e-005 0.9610e-005 0.9620e-005 0.9629e-005 

2x  0.9678e-005 0.9668e-005 0.9649e-005 0.9639e-005 0.9629e-005 

2
y  0.1625e-005 0.1646e-005 0.1688e-005 0.1709e-005 0.1730e-005 

2y  0.1836e-005 0.1815e-005 0.1772e-005 0.1751e-005 0.1730-005 

3x  0.8659e-005 0.8669e-005 0.8688e-005 0.8697e-005 0.8707e-005 

3x  0.8756e-005 0.8746e-005 0.8726e-005 0.8717e-005 0.8707e-005 

3
y  0.0041e-005 0.0056e-005 0.0086e-005 0.0101e-005 0.0115e-005 

3y  0.0188e-005 0.0174e-005 0.0145e-005 0.0130e-005 0.0115e-005 

 

From Table 4.26 one may observe that horizontal and vertical displacements of 

rectangular sheet for crisp parameters at node two and three are maximum and minimum 

respectively. Obtained results are compared with Huang and Li (2005) and Li et al. (2003) 

and are found to be same. One may note from Tables 4.30 and 4.31 that horizontal and 

vertical displacements at node two and horizontal displacement at node 3 suffers more 

uncertainty for Case 12(e). Also vertical displacement at node 3 for Case 12(d) suffers more 

uncertainty. Similarly horizontal and vertical displacements at node two and horizontal 

displacement at node 3 suffers less uncertainty for Case 12(d). Vertical displacement at node 

3 for Case 12(e) suffers less uncertainty. It is worth mentioning that in special case for 1 , 

fuzzy displacements completely agree with the deterministic results as shown in Table 4.26.



 

 

 

 

 

Chapter 5 

Uncertain Dynamic Analysis of Structural Systems 

 

 

The content of this chapter has been published in: 

 

1. Chakraverty, S., Behera, D. (2014) Parameter identification of multistorey frame 

structure from uncertain dynamic data, The Strojniški Vestnik-Journal of Mechanical 

Engineering, 60 (5), 331-338; 

 

2. Chakraverty, S., Behera, D. (2014) Uncertain static and dynamic analysis of imprecisely-

defined structural systems, Mathematics of Uncertainty Modeling in the Analysis of 

Engineering and Science Problems, Editor: S. Chakraverty, IGI Global Publication, USA, 

357-382 (Book Chapter). 
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Chapter 5  

Uncertain Dynamic Analysis of Structural Systems 

 

For dynamic analysis of structures with uncertain material and geometric properties, one may 

obtain the generalized uncertain eigenvalue problem. Uncertainties are assumed to be present 

here in the material and geometric properties which are modeled through triangular and 

trapezoidal convex normalized fuzzy sets. It is an important and challenging issue to deal 

with this type of uncertain eigenvalue problems. From the literature review, it reveals that 

interval eigenvalue problems are handled mostly for standard and generalized eigenvalue 

problems. But fuzzy eigenvalue problems are analysed by few authors only for standard 

eigenvalue problems. Accordingly, this chapter proposes an algorithm to solve generalized 

fuzzy eigenvalue problem by extending the method of Chen et al.  (1995). For verification 

and validation of the algorithm, vibration analysis of multistorey shear building, spring mass 

mechanical system and stepped beam are taken into consideration. Obtained results are 

compared with the existing results in special cases. Computed frequency parameters and 

corresponding mode shapes are depicted in term of plots and tables.  

This chapter also includes the parameter identification procedure of a multistory 

frame structure from uncertain dynamic data. In this regard, an iterative scheme has been 

proposed using fuzzy Taylor series expansion. Numerical examples related to this have been 

incorporated to show the efficiency of the proposed method. As such, we first discuss below 

about the generalized fuzzy eigenvalue problem. 

 

5.1. Generalized Fuzzy Eigenvalue Problem 

 

Let us now consider the generalized fuzzy eigenvalue problem as 

         }
~

]{
~

[
~

}
~

]{
~

[ WMWK                   (5.1) 

where, ]
~

[K  and ]
~

[M  are square matrices with elements as triangular fuzzy number. Here 

],,[]
~

[ KKKK   and ],,[]
~

[ MMMM   in which ijkK  , ijkK  , ijkK   are nn
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symmetric matrices and ijmM  , ijmM  , ijmM   are nn  symmetric positive definite 

matrices. 

K , K , M  and M  are known matrices which have the elements for membership, 0  of 

]
~

[K  and ]
~

[M . Also, K  and M contains the entries for membership 1 . 

Similarly, for trapezoidal fuzzy number matrices in Eq. (1), ],,,[]
~

[ KKKKK   and 

],,,[]
~

[ MMMMM   where ijkK  , 
ij

kK  , ijkK  , ijkK   are nn  symmetric 

matrices and ijmM  , 
ij

mM  , ijmM  , ijmM   are nn  symmetric positive definite 

matrices. 

Here, K , K , M  and M  are matrices obtained for membership 0  and  K , K , M  and 

M   are the matrices for membership 1  for ]
~

[K  and ]
~

[M . 

So for triangular and trapezoidal fuzzy matrices, the generalized fuzzy eigenvalue problem 

viz. Eq. (5.1), can be written respectively as follows 

}
~

]{,,[
~

}
~

]{,,[ WMMMWKKK               (5.2) 

and 

      }
~

]{,,,[
~

}
~

]{,,,[ WMMMMWKKKK               (5.3) 

where, 
~

 and }
~

{W  are the corresponding fuzzy eigenvalue and eigenvector. 

Using  cut approach, one may write Eqs. (5.2) and (5.3) as 

         )}(
~

)]{(
~

)[(
~

)}(
~

)]{(
~

[  WMWK                        (5.4) 

where, )](),([)(
~

 KKK   and )](),([)(
~

 MMM  .  

Let all eigenvalues )(
~
i  for ni ,,3,2,1   of Eq. (5.4) be arranged in an ascending order 

defined by )](),([)(
~

 iii   and the corresponding eigenvectors also be defined as 

)](),([)(
~

 iii WWW   for ni ,,3,2,1  . 

One may notice that the fuzzy matrices in  cut  representation are in interval form. So, we 

may write the interval fuzzy matrices as  

)](
~

)(
~

),(
~

)(
~

[)](),([)(
~

 KKKKKKK cc   
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and 

)](
~

)(
~

),(
~

)(
~

[)](),([)(
~

 MMMMMMM cc   

where 
2

)()(
)(

~ 


KK
K c 

 , 
2

)()(
)(

~ 


KK
K


 , 

2

)()(
)(

~ 


MM
M c 

  and 

2

)()(
)(

~ 


MM
M


 . 

 

In order to solve the fuzzy eigenvalue problem, an algorithm is developed for finding the 

uncertain eigenvalues of Eq. (5.1) by extending the method of Chen et al. (1995). 

 

5.1.1. Algorithm for computing fuzzy eigenvalues 

 

Step 1 :  Initialize the fuzzy stiffness and mass matrices )](
~

[ K  and )](
~

[ M  respectively. 

Step 2 : Find central as well as width of stiffness and mass matrices respectively as 

 )(
~

cK , )(
~
K , )(

~
cM  and )(

~
M . 

Step 3 : Solve the central generalized eigenvalue problem 

  )}(
~

)]{(
~

)[(
~

)}(
~

)]{(
~

[  ccccc WMWK  . 

Step 4 : Compute ))(),(),(( 21
i

n
iii wsignwsignwsigndiagS  where 0i

jw . i
jw  are   

   the components of i the eigenvector obtained in Step 3 for nj ,,2,1  . 

Step 5  : Obtain the left bound of fuzzy eigenvalue by solving  

   )}(]{)(
~

)(
~

)[()}(]{)(
~

)(
~

[  iii
c

iiii
c WSMSMWSKSK    

    for ni ,,3,2,1  . 

                For each i , one has n  number of eigenvalues viz. )(
j
i   for nj ,,2,1  . 

Step 6 : Obtain the right bound of fuzzy eigenvalue by solving 

  )}(]{)(
~

)(
~

)[()}(]{)(
~

)(
~

[  iii
c

iiii
c WSMSMWSKSK   

              for,  ni ,,3,2,1  . 

             Again for each i , one has n  number of eigenvalues viz. )(
j

i   for nj ,,2,1  . 

Step 7 : Fuzzy eigenvalue can be written as )](),([)(
~

 iii    where 
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),,2,1for  ),((min )( ni
j
ii   , 

),,2,1for  ),(max( )( ni
j

ii   . 

To compute left and right bounds of fuzzy eigenvalues for a particular )(
~
i , Deif’s 

assumption (Deif et al. (1991)), that is the sign components of the associated eigenvector 

)(
~

cW  viz. in term of iS  where )](),([)(
~

 KKK   and )](),([)(
~

 MMM  , are 

introduced for fuzzy parameters in Steps 4 to 6 of the algorithm.  

 

In the following sections, uncertain eigenvalue problems for vibration of multistorey shear 

building, spring mass system and stepped beam structure have been considered. 

 

5.2. Multistorey Shear Building Structure with Fuzzy Parameters 

 

Let us  consider n storey shear building structure as shown in Fig. 5.1. Stiffness and mass 

parameters are assumed of two types viz. 

 i) triangular fuzzy number ),,(
~

iiii kkkk  , ),,(~
iiii mmmm   and ii) trapezoidal fuzzy 

number ),,,(
~

iiiii kkkkk  , ),,,(~
iiiii mmmmm    for ni ,,3,2,1  . 

Equation of motion for n -storey shear building structure subject to ambient vibration may be 

written as 
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where ]
~

[M  and ]
~

[K  are global fuzzy mass and stiffness matrices given by  
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and 
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  are the vectors of acceleration and deflection, respectively. 

For simple harmonic motion, we substitute 
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  in Eq. (5.5), which gives 
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~

[
~

}
~
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~

[ WMWK  .              (5.6) 

For i th eigenvalue and vector, one can write 

}
~

]{
~

[
~

}
~

]{
~

[ iii WMWK  ,             (5.7) 

where 2~~
ii    is the i th eigenvalue and  Ti

n
ii

i wwwW ~~~}
~

{ 21    designates 

the i th mode shape or eigenvector for ni ,,3,2,1  . 

Through  cut approach, Eq. (5.6) can be written as  
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Fig. 5. 1 n-storey shear building structure 

 

Eq. (5.8) can now be solved using the proposed algorithm to find the fuzzy vibration 

characteristics of n  storey shear building structure. 

 

5.2.1. Numerical examples for multistorey shear building 

 

For validation of the proposed algorithm, a 5 storey shear building structure is taken into 

consideration. Three different cases have been investigated by assuming stiffness and mass 
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parameters as crisp, triangular and trapezoidal fuzzy numbers respectively as given below in 

Cases 1(a) to 1(c).  

 

Case 1(a): Stiffness and mass parameters are crisp  

This is the well-known case and it is incorporated to have the comparison in special cases. 

The stiffness parameters are taken as N/m20101 k , N/m18252 k , N/m16153 k , 

N/m14104 k  and N/m12055 k  and the mass parameters are Kg301 m , 

Kg272 m , Kg273 m , Kg254 m  and Kg185 m . 

Frequency parameters and corresponding eigenmodes are computed by standard procedure 

for the crisp case and are given in Table 5.1. 

 

Table 5.1 Frequency parameters and corresponding eigenmodes for crisp material properties 

1  2  3  4  5  

6.1662 44.0780 103.5670 165.5908 219.4201 

1W  2W  3W  4W  5W  

0.0318 

0.0636 

0.0930 

0.1157 

0.1274 

-0.0810 

-0.1115 

-0.0638 

0.0447 

0.1308 

0.1043 

0.0416 

-0.1013 

-0.0641 

0.1172 

0.0890 

-0.0552 

-0.0653 

0.1303 

-0.0884 

-0.0834 

0.1256 

-0.0989 

0.0596 

-0.0262 

 

 

Case 1(b): Stiffness and mass parameters are triangular fuzzy numbers  

Material parameters are considered as:  

N/m)2020,2010,2000(
~
1 k , 

N/m)1850,1825,1800(
~

2 k , 

N/m)1630,1615,1600(
~
3 k , 

N/m)1420,1410,1400(
~

4 k , 

N/m)1210,1205,1200(
~
5 k  
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and 

Kg)31,30,29(~
1 m , 

Kg)28,27,26(~
2 m , 

Kg)28,27,26(~
3 m , 

Kg)26,25,24(~
4 m , 

Kg)19,18,17(~
5 m . 

 

Through  cut approach, triangular fuzzy stiffness and mas parameters in this case may be 

written as 

N/m]202010,200010[)(
~
1  k , 

N/m]185025,180025[)(
~

2  k , 

N/m]163015,160015[)(
~
3  k , 

N/m]142010,140010[)(
~

4  k , 

N/m]12105,12005[)(
~
5  k  

and 

Kg]31,29[)(~
1  m , 

Kg]28,26[)(~
2  m , 

Kg]28,26[)(~
3  m , 

Kg]26,24[~
4  m , 

Kg]19,17[)(~
5  m . 

 

Results for left bound of frequency parameters with left bound of eigenmodes and right 

bounds of frequency parameters with right bounds of eigenmodes are incorporated in Tables 

5.2(a) and 5.2(b) respectively for different 𝛼. The triangular fuzzy eigenvalue plots are 

depicted in Figs. 5.2(a) to 5.2(e). 
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Table 5.2(a) Left bounds of the frequency parameters and corresponding eigenmodes for triangular fuzzy material properties 
  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

1  4.6166 4.7669 4.9182 5.0705 5.2238 5.3782 5.5336 5.6901 5.8477 6.0064 6.1662 

1W  0.0326 

0.0643 

0.0922 

0.1125 

0.1224 

0.0325 

0.0643 

0.0922 

0.1128 

0.1229 

0.0324 

0.0642 

0.0923 

0.1131 

0.1234 

0.0323 

0.0641 

0.0924 

0.1134 

0.1239 

0.0322 

0.0640 

0.0925 

0.1137 

0.1244 

0.0322 

0.0640 

0.0926 

0.1141 

0.1249 

0.0321 

0.0639 

0.0927 

0.1144 

0.1254 

0.0320 

0.0638 

0.0927 

0.1147 

0.1259 

0.0320 

0.0638 

0.0928 

0.1150 

0.1264 

0.0319 

0.0637 

0.0929 

0.1154 

0.1269 

0.0318 

0.0636 

0.0930 

0.1157 

0.1274 

2  40.6428 40.9735 41.3070 41.6433 41.9824 42.3243 42.6691 43.0169 43.3676 43.7213 44.0780 

2W  -0.0793 

-0.1089 

-0.0611 

0.0455 

0.1287 

-0.0795 

-0.1091 

-0.0614 

0.0454 

0.1289 

-0.0796 

-0.1094 

-0.0616 

0.0453 

0.1291 

-0.0798 

-0.1097 

-0.0619 

0.0452 

0.1293 

-0.0800 

-0.1099 

-0.0622 

0.0451 

0.1295 

-0.0801 

-0.1102 

-0.0625 

0.0451 

0.1297 

-0.0803 

-0.1104 

-0.0627 

0.0450 

0.1299 

-0.0805 

-0.1107 

-0.0630 

0.0449 

0.1301 

-0.0806 

-0.1110 

-0.0633 

0.0448 

0.1303 

-0.0808 

-0.1112 

-0.0635 

0.0447 

0.1305 

-0.0810 

-0.1115 

-0.0638 

0.0447 

0.1308 

3  98.1800 98.7001 99.2272 99.7523 100.2846 100.8210 101.3616 101.9065 102.4556 103.0091 103.5670 

3W  

 

 

0.1007 

0.0412 

-0.0997 

-0.0640 

0.1154 

0.1011 

0.0412 

-0.0998 

-0.0640 

0.1156 

0.1014 

0.0413 

-0.1000 

-0.0640 

0.1158 

0.1018 

0.0413 

-0.1002 

-0.0641 

0.1159 

0.1021 

0.0414 

-0.1003 

-0.0641 

0.1161 

0.1025 

0.0414 

-0.1005 

-0.0641 

0.1163 

0.1028 

0.0415 

-0.1006 

-0.0641 

0.1166 

0.1032 

0.0415 

-0.1008 

-0.0641 

0.1168 

0.1036 

0.0415 

-0.1010 

-0.0641 

0.1170 

0.1039 

0.0416 

-0.1011 

-0.0641 

0.1170 

0.1043 

0.0416 

-0.1013 

-0.0641 

0.1172 

4  157.8433 158.5905 159.3436 160.1027 160.8679 161.6393 162.4168 163.2007 163.9909 164.7876 165.5908 

4W  

 

 

0.0885 

-0.0538 

-0.0641 

0.1276 

-0.0851 

0.0886 

-0.0539 

-0.0642 

0.1279 

-0.0854 

0.0886 

-0.0540 

-0.0644 

0.1281 

-0.0857 

0.0887 

-0.0542 

-0.0645 

0.1284 

-0.0861 

0.0887 

-0.0543 

-0.0646 

0.1287 

-0.0864 

0.0888 

-0.0545 

-0.0647 

0.1289 

-0.0867 

0.0888 

-0.0546 

-0.0649 

0.1292 

-0.0870 

0.0889 

-0.0548 

-0.0650 

0.1294 

-0.0874 

0.0889 

-0.0549 

-0.0651 

0.1297 

-0.0877 

0.0890 

-0.0551 

-0.0652 

0.1300 

-0.0880 

0.0890 

-0.0552 

-0.0653 

0.1303 

-0.0884 

5  209.5148 210.4735 211.4390 212.4116 213.3911 214.3777 215.3715 216.3726 217.3810 218.3968 219.4201 

5W  -0.0822 

0.1231 

-0.0973 

0.0585 

-0.0252 

-0.0824 

0.1234 

-0.0974 

0.0586 

-0.0253 

-0.0825 

0.1236 

-0.0976 

0.0587 

-0.0254 

-0.0826 

0.1239 

-0.0978 

0.0588 

-0.0255 

-0.0827 

0.1241 

-0.0979 

0.0589 

-0.0256 

-0.0828 

0.1243 

-0.0981 

0.0590 

-0.0257 

-0.0829 

0.1246 

-0.0983 

0.0591 

-0.0258 

-0.0831 

0.1248 

-0.0984 

0.0592 

-0.0259 

-0.0832 

0.1251 

-0.0986 

0.0593 

-0.0260 

-0.0833 

0.1253 

-0.0988 

0.0595 

-0.0261 

-0.0834 

0.1256 

-0.0989 

0.0596 

-0.0262 
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Table 5.2(b) Right bounds of the frequency parameters and corresponding eigenmodes for triangular fuzzy material properties 
  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

1  7.8303 7.6582 7.4875 7.3180 7.1498 6.9828 6.8171 6.6526 6.4893 6.3272 6.1662 

1W  0.0311 

0.0630 

0.0940 

0.1190 

0.1327 

0.0312 

0.0630 

0.0939 

0.1187 

0.1321 

0.0313 

0.0631 

0.0938 

0.1184 

0.1316 

0.0313 

0.0632 

0.0937 

0.1180 

0.1311 

0.0314 

0.0632 

0.0936 

0.1177 

0.1305 

0.0315 

0.0633 

0.0935 

0.1173 

0.1300 

0.0315 

0.0634 

0.0934 

0.1170 

0.1295 

0.0316 

0.0634 

0.0933 

0.1167 

0.1290 

0.0317 

0.0635 

0.0932 

0.1163 

0.1285 

0.0317 

0.0636 

0.0931 

0.1160 

0.1279 

0.0318 

0.0636 

0.0930 

0.1157 

0.1274 

2  47.8200 47.4309 47.0453 46.6630 46.2840 45.9083 45.5359 45.1667 44.8007 44.4378 44.0780 

2W  -0.0828 

-0.1142 

-0.0665 

0.0440 

0.1331 

-0.0826 

-0.1139 

-0.0662 

0.0441 

0.1328 

-0.0825 

-0.1136 

-0.0660 

0.0441 

0.1326 

-0.0822 

-0.1134 

-0.0657 

0.0442 

0.1323 

-0.0820 

-0.1131 

-0.0654 

0.0443 

0.1321 

-0.0819 

-0.1128 

-0.0652 

0.0443 

0.1319 

-0.0817 

-0.1126 

-0.0649 

0.0444 

0.1316 

-0.0815 

-0.1123 

-0.0646 

0.0444 

0.1314 

-0.0813 

-0.1120 

-0.0644 

0.0445 

0.1312 

-0.0812 

-0.1118 

-0.0641 

0.0446 

0.1310 

-0.0810 

-0.1115 

-0.0638 

0.0447 

0.1308 

3  109.3993 108.7946 108.1947 107.5998 107.0097 106.4243 105.8437 105.2677 104.6963 104.1294 103.5670 

3W  

 

 

 

 

0.1081 

0.0419 

-0.1031 

-0.0639 

0.1190 

0.1077 

0.0419 

-0.1029 

-0.0640 

0.1188 

0.1074 

0.0419 

-0.1027 

-0.0640 

0.1186 

0.1070 

0.0418 

-0.1025 

-0.0640 

0.1185 

0.1066 

0.0418 

-0.1023 

-0.0640 

0.1183 

0.1062 

0.0418 

-0.1022 

-0.0640 

0.1181 

0.1058 

0.0417 

-0.1020 

-0.0641 

0.1179 

0.1054 

0.0417 

-0.1018 

-0.0641 

0.1177 

0.1051 

0.0417 

-0.1016 

-0.0641 

0.1175 

0.1047 

0.0416 

-0.1015 

-0.0641 

0.1173 

0.1043 

0.0416 

-0.1013 

-0.0641 

0.1172 

4  174.0029 173.1292 172.2630 171.4042 170.5527 169.7083 168.8710 168.0407 167.2173 166.4007 165.5908 

4W  

 

 

 

 

0.0895 

-0.0569 

-0.0664 

0.1330 

-0.0921 

0.0895 

-0.0567 

-0.0663 

0.1327 

-0.0917 

0.0894 

-0.0566 

-0.0662 

0.1325 

-0.0913 

0.0894 

-0.0564 

-0.0661 

0.1322 

-0.0909 

0.0893 

-0.0562 

-0.0660 

0.1319 

-0.0906 

0.0893 

-0.0561 

-0.0659 

0.1316 

-0.0902 

0.0892 

-0.0559 

-0.0658 

0.1313 

-0.0898 

0.0892 

-0.0557 

-0.0656 

0.1311 

-0.0895 

0.0891 

-0.0556 

-0.0655 

0.1308 

-0.0891 

0.0891 

-0.0554 

-0.0654 

0.1305 

-0.0887 

0.0890 

-0.0552 

-0.0653 

0.1303 

-0.0884 

5  230.0845 228.9814 227.8867 226.8003 225.7221 224.6520 223.5899 222.5358 221.4895 220.4510 219.4201 

5W  

 

-0.0846 

0.1282 

-0.1007 

0.0609 

-0.0273 

-0.0845 

0.1279 

-0.1005 

0.0607 

-0.0271 

-0.0844 

0.1276 

-0.1004 

0.0606 

-0.0270 

-0.0843 

0.1274 

-0.1002 

0.0605 

-0.0269 

-0.0841 

0.1271 

-0.1000 

0.0603 

-0.0268 

-0.0840 

0.1269 

-0.0998 

0.0602 

-0.0267 

-0.0839 

0.1266 

-0.0996 

0.0601 

-0.0266 

-0.0838 

0.1264 

-0.0995 

0.0599 

-0.0265 

-0.0837 

0.1261 

-0.0993 

0.0598 

-0.0264 

-0.0835 

0.1258 

-0.0991 

0.0597 

-0.0263 

-0.0834 

0.1256 

-0.0989 

0.0596 

-0.0262 
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Case 1(c): Stiffness and mass parameters are trapezoidal fuzzy number  

Corresponding material properties are taken as 

N/m)2020,2015,2005,2000(
~
1 k , N/m)1850,1830,1820,1800(

~
2 k , 

N/m)1630,1620,1610,1600(
~
3 k , N/m)1420,1415,1405,1400(

~
4 k , 

N/m)1210,1208,1202,1200(
~
5 k  

and 

Kg)31,5.30,5.29,29(~
1 m , Kg)28,5.27,5.26,26(~

2 m , 

Kg)28,5.27,5.26,26(~
3 m , Kg)26,5.25,5.24,24(~

4 m , 

Kg)19,5.18,5.17,17(~
5 m . 

Through  cut approach, trapezoidal fuzzy stiffness and mass parameters may again be 

written as 

N/m]20205,20005[)(
~
1  k , N/m]185020,180020[)(

~
2  k , 

N/m]163010,160010[)(
~
3  k , N/m]14205,14005[)(

~
4  k , 

N/m]12102,12002[)(
~
5  k  

and 

Kg]315.0,295.0[)(~
1  m , Kg]285.0,265.0[)(~

2  m , 

Kg]285.0,265.0[)(~
3  m , Kg]265.0,245.0[)(~

4  m , 

Kg]195.0,175.0[)(~
5  m . 

Using the proposed algorithm for the trapezoidal fuzzy parameters, the frequency parameters 

and the eigenmodes are computed. Corresponding results for left bound of the frequency 

parameters with the left bound of the eigenmodes and right bounds of the frequency 

parameters with the right bounds of the eigenmodes are given in Tables 5.3(a) and 5.3(b) 

respectively for each 𝛼. The trapezoidal fuzzy eigenvalue plots are cited in Figs. 5.3(a) to 

5.3(e). By comparing the results shown in Figs. 5.2 (a) and 5.3(a), one may clearly see that 

the results for 0  both are equal to each other where as for 1 , first natural frequency 

for triangular fuzzy inputs exactly comes inside the first natural frequency for trapezoidal 

fuzzy inputs. 
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Table 5.3(a) Left bounds of the frequency parameters and corresponding eigenmodes for trapezoidal fuzzy material properties 

  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

1  4.6166 4.7020 4.7876 4.8733 4.9592 5.0454 5.1317 5.2182 5.3049 5.3917 5.4788 

1W  0.0326 

0.0643 

0.0922 

0.1125 

0.1224 

0.0325 

0.0642 

0.0922 

0.1127 

0.1227 

0.0324 

0.0641 

0.0922 

0.1129 

0.1230 

0.0323 

0.0640 

0.0922 

0.1130 

0.1233 

0.0322 

0.0639 

0.0922 

0.1132 

0.1236 

0.0321 

0.0638 

0.0922 

0.1134 

0.1240 

0.0320 

0.0637 

0.0922 

0.1136 

0.1243 

0.0319 

0.0636 

0.0922 

0.1138 

0.1246 

0.0318 

0.0635 

0.0923 

0.1140 

0.1249 

0.0317 

0.0634 

0.0923 

0.1142 

0.1252 

0.0316 

0.0632 

0.0923 

0.1144 

0.1256 

2  40.6428 40.8402 41.0384 41.2375 41.4375 41.6383 41.8401 42.0427 42.2462 42.4506 42.6560 

2W  -0.0793 

-0.1089 

-0.0611 

0.0455 

0.1287 

-0.0794 

-0.1090 

-0.0613 

0.0454 

0.1288 

-0.0794 

-0.1092 

-0.0615 

0.0452 

0.1288 

-0.0795 

-0.1093 

-0.0618 

0.0451 

0.1289 

-0.0796 

-0.1095 

-0.0620 

0.0450 

0.1289 

-0.0797 

-0.1096 

-0.0622 

0.0448 

0.1290 

-0.0797 

-0.1098 

-0.0625 

0.0447 

0.1291 

-0.0798 

-0.1099 

-0.0627 

0.0446 

0.1291 

-0.0799 

-0.1101 

-0.0629 

0.0444 

0.1292 

-0.0800 

-0.1102 

-0.0632 

0.0443 

0.1292 

-0.0800 

-0.1104 

-0.0634 

0.0442 

0.1293 

3  98.1800 98.4581 98.7372 99.0175 99.2989 99.5814 99.8650 100.1498 100.4358 100.7229 101.0111 

3W  

 

 

0.1007 

0.0412 

-0.0997 

-0.0640 

0.1154 

0.1009 

0.0412 

-0.0997 

-0.0641 

0.1155 

0.1011 

0.0413 

-0.0997 

-0.0641 

0.1156 

0.1013 

0.0414 

-0.0998 

-0.0641 

0.1156 

0.1016 

0.0414 

-0.0998 

-0.0642 

0.1157 

0.1018 

0.0415 

-0.0998 

-0.0642 

0.1157 

0.1020 

0.0416 

-0.0999 

-0.0642 

0.1158 

0.1022 

0.0416 

-0.0999 

-0.0642 

0.1158 

0.1024 

0.0417 

-0.0999 

-0.0643 

0.1159 

0.1026 

0.0418 

-0.0999 

-0.0643 

0.1159 

0.1028 

0.0418 

-0.1000 

-0.0643 

0.1160 

4  157.8433 158.2326 158.6233 159.0156 159.4094 159.8047 160.2016 160.6000 161.0000 161.4015 161.8046 

4W  

 

 

 

0.0885 

-0.0538 

-0.0641 

0.1276 

-0.0851 

0.0885 

-0.0538 

-0.0643 

0.1278 

-0.0853 

0.0885 

-0.0538 

-0.0644 

0.1279 

-0.0854 

0.0885 

-0.0538 

-0.0645 

0.1280 

-0.0856 

0.0885 

-0.0538 

-0.0647 

0.1282 

-0.0857 

0.0885 

-0.0539 

-0.0648 

0.1283 

-0.0858 

0.0885 

-0.0539 

-0.0649 

0.1285 

-0.0860 

0.0885 

-0.0539 

-0.0650 

0.1286 

-0.0861 

0.0885 

-0.0539 

-0.0652 

0.1288 

-0.0863 

0.0885 

-0.0539 

-0.0653 

0.1289 

-0.0864 

0.0885 

-0.0540 

-0.0654 

0.1290 

-0.0866 

5  209.5148 210.0368 210.5607 211.0864 211.6141 212.1437 212.6752 213.2087 213.7441 214.2815 214.8207 

5W  -0.0822 

0.1231 

-0.0973 

0.0585 

-0.0252 

-0.0823 

0.1233 

-0.0973 

0.0585 

-0.0252 

-0.0824 

0.1234 

-0.0974 

0.0585 

-0.0252 

-0.0825 

0.1236 

-0.0974 

0.0585 

-0.0253 

-0.0826 

0.1237 

-0.0975 

0.0585 

-0.0253 

-0.0827 

0.1239 

-0.0975 

0.0585 

-0.0253 

-0.0828 

0.1240 

-0.0976 

0.0585 

-0.0253 

-0.0829 

0.1242 

-0.0976 

0.0585 

-0.0253 

-0.0830 

0.1243 

-0.0977 

0.0585 

-0.0253 

-0.0831 

0.1245 

-0.0977 

0.0585 

-0.0253 

-0.0832 

0.1246 

-0.0978 

0.0585 

-0.0253 
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Table 5.3(b) Right bounds of the frequency parameters and corresponding eigenmodes for trapezoidal fuzzy material properties 
  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

1  7.8303 7.7344 7.6388 7.5435 7.4484 7.3536 7.2590 7.1647 7.0706 6.9768 6.8832 

1W  0.0311 

0.0630 

0.0940 

0.1190 

0.1327 

0.0312 

0.0631 

0.0939 

0.1188 

0.1323 

0.0313 

0.0632 

0.0939 

0.1186 

0.1320 

0.0314 

0.0633 

0.0939 

0.1184 

0.1317 

0.0315 

0.0634 

0.0939 

0.1182 

0.1313 

0.0316 

0.0635 

0.0939 

0.1180 

0.1310 

0.0316 

0.0636 

0.0938 

0.1178 

0.1307 

0.0317 

0.0637 

0.0938 

0.1176 

0.1303 

0.0318 

0.0638 

0.0938 

0.1174 

0.1300 

0.0319 

0.0639 

0.0938 

0.1172 

0.1297 

0.0320 

0.0640 

0.0938 

0.1170 

0.1293 

2  47.8200 47.5895 47.3600 47.1315 46.9041 46.6777 46.4524 46.2280 46.0047 45.7824 45.5611 

2W  -0.0828 

-0.1142 

-0.0665 

0.0440 

0.1331 

-0.0827 

-0.1140 

-0.0663 

0.0441 

0.1330 

-0.0826 

-0.1139 

-0.0660 

0.0443 

0.1329 

-0.0825 

-0.1137 

-0.0658 

0.0444 

0.1328 

-0.0824 

-0.1136 

-0.0656 

0.0445 

0.1327 

-0.0824 

-0.1134 

-0.0654 

0.0446 

0.1327 

-0.0823 

-0.1133 

-0.0651 

0.0447 

0.1326 

-0.0822 

-0.1131 

-0.0649 

0.0448 

0.1325 

-0.0821 

-0.1129 

-0.0647 

0.0450 

0.1324 

-0.0820 

-0.1128 

-0.0645 

0.0451 

0.1323 

-0.0820 

-0.1126 

-0.0642 

0.0452 

0.1323 

3  109.3993 109.0759 108.7539 108.4332 108.1139 107.7959 107.4792 107.1639 106.8498 106.5379 106.2257 

3W  

 

 

 

 

0.1081 

0.0419 

-0.1031 

-0.0639 

0.1190 

0.1079 

0.0418 

-0.1030 

-0.0639 

0.1190 

0.1077 

0.0418 

-0.1030 

-0.0639 

0.1189 

0.1074 

0.0417 

-0.1030 

-0.0639 

0.1188 

0.1072 

0.0417 

-0.1029 

-0.0639 

0.1188 

0.1070 

0.0416 

-0.1029 

-0.0639 

0.1187 

0.1068 

0.0416 

-0.1028 

-0.0638 

0.1186 

0.1065 

0.0415 

-0.1028 

-0.0638 

0.1186 

0.1063 

0.0415 

-0.1028 

-0.0638 

0.1185 

0.1061 

0.0414 

-0.1027 

-0.0638 

0.1184 

0.1058 

0.0414 

-0.1027 

-0.0638 

0.1184 

4  174.0029 173.5478 173.0946 172.6433 172.1939 171.7464 171.3008 170.8570 170.4150 169.9741 169.5366 

4W  

 

 

 

 

0.0895 

-0.0569 

-0.0664 

0.1330 

-0.0921 

0.0895 

-0.0569 

-0.0663 

0.1329 

-0.0919 

0.0895 

-0.0568 

-0.0661 

0.1327 

-0.0917 

0.0895 

-0.0568 

-0.0660 

0.1326 

-0.0915 

0.0895 

-0.0568 

-0.0659 

0.1324 

-0.0914 

0.0895 

-0.0567 

-0.0658 

0.1322 

-0.0912 

0.0895 

-0.0567 

-0.0656 

0.1321 

-0.0910 

0.0895 

-0.0567 

-0.0655 

0.1319 

-0.0908 

0.0895 

-0.0566 

-0.0654 

0.1318 

-0.0906 

0.0895 

-0.0566 

-0.0653 

0.1316 

-0.0905 

0.0895 

-0.0566 

-0.0651 

0.1315 

-0.0903 

5  230.0845 229.4853 228.8884 228.2938 227.7015 227.1115 226.5237 225.9381 225.3548 224.7737 224.1948 

5W  

 

-0.0846 

0.1282 

-0.1007 

0.0609 

-0.0273 

-0.0845 

0.1280 

-0.1007 

0.0608 

-0.0272 

-0.0844 

0.1278 

-0.1006 

0.0608 

-0.0272 

-0.0843 

0.1277 

-0.1005 

0.0608 

-0.0272 

-0.0842 

0.1275 

-0.1005 

0.0608 

-0.0272 

-0.0841 

0.1274 

-0.1004 

0.0608 

-0.0271 

-0.0840 

0.1272 

-0.1004 

0.0608 

-0.0271 

-0.0839 

0.1271 

-0.1003 

0.0608 

-0.0271 

-0.0839 

0.1269 

-0.1003 

0.0608 

-0.0271 

-0.0838 

0.1267 

-0.1002 

0.0608 

-0.0270 

-0.0837 

0.1266 

-0.1001 

0.0608 

-0.0270 
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Special Case: We consider the fuzzy stiffness and mass parameters for 0 . For this, the 

parameters are in interval form and the material parameters of the 5 storey building may be 

written as  

N/m]2020,2000[
~
1 k , N/m]1850,1800[

~
2 k , N/m]1630,1600[

~
3 k , 

N/m]1420,1400[
~

4 k , N/m]1210,1200[
~
5 k  

and 

Kg]31,29[~
1 m , Kg]28,26[~

2 m , Kg]28,26[~
3 m , Kg]26,24[~

4 m ,  

Kg]19,17[~
5 m . 

As discussed earlier, the proposed algorithm converts into a generalized interval eigenvalue 

problem for 0 . The left and right bounds of the frequency parameters and respective left 

and right bound of the eigenmodes are obtained using the method of interval case. Left 

bounds of the frequency parameters with the left bounds of the eigenmodes and the right 

bound of the frequency parameters with right bounds of the eigenmodes are included in 

Tables 5.4(a) and 5.4(b) respectively.  

 

Table 5.4(a) Left bounds of the frequency parameters and corresponding eigenmodes for 

interval material properties 

1  2  3  4  5  

4.6166 40.6428 98.1800 157.8433 209.5148 

1W  2W  3W  4W  5W  

0.0326 

0.0643 

0.0922 

0.1125 

0.1224 

-0.0793 

-0.1089 

-0.0611 

0.0455 

0.1287 

0.1007 

0.0412 

-0.0997 

-0.0640 

0.1154 

0.0885 

-0.0538 

-0.0641 

0.1276 

-0.0851 

-0.0822 

0.1231 

-0.0973 

0.0585 

-0.0252 

 

Table 5.4(b) Right bounds of the frequency parameters and corresponding eigenmodes for 

interval material properties 

1  2  3  4  5  

7.8303 47.8200 109.3993 174.0029 230.0845 

1W  2W  3W  4W  5W  

0.0311 

0.0630 

0.0940 

0.1190 

0.1327 

-0.0828 

-0.1142 

-0.0665 

0.0440 

0.1331 

0.1081 

0.0419 

-0.1031 

-0.0639 

0.1190 

0.0895 

-0.0569 

-0.0664 

0.1330 

-0.0921 

-0.0846 

0.1282 

-0.1007 

0.0609 

-0.0273 
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Deformations for first to fifth modes with interval material properties as well as crisp 

material properties are shown in Figs. 5.4(a) to 5.4(e) respectively. In these figures, the solid 

line with star represents the crisp deformations, dashed line with square and dotted line with 

circle represents the left and right bounds of the deformations for interval material properties. 

It may be seen from Tables 5.1, 5.4(a) and 5.4(b) that the interval widths are very small and 

so the plots in Figs. 5.4(a) to 5.4(e) do not distinguish the crisp, left and right mode shapes.  

In case of triangular fuzzy material properties, the first deformations for 1,0  and 

1,6.0  are depicted in Figs. 5.5(a) and 5.5(b) respectively. Similarly, the fifth 

deformations for 1,0  and 1,6.0  are shown in Figs. 5.6(a) and 5.6(b) respectively. 

Here, the solid line with star represents the deformations for 1 , dashed line with square 

and dotted line with circle represent the left and right bounds of the deformations for 0  

and 0.6 respectively. 

The first deformations are depicted in terms of plots in Figs. 5.7(a) and 5.7(b) for 

trapezoidal fuzzy material properties for 0  and 0.6 respectively along with membership 

1. Here, the solid line with dot and solid line with triangle represents the deformations for 

1 , dashed line with square and dotted line with circle represents the left and right bounds 

of the deformations for 0  and 0.6.   

Results obtained by the proposed algorithm for the special cases are compared with 

the existing results of Sim et al. (2007) in Table 5.5. Also for Case 2, the present results are 

compared with the results obtained by Chiao (1998) for different 𝛼 and the results are 

tabulated in Tables 5.6 and 5.7 for left and right bounds respectively. For both the cases the 

results are found to be in good agreement. 

 

Table 5.5 Interval eigenvalues and comparison with Sim et al. (2007) 

Sim et al. (2007) Present method 

i  i  i  i  

4.6166 7.8303 4.6166 7.8303 

40.754 47.702 40.6428 47.8200 

98.572 108.99 98.1800 109.3993 

158.86 172.89 157.8433 174.0029 

211.51 227.51 209.5148 230.0845 
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Table 5.6 Left bounds of fuzzy eigenvalues for Case 2 with the comparison of Chiao (1998) 

 

 

 

 

 

 

 

 

 

 

 

  Chiao (1998) Present Method 

1  2  3  4  5  1  2  3  4  5  

0 4.6166 40.6428 98.1800 157.8433 209.5148 4.6166 40.6428 98.1800 157.8433 209.5148 

0.2 4.9182 41.3070 99.2272 159.3436 211.4390 4.9182 41.3070 99.2272 159.3436 211.4390 

0.8 5.8477 43.3676 102.4556 163.9909 217.3810 5.8477 43.3676 102.4556 163.9909 217.3810 

1 6.1662 44.0780 103.5670 165.5908 219.4201 6.1662 44.0780 103.5670 165.5908 219.4201 
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Table 5.7 Right bounds of fuzzy eigenvalues for Case 2 with the comparison of Chiao (1998) 

  Chiao (1998) Present Method 

1  2  3  4  5  1  2  3  4  5  

0 7.8303 47.8200 109.3993 174.0029 230.0845 7.8303 47.8200 109.3993 174.0029 230.0845 

0.2 7.4875 47.0453 108.1947 172.2630 227.8867 7.4875 47.0453 108.1947 172.2630 227.8867 

0.8 6.4893 44.8007 104.6963 167.2173 221.4895 6.4893 44.8007 104.6963 167.2173 221.4895 

1 6.1662 44.0780 103.5670 165.5908 219.4201 6.1662 44.0780 103.5670 165.5908 219.4201 
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Fig. 5.2(a) First natural frequency for triangular parameters  

 

 

Fig. 5.2(b) Second natural frequency for triangular parameters  
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Fig. 5.2(c) Third natural frequency for triangular parameters  

 

 

 

Fig. 5.2(d) Fourth natural frequency for triangular parameters 
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Fig. 5.2(e) Fifth natural frequency for triangular parameters 

 

 

 

Fig. 5.3(a) First natural frequency for trapezoidal parameters 
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Fig. 5.3(b) Second natural frequency for trapezoidal parameters  

 

    

  

Fig. 5.3(c) Third natural frequency for trapezoidal parameters 
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Fig. 5.3(d) Fourth natural frequency for trapezoidal parameters  

 

 

 

Fig. 5.3(e) Fifth natural frequency for trapezoidal parameters 
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Fig. 5.4(a) First mode for crisp and 

interval parameters  

 

 

 

Fig. 5.4(b) Second mode for crisp and 

interval parameters 

 

 

 

Fig. 5.4(c) Third mode for crisp and 

interval parameters  

 

Fig. 5.4(d) Fourth mode for crisp and 

interval parameters 
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Fig. 5.4(e) Fifth mode for crisp and 

interval parameters 

 

 

 

Fig. 5.5(a) First mode for 0  and 1 

(triangular fuzzy parameters) 

 

 

Fig. 5.5(b) First mode for 6.0  and 1 

(triangular fuzzy parameters) 

 

 

 

Fig. 5.6(a) Fifth mode for 0  and 1 

(triangular fuzzy parameters) 

 



153 

 

 

Fig. 5.6(b) Fifth mode for 6.0  and 1 

(triangular fuzzy parameters) 

 

Fig. 5.7(a) First mode for 0  and 1 

(trapezoidal fuzzy parameters) 

 

  

 

Fig. 5.7(b) First mode for 6.0  and 1 (trapezoidal fuzzy parameters)
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From the results, one may notice that first and fifth natural frequencies are minimum and 

maximum respectively for crisp parameters. Accordingly, left and right bounds of the first 

and fifth natural frequencies are maximum and minimum respectively for fuzzy 

parameters. Also for fuzzy material properties, one may find minimum and maximum 

uncertainty width for first and fifth natural frequencies respectively. And the uncertainty 

width gradually increases from first to fifth natural frequencies. 

 

5.3. Spring Mass Mechanical System with Fuzzy Parameters 

 

Let us first consider n  Degree of Freedom (DOF) spring–mass mechanical system as 

shown in Fig. 5.8(a). Here, the spring stiffness and mass are taken as triangular fuzzy 

number that is ),,(
~

iiii kkkk   for 1,,,2,1  nni   and ),,(~
iiii mmmm   for 

ni ,,2,1  . Next, the trapezoidal fuzzy number spring stiffness and mass are considered 

as ),,,(
~

iiiii kkkkk   for 1,,,2,1  nni   and ),,,(~
iiiii mmmmm   for ni ,,2,1  . 

 

Fig. 5.8(a) The thn degrees of freedom spring - mass system with fuzzy parameters 

 

Then free vibration equation of motion for n  DOF fuzzy spring-mass system can be 

written as 
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}~,~,,~,~{}
~

{ 121 nn wwwwW    and i
~~

  for ni ,,2,1  . 

Through  cut approach Eq. (5.9) can be written as  

         )}(
~

)]{(
~
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~

)}(
~

)]{(
~

[  WMWK  ,    (5.10) 
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Now Eq. (5.10) can be solved using proposed algorithm to find the fuzzy natural 

frequencies of n  DOF fuzzy spring - mass system.  

 

5.3.1. Numerical examples for spring mass system 

 

Let us consider a spring-mass system with 5 degrees of freedom as shown in Fig. 5.8(b). 

For this system, four cases have been studied by taking stiffness and mass parameters as 

crisp, triangular fuzzy, trapezoidal fuzzy and non-symmetric triangular fuzzy number 

respectively as given below in cases 2(a) to 2(c). 

 

Fig. 5.8(b) The 5 degrees of freedom spring - mass system with fuzzy parameters 
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Case 2(a): Stiffness and mass parameters are crisp  

This is the well known case and it is incorporated here to understand the methodology 

and comparing the results with fuzzy solution. The stiffness parameters are taken as 

N/m20501 k , N/m18252 k , N/m16153 k , N/m14104 k , N/m12055 k ,  

N/m10046 k . 

The mass parameters are taken as Kg111 m , Kg132 m , Kg153 m , Kg174 m  

and Kg195 m . Eigenvalues are computed for the crisp parameters and those are given 

in Table 5.8.  

Table 5.8 Eigenvalues for crisp material properties 

1  2  3  4  5  

24.7903 93.5129 185.6226 297.0207 487.6949 

 

Case 2(b): Stiffness and mass parameters are triangular fuzzy number  

The material parameters are now considered as    

N/m)2100,2050,2000(
~
1 k , N/m)1850,1825,1800(

~
2 k , N/m)1630,1615,1600(

~
3 k ,

N/m)1420,1410,1400(
~

4 k , N/m)1210,1205,1200(
~
5 k , N/m)1008,1004,1000(

~
6 k  

and 

Kg)12,11,10(~
1 m , Kg)14,13,12(~

2 m , Kg)16,15,14(~
3 m , Kg)18,17,16(~

4 m ,

Kg)20,19,18(~
5 m . 

Through  cut approach, trapezoidal fuzzy stiffness and mass parameters may be 

written as 

N/m]210050,200050[)(
~
1  k , N/m]185025,180025[)(

~
2  k , 

N/m]163015,160015[)(
~
3  k , N/m]142010,140010[)(

~
4  k , 

N/m]12105,12005[)(
~
5  k , N/m]10084,10004[)(

~
6  k . 

and 

Kg]12,10[)(~
1  m , Kg]14,12[)(~

2  m ,

Kg]16,14[)(~
3  m , Kg]18,16[)(~

4  m , 

Kg]20,18[)(~
5  m . 

Using the proposed method in the corresponding fuzzy eigenvalue problem, the fuzzy 

eigenvalues are computed. Obtained results for left and right bounds of fuzzy eigenvalues 
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are incorporated in Tables 5.9(a) and 5.9(b) respectively for each 𝛼. Corresponding 

triangular fuzzy eigenvalue plots are depicted in Figs. 5.9(a) to 5.9(e). 

 

Table 5.9(a) Left bounds of eigenvalues for triangular fuzzy material properties 

  0 0.2 0.4 0.5 0.6 0.8 1 

1  20.6734 21.4665 22.2743 22.6838 23.0972 23.9356 24.7903 

2  84.8674 86.5127 88.1986 89.0572 89.9264 91.6974 93.5129 

3  171.3316 174.0497 176.8355 178.2545 179.6913 182.6195 185.6226 

4  274.3046 278.5820 282.9864 285.2380 287.5235 292.1994 297.0207 

5  443.7522 451.9731 460.4637 464.8144 469.2377 478.3096 487.6949 

 

Table 5.9(b) Right bounds of eigenvalues for triangular fuzzy material properties 

  0 0.2 0.4 0.5 0.6 0.8 1 

1  29.3269 28.3823 27.4570 27.0014 26.5504 25.6617 24.7903 

2  103.3138 101.2518 99.2424 98.2569 97.2839 95.3746 93.5129 

3  201.8605 198.4399 195.1090 193.4762 191.8645 188.7034 185.6226 

4  323.5612 317.9018 312.4265 309.7552 307.1267 301.9940 297.0207 

5  539.9518 528.7230 517.9045 512.6420 507.4738 497.4104 487.6949 

 

Case 2(c): Stiffness and mass parameters are trapezoidal fuzzy number 

Corresponding material properties are taken as 

N/m)2100,2075,2025,2000(
~
1 k , N/m)1850,1830,1820,1800(

~
2 k ,  

N/m)1630,1620,1610,1600(
~
3 k , N/m)1420,1415,1405,1400(

~
4 k , 

N/m)1210,1208,1202,1200(
~
5 k , N/m)1008,1006,1002,1000(

~
6 k  

and 

Kg)12,5.11,5.10,10(~
1 m , Kg)14,5.13,5.12,12(~

2 m , Kg)16,5.15,5.14,14(~
3 m ,  

Kg)18,5.17,5.16,16(~
4 m , Kg)20,5.19,5.18,18(~

5 m . 

Through  cut  approach, trapezoidal fuzzy stiffness and mass parameters may again be 

written as 

N/m]210025,200025[)(
~
1  k , N/m]185020,180020[)(

~
2  k , 
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N/m]163010,160010[)(
~
3  k , N/m]14205,14005[)(

~
4  k , 

N/m]12102,12002[)(
~
5  k , N/m]10082,10002[)(

~
6  k . 

and 

Kg]125.0,105.0[)(~
1  m , Kg]145.0,125.0[)(~

2  m ,

Kg]165.0,145.0[)(~
3  m , Kg]185.0,165.0[)(~

4  m ,

Kg]205.0,185.0[)(~
5  m . 

 

Again, using the proposed method for the trapezoidal fuzzy parameters, the fuzzy 

eigenvalues are computed. Corresponding results for left and right bounds of fuzzy 

eigenvalues are given in Tables 5.10(a) and 5.10(b) respectively for each . The 

trapezoidal fuzzy eigenvalue plots are cited in Figs. 5.10(a) to 5.10(e). 

 

Table 5.10(a) Left bounds of fuzzy eigenvalues for trapezoidal fuzzy material properties 

  0 0.2 0.4 0.5 0.6 0.8 1 

1  20.6734 21.1287 21.5870 21.8172 22.0482 22.5124 22.9798 

2  84.8674 85.7835 86.7111 87.1792 87.6502 88.6011 89.5639 

3  171.3316 172.7613 174.2090 174.9397 175.6750 177.1594 178.6627 

4  274.3046 276.4919 278.7131 279.8366 280.9688 283.2598 285.5871 

5  443.7522 448.0719 452.4615 454.6830 456.9225 461.4568 466.0662 

 

 

Table 5.10(b) Right bounds of fuzzy eigenvalues for trapezoidal fuzzy material properties 

  0 0.2 0.4 0.5 0.6 0.8 1 

1  29.3269 28.7952 28.2676 28.0053 27.7441 27.2247 26.7092 

2  103.3138 102.1654 101.0317 100.4703 99.9125 98.8076 97.7168 

3  201.8605 200.0486 198.2609 197.3759 196.4968 194.7560 193.0381 

4  323.5612 320.6160 317.7220 316.2938 314.8779 312.0823 309.3341 

5  539.9518 534.0016 528.1621 525.2829 522.4303 516.8030 511.2776 
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Fig. 5.9(a) First natural frequency for triangular parameters 

 

 

 

Fig. 5.9(b) Second natural frequency for triangular parameters 
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Fig. 5.9(c) Third natural frequency for triangular parameters 

 

 

 

Fig. 5.9(d) Fourth natural frequency for triangular parameters 
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Fig. 5.9(e) Fifth natural frequency for triangular parameters 

 

 

 

Fig. 5.10(a) First natural frequency for trapezoidal parameters 
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Fig. 5.10(b) Second natural frequency for trapezoidal parameters 

 

 

 

Fig. 5.10(c) Third natural frequency for trapezoidal parameters 
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Fig. 5.10(d) Fourth natural frequency for trapezoidal parameters 

 

 

 

Fig. 5.10(e) Fifth natural frequency for trapezoidal parameters 
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Special Case: Next, let us consider the fuzzy stiffness and mass parameters for 𝛼 = 0. In 

this case we get the parameters in interval form. So the material parameters of the system 

will be as follows. 

N/m]2100,2000[
~
1 k , N/m]1850,1800[

~
2 k , N/m]1630,1600[

~
3 k , 

N/m]1420,1400[
~

4 k , N/m]1210,1200[
~
5 k , N/m]1008,1000[

~
5 k  

and 

Kg]12,10[~
1 m , Kg]14,12[~

2 m , Kg]16,14[~
3 m , Kg]18,16[~

4 m ,

Kg]20,18[~
5 m . 

As mentioned earlier, 0  in the proposed method converts into a generalized interval 

eigenvalue problem. The left and right bounds of interval eigenvalues are obtained using 

the method in interval case. Left and the right bounds of the interval eigenvalues are 

depicted in Tables 5.11(a) and 5.11(b) respectively. 

 

Table 5.11(a) Left bounds of interval eigenvalues for interval material properties 

1  2  3  4  5  

20.6734 84.8674 171.3316 274.3046 443.7522 

 

Table 5.11(b) Right bounds of interval eigenvalues for interval material properties 

1  2  3  4  5  

29.3269 103.3138 201.8605 323.5612 539.9518 

 

Obtained interval eigenvaules are compared with the results of Chen et al. (1995) in Table 

5.12 and are found to be in good agreement. 

 

Table 5.12 Interval eigenvalues for the special case and comparison with Chen et al. 

(1995) 

Chen et al. (1995) Present method 

i  i  i  i  

20.6733690 29.3269368 20.6734 29.3269 

84.8673933 103.3137982 84.8674 103.3138 

171.3316032 201.8605276 171.3316 201.8605 

274.3045861 323.5612202 274.3046 323.5612 

443.7521711 539.9518289 443.7522 539.9518 
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5.4. Stepped Beam with Fuzzy Parameters 

 

A typical beam element viz. 𝑖th element of a stepped rectangular beam has been shown in 

Fig. 5.11(a) with fuzzy parameters. Fuzzy finite element method is used to analyze the 

vibration of the beam. Here, Young’s modulus, density and length of the typical beam 

element are considered as crisp and denoted respectively by )(iE , )(i  and )(il . Area of 

cross section and moment of inertia viz. )(~ iA  and )(~ iI  are taken as fuzzy. Here )(
1

~ i
w , 

)(
3

~ i
w  and )(

2
~ i
w , )(

4
~ i
w  are the vertical fuzzy displacement and fuzzy slope at node 1 and 

node 2 respectively.  

                  

        Fig. 5.11(a) A typical beam element corresponding to i th element 

Using Lagrange’s equation, one may obtain fuzzy equation of motion for vibration of 

beam element as 

    }0{}
~

]{
~

[}
~

]{
~

[ )()(  UKUM ii 
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are the mass and stiffness matrices of the 𝑖-th element. Now writing Eq. (5.11) in the form 

of fuzzy generalized eigenvalue problem, one may have 
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                  }
~

]{
~

[
~

}
~

]{
~

[ )()( WMWK ii                                           (5.12) 

where, 2~~
   and }~,~,~,~{}

~
{

)(
4

)(
3

)(
2

)(
1

iiii
wwwwW   are the eigenvalue and 

corresponding eigenvector of Eq. (5.12) respectively. This can be solved by using the 

proposed algorithm. 

 

5.4.1. Numerical examples for stepped beam 

 

A three stepped beam as shown in Fig. 5.11(b) has been taken into consideration. The 

data for this example are considered as 

221 m10]454.1,44.1,426.1[
~ A , 222 m10]01.1,1,99.0[

~ A ,  

223 m10]646.0,64.0,634.0[
~ A  and 441 m10]2002.0,2.0,1998.0[

~ I , 

 442 m10]1001.0,1.0,0999.0[
~ I , 443 m10]05005.0,05.0,04995.0[

~ I .  

Other structural parameters viz. Young’s modulus, densities and lengths are considered 

crisp and these are taken as 211 N/m102iE , 3kg/m7800i  and m 0.4il  for 

.3,2,1i  

The beam structure is discretized into 3 elements. For each element, stiffness and mass 

matrices have been obtained as above. Assembling these and applying the boundary 

conditions at node 1, one may have the eigenvalue problem with reduced  stiffness and 

mass matrices. Left and right bounds of fuzzy eigenvalue are obtained by utilising the 

present algorithm. Here, left and right bounds of generalised fuzzy eigenvalue problems 

have been denoted by 𝜆𝑗 and 𝜆𝑗 for 𝑗 = 1,2, ⋯ ,6. Computed results are shown in Tables 

5.13(a) and 5.13(b). 

 

Fig. 5.11(b) A stepped beam element discretized into three finite elements corresponding 

to four nodes 
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Table 5.13(a) Left bounds of fuzzy eigenvalues of stepped beam for triangular parameters 

  0 0.2 0.4 0.5 0.6 0.8 1 

1  283498.26 299685.15 315936.53 324086.51 332252.74 348634.13 365081.05 

2  7032296.7 7092122.5 7152355.7 7282626.2 7212999.8 7274058.4 7335534.9 

3  46616830 46931252 47248630 47408434 47568986 47892344 48218723 

4  2.483555 810  2.5021725 810  2.5211726 810  2.5308194 810  2.5405658 810  2.5603625 810  2.5805738 810  

5  8.309656 810  8.4229255 810  8.5403749 810  8.6007244 810  8.6621885 810  8.7885574 810  8.9196795 810  

6  2.2545007 910  2.3344124 910  2.4217226 910  2.4684761 910  2.5174927 910  2.6229966 910  2.739776 910  
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Table 5.13(b) Right bounds of fuzzy eigenvalues of stepped beam for triangular parameters 

  0 0.2 0.4 0.5 0.6 0.8 1 

1  448310.91 431531.05 414818.49 406487.34 398172.87 381593.85 365081.05 

2  7649314.1 7585693.2 7522508.5 7491078.6 7459756.3 7697433 7335534.9 

3  49896671 49554876 49216202 49048030 48880632 48548145 48218723 

4  2.6882503 810  2.6657926 810  2.6438084 810  2.6329899 810  2.6222851 810  2.6012109 810  2.5805738 810  

5  9.6539483 810  9.4958776 810  9.3436392 810  9.2696363 810  9.197007 810  9.0557592 810  8.9196795 810  

6  3.5776134 910  3.3648781 910  3.178968 910  3.0945461 910  3.0151427 910  2.8697154 910  2.739776 910  
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5.5. Parameter Identification of Multistorey Frame Structure from Uncertain 

Dynamic Data 

 

In this section, we have investigated the identification procedure of the column stiffness 

of multistorey frame structures by using the prior known uncertain parameters and 

dynamic data. Uncertainties are modelled through triangular convex normalized fuzzy 

sets. Bounds of the identified uncertain stiffness are obtained by using a proposed fuzzy 

based iteration algorithm associated with the Taylor series expansion. Example problems 

are solved to demonstrate the reliability and efficiency of the identification process. 

 

5.5.1. Mathematical modelling and method of identification 

 

To investigate the present method, a two-storeyed frame structure, as shown in Fig. 5.12 

is considered. The uncertain floor masses, m~  are assumed to be the same and the 

uncertain column stiffnesses 1
~
k , 2

~
k , 3

~
k  and 4

~
 k  (as labelled in Fig. 5.12) are the 

structural parameters which are to be identified. Corresponding uncertain dynamic 

equation of motion may be written as 

          0}~]{
~

[}~]{
~

[  xKxM        (5.13) 

where 
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K  are 22  fuzzy  mass 

matrix and fuzzy stiffness matrices and 12}
~

{ X  fuzzy vector of displacements. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.12 Two storey frame structure 
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Considering the simple harmonic motion, Eq.(5.13) can be written as a fuzzy eigenvalue 

problem as  

  }
~

]{
~

[
~

}
~

]{
~

[ XMXK  .           (5.14) 

Using the parametric form of fuzzy numbers, Eq. (5.14) will be 

)}(),()]{(),()][(),([)}(),()]{(),([  XXMMXXKK   

Now our aim is to solve the above fuzzy eigenvalue problem to get the lower and upper 

bounds of the fuzzy eigenvalues.  

With the above in mind, let us proceed now with the identification procedure which 

can handle the uncertain data. Let us assume that the uncertain structural parameters to be 

identified are denoted by ,
~

iP  for .4,3,2,1i  The uncertain value of the structural 

parameters of the prior original structure given initially are denoted by ,
~̂

iP  for 4,3,2,1i  

and the corresponding fuzzy eigenvalues are symbolized as, )
~̂

(
~̂

Pi . 

Next, the well-known Taylor’s series expansion of the fuzzy modal parameters 

about the initial estimates of the parameters gives 








  }
~̂

{}
~

{]
~

[)}
~̂

(
~̂

{)}
~

(
~

{ PPSPP           (5.15) 

where, 
TPPPPP ]

~
,

~
,

~
,

~
[}

~
{ 4321 ,

TPPPPP ]
~̂

,
~̂

,
~̂

,
~̂

[}
~̂

{ 4321  and ]
~

[S  is the fuzzy eigenvalue 

partial derivative matrix, )]
~

(/)
~

([ P  . 

Let us now denote experimentally measured uncertain eigenvalues by }.
~

{ E  It is 

interesting to note here that if the values of the initial and experimental parameters are 

equal, then no modification is done. But if the values are different, then we denote this 

difference by 

}
~̂

{}
~

{}
~

{   E .         (5.16) 

We denote the modified parameters as 

         TPPPPP ]
~

,
~

,
~

,
~

[}
~

{ 4321                     (5.17) 

and in  general, for n degrees of freedom system, the expression for the uncertain 

modified parameters  from Eq. (5.15) can be written as 

}
~

]{
~

[}
~̂

{}
~

{ QPP            (5.18) 

where  

            TT SSSQ ]
~

[]
~

[]
~

[]
~

[ 1 . 
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To have the uncertain bounds of the identified parameters with acceptable accuracy. After 

finding the modified parameters from Eq. (5.18), these are substituted in Eq. (5.14) to get 

revised uncertain vibration characteristics viz. }
~

{ . 

New fuzzy eigenvalue partial derivative matrix }
~

{S  is then obtained using the 

current values of }
~

{P  and }
~

{ . From Eq. (5.18), the modified parameters }
~

{ tP are again 

found by utilizing the above values and then the new (revised) estimates of fuzzy 

eigenvalue are obtained as  }.
~

{ t  

If the vector norm of  }
~

{  and }
~

{ t  is less than some specified accuracy, then the 

procedure is stopped and the revised parameter viz. }
~

{ tP  is identified, otherwise the next 

iteration is to be followed. 

 

5.5.2. Numerical examples for parameter idefication 

 

As mentioned earlier, the procedure is demonstrated for a two storeyed frame structure. 

Implementing the above procedure with the proposed iterative cycle for the revised 

uncertain frequencies and parameters, computer programs have been written and tested 

for the above problem.  

In this example, floor masses kg )3650,3600,3550(m  and the column stiffnesses 

N/m )5450,5400,5350(
~~
21  kk , N/m )3650,3600,3550(

~~
43  kk  have been taken as 

triangular fuzzy number.  

Through  cut, these may represented as kg ]365050,355050[  m , 

N/m ]545050,535050[
~~
21  kk  and N/m]365050,355050[

~~
43  kk . 

From these prior mass and stiffness parameters, the uncertain vibration 

characteristics may be computed from Eq. (5.14) as )0703.1,1,9314.0(
~
1   and

)1128.6,6,8906.5(
~

2  . 

Using the above sets of initial data of the fuzzy parameters with different uncertain 

experimental (hypothetical) test data for the frequencies, viz. )75.0,7.0,65.0(
~
1 E  and 

)7.5,5.5,3.5(
~

2 E  (that is first and second experimental eigenvalues of the system) the 

bounds of the stiffness parameters of the structure have been identified and these are 

depicted in Figs. 5.13 and 5.14. 
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Similarly, for another set of experimental (hypothetical) fuzzy data of the natural 

frequencies )92.0,9.0,88.0(
~
1 E  and ),7.5,5.5,3.5(

~
2 E  the identified bounds of the 

stiffness parameters are shown in Figs. 5.15 and 5.16. 

 

  

      1

~
k  

Fig. 5.13 Identified lower and upper bounds of stiffness parameter 1
~
k (N/m) 

 

 

      

           3

~
k  

Fig. 5.14 Identified lower and upper bounds of stiffness parameter 3
~
k (N/m) 

 

  

  
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          1

~
k  

Fig. 5.15 Identified lower and upper bounds of stiffness parameter 1
~
k (N/m) 

 

 

           

            3

~
k  

Fig. 5.16 Identified lower and upper bounds of stiffness parameter 3
~
k  (N/m) 

 

It is worth mentioning that if the input data set viz. the design frequency is near to the 

experimental frequency data then the modified stiffness data bound has less width. This is 

  

  
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expected as the design and experimental frequency being close means that the structure 

has not deteriorated much. On the other hand, when the experimental data is taken bit far 

from the designed one then the estimated stiffness parameters give larger bound. These 

effects may be seen from the Figs. 5.13 to 5.16. It may be noted that the accuracy of the 

results depends upon many factors viz. on the uncertain bound of the experimental data, 

initial design values of the parameters, the fuzzy computation, norm as defined etc. 

Although the method has been demonstrated for a simple problem of two storey, the 

method may very well be extended to higher storey frames and other structures in a 

similar fashion. 



 

 

 

 

 

 

 

 

 

Chapter 6 

 

Fractionally Damped Discrete System 

 

 

The content of this chapter has been published in: 

 

1. Chakraverty, S., Behera, D. (2013) Dynamic responses of fractionally damped 

mechanical system using homotopy perturbation method, Alexandria Engineering 

Journal, 52, 557-562. 
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Chapter 6 

Fractionally Damped Discrete System  

 

This chapter investigates the semi analytical solution of a fractionally damped dynamic 

system. A single degree of freedom spring-mass mechanical system with fractional 

damping of order 1/2 is considered for the analysis. Homotopy Perturbation Method 

(HPM) is used to compute the dynamic responses of the system subject to unit step and 

unit impulse loads. Obtained results are depicted in terms of plots. Comparisons are made 

with the analytical solutions obtained by using fractional green function of Podlunby 

(1999) and numerical solution of Suarez and Shokooh (1997) and Yuan and Agrawal 

(2002) in the special cases to show the effectiveness and validation of the present 

analysis.  In this chapter, we have investigated the problem with deterministic parameter 

and then in Chapter 8 we have considered this problem with uncertainty.  

 

6.1. Fractionally Damped Spring Mass system 

 

To estimate the dynamic response of a fractionally damped discrete system, let us 

consider a single degree-of-freedom spring-mass-damper system (Suarez and Shokooh 

1997; Yuan and Agrawal 2002) which may be described by the following differential 

equation 

)()()()(2 tftkxtxcDtxmD          (6.1) 

where, cm,  and k  represent the mass, damping and stiffness coefficients respectively. 

)(tf  is the externally applied force, and ,10),(   txD  is the derivative of order   of 

the displacement function ).(tx  Although the coefficient   (known as the memory 

parameter), may take any value between 0 to 1, the value 2/1  has been adopted (Suarez 

and Shokooh 1997) here for this study because it has been shown that it describes the 

frequency dependence of the damping materials quite satisfactorily (Bagley 1979; Bagley 

and Torvik 1983; Torvik and Bagley 1984). We have considered the initial conditions as 

the initial displacement 0)0( x  and the initial velocity .0)0()0(  xv    

Now Eq. (6.1) can be written as  



176 

 

m

tf
tx

m

k
txD

m

c
txD

)(
)()()( 2/12  .      (6.2) 

According to HPM, we may construct a simple homotopy for an embedding parameter 

1] [0,p  as follows 

       0
)(

)()()()()1( 2/122 

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



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m
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txD

m

c
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or 

0
)(

)()()( 2/12 









m

tf
tx

m

k
txD

m

c
ptxD .                 (6.4) 

As discussed earlier, p  is considered as a small homotopy parameter .10  p  So in the 

changing process from 0 to 1, for ,0p  Eqs. (6.3) and (6.4) become a linear equation 

that is 0)(2 txD , which is easy to solve. For 1p , Eqs. (6.3) and (6.4) turns out to be 

same as the original Eq. (6.1) or (6.2). This is called deformation in topology. )(2 txD  

and  
m

tf
tx

m

k
txD

m

c )(
)()(2/1   are called homotopic. 

We assume the solution of Eq. (6.3) or (6.4) as a power series expansion in p as 

,)()()()()( 3
3

2
2

10  txptxptpxtxtx       (6.5) 

where  2, ,1 0,i ),( txi  are functions yet to be determined. Substituting Eq. (6.5) into 

Eq. (6.3) or (6.4), and equating the terms with the identical power of ,p  we can obtain a 

series of equations of the form 
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and so on. 

Applying the operator  (which is the inverse of the operator ) on both sides of 

Eq. (6.6), one may obtain the following equations  

 

 

                 (6.7) 

 

 

 

 

and so on.  

Now substituting these terms in Eq. (6.5), one may get the approximate solution of Eq. 

(6.1) as  

 

The solution series converge very rapidly. The proof of convergence of the above series 

may be found in He (2009, 2010). The rapid convergence means that only few terms are 

sufficient to get the approximate solutions. 
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6.2. Step Function Response 

 

We will now consider a stationary oscillator subject to an excitation of the form

, where  is the Heaviside function with unit step load in Eq. (6.1). By 

using HPM we have 

, 

, 

, 

, 

,              (6.8) 

, 

and so on. 

In the similar manner, the rest of the components can be obtained. Therefore, the solution 

can be written in general form as 

        (6.9) 

  .    (6.10) 

Now Eq. (6.10) can be rewritten as  

       

where,  and  are the natural frequency and damping ratio 

respectively. 
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6.3. Impulse  Function Response 

 

In this section, we consider response subject to a unit impulse load that is , 

where  is the unit impulse function. Again by using HPM we obtain  

, 

,   

, 

,         (6.11) 

, 

, 

and so on. 

Accordingly, the general solution may be written as 

          (6.12) 

   .    (6.13) 

Substituting  and  in Eq. (6.12) we get 

. 

 

6.4. Analytical Solution Using Fractional Greens Function 

 

Analytical solution of Eq. (6.1) can be obtained by using fractional Green's function for a 

three-term fractional differential equation with constant coefficients (Section 5.4 of 

Podlunby (1999)) as  
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, 

with the above discussed homogeneous initial condition. For unit step function (when 

), the solution may be obtained as  

          (6.14) 

and for unit impulse function (i.e. when ), the solution may be computed as   

.    (6.15) 

Now, one may see that the analytical solution obtained for both the cases (unit step and 

impulse function) in Eqs. (6.14) and (6.15) are exactly same as the solution obtained by 

HPM given in Eqs. (6.10) and (6.13) respectively. 

In Eqs. (6.10), (6.13), (6.14) and (6.15),  is called the Mittage-Leffler function of 

two parameters  and  where,  

 

                                                 . 

For unit step response,  and for impulse response,

 

 

6.5. Numerical Results 

 

As discussed above, here two response functions viz. unit step and impulse response 

function have been considered for the present analysis. Obtained results are compared 

with the existing solution of Suarez and Shokooh (1997) and Yuan and Agrawal (2002) 

for the validation. Computed results are depicted in terms of plots.  
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6.5.1. Case studies for unit step response function 

 

Depending upon the values of natural frequency  and damping ratio , four cases 

have been considered subject to a unit step load as follows. In the first case, the numerical 

values of the parameters are taken as , 1 and5.0,05.0 . Next, in Case 2, 

three oscillators with natural frequency , 1 and5.0,05.0  are considered. 

Similarly, the values of natural frequencies are taken as  and  

respectively for the third and fourth cases with damping ratios . 

For first, second, third and fourth cases, computed displacements with respect to 

time are depicted in Figs. 6.1 to 6.4 using HPM respectively. The solutions for  

and 1 in Fig. 6.1 do not show any oscillations around the static equilibrium response 

. For the second case as shown in Fig. 6.2 exhibits the same behaviour as the 

first case. These displacement curves for  and 1 also do not show any oscillations 

around the static equilibrium response 0.01. But one may notice from Figs. 6.3 and 6.4 for 

the third and fourth cases, which demonstrates that the three oscillators for different 

damping ratios also do not show any oscillations around the static equilibrium responses 

0.04 and . In special case (only for first case), we have compared the results obtained 

by the present analysis with the existing solution (Suarez and Shokooh 1997, Yuan and 

Agrawal 2002) and are found to be in good agreement. 

 

6.5.2. Case studies for impulse response function 

 

Impulse response functions have been computed using Eq. (6.13) for different values of 

natural frequency and damping ratios as follows. In the first numerical example, natural 

frequency  and damping ratios 1 and5.0,05.0  are taken. Next, the same 

damping ratios with  are considered for the oscillations. Obtained 

displacements are shown in terms of Figs. 6.5 and 6.6 for the above two cases. The 

impulse response for  has an oscillatory character for both the Figs. 6.5 and 6.6. 

Figs. 6.7 and 6.8 show the oscillation for the natural frequencies  and 

 respectively for damping ratios . Similarly, one may see from 

Figs. 6.7 and 6.8 that when the damping ratio is equal to , the curves are tangent to 

n 

rad/s 5n

rad/s 10n
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the axis of zero displacement. Again, for values of greater than , the curves tend to 

zero without crossing the zero axis. In this regard,  has been considered as critical 

damping. Now it is interesting to note that for all the above cases, impulse responses give 

the oscillations above the equilibrium position (i.e. at ). It may be noted that present 

results (Fig. 6.6) exactly coincide with the solution of Suarez and Shokooh (1997). 

 

 

 

Fig. 6.1 Unit step response function for oscillators with natural frequency 5n rad/s 

and damping ratios 5.0,05.0  and 1  

 

 

Fig. 6.2 Unit step response function for oscillators with natural frequency 10n rad/s 

and damping ratios 5.0,05.0  and 1 





2/1 n
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Fig. 6.3 Unit step response function for oscillators with natural frequency 5n rad/s 

and damping ratios 3,   and 5   

 

Fig. 6.4 Unit step response function for oscillators with natural frequency 10n rad/s 

and damping ratios 3,   and 5   

 

Fig. 6.5 Impulse response function for oscillators with natural frequency 5n rad/s and 

damping ratios 5.0,05.0  and 1 
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Fig. 6.6 Impulse response function for oscillators with natural frequency 10n rad/s 

and damping ratios 5.0,05.0  and 1 

 

Fig. 6.7 Impulse response function for oscillators with natural frequency 5n rad/s and 

damping ratios 3,   and 5   

 

Fig. 6.8 Impulse response function for oscillators with natural frequency 10n rad/s 

and damping ratios 3,   and 5   
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Homotopy perturbation method has been applied successfully to the solution of a 

fractionally damped viscoelastic system, where the fractional derivative is considered as 

of order . The unit step and impulse response functions with initial conditions are 

chosen to illustrate the proposed method. It is interesting to note that the results obtained 

by present method exactly matches with that of the solution obtained by Podlunby (1999),  

Suarez and Shokooh (1997) and Yuan and Agrawal (2002) in special cases. In all the 

cases increments of damping ratios affect the displacement of the oscillation (decrease the 

oscillation) which is clearly visible in the depicted figures. 
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Chapter 7 

 

Fractionally Damped Continuous System 

 

 

The content of this chapter has been published in: 

 

 

1. Behera, D., Chakraverty, S. (2013) Numerical solution of fractionally damped beam 

by homotopy perturbation method, Central European Journal of Physics, 11 (6), 792-

798. 
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Chapter 7 

Fractionally Damped Continuous System 

 

This chapter investigates the semi analytical solution of a viscoelastic continuous beam 

whose damping behaviours are defined in terms of fractional derivatives of arbitrary 

order. Homotopy Perturbation Method (HPM) has been used to obtain the dynamic 

responses. Unit step function and impulse function responses are considered for the 

analysis. Obtained results are depicted in terms of plots. Comparisons are made with the 

analytic solutions obtained by Zu-feng and Xiao-yan (2007) to show the effectiveness and 

validation of the present method.  Again in this chapter, we have investigated the above 

problem with deterministic parameter and then in Chapter 9 we have considered this 

problem with uncertainty. 

 

7.1. Fractional Damped Viscoelastic Beam 

 

The governing differential equation for a fractionally damped viscoelastic beam with an 

arbitrary fractional derivative of order   may be written as 

),(
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where,  , A , c , E  and I  represents the mass density, cross sectional area, damping 

coefficient per unit length, Young’s modulus of elasticity and moment of inertia of the 

beam respectively. ),( txF  is the externally applied force and ),( txv  is the transverse 

displacement. 




t


 is the fractional derivative of order  1,0  of the displacement 

function ).,( txv  The present authors considered the initial conditions as 0)0,( xv  and 

0)0,( xv . The homogeneous initial conditions are taken here to compare the present 

solution with the solution of Zu-feng and Xiao-yan (2007). Eq. (7.1) can be written as  
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According to HPM, we may construct a simple homotopy for an embedding parameter 

1] [0,p  as follows 
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Here, p  is considered as a small homotopy parameter .10  p  For 0p , Eqs. (7.3) 

and (7.4) become a linear equation i.e. 0
2

2






t

v
, which is easy to solve. For 1p , Eqs. 

(7.3) and (7.4) turns out to be same as the original Eq. (7.1) or (7.2). This is called 

deformation in topology. 
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 are called homotopic. 

We then assume the solution of Eq. (7.3) or (7.4) as a power series in p as 
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where ),( txvi  for  ,,  ,i 210  are functions yet to be determined. Substituting Eq. 

(7.5) in Eq. (7.3) or (7.4), and equating the terms with the identical power of ,p  we can 

obtain a series of equations of the form 
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and so on. 

Choosing initial approximation 0)0,(0 xv  and applying the operator 1
ttL  (which is the 

inverse of the operator 
2

2

t
Ltt




 ) on both sides of Eq. (7.6), one may obtain the 

following equations  
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 and so on.  

Substituting the above in Eq. (7.5), one may get the approximate solution of Eq. (7.1) as  

 ),(),(),(),(),(),( 43210 txvtxvtxvtxvtxvtxv  

The solution series converge very rapidly. The proof of convergence of the above series 

may be found in He (2009, 2010). The rapid convergence means that only few terms are 

required to get the approximate solutions. 

 

7.2. Response Analysis 

 

Similar to Zu-feng and Xiao-yan (2007), the external applied force defined by ),( txF  has 

been considered as  

)()(),( tgxftxF  , 

where, )(xf  is a specified space dependent deterministic function, and )(tg  is a time 

dependent process.  

 

7.2.1. Unit step response 

 

The unit step load has been considered of the form )()( tButg  , where )(tu  is the 

Heaviside function and B  is a constant. By using HPM we have 
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Therefore, the solution can be written in the general form as  
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Eq. (7.9) can be rewritten as follows 
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7.2.2. Unit impulse response 

 

Unit impulsive load has been taken as )()( ttg  , where )(t  is the unit impulse 

function. Again by using HPM we have 
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and so on. Where, 
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Hence for this case, the solution can be written in the general form as  
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Eq. (7.12) can be rewritten as follows 
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In Eqs. (7.10) and (7.13), )(, yE r
  is called the Mittage-Leffler function of two 

parameters   and   where,   
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For both the responses, we have   2  and 2 r .  

 

7.3. Numerical Results 

 

In order to show the responses in a precise way, some numerical results are presented in 

this section. Eqs. (7.10) and (7.13) provide the desired expressions for the considered 

loading condition. As we have considered a simply supported beam, one may have the 

expression for the force distribution as   

)(sin)(
L

xxf  .
 

The numerical computation has been done by truncating the infinite series (7.10) and 

(7.13) to a finite number of terms. Let us denote mc /  and  AEI /  as 2/32 and 2  

respectively where,   is the natural frequency and   is the damping ratio. The values of 

the parameters are taken as ,1A L  and .1m  

 



191 

 

7.3.1. Case studies for unit step response 

 

Obtained results for various parameters are depicted in Figs. 7.1 to 7.4. Fig. (7.1) gives 

the effect of displacement against time for various values of )8.0,5.0,2.0( . Here, x  

and   are taken as 1/2. Figs. 7.1(a) and 7.1(b) present the plot for rad/s5   and 

rad/s10  respectively. A similar simulation has been done with damping ratio 

05.0  and the results are depicted in Fig. 7.2. Figs. 7.2 (a) and 7.2 (b) show the plot 

for rad/s5   and rad/s10  respectively. The dynamic responses versus time for 

different values of )1,5.0,05.0(  are given in Fig. 7.3. In this computation, 2.0  and 

5.0x  are considered. Finally, Fig. 7.4 cites the results as above with 5.0 . 

 

It is interesting to note from Figs. (7.1) and (7.2) that if we increase the order of the 

fractional derivative  , the beam suffers less oscillation. That means the beam suffers 

more oscillations for smaller value of  . Similar observations may be made by keeping 

the order of the fractional derivative constant and varying the damping ratios as shown in 

Figs. (7.3) and (7.4). It can be seen clearly that increasing the value of the damping ratios 

decreases the oscillations. 

 

 

 

 

(a) 
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(b) 

Fig. 7.1 Unit step responses along 2/1x with natural frequency (a) rad/s5  , (b) 

rad/s10   and damping ratio 5.0  

 
(a) 

 
(b) 

Fig. 7.2 Unit step responses along 2/1x with natural frequency (a) rad/s5  , (b) 

rad/s10   and damping ratio 05.0  
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(a) 

 
(b) 

Fig. 7.3 Unit step responses along 2/1x with natural frequency (a) rad/s5  , (b) 

rad/s10   and damping ratios 5.0,05.0  and 1 for 2.0  

 
(a) 
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(b) 

Fig. 7.4 Unit step responses along 2/1x with natural frequency (a) rad/s5  , (b) 

rad/s10   and damping ratios 5.0,05.0  and 1 for 5.0  

 

7.3.2. Case studies for impulse response 

 

Eq. (7.13) provides the desired expressions for the considered loading condition. In order 

to show the responses more clearly, some numerical results are presented in this section. 

Obtained results for this have been incorporated in Figs. 7.5 to 7.8. Fig. (7.5) gives the 

effect of displacement on time for various values of )8.0,5.0,2.0( . In this 

computation, x  and   are taken as .2/1  Figs. 7.5(a) and 7.5(b) present the plot for 

rad/s 5  and rad/s 01 respectively. Similar simulation has been done for damping ratio 

05.0  and obtained results are depicted in Fig. 7.6. Next, for different values of 

1) ,5.0 ,05.0( , dynamic responses versus time are given in Fig. 7.7. There, 2.0  

and 2/1x  have been considered. Again Figs. 7.7(a) and 7.7(b) depict the plot for 

rad/s 5  and rad/s 01 respectively. Finally, Fig. 7.8 cites the results as above (Fig. 7.7) 

with  .5.0  

 

It is interesting to note from Figs. (7.5) and (7.6) that if we increase the order of the 

fractional derivative  , the beam suffers less oscillation. That means the beam suffers 

more oscillations for smaller value of  . Similar observations may be made by keeping 

the order of the fractional derivative constant and varying the damping ratios as shown in 

Figs. (7.7)  and (7.8). It may clearly be seen that increase of the value of the damping 

ratios decrease the oscillations. 
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(a) 

 

(b) 

Fig. 7.5 Impulse responses along 2/1x with natural frequency (a) rad/s5  (b) 

rad/s10 and damping ratio 5.0  

 

(a) 
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(b) 

Fig. 7.6 Impulse responses along 2/1x with natural frequency (a) rad/s5  (b) 

rad/s10 and damping ratio 05.0  

 

(a) 

 
(b) 

Fig. 7.7 Impulse responses along 2/1x with natural frequency (a) rad/s5  (b) 

rad/s10 and 0.2  
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(a) 

 
(b) 

Fig. 7.8 Impulse responses along 2/1x with natural frequency (a) rad/s5  (b) 

rad/s10 and 0.5  

 

HPM has successfully been applied to the solution of a fractionally damped viscoelastic 

beam. The unit step and impulse response functions with homogeneous initial conditions 

are chosen to illustrate the proposed method. The obtained results are compared with the 

analytical solution of Zu-feng and Xiao-yan (2007) and those are found to be in good 

agreement.



 

 

 

 

 

 

 

 

Chapter 8 

 

Uncertain Fractionally Damped Discrete System 

 

 

The content of this chapter has been published in: 

 

1. Behera, D., Chakraverty, S. (2014) Uncertain impulse response of imprecisely defined 

half order mechanical system, Annals of Fuzzy Mathematics and Informatics, 7 (3), 

401-419. 
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Chapter 8 

Uncertain Fractionally Damped Discrete System 

 

This chapter investigates the semi analytical solution of imprecisely defined fractional 

order discrete system, subject to unit step and impulse loads. In this regard, a mechanical 

spring mass system having fractional damping of order 2/1  with fuzzy initial condition is 

taken into consideration. Fuzziness appeared in the initial conditions are modelled 

through different types of convex normalised fuzzy sets viz. triangular, trapezoidal and 

Gaussian fuzzy numbers. Homotopy Perturbation Method (HPM) is used with fuzzy 

based approach to obtain the uncertain response.    

 

8.1. Fuzzy Fractionally Damped Spring Mass System  

 

A fuzzy fractionally damped single degree of freedom spring mass system may be written 

as 

)(); (~); (~); (~2 tftxktxcDtxmD          (8.1) 

where, ,m c  and k  represent the mass, damping and stiffness coefficients respectively. 

)(tf  is the externally applied force, and ); (~  txD  for ,10    is the derivative of 

order   of the fuzzy displacement function )]; (),; ([); (~  txtxtx  . Here, );(~  tx  is 

represented by  cut form of fuzzy displacements. Although the coefficient   (known 

as the memory parameter), may take any value between 0 to 1, but the value of 2/1  has 

been adopted here. This is because it has been shown that it describes the frequency 

dependence of the damping materials quite satisfactorily in the crisp fractional dynamic 

systems (Suarez and Shokooh 1997; Yuan and Agrawal 2002). Fuzzy initial 

displacements )0(~x  and initial velocity )0(~)0( xv   are taken as triangular, trapezoidal 

and Gaussian fuzzy number respectively in Cases 1 to 3 as depicted in Table 8.1.  

 

Table 8.1 Data for fuzzy initial conditions 

Initial 

conditions 

Case 1 Case 2 Case 3 

)0(~x  )1.0,0,1.0(     )10050050010( ., ., ., -.  )1.0,1.0,0(  

)0(~)0( xv   )1.0,0,1.0(  )10050050010( ., ., ., -.  )1.0,1.0,0(  
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 Through  cut approach, the fuzzy initial conditions for Cases 1 to 3 given in Table 8.1 

are then expressed  as given in Table 8.2.  

 

Table 8.2  cut representations of fuzzy initial conditions 

Initial 

conditions 

Case 1 Case 2 Case 3 

) ; 0(~ x  

]1.01.0
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e

e
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
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




 

])(log21.0

,)(log21.0[





e

e




 

  

Eq. (8.1) may now be written as  
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According to HPM, we may construct a simple homotopy for an embedding parameter 

1] [0,p  as follows 
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In the changing process from 0 to 1, for ,0p  Eq. (8.3) or (8.4) gives 

  0); (~); (
~

0
22   txDtXD  

and for ,1p  we have the original system 
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This is called deformation in topology.  

 ); (~); (
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called homotopic.  
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Next, we assume solution of Eq. (8.3) or (8.4) as a power series expansion in p  as 
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where  2, ,1 0,i ),; (
~

tX i  are functions yet to be determined. As per HPM, 

substituting Eq. (8.5) into Eq. (8.3) or (8.4), and equating the terms with the identical 

power of ,p  we can obtain a series of equations of the form 
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and so on. 

Applying the operator
1 

ttL  (the inverse operator of 
2

2
2

dt

d
D  ) on both sides of Eq. (8.6), 

one may get the approximate solution ); (
~

1
lim); (~  tX
p

tx


  which can be expressed as 
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We can write the above expression equivalently as 
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Hence, the lower and upper bounds of the solution in parametric form are given as 
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8.2. Uncertain Response Analysis 

 

In this section, the beam has been analysed with respect to unit step and impulse loading 

as follows for the different cases as given in Tables 8.1 or 8.2. 

 

8.2.1. Uncertain step function response 

 

The unit step load has been considered as )()( tutf  , where )(tu  is the Heaviside 

function.  

 

 Solution for Case 1 

 

For triangular fuzzy initial conditions we have 
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and so on. 
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Substituting these in Eq. (8.7), we may get the approximate solution of )(~ tx . 

Accordingly, the  bounds of the general solution may be written as 
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 Solution for Case 2 

 

For trapezoidal fuzzy initial condition, the general solution can be represented as 
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and 
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 Solution for Case 3 

 

Similarly for Gaussian fuzzy initial condition, one may have the general solution as  
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and 
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8.2.2. Uncertain impulse function response  
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We have considered the response subject to unit impulsive load viz. )()( ttf  , where 

)(t  is the unit impulse function. 

 

 Solution for Case 1 

 

For triangular fuzzy initial conditions we have 
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and so on.  

Substituting these in Eq. (8.7), we may get the approximate solution of )(~ tx . 

Accordingly, the general solution may be written as 
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 Solution for Case 2 

 

For trapezoidal fuzzy initial condition, the general solution can be represented as 
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 Solution for Case 3 

 

Similarly for Gaussian fuzzy initial condition, one may have the general solution as 
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8.3. Numerical Results  

 

For numerical simulations, we use the notations of the parameters mkn / , 

2/32/ nmc  
 
and value of ,1m  where n  is the natural frequency and    is the 

damping ratio. 
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8.3.1. Case studies for uncertain step function response 

 

Eqs. (8.8) to (8.13) provide the desired expressions for the considered loading condition. 

Fig. (8.1) shows the triangular fuzzy response for Case 1 with natural frequencies 

rad/s 5n  (Fig. 8.1 (a)), rad/s 10n  (Fig. 8.1 (b)) and damping ratio 05.0  for 

Eqs. (8.8) and (8.9). Similar simulations have been done for Cases 2 and 3. Accordingly, 

the trapezoidal and Gaussian fuzzy responses are depicted in Figs. 8.2 and 8.3.  

 

In Case 1, the triplet number  cba ,,  defines a triangular membership function, 

where a  and c  are the lower and upper bounds at 0  and b  is the nominal (crisp) 

value at 1 . Hence, for 0  (Fig. 8.4(a)) and 1  (Fig. 8.4(b)) along with the crisp 

solution by Podlunby (1999) for crisp initial condition these are depicted in Fig. (8.4). 

Similarly, Figs. (8.5) and (8.6) represent the uncertain-but-bounded (interval) solutions 

for Cases 2 and 3. Here in these cases, rad/s5n   and 05.0  are considered. Similar 

interval responses are shown in Figs. 8.7 to 8.9 with rad/s,10n and .05.0  

 

 

 
(a) 



209 

 

      
(b) 

Fig. 8.1 Triangular fuzzy response subject to unit step load for Case 1 with natural 

frequency (a) rad/s 5n  (b) rad/s 10n  and damping ratio 05.0  

 

 
(a) 

 

 
(b) 

Fig. 8.2 Trapezoidal fuzzy response subject to unit step load for Case 2 with natural 

frequency (a) rad/s 5n  (b) rad/s 10n  and damping ratio 05.0  
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(a) 

 

 
(b) 

Fig. 8.3 Gaussian fuzzy response subject to unit step load for Case 3 with natural 

frequency  (a) rad/s 5n  (b) rad/s 10n  and damping ratio 05.0  

 
 

(a) 

𝑡 

𝛼 

x~  

t  
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(b) 

Fig. 8.4 Uncertain but bounded (interval) response subject to unit step load for Case 1 

when (a) 0  (b) 1  with crisp analytical solution (- - -) by Podlunby (1999) where 

natural frequency rad/s 5n  and damping ratio 05.0  

 
 

(a) 

 
 

(b) 

Fig. 8.5 Uncertain but bounded (interval) response subject to unit step load for Case 2 

when (a) 0  (b) 1  with crisp analytical solution (- - -) by Podlunby (1999) where 

natural frequency rad/s 5n  and damping ratio 05.0  

x~  

t  

x~  

t  

x~  

t  
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(a) 

 

 
(b) 

Fig. 8.6 Uncertain but bounded (interval) response subject to unit step load for Case 3 

when (a) 0  (b) 1  with crisp analytical solution (- - -) by Podlunby (1999) where 

natural frequency rad/s 5n  and damping ratio 05.0  

 

 

 
(a) 

x~  

t  

x~  
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x~  
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(b) 

Fig. 8.7 Uncertain but bounded (interval) response subject to unit step load for Case 1 

when (a) 0  (b) 1  with crisp analytical solution (- - -) by Podlunby (1999) where 

natural frequency rad/s 10n  and damping ratio 05.0  

 
(a) 

 
(b) 

Fig. 8.8 Uncertain but bounded (interval) response subject to unit step load for Case 2 

when (a) 0  (b) 1  with crisp analytical solution (- - -) by Podlunby (1999) where 

natural frequency rad/s 10n  and damping ratio 05.0  

x~  

x~  

x~  

t  

t  

t  
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(a) 

 
(b) 

Fig. 8.9 Uncertain but bounded (interval) response subject to unit step load for Case 3 

when (a) 0  (b) 1  with crisp analytical solution (- - -) by Podlunby (1999) where 

natural frequency rad/s 10n  and damping ratio 05.0  

One may see from Figs. 8.1 and 8.3 for Cases 1 and 3 that lower and upper bounds of the 

fuzzy displacements coincide for 1 , as the fuzzy initial conditions convert to the crisp 

one (of Chapter 6). Also, it is interesting to note from Figs. 8.4 to 8.9 that for 0 , 

interval bounds contain the crisp solution. Moreover, interval solution bounds coincide 

with the crisp solutions for Cases 1 and 3. From Figs. 8.1 and 8.7 it may also be seen that 

by increasing the value of natural frequency we get less oscillation. This is in general true 

for all the cases. 

 

8.3.2. Case studies for uncertain impulse function response 

 

Depending on the values of natural frequency n  and damping ratio  , different cases 

have been studied. First, the numerical values of the natural frequency rad/s 5n  and 

x~  

t  

x~  

t  
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damping ratio 05.0  are taken. Next, natural frequency rad/s 10n  with damping 

ratio 05.0  with unit impulse load is considered for the oscillation. With these 

parametric values obtained fuzzy displacements are depicted in Figs. 8.10 to 8.12. Also, 

one can see from Figs. 8.10 and 8.12 for Cases 1 and 3 that lower and upper bounds of the 

fuzzy displacements coincide for 1 . This is because the fuzzy initial conditions again 

convert to a crisp one (of Chapter 6).  

 

 

  (a)  

 

 

(b)

Fig. 8.10 Triangular fuzzy response subject to unit impulse load for Case 1 with natural 

frequency (a) rad/s 5n  (b) rad/s 10n  and damping ratio 05.0  
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(a) 

 

(b) 

Fig. 8.11 Trapezoidal fuzzy response subject to unit impulse load for Case 2 with 

natural frequency (a) rad/s 5n  (b) rad/s 10n  and damping ratio 05.0  

 

(a) 
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(b) 

Fig. 8.12 Gaussian fuzzy response subject to unit impulse load for Case 3 with natural 

frequency (a) rad/s 5n  (b) rad/s 10n  and damping ratio 05.0  

 

Homotopy perturbation method with fuzzy based approach has successfully been applied 

to obtain the uncertain solution of an imprecisely defined fractionally damped spring-

mass mechanical system subject to a unit step and impulse load, where the fractional 

derivative is considered of order 1/2. Also these type of systems may be solved by other  

well known semi analytical methods such as Varitational Iteration Method (VIM) and 

Adomain Decomposition Method (ADM) etc.  

 



 

 

 

 

 

 

 

 

 

 

Chapter 9 

 

Uncertain Fractionally Damped Continuous System 

 

 

The content of this chapter has been communicated for publication. 
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Chapter 9 

Uncertain Fractionally Damped Continuous System 

 

In this chapter, fuzzy fractionally damped continuous system viz. beam has been studied 

using the double parametric form of fuzzy numbers subject to unit step and impulse loads. 

Triangular fuzzy numbers are used to represent the initial conditions. Using alpha cut, 

corresponding beam equation is first converted to an interval based equation. Next, it has 

been transformed to crisp form by applying double parametric form of fuzzy numbers. 

Finally, Homotopy Perturbation Method (HPM) has been used for obtaining the fuzzy 

response.   

 

9.1. Fuzzy Fractionally Damped Viscoelastic Beam 

 

Let us consider a fuzzy linear differential equation which describes the dynamics of the 

above system with damping as an arbitrary fractional derivative of order   
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Eq. (9.1) may be written as  
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where  , A , c , E  and I  are the mass density, cross sectional area, damping coefficients 

per unit length, Young’s modulus of elasticity and moment of inertia of the beam. ),( txF  

is the externally applied force and ),(~ txv  is the transverse fuzzy displacement. 




t


 is 

the fractional derivative of order )1,0(  of the fuzzy displacement function ),(~ txv . 

Initial conditions are considered as fuzzy viz. )1.0 ,0 ,1.0()0('~)0(~  vv .  

As per the single parametric form, we may write Eq. (9.2) as   
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subject to fuzzy initial conditions 
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    ]1.01.0,1.01.0[);0,('),;0,(');0,(),;0,(   xvxvxvxv  where, ]1 ,0[ . 

Next, using the double parametric form (as discussed in Definition 2.7), Eq. (9.3) can be 
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subject to the initial conditions  
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Substituting these values in Eq. (9.4) we get 
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with initial conditions   )1.01.0(2.02.0),;0,('),;0,(   xvxv . 

Now, Eq. (9.5) has been solved using HPM. According to HPM, we may construct a 

simple homotopy for an embedding parameter ]1,0[p , as follows 
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For 0p ,  Eqs. (9.6) and (9.7) become a linear equation i.e. 0
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, which is 

easy to solve. For 1p , Eqs. (9.6) and (9.7) turns out to be the same as the original Eq. 

(9.5).  

We assume the solution of Eq. (9.6) or (9.7) as a power series expansion in p  as 
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where, ),;,( txvi  for  ,3 ,2 ,1 ,0i are functions yet to be determined.  

Substituting Eq. (9.8) into Eq. (9.6) or (9.7) and equating the terms with the identical 

powers of p , we have           
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 and so on.  
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Choosing initial approximation   )1.01.0(2.02.0),;0,('),;0,(   xvxv  

and applying the inverse operator 1

ttL  (which is the inverse of the operator 
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 ) on 

both sides of each  Eqs. (9.9) to (9.13), one may obtain the following equations 
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and so on. 

Substituting these terms in Eq. (9.8) with, 1p  one may get the approximate solution of 

Eq. (9.5) as follows. 

 ),;,(),;,(),;,(),;,(),;,( 3210  txvtxvtxvtxvtxv
 

To obtain the lower and upper bound of the solution in single parametric form, we may 

substitue 0  and 1 respectively. These may be represented as );,()0,;,(  txvtxv   

and );,()1,;,(  txvtxv  . 

 

9.2. Uncertain Response Analysis 

 

Let us consider the external applied force ),( txF  as 

)()(),( tgxftxF  , 

where )(xf  is a specified space dependent deterministic function, and )(tg  is a time 

dependent process. In the following paragraph, we will examine the fuzzy response of the 

dynamic system (9.5) subject to unit step and impulse loading conditions. 
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9.2.1. Unit step function response 

 

We will now consider the response of the fuzzy fractionally damped beam subject to a 

unit step load of the form )()( tButg   where )(tu  is the heaviside function and B  is a 

constant. By using HPM we have 
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and so on, where 
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As discussed above, the solution bound in single parametric form may be obtained by 

putting 0  and 1. This may be represented as 

),,()0,;,(  txvtxv   and ),,()1,,,(  txvtxv   
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9.2.2. Unit impulse function response 

 

In this section, we study response of the beam subject to unit impulse load of the form 

)()( ttg   where )(t  is the unit impulse function. Using HPM in this case again, we 

have 
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and so on, where 
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Again to obtain the solution bounds in single parametric form, we may put 0  and 1 to 

get the lower and upper bounds of the solution respectively as  

 ),,()0,;,(  txvtxv   and ),,()1,,,(  txvtxv   
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9.3. Numerical Results 

 

Numerical results corresponding to the discussed loads have been considered in this 

section. Eqs. (9.24) and (9.31) provide the desired expressions for the considered loading 

condition. We have assumed a simply supported beam, hence one may have  











L

x
xf


sin)( . 

For numerical simulations, let us denote mc /  and AEI /  respectively as 2/32  and 

2  where,   is the natural frequency and   is the damping ratio. The values of the 

parameters are taken as 1B , 1A , L , 2/1x  and 1m .  

 

9.3.1. Case studies for fuzzy unit step response 

 

Depending on the natural frequency  , damping ratio   and arbitrary order fractional 

derivative   subject to unit step load, two different cases have been considered as 

follows. In the first case, the numerical values of the parameters are taken as rad/s5 , 

5.0  and 2.0 . In the second case, rad/s10 , 05.0  and 5.0  have been 

considered. For first and second cases, obtained fuzzy responses with respect to time are 

depicted in Figs. 9.1 and 9.2 respectively. 
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Fig. 9.1 Fuzzy unit step response for rad/s5 , 5.0  and 2.0  

 

Fig. 9.2 Fuzzy unit step response for rad/s10 , 05.0  and 5.0  

 

Figs. 9.3 and 9.4 give the effects of interval unit step responses for the particular 

membership  . For 1 , the lower and upper bounds of the solution coincide with each 

other and are denoted as )1;()1;()1;( tvtvtv  which is actually the crisp solution given 

in Chapter 7. Fig. 9.3 represents the interval solution for 4.0  and 0.8 with 1  for 

the first case. Similarly, Fig. 9.4 cites the results for the second case with 1 .   

We now vary the fractional order derivative with the same parametric values as 

considered for Fig. 9.3. As such, Figs. 9.5 and 9.6 present the interval unit step responses 

for 5.0  and 0.8 respectively. 
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(a) 

 

 

 (b) 

Fig. 9.3 Interval unit step response for (a) 4.0 , (b) 8.0  with rad/s5 , 5.0  

2.0  and 1  

 

(a) 

v~  

v~  

t  

t  

v~  

t  
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(b) 

Fig. 9.4 Interval unit step response for (a) 4.0 , (b) 8.0  with rad/s10 , 

05.0 , 5.0  and 1  

 

 

(a) 

 

(b) 

Fig. 9.5 Interval unit step response for (a) 4.0 , (b) 8.0  with rad/s5 , 5.0  

5.0  and 1  

v~  

t  

v~  

t  
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t  
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(a) 

 

 

(b) 

Fig. 9.6 Interval unit step response for (a) 4.0 , (b) 8.0  with rad/s5 , 5.0 , 

8.0  and 1  

 

From Figs. 9.4 to 9.6 it can be seen that the uncertain width of the solution gradually 

decreases by increasing the membership value  . One may also observe from Figs. 9.3, 

9.5 and 9.6 that the oscillation of the uncertain bounds of the unit step response gradually 

decreases by increasing the order of the fractional derivative. 

 

9.3.2. Case studies for fuzzy unit impulse response 

 

Depending on the system parameters viz. natural frequency  , damping ratio   and 

arbitrary order fractional derivative  , four different cases have been considered as 

follows subjected to unit impulse load.  

v~  

t  

v~  

t  
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Case 1 : rad/s5 , 5.0 and 2.0  

Case 2 : rad/s10 , 5.0  and 5.0   

Case 3: rad/s5 , 05.0  and 8.0   

Case 4 : rad/s10 , 05.0 and 2.0 . 

 

Accordingly, for all the cases from first to four, obtained fuzzy unit impulse responses are 

shown in Figs. 9.7 to 9.10 respectively. Similar interpretations may be drawn as 

mentioned in the problem of fuzzy step responses about change of parametric values and 

the corresponding results. 

 

Fig. 9.7 Fuzzy unit impulse response for rad/s5 , 5.0  and 2.0 (Case 1) 

 

Fig. 9.8 Fuzzy unit impulse response for rad/s10 , 5.0  and 5.0  (Case 2) 
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Fig. 9.9 Fuzzy unit impulse response for rad/s5 , 05.0  and 8.0  (Case 3) 

 

 

Fig. 9.10 Fuzzy unit impulse response for rad/s10 , 05.0  and 2.0 (Case 4) 

 

It is a gigantic task to include here all the results with respect to various parameters 

involved. For both the problems for 1 , fuzzy initial conditions convert into crisp 

initial conditions. It is interesting to note that for both the responses (unit step and 

impulse), lower and upper bounds of the fuzzy solutions are the same for 1 which are 

the results obtained in Chapter 7. 
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Homotopy perturbation method has successfully been applied to obtain the uncertain 

dynamic responses of fuzzy fractionally damped simply supported beam using double 

parametric form of fuzzy numbers. Double parametric form of fuzzy numbers converts 

the corresponding differential equation in crisp form, which is found to be efficient and 

straight forward to solve. 
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Chapter 10 

Conclusions and Future Directions 

 

Based on the present work carried out for uncertain static and dynamic analysis of 

imprecisely defined structures, conclusions are drawn along with the recommendation for 

future work. In this investigation, fuzzy and interval techniques are used to handle the 

uncertainties in the geometry, material and load parameters in the static and dynamic 

problems of structures. The main purpose of this study is to develop computationally 

efficient methods to solve the above uncertain problems. 

In the following paragraphs, conclusions are drawn with respect to the various 

proposed methods and the application problems mentioned in the previous chapters. 

 

10.1. Conclusions 

 

 Two new methods for fuzzy complex system of linear equations and five methods for 

fuzzy real system of linear equations with related theorems have been proposed here. 

Among these methods, Method 2 for fuzzy complex system of linear equations and 

Method 3 for fuzzy real system of linear equations was found to be more efficient and 

straight forward. In these two methods, fuzzy addition and subtraction concepts have 

been incorporated to find the solution. The solution process consists of three phases. 

First the system is solved by adding the lower and upper bounds of the unknown 

variable vector and right hand side vector. Then the system is solved for fuzzy 

subtraction using the related theorem discussed in Chapter 3. Finally fuzzy addition 

and subtraction solutions are used to get the solution of the original system. Example 

problems are solved to show the efficacy of the methods.  

 

 Two methods based on single and double parametric form of fuzzy numbers have 

been developed to get the non-negative solution of fully fuzzy system of linear 

equations in Chapter 3 as well. Using single parametric form, the nn  fully fuzzy 

system of linear equations has been converted to nn 22   crisp system of linear 

equations. On the other hand, double parametric form of fuzzy number converts the 

nn  fully fuzzy system of linear equations to a crisp system of same order. 
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Literature review reveals for non-negative solution that the original fuzzy system are 

usually converted to a number of crisp systems of linear equations depending upon 

the type of fuzzy numbers involved in it. Compared to all the existing and single 

parametric based methods, proposed double parametric form of fuzzy number based 

method was found to be easy, straight forward and computationally efficient (reduces 

the computational cost) as it does not change the order of the original system.  

 

 In addition to the above, a linear programming problem approach has also been 

proposed to find the generalised solution of Fully Fuzzy System of Linear Equations 

(FFSLE) in Chapter 3. In the considered FFSLE, there is no restriction on the sign of 

the elements of coefficient matrix as opposed to the need for the other method. The 

proposed method has also been applicable when the elements of the fuzzy unknown 

vector are both non-negative and non-positive. In this procedure, first we have to 

determine the sign of the elements of the solution vector by a proposed Theorem 3.19 

of Chapter 3. Thus we may predict the fuzzy solution vector as non-negative, non-

positive or both non-negative and non-positive elements. Finally, one may convert the 

FFSLE to a Linear Programming Problem (LPP) to have the solution following the 

discussions in Section 3.2.1.3 of Chapter 3. 

 

 Applicability of the developed methods for fuzzy and fully fuzzy system of linear 

equations has been examined with various type of imprecisely defined structural 

problems for static analysis. In this respect, bar, beam, truss and rectangular sheet 

structures have been considered. From the results obtained by the present methods 

(Chapter 4), we may observe that uncertain spread of the static responses gradually 

increases by increasing the spread of the uncertain applied force(s). Material and 

geometric properties have also been considered as uncertain in some of the structural 

problems. Further it is revealed that the sensitivity of the response changes from node 

to node depending upon the uncertainties in the material and/or geometric properties. 

Thus it is important to have a detailed knowledge of the structural response in order to 

get a complete understanding of the uncertain structural behaviour.  

 

 With regards for dynamical (vibration) problems, an algorithm has been developed by 

extending the method of Chen et al. (1995) for computing fuzzy eigenvalues and 

eigenvectors. Spring mass, multistorey shear building and beam structures have been 
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considered for the uncertain dynamic analysis. Uncertainties have been considered in 

the material and geometric properties. Obtained results are compared in special cases 

to have validation and efficacy of the proposed algorithm. 

 

 Next, the identification procedure of the uncertain stiffness parameters of multistorey 

frame structure has been investigated. Bounds of the identified uncertain stiffness are 

obtained by using a proposed fuzzy based iteration algorithm in Chapter 5. The 

algorithm systematically modifies and identifies the uncertain structural parameters, 

viz. the column stiffness for a frame structure. It uses the prior known estimates of 

uncertain parameters and corresponding vibration characteristics and then the 

algorithm estimates the bounds of present parameters utilizing the known uncertain 

dynamic data from some experiments. Numerical procedure is tested by incorporating 

two sets of data. It may be noted that the accuracy of the results depends upon many 

factors viz. on the uncertain bound of the experimental data, initial design values of 

the parameters, the fuzzy computation, norm as defined etc. The present investigation 

may be a first of its kind to handle the identification procedure for uncertain data.  

 

 To have the completeness for uncertain dynamic problems, responses of fractionally 

damped discrete and continuous system have been investigated here first with crisp 

parameters. In this regard, a single degree of freedom spring-mass mechanical system 

(discrete) with fractional damping of order 1/2 and a viscoelastic beam (continuous) 

with fractional damping of arbitrary order have been considered. Homotopy 

Perturbation Method (HPM) has been used to compute the dynamic response of the 

system, subject to unit step and impulse loads. For spring mass system we may refer 

to Chapter 6 to note that increasing the value of the damping ratios, the oscillation of 

the displacements gradually decreases. Similarly we may refer to Chapter 7 for the 

beam, that increase in the order of the fractional derivative decreases the oscillation. 

In other words, the beam suffers more oscillations for smaller value of the order of 

fractional derivative. Similar observations may be made by keeping the order of the 

fractional derivative constant and varying the damping ratios and we may observe that 

increasing the value of the damping ratios decrease the oscillations. 

 

 Lastly, uncertain dynamic responses of arbitrary order discrete and continuous 

systems have been investigated in Chapters 8 and 9 with fuzzy initial conditions. To 
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study this, semi analytical method such as HPM and double parametric form of fuzzy 

numbers have been used. Uncertain dynamic response of the above problems subject 

to unit step and impulse loads have been obtained. For discrete system, usual fuzzy 

based approach is used whereas for continuous system the proposed double 

parametric based method has been incorporated. The double parametric based method 

has been found to be efficient as it converts the original fuzzy differential equation to 

a crisp uncoupled differential equation. 

 

In view of the above, this thesis develops various methods to analyse system of fuzzy or 

interval system of linear equations for static problems and fuzzy or interval eigenvalue 

problems as well as semi analytical methods with double parametric form of fuzzy 

numbers for dynamic problems. These methods have been thoroughly investigated by 

solving different structural problems. It may however be noted that there are few 

limitations on these methods which actually will open a new vista for future research and 

are discussed in the following section. 

 

10.2. Future Directions 

 

Although exhaustive investigations are done related to the titled problems, we may not 

claim that the proposed methods are most general and full proof for solving any type of 

fuzzy system of linear equations, fuzzy eigenvalue problems and fuzzy differential 

equations. As such, there may still be some gaps which are the future direction of 

research and are incorporated below. 

 

 Developed methodologies can be extended to fully fuzzy differential equations where 

the coefficients, variables and initial/boundary conditions may all be considered as 

fuzzy. 

 

 Hybrid type of fuzzy numbers may be introduced in the fuzziness viz. by taking 

combinations of different fuzzy numbers in the coefficients, variables and 

initial/boundary conditions. 
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 Another hybrid type of uncertainties such as combinations of fuzziness and 

randomness may also be considered. Although this require intelligent methods to 

handle both fuzzy and random uncertainties in the computation. 

 

 Theoretical concepts regarding the methods for the solution of fuzzy and fully fuzzy 

system of linear equations and inequations may be investigated in greater details. 

 

 Similarly, theoretical concepts regarding the numerical methods for the solution of 

eigenvalue problems may also be investigated in greater details. 

 

 Numerical methods along with existence and uniqueness etc. may also be studied for 

the solution of fuzzy and fully fuzzy system of linear equations. 

 

 Fuzzy and interval computations are themselves complex to handle (as mentioned in 

various chapters). Accordingly, new concepts about these computations should be 

developed. 

 

 Present analysis of uncertain static and dynamic problems may further be extended to 

higher dimensional structural problems. 

 

 In reference to the uncertain parameter identification problem, improvements may 

also be done by proposing other iterative and system identification methods. 

Moreover, the problem may also be extended for nonlinear structures. 
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