
Comparative Analysis of Hashing Schemes

for Iris Identification using Local Features

Ravi Kumar

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela-769 008, Odisha, India



Comparative Analysis of Hashing Schemes

for Iris Identification using Local Features

Thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Technology

(Research)

in

Computer Science and Engineering

by

Ravi Kumar

(Roll: 611CS104)

under the guidance of

Prof. Banshidhar Majhi

NIT Rourkela

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela-769 008, Odisha, India



Department of Computer Science and Engineering
National Institute of Technology Rourkela
Rourkela-769 008, Odisha, India.

January 30, 2014

Certificate

This is to certify that the work in the thesis entitled Comparative Analysis of

Hashing Schemes for Iris Identification using Local Features by Ravi

Kumar (roll number 611CS104), is a record of an original research work carried out

under my supervision and guidance in partial fulfillment of the requirements for the

award of the degree of Master of Technology (Research) in Computer Science and

Engineering. Neither this thesis nor any part of it has been submitted for any degree

or academic award elsewhere.

Banshidhar Majhi
Professor
CSE department of NIT Rourkela



Acknowledgment

I owe deep gratitude to the ones who have contributed greatly in completion of

this thesis.

Foremost, I would like to express my sincere gratitude to my advisor, Prof. Ban-

shidhar Majhi for providing me a platform to work on challenging area of biometrics.

His profound insights and attention to details have been true inspirations to my re-

search.

I am very much indebted to Prof. Bidyadhar Subudhi, Prof. Sanjay Kumar Jena,

and Prof. Dipti Patra for providing insightful comments at different stages of thesis

that were indeed thought provoking. My special thanks goes to Prof. Pankaj Kumar

Sa and Prof. Ratnakar Dash for contributing towards enhancing the quality of the

work in shaping this thesis.

I would like to thank all my friends and lab-mates for their encouragement and

understanding. Their help can never be penned with words.

Most importantly, none of this would have been possible without the love and

patience of my family. My family to whom this dissertation is dedicated to, has been

a constant source of love, concern, support and strength all these years. I would like

to express my heart-felt gratitude to them.

Ravi Kumar



Abstract

Iris is one of the most reliable biometric trait due to its stability and randomness.

Traditional recognition systems transform the iris to polar coordinates and perform

well for co-operative databases. However, the problem aggravates to manifold for

recognizing non-cooperative irises. In addition, the transformation of iris to polar

domain introduces aliasing effect. In this thesis, Noise Independent Annular Iris

is used for feature extraction. Global feature extraction approaches are rendered as

unsuitable for annular iris due to change in scale as they could not achieve invariance to

transformation and illumination. On the contrary, local features are invariant to image

scaling, rotation, and partially invariant to change in illumination and viewpoint. To

extract local features, Scale Invariant Feature Transform (SIFT) has been applied

to annular iris. However, SIFT is computationally expensive for recognition due to

higher dimensional descriptor. Thus, a keypoint descriptor called Speeded Up Robust

Features (SURF) is applied to mark performance improvement in terms of time as well

as accuracy. At last, a recently developed Binary Robust Invariant Scalable Keypoints

(BRISK) is applied. BRISK performs at a dramatically lower computational cost than

SIFT and SURF.

For identification, retrieval time plays a significant role in addition to accuracy.

Traditional indexing approaches cannot be applied to biometrics as data are un-

structured. In this thesis, two novel approaches has been applied for indexing iris

database. In the first approach, indexing is done using Geometric Hashing of local

feature keypoints. This approach achieves invariance to similarity transformations,

illumination, and occlusion and performs with a good accuracy for cooperative as

well as non-cooperative databases, but it takes larger time for recognition. In the

second approach, enhanced geometric hashing is applied using local keypoint descrip-

tors of annular iris for different databases. Comparative analysis shows that enhanced

geometric hashing is more accurate and faster than traditional geometric hashing.

Keywords: Keypoint, geometric hashing, difference of Gaussian, descriptor, and

feature vector.
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Chapter 1

Introduction

Personal identification is a fundamental activity in our society. Traditional authen-

tication systems are based on (a) token based systems: where authentication for

accessing protected resources is done using identity (ID) cards, smart cards, etc., (b)

knowledge-based systems: where identity is claimed using secret keys like username

and password associated with it. Some systems use a combination of token based and

knowledge-based approaches. However, there are various disadvantages inherent to

traditional means of authentication. The problem with token based systems is that

the evidence could be stolen, lost or misplaced. The drawback of knowledge-based

approaches is that it is difficult to remember passwords or PIN (Personal Identifi-

cation Number) and easily recallable passwords can be guessed by intruders. Thus,

even the combination of knowledge and token based systems could not fulfill security

requirements [8]. This identification is made possible by the emergence of the new

concept of biometrics. Biometrics identification provides a trustable solution to the

problems faced by conventional authentication approaches. It is inherently more re-

liable and capable compared with conventional approaches. Biometric identifiers for

personal authentication reduce or eliminate reliance on tokens, PINs, and passwords.

Various modes of authentication are shown in Figure 1.1. It can be integrated into

any application that requires security, access control, and identification or verification

of people [9].

Biometrics is the science of establishing the identity of an individual based on

the physical or behavioral attributes of the person. Physiological biometrics is based

on measurements and data derived from direct measurement of a part of the human
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Introduction

Figure 1.1: Various forms of authentication. Left: Traditional methods of authenti-
cation using token based and knowledge based approaches. Right: Use of biometrics
to claim identity.

body. Iris, fingerprint, palmprint, and face recognition are leading physiological bio-

metrics. Behavioral characteristics, on the other hand, are based upon an action

taken by a person. Behavioral biometrics is based on measurements and data derived

from an action, and indirectly measure characteristics of the human body. Signature,

voice recognition, and keystroke dynamics are leading behavioral biometric technolo-

gies. The primary advantage of biometrics over token based and knowledge-based

approaches is that, it cannot be misplaced, forgotten or stolen. The characteristics

are distinct and can identify authorized persons. It is very difficult to spoof biometric

systems as the person to be authenticated needs to be physically present. The use of

biometric system for recognition purposes requires following characteristics.

• Distinctiveness : Any two persons should be sufficiently different in terms of the

attributes.

• Universality : Each person should posses the attributes. The attribute must be
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one that is universal and seldom lost to accident or disease.

• Collectability : The attributes should be measured quantitatively.

• Permanence : The attributes should be sufficiently invariant over a period of

time.

• Reducibility : The captured data should be capable of being reduced to a file

which is easy to handle.

• Inimitable : The attribute must be irreproducible by other means. The less

reproducible the attribute, the more likely it will be authoritative.

• Privacy : The process should not violate the privacy of the person.

Figure 1.2: Different modules of biometrics system.

A biometric system is essentially a pattern recognition system that operates in

three steps. First, acquire biometric data from an individual. Second, extract a fea-

ture set from the acquired data. Third, authentication of an individual based on the

result of comparison of the feature set against the template set in the database [10].

The modules involved in the biometric system are given in Figure 1.2. An important

issue to be considered while designing a biometric system is how a person is recognized.

Based on the application context a biometric system operates in two different modes

[11]. In verification mode, the system validates a candidate’s identity by comparing

the captured biometric data with his own biometric template stored in the system

database. In such a system, a person who desires to be recognized claims an identity,
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usually via a PIN, a user name, a smart card, etc. The system conducts one to one

comparison to know whether the identity claimed by an individual is genuine or not.

The diagrammatic representation of the verification system is given in Figure 1.3(a).

In identification mode, the system searches the entire database to find the identity

of a person. Therefore, the system conducts a one-to-many comparisons to establish

a candidate’s identity. The diagrammatic representation of identification is given in

Figure 1.3 (b). Applications of biometrics include sharing networked computer re-

sources, granting access to nuclear facilities, performing remote financial transactions

or boarding a commercial flight.

(a) Verification mode (one to one comparison)

(b) Identification mode (one to many comparisons)

Figure 1.3: Different modes of biometric recognition

Biometrics such as signatures, fingerprints, voice, and retinal blood vessel patterns

all have significant drawbacks. Although signatures are cheap and easy to obtain and

4
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store, they are impossible to identify automatically with assurance, and can be easily

forged. Electronically recorded voice is susceptible to changes in a person’s voice,

and they can be counterfeited. Fingerprints or palmprints required physical contact,

and they also can be counterfeited and marred by artifacts. Human iris, on the

other hand, as an internal organ of the eye and as well protected from the external

environment. It is easily visible from one meter distance and is a perfect biometric

trait for an identification system with the ease of speed, reliability, and automation.

In this thesis, we are going to experiment, implement, and most importantly, look

into the theory behind an Iris Recognition System, which is related to the personal

identification by an automated biometric system.

1.1 Iris Biometrics

Reliability is particularly dependent on the ability to acquire unique features that can

be captured in an invariant fashion over change in time [12]. Although, each biometrics

has several strengths and limitations, and their deployment is dependent upon the

application scenario. For example, fingerprint features remain unique over passage

of time while face can vary significantly with change in time. In addition to this,

as few constraints as possible should be imposed on the user giving biometric data.

Fingerprint acquisition is invasive as it requires the user to make physical contact

with the sensor. Among various available biometric traits, iris plays a significant role

to provide a promising solution to authenticate an individual using unique texture

patterns [13]. Taking reliability and invasiveness into consideration, iris is proven

to be the most efficient technique. From the point of view of reliability, the spatial

patterns are unique to each individual in the entire human population. From the

point of view of invasiveness, iris is protected internal organ whose random texture

is stable throughout life. It can serve as a kind of living password that one need

not to remember but always carries along. The purpose is to provide the real-time

high assurance recognition of an individual’s identity by mathematical analysis of the

random patterns that are visible within the iris.

Iris is the most promising and significant feature in the eye image as shown in

5
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Eyelids

Iris

Sclera
Pupil 

Boundary Iris Boundary

Eyelashes

Light spots

Pupil

Figure 1.4: A sample image from CASIA database [1] that depicts the anatomy of
human eye [2].

Figure 1.4. The iris is in the form of circular ring that contains many interlacing

minute characteristics such as freckles, coronas, stripes, furrows, crypts and so on.

These minute patterns in the iris are unique to everyone and are not invasive to

their users. Inside the iris, there is a central dark circle known as a pupil. The

circumference of pupil and iris is known as pupil and iris boundary respectively. Sclera

is the white portion, a tough and leather like tissue surrounding the iris. Apart from

these features, eyeball is covered by upper and lower eyelids. The upper eyelid is a

stretchable membrane that can form a cover over the eye. It has a great freedom of

motion, ranging from wide open to close. The lower eyelid, on the other hand, has

a smaller degree of motion, which is caused by deformation due to eyeball [14]. An

eyelash is the hairs that grows at the edge of the eyelid and protects the eye from

dust.

Image processing techniques are used to extract the iris from the acquired image

of an eye, and generate a biometric template, which can be stored in the database.

This biometric template contains a mathematical representation of unique texture

information stored in the iris, and allows comparisons to be made between individuals.

When a person wishes to be identified by an iris recognition system, his eye is first

photographed, and then a template is created for iris region. This template is then

compared with all the templates stored in a database. The person is identified if a
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matching template is found, else the person remains unidentified.

1.2 Various Performance Measures

The matching between two passwords is obtained by finding a perfect match be-

tween two alphanumeric strings. However, biometrics rarely compares exactly same

templates. There is a difference between two templates due to occlusion, change in

characteristics with respect to aging, change in acquisition conditions, etc. Thus, the

feature sets originating from same individual may look different. When two different

biometric templates originating from same individual are not same, it is known as

intra-class variations. However, variations that occur between templates originating

from two different individuals are known as inter-class variations [15]. When the two

biometric templates are compared to find intra-class variations then such scores are

known as similarity/genuine scores. The score that lies below threshold (τ) results in

false rejection. However, when two biometric traits are compared to find inter-class

similarity, then scores are known as imposter scores. The scores that exceed a pre-

defined threshold value, results in false acceptance. The commonly used measures to

evaluate the performance of the biometric system are:

• False Rejection Rate (FRR): A false reject occurs when an individual is not

matched correctly to his/her own existing biometric template. FRR is the fre-

quency of rejections relative to people who should be correctly verified.

• False Acceptance Rate (FAR): A false accept occurs when an individual is in-

correctly matched to another individual’s existing biometric template. FAR is

the frequency of fraudulent access to imposters claiming identity [16].

• Equal Error Rate (EER): ERR is the point where FAR is equal to FRR. In

general, the lower the equal error rate value, the higher the accuracy of the

biometric system.

• Genuine Acceptance Rate (GAR): GAR is the fraction of genuine scores exceed-

ing the threshold τ . It is defined as

GAR = 1− FRR (1.1)
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• Cumulative Match Characteristic (CMC) Curve: The rank-tk indicates the num-

ber of correct identities that occur in top tk matches. Let qk denote the number

of elements of a query set present in top tk and qn denote total elements of

query set then the probability of identification is given by I = qk/qn. CMC

curve represents the probability of identification I at various top tk ranks [17].

1.3 Iris Databases used in the Research

To measure the performance of automated iris biometric system, extensive experi-

ments are carried out at various levels. This section discusses in detail about the

databases used in experiments. Experimental results are obtained on various avail-

able datasets such as UBIRIS version 1 [18], BATH [19], CASIA version 3 [1], and

Indian Institute of Technology Kanpur (IITK) [20]. These databases take all possi-

ble factors into consideration like rotation, illumination, scaling, and noise. These

databases are classified into cooperative and non-cooperative categories based on the

restrictions imposed on the user while capturing images.

• Cooperative Database: These databases are acquired under ideal conditions with

less imposition on the user. Such databases consider less noise factors during

image acquisition. BATH and CASIA version 3 fall under this category.

• Non-cooperative Database: Non-cooperative databases are collected to bring

noisy factors into consideration with less constrained image acquisition environ-

ment. UBIRIS version 1 and few images of IITK database are considered under

this category.

The image acquisition system captures iris as a larger portion of image that also

contains data from immediately surrounding eye region [21] as shown in Figure 1.5(a).

Thus, prior to performing feature extraction it is necessary to localize only that por-

tion of the image that contains purely iris. Specially, it is important to localize the

region between inner pupil and outer iris boundary. The iris is occluded by eyelids,

hence the portion below the upper eyelid and above the lower eyelid should be consid-

ered for feature extraction. In a normal gaze, the edge of the upper eyelid intersects

8
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(a) (b) (c)

Figure 1.5: Preprocessing of iris image: (a) Input iris image, (b) Geometrical rep-
resentation of sectors on iris circles, (c) Noise independent annular iris image after
preprocessing [3].

the sclera and approximately half of the upper iris circle whereas, lower eyelid covers

one-fourth of the lower iris circle. However, the left and the right regions are indepen-

dent of such occlusions. Depending upon their degree of motion, upper eyelid adds

more noise as compared to lower eyelid. It has been observed that, for the range of an-

gular values θ, the regions that are not occluded due to eyelids are of range [35◦, 145◦]

and [215◦, 325◦]. For the upper and lower regions, only partial values of iris radius are

taken from a sector. This generates a fixed size mask to remove eyelids from annular

iris image. Figure 1.5 (b) shows the geometrical representation of sectors on annular

iris circle where region underlying solid arcs are taken into consideration. The ratios

ri/2 and 3ri/4 are chosen depending on the degree of movement and occlusion of two

eyelids. The noise independent annular iris image is complimentary to aliasing that

occurs due to dimensionless polar coordinate conversion. The resultant preprocessed

image is shown in Figure 1.5 (c). In this thesis, sector based annular iris databases

are used for experiments. These databases are provided by H. Mehrotra [3].

The experiments performed in this thesis use only a limited number of images from

different iris databases because at the time of identification, traditional geometric

hashing technique takes larger time. Iris images taken from different iris databases

for testing are shown in Table 1.1.

9
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Table 1.1: Images taken from different iris databases for testing.
Iris Database Database Size Query Images

BATH 800 50
CASIA 650 100
IITK 600 50

UBIRIS 850 200

1.4 Literature Review

The first automated biometrics system was proposed in 1987 by Flom and Safir [22].

The authors have suggested highly controlled conditions that includes headrest, an

image to direct gaze and manual operator. To account for variation in size of iris

due to expansion and contraction of pupil, the illumination has been changed to

make pupil of predetermined size. The first operational iris biometric system has

been developed at University of Cambridge by Daugman [23]. The digital images of

eye has been captured using near-infrared light source so that illumination could be

controlled, that remains unaffected to users. The image acquisition system is highly

robust where the algorithm maximizes the spectral power by adjusting focus of the

system. The next step is to find the iris in the image that uses deformable templates.

A deformable template is trained with some parameters and shape of the eye to guide

the detection process [24]. Daugman presumed iris and pupil boundaries to be circular.

After iris segmentation, the next step is to describe features of iris for comparison.

The first difficulty lies in iris comparison is that, all iris images are not of same size.

The iris representation should be invariant to change in size, scale, orientation, etc.

The distance between camera and eye affects the size of iris in an image. The iris

pattern undergoes linear deformation due to change in illumination that causes pupil

to dilate or contract and change in orientation of iris due to head tilt, camera position,

movement of eyeball, etc. Daugman has addressed this problem by mapping iris into

dimensionless polar coordinate system [25]. The normalized iris image is further used

to extract phase information using 2D Gabor filters. The similarity between two iris

representations generates the matching score. This section discusses in detail about

work done in two most significant areas like feature extraction and identification.
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Chapter 1 Introduction

1.4.1 Feature Representation

Several approaches have been developed for mathematical analysis of random texture

patterns that are visible within the eye. Daugman has used Gabor filter to produce

binary representation of iris [13]. Gaussian filter is used for texture representation

in [26]. The gradient vector field of an iris image is convolved with a Gaussian filter,

yielding a local orientation at each pixel from normalized iris image. D. G. Lowe [4]

proposed a method for extracting distinctive unvarying features from images that can

be used to perform reliable matching between different views of an object or scene.

These features are unvarying to image scale and rotation to provide robust matching

across a substantial range of affine distortion, change in 3D viewpoint, addition of

noise, and change in illumination. The features are highly distinctive, in the sense

that a single feature can correctly be matched with high probability against a large

database of features from many images. Modified Log-Gabor filters are used [27]

because Log-Gabor filters are strictly bandpass filters. Discrete Cosine Transform

(DCT) is used for feature extraction in [28]. It is applied to rectangular patches

rotated at 45 degrees from radial axis. The dimensionality of feature set is reduced

by keeping three most discriminating binarized DCT coefficients. H. Bay et al. [5]

proposed a novel scale and rotation invariant detector and descriptor, coined SURF.

It outperforms previously proposed schemes with respect to repeatability, distinctive-

ness, and robustness, yet can be computed and compared much faster. F. Fernandez et

al. [29] used SIFT for recognition using iris images. S. Leutenegger et al. [7] proposed

BRISK and computational cost is lower than SURF, with high quality performance .

1.4.2 Identification

Iris based identification needs more attention because existing state-of-the-art shows

that very few contributions have been made in this direction. There already exist

few indexing schemes to partition the biometric database. H. J. Wolfson et al. [30]

proposed geometric hashing, a technique originally developed in computer vision

for matching geometric features. Matching is possible even when the recognizable

database objects have undergone transformations or when only partial information
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is present. Indexing hand geometry database using pyramid technique has been pro-

posed in [31]. An iris indexing technique has been proposed in [32], based on the iris

color for noisy iris images. The performance measures shows the effectiveness of iris

color for indexing very large database. H. Mehrotra et al. [3] proposed robust iris

indexing scheme using geometric hashing of SIFT keypoints. The proposed scheme

considers sectional descriptors as well as relative spatial configuration for claiming

identity. To overcome the effect of non-uniform illumination and partial occlusion

due to eyelids, sectional features are extracted from noise independent annular iris

image using the SIFT. Jayaraman et al. [33] proposed an enhanced geometric hash-

ing. Unlike the available geometrical hashing, the proposed technique needs less time

and memory and has uniform index distribution on the hash space without using

rehashing.

1.5 Motivation

The features from iris image extracted using global transforms [21,25,28,34,35], fail to

work under change in rotation, scaling, illumination, and viewpoint of two images [36].

The area underlying annular iris image changes due to illumination hence global

transforms are not suitable for matching two iris images of variable size. Therefore,

local feature descriptors are required that are invariant to change in scale, rotation,

occlusion, and viewpoint of two iris images. During identification, the number of false

acceptance grows geometrically with the increase in the size of the database. If FAR

and FRR indicate the false accept and reject rates during verification, then rates of

false accept (FARN) and reject (FRRN) in the identification mode for database of

size N are given by [31]

FARN = 1− (1− FAR)N ≈ N × FAR

FRRN = FRR

Then, total number of False Acceptance = N × (FARN)

≈ N2 × FAR

(1.2)

There are two approaches to reduce error rates during identification. First is by

reducing FAR of matching algorithm and second is by reducing search time during

12
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identification. The FAR is limited by performance of an algorithm and cannot be re-

duced significantly. Thus, accuracy and speed of a biometric identification system can

be improved by reducing the number of templates compared. The effect of reducing

the search space during identification is given by mathematical formulation. Suppose

the entire search space is reduced by a fraction F. Thus, the resultant FAR and FRR

after search space reduction is given by

FARN×F = 1− (1− FAR)N×F ≈ N × F × FAR

FRRN×F = FRR
(1.3)

This minimizes the number of records against which search has to be performed,

which in turn reduces FAR during identification. Most of the time a hashing technique

is used to reduce retrieval time. In iris biometrics the database is a collection of im-

ages and for identification content based image retrieval is required. For traditional

hashing schemes data should be structured but images are unstructured. There-

fore, traditional hashing techniques cannot work in the iris recognition. An efficient

classification, clustering or indexing scheme is required to reduce the search space

during identification [37, 38]. There already exist few indexing schemes to partition

the biometric database. Based on the current research directions from the literature,

investigations have been made in this thesis to propose a comparative analysis of

indexing schemes for iris identification using local keypoint extraction.

1.6 Thesis Organization

The rest of the thesis is organized as follows.

Chapter 2 presents local features for iris. To extract robust attributes, local fea-

tures around interest points known as keypoints are obtained and compared to find

the similarity between the images. The most valuable property of a keypoint detec-

tor is its repeatability, i.e., whether it reliably finds the same interest points under

different viewing conditions [5]. To extract features around keypoints the neighbour-

hood of every detected point is represented by a feature vector (descriptor). In the

proposed work, three well known keypoint descriptors SIFT, SURF, and BRISK has
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been applied to iris to extract features robust to transformations, illumination and

partial occlusions.

The techniques presented in Chapter 3 are used for indexing existing biometric

databases. In this chapter two approaches are compared for search space reduction.

In the first section, geometric hashing approach is used which allows for retrieval of

model images that differ from query image by some kind of similarity transformation

and occlusion. In the second section, enhanced geometric hashing is used and this is

more effective to similarity transformation and occlusion than traditional geometric

hashing. The third section presents a comparative analysis of hashing schemes for iris

identification using local features.

Finally Chapter 4 presents the concluding remarks, with scope for further research

work.



Chapter 2

Local Features for Iris

Feature extraction involves simplifying the amount of information required to describe

an input image. The purpose is recognition of an individual identity by mathematical

analysis of the random patterns that are visible within the iris. There already exists

several global feature extraction techniques for iris [39, 40]. The main drawback of

global feature extraction techniques is their failure to extract relevant features, which

do not vary with significant variations in pose, illumination, and viewpoint of an indi-

vidual. Local features are invariant to image scaling, rotation, and partially unvarying

to change in illumination and viewpoint. These local features have the capability to

perform well under partial occlusion. In order to extract local features from iris, inter-

est points, known as keypoints, are detected where there can be a corner, an isolated

point of local intensity maximum or minimum, line endings, or a point on a curve

where the curvature is locally maximum. Around the neighborhood of every detected

keypoint, a descriptor is computed that represents the feature vector. This descriptor

should be robust to noise, detection displacements, and geometric and photometric

deformations [6].

In this thesis, local features are extracted from annular iris images. As discussed

earlier, the reason behind considering annular iris is to overcome aliasing errors due

to polar transformation. To mark an improvement in terms of time and accuracy,

landmark keypoint descriptors have been applied to iris. The novel keypoint de-

scriptor called Scale Invariant Feature Transform (SIFT) has been applied to iris [4].

SIFT performs excellent for various transformations as well as occlusion due to high

dimensional descriptor. The dimension of the descriptor has a direct impact on the
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recognition time. Therefore, lower dimensional features are desirable for fast keypoint

matching. However, lower dimensional feature vectors are in general less distinctive

than their high dimensional counterparts. Speeded Up Robust Features (SURF) [5]

uses a faster keypoint detection scheme with reduced dimensional descriptor. SURF

has been used for machine vision applications like camera calibration and object track-

ing [5]. Due to inherent advantages of SURF, it has been applied to iris biometrics

for efficient recognition. A comprehensive evaluation on benchmark datasets reveals

that Binary Robust Invariant Scalable Keypoints (BRISK) [7] is an adaptive feature

extractor with a high-performance ratio at a dramatically lower computational cost.

The key to speed lies in the application of a novel scale space Features from Accel-

erated Segment Test (FAST)-based detector [41] in combination with the bit-string

descriptor. This descriptor vector assembled from intensity comparisons are retrieved

by sampling of each keypoint neighborhood. This chapter discusses in detail about

above mentioned three keypoint descriptors and their applicability to iris.

2.1 Scale Invariant Feature Transform (SIFT)

The SIFT technique provides a stable set of features while being less sensitive to local

image distortions. Local features from an image are computed using a cascade filter-

ing approach that minimizes the feature extraction cost by applying more expensive

operations at locations that pass an initial test. Keypoints are detected using the

Difference of Gaussian (DoG) images. During the feature extraction process local

image gradients are measured at selected scale in region around each keypoint to

form a descriptor vector. Detailed description of steps outlined above are given in the

following subsections.

2.1.1 Keypoint Detection

The first step is to find potential keypoints that are invariant to scale and orientation.

For each detected keypoint a detailed model is fit to determine location and scale.

The orientation is assigned to each location based on image gradients. The steps for

keypoint detection are as follows.
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Detection of Scale Space Extrema

The main idea behind scale space extrema detection is to identify stable features

from the iris texture that remains invariant to change in scale and viewpoint. This

technique has been implemented efficiently by using the DoG image to identify the

potential interest points [4]. The DoG D(x, y, σ) of an iris image I is as,

D(x, y, σ) = L(x, y,Kσ)− L(x, y, σ) (2.1)

where K is a constant multiplicative factor used for changing the scale and x, y are

the coordinates of a pixel in image I. The scale space L(x, y, σ) of image I is obtained

by

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (2.2)

G(x, y, σ) =
1

2πσ2
e−(x2+y2)/2σ2

(2.3)

where G(x, y, σ) is the Gaussian filter for smoothing the image, σ is defined as the

width of the filter. This scale invariant technique is found to be suitable for annular

iris images because the size of iris changes due to expansion and contraction of the

pupil. Figure 2.1 shows the Gaussian blurred iris images and computation of DoG.

These images are generated using SIFT code [42].

Keypoint Localisation

DoG images are used to detect interest points with the help of local maxima and

minima across different scales. Each pixel in DoG image is compared to 8 neighbors

in the same scale and 9 neighbors in the neighboring scales. The pixel is selected as

a candidate keypoint if it is local maxima or minima in 3×3×3 region, as shown in

Figure 2.2. Once the keypoints are detected the next step is to perform the detailed

fit to the nearby data for the location. The basic idea is to reject keypoints with low

contrast. Keypoints with low contrast, are sensitive to noise and poorly localized,

hence should not be considered [4].
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Figure 2.1: Gaussian blurred iris images (left), and Gaussian images are subtracted
to produce DoG images (right).

Orientation Assignment

Orientation is assigned to each keypoint location to achieve invariance to image ro-

tations, as descriptor can be represented relative to the orientation. To determine

keypoint orientation, a gradient orientation histogram is computed in the neighbor-

hood of keypoint. The scale of keypoint is used to select Gaussian smoothed image

L. For each Gaussian smoothed image L(x, y), magnitude m(x, y) and orientation

θ(x, y) are computed as

m(x, y) =
√

(L(x+ 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y − 1))2 (2.4)

θ(x, y) = tan−1

(
(L(x, y + 1)− L(x, y − 1))

(L(x+ 1, y)− L(x− 1, y))

)
(2.5)

Orientation histogram is then formed for gradient orientation around each key-

point. The histogram has 36 bins for 360 orientations. Each sample is weighted by

gradient magnitude and a Gaussian weighted circular window with σ on the scale of

keypoint, before adding it to histogram. Peaks in the histogram correspond to the

orientation and any other local peak within 80% of largest peak is used to create

keypoint with the computed orientation. This is done to increase the stability during

matching [4]. The scale and direction of orientation is shown in Figure 2.3.
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Figure 2.2: Maxima and minima of DoG images are obtained by comparing a pixel
to 26 neighbors in 3× 3× 3 regions [4]

(a) (b)

Figure 2.3: Keypoint detection on an annular iris image using SIFT (a) Detected key-
points after removing noise and edge responses, (b) Scale and direction of orientation
(indicated by arrows).

2.1.2 Keypoint Descriptor

The feature descriptor is computed as a set of orientation histograms on 4×4 pixel

neighborhoods. The orientation histograms are relative to the keypoint orientation as

shown in Figure 2.4. The histogram contains 8 bins and each descriptor contains an

array of 16 histograms around the keypoint. This generates SIFT feature descriptor

of 4 × 4 × 8 = 128 elements. The descriptor vector is invariant to rotation, scaling,

and illumination.
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Figure 2.4: Window is taken relative to direction of dominant orientation. This
window is weighted by a Gaussian and histogram is obtained for 4× 4 regions [2].

2.1.3 Keypoint Pairing

Let p = {p1, p2, p3...pn} and q = {q1, q2, q3...qn} be a n dimensional feature descriptor

for each point from the database as well as query images respectively. The Euclidean

distance d(p, q) between p and q is defined as

d(p, q) =

√√√√ n∑
i=1

(pi − qi)2 (2.6)

where n is the dimension of feature descriptor. The naive approach to nearest neighbor

matching is to simply iterate through all points in the database to determine the

nearest neighbor.

2.2 Speeded Up Robust Features (SURF)

SURF features are not only faster, but far more repeatable and distinctive [5], com-

pared to existing keypoint detectors [4, 43, 44]. SURF use Hessian based detectors,
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Figure 2.5: Integral images are used to calculate the sum of intensities inside a rect-
angular region of any size [2].

these are more stable and repeatable than their Harris-based counterparts. SURF uses

only 64 dimensions compared to 128 dimensional descriptor vector in SIFT. SURF

extracts keypoints using Hessian matrix and describes a distribution of Haar wavelet

responses from a window around the interest point as descriptors. Local descriptor

vector is computed in two steps: (1) Detection of keypoints (2) Keypoint descriptor.

The above mentioned steps are explained as follows.

2.2.1 Detection of Keypoints

Integral images [45] are used for faster computation of interest points. Integral images

reduce the computation time drastically by allowing the faster computation of box

type convolution filters [6, 46].

Integral Images

The entry of an integral image IΣ(x) at a location x = (x, y), represents the sum of

all pixels in the input image I within a rectangular region formed by the origin and x

IΣ(x) =

i≤x∑
i=0

j≤y∑
j=0

I(x, y) (2.7)

Once the integral image has been computed, the sum of intensities over the integral

area can be computed in three additions as shown in Figure 2.5. Thus, the calculation

time is independent of the size of the filter.
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Interest Points Detection

Hessian matrix based detection is used because of its enhanced performance. For

detection of keypoints determinant of the Hessian matrix is computed for selecting

location and scale. Given a point P (x, y) in an image I, the Hessian matrix H(P, σ)

in P at scale σ is defined as,

H(P, σ) =

 Lxx(P, σ) Lxy(P, σ)

Lxy(P, σ) Lyy(P, σ)

 (2.8)

where Lxx(P, σ) is the convolution of the Gaussian second order derivative ( σ2

σx2
g(σ))

with the image I at the point P and similarly Lxy(P, σ) and Lyy(P, σ) are obtained.

The Gaussian is discretised and cropped as shown in Figure 2.6. These approximate

Gaussian second order derivatives can be evaluated at a very low computational cost

using integral images. The 9×9 box filters as shown in Figure 2.6 are approximations

of a Gaussian at σ = 1.2. These are denoted by Dxx, Dxy, and Dyy [47]. By choos-

ing the weights for the box filters adequately, the approximations for the Hessian’s

determinant are computed using

Det(Happrox) = DxxDyy − (0.9Dxx)
2 (2.9)

Scale Space Representation

Due to the use of integral image and box filters, it is not required to iteratively apply

the same filter to the output of the previously filtered image. This can be made

computationally efficient by applying box filter of any size on the original image as

shown in Figure 2.7. Therefore scale space is analyzed by upscaling the filter size

Figure 2.6: Left to right: discrete Gaussian second order derivative in y and xy direc-
tion. Approximation for the second order Gaussian partial derivative in y-direction
(Dyy) and xy-direction (Dxy) [5].
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rather than reducing the image size. The output of the 9 × 9 filter, introduced in

the previous section, is considered as the initial scale layer. Subsequent layers are

obtained by filtering the image with larger masks to localize keypoints invariant to

scale. The advantage of such scale space creation is that it is computationally efficient

as the image is not down-sampled so there is no effect of aliasing.

The scale space is divided into octaves. Each octave is represented by a series

of responses obtained by convolving the input image with filter of increasing size.

Each octave is subdivided into a constant number of scale levels. The length (l0)

of a positive or negative lobe of partial second order derivative in the direction of

derivation (x or y) is set for third of the filter size length. For the 9 × 9 filter, this

length l0 is 3. For two successive levels, the size is increased by a minimum of two

pixels in order to keep the filter size an odd value and thus ensure the presence of the

central pixel. This results in a total increase of the mask size by six pixels as shown

in Figure 2.8.

Scale space construction starts with the initial 9 × 9 filter for which scale s=1.2.

Then, filters with sizes 15×15, 21×21, and 27×27 are applied, by which even more

than a scale change of two has been achieved. The filter size increase is doubled for

every new octave (from 6-12 to 24-48). The filter size is increased for corresponding

octaves until image size is larger than the filter size.

Keypoint Localisation

Interest points are localized in scale and image space by applying a non maximum

suppression in a 3×3×3 neighborhood. The local maxima found on the Hessian matrix

determinant are interpolated to image space as proposed in [48]. Figure 2.9 shows the

Figure 2.7: Use of integral images for upscaling filter masks [6].
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Figure 2.8: Filters Dyy (top) and Dxy (bottom) for two successive filter sizes (9×9
and 15×15) [6].

detected interest points on the annular iris image.

2.2.2 Keypoint Descriptor

Descriptor of every interest point is computed using Haar wavelet responses in x and

y directions. The descriptor size kept only 64 dimensions for fast operation. The

first step consists of finding orientation using a circular window around the keypoint.

Then, a square region aligned with the selected orientation is considered to extract

the keypoint descriptor.

Orientation Assignment

To achieve invariance to image rotation, the orientation is identified for each keypoint.

For this purpose, Haar wavelet responses are calculated in x and y direction within a

Figure 2.9: SURF detected keypoints on the annular iris image.
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circular neighborhood of radius 6s around the keypoint, with s as the scale at which

the interest point was detected. The size of wavelets is scale dependent and set to side

length of 4s. Once the wavelet responses are calculated and weighted with a Gaussian

(σ = 2s), the common orientation is obtained by calculating the sum of all responses

within a sliding orientation window of size π
3

as shown in Figure 2.10. The horizontal

and vertical responses within the window are summed. The longest such vector over

all windows defines the orientation.

Figure 2.10: Orientation assignment by taking a sliding window of size π
3

indicated
by shaded region [6].

Keypoint Descriptor

The descriptor vector is obtained around every detected interest point by taking a

square window of size 20s centered around the keypoint and aligned relative to the

direction of orientation. As shown in Figure 2.11 the region is split into 4×4 smaller

sub-regions to preserve the spatial information. For each sub-region, Haar wavelet

responses are obtained in horizontal (dx) and vertical direction (dy). To increase the

robustness towards localization errors and geometric deformations, the responses dx

and dy are first weighted with a Gaussian (σ = 3.3s) centered at the keypoint.

Finally, the feature vector is summed up for each sub-region to form the elements

of descriptor vector Dv. The sum of the absolute values of the responses are obtained

(|dx| and |dy|), to know the information about the polarity of the intensity changes.

Thus, each sub-region is a 4D descriptor vector Dv comprising of

Dv =
{∑

dx,
∑

dy,
∑
|dx|,

∑
|dy|
}

(2.10)
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Figure 2.11: An oriented window with 4 × 4 sub-regions is taken in the direction of
orientation. For each sub-region wavelet responses are obtained [6].

Concatenating this for all 4× 4 sub-regions results in a feature vector of length 64.

2.2.3 Keypoint Pairing

After detection of interest points in database image (A) and query image (B), match-

ing is carried out using interest point pairing approach. The best candidate match for

each keypoint in A is found by identifying the closest pair from the set of keypoints in

B. The nearest neighbor is defined as the keypoint with minimum Euclidean distance

for the invariant descriptor vector. Let L = {l1, l2, l3.....lm} and E = {e1, e2, e3.....en}

be vector arrays of keypoints of A and B respectively obtained through SURF.

The descriptor arrays li of keypoint i in L and ej of keypoint j in E are paired

if the Euclidean distance ||li − ej|| between them is less than a specified threshold

τ . Threshold based pairing results in several numbers of matching points. To avoid

multiple matches, the keypoints with minimum descriptor distance compared with

threshold and if it is less than the threshold then they are paired. This results in a

single pair, and is called as nearest neighborhood matching method. The matching

method applied in SURF is similar to the nearest neighbor matching, except that

the thresholding is applied to the descriptor distance ratio between keypoints. The

method used in SURF is called as a nearest neighbor ratio method. Thus, the interest

points are matched as,
||li − ej||
||li − ek||

< τ (2.11)
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where, ej is the first nearest neighbor and ek is the second nearest neighbor of li. The

paired points (li, ej) are removed from L and E respectively. The matching process

is continued until there are no more interest points. Based on the number of pairs

between query image A and database image B, a decision is taken about a candidate’s

identity.

2.3 Binary Robust Invariant Scalable Keypoints

(BRISK)

The inherent difficulty in extracting suitable features from an image lies in balancing

two competing goals: high quality description and low computational requirements.

SURF has been demonstrated to achieve robustness and speed, but BRISK achieves

comparable quality of matching at a much less computation time. There are two steps

involved to determine local descriptor vector and they are (1) Scale-space keypoint

detection and (2) Keypoint description. The details of the steps are explained as

follows.

2.3.1 Keypoint Detection

With the focus on computation efficiency, BRISK detection methodology is inspired

by the work of Mair et al. [49], for detecting regions of interest in the image. Their

Adaptive and generic corner detection based on the accelerated segment test (AGAST)

is essentially an extension for accelerated performance of the now popular FAST [41].

With the purpose of achieving invariance to scale, which is important for high-quality

interest points, the BRISK go a step further by searching for maxima not only in the

image plane, but also in scale-space using the FAST scores s as a measure for saliency.

The BRISK detector estimates the true scale of each keypoint in the continuous scale-

space. In the BRISK framework, the scale-space pyramid layers consist of n octaves

ci and n intra-octaves di, for i = {0, 1, ..., n− 1} and for typically n = 4. The octaves

are formed by progressively half-sampling the original image (corresponding to c0).

Each intra-octave di is located in-between layers ci and ci+1 as shown in Figure 2.12.

The first intra-octave d0 is obtained by down-sampling the original image c0 by a
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factor of 1.5, while the rest of the intra-octave layers are derived from successive

half-sampling [7]. The t denotes scale, then t(ci) = 2i and t(di) = (1.5)× 2i.

The BRISK use 9-16 mask, which essentially requires at least 9 consecutive pixels

in the 16-pixel circle to either be sufficiently brighter or darker than the central pixel,

for the FAST criterion to be fulfilled. Initially, the FAST 9-16 detector is applied

on each octave and intra-octave separately using the same threshold to identify the

potential regions of interest. Next, the points belonging to these regions are subjected

to a non-maxima suppression in scale-space. Firstly, the maximum condition needs to

fulfill with respect to its 8 neighboring FAST scores s in the same layer [7]. Secondly,

the scores in the layer above and below will need to be lower as shown in Figure 2.12.

Figure 2.12: Scale-space interest point detection: a keypoint is identified at octave ci
by analyzing the 8 neighboring saliency scores in ci as well as in the corresponding
scores-patches in the immediately-neighboring layers above and below [7].

2.3.2 Keypoint Description

The BRISK descriptor vector is a binary string, obtained by concatenating the re-

sults of simple brightness comparison tests. In BRISK, the characteristic direction
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of each keypoint is computed to achieve rotation invariance, which is key to general

robustness. Also, the brightness comparisons are carefully selected with the focus on

maximizing descriptiveness.

Sampling Pattern and Rotation Estimation

The key concept of the BRISK descriptor makes use of a pattern used for sampling

the neighborhood of the interest point. The pattern, defines Nl locations equally

spaced on circles concentric with the keypoint as shown in Figure 2.13. In order to

prevent aliasing effects when sampling the image intensity of a point pi in the pattern,

Gaussian smoothing is applied with standard deviation σi proportional to the distance

between the points on the respective circle.

Figure 2.13: The BRISK sampling pattern with Nl = 60 points: the small blue circles
denote the sampling locations; the bigger, red dashed circles are drawn at a radius σ
corresponding to the standard deviation of the Gaussian kernel used to smooth the
intensity values at the sampling points [7].

Positioning and scaling the pattern accordingly for a particular interest point k

in the image. The N number of circles are drawn at a radius σ corresponding to the

standard deviation of the Gaussian kernel, used to smooth the intensity values at the

sampling points. By taking one of the Nl.(Nl− 1)/2 sampling-point pairs (pi, pj) into

consideration. The smoothed intensity values at these points which are I(pi, σi) and

I(pj, σj) respectively, are used to estimate the local gradient g(pi, pj) by

g(pi, pj) = (pj − pi).
I(pj, σj)− I(pi, σi)

||pj − pi||2
(2.12)
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Considering the set A of all sampling-point pairs:

A = {(pi, pj) ∈ R2 × R2|i < Nl ∧ j < i ∧ i, j ∈ N} (2.13)

The subset of short-distance pairings is S and another subset of L number of long-

distance pairings is L:

S = {(pi, pj) ∈ A| ||pj − pi|| < δ} ⊆ A (2.14)

L = {(pi, pj) ∈ A| ||pj − pi|| > δ} ⊆ A (2.15)

The threshold distance are set to δ = 9.75t (t is the scale of k). Iterating through

the point pairs in L, the overall characteristic pattern direction of the keypoint k

computed as,

g =

 gx

gy

 =
1

L
.
∑

(pi,pj)∈L

g(pi, pj) (2.16)

Building the Descriptor

For the formation of the rotation and scale-normalized descriptor, BRISK applies

the sampling pattern rotated by α = arctan2(gy, gx) around the interest point k.

The descriptor vector dk is assembled by performing all the short-distance intensity

comparisons of point pairs (pi
α, pj

α) ∈ S, such that each bit b corresponds to:

b =

 1, I(pαj , σj) > I(pαi , σi)

0, otherwise
∀(pαi , pαj ) ∈ S (2.17)

2.3.3 Descriptor Matching

Matching two BRISK descriptor bit-vectors is a simple calculation of their Hamming

distance. The number of bits different in the two descriptor vectors is a measure

of their dissimilarity. The respective operations reduce to a bitwise XOR followed

by a bit count, which can both be computed very efficiently. BRISK interest point

matching on two annular iris images is shown in Figure 2.14.
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Figure 2.14: BRISK interest point matching on two annular iris images.

A comparative study of SIFT, SURF, and BRISK based on feature extraction

and matching techniques is shown in Table 2.1. DoG, Hessian matrix, and FAST

techniques are used for keypoint detection in SIFT, SURF, and BRISK respectively.

Oriented histogram, Haar wavelet, and intensity comparisons are used for feature

vector generation in SIFT, SURF, and BRISK respectively. SIFT and SURF use

Euclidean distance, and BRISK use hamming distance for descriptor vector matching.

In Table 2.2, comparison of SIFT, SURF, and BRISK feature extraction techniques is

shown using a single CASIA iris image. By studying this table, it is well understood

that SIFT is a very slow process because it detects a high number of keypoints and its

descriptor dimension is 128. SURF is faster than SIFT but take more computation

time than BRISK. Both SURF and BRISK have 64 dimensional desciptors. BRISK

is faster than SIFT and SURF because its descriptor is a 64 bit string.

Table 2.1: Comparative study of SIFT, SURF, and BRISK based on feature extraction
and matching techniques.

Keypoint Extraction Feature Vector Matching
Technique Generation Technique

SIFT DoG Oriented Histogram Euclidean Distance
SURF Hessian matrix Haar wavelet Euclidean Distance
BRISK FAST Intensity Comparisons Hamming Distance
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Table 2.2: Comparative of SIFT, SURF, and BRISK for a single CASIA iris image.
Feature Extraction Detected Keypoints Dimension of Elapsed Time

Technique Descriptor (in seconds)
SIFT 403 128 31.953
SURF 56 64 1.150
BRISK 20 64 0.125

2.4 Summary

In this chapter, three well known keypoint descriptors are studied and applied to iris.

In order to achieve scale invariance, SIFT is applied to annular iris that is robust to

all possible transformations as well as partial occlusion. The time required to recog-

nize an individual is more due to higher dimensionality of feature descriptor. SURF

performs better compared to existing keypoint descriptors in terms of reliability, ac-

curacy, and speed. Further, the time required to claim identification using SURF is

reduced because it detects less number of keypoints and lower dimensionality of fea-

ture descriptor than SIFT. One of the recently developed keypoint descriptor coined

BRISK is also applied to annular iris. Based on the experimental study it has been

inferred that BRISK is faster than previously existing techniques because it uses a

bit string as a feature descriptor.
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Iris Identification

During identification, an individual candidate is recognized by searching the tem-

plates of all the users in the database for a match. Therefore, the system conducts

a one to many comparisons to find an individual’s identity. The identification sys-

tem suffers from an overhead of large number of comparisons in the database. As

the size of database increases the time required to declare an individual’s identity in-

creases significantly [50]. Thus, accuracy can be improved by reducing search space.

The retrieval time can be reduced by using classification, clustering and indexing ap-

proaches on the database. Biometrics does not possess any natural or alphabetical

order. Iris biometric system uses collection of image templates as database. Tra-

ditional database indexing schemes do not work in content based image retrieval

(CBIR) system. Thus, the query feature vector is compared sequentially with the all

templates in the database. The retrieval efficiency in sequential search depends upon

the database size. This leaves behind a challenge to develop a non-traditional indexing

scheme that reduces the search space in the large biometric database. The general

idea of indexing is to store closely related feature vectors together in the database

at the time of enrollment. During identification, the part of the database that has

close correspondence with query feature vector is searched to find a probable match.

In the proposed work, two indexing schemes known as Geometric Hashing [30, 51]

and Enhanced Geometric Hashing [33] are applied on locally detected keypoints, to

render an efficient iris identification system. The two identification approaches and

their comparison based on simulation results are discussed in sequel.
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Figure 3.1: Block diagram for geometric hashing based indexing approach [3].

3.1 Indexing based on Geometric Hashing

Geometric hashing is an indexing technique for model based object recognition that

uses location of keypoints which are invariant to similarity transformation [30, 51].

During image retrieval, keypoint locations are computed for the query image and are

used to index into the hash table to find the possible matches [52]. The primary

advantage of geometric hashing is that it speeds up the search and recognizes the

object efficiently. The block diagram of geometric hashing based indexing approach

is given in Figure 3.1. The keypoints are detected directly from noise independent

annular iris image using local feature extraction. Geometric invariants are obtained for

detected keypoints and stored in the quantized hash table during indexing. During

identification, the hash table is accessed using the invariants and votes are casted.

Entries that receive more than certain number of votes are considered as candidate

irises. The steps involved in indexing are explained in the following subsections.

3.1.1 Indexing

The geometric hashing scheme allows for retrieval of model images that differ from

query image by some kind of similarity transformation like rotation and scaling [53].

It is used for model based object recognition that forms indices from a subset of

model points. One of the advantages of geometric hashing is that it is inherently par-

allel. It has been observed in [54] that with minimal communication and maintenance

costs, the concept of geometric hashing is parallel and can be shared among num-

ber of cooperating processors. Further, the technique remains invariant to similarity
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transformations and its representation performs well under partial occlusion.

Index Generation

The detected interest points on annular iris image are used for indexing the database.

The basic idea is to extract local features from an image that remain invariant to

similarity transformations. The property of invariance can be explained with the

help of a model. The points detected from a sample iris image are plotted on a two

dimensional plane and represent a model (Mi) of ith image in the database as shown

in Figure 3.2(a). A pair of keypoints (k1 and k2) is chosen as an ordered basis as

represented in Figure 3.2(a). The keypoints are chosen for different combinations

of basis pair with an assumption that k2 should lie in positive x axis. Thus, for n

keypoints the possible basis pairs are at most
(
n
k

)
. The keypoints are scaled such that

the magnitude of
−−→
k1k2 is equal to 1. The midpoint between k1 and k2 is placed at the

origin such that k1 and k2 have positive x axis. The remaining points of Mi are placed

at different locations. For each choice of basis, the remaining points P of model Mi

are computed using

P = uP i
x + vP i

y + P i
0 (3.1)

where P (x, y) is the keypoint to be indexed, (u, v) is the location of P after similarity

transformation. P i
x and P i

y are defined by

P i
x =

k2 − k1

2
(3.2)

P i
y = Rot90(P i

x) (3.3)

where Rot90 refers to rotation of coordinate locations by 90 degrees. The midpoint

P i
0 between k1 and k2 is defined by

P i
0 =

k1 + k2

2
(3.4)

The keypoints after transformation of model Mi for basis pair k1 and k2 are shown

in Figure 3.2(b). However, since iris is occluded by upper and lower eyelids thus

there is a possibility that the basis (k1, k2) may not occur in every instance of model

Mi. Therefore, different combinations of possible basis pair are used to obtain the

geometric invariants as shown in Figure 3.2(c).
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Figure 3.2: Similarity transformation: (a) Two dimensional representation of detected
keypoints from annular iris image, (b) Keypoints after similarity transformation for
basis pair k1k2, (c) Keypoints after similarity transformation of possible basis pairs,
and (d) Keypoints after rehashing.

Hash Table Organization

For the formation of hash table, the possible ordered basis pairs for all model images

are selected to obtain transformation invariant coordinates (u, v) of the remaining

points (x, y). The values of u and v computed from equation (3.1) remain invariant

under similarity transformation and their quantisation allows to have an index (uq,

vq) into the hash table. The hash table at (uq, vq) contains the entry in the form of

(Mi, k1, k2) for model Mi with basis pair
−−→
k1k2. The hash bin occupancy for quan-

tized hash table is non-uniform. A uniform distribution of entries over hash table is

required to reduce the data retrieval and execution time. Thus, Rigoutsos and Hum-

mel [54] have proposed an efficient technique for uniform distribution of entries in

the hash table. The distribution of data over quantized hash table follows a Gaussian

distribution and keypoints detected from iris undergo similarity transformations. The
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probability density f(u, v) can be defined by

f(u, v) =
3

π

1

(u2 + v2 + 3)2
(3.5)

where u and v are invariant coordinates after geometric transformation. After com-

puting the probability density a transformation is performed to map the distribution

of entries uniformly in a hash table using rehashing. The rehashing function is ap-

plied to transformed coordinates so that equally spaced bins have uniform occupancy

as shown in Figure 3.2(d). Rehashing function for similarity transformation is given

as [54],

h(u′, v′) = (1− 3

u2 + v2 + 3
, atan2(v, u)) (3.6)

where u and v are transformed coordinates and atan2 is four quadrant inverse tangent.

This has reduced the accumulation of data at a particular region in the hash table.

At h(u′, v′) an entry is stored in the hash table with (model, basis) pair. The keypoint

descriptor obtained using a local feature descriptor is stored in the feature database

corresponding to a particular iris image.

3.1.2 Iris Retrieval

During identification, iris images that have close proximity with the query image

are retrieved from the database. The query image is preprocessed to detect annular

portion of iris. The keypoints are localised on the annular query iris image and

arbitrarily two keypoints are chosen as ordered basis pair and transformed such that its

midpoint coincides with the center of origin with direction in the positive x axis. The

magnitude of basis vector has unit length. The coordinates of remaining keypoints

are defined using equation (3.1) for chosen basis pair. Each transformed entry is

quantized and mapped to the hash table. For each entry found in the corresponding

hash table bin, a vote is casted.

The basic assumption is that in case the query image contains basis that corre-

sponds to that of model image from database, then it is expected to receive votes

from all other unoccluded points. The total number of votes for various basis pairs

corresponding to each model image is determined. If the number of votes received for

each model image are greater than a threshold (τ), then these images are considered
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to be potential matches for query image. Further the keypoint descriptor for query

and candidate model images are compared to find top best matches.

3.2 Indexing based on Enhanced Geometric Hash-

ing

Most of the indexing techniques work on a fixed number of feature points. However, in

biometrics the feature points may vary from image to image, and the maximum num-

ber of feature points cannot be predicted in advance. Traditional geometric hashing

can be used to index the variable feature points in a high-dimensional space. Tradi-

tional geometric hashing may not be suitable for its computational time and memory

requirement. Unlike the available geometric hashing, the enhanced geometric hashing

requires less amount of time and memory.

3.2.1 Preprocessing

During indexing, the features {f1, f2, ..., fm} are extracted for all annular iris images

using local feature extraction techniques [4,5,7]. There is a possibility that the model

images may appear translated and rotated relative to their original positions. In

addition, models may not have the same scale. Hence in order to make the indexing

technique invariant to translation, rotation and scaling, every model for the database

is preprocessed. It consists of three steps: mean centering, rotation with respect to

principal components, and normalization [33].

Mean Centering

whenever the iris image is translated, the feature points are also translated from their

original positions. In that case, mean centering can be used to translate each feature

point fi to f ′i such that mean of all f ′i becomes zero. This can be done by subtracting

f̄ = 1
m

m∑
i=1

fi from fi. A two dimensional representation of BRISK detected keypoints

from an annular iris image are shown in Figure 3.3(a). In Figure 3.3(b) keypoints are

plotted after mean centering.
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Figure 3.3: (a) Two dimensional representation of detected keypoints from annular
iris image, (b) Keypoints after mean centering.

Rotation with respect to Principal Components

The set of feature points {f ′1, f ′2, ..., f ′m} is used to determine the largest PC1 and

the second largest PC2 principal components [33]. Principal components are com-

puted by using the matrix A =
[
f ′1 f ′2 ... f ′m

]
. First, covariance matrix C =

1
m

∑m
j=1 f

′
jf
′
j
T = AAT is calculated, then eigenvalues of C are calculated and arranged

in decreasing order ( λ1 > λ2 > · · · > λn). Second, eigenvectors (u1, u2, · · · , un) ob-

tained using corresponding eigenvalues. These eigenvectors are principal components

of matrix A. This transformation is defined in such a way that the first principal

component has the largest possible variance, and each succeeding component in turn

has the highest variance possible under the constraint, that it be orthogonal to the

preceding components. The geometric properties of PCA are used to make the iris

images invariant to rotation. PC1 and PC2, are rotated in such a way that they

become the primary axes of the co-ordinate system. After rotation step, point set

{f ′1, f ′2, ..., f ′m} become {f ′′1 , f ′′2 , ..., f ′′m} as shown in Figure 3.4(a).

Normalization

In order to make the feature points invariant to scale, the normalization step is carried

out. For the point set {f ′′1 , f ′′2 , ..., f ′′m} each feature point is divided by the standard

deviation (σ) of the point set and multiplied by some scaling factor α, such that every

feature point gets different bin into the hash table. The point set {f ′′1 , f ′′2 , ..., f ′′m}

becomes {f ′′′1 , f
′′′
2 , ..., f

′′′
m} after normalization as shown in Figure 3.4(b).
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Figure 3.4: (a) Keypoints after rotation with respect to principal components, (b)
Keypoints after normalization.

3.2.2 Hash Table Generation

Now each feature point is mapped into the location pl of hash table by placing the

midpoint of the co-ordinate system at the center of the hash table as follows:

pl = f ′′′l +
size(H)

2
(3.7)

where size(H) is the number of bins in the hash table H. After mapping, all feature

points are inserted into hash table as

H(pl) = H(pl)
⋃

(Mid, ~D) (3.8)

where Mid and ~D are the model identity and the descriptor vector of the feature point

respectively. The same process is repeated for each model in the database.

3.2.3 Searching

For a query Q, the top tk best matches from the hash table are obtained in two steps

such as filtering and refinement. In the filtering step, the feature points which are

dissimilar to the query feature points are filtered out while at refinement step, the

top tk matches are found based on the voting scheme.

Filtering

In this step, the feature points of the model which are dissimilar to the query feature

points are filtered out based on their descriptor vector ~D. It is observed that the
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feature points of the different images of the same model may be missed due to the

noise present in the images. With the objective of improved recognition performance,

it considers the feature points not only from its mapped bin but also from its nearest

bins of window size w × w. Suppose {f1, f2, ..., fn} be the n feature points in the

query. For a feature point fi, let q be the mapped index in the hash table H. Let z be

a neighboring bin, z ∈
[
q − w

2
, q + w

2

]
. There may be some feature points of different

models from the database lying in the bin z of H. Let c be a feature point of a model

lying in z. Euclidean distance d(c) between q and c, ∀c ∈ H (z) can be obtained by

the following equation,

d (c) = || ~D(q)− ~D (c) || (3.9)

A candidate set Ci for the corresponding feature point fi of the query Q contains all

the model identity Mid(c) such that d (c) ≤ τ , where τ is the threshold value. The

same procedure is followed for all query feature points {f1, f2, ..., fn}. Therefore, there

are n candidate sets {C1, C2, ..., Cn} for given n feature points in a query Q.

Refinement

In this step, the candidate sets {C1, C2, ..., Cn} are concatenated and the number

of occurrences of each model identity Mid is determined. Let C be the set of the

form C = (Mid, l), where l is the number of occurrence of each model identity Mid.

The elements of C are arranged in decreasing order with respect to the number of

occurrences. First tk model identities of the set C are considered as top tk matches

against the query Q.

3.3 Comparative analysis of Geometric Hashing

and Enhanced Geometric Hashing

In this section, comparative analysis of geometric hashing and enhanced geometric

hashing schemes using local features of annular iris is discussed. First, SIFT features

of annular iris are considered as local features. Second, experiments performed using

SURF features. At last, BRISK keypoints are used as feature points. The time taken

in binning of a single image for different databases are shown in Table 3.1.
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Table 3.1: The time taken in binning of a single image for different databases.
Iris Database Geometric Hashing Enhanced Geometric Hashing

(elapsed time in millisecond ) (elapsed time in millisecond )
BATH 186 102
CASIA 20606 592
IITK 21809 513

UBIRIS 4365 209

3.3.1 Comparative analysis using SIFT

Geometric hashing with one of the well known keypoint descriptor known as SIFT

has been applied to iris for feature extraction and matching. Geometric hashing

performs with maximum identification probabilities 0.69, 0.74, 0.48, and 0.80 with

respect to UBIRIS, BATH, CASIA, and IITK iris datasets respectively, by taking

top 100 ranks into consideration. Enhanced geometric hashing achieves maximum

identification probabilities 0.79, 0.91, 0.82, and 0.97 with respect to UBIRIS, BATH,

CASIA, and IITK iris datasets respectively, by taking top 100 ranks into considera-

tion as shown in Table 3.2. For each iris database accuracy of enhanced geometric

hashing is better than traditional geometric hashing as shown in Figure 3.5. For

BATH iris database graph of enhanced geometric hashing is monotonically increasing

up to rank 10 and after that it is constant at identification probability 0.95 and geo-

metric hashing graph attain 0.75 identification probability after 100 ranks as shown

in Figure 3.5(a). Experimental results for CASIA, IITK, and UBIRIS iris databases

are shown in Figure 3.5(b), Figure 3.5(c), and Figure 3.5(d) respectively.
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Figure 3.5: CMC curve for geometric hashing and enhanced geometric hashing using
SIFT on different iris databases, (a) BATH, (b) CASIA, (c) IITK, and (d) UBIRIS.

3.3.2 Comparative analysis using SURF

In this section, SURF is applied with geometric hashing and enhanced geometric hash-

ing in a comparative manner. Geometric hashing performs with maximum identifica-

tion probabilities 0.29, 0.55, 0.38, and 0.57 with respect to UBIRIS, BATH, CASIA,

and IITK iris datasets respectively. Enhanced geometric hashing achieves maximum

identification probabilities 1, 0.79, 0.9, and 0.75 with respect to UBIRIS, BATH, CA-

SIA, and IITK iris datasets respectively, by taking top 100 ranks into consideration

as shown in Table 3.3. As shown in Figure 3.6(d), for UBIRIS iris database enhanced

geometric hashing attains identification probability 1 quickly but traditional geomet-

ric hashing performance is not so good. Figure 3.6(a) for BATH iris database also

shows that enhanced geometric hashing is better than traditional geometric hashing.
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Figure 3.6: CMC curve for geometric hashing and enhanced geometric hashing using
SURF on different iris databases, (a) BATH, (b) CASIA, (c) IITK, and (d) UBIRIS.

Experimental results for CASIA and IITK iris databases are shown in Figure 3.6(b)

and Figure 3.6(c) respectively. Computation time of enhanced geometric hashing is

less than traditional geometric hashing for each database as shown in Table 3.1. Both

hashing schemes take more time for CASIA and IITK than BATH and UBIRIS iris

databases because computation time depends on the number of keypoints detected

by feature extraction technique. Images taken from CASIA and IITK databases show

more details than UBIRIS and BATH.
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Chapter 3 Iris Identification

3.3.3 Comparative analysis using BRISK

A recently developed keypoint descriptor BRISK is applied with both hashing schemes

in a comparative manner. BRISK performs at a dramatically lower computational

cost. The main reason of speed is the use of bit-string descriptor. The number of bits

different in the two descriptors is a measure of their dissimilarity. The respective oper-

ations reduce to a bitwise XOR followed by a bit count, which can both be computed

very efficiently. Geometric hashing performs with maximum identification probabili-

ties 0.29, 0.64, 0.35, and 0.59 with respect to UBIRIS, BATH, CASIA, and IITK iris

datasets respectively. Enhanced geometric hashing achieves maximum identification

probabilities 0.58, 0.95, 0.88, and 0.71 with respect to UBIRIS, BATH, CASIA, and

IITK iris datasets respectively, by taking top 100 ranks into consideration as shown

in Table 3.4. The results show that enhanced geometric hashing is more efficient than

traditional geometric hashing. Comparison between geometric hashing and enhanced

geometric hashing using BRISK on different iris databases BATH, CASIA, IITK, and

UBIRIS are shown in Figure 3.7(a), Figure 3.7(b), Figure 3.7(c), and Figure 3.7(d)

respectively.
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Figure 3.7: CMC curve for geometric hashing and enhanced geometric hashing using
BRISK on different iris databases, (a) BATH, (b) CASIA, (c) IITK, and (d) UBIRIS.

3.4 Summary

Geometric hashing is found to be robust to similarity transformations, occlusion as

well as nonuniform illumination. Features are extracted directly from annular iris

image to overcome the effect of aliasing. Enhanced geometric hashing effectively

removes the use of bases pairs thus reduce the time complexity by a factor of nC2.

Overhead in the enhanced geometric hashing is the use of PCA, which is negligible. In

the enhanced geometric hashing, since each feature point is inserted exactly once, both

memory and searching cost has been reduced significantly. From the results obtained

from experiments, it is evident that the enhanced geometric hashing is much faster

and more accurate than traditional geometric hashing.



Chapter 4

Conclusions and Future Work

This thesis proposes a comparative study of geometric hashing and enhanced geomet-

ric hashing schemes, using local feature extraction techniques, for cooperative as well

as non-cooperative iris databases. Global approaches fail to work for large variations

in individual’s pose, illumination, and occlusion. Further, global approaches are not

suitable for noise independent annular iris as the size of iris varies due to illumina-

tion. Local features are less sensitive to variations since the descriptors are extracted

from the neighboring regions around interest points. At first level, geometric hashing

with SIFT has been applied to iris for feature extraction and matching. Geometric

hashing performs with maximum identification probabilities 0.69, 0.74, 0.48, and 0.80

with respect to UBIRIS, BATH, CASIA, and IITK iris datasets respectively, by tak-

ing top 100 ranks. But the main drawback of geometric hashing with SIFT is that

both are computationally costly. Enhanced geometric hashing with SIFT performs

better than traditional geometric hashing. It achieves maximum identification prob-

abilities 0.79, 0.91, 0.82, and 0.97 with respect to UBIRIS, BATH, CASIA, and IITK

iris datasets respectively, by taking top 100 ranks into consideration. At second level,

both hashing schemes use SURF as a local feature descriptor. SURF outperforms in

comparison to previously proposed keypoint descriptors with respect to repeatabil-

ity, distinctiveness, robustness, and time. Geometric hashing using SURF keypoints

performs with maximum identification probabilities 0.29, 0.55, 0.38, and 0.57 with

respect to UBIRIS, BATH, CASIA, and IITK iris datasets respectively, by taking top

100 ranks. Enhanced geometric hashing achieves maximum identification probabil-

ities 1, 0.79, 0.9, and 0.75 with respect to UBIRIS, BATH, CASIA, and IITK iris
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datasets respectively, by taking top 100 ranks. At last level, a recently developed key-

point descriptor called BRISK is applied with both hashing schemes in a comparative

manner. BRISK performs at a dramatically lower computational cost than previously

existing techniques. The main reason of speed is the use of bit-string descriptor. This

descriptor is computed from intensity comparisons retrieved by dedicated sampling

of each keypoint neighborhood. Geometric hashing with BRISK descriptor performs

with maximum identification probabilities 0.29, 0.64, 0.35, and 0.59 with respect to

UBIRIS, BATH, CASIA, and IITK iris datasets respectively, by taking top 100 ranks.

Enhanced geometric hashing achieves maximum identification probabilities 0.58, 0.95,

0.88, and 0.71 with respect to UBIRIS, BATH, CASIA, and IITK iris datasets respec-

tively, by taking top 100 ranks. The results show that enhanced geometric hashing is

more efficient than traditional geometric hashing.

The research findings made out of this thesis has opened several research direc-

tions, which have a scope for further investigations. The limitations can be refined

that promotes further research in the proposed area. The sector based iris approach

used fixed size mask for removing eyelids. This fails for images with no occlusion

or occlusion greater than the mask size. Thus, an adaptive mask is required that

can automatically detect eyelids by fitting curves on the lower and upper eyelid edge

segments. Performance of BRISK with enhanced geometric hashing can be further

improved by increasing the number of detected interest points. The computational

cost of geometric hashing can be further reduced by using a clustering technique or

dimensionality reduction approach. This will reduce the number of basis pairs
(
n
2

)
while still preserving identification accuracy.
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