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Abstract 

Composites are formed by the physical association of matrix and reinforcement and possess 

intermediate properties of the components’ it is constituted of. Metal matrix composites 

(MMCs) reinforced with ceramic particles furnishes ductility along with strength and has 

been into practice since decades. The applications cater the aerospace and automobile 

industries such as turbine rotatory machinery components, rocket turbine housing, cryostat, 

cryo-pump impeller and cryo-pump inducer. Powder metallurgy has been a conventional still 

inevitable technique to serve the automotive and aerospace industries with components of 

utmost importance. The powder metallurgy process consists of several steps which are crucial 

to the end products’ properties. This work aims at investigating some of the steps to assess 

the microstructure and properties of copper and aluminium based composites varying the 

reinforcement particle size and volume fraction. Structural integrity is a vital factor of a 

composite which accounts for the physical intimate bonding of matrix and reinforcement. 

This factor varies with the fabrication parameters and techniques which are also fundamental 

for effective stress transmissibility from matrix to reinforcement. Structural integrity of a 

composite material also fluctuates within the service life of the material, for eg. during harsh 

and hostile environment thermal exposures. 

The preliminary part of the work consists of evaluation of the effect of processing parameters 

on the properties of Cu-Al2O3 and Al-Al2O3 composites. The effect of blending and planetary 

milling processes (powder mixing techniques) on the distribution, particle size and sintering 

response of Cu-Al2O3 and Al-Al2O3 composites were studied. Milling was performed for 2, 5 

and 10 hours and blending was performed for 2, 4 and 8 hours followed by investigation of 

dispersion, microstructure and particle size analysis as well as mechanical properties of the 

composite powders and composites sintered at 900°C (Cu-Al2O3) and 600°C (Al-Al2O3) 

temperatures.  

 

The effect of sintering atmosphere on the microstructure and mechanical properties of Cu-

Al2O3 composites have been discussed too. Nitrogen, argon and hydrogen atmospheres were 

used for sintering and the comparison in matrix and reinforcement compatibility as well as 

study of microstructure and mechanical properties were made. Synthesis of microcomposites 

was carried out by reinforcing 5, 10 and 15 volume % of alumina powder particles (average 

size~5.71µm) in copper matrix via conventional sintering using N2, H2 and Ar atmospheres. 
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Maximum Vickers hardness of 60, 75 and 80 was obtained when the Cu-15 volume % Al2O3 

was conventionally sintered in N2, Ar and H2 atmosphere respectively. It has been observed 

that Cu-Al2O3 metal matrix composite shows poor mechanical properties when it is 

conventionally sintered in N2 or Ar atmosphere compared to that in H2 atmosphere. 

 

The synthesis, characterization and mechanical properties evaluation of Cu-Al2O3 and        

Al-Al2O3 micro- and nano-composites fabricated by conventional and spark plasma sintering 

was done to compare the attributes between the traditional and advanced methods of 

sintering. Status of the interfacial integrity of Cu-Al2O3 and Al-Al2O3 micro- and nano-

composites with the variation in sintering temperature were investigated.  

 

Nanocomposites of 1, 3, 5 and 7 vol. % Al2O3 (average size<50nm) and microcomposites 

having compositions 5, 10, 15, 20 vol. % of Al2O3 (average size~10µm) reinforced in copper 

and aluminium matrix were fabricated by powder metallurgy route. All the Cu-Al2O3 

specimens were sintered conventionally at different sintering temperatures (850°C, 900°C, 

1000°C) whereas all the Al-Al2O3 specimens were sintered conventionally at (500°C, 550°C, 

600°C) temperatures to study the effect of temperature on the process and progress of 

sinterability of the reinforced micro- and nano-particles in the matrix. These micro- and nano-

composites were characterized using X-ray diffraction and scanning electron microscopy 

followed by density, microhardness and wear measurements. The compression and flexural 

tests were also carried out in order to investigate the mechanical behaviour of the micro- and 

nano-composites for a fixed optimum sintering temperature. Fractography of the 3-point bend 

specimens was performed to investigate the fracture behaviour of the micro- and nano-

composites. The flexural test results showed that the ultimate flexural strength decreases and 

flexural modulus increases with increase in reinforcement content.   

Nanocomposites consisting 0.5, 1, 3, 5, 7 volume % alumina (average size<50nm) and 

microcomposites having 1, 5, 20 volume % of alumina (average size~10µm) reinforced in 

copper and aluminium matrix were fabricated by spark plasma sintering technique at a 

temperature of 700°C (copper) and 500°C (aluminium) respectively and pressure of 50 MPa 

for a holding time of 5 minutes. These micro- and nano-composites have been characterized 

using X-ray diffraction, scanning electron microscopy and transmission electron microscopy 

followed by density, microhardness, nanoindentation hardness and wear measurements. 

Spark plasma sintering rendered high densification, higher microhardness and wear resistance 
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to the composites improving the physical integrity of matrix and reinforcement to an 

appreciable extent in comparison to conventional method of sintering. We have obtained 

95.82% densification as well as 93.17 HV0.3 and 124 HV0.3 microhardness for spark plasma 

sintered Cu-20 vol. % Al2O3 microcomposite and Cu-7 vol. % Al2O3 nanocomposite 

respectively. The wear rate is appreciably low i.e. 0.86 x 10
-4

 mm
3
N

-1
m

-1
 for 20 vol. % 

alumina reinforced copper microcomposite. The alumina nanoparticles revealed appreciable 

physical intimacy with the aluminum matrix than that of alumina microparticles. The highest 

nanohardness recorded 0.85 GPa and 99% densification for 7 and 1 vol. % Al-Al2O3 

nancomposites respectively. Spark plasma sintering imparts enhanced densification and 

matrix-reinforcement proximity which have been corroborated with the experimental results. 

Copper and aluminium based composites find applications in aerospace and automobile 

sectors. These applications demand accelerated weathering study on these composites. 

Induced thermal stresses in these composites would affect the structural integrity and 

mechanical properties. The assessment of these variations would enable us to predict the 

behaviour of these composites in harsh and hostile conditions. Flexural test was used to 

explore the effect of thermal treatments i.e. high temperature and cryogenic environments on 

the mechanical property of Al2O3 particulate reinforced Cu and Al metal matrix micro- and 

nano-composites in ex-situ and in-situ conditions. Cu- Al2O3 and Al-Al2O3 reinforced with 5, 

10, 15, 20 vol. % Al2O3 micro (10µm)- and 1, 3, 5, 7 vol. % Al2O3 nano (<50 nm)-composites 

were fabricated by powder metallurgy route. All the compositions of micro- and nano-

composites were thermally shocked from positive to negative (down thermal shock) and 

negative to positive temperature (up thermal shock). Both the micro- and nano-composites 

were treated at +40°C temperature for 1 hour followed by -40°C temperature for 1 hour. This 

treatment was also done in the reverse order i.e. from -40°C to +40°C. The above stated 

thermal shock module was repeated with temperatures (+80°C to -80°C) and (-80°C to 

+80°C) with both micro- and nano-composites with 1 hour isothermal holding at each 

temperature. For thermal conditioning the micro- and nano-composites were exposed to 

+80°C for 1 hour and -80°C for 1 hour separately.  

High temperature in-situ 3-point bend test was performed at 100°C and 250°C for the 

composites after temperature attainment. All the micro- and nano-composites subjected to 

thermal shock, thermal conditionings were tested in flexural mode at a span length of 26 mm 

and loading rate of 0.5 mm/min. The micro- and nano-composites were also tested at ambient 

temperature to note the difference after the thermal treatments. The fractured samples were 
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studied under field emission scanning electron microscopy. The improvement in flexural 

strength of thermally shocked and conditioned samples have been discussed in the light of 

fractography.  

The composites’ performance at high loading rate (crosshead velocity) differs considerably 

from that of low loading rates. Different loading rates are quite probable in several 

applications of metal matrix composites to evaluate their crashworthiness. High impact 

loading conditions are withstood at instances such as MMC armours, collision of cars and 

impact of foreign objects on aerospace structures. Cu-Al2O3 and Al-Al2O3 micro- and nano-

composites were subjected to 3-point bend test under various loading rates to evaluate the 

flexural strength and its variation with volume fraction of alumina. The flexural strength with 

respect to crosshead speed of copper and aluminium based composites varies with size and 

content of alumina particles. 

 

Keywords: Metal matrix composites; Spark plasma sintering; Scanning electron microscopy; 

Field emission scanning electron microscopy; Transmission electron microscopy; Structural 

integrity; Mechanical properties; Flexural strength; Thermal conditioning; Thermal shock; 

Cryogenic treatment;  Loading rate. 
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Chapter 1 

Introduction 

 

 

 

 

 

The central theme of the thesis revolves around the comparison of the microstructural and 

mechanical aspects in conventional microcomposites and advanced nanocomposites. Here, by 

micro- and nano-composites we refer to the variation in the reinforcement particle size, 

keeping the matrix particle size constant i.e. in micrometer scale. The applications of MMCs 

include catering the aerospace, automobile and military industries. The crucial parameters 

influencing the properties of a particle reinforced composites are size, shape, concentration 

and spatial distribution of the reinforcement, the concentration of impurities present in the 

constituent’s phase of composites, thermal and chemical exposure environment and particular 

reinforcement size matrix alloy combination. The dominance of nanocomposites over 

microcomposites on micro as well as macro attributes has led to the comparative discussion 

of both. The nanoparticles in a metal matrix furnish intimate mixing with the matrix as well 

as higher degree of dispersion strengthening, except for clustering of nanoparticles at certain 

instances. The clustering of nanoparticles takes place in compositions with higher 

nanoparticle content. 

 

The consolidation of metal matrix composites by conventional methods has been done since 

decades. The new era of materials include nanocomposites which cannot be consolidated 

effectively by conventional means. The advanced techniques of consolidation include hot 



Chapter 1         Introduction 

2 
 

pressing, hot isostatic pressing and spark plasma sintering. These advanced techniques render 

microstructural evolution, elevated mechanical properties as well as varied structural integrity 

of matrix and reinforcement. The microstructural as well as mechanical attributes of a 

composite depend on several factors, out of which the reinforcement particle size is a vital 

one.  

The variation in reinforcement particle size alters the overall chemistry and character of 

interface, microstructure and mechanical performance of the composite. The study of effect 

of fabrication parameters such as mixing of powders, sintering atmosphere and techniques 

has been done in detail. The synthesis and characterization of copper-alumina as well as 

aluminium-alumina micro- and nano-composites by conventional and spark plasma sintering 

techniques has been performed extensively. The comparison of microstructure, structural 

integrity, mechanical properties in conventionally fabricated and spark plasma sintered 

composites has been done. Copper and aluminium are metals with low hardness, so addition 

of alumina renders hardness to the metals as well inertness at high temperature. These 

systems of composites possess hardness and strength higher than monolithic metals. This 

dichotomy of strength and ductility offers applications in ample fields of engineering and 

technology. 

The composites possess thermal residual stress by virtue of its processing parameters, and 

differential co-efficient of thermal expansion of matrix and reinforcement entities. The high, 

low as well as ultra low temperature applications of metal matrix composites have led to the 

study of their structural integrity and mechanical behaviour by inducing thermal stresses by 

different methods and modules. The advancement of science and technology has been rapidly 

demanding newer materials which can endure extreme weathering exposures and excursion. 

This may necessitate the design of experimental process and procedures to generate data and 

findings which would lead to the prediction of reliability of mechanical performance of 

material behaviour in unpredictably harsh and hostile environments. The response of 

mechanical behaviour and structural integrity to induced thermal stress of copper-alumina 

and aluminium-alumina micro- and nano-composites has been discussed in this thesis. 

Metal matrix composites respond differently to high strain rate loading conditions as 

compared to monotonic or quasistatic loading. The high and low strain rate sensitivity of 

composites for a wide range of applications, necessitate the study of variation of loading rate 
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on the composites. The loading rate sensitivity of copper and aluminium based micro- and 

nano-composites have been elaborated comprehensively. 

1.1 Literature Review 

1.1.1 Composite 

Composite is a multiphase material which consists of a matrix and one or many 

reinforcements. The matrix material could be polymer, metal or ceramic in nature. The nature 

of reinforcements varies over a wide range depending upon the desired quality and properties 

of the composite. The composites possess properties intermediate of that of matrix and 

reinforcement. Selection of nature of matrix and reinforcement as well as content of 

reinforcement is decisive of the tailoring of the composite for desired attributes. Out of the 

three kinds of matrices, in this thesis metal matrix composites embedded with ceramic 

particulates have been investigated. 

1.1.2 Metal matrix composite 

Metal matrix composites (MMCs) are excellent candidates for structural components in the 

aerospace and automotive industries due to their high specific modulus, strength, and thermal 

stability. Metal matrix composites (MMCs) combine both metallic properties (ductility and 

toughness) with ceramic properties (high strength and modulus) and possess greater strength 

in shear and compression and high service temperature capabilities. Nanocomposites are 

gaining tremendous popularity in the material industry for replacing the monoliths. On the 

other hand microcomposites have already been put into practice long back. The comparison 

of microstructural and mechanical attributes of nanocomposites and microcomposites is a 

burning area of research. The extensive use of MMCs in aerospace, automotive industries and 

in structural applications has increased over past 20 years due to the availability of 

inexpensive reinforcements and cost effective processing routes which give rise to 

reproducible properties [1]. The driving phenomena for generation of dislocations in MMCs 

are misfit strain, thermal misfit, allotropic misfit, lattice parameter misfit and elastic 

inhomogenity misfit [2]. In case of solid solution strengthening the dislocation motion gets 

impinged principally by elastic interaction between the dislocation and solute atoms as well 

as by alteration of the energy of stacking fault
 
[3]. The physical and mechanical superiority of 

nano-structured materials has fascinated scientists in recent times [4]. The strengthening due 
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to grain refinement can be delegated to a number of theories such as the Hall-Petch relation, 

Orowan bowing mechanism, Taylor relationship and several other models [5].  

 

Strengthening resulting from the grain size known as grain boundary strengthening can 

be represented as: 

     (1) 

with σ0 the Peierls stress, KHP  strengthening coefficient constant, and d the grain size  

expressed in m. 

Strengthening resulting from oxide particle reinforcement, known as dispersion 

strengthening, can be shown as: 

    (2) 

with Gm the shear modulus of the matrix, b the Burgers vector , r the particle radius, and λ the 

interparticle distance given by 

      (3) 

with dp the particle diameter, and Vp the volume fraction particles. 

 

Strengthening resulting from the residual plastic strain due to the thermal mismatch between 

particles and matrix during post-processing cooling, can be represented as: 

 

    (4) 

with k a constant, and ρ the dislocation density induced by plastic strain due to a thermal 

mismatch. This ρ is given by: 

     (5) 

with  the difference in the coefficient of thermal expansion between the matrix and the 

particles, b the burgers vector, and  the difference between the processing and the test 

temperatures [6-10]. 

 

1.1.3 Fabrication routes 

There exists a wide spectrum of routes of fabrication of metal matrix composites i.e. solid 

state routes, liquid state routes and gaseous state routes. Solid state routes include diffusion 
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bonding, in-situ fabrication, powder metallurgy, sintering, hot pressing and hot isostatic 

pressing. Liquid state routes consist of gas pressure infiltration, squeeze casting infiltration 

and pressure die infiltration. 

 

1.1.3.1 Powder metallurgy 

Powder metallurgy method fabricates complex components economically. Powder metallurgy 

promotes synthesis of prealloyed powders below melting temperature. The powder 

metallurgy route in case of oxide reinforcements has an added advantage as they follow the 

energy efficient method [11]. The greatest threat in this fabrication route is the absence of an 

integrated interface formation as the metal powders are less reactive in solid state [12]. 

Powder metallurgy route is one of the versatile routes for fabrication of MMCs because of 

less probability of particle segregation, undesirable brittle phase formation, free from cast 

defects, consistent distribution of reinforcement and superior mechanical properties [13-15]. 

Advantages of P/M route over casting comprises of eliminating segregation and defects 

associated with casting. 

1.1.3.2 Blending and milling 

Blending is the mixing of powders using a blender which works on the principle of tumbling, 

shaking or planetary action of movement. Blenders can be of several types such as double 

cone blender, turbula shaker mixer and V-mixer. Blending method involves only intermixing 

of powders.  

Mechanical milling is a solid-state powder processing technique that involves repeated cold 

welding, fracturing, and re-welding of powder particles in a high-energy ball mill. In this 

process, the blended elemental powder mixture is loaded into the vials along with the 

grinding media, and the whole mass is agitated at a high speed for a definite period of time. 

Process control agent (PCA) (also referred to as lubricant or surfactant) is occasionally added, 

especially when ductile materials are being milled, to minimize the effect of cold welding and 

consequent formation of large lumps of powder.  
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Fig. 1.1 Schematic diagram of ball and powder collision [11]. 

 Milling uses balls for mixing as well as reducing the particle size of powders. Milling 

includes grinding of powders in specially designed vials in presence of balls with a process 

control agent. The powders are subjected to milling and milling parameters are decided 

keeping in concern the final size of powders required, nature of powders and content of 

powders. Fig. 1.1 illustrates the schematic diagram during ball and powder particles collision 

describing the mechanism of particle size reduction and fragmentation. Milling of powders is 

dependent on several factors: type of mill, mill speed, milling time, size distribution of the 

grinding medium, ball to powder weight ratio, milling atmosphere and process control agent.  

 

1.1.3.3 Conventional sintering 

The technique of consolidation without melting is a boon to the world of materials which is 

possible by thermal activation of mass transport processes [16]. The driving force for the 

former being reduction of surface and grain boundary energies, high sintering temperature is 

a desirable facet for formidable strength [17]. The consolidation of matrix and reinforcement 

powders is successful when the interfacial bonding along with the uniform distribution and 

other factors promote good mechanical properties. Sintering is a thermally activated diffusion 

of atoms to form desirable shapes. Thermodynamically sintering is driven by surface area 

reduction. Smaller particles sinter faster than large particles, and high temperature accelerates 
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the process of sintering [18]. Sintering is consolidation of compacted powders compacted 

into required shapes. Sintering comprises of three stages; initial stage being neck growth 

between contact particles, intermediate stage corresponding to pore rounding and onset of 

grain growth and finally the pores collapse into closed spheres impeding the grain growth.  

Initial Stage: Transport from high energy convex particle surfaces to concave surfaces 

forming necks. Fusing increases surface area, pore volume and density remains almost 

constant (4-5% shrinkage, relative density 0.5-0.6). 

Intermediate Stage: Interparticle neck growth takes place increasing the grain boundary area. 

Interparticle grain boundary flattens, pore diameter decreases (5-20% shrinkage, relative 

density upto 0.95). 

Final Stage: Isolated pores may remain at triple points or inside grain matrix. These pores 

may be gradually eliminated. (relative density >0.95). 

Fig. 1.2 reveals the play of different sintering mechanisms in the sintering process of green 

compacts. 

Sintering mechanisms 

1. Evaporation-condensation (higher vapour pressure over a convex surface compared to 

concave). 

2. Diffusion (differences in vacancy concentration) (a) surface diffusion, (b) grain 

boundary diffusion, (c) volume diffusion. 

3. Flow (pressure induced). 

4. Dissolution-precipitation (liquid phase wetting the surface). 

 

Fig.1.2 Diffusion paths during sintering. The numbers correspond to the numbers in 

the above paragraph [11]. 
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Aftermath of sintering 

An aggregate of fine grained crystal size increases in average grain size when heated at 

elevated temperatures. As the average grain size increases it is obvious that some grains must 

shrink and disappear. An equivalent way of looking at the grain growth is as the rate of 

disappearance of grains. Then the driving force for the process is the difference in energy 

between the fine grained material and the larger grain size product resulting from the 

decrease in grain boundary area and total boundary energy. This energy change corresponds 

to about 0.1-0.5 cal/g for the change from a 1 micron to 1 cm grain size. 

Grain growth happens due to motion of atoms across a grain boundary. Convex surfaces have 

a higher chemical potential than concave surfaces, therefore grain boundaries will move 

towards their center of curvature. As smaller particles tend to have a higher radius of 

curvature this leads to smaller grains losing atoms to larger grains and shrinking. This is a 

process called Oswald ripening. Large grains grow at the expense of small grains. Grain 

growth in a simple model is found to follow: 

     (6) 

Where G is final average grain size, G0 is the initial average grain size, t is time, m is a factor 

between 2 and 4, and K is a factor given by: 

K = K0 * exp( − Q / RT)    (7) 

Where Q is the molar activation energy, R is the ideal gas constant, T is absolute temperature, 

and K0 is a material dependent factor. 

The conventional method of sintering renders coarse microstructure, poor adhesion and 

density, low strength and hardness at high temperatures. There is a need of advanced 

sintering techniques to obtain finer microstructures. 
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1.1.3.4 Spark plasma sintering 

The spark plasma sintering technique is becoming popular due to the intrinsic advantages of 

the method and the enhanced material properties, as well as lower processing temperature and 

shorter sintering time to consolidate powders compared to conventional methods. The 

differences between SPS and conventional methods include process efficiency and energy 

savings as well as microstructural and compositional implications. Sintering at lower 

temperatures and shorter times reduces the threat of vaporization, minimizes grain growth 

and renders cleaner grain boundary. Spark plasma sintering (SPS) uses high amperage, low 

voltage, pulse DC current and uniaxial pressure to consolidate powders [16]. The exciting 

results obtained in the sintering of composites by SPS can be ascribed to the differential 

activation of the matrix and reinforcement, as the existing theory for SPS proposes that the 

current pathway is unlike for conducting and non-conducting powders.  

 

Fig.1.3 Schematic diagram of SPS process [18] 

Fig. 1.3 shows the schematic process of SPS method illustrating the arrangement of die and 

sample. A combination of current flow through the sample and radiative heat loss on the die 

wall gives rise to a radial temperature distribution in conductive samples. The rapid increase 

in the use of SPS can be attributed largely to two broad considerations: (a) the intrinsic 

advantages of the method relative to conventional sintering methods and (b) the observations 

of enhanced properties of materials consolidated by this method. With respect to 

compositional  
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and microstructural changes, sintering at lower temperatures and for shorter times minimizes 

material loss due to vaporization, [19-22] undesirable phase transformation, [23] and 

suppression of grain growth [24-26]. The parameters that are associated with the SPS process 

include the current, the applied uniaxial pressure, and heating rate. Typically, the current and 

sintering temperature are dependent parameters as Joule heating is the source of thermal 

activation, either in the graphite die only (when the sample is nonelectrically conducting) or 

in the die and sample (when the sample is electrically conducting). The pressure has been 

recently shown to play a crucial role in the consolidation of materials, particularly in 

nanostructured powders. The maximum pressure that can be uniaxially applied in the SPS 

process is mostly decided by the mechanical property of the graphite die. The fabrication of 

nanocomposites via spark plasma sintering renders the grain boundaries clean, to avoid oxide 

interfacial layer. The highly reduced time of fabrication controls the grain growth of matrix 

particles as well as aids in better pinning effect and retention of nanostructure. Spark plasma 

sintering has the advantage of combining the effects of axial mechanical loading, temperature 

and electric current. The current plays two roles in SPS i.e. current is the source of heating by 

Joule effect and it also has the positive effect of enhanced diffusion rate during phase growth 

and intermetallic diffusion [26]. The advent of nanostructured material production techniques 

have led to an unprecedented growth in the area of metal matrix composites with 

extraordinary superior strengths. 

 

1.1.4 Interface 

  

The zone between the matrix and reinforcement phase (interface or interphase) is an essential 

part of MMC. Bonding between the two phases develops from interfacial frictional stress, 

physical and chemical interaction and thermal stresses due to mismatch between coefficient 

of thermal expansion of matrix and reinforcement. During the designing of a MMC the 

underlying interfacial phenomenon governing the transmission of thermal, electrical and 

mechanical properties is of utmost importance [12]. The physicochemistry of wetting and 

bonding of oxide reinforcements with the metal matrix (i.e. the non reactivity at the interface 

zone) in terms of Gibbs free energy change ΔG
O

r is as follows 

                                     (8) 

 



Chapter 1         Introduction 

11 
 

where Me is the matrix and MOn is the reinforcing oxide. The Gibbs free energy is strongly 

positive in this case; therefore it has been proposed that the oxide reinforcements can have 

only Vander Waals kind of interaction with metal matrices arising from dispersion forces. 

Some groups [27-30] who were working on the thermodynamic aspects of wetting of 

metal/oxide couples have reported large variations between the experimental results and the 

theoretical considerations. The work of adhesion Wa plays a major role in determining the 

level of interaction of matrix and reinforcement. The more the work of adhesion Wa the better 

is the adhesion [15]. 

 

The interfacial failure needs to be evaluated accurately to estimate the performance of a metal 

matrix composite. The interfacial failure in case of particulate reinforced metal matrix 

composite has not been apprehended comprehensively till date. Several groups [31-34] have 

reported the basic mechanisms of interfacial failure in particle reinforced metal matrix 

composites as interface decohesion, damage accumulation, solute segregation, thermal misfit 

dislocation density, reinforcement geometry and clustering. To quantify the interfacial failure 

we need to understand the sintering response in context to the matrix-reinforcement alliance 

and the later depends directly on the reinforcement particle size and PSR (particle size ratio). 

 

1.1.5 Characteristic Features  

1.1.5a Fabrication of copper-alumina composites 

Copper-alumina composites have a wide range of practical applications in electrical, 

automobile and aerospace industries [35]. The copper-alumina interaction is of utmost 

importance to certify specific applications. The surplus strength entitled to the material has to 

be compromised with the loss in ductility. The strength-ductility dichotomy can be alleviated 

by using small volume fraction of inclusions (reinforcements). Alumina is a strength boon to 

the matrix because it is chemically stable, inert and non reactive at high temperatures. Copper 

poses a threat in terms of mechanical pursuit, such as abrasion, sudden failure due to contact 

resistance (i.e. because of poor high temperature strength and wear performance) [36]. The 

electrical applications of copper demand high wear resistance to avoid abrasion failure in 

sliding contacts. Regarding reinforcements, oxide nanoparticles are most suitable because of 

their hardness, stability and insolubility in base metal and they also offer obstacles to 

dislocation motion at elevated temperatures without affecting the electrical and thermal 

conductivity [37]. Copper is an excellent material for electrical applications whose efficiency 
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can be enhanced by improving its mechanical properties [38]. When alumina particles are 

dispersed in copper matrix, they exhibit unique characteristics, such as high thermal and 

electrical conductivity, as well as high strength and excellent resistance to annealing [35]. 

The applications encompass resistance welding electrodes, lead frames and electrical 

connectors [39]. Its use has been suggested in International Thermonuclear Experimental 

Reactor (ITER). The first wall of the reactor has been proposed to be made out of austenitic 

stainless steel plate bonded to an alumina dispersed copper plate. Such critical applications of 

this material give way to their fabrication by powder metallurgy route. The studies on copper-

alumina MMC along with their properties have been carried out by several groups [40-43]. 

Fathy et al. [40] have demonstrated improvement in compressive strength, hardness and wear 

resistance of Cu-Al2O3 system, Ritasalo et al. [41] have reported hardness value of 1.58 GPa 

for SPS sintered Cu-Al2O3 composite. The increase in arc erosion resistance of Cu-Al2O3 

with the increase in alumina content has been reported by Wang et al. [42]. Nachum et al. 

[43] have studied the microstructural and mechanical properties of Cu-Al2O3 nanocomposites 

fabricated by HIPing, where the increase in strength and nanohardness has been highlighted. 

The fabrication of Cu-Al2O3 nanocomposites containing high volume fraction of alumina by 

SPS route has been performed by Michalski et al. [44], shows that it does not cater to the cost 

effectiveness factor of engineering industry. The influence of sintering atmosphere on the 

matrix-reinforcement bonding and subsequently other properties, such as densification and 

hardness, has not yet been understood in detail. 

 

1.1.5b Fabrication of aluminium-alumina composites 

Aluminium is a potent material for aerospace as well as military and electronics applications 

such as cryostats, cryo pump inducer and impeller, drive shafts and rotatory turbine 

machinery because it possesses high specific strength, high toughness and corrosion 

resistance [45]. Aluminium poses poor wear resistance which can be improved by the 

addition of ceramic reinforcements. Hesabi et al. [46] studied the compressibility of 

aluminium/nanometric alumina and have drawn a comparison between blended and milled 

powders. Rahimian et al. [47] have investigated that proper sintering parameters result in 

improved wear properties of Al-Al2O3 composites. Gudlur et al. [48] studied the variation in 

porosity with particle size and predicted the mechanical and thermal properties in Al-Al2O3 

system. Tatar et al. [49] have reported the improvement of thermal conductivity of Al-Al2O3 

composites with different alumina content. Zahibi et al. [50] have fabricated Al-Al2O3 
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composites by powder metallurgy and hot rolling processes, and showed that hot rolling 

process improved bonding of Al and Al2O3 as well distribution of Al2O3 in Al. Tahamtan et 

al. [51] synthesized Al-nano Al2O3 composites by ball milling followed by stir casting which 

resulted in better wettability of Al2O3 in Al, fair distribution of alumina particles in the 

matrix, low porosity and high tensile strength. Zebarjad and Sajjadi [52,53] milled Al–5 wt.% 

Al2O3 composite powders and noted that the alumina powders became finer and got dispersed 

more uniformly with increasing milling time and increase in microhardness of the composite. 

Prabhu et al. [54] milled Al–Al2O3 powder mixtures with different particle sizes (50 nm, 150 

nm, and 5µm) and volume fractions (5, 10, 20, 30, and 50) of Al2O3. By milling the powder 

mixtures for different times in a SPEX mixer mill, the authors noted that a uniform dispersion 

of the reinforcement phase was obtained in all the cases after milling for about 20 h. Hesabi 

et al. [55] investigated the effect of Al2O3 powder particle size on the morphological and 

structural changes of Al–Al2O3 composites. They added 5 vol.% of nano- Al2O3 (with 35 nm 

particle size) and micro- Al2O3 (1µm particle size) to pure Al and milled these powders under 

identical conditions in a planetary ball mill. The milling stages include plastic deformation, 

microwelding, and particle fragmentation. These stages were found to occur earlier in the 

microcomposites than in the nanocomposites. On the other hand, longer milling time was 

found to be necessary to achieve the steady-state condition in the nanocomposites compared 

to the microcomposites. It was also noted that at the steady-state condition, the crystallite size 

and lattice strain of the Al matrix in the nanocomposite powder were smaller than in the 

microcomposites, suggesting a faster refinement process occurring in the nanocomposites. 

Zedah et al. [56] synthesized Al-Al2O3 adding mechanically activated nano-crystalline Al2O3 

particles into aluminum matrix which showed finer microstructure, good dispersion and 

better mechanical attributes. Razavi-Tousi et al. [57] studied the effect of particle size and 

volume fraction of alumina on aluminium’s compaction and densification and concluded that 

pressability decreases with decrease in particle size, with inhibition of grain growth. 

 

1.1.6 Thermal Loadings 

The ceramic phase which is generally used as reinforcement in MMC has a large difference 

in coefficient of thermal expansion with the metal phase. This thermal mismatch causes large 

residual thermal stresses near the interfaces of composite when they are cooled from the 

fabrication temperature
 
[58-60]. Thermal stresses are important in design because they lead to 

plastic yielding or failure of the material. There are several mechanisms by which thermal 
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stresses can be relaxed which includes interface debonding, by microplasticity of the metal 

matrix and crack initiation and propagation
 
[61]. These act as relaxation phenomenon to 

lower the internal strain in the composite.  

The difference in thermal conductivity of the matrix and reinforcement generates a thermal 

gradient throughout the composite. The thermal mismatch of both constituents (matrix and 

reinforcement) plays a vital role in the thermo-mechanical reliability of devices. Some 

amount of thermal stress is relaxed by dislocation punching from the interface into the matrix 

via cooling from the processing temperature. This leads to high dislocation density and high 

yield strength. Thermal stress depends on: reinforcement volume fraction and morphology, 

matrix crystallographic texture, void or lack of adhesion at matrix reinforcement interface. 

Repetitive non reversible phenomena like thermal cycling leads to permanent deformation.  

The reinforcement particle geometry influences the degree of thermal stress as:  reducing the 

size of the reinforcing particles would increase thermal fatigue resistance [62].  

The thermal strain  , developed at the interface of discontinuously reinforced MMCs due to 

thermal stress is expressed as   

       (9) 

Where δα is the difference between the thermal expansion coefficient of the reinforcement 

and the matrix and δT is the range of temperature experienced during processing. The 

generated thermal strain may exceed the local yield strain of   matrix–reinforcement interface 

which will lead to the damage accumulation at the interface. The resultant phenomena of 

thermal stress are particulate fracture, de-bonding and cracking in the matrix–reinforcement 

interface, failure in the matrix via micro-void coalescence and shear fracture of the matrix 

which deteriorate the composite properties. The above failure mechanisms act as relaxation 

phenomena and lower the internal strain energy and entropy of the composite [63,64]. 

Characterization of damaged particles will be valuable in improving processing procedures 

and in understanding deformation and failure of MMCs.   

The behaviour of metal matrix composites will be different from isothermal conditions when 

they are subjected to temperature cycling [65]. Plastic flow stress and strain hardening 

behaviour of the composites are affected by thermal cycling because of the triaxial state of 

stress generated at the particle–matrix interfaces. Residual stress can also have a considerable 

influence on the composites subjected to thermal cycling as they can initiate matrix phase 
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yielding which causes the formation of strain hysteresis loops between the heating and 

cooling segments of the cycle. 

1.1.7 Loading rate  

Loading rate corresponds to the crosshead velocity at which the mechanical test has been 

performed. Metal matrix composites respond differently to high strain rate loading conditions 

as compared to monotonic or quasistatic loading. As strain rate is increased from quasi-static 

to dynamic, the temperature conditions gradually change from isothermal to fully adiabatic. 

There is thermo-mechanical coupling in the adiabatic stress-strain curves i.e the effects of 

strain hardening, strain rate strengthening and thermal softening caused by the adiabatic 

temperature increase couple together. Structural applications require good performance 

during impact or high strain rate deformation [66]. Thermo-mechanical coupling effect has 

been observed in MMCs. Strain rate sensitivity of composites mostly adheres to the strain 

rate sensitivity behaviour of the corresponding matrices. Increasing particle content increases 

strain rate sensitivity. Strength of composites increases with increasing strain rate. The 

increase in strength with increasing strain rates was observed by some school of researchers, 

but some also concluded increase-decrease trend with increasing strain rates for stiffness and 

strength of materials. Flow stress also experiences an increasing trend with increasing strain 

rate [67]. Flow stress of matrix increases with increasing reinforcement content. At high 

strain rates local heat is generated which sometimes results in matrix melting. At high strain 

rates composites experience higher strain rate sensitivity than the monolithics.  

1.2 Scope of the thesis 

The organization of the rest of the thesis is as follows. A detailed experimental study and 

different experimental techniques are provided in chapter 2. All the equipments used for 

fabrication and characterization have been described. The thermal modules and processes 

followed for the thermal shock and conditioning experiments has also been tabulated. 

 

In chapter 3.1a, a description of the effect of powder mixing techniques such as blending and 

milling experiments on the dispersion, microstructure and properties of Cu-Al2O3 and Al-

Al2O3 micro- and nano-composites have been discussed in detail. A comparison of blending 

and milling procedures on several aspects such as dispersion of alumina particles in matrix 

particles, particle size variation and sintering response have been studied comprehensively.  
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Chapter 3.1b explains the effect of sintering atmosphere on microstructural evolution, 

structural integrity and properties of Cu-Al2O3 composites. 

 

Chapter 3.2 is devoted to fabrication and characterization of Cu-Al2O3 and Al-Al2O3 micro- 

and nano-composites by conventional and spark plasma sintering. After fabrication and 

characterization of both systems mechanical properties were evaluated and a comparative 

study for micro- and nano-composites has been reported. 

 

Chapter 3.3 describes the effects of induced thermal stress on the structural integrity and 

mechanical behaviour of Cu-Al2O3 and Al-Al2O3. A study on induced thermal stress by 

subjecting the copper and aluminium based micro- and nano-composites to thermal shock of 

different degrees, thermal conditioning, and high temperature flexural test with subsequent 

fractographies correlating microstructural integrity and mechanical behaviour has been 

conducted extensively for both the systems.  

 

Chapter 3.4 is an exploratory study on the effect of loading rate sensitivity on the flexural 

strength of Cu-Al2O3 and Al-Al2O3 micro- and nano-composites. Different loading rates were 

maintained for flexural testing at ambient conditions and compared. 

A summary of the main findings along with conclusions is presented in chapter 4.  
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Chapter 2 

Experimental Details 

 

 

 

 

 

 

 

2.1 Fabrication 

2.1.1 Blending 

Copper (Loba Chemie, purity > 99.7%, average size~11µm) aluminium (Loba Chemie, purity 

> 99.7%, average size~22µm and alumina (Sigma Aldrich, average size~10µm (micro) and 

<50 nm (nano)) powders were blended separately in turbula shaker mixer (T2F, LCR Hi 

Tester, Switzerland) for 8 hours at 45 rpm. Copper-5 vol. % micron size alumina, copper-5 

vol. % nano size alumina, aluminium-5 vol. % micron size alumina and aluminium-5 vol. % 

nano size alumina compositions were blended. The compositions blended for conventional 

sintering are Cu-1, 3, 5, 7 vol. % Al2O3 nanocomposites and Cu-5, 10, 15, 20 vol. % Al2O3 

microcomposites. The compositions used for spark plasma sintering of nanocomposites were 

0.5, 1, 3, 5, and 7 vol. % of alumina nanoparticles in copper and aluminium matrix. Another 

set of specimens having compositions of 1, 5, 20 vol. % micron size alumina were used to 

synthesize microcomposites by spark plasma sintering. The blended powders were collected 

at 2, 4, 8 hours and characterized by scanning electron microscopy. 

2.1.2 Milling 

Mixture of copper-alumina and aluminium-alumina powders were milled separately at a 

speed of 300 rpm in a dual drive planetary mill (the design and make of the mill is available 
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in an Indian patent “Synthesis of stable nanocrystalline iron carbides by reaction milling in a 

dual-drive planetary mill" patent application no. 1021/DEL/2007, Dated: 10.05.07”). Copper-5 

vol. % micron size alumina and aluminium-5 vol. % micron size alumina compositions were 

milled for 10 hours. The powders were collected at intervals of 2, 5, 10 hours and 

characterized for particle size analysis, scanning electron microscopy and x-ray diffraction. 

 

2.1.3 Compaction 

The copper-alumina and aluminium-alumina milled powders were compacted at 700 MPa 

and 400 MPa respectively in a uniaxial press (SoilLab). Specimens for 3-point flexural test 

were compacted using a rectangular die of dimension (31.5x12.5x6.35 mm
3
). Compression 

test samples were prepared using cylindrical die of diameter 10 mm.  

2.1.4 Sintering 

2.1.4.1 Conventional sintering 

Sintering of the cylindrical pellets was carried out in a super kanthal heated tubular furnace 

(Naskar, India). Commercially pure nitrogen, hydrogen and argon gas were used as sintering 

atmosphere to prevent oxidation during heating. The samples were held at their different 

sintering temperatures for 60 minutes followed by furnace cooling at a heating rate of 

5°C/minute, the details of sintering temperature and compositions of composites used for 

fabrication is tabulated in Table 2.1. 

2.1.4.2 Spark plasma sintering 

The micro- and nano-composites were fabricated via spark plasma sintering (SPS) (DR 

SINTER LAB SPS Syntex INC, model: SPS-515S, Kanagawa, Japan) method at a 

temperature of 700ºC (copper) and 500°C (aluminium) maintaining a soaking time of 5 

minutes at a ram pressure of 50 MPa. The heating rate for the whole process was maintained 

at 80ºC/minute for both cases. 
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Composition 

Conventional sintering 

temperature (°C) 

Composition Spark plasma sintering 

temperature (°C) 

Copper-1,3,5,7 vol. % 

nanoalumina 

850, 900, 1000 Copper-0.5,1,3,5,7 vol. 

% nanoalumina 

700 

Copper-5,10,15,20 vol. 

% microalumina 

850, 900, 1000 Copper-1,5,20 vol. % 

microalumina 

700 

Aluminium-1,3,5,7 vol. 

% nanoalumina 

500, 550, 600 Aluminium-0.5,1,3,5,7 

vol. % nanoalumina 

500 

Aluminium- 5,10,15,20 

vol. % microalumina 

500, 550, 600 Aluminium-1,5,20 vol. 

% microalumina 

500 

 

Table 2.1 The compositions of micro- and nano-composite used for copper and aluminium 

matrix and their corresponding sintering temperatures. 

2.2 Characterization 

2.2.1 Particle size analysis 

The particle size was measured in a laser particle size analyzer (Malvern, Mastersizer 2000, 

UK). The dispersion for paricle size analysis was prepared by dispersing the powder particles 

in sodium hexa metaphosphate solution made by dissolving 2gms in 100 ml of water.  

2.2.2 X-ray diffraction 

X-ray diffraction of the as milled powders, and sintered composite samples were performed 

using the diffractometer (PANalytical model: DY-1656). The radiations used were CuK
α 

(λ=1.542A°). X-ray diffraction was carried out with a scan speed of 2°/minute. The XRD 

patterns of as-received alumina micropowder and nanopowder has been plotted in Fig. 2.1. 

2.2.3 Scanning electron microscopy 

The SEM micrographs of as received powder, blended powder, milled powder, sintered 

samples and fracture surfaces were obtained using the scanning electron microscope (JEOL 

JSM 6480 LV). The images were taken in both secondary electron (SE) and back scattered 

electron (BSE) mode according to requirement. The elemental detection analysis (EDS) was 

also done in order to study the elements present in the samples which is equipped with INCA 
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software. SEM micrographs of as-received alumina micropowder and nanopowder have been 

illustrated in Fig. 2.2. 

2.2.4 Field emission scanning electron microscopy 

The sintered composites and fracture surfaces of flexural bend test samples were captured 

under field emission electron microscope (NOVA NANOSEM 450). The FESEM 

micrographs were obtained at high magnifications such as 100000X and 200000X 

magnifications also. 

2.2.5 Transmission electron microscopy 

Transmission electron microscopy (TECNAI G2 20S-TWIN) equipped with an energy 

dispersive X-ray analyser was used to obtain transmission electron micrographs of composite 

samples and thermally treated samples. The samples were prepared by punching 3 mm discs 

from the sample whose thickness had been reduced to 100µm. The discs were then dimpled 

to around below 10µm and then ion milled for 1 hour for perforation. 

2.3 Mechanical property study 

2.3.1 Density measurement 

Density of sintered specimens was measured by Archimedes water immersion method. The 

density measurement kit (Contech model no: CB-300) was used for measuring the suspended 

weight and soaked weight of the specimens. 

2.3.2 Microhardness study  

Microhardness of the specimens was measured by Vickers hardness tester (Leco 

Microhardness Tester LM248AT) at a load of 0.3kgf for a dwell time of 5 seconds. A 

minimum of 4 readings was taken for each specimen.  

 

2.3.3 Nanoindentation hardness 

The nanoindentation hardness and elastic modulus of the nanocomposites were determined 

using nanoindentation (Fisher-Cripps UMIS) technique by applying a load of 20mN for a 

dwell time of 10 seconds. The readings were recorded at ten equivalent locations for each 

specimen and the closest values were considered. 
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2.3.4 Compression test 

According to ASTM standard E9-89 compression test was conducted with the aid of 

universal testing machine (INSTRON SATEC series servo-hydraulic machine) with 

specimen dimensions of 10 mm diameter and 8 mm height at a strain rate of 1min
-1

. Graphite 

powder was used to minimize friction between the sample and fixture of compression 

machine. A reduction of 50% in height was maintained for all the specimens. The end 

surfaces were kept normal to the axis of the specimen. 

2.3.5 Flexural test 

A set of specimens having dimensions of 31.5 x12.7 x 6.3 mm
3
, in accordance with  ASTM 

standard B925-08 were fabricated following the above mentioned route for both copper and 

aluminium matrix micro- and nano-composites except for maintaining the sintering holding 

time for 90 minutes.  A span length of 26mm and crosshead velocity of 0.5mm/minute was 

maintained during the flexural tests which were carried out in universal testing machine 

(INSTRON-5967). 

2.3.6 Wear test 

Sliding wear tests were performed using a ball on plate type wear machine (DUCOM TR-

208-M1) using hardened steel ball (SAE 52100) indenter of 2 mm diameter, with an applied 

load of 2 Kgf and sliding time of 15 minutes at a speed of 30 rpm. The hardened steel ball 

slides unidirectionally on fixed samples. The tests were carried out in laboratory atmosphere 

at a relative humidity of around 50-60% and temperature of about 25 C. The wear depth vs 

sliding time data was obtained from the inbuilt WINCOM software in the wear machine. The 

worn surfaces were characterized by SEM. 

2.4 Thermal treatment 

2.4.1 Furnace 

The composites were subjected to high temperatures in furnace (OE motors India Ltd.) for 

thermal shock and thermal conditioning treatments. 

 



Chapter 2        Experimental Details 

27 
 

 

2.4.2 Ultra-low temperature chamber 

The composites were subjected to ultra low temperature in a chamber (S.D. Scientific) for 

thermal shock and thermal conditioning treatments. 

 

 

 

 

 

 

 

 

Fig. 2.1 XRD patterns of as-received alumina micropowder (left) and nanopowder (right) 

 

 

 

 

 

Fig. 2.2 SEM micrographs of as-received alumina micropowder (left) and nanopowder (right) 
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Chapter 3 

Results and Discussion 

 

 

 

 

 

 

3.1a Effect of milling and blending on the dispersion, microstructure and 

properties of Cu-Al2O3 and Al-Al2O3 composites 

 

3.1a.1 Scope and objectives of the work 

During fabrication of MMC, homogeneous dispersion of reinforcement into metal matrix is 

always a great challenge. Blending and milling are widely used for this purpose. Here, 

turbula shaker mixer has been used for uniform dispersion of reinforcement into matrix. The 

3-D movement of the jar results in homogeneous mixing. High energy planetary milling has 

also been used to reduce powder particle size as well for mixing powder particles. The 

comparison between milling and blending of powders in terms of dispersion and sintering 

response of milled and blended powders after consolidation has been investigated in this 

chapter. 
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3.1a.2 Fabrication of composites 

Blending 

 The Cu-5 vol. % micro- as well as nano-alumina powders were blended separately in a 

turbula shaker mixer for 2, 4 and 8 hours and consolidation was done using conventional 

sintering method. 

Milling 

 The Cu-5 vol. % micro-alumina powder was milled in a dual drive planetary mill for 2, 5 and 

10 hours and consolidation was done using conventional sintering method. A ball to powder 

weight ratio of 10:1 was used during milling. Milling was conducted under toluene to prevent 

oxidation.  

Consolidation 

 The milled and blended powders were compacted uniaxially and sintered conventionally in a 

tubular furnace at 900°C for copper-alumina and at 600°C for aluminium-alumina composites 

for 1 hour in both cases. 

3.1a.3 Characterization of composites 

3.1a.3.1 X-Ray diffraction 

Fig. 3.1a.1 shows XRD pattern of Cu-5 vol. % Al2O3 microcomposite powders milled for 

different time periods. The XRD patterns show broadening and reduced intensity of copper 

and alumina peaks with increasing milling time. Heavy deformation of powders due to 

collision between ball-powder, powder-powder results in decrease in crystallite size and 

increase in lattice strain. Fig. 3.1a.2 shows XRD pattern of Al-5 vol. % Al2O3 micro-

composite powders milled for different periods. It shows the intensity of aluminium and 

alumina peaks gradually decreases with milling demonstrating decrease in crystallite size, 

severe lattice distortion and grain refinement [1]. 
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Fig. 3.1a.1 X-ray diffraction patterns of Cu-5 vol. % Al2O3 microcomposite powders after 2, 

5, 10 hours of milling 
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Fig. 3.1a.2 X-ray diffraction patterns of Al-5 vol. % Al2O3 microcomposite powders after 2, 

5, 10 hours of milling 
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3.1a.3.2 Particle size analysis 

The particle size analysis (Fig. 3.1a.3 & 3.1a.4) reveals that the particle size initially 

increases and then decreases with further milling for both Cu-5 vol. % Al2O3 and Al-5 vol. % 

Al2O3 micro-composite powders. As copper and aluminium are ductile and soft in nature 

during initial stage of milling the particles weld and become flat in shape [2]. 
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Fig. 3.1a.3 Particle size distribution of Cu-5 vol. % Al2O3 microcomposite powders milled 

for different time periods 

The flattening of particles is followed by welding of flat particles with each other. Further 

milling leads to work hardening and result in particle fragmentation [3]. 
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Fig. 3.1a.4 Particle size distribution of Al-5 vol. % Al2O3 microcomposite powders milled for 

different time periods 

 

3.1a.3.3 Scanning electron microscopy 

3.1a.3.3.1 Dispersion 

The SEM micrographs in Fig. 3.1a.5 show the Cu-5 vol. % Al2O3 microcomposite powders 

after 2, 5 and 10 hours of milling. The micrographs show increase in particle size and become 

flaky after 2 hours of milling and then decreases after 10 hours of milling. After 10 hours of 

milling particles become almost spherical in nature. 
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Fig. 3.1a.5 SEM micrographs of Cu-5 vol. % Al2O3 microcomposite powders after 2,5,10 

hours of milling 

Fig. 3.1a.6 shows the SEM micrographs Al-5 vol. % Al2O3 microcomposite powders milled 

for different times. The particle size gradually reduces as milling progresses. Agglomeration 

of particles is visible at places due to surface activation during milling. The initial stage of 

milling results in particle size increase due to flattening of particle as aluminium is ductile. 

The flattened particles then weld with each other forming stacked flat particles. These stacks 

then get strain hardened with milling and then particle fragmentation takes place, reducing 

the particle size appreciably.  
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Fig. 3.1a.6 SEM micrographs of Al-5 vol. % Al2O3 microcomposite powders after 2,5,10 

hours of milling 

Fig. 3.1a.7 & 3.1a.8 reveal fair distribution of micron size alumina particles in copper matrix. 

As the blending time increase the distribution gets better.  

 

      

 

 

 

Fig. 3.1a.7 SEM micrographs of Cu-5 vol. % Al2O3 microcomposite powders after 2 and 8 

hours of blending 
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The nanoalumina particles show appreciable distribution in copper particles, which improves 

with increase in blending time. Th copper particles show dendritic shape and alumina 

particles are spherical in shape. 

       

 

 

 

 

 

 

Fig. 3.1a.8 SEM micrographs of Cu-5 vol. % Al2O3 nanocomposite powders after 2 and 8 

hours of blending 

The Al-5 vol. % Al2O3 micro and nano-composite powders show good distribution of 

alumina particles in the aluminium matrix powders. 

 

 

 

 

 

       

 

Fig. 3.1a.9 SEM micrographs of Al-5 vol. % Al2O3 nanocomposite powders after 2 and 8 

hours of blending 

Fig. 3.1a.9 & 3.1a.10 show alumina particles in aluminium matrix powders well distributed 

throughout the aluminium matrix powders. The powders at 8 hours of blending show finer 

distribution than in 2 hours of blending. The reason may be the tumbling action of turbula 

mixer which helps in breakage of agglomerated particles by shaking action.  

2h 8h 
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Fig. 3.1a.10 SEM micrographs of Al-5 vol. % Al2O3 microcomposite powders after 2 and 8 

hours of blending 

 

3.1a.3.3.2 Sintering response 

Fig. 3.1a.9 & 3.1a.10 illustrates the SEM micrographs of sintered specimens of Cu-5 vol. % 

Al2O3 and Al-5 vol. % Al2O3 microcomposites after 2, 5 and 10 hours of milling. The 

sintering response of milled powders improves with increase in milling time. Milling 

activates the powder particles and introduces lattice defects like vacancy and dislocations. 

The increase in milling time also results in grain refinement of the matrix.  
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Fig. 3.1a.11 SEM micrographs of Cu-5 vol. % Al2O3 microcomposite powders after 2,5,10 

hours of milling and 8 hours of blending followed by sintering at 900°C temperature  

The SEM micrographs of blended and sintered samples do not show any grain refinement, as 

blending could not reduce particle size. Milling also reduces the reinforcement particle size 

which results in effective grain boundary pinning. 
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Fig. 3.1a.12 SEM micrographs of Al-5 vol. % Al2O3 microcomposite powders after 2,5,10 

hours of milling and 8 hours of blending followed by sintering at 600°C temperature 

3.1a.4 Density and microhardness measurements 

 

The density of the composites prepared using blending and milling was measured using 

Archimedes method. The Vickers microhardness measurements were done at a load of 0.3kgf 

for a dwell time of 5 seconds. The density of milled samples decreases with milling time (Fig. 

3.1a.13 & 3.1a.14). The density of milled samples decreases due to brittleness of particles in 

the course of milling. As milling progresses particles become brittle due to strain hardening 

and their compressibility reduces [4]. The density values of milled samples maintain a 

negative trend with increase in milling time, as milling time increases more ball and powder 

collisions lead to brittleness of particles and surface activation leads to agglomeration of 

particles which impedes the compressibility of powders. 

The Cu-5 vol. % Al2O3 composite synthesized by blending shows 86.2 and 91.2% of 

theoretical density for nano-composite and micro-composite respectively. The Al-5 vol. % 
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Al2O3 blended micro-composite and nano-composite show 92.39 and 91.3% of theoretical 

density. 
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Fig. 3.1a.13 Density of Cu-5 vol. % Al2O3 sintered at 900°C after milling 
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Fig. 3.1a.14 Density of Al-5 vol. % Al2O3 sintered at 600°C after milling  
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Fig. 3.1a.15 & 3.1a.16 show variation of microhardness of sintered samples of Cu-5 vol. % 

Al2O3 and Al-5 vol. % Al2O3 composites with milling time. 
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Fig. 3.1a.15 Microhardness of Cu-5 vol. % Al2O3 sintered at 900°C after milling 

The microhardness value for sintered Cu-5 vol. % Al2O3 microcomposite recorded was         

25.9 HV and for nanocomposite was 47.25 HV after blending. The microhardness values for 

milled samples are higher than that of blended samples. The reason is that milling 

mechanically activates the powder particles and also refines powders. As a result milled 

powder shows higher sintering response than blending. The microhardness values for 

aluminium-alumina blended samples were 35.77 HV for microcomposite and 31.65 HV for 

nanocomposite. The milled samples possess brittleness, as well as grain refinement. After 5 

hours the microhardness values decrease as particles get welded and flattened and then after 

10 hours of milling, the microhardness values increase as particle fragmentation takes place.  
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Fig. 3.1a.16 Microhardness of Al-5 vol. % Al2O3 sintered at 600°C after milling 

 

3.1a.5 Summary and Conclusions 

Cu-5 vol. % Al2O3 and Al-5 vol. % Al2O3 micro-and nano-composites were fabricated by 

milling and blending of copper and alumina, aluminium and alumina powders followed by 

conventional sintering. Milling reduces the particle size of composite powders with 

increasing milling time. X-ray diffraction, particle size analysis and microstructure reveal 

particle size reduction and good distribution of alumina particles in copper and aluminium 

matrix powders. Microhardness of milled samples is higher than blended samples. Blending 

of powders followed by sintering impart higher density than milled and sintered samples. 

Grain refinement of copper and aluminium is observed with increasing milling time. Milling 

process demonstrates plastic deformation, micro-welding and particle fragmentation in SEM 

micrographs. 
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3.1b Effect of sintering atmosphere on the microstructure and properties of 

Cu-Al2O3 composites 

 

3.1b.1 Scope and objectives of the work 

Sintering atmosphere plays a crucial role in the sintering response of the material. Synthesis 

of microcomposites via conventional sintering using N2, H2 and Ar atmospheres has been 

investigated here. It has been observed that Cu-Al2O3 metal matrix composite (MMC) shows 

poor mechanical properties and physical bonding of matrix and reinforcement when it is 

conventionally sintered in N2 or Ar atmosphere compared to those in H2 atmosphere. The 

structural integrity of the microcomposites with the variation in sintering atmosphere differs, 

hence providing a scope for tailoring the properties of copper-alumina composites by 

changing sintering environments. 

 

3. 1b.2 Fabrication of microcomposites 

The as-received copper (Loba Chemie, purity > 99.7%, average size-11µm) and alumina 

(Sigma Aldrich, average size-5.71µm) powders were mixed and blended separately using 

turbula shaker mixer for 8 hours at a speed of 45 rpm to ensure homogeneous mixing. The 

reinforcement (alumina) content added to copper was 5, 10, 15 volume %. The powders were 

compacted into cylindrical pellets (diameter: 15 mm) using uniaxial hydraulic press at an 

applied pressure of 700 MPa for 2 minutes. The green samples were then sintered by 

conventional sintering in a tubular furnace at 900°C for a holding time of 60 minutes in 

nitrogen (Asiatic gases Ltd., 99.8% purity) atmosphere at a heating rate of 5°C/minutes. In 

another set of experiments, specimens of same constituents were fabricated by sintering them 

in hydrogen (99% purity) atmosphere, while keeping the other parameters fixed. The third set 

of specimens with similar composition as above were synthesized by sintering them in argon 

atmosphere (British oxygen company, 99.994% purity), maintaining rest of the parameters 

fixed. 

 

3.1b.3 Characterization of the microcomposites 

Sintered specimens were characterized by X-Ray diffraction (PANalytical model: DY-1656) 

CuKα, and scanning electron microscope (JEOL 6480 LV). The micrographs of the specimen 
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were obtained by chemically etching the samples by a mixture of 5 g FeCl3 and 50 ml HCl in 

100 ml distilled water.  

 

3.1b.3.1 X-Ray diffraction 

 

The X-Ray diffraction of sintered samples was carried out to study the phases present after 

sintering. The alumina peaks confirm to be monoclinic in nature. The X-Ray diffraction 

patterns of the specimen sintered conventionally in nitrogen, hydrogen and argon atmosphere, 

illustrated in Figs.3.1b.1 show the presence of cuprous oxide (Cu2O) along with Cu and 

Al2O3 in both cases. In the composites sintered in argon atmosphere, the peak for cuprous 

oxide is not that intense, but the presence of oxygen has been further verified by EDAX.  
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Fig. 3.1b.1 XRD diffraction patterns of Cu- 15 vol. % Al2O3 microcomposites sintered 

conventionally in nitrogen and hydrogen atmosphere 
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3.1b.3.2 Scanning electron microscopy 

 

The microstructure obtained by scanning electron microscope (SEM) gives ample 

information about the pore density, distribution, alignment and nature of porosity along with 

the matrix-reinforcement bonding. Figs. 3.1b.2, 3.1b.3 & 3.1b.4 depict the microstructure of 

Cu-Al2O3 MMC, the white patches showing alumina and the grey area referring to the copper  

matrix. The scanning micrographs reveal the clear difference between the bonding of copper 

and alumina in N2, Ar and H2 atmospheres. The specimen sintered in hydrogen atmosphere, 

(Fig.3.1b.3), shows good copper-alumina interfacial bonding, as compared to the composites 

sintered in nitrogen and argon atmosphere, (Figs. 3.1b.2 & 3.1b.4). There exists a 

discontinuity in bonding of the alumina particles with the copper matrix in the composites 

sintered in argon atmosphere (Fig. 3.1b.4).  

 

Fig. 3.1b.2 SEM micrographs and EDS analysis of Cu-15 vol. % Al2O3 sintered in nitrogen 

atmosphere 

The proximity and degree of physical attachment of the alumina and copper particles in the 

sintered composites can be ranked in order of nitrogen, argon and hydrogen (in increasing 

order). It is desirable to remove cuprous oxides from the interface of Cu-Al2O3 composite to 

enhance mechanical properties. This fact can be attributed to the high bond strength of 

Cu/Al2O3 than those of Cu2O/Al2O3 and Cu/Cu2O [1-3]. This could possibly be attributed to 

the formation of cuprous oxide at low temperatures (tentatively 700°C) and possibility of 

beginning the decomposition at higher temperatures close to 1000°C.  
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Fig. 3.1b.3 SEM micrographs and EDS analysis of Cu-15 vol. % Al2O3 sintered in hydrogen 

atmosphere 

The decomposition yields copper and oxygen; in this process the oxygen escapes from the 

surface creating voids and expanding them eventually. The creation of voids impedes the 

densification causing swelling in addition as the oxygen released from the copper oxide 

formed at the copper-alumina interface disturbs the continuity in bonding of copper and 

alumina. Ghasemi et al. have reported that in reducing atmosphere the Cu2O particles will be 

reduced to Cu and the removal of Cu2O particles from the interface results in the substitution 

of Cu2O/Al2O3 and Cu/Cu2O interfaces by a Cu/Al2O3 interface [4]. Chiang et al. [2] and 

Sun, Discoll investigations [5] have shown that the strength of Cu/Al2O3 interface is higher 

than that of Cu2O/Cu interface. Therefore, an improved alumina-copper contact surface and a 

decreasing stress concentration, owing to the absence of Cu2O particles, resulted in an 

increase of bond strength. These micrographs also depict the fact that as the alumina content 

increases the tendency of embedment of alumina particles in the copper matrix deteriorates. 

Elements with less stable oxides than alumina will be reactive only to the extent that they 

obtain oxygen from other sources (e.g.: atmosphere) [6].  
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Fig. 3.1b.4 SEM micrographs and EDS analysis of Cu-15 vol. % Al2O3 sintered in argon 

atmosphere 

 

The EDS analysis of the specimen (the whole micrograph in Figs. 3.1b.2, 3.1b.3, 3.1b.4) was 

selected for EDS analysis) sintered in nitrogen, hydrogen and argon atmosphere is shown in 

Figs. which shows a noticeable difference in the oxygen content of the samples. The 

elemental composition of oxygen estimated in Cu-15 vol. % Al2O3 MMC sintered in N2, H2 

and Ar atmosphere is 21.02, 4 and 12.99% respectively. It is evident from the EDAX values 

that a smaller amount of O2 is present in the composite sintered in H2 atmosphere compared 

to that in N2 atmosphere. The oxygen content present in the specimens sintered in argon 

atmosphere is somewhere in between of that of nitrogen and hydrogen.  

 

3.1b.4 Density and microhardness measurement 

The densification of all the specimens has been estimated using Archimedes method. The 

micro-hardness values of all the specimens were determined by Vickers hardness tester (Leco 

LV 700) applying a load of 0.3 kgf and a dwell time of 1 sec. The readings were recorded 

here at four equivalent locations for each specimen. 

 

The densities of all the specimens recorded using Archimedes method shown in; Fig. 3.1b.5 

indicates that the composites sintered by conventional method in nitrogen atmosphere show a 

slight increase in densification as the alumina content increases. With the number of finer 

particles increasing (alumina particles are finer than copper particles), the particle packing 
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and particle–particle contact increases, hence the density of the compacts increases. The 

densification process in argon atmosphere is peculiar i.e. it increases up to 10 vol. % of 

alumina and then a slight decrease takes place. This could be supported by the fact that as the 

amount of alumina increases to 15 % there is some chemical interfacial phenomenon taking 

place at this particular composition [7] which can be further confirmed by high resolution 

electron microscope. The trend in densification for the compacts sintered in hydrogen 

atmosphere is opposite to that obtained in the nitrogen atmosphere, which needs further study 

to clarify. The amount of cuprous oxide (Cu2O) formed in H2 atmosphere is less as compared 

to that in N2 atmosphere. The composites sintered in nitrogen atmosphere have considerably 

low density due to the fact that during decomposition of cuprous oxide, oxygen gets released 

expanding the sintered compact by creating voids.  
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Fig. 3.1b.5 Densification of Cu-Al2O3 microcomposites fabricated using nitrogen, hydrogen 

and argon sintering atmospheres by conventional sintering 

 

The hardness studies of microcomposites sintered in nitrogen as well as hydrogen 

atmosphere, shown in Fig. 3.1b.6, indicate that the microcomposites sintered in hydrogen 

atmosphere show higher hardness values than those sintered in nitrogen atmosphere. The 

microcomposites sintered in argon atmosphere possess hardness values close to that of 

nitrogen atmosphere.  
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Fig. 3.1b.6 Comparison of hardness of Cu-Al2O3 microcomposites fabricated using nitrogen, 

hydrogen and argon sintering atmospheres by conventional sintering 

 

The underlying fact can be correlated with the densification study: the density is higher for 

the microcomposites sintered in hydrogen atmosphere, complementing the hardness data. The 

proposed reason possibly could be the basis of argument in the comparison of hardness 

profiles of microcomposites.  

 

3.1b.5 Summary and Conclusions 

The Cu-Al2O3 microcomposites were fabricated using conventional sintering route in 

nitrogen, argon as well as hydrogen atmospheres. The densification process is more efficient 

in the case of hydrogen atmosphere than in nitrogen or argon atmosphere. The microstructure 

of the composites sintered in hydrogen atmosphere reveals better matrix-reinforcement 

bonding. The problem of poor interfacial bonding caused in the nitrogen and argon 

atmosphere has been addressed up to a certain extent using hydrogen atmosphere. The EDS 

analysis also proves the same. The formation of Cu2O in the case of sintering in nitrogen as 

well as argon atmosphere reduced the extent of bonding of copper with alumina. The density 
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and hardness values are also in accordance to the above fact. The poor bonding between 

copper and alumina leads to inefficient load transfer during mechanical loading of the 

composite.  
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3.2 Evaluation of processing and properties of Cu-Al2O3 and Al-Al2O3 

composites by conventional and spark plasma sintering method 

 

3.2.1 Scope and Objectives of the work 

Nanocomposites containing 1, 3, 5 and 7 vol. % Al2O3 (average size<50nm) and 

microcomposites having compositions 5, 10, 15, 20 vol. % of Al2O3 (average size~10µm) 

reinforced in copper and aluminium matrix individually were fabricated by powder metallurgy 

route. All the copper-alumina specimens were sintered conventionally at different sintering 

temperatures (850°C, 900°C, 1000°C) to study the effect of temperature on the process and 

progress of sinterability of the reinforced micro- and nano-particles in the matrix. All the 

aluminium-alumina specimens were sintered conventionally at different sintering temperatures 

(500°C, 550°C, 600°C). These micro- and nano-composites were characterized using X-ray 

diffraction and scanning electron microscopy followed by density, microhardness and wear 

measurements. The compression and flexural tests were also carried out in order to investigate 

the mechanical behaviour of the micro- and nano-composites for a fixed optimum sintering 

temperature. Fractography of the 3-point bend specimens was performed to investigate the 

fracture behaviour of the micro- and nano-composites.  

In the second part of this chapter, copper-alumina and aluminium-alumina nanocomposites of 

0.5, 1, 3, 5, 7 vol. % alumina (average size<50nm) were fabricated using spark plasma sintering 

(SPS) technique. Another set of microcomposites containing 1, 5, 20 vol. % of alumina (average 

size~10µm) had been fabricated for both copper and aluminium matrices to compare the physical 

as well as mechanical attributes of composites with variation of reinforcement particle size. 

These micro- and nano-composites have been characterized by X-ray diffraction (XRD), 

scanning electron microscopy (SEM), transmission electron microscopy (TEM) followed by 

microhardness, nanoindentation hardness and wear measurements.  
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3.2.2 Conventional Sintering 

In this section, the physical integrity and sinterability of reinforcement particle in the matrix at 

different sintering temperatures was investigated by SEM. Sintering response and microstructure 

of Cu-Al2O3(p) and Al-Al2O3(p) composites with the variation of Al2O3 content as well as size 

and sintering temperature were investigated extensively. Subsequently, phase analysis, 

percentage of theoretical density, microstructure, hardness, compression strength, flexural 

strength and failure mode of the composites were elaborately investigated to arrive at a 

conclusive particle size – process parameter – microstructure – properties correlation.  The 

microscopic deformation behaviour of Cu-Al2O3(p) and Al-Al2O3(p) composites were 

investigated by 3-point bend test followed by fractography and wear test.   

 

3.2.2.1 Fabrication of composites 

3.2.2.1a Copper-alumina composite 

Cu powder (Loba Chemie average particle size~11.09μm, purity >99.7%), Al2O3 micropowder 

(Sigma Aldrich, average particle size~10 μm) and Al2O3 nanopowder (Sigma Aldrich, average 

particle size<50nm) were used to fabricate the Cu- Al2O3 micro- and nano-composites. Cu and 

Al2O3 (5, 10, 15 and 20 vol. %) micro-powders were blended using turbula shaker mixer 

followed by compaction to 15 mm diameter cylindrical pellets in an electrically operated uni-

axial cold compaction machine (Soil Lab) at an applied pressure of 700 MPa for 2 minutes. 

Three sets of specimen were prepared and sintered in a tubular furnace (Naskar) at three different 

sintering temperatures (850°C, 900°C, 1000°C) for 1 hour in argon atmosphere. The above 

procedure was also followed for Cu and Al2O3 (1, 3, 5, 7 vol. %) nanopowder to fabricate 

nanocomposites with the same variation in sintering temperature and conditions.  

3.2.2.1b Aluminium-alumina composite 

Al powder (Loba Chemie average particle size~22.09μm, purity >99.7%), Al2O3 micropowder 

(Sigma Aldrich, average particle size~10 μm) and Al2O3 nanopowder (Sigma Aldrich, average 

particle size<50nm) were used to fabricate the Al-Al2O3 micro- and nano-composites. Al and 
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Al2O3 (5, 10, 15 and 20 vol. %) micro-powders were blended using turbula mixer followed by 

compaction to 15 mm diameter cylindrical pellets in an electrically operated uni-axial cold 

compaction machine (Soil Lab) at an applied pressure of 400 MPa. Three sets of specimen were 

prepared and sintered in a tubular furnace (Naskar) at three different sintering temperatures 

(500°C, 550°C, 600°C) for 1 hour in argon atmosphere. The above procedure was also followed 

for Al and Al2O3 (1, 3, 5, 7 vol. %) nanopowder to fabricate nanocomposites with the same 

variation of sintering temperature and conditions.  

3.2.2.2 Characterization of the composites 

The specimens were characterized using X-Ray diffraction (PANalytical model: DY-1656) CuKα 

and scanning electron microscopy (JEOL 6480 LV). The SEM micrographs of the specimen 

were obtained by treating the samples with ferric chloride solution (5 g FeCl3 and 50 ml HCl in 

100 ml distilled water) for Cu-Al2O3 and Keller’s reagent for Al-Al2O3 as an etchant.  

3.2.2.2a Copper-alumina composite 

3.2.2.2a.1 X-Ray Diffraction 

The X–ray diffraction patterns of Cu-Al2O3(p) microcomposites sintered at 850°C, 900°C and 

1000°C sintering temperature are illustrated in Fig. 3.2.1. The X-ray peaks confirm the presence 

of Cu, Al2O3 and Cu2O phases. As the vol. % of Al2O3 increases the intensity of the Al2O3 peaks 

increases. The formation of Cu2O at 900°C and 1000°C can be attributed to high sintering 

temperatures as well as high susceptibility of oxide formation of Cu at high temperatures. With 

the increase in Al2O3 content the intensity of Cu2O peak increases.  
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Fig. 3.2.1 X-ray diffraction patterns of Cu–20 vol. % Al2O3 microcomposites sintered at 850°C, 

900°C and 1000°C 

This can be attributed to the enhanced formation of interface with increasing Al2O3 content 

resulting in generation of new surface which gets exposed to oxide formation [1]. Fig. 3.2.2 

refers to the X-ray diffraction patterns of the Cu-Al2O3(p) nanocomposites sintered at 850°C and 

900°C temperatures. The cuprous oxide peaks are prominent in the diffraction patterns of 

nanocomposites than in microcomposites. This may be due to the presence of Al2O3 

nanoparticles in Cu matrix leading to higher interface area resulting in higher amount of Cu 

matrix exposed for oxidation. 



Chapter 3      Results and Discussion 

57 
 

20 30 40 50 60 70 80

900 C

850 C

C
u

 (
2

2
0

)

C
u

 (
2

0
0

)

C
u

 (
1

1
1

)

C
u

2
O

 (
1

1
1

)

A
l 2

O
3
 (

0
1

2
)

In
te

n
s

it
y

 (
A

.U
.)

2  (degrees)  

Fig. 3.2.2 X-ray diffraction patterns of Cu–7 vol. % Al2O3 nanocomposites sintered at 850°C, 

and 900°C 

 

3.2.2.2a.2 Scanning electron microscopy 

The SEM micrographs give abundant information about the reinforcement distribution, status of 

physical intimacy between Cu and Al2O3, clustering and mechanical phenomena like twinning. 

The black regions in the SEM micrographs indicate the Al2O3 particles while the white portion 

corresponds to the Cu matrix captured in back scattered electron mode. (Fig. 3.2.3 (a, b (SE 

mode) & c)) illustrate the distribution of Al2O3 in Cu matrix in the micro-composites sintered at 

various sintering temperatures.  
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Fig. 3.2.3 SEM micrographs of Cu–10 vol. % Al2O3 microcomposites sintered at temperature (a) 

850°C, (b) 900°C and (c) 1000°C (d) Cu–15 vol. % Al2O3 microcomposites sintered at 900°C 

temperature 

With the increase in volume fraction of Al2O3 the efficiency of distribution becomes remarkably 

better (Fig. 3.2.3(d)). The density difference between the matrix and reinforcement also leads to 

the formation of clusters sometimes at high vol. % of the reinforcement [2]. Annealed twin bands 

have been observed in Fig. 3.2.3 (b) of Cu-10 vol. % Al2O3 composite sintered at 900°C. 

Twinning is a predominant phenomenon in Cu composites which gives a good indication in 

terms of mechanical value [3].  

The presence of twins (Fig. 3.2.3 (b)) in the composites signifies the reduction in dislocations’ 

mobility or dislocation structure stabilization which is the important condition for improving the 

mechanical properties of the composites [4].  On the contrary no twin bands are to be seen in Fig. 

3.2.3 (c) of Cu-10 vol. % Al2O3 composite sintered at 1000°C. The matrix grain growth is quite 

pronounced at 1000°C than at 900°C and 850°C.  The physical contact between matrix and 

reinforcement seemingly improves with increasing sintering temperature (Fig. 3.2.4).  

b 



Chapter 3      Results and Discussion 

59 
 

 

 

Fig. 3.2.4 SEM micrographs of Cu–10 vol. % Al2O3 microcomposites sintered at temperature 

1000°C 

The SEM micrographs of Cu-Al2O3 nanocomposites illustrate improved distribution of Al2O3 in 

the matrix compared to that in microcomposites (Fig. 3.2.5 (a & b)) [5]. The agglomeration of 

Al2O3 nanoparticles is quite vigilant in the SEM micrograph. The embedment of Al2O3 

nanoparticles in Cu matrix is appreciably intimate than in the microcomposites (Fig. 3.2.5 (b)). 

 

 

 

 

 

 

 

 

 

Fig. 3.2.5 FESEM micrographs of Cu–3 vol. % Al2O3 nanocomposites sintered at 1000°C 

temperature at (a) 100000X and (b) 200000X maginifcations 

 

The enhanced physical contact of Al2O3 nanoparticles with the matrix can be attributed to the 

high atomic diffusivity of the nanoparticles [6]. The stabilization of the surface energy of 

nanoparticles is a thermodynamically driven phenomenon; hence it is quite obvious that the 

physical adherence of Cu with Al2O3 is better in nanocomposites. 
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3.2.2.2b Aluminium-alumina composite 

3.2.2.2b.1 X-Ray Diffraction 

The X-ray diffraction patterns of Al-Al2O3 microcomposites sintered at 600°C is illustrated in 

Fig. 3.2.6. The patterns show the presence of Al and Al2O3 peaks. It has been found that no other 

intermediate phase is formed during sintering. As reported literature suggests, the formation of 

any other phase is not feasible. Hence composites sintered at rest of the sintering temperatures 

(i.e. 500°C and 550°C) also shows similar x-ray diffraction patterns. 
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Fig. 3.2.6 X-ray diffraction patterns of Al-Al2O3 microcomposites sintered at 600°C temperature 

The x-ray diffraction patterns of Al-Al2O3 nanocomposites sintered at 600°C is shown in Fig. 

3.2.7. The peaks for Al2O3 are not distinct because of nanosize effect, i.e. peak broadening and 

reduced intensity. The X-ray diffraction patterns show similar peaks for all the microcomposites 

and nancomposites at all temperatures. 
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Fig. 3.2.7 X-ray diffraction patterns of Al-Al2O3 nanocomposites sintered at 600°C temperature 

3.2.2.2b.2 Scanning electron microscopy 

The FESEM micrographs of Al-Al2O3 microcomposites sintered at 600°C temperature is 

illustrated in Fig. 3.2.8 (a & b). The distribution of alumina particles is fair in the aluminium 

matrix. Fig. 3.2.8 (b) shows good compatibility of alumina microparticles in the matrix. Fig. 

3.2.9(a & b) shows distribution of alumina nanoparticles in aluminium matrix. The alumina 

nanoparticles are evenly distributed in the matrix and also aid in grain boundary pinning of 

aluminium grains. Fig. 3.2.9(b) illustrates good embedment of alumina nanoparticles in the 

matrix. 
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Fig. 3.2.8 FESEM micrographs of Al–5 vol. % Al2O3 microcomposite sintered at temperature 

600°C captured at (a) 5000X and (b) 30000X magnification 

 

 

 

 

 

 

 

 

Fig. 3.2.9 FESEM micrographs of Cu–5 vol. % Al2O3 nanocomposites sintered at temperature 

600°C captured at (a) 5000X and (b) 100000X magnification 

 

 

a b 

a b 
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3.2.2.3 Mechanical testing 

Sintered density of the copper-alumina and aluminium-alumina pellets was determined by 

Archimedes method. Microhardness of the specimen was measured by Vickers hardness tester 

(Leco Microhardness Tester LM248AT) at a load of 0.3kgf for a dwell time of 5 seconds. The 

readings were recorded here at four equivalent locations for each specimen. For compression 

test, flexural test and wear test, sintered samples of copper-alumina sintered at 900°C and 

aluminium-alumina sintered at 600°C temperature were tested. According to ASTM standard E9-

89 compression test was conducted with the aid of universal testing machine (INSTRON SATEC 

series servo-hydraulic machine) with specimen dimensions of 10 mm diameter and 8 mm height 

at a strain rate of 1min
-1

. Graphite powder was used to minimize friction between the sample and 

fixture of compression machine. A reduction of 50% in height was maintained for all the 

specimens. The end surfaces were kept normal to the axis of the specimen. A set of specimens 

having dimensions of 31.5 x12.7 x 6.3 mm
3
, in accordance with  ASTM standard B925-08 were 

fabricated following the above mentioned route for both micro- and nano-composites.  A span 

length of 26mm and cross-head velocity of 0.5mm/minute was maintained during the flexural 

tests which were carried out in universal testing machine (INSTRON-5967). Fractography of the 

3-point bend test specimens was carried out by scanning electron microscopy (JEOL 6480 LV).  

The copper based micro- and nano-composites which were sintered at 900
°
C were subjected to 

wear test at a load of 20N at a speed of 30 rpm for a time period of 10 minutes. Aluminium-

alumina composites sintered at 600°C temperature were tested at a load of 10N at a speed 30 rpm 

for a time period of 10 minutes. The wear tested specimens were examined by scanning electron 

microscopy. 
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3.2.2.3a Copper-alumina composite 

3.2.2.3a.1 Density 

 Density measurements were carried out using the Archimedes water immersion method. The 

theoretical and sintered density values of all the specimens have been tabulated (Table.3.2.1). 

Table 3.2.1 demonstrates that the percentage of theoretical density (calculated by rule of 

mixtures) decreases with increasing content of Al2O3 micro- and nano-particles. This may be due 

to low density value of Al2O3 particles than that of Cu [7]. With the increase in sintering 

temperature from 900
o
C to 1000

o
C the % theoretical density also increases for microcomposites.  

Percentage of theoretical density of the microcomposites increases at a temperature of 1000
o
C as 

compared to the 900
o
C sintering temperature. This may be due to the enhanced viscosity of the 

Cu matrix at higher sintering temperature which results in efficient pore filling. In case of 

nanocomposites as the interfacial area is more, the detrimental effect of interfacial phenomenon 

(de-cohesion, void formation) are more likely to prevail at high sintering temperature as 

compared to lower sintering temperature. The maximum density value was observed for the 

sintering temperature at 850°C. The rise in sintering temperature triggers enhanced formation of 

Cu2O (Fig. 3.2.1) representing that the matrix is more susceptible to oxide formation at higher 

sintering temperature. 

The pullout of cuprous oxide by evolution of O2 gas (decomposition of cuprous oxide into Cu 

and oxygen) creates voids in the matrix and interface expanding the matrix eventually. The 

creation of voids in the matrix hinders the densification and impedes the continuity in intimacy 

contact of Cu and Al2O3 [1,5]. Hence, the interfacial area being more in nanocomposites the 

degree of oxidation is higher thus limiting densification at higher sintering temperatures. Shehata 

et al. [8] have investigated the densification% of Cu-5 vol. % Al2O3 at 950°C sintering 

temperature (with finer Al2O3) to be 93.9% and our results show 94.47% densification for the 

same composition at 1000°C sintering temperature. 
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Sintering Temperature 

  850˚C 900˚C 1000˚C 

Composition Theoritical 

density (g/cc) 

Sintered density 

(g/cc) 

Sintered density 

(g/cc) 

Sintered density 

(g/cc) 

 

Pure copper 8.9 8.05 8.4 8.49 

Cu- 1% 

nanoalumina 8.85 8.31 7.92 7.54 

Cu- 3% 

nanoalumina 8.75 8 7.55 7.51 

Cu- 5% 

nanoalumina 8.65 7.61 7.37 7.2 

Cu- 7% 

nanoalumina 8.55 7.26 7.27 6.97 

Cu- 5% 

microalumina 8.69 7.62 7.9 8.22 

Cu- 10% 

microalumina 8.49 7.36 7.64 7.75 

Cu- 15% 

microalumina 8.14 7.04 7.3 7.35 

Cu- 20% 

microalumina 7.9 6.7 7.03 6.88 

 

Table 3.2.1 Theoretical and sintered density values of Cu-Al2O3 micro- and nano-composites 

processed at different sintering temperatures 

 

3.2.2.3a.2 Microhardness 

The hardness of the micro- and nano- composites increases with the increase in Al2O3 content in 

the matrix. As Al2O3 is inherently harder than Cu, its presence leads to a higher hardness in the 

composite. It was observed from (Table 3.2.2) that by increasing the amount of Al2O3 from 0% 

to 20 % in microcomposites, the hardness value increases from 53.7 to 103 HV at a sintering 
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temperature of 900°C. The hardness enhancement is an indication to good physical bonding at 

Cu-Al2O3 interface [9].  

As the sintering temperature increases from 900˚C to 1000˚C the hardness value decreases which 

may be due to matrix grain coarsening [10]. At high volume fraction of reinforcement, surface 

area of Al2O3 particles reduces due to clustering which minimizes the effect of grain boundary 

pinning resulting in lower hardness value. In case of nanocomposites, nano-Al2O3 which have 

high hardness impedes the movement of dislocation during plastic deformation. Nano-Al2O3 

restricts the grain growth of the Cu matrix by effective pinning [11]. The hardness of the 

composite gets improved with increase in the reinforcement content. The hardness values are 

maximum for the composites sintered at 850°C temperature. This can be further complemented 

by the density values. The Al2O3 nanoparticles tend to agglomerate which decreases the Orowan 

strengthening effect. The hardness values trend represents better hardness of Cu-Al2O3 

nanocomposites at low sintering temperature such as 850°C. 

 

The highest hardness values recorded are 109.27 HV for 7 vol. % reinforced Cu-Al2O3 

nanocomposites. The density hierarchy complements the hardness trends followed at different 

sintering temperatures. The lowest sintering temperature imparts highest density to the 

nanocomposites. This can be ascribed to the fact that the interface dimension in the 

nanocomposites is high, leading to increased susceptibility for interfacial de-cohesion. Hence at 

higher sintering temperature exposed area for oxidation is higher, so the hardness values are 

lower due to subsequent decomposition of cuprous oxide and matrix expansion. Tjong et al. [12] 

have reported 101 HV Vickers microhardness for Cu-20 vol. %SiC HIPed composite whereas in 

our results we have obtained 103 HV Vickers microhardness for Cu-20 vol. % Al2O3 

microcomposites with conventional sintering. 
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Sintering Temperature 

 

850°C 900°C 1000°C 

Composition 

Mean 

Hardness 

(HV0.3) 

Standard 

deviation 

Mean 

Hardness 

(HV0.3) 

Standard 

deviation 

Mean 

Hardness 

(HV0.3) 

Standard 

deviation 

Cu- 1% 

nanoalumina 
68.52 0.93 53.1 2.12 

40.22 
0.42 

Cu- 3% 

nanoalumina 
76.87 3.66 88.55 5.04 48.82 3.37 

Cu- 5% 

nanoalumina 
100.35 5.09 52.8 1.83 49.55 0.73 

Cu- 7% 

nanoalumina 
109.27 3.98 85.17 3.12 

68.70 2.57 

Cu- 5% 

microalumina 
66.05 4.44 

84.97 
9.31 

67.83 
4.20 

Cu- 10% 

microalumina 
72.63 2.20 

95.73 
11.74 

88.19 
15.24 

Cu- 15% 

microalumina 
78.38 4.80 

102.80 
6.36 

63.33 
8.46 

Cu- 20% 

microalumina 
73.03 2.99 

103.43 
10.37 

60.08 
2.43 

 

Table 3.2.2 Mean hardness and standard deviation of copper-alumina nano- and micro-

composites 
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 3.2.2.3a.3 Compression Test 

The compression test results of Cu-Al2O3 micro- and nano-composites have been illustrated in 

(Fig.3.2.10 & 3.2.11). The results indicate that the compression strength decreases with the 

increase in Al2O3 content (with exceptions for Cu-15 vol. % Al2O3 microcomposite and      Cu-3 

vol. % Al2O3 nanocomposite). The compression strength of Cu-Al2O3 microcomposites 

decreases with increasing amount of Al2O3 at a strain rate of 1min
-1

. Localized softening of the 

composite (difference in thermal conductivity of the Cu and Al2O3 constituents) at high volume 

fraction of reinforcement during compressive testing may possibly decrease the compressive 

strength [13]. The compressive strength for Cu-Al2O3 nanocomposites increases as the Al2O3 

content increases till 3 vol. % of Al2O3 followed by downfall of compressive strength values. 

The decrease after 3 vol. % may be attributed to the agglomeration of Al2O3 nanoparticles at 

higher vol. % of Al2O3. The agglomeration leads to increases in damage density and hence early 

fracture. For composites, the presence of particles induces an inhomogeneous elastic strain due 

to the elastic modulus mismatch of matrix Cu (117 GPa) and reinforced Al2O3 particle (300 

GPa). The elastic strain leads to the generation of high geometrically necessary dislocation 

density ρG at the composite interface. For nano particles the increased geometrically necessary 

dislocation density ρG leads to a higher work hardening in the matrix, thus leads to a higher 

composite flow stress [14]. With increase in reinforcement content nanocomposite tends to fail 

through void nucleation, growth, and coalescence in the matrix regions near particles.  

The above failure mechanisms lead to the decrease in strain hardening exponent. The 

compressive strength of 3 vol. % alumina reinforced copper nanocomposite was recorded to be 

around 800 MPa whereas Fathy et al. [15] reported around 600 MPa for 12.5 wt. % Cu-Al2O3 

nanocomposite at 10
-2

 sec
-1

 strain rate. The composite reinforced with microparticles tends to fail 

through particle fracture which leads to decrease in strain hardening exponent.  
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Fig. 3.2.10 Compression strength of Cu-Al2O3 microcomposites sintered at 900°C 
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Fig. 3.2.11 Compression strength of Cu-Al2O3 nanocomposites sintered at 900°C 
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3.2.2.3a.4 3-point bend test 

From the 3-point bend test results it was found that the ultimate flexural strength value decreases 

with increase in volume fraction of the reinforcement as illustrated in (Fig. 3.2.12 & 3.2.13). The 

underlying reason could be the addition of ceramic particles which decreases its ductility 

component, hence lowering the ultimate flexural strength. This may be due to the enhancement 

in damage sites with increase in reinforcement content.  
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Fig. 3.2.12 Plot for ultimate flexural stress (MPa) vs. vol. % of reinforcement content for Cu-

Al2O3 microcomposites 

 

Early fracture possibly occurs by linking the damage in clustered regions, as a result ultimate 

flexural strength value decreases. According to Griffith criterion, cracked particle in the clustered 

region hinders dislocation strengthening which decreases the ultimate flexural strength value. 

Defects such as porosity, macro-, micro-cracks and interface de-union promote premature failure 

and ultimate fracture occurs early.  
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Fig. 3.2.13 Plot for ultimate flexural stress (MPa) vs vol. % of reinforcement content for Cu-

Al2O3 nanocomposites 

3.2.2.3a.5 Fractography 

Fracture surface of the three-point flexural test microcomposite and nanocomposite specimens 

have been shown in (Fig. 3.2.14 (a & b)). The fracture mode for the micro- and nano-composites 

is seemingly mixed mode. The dimple fracture surface suggests ductile fracture as the principal 

mode of fracture in the microcomposite. Fracture surface of the microcomposite exhibit micro-

void coalescence in the matrix and particle cracking or matrix-particle interface de-cohesion 

(Fig. 3.2.14 (a) & 3.2.15). No secondary cracks are observed in the brittle Al2O3 particle which 

indicates the premature failure of the composite [16].  

Damage is possibly nucleated by interfacial de-cohesion, particle cracking, void growth and 

finally coalescence of voids in the matrix around the reinforcement particles. The dimple size 

decreases with increase in Al2O3 content. Dimple growth is hindered by the presence of Al2O3 

particles. The sharp micro-cracks that develop due to particle fracture can enhance localized 

plastic flow within the ductile matrix which aids in failure phenomena such as ductile separation 

of the matrix by void growth and shear bands [17].  
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Fig. 3.2.14 Fractographs of Cu-5 vol. % Al2O3 (a) microcomposites (b) nanocomposites sintered 

at 900°C 

 

 

Fig. 3.2.15 Fractograph of Cu-10 vol. % Al2O3 microcomposites sintered at 900°C 

The fracture mode for nanocomposites also depict mixed mode, showing quasi-cleavage type of 

fracture. The fracture surface of nanocomposites exhibits more of void formation and matrix-

reinforcement debonding. For high volume fraction of reinforcement content, early fracture of 

material occurs with minimal plastic deformation. The macroscopic features of the fracture 

surface of Cu-Al2O3 nanocomposites indicate nearly flat surface, minimal plastic deformation 

preceding the fracture and rapid crack growth accompanied by loud noise [18]. The microscopic 

characteristics include faceted fracture surface at certain instances and transgranular fracture of 

Cu grains in the nanocomposites.  
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3.2.2.3a. 6 Wear test 

The abrasive wear rate is greatly reduced as Al2O3 content in the composite increases (Fig. 

3.2.16 & 3.2.17).  

 

Fig. 3.2.16 Plot for wear depth vs. time of Cu-Al2O3 microcomposites with different vol. % of 

Al2O3 sintered at 900°C temperature 

Al2O3 being inherently harder than Cu, hence the wear resistance of the composites are higher 

than native Cu. However, as the number of Al2O3 microparticles increase, the resistance to the 

penetration of abrasive particles increases (Hardness increases with increases in the 

reinforcement content) and hence the wear depth decreases [8].  The drastic reduction in wear 

rate may be attributed by (1) enhancement in hardness of the composite reinforced by Al2O3 

particles and (2) greater reduction of direct load contact between the Cu/Al2O3 composite surface 

and disk in comparison with pure Cu due to load bearing component action of hard Al2O3 

particles [19]. 
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Fig. 3.2.17 Plot for wear depth vs. time of Cu-Al2O3 nanocomposites with different vol. % of 

Al2O3 sintered at 900°C temperature 

The worn out specimens’ SEM micrographs (Fig. 3.2.18(a) & (b)) represents that with increase 

in reinforcement content the surface roughness decreases. As nano particles act as obstacle for 

the smooth removal of material, the abrasion resistance also increases. The wear mechanisms 

operating can be enlisted as grooving and micro-plastic ploughing. The microploughing has 

eventually created long grooves, and the removed material has been pushed to the ridges of the 

grooves (Fig. 3.2.18(b)). The intensity of microploughing decreases as the Al2O3 content in the 

composites increases [15]. Fig. 3.2.18(c) shows microcrack formation in the nanocomposite 

during wear. 
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Fig. 3.2.18 SEM images of worn-out surfaces of (a) Cu-5 vol. % Al2O3 (microcomposite) (b) Cu-

10 vol. % Al2O3 (microcomposite) (c) Cu-1 vol. % Al2O3 (nanocomposite) 

3.2.2.3b Aluminium-alumina composite 

3.2.2.3b.1 Density 

Densification of aluminium-alumina micro- and nano-composites at different sintering 

temperatures were recorded and plotted in Fig. 3.2.19 & 3.2.20. It has been found that the % of 

theoretical density decreases with increasing alumina content in both cases. As alumina is hard 

and brittle; addition of alumina decreases compressibility in both composites. For the same 

composition nanocomposites show lower density than microcomposites. The reason is higher 

degree of agglomeration of nanoparticles than micron-size particles leads to lesser densification. 

The density of samples sintered at higher temperature exhibits higher sinterability and increased 

pore filling. These events lead to higher density at higher sintering temperature. From the 

densification plots for both micro- and nano-composites it is observed that densification 

behaviour does not follow any trend with sintering temperature. The nanocomposites with higher 

content of alumina at sintering temperature of 600°C show lower value of density, as 

agglomeration of alumina nanoparticles takes place to a higher degree impeding effective 

densification. The nanocomposites with 5 and 7 vol% of alumina show high density for sintering 

temperature of 550°C, because lower temperature leads to lower degree of clustering compared 

to higher temperatures. 

(a) (c) (b) 
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Fig. 3.2.19 Densification plots of Al-Al2O3 microcomposites sintered at different temperatures 
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Fig. 3.2.20 Densification plots of Al-Al2O3 nanocomposites sintered at different temperatures 
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3.2.2.3b.2 Microhardness 

Fig. 3.2.21 reveals higher microhardness for Al-Al2O3 microcomposite samples sintered at 

lowest sintering temperatures. Microcomposites with higher alumina content show higher 

hardness due to higher pinning effect of alumina particle, hence higher resistance to indentation. 

The samples sintered at higher sintering temperature i.e. 600°C show lower microhardness due to 

grain coarsening at higher temperatures. Fig. 3.2.22 shows Al-Al2O3 nanocomposites sintered at 

low sintering temperature possessing high hardness for lower content of alumina.  It has been 

observed that the samples sintered at 600°C show higher hardness than other temperatures due to 

higher sinterability and increased pore filling. 

 

4 6 8 10 12 14 16 18 20 22
33

34

35

36

37

38

39

40

41

42

43

M
ic

ro
h

a
rd

n
e

s
s

 (
H

V
0

.3
)

Vol.% alumina

 600
0
C

 550
0
C

 500
0
C

 

 

 

Fig. 3.2.21 Microhardness plots of Al-Al2O3 microcomposites sintered at different temperatures 
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Fig. 3.2.22 Microhardness plots of Al-Al2O3 nanocomposites sintered at different temperatures 

 3.2.2.3b.3 Compression Test 

Compressive strength of Al-Al2O3 microcomposites have been shown in Fig. 3.2.23. The 

compressive strength of 5, 10, 15, 20 vol. % of alumina revolve around the same values, the 

highest value being for 5 vol. % alumina. The higher alumina content reduces the ductility of the 

composite leading to premature cracking of samples during compressive loading. The 

compressive strength of 5 vol. % alumina microcomposites is 240MPa. Compressive strength of 

nanocomposites is illustrated in Fig. 3.2.24 which demonstrates that both 1 vol. % and            5 

vol. % alumina reinforced nanocomposite possess high strength than other compositions. The 

higher content of nanoparticles induce brittleness and lead to cracking of samples before bearing 

the compressive load, hence the strength decreases. The premature cracking of higher content of 

alumina causes the incomplete load bearing of nanocomposites. The compressive strength of 

nanocomposite is higher than microcomposites as lower compositions of nanocomposites 

possess same strength as higher compositions of microcomposites. The lowering of strength for 3 

and 7 vol. % alumina reinforced nanocomposites is due to high surface area of nanoparticles and 

agglomeration which gives rise to early breakage of samples. 
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Fig. 3.2.23 Compressive strength of Al-Al2O3 microcomposites sintered at 600°C 
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Fig. 3.2.24 Compressive strength of Al-Al2O3 nanocomposites sintered at 600°C 
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3.2.2.3b.4 3-point bend test 

The flexural tests of microcomposites reveal that the former shows low flexural strength than 

pure aluminium strength. The flexural test is a combination of tensile and compressive tests, 

hence gives us a combined idea of the mechanical strength of the composites. The 

microcomposites possess low strength than pure aluminium because the alumina particles act as 

defects during flexural loading. During flexural loading the microvoids formed in the vicinity of 

alumina particles leading to the coalescence of the same. Flexural strength of 10 vol. % alumina 

reinforced microcomposite is high among all the compositions, showing that it is the optimum 

composition (Fig. 3.2.25). Flexural strength of nanocomposites is also lower than pure 

aluminium following the same principle as described above. Fig. 3.2.26 shows that 3 vol. % 

alumina reinforced nanocomposite possess high flexural strength compared to other 

compositions proving it to be an optimum composition among nanocomposites. The flexural 

strength of nanocomposites containing low percent of alumina is same as microcomposites 

having high high content of alumina. The 5 vol. % alumina reinforced nanocomposite possess 

flexural strength lower than 3 vol. % alumina composition because higher alumina nanoparticles 

content leads to clustering of nanoparticles and lowering of strength due to increased density of 

defects. 
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Fig. 3.2.25 Plot of flexural strength vs. vol. % of reinforcement of Al-Al2O3 microcomposites 

sintered at 600°C. 
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Fig. 3.2.26 Plot of flexural strength vs. vol. % of reinforcement of Al-Al2O3 nanocomposites 

sintered at 600°C 

 

3.2.2.3b.5  Fractography 

Fig. 3.2.27(a & b) illustrates SEM fractographs of Al-5 vol. % alumina microcomposite and 

nanocomposite respectively sintered at 600°C. The fracture surface shows intergranular fracture, 

as aluminium is a soft and ductile metal, the grain boundaries are harder compared to the interior 

of grains. The nanocomposites show pores on the fracture surface. These pores symbolize the 

release of trapped gas formed during sintering. Alumina particles have been covered by 

aluminum particles, hence the contrast is not visible in the fractographs. The nanocomposite’s 

fractograph reveal that there is higher oxide formation of matrix particles in nanocomposites than 

microcomposites as suggested by increased number of pores. It has been observed that the 

microcomposites show dimpled structure representing higher ductility than nanocomposites. 
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Fig. 3.2.27 SEM fractographs of Al-5 vol. % Al2O3 (a)  microcomposite (b) nanocomposite 

sintered at 600°C 

 

3.2.2.3b.6 Wear test 

Fig.3.2.28 & 3.2.29 show wear depth vs. sliding time for Al-Al2O3 micro and nanocomposites 

sintered at 600°C. The general trend here is that the wear depth decreases with alumina content 

in both cases. Al2O3 being hard and brittle, impart high wear resistance i.e. the wear depth 

decreases. As the number of Al2O3 particles increases the wear indenter encounters Al2O3 

particles more than the soft matrix. For the same composition it is found that the nanocomposite 

(~6µm) reflects lower wear depth than microcomposite (~10µm) due to higher hardness. The 

nanocomposites having low alumina percentage show almost equal wear depth as the 

microcomposites containing higher amount of alumina 

b b 
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Fig. 3.2.28 Wear depth vs. time plot of Al-Al2O3 microcomposites sintered at 600°C 
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Fig. 3.2.29 Wear depth vs. time plot of Al-Al2O3 nanocomposites sintered at 600°C 
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3.2.3 Spark Plasma Sintering 

This investigation focuses on the fabrication of copper-alumina microcomposites and 

nanocomposites by spark plasma sintering technique. The subsequent microstructural studies and 

mechanical properties assessment and correlation helps in understanding the science and 

technology of microcomposites and nanocomposites reflecting each ones dominance on another 

on every aspect. The characterization of micro- and nano-composites using X-ray diffraction, 

scanning electron microscopy and transmission electron microscopy followed by microhardness, 

nanohardness and wear measurements have been studied. 

 

3.2.3.1. Fabrication of Composites 

3.2.3.1a Copper-alumina composite 

Copper (Loba Chemie, purity > 99.7%, average size~11.09µm) and alumina (Sigma Aldrich, 

average size~10µm (micro) and <50 nm (nano) both having purity > 99.7%) powders were 

blended separately in turbula shaker mixer. The compositions used for fabricating 

nanocomposites were 0.5, 1, 3, 5, and 7 volume % of alumina nanoparticles in copper matrix.  

Another set of specimens having compositions of 1, 5, 20 volume % micron size alumina were 

used to synthesize microcomposites. The micro- and nano-composites were fabricated via spark 

plasma sintering (SPS) (DR SINTER LAB SPS Syntex INC, model: SPS-515S, Kanagawa, 

Japan) method at a temperature of 700ºC maintaining a soaking time of 5 minutes at a pressure 

of 50 MPa. The heating rate for the whole process was maintained at 80ºC/minute.  

3.2.3.1b Aluminium-alumina composite 

The as-received aluminium (Loba Chemie, purity > 99.7%, average size~22.09µm) and alumina 

(Sigma Aldrich, average size~10µm and <50 nm) (surface area: 40 m
2
/g for alumina 

nanopowder) powders were mixed and blended separately using agate mortar for 60 minutes to 

ensure homogeneous mixing. Nanocomposites containing 0.5, 1, 3, 5 and 7 vol. % of Al2O3 

(average size<50nm) were fabricated by blending the matrix and reinforcement powders, 
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followed by spark plasma sintering (SPS) (DR SINTER LAB SPS Syntex). Another set of 

specimens having compositions of 1, 5, 20 volume% were chosen to fabricate microcomposites. 

SPS was carried out at a temperature of 500ºC and an applied pressure of 50MPa for 5 minutes 

under vacuum with a heating rate of 80ºC/minute for nanocomposites as well as the 

microcomposites.  

3.2.3.2 Characterization of Composites 

The specimens were characterized by X-Ray diffraction (PANalytical model: DY-1656) with 

CuKα radiation, scanning electron microscopy (JEOL JSM 6480 LV) and transmission electron 

microscopy (TECNAI G2 20S-TWIN) equipped with an energy dispersive X-Ray analyzer. The 

sample preparation for conducting TEM study was done by punching 3 mm discs from the 

sample whose thickness had been reduced to 100µm. The discs were then dimpled to around 

below 10µm and then ion milled for 1 hour for perforation. 

3.2.3.2a Copper-alumina composite 

3.2.3.2a.1 X-Ray Diffraction 

To study phase evolution during composite fabrication by SPS process, X-ray diffraction was 

conducted. The XRD patterns (Fig. 3.2.30 & 3.2.31) confirm the presence of Cu, Al2O3 and 

CuAlO2 phases for both micro and nanocomposites. The copper, alumina and CuAlO2 peaks 

have also been indexed in the X-ray diffraction patterns. The formation of CuAlO2 in Cu-Al2O3 

system has been reported by many groups such as Trumble et al. [20], Seager et al. [21], Kim et 

al. [22] and Fathy et al. [15]. The thermodynamics of the interaction between copper and alumina 

point towards the fact that the formation of CuAlO2 is feasible in the present processing 

conditions [23]. 
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Fig. 3.2.30 XRD pattern of Cu-7 vol. % Al2O3 nanocomposite sintered by SPS 

The formation of CuAlO2 as a function of temperature at the Cu(ss)/Al2O3 interface can be 

represented as [20] 

[at. % OCu(ss)] = exp (-18100/T +9.1)    (700-1050°C)                           (1)     

The formation of CuAlO2 starts at the isothermal sintering time, i.e. after the formation of Cu2O 

the same reacts with alumina to form the aluminate. 

Cu2O+ Al2O3 (Heated) → 2CuAlO2 [24]        (2) 
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Fig. 3.2.31 XRD pattern of Cu-20 vol. % Al2O3 microcomposite sintered by SPS 

3.2.3.2a.2 Scanning electron microscopy 

Fig. 3.2.32 & 3.2.33 show the SEM micrographs of nanocomposites and microcomposites 

respectively. The distribution of nanoparticles is better compared to microparticles in the copper 

matrix [5].  

 

 

 

 

 

 

Fig. 3.2.32 SEM micrograph of Cu-7 vol. % Al2O3 nanocomposite sintered by SPS 
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There are several pores visible on the grain boundary of the copper grains in the 

microcomposites which indicate the poor intermixing of matrix and reinforcement powder 

particles in the microcomposites compared to the nanocomposites. The intermixing of alumina 

nanoparticles and the copper matrix particles is quite intimate and the alumina particles have 

penetrated into the voids of copper-copper particle contact unlike the micron sized alumina 

particles. The difference in the intermixing and embedment of the micron size particle and the 

nano sized particle is visible in the SEM micrographs. 

 

Fig. 3.2.33 SEM micrograph of Cu-5 vol. % Al2O3 microcomposite sintered by SPS 

The copper and alumina interaction has also aided in the formation of a new phase i.e. CuAlO2 

which has been identified from XRD and TEM analysis. Diminished grain growth of copper can 

be observed (Fig. 3.2.32) in the areas where the distribution is proficient due to the pinning effect 

of the nanosized alumina particles [25]. In nanocomposites, as the interparticle distance 

decreases, interaction between the dislocations and particles increases, and this results in faster 

dislocation multiplication. The matrix-reinforcement bonding seems to have improved in the 

nanocomposites sintered by SPS. The reason could be anticipated as the high surface energy of 

the particles compelling them to compensate their thermodynamic instability by efficient 

bonding.  
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3.2.3.2a.3 Transmission electron microscopy 

To have more insight on microstructure of the fabricated composites, TEM was conducted. 

Sintered compacts exhibit annealing twins and sub-grain boundaries for both micro- and nano-

composites (Fig. 3.2.34 & 3.2.35). Twinning might have occurred during the high temperature 

sintering stage. Conditions for twin formation are achieved when large number of obstacles is 

formed in the crystal, blocking the dislocation movement.  

 

 

 

 

 

 

 

 

Fig. 3.2.34 TEM micrograph of Cu-5 vol. % Al2O3 nanocomposite sintered by SPS 

Dislocations accumulate on obstacles causing increase of internal strain in local areas, which 

together with external strain induce twin formation. Presence of twins indicated lower mobility 

of dislocations, in other words the stabilization of dislocation structure, which is primary 

condition for improvement of mechanical properties of dispersion strengthened materials. 

Increase of dislocation density is caused by the difference between the thermal expansion 

coefficient of the particles and matrix. In agreement with this, suggests the predominant effect of 

dislocation density in the strengthening of the composite caused by thermal expansion mismatch 

during processing [24,26]. The thermal expansion coefficient of Cu and Al2O3 are 16.6 x10
-6

 k
-1

 

and 5.4 x 10
-6

 k
-1

 respectively. The alumina ceramic particles present in the composite are the 

source of thermal stresses which can be released by plastic deformation of the matrix. The 
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thermal stresses during the production process could generate dislocations in the matrix and 

inside the particles that is clearly visible in the alumina particles [27]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.2.35 TEM micrograph of Cu-5 vol. % Al2O3 microcomposite sintered by SPS 

The TEM micrographs represent nano twinning in case of 5 vol. % reinforced nanocomposite. A 

milky white appearance of the new phase formed is quite prominent in Fig. 3.2.34. The 

interaction of alumina nanoparticles is far more proficient than the alumina microparticles which 

can be realized from the amount of CuAlO2 formed in the TEM micrographs. The difference in 

contrast in the TEM micrographs suggests the presence of Cu (grey), Al2O3 (black) and CuAlO2 

(white region). Formation of CuAlO2 can also be anticipated due to its presence in the proximity 

with the alumina particles. The formation of intermediate phase is highly concentrated around 

the alumina particles. The XRD study also supports the presence of CuAlO2.  

 

 

 

 

Twin 
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3.2.3.2b Aluminium-alumina composite 

3.2.3.2b.1 X-ray diffraction 

The X-Ray diffraction patterns obtained from the SPS sintered compacts of the Al-Al2O3 

nanocomposites reveal aluminium as well as alumina phases. The X-Ray diffraction patterns of 

the Al-Al2O3 microcomposites and nanocomposites are shown in Fig. 3.2.36 & 3.2.37 

respectively. The patterns depict small peaks of alumina present in the X-Ray patterns of 

nanocomposites (the combined effect of peak broadening and low intensity peaks of alumina 

nanoparticles) whereas in case of microcomposites, the alumina peaks are quite distinct and 

clear. 
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Fig. 3.2.36 XRD patterns of Al-Al2O3 microcomposites sintered using SPS 

 The XRD patterns confirm that no new phase was formed in the nano- and microcomposites. 

The alumina peaks are distinct in the 20 vol. % reinforced Al-Al2O3 microcomposite due to 

higher amount of alumina. 
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Fig. 3.2.37 XRD patterns of Al-Al2O3 nanocomposites sintered using SPS 

3.2.3.2b.2 Scanning electron microscopy 

The back scattered scanning electron micrographs of Al-Al2O3 nanocomposites and 

microcomposites are illustrated in Fig. 3.2.38(a), (b) & (c) indicating grey and black regions 

which correspond to the aluminum and alumina respectively confirmed by EDS analysis. Fig. 

3.2.38 (a) shows the EDS analysis of the black region in the figure depicted by arrow mark. The 

alumina nanoparticles are present in the interspaces of aluminium particles. The distribution of 

reinforcement particles in Al-Al2O3 nanocomposites is proficient than in the case of 

microcomposites. The well-established mathematical relation (Eq. (2)) which explains the 

requirement of uniform dispersion of reinforcement in the matrix   

       (3) 

Where λ is distance apart from the reinforcements, f is the fractional volume of reinforcement; r 

is the radius of the particles (assuming them to be spherical). The SEM micrographs of the 

nancomposites suggest presence of network of the alumina particles within the intergranular 

spaces of the aluminium matrix. The micrographs connote the intimate level of mixing of matrix 



Chapter 3      Results and Discussion 

93 
 

and reinforcement powders in the nanocomposites which is seemingly due to the aluminium-

alumina bonding in the composite. The proximate level of intermixing of alumina nanoparticles 

in the aluminium matrix has supposedly given rise to such a microstructure. A striking difference 

regarding the mode of interaction of alumina nanoparticle and alumina microparticle with the 

aluminium matrix individually can be realized from the micrographs. The differential interaction 

of nanoparticles and microparticles could be implicated to the reason of clustering in composites, 

the closer the ratio of reinforcement particle size to the matrix particle size (PSR) is to 1, the 

lower is the possibility of clustering [28]. The clustering which is apparently visible in the case 

of microcomposite is due to the deviation of the ratio from the value 1.  

 

 

 

 

 

 

 

 

 

 

Fig. 3.2.38 SEM micrographs of (a) Al-5vol. % Al2O3 nanocomposite, (b) Al-7vol. % Al2O3 

nanocomposite, (c) Al-5vol. % Al2O3 microcomposite sintered using SPS 

In nanocomposites, the reinforcement particle size is much smaller than the matrix particle size, 

and hence the inter-particle voids created by the consolidation of aluminium particles have been 

occupied by the alumina nanoparticles. The conspicuous bonding of nanoparticles with the 

matrix particles can also be due to the fact that the atomic diffusivity of the nanoparticles is quite 

 

c 

b 
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high than the micron-sized particles [6]. The accommodation of alumina nanoparticles is better 

in the aluminium matrix i.e. the alumina nanoparticles have occupied the interparticle spaces in 

the aluminium matrix which is not the case with microcomposites. The grain growth in the 

microcomposites is likely to occur to a greater extent than in nanocomposites. This observation 

could be attributed to the inability of the alumina microparticles to pin down the grain growth at 

a larger scale. The thermal stability against grain growth observed in the nanocomposites can be 

ascribed to the presence of alumina nanoparticles which are expected to hinder the grain 

boundary movement via Zener pinning [29].  

Incipient fusion phenomenon probably has occured which can be observed in the 

nanocomposites in between the intergranular spaces of aluminium, which can be ascribed to 

plasma formation at interparticle contacts at the time of sintering. The pores present in the 

nanocomposites are sparse in number which can be observed in SEM micrograph i.e. Fig. 3.2.38 

(a) & (b) as compared to the microcomposites shown in Fig. 3.2.38 (c). The poor bonding of 

aluminium and alumina nanoparticles has been reported in literature by conventional sintering 

[30]. The distribution of alumina in nanocomposites is better than in the microcomposites. The 

improved bonding between the matrix and reinforcement by spark plasma sintering method can 

be attributed to the pressure assisted sintering as well as the grain boundaries rendered clean in 

the process of SPS.  

Olevsky et al. [31] have investigated the impact of thermal diffusion in spark plasma sintering 

which reflects that the non-uniform distribution of temperature causes local melting at the 

interparticle contacts. Munir et al. [32] have demonstrated higher diffusion co-efficient for spark 

plasma sintering. Xie et al. [33] have studied the spark plasma sintering of aluminium powders 

and have reported the presence of a clean interface from high resolution TEM experiments. In 

the present investigation, clean interface (absence of interphase or reaction products) and a 

reasonable amount of physical contact of the alumina particles to the aluminum particles has also 

been observed. The dispersion of reinforcements in the matrix is the blue print of the degree of 

strengthening rendered by the reinforcement particles.  
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3.2.3.2b.3 Transmission electron microscopy 

The transmission electron microscope (TEM) micrographs illustrate the dispersion of alumina 

particles in aluminium matrix. The grey region symbolizes aluminium matrix and the black area 

depict alumina particles which have been confirmed by EDAX analysis. The TEM micrographs 

of the sintered specimen show clean and sound interface in case of both nano- and 

microcomposites as suggested by Durai et al. [34]. The alumina particle size can be estimated to 

be around 50 nm from the TEM micrograph in Fig. 3.2.39 (a) & (b), frank fault loops can be 

observed inside the alumina particles marked by arrows in Fig. 3.2.39 (a) [35].  

 

 

 

 

 

 

 

Fig. 3.2.39 TEM micrographs of (a) Al-1vol. % Al2O3, (b) Al-5vol. % Al2O3 nanocomposites 

sintered by SPS 

These loops impart a conviction of the strengthening mechanisms operating in the composite 

[36]. Fig. 3.2.40 (a) shows that large numbers of dislocations have accumulated at the triple 

junction of Al-7% reinforced Al2O3 nanocomposite.  It can also be observed that the dislocations 

are pinned and piled up at the Al/Al2O3 interface. Fig. 3.2.40 (b) illustrates the presence of screw 

dislocations in Al-Al2O3 microcomposites. The dislocation lines are straight, long and tangled 

indicating high dislocation density, which probably arises during spark plasma sintering process. 

During SPS the powder mass has undergone heavy deformation due to simultaneous application 

of pressure and high temperature.  Pure tilt boundaries are visible in Fig. 3.2.41 (a) [37]. The 

deformed FCC crystals when annealed lead to interactions between 1/2<110> dislocations 

a b
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resulting in the formation of low-energy networks and sub-boundaries. This refers to: when 

dislocations’ motion is impeded from moving in their slip plane by interacting with other 

dislocations, sub-boundaries, and others, the strain energy can be minimized by the dislocations 

climbing out of slip planes where they align in low energy configurations, e:g: cell walls. The 

high dislocation density at the sub-boundaries can be attributed to the large difference in thermal 

conductivity of aluminium (24 x 10
-6

/°C) and alumina (7.92 x 10
-6

/°C). Cooling of the composite 

furnishes limited deformation of aluminium inhibited by alumina particles, hence high 

dislocation density is visible at the boundaries [38].    

 

 

 

 

 

 

 

Fig. 3.2.40 TEM micrograph of (a) Al-7vol. % Al2O3  nanocomposite, (b) Al-5vol. % Al2O3  

microcomposite sintered by SPS 

Fig. 3.2.41 (b) shows a stacking fault [35] present in the microcomposite, which could be 

explained as follows: the intermixing of alumina microparticles in the matrix is inappreciable; 

therefore there may be formation of some sessile dislocations during packing of matrix and 

microparticle powders. As dislocation is a temperature driven phenomenon, the sessile 

dislocations formed must have resulted in stacking fault at the time of sintering [36].  

 

 

 

a b 
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Fig. 3.2.41 TEM micrograph of (a) Al-7vol. % Al2O3  nanocomposite, (b) Al-5vol. % Al2O3  

microcomposite sintered by SPS 

During sintering, the energy supplied by the combined elasto-plastic (compression) and electro-

magnetic (discharge) processes imparts sufficient mobility for movement of edge dislocations 

[39]. A sessile dislocation can move only by the diffusion of atoms or vacancies to or from the 

fault. The width of the stacking fault ribbon is directly proportional to the stacking fault energy 

which is quite prevalent in case of aluminium.  

 

3.2.3.3 Mechanical Testing 

The density of the composites was measured using Archimedes method. The elastic modulus of 

nanocomposites was determined using nanoindentation (Fisher-Cripps UMIS) technique 

applying a load of 20mN for a dwell time of 10 seconds. The readings were recorded here at ten 

equivalent locations for each specimen and the closest values were considered. The micro-

hardness values of the microcomposites were determined by Vickers hardness tester (Leco LV 

700) applying a load of 0.3 kgf and a dwell time of 5 seconds. The readings were recorded here 

at four equivalent locations for each specimen. Sliding wear tests were performed using a ball on 

plate type wear machine (DUCOM TR-208-M1) using hardened steel ball (SAE 52100) indenter 

a b 
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of 2 mm diameter, with an applied load of 2 Kgf and time period of 15 minutes at a speed of 30 

rpm. The hardened steel ball slides unidirectionally on fixed samples. The tests were carried out 

in laboratory atmosphere at a relative humidity of around 50-60% and temperature of about 

25 C. The wear depth vs time data was obtained from the inbuilt WINCOM software in the wear 

machine. The worn surfaces were characterized by SEM. 

3.2.3.3a Copper-alumina composite 

3.2.3.3a.1 Density and microhardness study 

The density and hardness values for both micro and nanocomposites are tabulated in Table 3.2.3. 

The density values for 1 and 5 vol. % alumina reinforced microcomposites are 95.25 and 95.39% 

of theoretical density, whereas for same composition of nanocomposites density values are 

93.22% and 92.17% of theoretical density. It is observed from the table that density value is 

lower in case of nanocomposites than microcomposites for the same composition. The reason 

could be attributed to the higher surface energy of alumina nanoparticles which lead to 

agglomeration and higher copper-copper contacts hindering densification. Higher number of 

agglomerates of hard alumina particles shields the copper deformability which does not take 

place in microcomposites [40].  

Fig. 3.2.42 shows the variation of microhardness and nano indentation hardness values with 

alumina content. The nanohardness values of the nanocomposites are higher than that the 

corresponding microhardness values of nanocomposites. This can be attributed to the indentation 

size effect [41].  
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Composition Microhardness 

(HV0.3) 

Sintered 

density (g/cm
3
) 

% theoretical 

density 

Cu- 0.5%Al2O3(nano) 76.02 7.51 84.66 

Cu- 1% Al2O3 (nano) 77.42 8.25 93.22 

Cu-  3 % Al2O3 (nano) 98.55 8.23 94.05 

Cu-  5 % Al2O3 (nano) 124.5 8.01 92.17 

Cu-  7 % Al2O3 (nano) 76.17 7.60 88.93 

Cu- 1% Al2O3 (micron) 58.97 

 
8.43 95.25 

Cu- 5% Al2O3 (micron)  

82.47 
8.29 95.39 

Cu- 20% Al2O3 (micron) 93.17 

 
7.57 95.82 

 

Table 3.2.3 Microhardness, sintered and theoretical density of Cu-Al2O3 micro- and nano-

composites with varying alumina content 
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Fig. 3.2.42 Plot for nanohardness of Cu-Al2O3 nanocomposites and microhardness of Cu-Al2O3 

microcomposites 
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Fig. 3.2.43 Elastic modulus of Cu-Al2O3 nanocomposites fabricated by SPS 

The elastic modulus values obtained from nanoindentation hardness measurements have been 

reported against the volume percentage of alumina which is shown in Fig. 3.2.43. Elastic 

modulus values of the nanocomposites revolve around the theoretical values obtained from rule 

of mixture. The elastic modulus value of reinforced Cu-1 vol. % Al2O3 nanocomposite is higher 

than the corresponding theoretical value calculated using rule of mixtures. The rest of the 

compositions i.e. reinforced Cu-5 and 7 vol. % Al2O3 nanocomposites display lower elastic 

modulus values than the theoretical data. The decrease in hardness after 5 vol. % can be 

attributed to the agglomeration of nanoparticles eventually increasing the interparticle distance. 

The formation of a new phase CuAlO2 (from XRD and TEM) suggested is a soft phase. The 

CuAlO2 phase when present discontinuously result in toughening of the interface by crack 

pinning and enhances the strength of the composite [42]. 
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3.2.3.3a.2 Wear study 

3.2.3.3a.2.1 Wear depth 

The wear depth vs. time plot for nanocomposites and microcomposites has been illustrated in  

Fig. 3.2.44 & 3.2.45.  
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Fig. 3.2.44 Wear depth vs. time plot for Cu-Al2O3 nanocomposites sintered by SPS 

 

The wear resistance of microcomposites is higher than nanocomposites for the same 

compositions [43]. The reason could be ascribed to the fact that the wear indenter in case of 

microcomposites has a higher retention of contact with the microparticle in microcomposites in 

comparison to the nanoparticles in nanocomposites. The microparticles render higher time of 

contact with the wear indenter than the nanoparticles. The reason could be the higher area of 

contact with the wear indenter in case of microparticles, which is less likely for the nanoparticles 

reinforced composites. Moreover, the microparticles also prevent origination of sub-surface 

cracks.  
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Fig. 3.2.45 Wear depth vs. time plot for Cu-Al2O3 microcomposites sintered by SPS 

It has also been found that wear resistance increases as the alumina content increases in both the 

cases due to hard and brittle nature of alumina reinforcement. Alumina particles support contact 

stresses and prevent plastic deformation. The wear resistance of the specimens is in accordance 

with the hardness trends. In some cases negative slopes can be seen from wear depth vs. time 

plot. This may be due to the welding of the soft copper phase with the steel ball (indenter) which 

results in decrease in wear depth [44]. 

 

3.2.3.3a.2.2 Wear track 

The wear tracks of Cu-Al2O3 nano- and micro-composites have been illustrated in Fig. 3.2.46 

(a)-(d). The wear track of Cu-1vol. % Al2O3 nanocomposite is wider as compared to Cu-5 vol. % 

Al2O3 nanocomposite.  
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Fig. 3.2.46 SEM micrographs of the worn surfaces showing wear track of (a) Cu-1 vol. % Al2O3 

and (b) Cu-5 vol. % Al2O3 nanocomposite, (c) Cu-5 vol. % Al2O3 and (d) Cu-20 vol. % Al2O3 

microcomposite 

The wear track of nanocomposite with low content of alumina has been observed to get more 

eroded in comparison to higher content of alumina.  

The wear track of microcomposites is narrower than that of nanocomposites. The reason could 

be attributed to the fact that the alumina microparticles being larger in size, do not allow the wear 

indenter to erode the surface continuously. The alumina nanoparticles are hard but the surface 

exposed to the wear indenter is quite small to prevent erosion. 

 

 

 

 

a 

 

b 

 
c 
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3.2.3.3a.2.3 Wear rate and volume 

The wear rate and volume have been plotted against volume content of alumina in Fig. 3.2.47 (a) 

& (b). The wear rate and volume have been calculated using the following equations [45] 

Wear volume (mm
3
) = 2π x track radius x track width x wear depth   (III) 

 

Wear rate (mm
3
N

-1
m

-1
) = wear volume / (normal load x sliding distance)  (IV) 

 

The wear rate and volume of micro- and nano-composites follow the same trend. The wear rate 

decreases as the amount of alumina increases in the composites. The steel ball indenter-copper 

matrix contact causes erosion from the surface which gets minimized as the alumina content 

increases. Hence the metal-ceramic contact results in higher wear resistance and lower wear rate 

and volume. 
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Fig. 3.2.47(a) Wear rate vs. volume % of alumina of the Cu-Al2O3 composites 
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Fig. 3.2.47(b) Wear rate vs. volume % of alumina of the Cu-Al2O3 composites 

3.2.3.3a.2.4 Wear mechanism 

To have an idea about wear mechanism, worn surface was studied under SEM. The SEM 

micrographs of worn surfaces of microcomposites show formation of grooves (Fig. 3.2.48 (a)) by 

shearing action of friction. Fig. 3.2.48 (b) shows pores on the worn surface after particle pull-out 

which results in minimized effective contact area between sample and indenter increasing stress 

[44].  

The wear mechanisms at low loads mostly are grooving and microploughing [46]. The wear 

mechanisms operating in nanocomposites show delamination and microploughing (Fig. 3.2.48 

(c) & (d)) [47]. Large flakes of delaminated material can be observed in Fig. 3.2.48 (c). The wear 

debris in process of microploughing can be seen in Fig. 3.2.48 (d) which is in the form of 

spherical nanoparticle-agglomerates [44]. Plastic deformation leads to plastic instability resulting 

in crack formulation [48]. Microcracks can be observed in Fig. 3.2.49 (left).  
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Fig. 3.2.48 SEM micrographs of worn surfaces of (a) Cu-5 vol. % Al2O3 nanocomposite, (b) Cu-

5 vol. % Al2O3 microcomposite, (c) Cu-1 vol. % Al2O3 nanocomposite, (d) Cu-5 vol. % Al2O3 

nanocomposite 

      

 

 

 

 

 

Fig. 3.2.49 SEM micrographs of worn surfaces of Cu-7 vol. % Al2O3 nanocomposite (left) Cu-20 

vol. % Al2O3 microcomposite along with EDS analysis (right) 
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Fig. 3.2.48 (right) shows SEM micrograph of worn surface and corresponding EDS spectra. The 

EDS spectrum shows the presence of Fe on the worn surfaces of microcomposite which attribute 

wear of steel ball by hard and brittle alumina particles. The formation of tribolayer has also been 

observed with microcomposites as well as low concentration of alumina in nanocomposites [49]. 

The adhesive wear action could be seen by the presence of wear debris sliding from one site to 

another on the composite. The abrasive wear mechanism was evident by the presence of iron 

particles in the wear debris of the composites. The wear rate of copper-7.5% alumina reinforced 

Cu investigated by Fathy et al.[15] has been reported as higher than 2x10
-4

 g/m whereas in our 

experiments we have obtained 1x10
-4

 mm
3
/Nm for copper-7 vol. % alumina. 

3.2.3.3a.2.5 Wear debris 

The wear debris of microcomposites shows flakes whereas the wear debris of nanocomposites is 

spherical in shape (Fig. 3.2.50 & 3.2.51). The nature of wear debris is different in micro- and 

nano-composites due to the higher deformability of microcomposites because of presence of less 

hard alumina microparticles in comparison to nanoparticles.  

 

Fig. 3.2.50 SEM micrograph of the worn surfaces showing wear debris of Cu-5 vol. % Al2O3 

microcomposite (left),  EDS of the whole micrograph (right) 

 

The wear debris formation may be attributed to the fact that copper being soft in nature gets 

eroded by the steel ball indenter, thereby exposing the alumina particles to the surface. The wear 

debris of microcomposites was analyzed for element detection by the help of EDS. The EDS 
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analysis showed that the wear debris of microcomposite contains higher content of iron than that 

of nanocomposites (Fig. 3.2.50).  

 

Fig. 3.2.51 SEM micrograph of worn surfaces of Cu-5 vol. % Al2O3 nanocomposite (left), 

EDS of the whole micrograph (right) 

This observation points towards the fact that the abrasion of wear indenter with microcomposites 

is higher than nanocomposites. The abrasive wear actions of the composites lead to the abrasion 

of the steel ball wear indenter. 

3.2.3.3b Aluminium-alumina composite 

3.2.3.3b.1 Density measurement  

The density measurements exhibit close values to % of theoretical density for microcomposites 

and nanocomposites (Table 3.2.4). The microcomposites exhibit poor bonding and compatibility 

of alumina in the aluminium matrix. The % of theoretical density of microcomposites and 

nanocomposites falls as the volume of alumina increases. The density values of 5 vol. % alumina 

reinforced microcomposite are higher than the corresponding nanocomposite density values. The 

underlying reason could be that the compressibility of hard nanoparticles in a ductile matrix is 

tedious. The compressibility of hard and non-deformable particles in a ductile matrix decreases 

with increasing content of the hard particles (reinforcements) [50]. Moreover the formation of 

networks also retards compaction. This is the same reason for which the density plot shows a 

steep fall from 1 to 5 vol. % of alumina. 
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Table 3.2.4 % of theoretical density, microhardness and nanoindentation hardness values of Al-

Al2O3 micro- and nano-composites 

The density data for nanocomposites are scattered but the trend of density values with increasing 

amount of reinforcement is negative. This can be attributed to the plastic deformation of 

aluminium particles through particle contact during compaction. The higher alumina content 

increases alumina-alumina contact which impedes the deformability of aluminium particles [51]. 

Hence, the densification trend shows a downfall with the increase in alumina content. The major 

concern of nanoparticles is agglomeration as well as the tendency to form interconnected 

networks. The problem of agglomeration in nanoparticles leads to lesser densification in 

nanocomposites whereas this does not impair the densification of microcomposites to a larger 

extent. This is due to the fact that the specific surface of coarser particles is lower and the 

powder compressibility is higher [52]. Rahimian et al. [29] have obtained 96.8% of relative 

density for Al-10 wt. % Al2O3 conventionally sintered at 500°C where as we have reported 

Composition (alumina 

content in wt. %) 

% theoretical 

density Microhardness (GPa) 

Nanoindentation 

hardness (GPa) 

Nanocomposites 

0.5 95.5 0.36 0.02  

1 99.5 0.32 0.01 0.60 0.07 

3 90.1 0.35 0.01  

5 93.6 0.51 0.06 0.49 0.07 

7 93.6 0.38 0.03 0.85 0.14 

Microcomposites 

1 98.8 0.37 0.01  

5 97.1 0.46 0.04  

20 92.5 0.55 0.02  
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98.8% for Al-1 vol. %Al2O3 microcomposite and 99.5% relative density for Al-1 vol. %Al2O3 

nanocomposite.  

 

3.2.3.3b.2 Microhardness and nanohardness measurements  

The microhardness measurements show high hardness values for nanocomposites than for 

microcomposites which are visible in Table 3.2.4. In case of nanocomposites hardness increases 

upto 5 vol. % of alumina due to the positive effect of dispersion strengthening but after that it 

decreases due to agglomeration of nanoparticles. The micron sized particles have lower tendency 

to agglomerate compared to nanoparticles hence, it is attributed to the effect of positive 

dispersion strengthening. The micron-sized particles were inefficient to pin down the grain 

growth of the aluminium grains compared to the alumina nanoparticles. Agglomeration of 

nanoparticles results in the increase of interparticle distance subsequently reducing the particle-

dislocation interaction. Moreover less strength is required to move a dislocation where the 

interparticle distance is large. The nanoparticles possess high yield stress and are sensitive to 

work hardening so render lesser compressibility. Hence, nanocomposites possess higher 

microhardness (for 5 vol. %) referring to greater hardening response [51]. The grain growth 

stagnation in nanocomposites occurs due to Zener effect [53]. Solute segregation is another 

method for grain growth stagnation. Since the alumina particles are hard and in nanoscale range, 

high energy is required for the movement of dislocations when they encounter a hard 

nanoparticle (Dieter, 1976). 

                                                      (4) 

where   is the stress required for a dislocation to pass reinforcement, G is the shear modulus of 

the material and b is the burger vector of the dislocation. It is very difficult to make exact 

comparison of microstructure and mechanical properties of composites fabricated by 

conventional sintering and present SPS method as the processing parameters and raw materials 

sizes are different. However, we have achieved higher hardness at lower processing temperature 

and time as compared to conventional sintering [29]. 
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The nanohardness values of the nanocomposites are higher than the corresponding 

microhardness values (Table 3.2.4). This could be attributed to the indentation size effect 

explained by Mukhopadhyay and Paufler [41]. In microhardness measurements the hardness 

values of microcomposites (for 5 vol. % of alumina) is lower than that of nanocomposites. The 

enhanced strength of the nanocomposites can be attributed to the stronger diffusional bonds and 

structural integrity achieved due to greater diffusional activity [54] by sintering the alumina 

nanoparticles and aluminium matrix particles by spark plasma sintering. The highest value of 

microhardness is revealed by the 20 vol. % alumina reinforced microcomposite. The highest 

amount of alumina could be the reason for the highest value of microhardness. 

3.2.3.3b.3 Wear study 

 

Fig. 3.2.52 Wear depth vs time profile for Al-Al2O3 microcomposites fabricated by spark plasma 

sintering 

Fig. 3.2.52 & 3.2.53 demonstrate the wear depth vs time graphs for Al-Al2O3 micro- and nano-

composites fabricated by spark plasma sintering. The wear depth is higher for nanocomposites 

than microcomposites. The microcomposites show better wear resistance than nanocomposites 

which could be attributed to the fact that the microcomposites contain alumina microparticles 

and as wear is a surface phenomenon the microparticles have higher surface exposed to the wear 
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indenter compared to nanoparticles. Hence, the microparticles prevented the wear indenter to 

erode the matrix to a higher degree compared to the nanoparticles. 

 

Fig. 3.2.53 Wear depth vs time profile for Al-Al2O3 nanocomposites fabricated by spark plasma 

sintering 

Fig. 3.2.54 (a & b) illustrates the wear tracks of Al-Al2O3 microcomposites and nanocomposites 

respectively. The wear tracks reveal low wear resistance for nanocomposites. 

The Al-20 vol. % Al2O3 microcomposite showed a narrow wear track than for Al-5 vol. % Al2O3 

nanocomposite. Fig. 3.2.55 showed wear mechanisms operating in micro- and nano-composites. 

The nanocomposites seem to have got eroded proficiently creating microcracks and distinct 

delamination was visible for microcomposites. 
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Fig. 3.2.54 SEM micrographs of worn out surface of (a) Al-20 vol. % Al2O3 microcomposite and 

(b) Al-5 vol. % Al2O3 nanocomposites fabricated by spark plasma sintering 

 

 

 

 

 

 

 

Fig. 3.2.55 SEM micrographs of worn out surface of (a) Al-1 vol. % Al2O3 microcomposite and 

(b) Al-1 vol. % Al2O3 nanocomposites fabricated by spark plasma sintering 
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3.2.4 Summary and Conclusions 

The Cu-Al2O3 and Al-Al2O3 micro- and nano-composites were fabricated by blend-compact-

sinter powder metallurgy route at different sintering temperatures. The microcomposites possess 

better properties (density and hardness) at higher sintering temperatures. In nanocomposites 

density and hardness are better at lower sintering temperatures. The incorporation of Al2O3 

nanoparticles strengthens the matrix to a greater extent resulting in increase of microhardness 

compared to Al2O3 microparticles. The microstructures of micro- as well as nano-composites 

demonstrate better distribution in the later. Compressive strength is highest for the Cu-15 vol. % 

Al2O3 microcomposites. The flexural modulus of nanocomposites is higher as compared to the 

microcomposites.  Fractography of the microcomposites and nanocomposites revealed mixed 

mode of fracture in both the cases. The wear resistance of nanocomposites is higher than the 

microcomposites under the same experimental conditions. The rise in reinforcement content 

imparts higher microhardness, low density and high wear resistance values for both the systems. 

 Cu-Al2O3 and Al-Al2O3 micro-(1, 5, 20 vol. %) and nano-(0.5, 1, 3, 5, 7 vol. %) composites 

were fabricated by spark plasma sintering technique. XRD analysis shows the presence of Cu, 

Al2O3 and CuAlO2 in both the micro- as well as nano-composites. The SEM micrographs show 

the presence of annealing twins during fabrication by SPS in both nano and micro-composites. 

TEM micrographs suggest the formation of a third phase i.e. CuAlO2 (copper aluminate) around 

the alumina particles. The hardness measurements show that the nanocomposites are harder than 

microcomposites. The wear resistance of microcomposites is higher than the nanocomposites. 

The possible wear mechanisms for both composites are microploughing, delamination as well as 

microcrack formation. The wear mechanisms operating in the micro- and nano-composites is 

dominated by the reinforcement particle size effect and their implications. We have obtained 

95.82% densification and 93.17 HV hardness for spark plasma sintered Cu-20 vol. % Al2O3 

microcomposite. The elastic modulus of Cu-1% alumina nanocomposite is obtained as 128 GPa. 

The wear rate is appreciably low i.e. 0.86 x 10
-4

 mm
3
N

-1
m

-1
 for 20 vol. % alumina reinforced 

copper microcomposite. 
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The distribution of alumina particles in the aluminium matrix is homogeneous and uniform both 

in nanocomposites and microcomposites (slightly better distribution in nanocomposites than 

microcomposite). The interface of aluminium and alumina in nanocomposites is seemingly 

sound than in the case of microcomposite i.e. the compatibility of alumina in aluminium matrix 

in nanocomposites is better than in the microcomposites. The TEM and SEM micrographs reveal 

a lack of intimate proximity between matrix and reinforcement entities in microcomposites. 

Almost full densification in case of 1 vol. % alumina reinforced nano- and microcomposites have 

been achieved. The density of microcomposites as well as nanocomposites decreases with 

increasing alumina content. The nanohardness of nanocomposites is higher than the 

corresponding microhardness values. The highest nanohardness recorded was 0.85 GPa for 7 vol. 

% Al-Al2O3 nancomposites. 
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3.3 Effect of thermal and cryogenic conditioning on flexural behaviour of 

thermally shocked Cu-Al2O3 and Al-Al2O3 micro- and nano-composites 

 

3.3.1 Scope and Objectives of the work 

This investigation has used flexural test to explore the effect of thermal treatments i.e. high 

temperature and cryogenic environments on the mechanical property of Al2O3 particulate 

reinforced Cu and Al metal matrix micro- and nano-composites in ex-situ and in-situ conditions. 

Cu- Al2O3 and Al-Al2O3 reinforced with 5, 10, 15, 20 vol. % Al2O3 micro- (~10µm) and 1, 3, 5, 7 

vol. % Al2O3 nano- (<50 nm)composites were fabricated by powder metallurgy route. Both the 

micro- and nano-composites were treated at +40°C temperature for 1 hour followed by -40°C 

temperature for 1 hour. This treatment was also done in the reverse order i.e. from -40°C to 

+40°C. The above stated thermal shock module was repeated with temperatures (+80°C to          

-80°C) and (-80°C to +80°C) with both micro- and nano-composites with 1 hour isothermal 

holding at each temperature. For thermal conditioning the micro- and nano-composites were 

exposed to +80°C for 1 hour and -80°C for 1 hour separately. High temperature 3- point bend 

test was performed at 100°C and 250°C for the composites after temperature attainment. All the 

micro- and nano-composites subjected to thermal shock, thermal conditionings were tested in 

flexural mode at a span length of 26 mm and loading rate of 0.5 mm/min.  The micro- and nano-

composites were also tested at ambient temperature to note the difference after the thermal 

treatments. The fractured samples were studied under field emission scanning electron 

microscopy. All the fractured samples obtained after various thermal treatments were studied 

under scanning electron microscope (SEM). The development of thermal stresses quite often 

results in concentration of residual stresses at the particle/matrix interface eventually weakening 

it. Enhancement of flexural strength was recorded for down- as well as for up-thermal shock in 

microcomposites. The high temperature flexural strength of micro- and nano-composites is lower 

than that at ambient temperature. The amelioration and declination in mechanical properties as a 

consequence of thermal shock, thermal conditioning and high temperature flexural testing have 

been discussed in the light of fractography. The objective of this investigation is to assess the 
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variation in mechanical property with the thermal treatments, but not so much emphasis on 

evaluating the absolute values of mechanical properties. The absolute value of different 

properties might differ with the route of fabrication techniques. 

3.3.2 Fabrication of composites 

3.3.2a Copper-alumina composite 

Copper powder (Loba Chemie) (average particle size~11μm, purity >99.7%) was used as the 

matrix material. Alumina powders (Sigma Aldrich, purity >99.7%)) (average particle size~10μm 

and < 50 nm) were selected as the reinforcement material. The Cu with 5, 10, 15, 20 vol. % 

Al2O3 (10 µm) microcomposites and Cu with 1, 3, 5, 7 vol. % Al2O3 (< 50 nm) nanocomposites 

powders were blended separately. The specimens having dimensions (31.5 x 12.7 x 6.3 mm
3
) 

were prepared by compacting the powders at a pressure of 500 MPa as per ASTM B 925-08 for 

3-point flexural test. The compacted specimens were sintered conventionally at 900°C for 90 

minutes in argon atmosphere. 

3.3.2b Aluminium-alumina composite 

Aluminium powder (Loba Chemie) (average particle size~22μm, purity- >99.7%) was used as 

the matrix material. Alumina powders (Sigma Aldrich, purity >99.7%)) (average particle 

size~10μm and < 50 nm) were selected as the reinforcement material. The Al- 5, 10, 20 vol. 

%Al2O3 (10 µm) microcomposites and Al- 1, 3, 5 vol. % Al2O3 (< 50 nm) nanocomposites 

powders were blended separately. The specimens having dimensions (31.5 x12.7 x 6.3 mm
3
) 

were prepared by compacting the powders at a pressure of 400 MPa as per ASTM B 925-08 for 

3-point flexural test. The compacted specimens were sintered conventionally at 600°C for 90 

minutes in argon atmosphere.  

3.3.3 Thermal shock 

The 3-point flexural test standard specimens were subjected to thermal shock environment with a 

160°C and 80°C temperature gradients by two separate routes. For one batch of specimens 

(micro- and nano-composites) the treatment started from +80°C temperature to -80°C 

temperature (down thermal shock) and for the other batch it was in the reverse order (up thermal 

shock). For second batch of specimens (micro- and nano-composites) the treatment started from 
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+40°C temperature to -40°C temperature (down thermal shock) and for the other batch it was in 

the reverse order (up thermal shock). Choice of temperatures between +80°C and -80°C was 

made to promote accelerated weathering which readily induces significant scale of damage and 

development in shorter span of time, this accelerated weathering data may be used to predict 

long term durability for application at higher temperatures than -80°C. The same is true for 

+80°C.  

After each thermal shock treatment, 3-point flexural test of each sample was performed 

immediately in an universal testing machine (Instron-5967) at a cross-head speed of 0.5 mm/min 

and span length of 26 mm.  The fractured specimens of all the thermal shock treatments i.e. 

(+80°C to -80°C temperature), (-80°C to +80°C temperature), (+40°C to -40°C temperature) and 

(-40°C to +40°C temperature) were characterized by both field emission scanning and 

conventional scanning electron microscopy for fracture surface analysis. 

 3.3.3a Copper-alumina composite 

The microstructures of Cu-5 vol. % Al2O3 microcomposites before and after down thermal shock 

treatment have been illustrated in Fig. 3.3.1. The fabricated microcomposites show good 

dispersion of alumina particles in copper matrix, whereas the down-thermal shock treated 

microcomposites show particle cracking and particle pull out too. The thermal shock induces 

compressive stresses on the alumina particle as copper expands at +80°C, successively releasing 

the stress at -80°C. The alumina particles crack under stresses and lead to interfacial de-cohesion 

which also gives rise to particle pull-out. 
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Fig. 3.3.1 SEM micrographs of Cu-5 vol. % Al2O3 microcomposite before (left) and after (right) 

down thermal shock for a temperature gradient of 160°C 

Fig. 3.3.2 shows micrographs of Cu-5 vol. % Al2O3 nanocomposites before and after down-

thermal shock treatment. The nanocomposite before treatment has been marked with alumina  

 

 

 

 

 

 

Fig. 3.3.2 SEM micrographs of Cu-5 vol. % Al2O3 nanocomposite before (left) and after (right) 

down thermal shock for a temperature gradient of 160° 

nanoparticles which show almost uniform distribution. The microstructure of nanocomposite 

after down-thermal shock shows pulled out agglomerated particle lying on the matrix.  

Microcomposite 

The variation in flexural strength has been plotted against the alumina content in the 

microcomposites after down- (+40°C to -40°C temperature) and up- (-40°C to +40°C 

temperature) thermal shock treatment (Fig. 3.3.3(a)). The down thermal shock treatment leads to 

Al2O3 
nanoparticles 

Particle pull out 

Particle cracking 

Particle pull-out 
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increase in flexural strength when compared to the ambient flexural strength. The subjection of 

the composites to +40°C temperature results in expansion of matrix enhancing the 

microstructural integrity or mechanical keying of the alumina particle with the matrix. At low 

temperature i.e. at -40°C the matrix contracts leading to generation of gap at the interface due to 

outgripping of alumina particle by the copper matrix. 
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Fig. 3.3.3(a) Variation of flexural strength of Cu-Al2O3 microcomposites after thermal shock of 

80°C temperature gradient 

The up-thermal shock from -40°C to +40°C temperature treated microcomposites show an 

increase in flexural strength with increasing vol. % of alumina and then decreases at 20 vol. % 

composition. The extent of matrix shrinkage decreases as the alumina content increases because 

the increasing number of alumina particles poses a barrier for excessive shrinkage of matrix. The 

Cu-20 vol. % alumina composition probably results in clustering of alumina particles, hence the 

keying and un-keying of alumina particle with the matrix is ineffective.  

The variation in flexural strength has been plotted against the alumina content in the 

microcomposites after down- (+80°C to -80°C temperature) and up- (-80°C to +80°C 

temperature) thermal shock treatment (Fig. 3.3.3(b)). At +80°C temperature treatment the 
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mechanical keying and un-keying effect diminishes with the increase in vol. % of alumina. The 

underlying reason could be attributed to the fact of agglomeration at higher vol. % of alumina. 

The agglomeration of microparticles would lead to the formation of a cluster which would 

possess an uneven complex shaped contour. Hence, this uneven contour prevents effective 

gripping or outgripping of alumina particle with the matrix at high and low temperatures 

respectively.  
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Fig. 3.3.3(b) Variation of flexural strength of Cu-Al2O3 microcomposites after thermal shock of 

160°C temperature gradient 

The increase in flexural strength is higher after a thermal shock of 80°C temperature gradient (ie. 

From +40° to -40°C and from -40°C to +40°C temperature) than the shock of 160°C temperature 

gradient (ie. From -80°C to +80°C and from +80°C to -80°C temperature) in the second module. 

The degree of enhancement of flexural strength decreases as the range of shock temperature 

increases i.e. the increase in flexural strength is higher at 80°C temperature shock rather than 

after 160°C temperature shock. 
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The fractography studies reveal particle pull-out and physical detachment of alumina particle 

from copper matrix (Fig. 3.3.4 (a) & (b)). The down-thermal shock (i.e. +80°C to-80°C) 

promoted the intimate physical bonding of reinforcement-matrix. 

 

 

 

 

 

 

Fig. 3.3.4 SEM micrographs of Cu-10 vol. % Al2O3 microcomposite after down thermal shock of 

80°C temperature gradient showing (a) particle pull-out and (b) interfacial de-cohesion 

The reason could be attributed to the following: at +80°C temperature the matrix around the 

alumina particles expands and it imparts a compressive force on the alumina particle which could 

lead to particle fragmentation sometimes [1]. This also leads to better mechanical keying of the 

particle with the matrix [2]. Whereas on the contrary when cooling occurs from the processing 

temperature during fabrication of composite, the matrix shrinks around the reinforcement particle 

rendering residual tensile stresses/strains in the matrix and compressive stresses/strains in the 

reinforcement [3]. The increase of flexural strength in down-thermally shocked microcomposite 

is slightly higher than in up-thermal shock because the prior conditioning effect predominates 

over the later shock (which means that the thermal shock from (+80°C to -80°C) is manifested as 

prior conditioning at +80°C temperature followed by immediate exposure to -80°C temperature 

i.e. the specimen was conditioned at +80°C temperature for 1 hour and then immediately 

exposed to -80°C temperature. Thus the prior thermally conditioned specimen has experienced a 

thermal shock of 160°C temperature). For the microcomposites subjected to up-thermal shock 

(i.e. from -80°C to +80°C) the contraction of matrix (copper) takes place to a larger extent than 

the reinforcement particle (alumina). The reason for this could be the higher co-efficient of 

thermal expansion of copper (16.6 x10
-6

 k
-1

) than alumina (5.4 x 10
-6

 k
-1

), which also aids the 

(a) (b) 
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presence of dislocation density at the interface [4]. This may lead to physical de-cohesion (Fig. 

3.3.4(b)) at the particle/matrix conjunction which has been observed earlier by Ray et al. [5] in 

inorganic fiber/polymer composite. The dislocations present in the reinforcement proximity also 

get pinned down when the composite is subjected to -80°C. The pinning of dislocations 

strengthens the composite by resisting the plastic flow of the matrix [6]. The interfacial de-

cohesion which had possibly occurred at ultra low temperature could not be restored at +80°C on 

the same scale. The conditioning at -80°C for 60 minutes might have created a large interfacial 

mismatch at the interface which is manifested by the presence of differential co-efficient of 

thermal expansion between copper matrix and alumina reinforcement particle [2].  

Nanocomposite 

 The ultimate flexural strength value increases for up-thermal shock (-40°C to +40°C 

temperature) whereas the strength values decreases for down-thermal shock (+40°C to -40°C 

temperature) which is confirmed from Fig 3.3.5(a). The trend in the variation in flexural strength 

in nanocomposites at (+80°C to -80°C temperature) and (-80°C to +80°C temperature) is same as 

that of the microcomposites for the same thermal shock treatment (Fig. 3.3.5(b)).  The (-40°C to 

+40°C temperature) up thermal shock initiates the contraction of matrix resulting in physical 

detachment of reinforcement particle from the matrix followed by expansion of matrix which 

probably bridges the gap at the interface to some extent. This series of events delays the crack 

initiation and propagation due to initial arrest of dislocations and plastic deformation. The SEM 

micrographs Fig. 3.3.6(a) & (b) show quasi-cleavage in thermally shocked nanocomposites.  
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Fig. 3.3.5(a) Variation of flexural strength of Cu-Al2O3 nanocomposites after thermal shock of 

80°C temperature gradient 

Fig. 3.3.6(a) denotes crack entrapment in the up thermally shocked nanocomposite which reveals 

indirect strengthening, hence the elevation in flexural strength [7]. The declination of surface 

diffusivity of alumina nanoparticles which took place at -80°C was unlikely to be restored by the 

treatment at +80°C temperature. The effect of primary treatment is predominant over the 

following treatment.  The trend of variation in flexural strength of copper-alumina 

nanocomposites after up-thermal shock at (-40°C to +40°C temperature) and at (-80°C to +80°C 

temperature) treatment is opposite. The reason could be attributed to the fact that at -80°C the 

surface diffusivity/activity of alumina nanoparticles is lowered drastically, but -40°C is not 

enough to lower its surface diffusivity to a greater extent, hence after the -40°C to +40°C 

temperature treatment the flexural strength is elevated. The ultimate flexural strength value 

decreases for up-thermal shock whereas the strength values increases for down-thermal shock 

which is confirmed from Fig 3.3.5(a).  
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Fig. 3.3.5(b) Variation of flexural strength of Cu-Al2O3 nanocomposites after thermal shock of 

160°C temperature gradient 

In case of up-thermal shock the matrix in the vicinity of the particle contracts at -80°C 

temperature possibly leading to interfacial de-cohesion. The surface area of the nano particles 

being higher, the degree of de-union anticipated is also high rendering the interfacial bond weak. 

The above being a physical phenomenon cannot be reversed/restored at +80°C temperature, 

hence the ultimate flexural strength decreases. The surface deactivation of alumina nanoparticles 

which took place at -80°C was unlikely to be restored at +80°C. The adverse effect of prior 

thermal conditioning treatment on the composites is not being reversibly reinstated by the 

subsequent treatment; this could be a possible reason for a reduced value of flexural strength. In 

the case of down-thermal shock, the degree of physical contact of matrix and the reinforced 

nanoparticle increases at +80°C temperature (The expansivity of copper matrix is much higher 

compared to that of alumina particle. So, the expansion of matrix onto the particle at +80˚C leads 

to enhanced gripping of alumina by the matrix. This enhanced proximity leads to mechanical 

strengthening of the interface which is reflected by the increased flexural strength values). The 

improved integrity can also be attributed to the enhanced surface diffusivity of nanoparticles at 

high temperature. The physical integrity of copper and alumina has been shown by flexural 
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strength. Nanoparticles have high surface energy leading to high surface diffusivity. At high 

temperature it is reasonably expected that the surface diffusivity of nanoparticles gets improved, 

and at sub-zero temperature surface diffusivity gets reduced, as diffusion is a temperature 

dependent phenomenon.  

 

 

 

 

 

 

Fig. 3.3.6 SEM micrographs of Cu-5 vol. % Al2O3 nanocomposite after (a) up thermal and (b) 

down thermal shock for a temperature gradient of 80°C 

The ultimate flexural strength increases due to the high surface area of nanoparticles and hence 

leading to enhanced interaction of nanoparticles with the matrix at high temperature. Later the 

exposure at -80°C temperature could not induce damage on the same scale as the prior treatment 

at +80°C. Fig. 3.3.6(b) shows flaky appearance of fracture surface, the flakes of white alumina 

nanoparticles are covering the copper matrix surface. The Al/AlN composites were synthesized 

by squeeze casting, and were solution treated at 530°C and quenched in water for 2 hours 

followed by aging for 10 hours at 160°C. Thermal cycling led to increase in tensile strength, 

elastic limit and yield strength, and overall properties’ stability of the composites, which is in 

accordance with our case, where flexural strength increases with thermal shock treatment [8].
 

Bhattacharya et al. [9] have reported increase in microhardness and decrease in density (due to 

formation of voids) after thermal cycling in Al-SiC composites. Cracks at the interface have been 

observed due to thermal strain in the composite in the clustered region of reinforcement. Our 

investigation also reports particle cracking after thermal shock treatment.  

 

(a) (b) 
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3.3.3a.1 Transmission electron microscopy 

Fig. 3.3.7 illustrates the TEM micrographs for the fractured samples of Cu-5 vol. % Al2O3 

microcomposites at (a) ambient conditions, (b) after up thermal shock and (c) after down thermal 

shock. The TEM micrographs reveal a typical dislocation sub-structure for all the specimens. 

The down thermally treated samples exhibit smaller size of dislocation cells than the specimen 

tested at ambient conditions.  As the temperature increases the cell size decreases. Curly 

dislocations are visible for up thermally shocked samples. A dense dislocation forest indicates 

dislocation entanglement which leads to strengthening of the microcomposite as the dislocation 

mobility gets arrested [10]. 

 

 

 

 

 

 

 

 

 

Fig. 3.3.7 TEM micrographs of Cu-5 vol. % Al2O3 microcomposites at (a) ambient conditions, 

(b) after up thermal shock and (c) after down thermal shock for a temperature gradient of 160°C 

The cell structure differs for different deformation temperatures. The cell size usually increases 

with increase in the temperature. The rise in temperature is accompanied by sharpening of cell 

walls. This phenomenon is an avenue for stress relaxation.  

Fig. 3.3.7(a) shows a ragged cell wall structure with dislocations inside the cells. After up 

thermal shock treatment the cell walls become smaller in size and almost clear of dislocations. 

a b 

c 
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The down thermally treated samples show a dense dislocation forest with presence of slip planes. 

The low temperature treatment has arrested the dislocation mobility by entanglement and coiling 

of dislocations. Dislocations move short distances at lower temperatures. Fig. 3.3.8 demonstrates 

the dislocation sub-structure for Cu-5 vol. % Al2O3 nanocomposites (a) at ambient conditions, 

(b) after up thermal shock and (c) after down thermal shock. Strengthening mechanisms in FCC 

metals operate through dislocation forest formation [11]. The nanocomposites also show a 

typical dislocation sub-structure showing supercoiling of dislocations, the overall number of 

dislocations can be estimated to be low as compared to microcomposites.  

 

 

 

 

 

 

 

 

 

Fig. 3.3.8 TEM micrographs of Cu-3vol. % Al2O3 nanocomposites at (a) ambient conditions, (b) 

after up thermal shock and (c) after down thermal shock for a temperature gradient of 160°C 
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3.3.3b Aluminium-alumina composite 

The microstructures obtained after sintering of Al-Al2O3 for micro- and nano-composites show 

good distribution of alumina in the aluminium matrix (Fig. 3.3.9 & 3.3.10). 

 

 

 

 

 

Fig. 3.3.9 SEM micrographs of Al-5 vol. % Al2O3 microcomposite before (left) and after (right) 

down thermal shock of 160°C temperature gradient 

The alumina nanoparticles have intimately mixed with the matrix and are distributed almost 

uniformly in aluminium. The grain boundary pinning is also effective as seen from the 

micrographs. The physical integrity of aluminium-alumina seems to be appreciable as no third 

phase forms in this system. The thermal shock treatment has induced differential expansion and 

contraction of matrix and reinforcement. Down thermal shock consists of treatment at +80°C 

temperature followed by immediate treatment at -80°C temperature. At +80°C temperature the 

aluminium matrix expands and exerts a compressive force on alumina so that physical integrity 

of aluminium and alumina gets improved. The thermal shock experienced when exposed to         

-80°C temperature induces contraction of aluminium and alumina leading to interfacial de-

cohesion of alumina from matrix due to higher contraction of aluminium than alumina. The 

reverse phenomenon takes place during up-thermal shock. Alumina nanoparticles possess high 

surface area and as a result the interfacial decohesion and physical integrity induced by thermal 

shocks have a higher magnitude in case of nanocomposites. The microcomposites also exhibit 

decohesion and disintegration in the microstructure (Fig. 3.3.9). The thermally shocked 

nanocomposites show decohesion of nanoparticle from the matrix and defect generation in the 

matrix (Fig. 3.3.10). 

 

Disintegration of interface 
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Fig. 3.3.10 SEM micrographs of Al-5 vol. % Al2O3 nanocomposite before (left) and after (right) 

down thermal shock of 160°C temperature gradient 

Microcomposite 

 The variation of flexural strength of Al-Al2O3 microcomposites after thermal shock of 80°C and 

160°C temperature gradients is illustrated in Fig. 3.3.11 (a) & (b). The thermal shock with 

conditioning treatment can be divided into three steps. For down thermal shock the first step 

starts with primary conditioning at +80°C temperature for one hour. The second step is the shock 

experienced by the composites when the samples are exposed to -80°C temperature immediately 

after the first step. The third step is the secondary conditioning which consists of holding the 

samples for one hour at -80°C temperature. In up-thermal shock the same steps are followed with 

reversion in temperature i.e. from positive to negative temperature and vice versa. 

The flexural strength of microcomposites increases after down- and up-thermal shocks 

irrespective of volume percentage of alumina used (with the highest values at 10 vol. %, which is 

anticipated to be the optimum composition). The co-efficient of thermal expansion (CTE) of 

aluminium (24x10
-6

/°C) is almost five times higher than alumina (5.4x10
-6

/°C). Due to this large 

difference in CTE values the thermal shock gradient imposes higher expansion of matrix than the 

alumina particle in the first step in case of down thermal shock. This expansion leads to 

improved mechanical keying of alumina with aluminium matrix, elevating the particle 

strengthening effect which is visible in this case. The second step i.e. shock at -80°C results in 

contraction of matrix followed by interfacial de-cohesion.  
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Fig. 3.3.11(a) Variation of flexural strength of Al-Al2O3 microcomposites before and after 

thermal shock of 80°C temperature gradient 

The secondary conditioning for one hour at -80°C further promotes de-cohesion at the 

matrix/particle junction. The attribution of mechanical keying effect during primary conditioning 

is being counteracted by two consecutive de-registry effects during shock as well as secondary 

conditioning. In up thermal shock the primary conditioning results in interfacial de-cohesion due 

to matrix shrinkage. The second step exposes the samples to shock at +80°C allowing aluminium 

matrix to grip alumina by differential expansion of matrix. The secondary conditioning also 

follows the same route of particle gripping by aluminium matrix. During up thermal shock the 

gripping effect counteracts the interfacial de-cohesion effect. As the changes taking place in the 

composite after the primary steps are physical phenomenon, they cannot be reinstated to the 

same scale and degree after secondary shock treatments. 
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Fig. 3.3.11(b) Variation of flexural strength of Al-Al2O3 microcomposites before and after 

thermal shock of 160°C temperature gradient 

 

 

 

 

 

 

Fig. 3.3.12 SEM micrographs of Al-1 vol. % Al2O3 (a) microcomposite and (b) nanocomposite 

after down thermal shock of 160°C temperature gradient 
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Nanocomposite 

The flexural strength of Al-Al2O3 nanocomposites after subjection to thermal shock of 80°C and 

160°C thermal gradient is shown in Fig. 3.3.13 (a) & (b). In nanocomposites the same series of 

events take place during down- and up-thermal shocks. The flexural strength also increases after 

thermal shock treatment with highest value for 3 volume percent of alumina reinforced 

aluminium nanocomposite. The exceptions in variation of flexural strength in nanocomposites 

for some instances of shock treatments could be attributed to agglomeration of nanoparticles. 

Agglomeration is a common occurrence in nanoparticles and that is why mechanical keying and 

un-keying effect may not be effective as anticipated. This may be case sensitive from sample to 

sample which leads to wide fluctuation in strength values. The distribution of alumina particle in 

the matrix, tendency of agglomeration, agglomerated size of particle may not be ascertained 

throughout the matrix and from sample to sample. The degree of increase in flexural strength in 

micro- and nano-composites after thermal shocks is higher for a shock of 160°C than for 80°C. 

The reason could be the higher expansion/contraction of matrix for a shock of 160°C, compared 

to shock of 80°C. In this case the thermal conditioning effect predominates on the shock effect 

and hence the increase of strength for the former is higher than the later. 
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Fig. 3.3.13(a) Variation of flexural strength of Al-Al2O3 nanocomposites before and after 

thermal shock of 80°C temperature gradient 
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Fig. 3.3.13(b) Variation of flexural strength of Al-Al2O3 nanocomposites before and after 

thermal shock of 160°C temperature gradient 
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3.3.4 Thermal conditioning 

In order to treat the samples for thermal conditioning the samples were categorized into 3 groups. 

The first group was treated at +80°C in muffle furnace for 60 minutes isothermally.  The blower 

of the furnace was on function for heat circulation and uniform heating of the samples.  The 

second set of samples were treated at -80°C in an ultra low temperature chamber for 60 minutes 

by isothermal holding. The third batch of samples was maintained at ambient temperature. 3-

point flexural test was conducted immediately at room temperature after each thermal 

conditioning treatment. The loading rate and span length was maintained at 0.5 mm/min and 

26mm respectively for all the 3-point bend tests. 

3.3.4a Copper-alumina composite 

Microcomposite 

 The 3-point flexural strength values at various conditioning temperatures are illustrated in Fig. 

3.3.14. As the expanding elastic matrix imparts a compressive force on the reinforcement 

particle, this results in particle fragmentation (abundantly visible in SEM micrograph Fig. 

3.3.15(a) & (b)) which leads to composite softening.  This differential expansion also leads to 

localized stresses and strain fields in the microcomposite [12]. The ultra low temperature 

conditioning at -80°C may impart shrinkage of matrix which causes interfacial de-cohesion, 

decreasing the flexural strength of microcomposite. At low temperature the degree of contraction 

of matrix is higher than the reinforcement particle shrinkage. As the probability of particle 

cracking decreases, this results in decrease of the detrimental softening effect. 
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Fig. 3.3.14 Flexural strength of Cu-Al2O3 microcomposites after thermal conditioning 

So, the decrease in ultimate flexural strength is less pronounced as compared to the +80°C 

conditioning. 

 

 

 

 

 

 

Fig. 3.3.15 FESEM micrographs of Cu-10 vol. % Al2O3 (a) & (b) microcomposite after thermal 

conditioning at +80°C 
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Nanocomposite 

At +80°C temperature, the ultimate flexural strength increases in comparison to the untreated 

sample (Fig. 3.3.16). The nano alumina particles impede the dislocation motion leading to the 

dislocation pileups at the reinforcement particle-matrix boundary, which leads to strain 

hardening of the composite. The enhanced surface diffusivity of nanoparticles at high 

temperature could be another reason for proficient interfacial interaction and subsequent 

composite strengthening. On the contrary the ultralow temperature conditioning of the 

nanocomposite at -80°C decreases the composite strength. As the movement of dislocations is a 

temperature driven phenomena, at low temperature the movement of dislocations get arrested 

which restricts the dislocation pile up consequently decreasing the density of dislocation forest 

[13]. At low temperature the surface diffusivity of alumina nanoparticles is quite likely to get 

lowered in comparison to enhanced diffusivity at high temperature, hence the thermal 

conditioning effect in nanocomposites is pronounced. 

0 1 2 3 4 5 6
0

50

100

150

200

250

300

U
lt

im
a

te
 f

le
x

u
ra

l 
s

tr
e

n
g

th
 (

M
P

a
)

Vol. % of alumina

 Ambient

 +80 C

 -80 C

 

 

 

Fig. 3.3.16 Flexural strength of Cu-Al2O3 nanocomposites after thermal conditioning 
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3.3.4b Aluminium-alumina composite 

Microcomposite 

 Flexural strength of thermally conditioned samples of Al-Al2O3 microcomposites has been 

demonstrated in Fig. 3.3.17 respectively. The residual stresses generated by virtue of fabrication 

i.e. compaction and sintering might have developed defects such as macro- and micro-cracks. 

The conditioning of samples at -80°C temperature leads to contraction of aluminium matrix 

resulting in closure of many potential cracks. The differential contraction between matrix and 

particulate reinforcement may lead to de-registry at the interface which may lead to 

release/relaxation of built in residual stresses after fabrication. These could be the reason 

attributed to strengthening of composite after -80°C temperature thermal conditioning. 
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Fig. 3.3.17 Flexural strength of Al-Al2O3 microcomposite after thermal conditionings 

 

Nanocomposite 

 The flexural strength of Al-Al2O3 nanocomposites improves post thermal conditioning both for 

+80°C and -80°C temperatures. The elevation in strength can be realised through FESEM 

fractographs which indicate strengthening mechanisms such as crack bifurcation (Fig. 3.3.19(a)). 
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Fig. 3.3.19(b) shows serrations as a damage characteristic and ample alumina nanoparticles are 

present on the matrix. The increase in strength indicates that the thermal conditioning treatment 

has acted in a positive manner for the nanocomposites. At +80°C temperature the matrix expands 

and tightly bonds with the alumina particle resulting in high flexural strength. At -80°C 

temperature the matrix shrink and in this course leads to rise in the crack nucleation threshold 

value via many crack blunting mechanisms. 
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Fig. 3.3.18 Flexural strength of Al-Al2O3 nanocomposites after thermal conditionings. 
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Fig. 3.3.19  FESEM micrographs of Al-1 vol. % Al2O3 (a) & (b) nanocomposite thermally 

conditioned at -80°C. 

 

3.3.5 High temperature in-situ 3-point bend test 

 High temperature 3-point flexural test was carried out at a temperature of 100°C, 250°C on the 

micro- and nano-composites. The samples were kept inside the furnace chamber and the furnace 

was allowed to reach the required temperature.  The 3-point flexural test was conducted just after 

the temperature attainment under in-situ conditions. 

3.3.5a Copper-alumina composite 

Microcomposite 

At 100°C temperature the copper matrix expands resulting in tensile and compressive stress in 

the matrix and reinforcement respectively enhancing the mechanical locking between matrix and 

reinforcement [14]. This leads to the direct strengthening of the composite and as a result the 

ultimate flexural strength of the composite increases from the ambient test value (illustrated in 

Fig. 3.3.20). 

At 250°C temperature the ultimate flexural strength values decreases from the room temperature 

test value. At higher operating temperatures plasticity of the composite increases due to (1) 

Crack 
bifurcation  

Serrations 

(a) (b) 
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dislocation annihilation (2) activation of dislocation motion by different mechanism other than 

glide (3) relaxation of internal stress at the matrix-particle front, (4) enhancement of dislocation 

recovery at the interface [15].
 
All the above stated phenomena decrease the strain hardening 

exponent of the composite leading to decrease in ultimate flexural strength of the composite.  

The microcomposites’ flexural strength decreases when excursed to high temperature testing at 

100°C and 250°C temperature (Fig. 3.3.20). The matrix softening along with de-cohesion of 

alumina particle from the softened matrix leads to the lowering of flexural strength at elevated 

temperatures [16]. As reported by Wu et al. [17] thermal fatigue resistance increases as the 

reinforcement particle size decreases.  
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Fig. 3.3.20 High temperature flexural strength of Cu-Al2O3 microcomposites  

 

 

Nanocomposite 

 Fig. 3.3.21 illustrates increase of flexural strength in nanocomposites when tested at 100°C, 

indicating the enhancement of microstructural integrity and the mechanical keying of the 
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alumina particle with the copper matrix. The deviation in the variation of flexural strength of Cu-

5 vol. % Al2O3 nanocomposite from rest of the two compositions could be attributed to the 

agglomerating effect of alumina nanoparticles which impedes excessive softening of matrix. This 

hinders the lowering of flexural strength. The temperature of 100°C acts as a thermal 

conditioning to enhance the flexural strength of nanocomposites. The decrease of strength at 

250°C reveals the softening of matrix and the outgripping of alumina particle from the copper 

matrix. With increase in operating temperature the strengthening mechanisms that operate at low 

temperature get relaxed which decrease the strength of the composite
 
[14]. The fractography 

studies (Fig. 3.3.22) reveal that the failure characteristic features of the composite at 250°C 

temperature can be characterized by dimple markings (matrix softening at elevated temperature). 

The nanocomposites do not show pronounced dimples in ambient conditions of testing, whereas 

at high temperature of testing presence of dimples suggest matrix softening to a certain extent.  

The microcomposites’ strength is better at 250°C than nanocomposites due to softening of matrix 

at 250°C and as the interfacial area is high in nanocomposites, the de-cohesion of alumina 

nanoparticle from the matrix leads to drastic lowering of strength. Whereas at 100°C the 

nanocomposites show high strength than the microcomposites, the reason could be attributed to 

the conditioning effect of 100°C on the nanocomposites to improve its structural integrity as well 

as enhances the interlocking of alumina nanoparticles with the matrix [18]. The high temperature 

properties of copper-alumina nanocomposites are appreciably high at 100°C, with adversity to 

250°C. 
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Fig. 3.3.21 High temperature flexural strength of Cu-Al2O3 nanocomposites 

Uematsu et al. subjected Al-SiC composites to high temperature testing, showing decrease in 

tensile strength with increase in testing temperature such as 150˚C and 250˚C [19]. The fracture 

surface indicated particle fracture and particle/matrix crack intiation due to softening of matrix at 

high temperature which is in agreement with our results. 
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Fig. 3.3.22 SEM micrograph of Cu-5 vol. % Al2O3 nanocomposite after high temperature 

flexural test at 250°C 

 

3.3.5b Aluminium-alumina composite 

Microcomposite 

The in-situ high temperature testing at 100°C and 250°C demonstrated increase in flexural 

strength from the ambient test values (Fig. 3.3.23). At 100°C the aluminium matrix expands and 

exerts a compressive stress on the particle resulting in gripping of particle in the matrix. This 

gripping leads to closer proximity of alumina particle with the matrix aiding in effective stress 

transfer from the matrix to the particle. The higher content of alumina composition show 

decreased effect of high temperature testing, the higher alumina content promotes clustering. 

Hence, the surface area of the alumina microparticle interacting with the matrix will get reduced 

effectively because of clustering. This may be the supporting fact for decreased effect in strength 

value of higher alumina content composition at high temperatures. 
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Fig. 3.3.23 High temperature flexural strength of Al-Al2O3 microcomposites  

Nanocomposite 

 Fig. 3.3.24 shows flexural strength of Al-Al2O3 nanocomposites at 100°C and 250°C 

temperature. 250°C temperature could be a conducive temperature for nanoparticles to diffuse 

and subsequently lead to agglomeration. This is why the gripping effect explained above at 

100°C could get diminished at 250°C temperature. Due to agglomeration of nanoparticle at high 

temperature the alumina nanoparticle-matrix interaction will get lowered, the strength getting 

reduced. At 250°C temperature the agglomeration process will be activated by the enhanced 

temperature during in-situ test. The degree of agglomeration will be higher at 250°C than 100°C 

visible in Fig. 3.3.25. The increase in flexural strength at 250°C for Al-1 vol. % Al2O3 reveals 

the thermal conditioning effect at 100°C temperature followed by matrix softening and as this 

composition contains less number of alumina particles, hence not decreasing the strength to a 

larger extent. 
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Fig. 3.3.24 High temperature flexural strength of Al-Al2O3 nanocomposites 

 

 

 

 

 

 

Fig. 3.3.25 SEM micrographs of Al-5 vol. % Al2O3 nanocomposite after high temperature 

flexural test at (a) 100°C and (b) 250°C 
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3.3.6 Comparison of mechanical behaviour of differently thermal treated composites 

The present investigation has largely emphasized the study of damage and/or development of 

flexural properties under the condition of up-thermal and down-thermal shocks. The experiment 

has further focused on the variation of flexural behaviour by the imposition of thermal 

conditioning and high temperature exposure on micro- and nano-particle embedded Cu based 

composites. 

a. Thermal shock 

 The composites are exposed to temperature gradient of 160°C (from 80°C to -80°C i.e. down- 

thermal shock, and -80°C to +80°C temperature i.e. up-thermal shock). This thermal shock 

experiment revealed that the flexural strength of microcomposites increases after down- as well 

up-thermal shock treatments. Whereas, for nanocomposites there is an incremental improvement 

in flexural strength after down-thermal shock conditioning and the decrease of its value has been 

observed after up-thermal shock treatment.  

The larger surface/volume ratio in alumina nanoparticles in comparison to microparticles implies 

more surface area contact with the copper matrix for the former. The implications of thermal 

treatments for both the up-and down-thermal shocks are likely to affect more particle/matrix 

interfaces in nanoparticles embedded copper matrix system. Thus it may reasonably be proposed 

that the differential co-efficient of thermal expansion of copper and alumina may manifest larger 

amount of interfacial damage in nanosystem, because of an exposure to a temperature gradient in 

a short span of time. That is why more degradation has been observed in nanocomposites.  

The enhancement of property has also been observed in few cases for both the systems. This may 

be manifested by an improvement in mechanical keying factor. The improvement by keying 

factor may sometimes get nullified and/or diminished during exposure in an opposite direction of 

thermal cycling. These contradictory and inconclusive natures of behaviour might be attributed 

by the generation of opposite and complex residual stresses during exposure to high to low and 

low to high temperature cycles.  
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b. Thermal conditioning  

The specimens had experienced a temperature of +80°C and -80°C separately which were 

conditioned at that temperature for an hour. The microcomposites reflect a decrease in flexural 

strength after +80°C temperature conditioning. Nanocomposites show an increase in flexural 

value at +80°C temperature, and decrease at -80°C temperature conditioning respectively. 

The reduction in mechanical property during cryogenic conditioning may be attributed by the de-

cohesion between alumina particle and copper matrix in nanocomposites. This might have been 

manifested because of large difference in co-efficient of thermal contraction between particle and 

matrix. 

The high temperature exposure of nanocomposites has demonstrated an increase in mechanical 

property. It may be reasonably assumed that differential expansion may be leading to better 

particle matrix registry and thereby closer proximity is ensured. 

The lower surface area/volume ratio of microparticle in comparison to the nanoparticle 

embedded copper matrix has shown no significant changes for cryogenic temperature 

conditioning and a decline in flexural strength at high temperature conditioning. The forced close 

intimacy of the alumina microparticle and matrix at high temperature leads to development of 

residual stresses at the particle/matrix interfacial region. This non-uniform distribution of 

residual stresses may decrease the threshold value of crack nucleation and propagation along the 

particle/matrix interface region. The differential co-efficient of thermal expansion between 

alumina particle and copper matrix has lesser impact and implications either in advancement or 

declination of mechanical property in micro-alumina reinforced copper composites. 

c. High temperature in-situ flexural test 

The composites were tested at 100°C and 250°C temperatures, and these temperatures were 

maintained constant throughout the experiment. The increase in flexural strength at 100°C and 

decrease in flexural strength at 250°C discusses about the poor high temperature sustainability of 

microcomposites. The nancomposites also reveal low flexural strength at 250°C. 

The increase in flexural strength at 100°C is due to the effective gripping of alumina particle and 

copper matrix due to relatively higher expansion of copper than alumina. The residual stress 
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development triggers the forced close registry between particle and matrix imposed by high 

temperature (250°C) conditioning.  This may not be conducive for the generated residual stresses 

to be distributed properly and uniformly. These accumulated non-uniform residual stresses may 

decrease the threshold value of crack nucleation and propagation along the particle/matrix 

interface region. 

3.3.7 Summary and Conclusions 

Cu-Al2O3 and Al-Al2O3 micro- and nano-composites were fabricated by conventional powder 

metallurgy route. Both up- and down-thermal shock treatments enhance the ultimate flexural 

strength of Cu-Al2O3 and Al-Al2O3 microcomposites.  Thermal conditioning at +80°C improves 

the ultimate flexural strength of Cu-Al2O3 nanocomposites and Al-Al2O3 micro- and nano-

composites. Thermal conditioning at -80°C elevates the ultimate flexural strength of Al-Al2O3 

nanocomposites. At high operating temperatures (i.e. 250°C) the ultimate flexural strength of 

both Cu-Al2O3 micro- and nano-composites decreases but for Al-Al2O3 microcomposites the 

strength increases. SEM micrographs reveal ductile mode of fracture for both micro- and nano-

composites. The nanoparticles in nanocomposites have higher surface area as compared to 

microparticles in microcomposites. So, the thermal shock induced stress in nanocomposites is 

more visible in terms of degradation and enhancement of flexural strength. The development and 

detoriation of physical integrity of composite is predominant in nanocomposites than 

microcomposites. Noticeable differences in the flexural strength and response to thermal 

exposures of the micro- and nano-composites have been observed, and have been explained in 

terms of difference in their fracture surface microstructures. 
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3.4 An exploratory study on the effect of loading rate on flexural strength of 

Cu-Al2O3 and Al-Al2O3 micro- and nano-composites 

 

3.4.1 Scope and objectives of the work 

Different loading rates are quite probable in several applications of metal matrix composites to 

evaluate their crashworthiness [1]. High impact loading conditions are withstood at instances 

such as MMC armours, collision of cars and impact of foreign objects on aerospace structures. 

Metal matrix composites respond differently to high strain rate loading conditions as compared 

to monotonic or quasistatic loading [2]. As loading rate is directly proportional to strain rate, we 

can assume the changes in behaviour of material to possess similarity in both the cases. As strain 

rate is increased from quasi-static to dynamic, the temperature conditions gradually change from 

isothermal to fully adiabatic. There is thermo-mechanical coupling in the adiabatic stress-strain 

curves i.e the effects of strain hardening, strain/rate strengthening and thermal softening caused 

by the adiabatic temperature increase couple together. The dislocation density is an internal state 

variable which is a function of plastic deformation [3]. The heterogeneous microstructure of 

composites necessitates the evaluation of mechanical strength at different loading conditions. 

Residual stresses also play a vital role in the effect of loading speed on composites. Loading rate 

sensitivity of metal matrix composites is a function of loading rate sensitivity of the matrix as 

well as the status and stability between particles and matrix [4]. 

3.4.2 Fabrication of composites  

3.4.2a Copper-alumina composite 

Copper powder (Loba Chemie) (average particle size~11μm, purity >99.7%) was used as the 

matrix material. Alumina powders (Sigma Aldrich) (average particle size~10μm and < 50 nm) 

were selected as the reinforcement material. The Cu with 5, 10, 20 vol. % Al2O3 (10 µm) 

microcomposites and Cu with 1, 3, 5 vol. % Al2O3 (< 50 nm) nanocomposites powders were 

blended separately. The specimens having dimensions (31.5 x 12.7 x 6.3 mm
3
) were prepared by 
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compacting the powders at a pressure of 500 MPa as per ASTM B 925-08 for 3-point flexural 

test. The compacted specimens were sintered conventionally at 900°C for 90 minutes in argon 

atmosphere. 

3.4.2b Aluminium-alumina composite 

Aluminium powder (Loba Chemie) (average particle size~22μm, purity- >99.7%) was used as 

the matrix material. Alumina powders (Sigma Aldrich) (average particle size~10μm and   < 50 

nm) were selected as the reinforcement material. The Al-5, 10, 20 vol. % Al2O3 (10 µm) 

microcomposites and Al-1, 3, 5 vol. % Al2O3 (< 50 nm) nanocomposites powders were blended 

separately. The specimens having dimensions (31.5 x12.7 x 6.3 mm
3
) were prepared by 

compacting the powders at a pressure of 400 MPa as per ASTM B 925-08 for 3-point flexural 

test. The compacted specimens were sintered conventionally at 600°C for 90 minutes in argon 

atmosphere.  

3.4.3 Effect of loading rate on the flexural strength of composites 

3-point flexural test was carried out at loading rates of 0.5, 1, 10, 100, 500, 1000 mm/min for 

copper-alumina and aluminium-alumina micro- and nano-composites maintaining a span length 

of 26 mm in universal testing machine (INSTRON-5967). 

3.4.3a Copper-alumina composite 

The flexural strength of copper-alumina nanocomposites increases with increase in loading rate 

whereas the microcomposites show an increase-decrease trend (Fig. 3.4.1 & 3.4.2). The effect of 

loading rate on the flexural strength of Cu-Al2O3 microcomposites is not statistically significant. 

The drop in flexural strength at some instances could be attributed to the presence of non-

uniform crack density. A tendency of increase in flexural strength with increasing loading rate 

has been recorded for Cu-1, 3 vol. % Al2O3 nanocomposites. This increase in strength is absent 

in 5 vol. % alumina reinforced copper nanocomposites, probably because of higher degree of 

agglomeration of nanoparticles, it indicates analogy with microcomposites behaviour for the 

loading rate effect. At higher loading rates relaxation time incurred is less hence the composites 

become stiffer and exhibit strengthening effect. 
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Fig. 3.4.1 Variation in flexural strength of Cu-Al2O3 microcomposites at different loading rates 

The relationship between loading rate and strain rate is as follows 

Strain rate,                               (1)                                                                        

Cross head velocity,                  (2)                                                                                             

Engineering / Conventional strain rate,  

                                                 

                                                  

                                                            (3)                        

Hence,                   

Where Lo is the original length and L is the length after time t [5] 
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The loading rate sensitivity of composites increases with addition of particles which is visible 

from Cu-1 vol. % Al2O3 to Cu-3 vol% Al2O3 nanocomposites. The increase in flexural strength 

with increasing loading rate could be due to the constrained plastic flow of the matrix, which is 

sufficiently high in nanoparticle embedded composites. The strain induced in matrix and 

reinforcement is differential in nature and hence this strain mismatch leads to dislocation 

generation eventually altering the mobility of dislocations. The degree of misfit strain fluctuates 

at varied loading speeds and leads to formation of typical dislocation sub-structures [6]. 

Particle/matrix interfaces are preferential cavity nucleation sites [7]. Cavitation takes place at 

particle/matrix interface at high loading rates during bending test, which grows and leads to 

interfacial de-cohesion and ultimately fracture. 

0 1 2 3 4 5 6
0

50

100

150

200

250

300

350

400

U
lt

im
a

te
 f

le
x

u
ra

l 
s

tr
e

n
g

th
 (

M
P

a
)

Vol. % of alumina

 0.5

 1

 10

 100

 500

 1000

 

 

 

Fig. 3.4.2 Variation in flexural strength of Cu-Al2O3 nanocomposites at different loading rates 

 

3.4.3b Aluminium-alumina composite 

The flexural strength of Al-Al2O3 microcomposites and nanocomposites at different loading rates 

has been illustrated in Fig. 3.4.3 & 3.4.4. The Al matrix micro- and nano-composites show 

similar trend of possessing higher strength at medium loading rates. As the loading rates increase 

the flexural strength initially rises and then drops for both micro- and nano-composites showing 
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an increase-decrease trend. At high strain rates composites experience higher strain rate 

sensitivity than the monolithics. Strain rate sensitivity of composites mostly adheres to the strain 

rate sensitivity behaviour of the corresponding matrices. Increasing particle content increases 

strain rate sensitivity. 
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Fig. 3.4.3 Variation in flexural strength of Al-Al2O3 microcomposites at different loading rates 

At higher loading rates the stress transmissibility from the matrix to reinforcement particle may 

not take place effectively due to time constraint, so it becomes more of a matrix phenomenon. At 

medium loading rates near uniform load distribution is anticipated; hence the composites possess 

higher strength at medium loading rates.  

 

 



Chapter 3        Results and Discussion 

162 
 

0 1 2 3 4 5 6
0

5

10

15

20

25

30

35

40

45

50

U
lt

im
a

te
 f

le
x

u
ra

l 
s

tr
e

n
g

th
 (

M
P

a
)

Vol % of alumina

 0.5

 1

 10

 100

 500

 1000

 

 

 

Fig. 3.4.4 Variation in flexural strength of Al-Al2O3 nanocomposites at different loading rates 

3.4.4 Summary and Conclusions 

Loading rate sensitivity is evident at lower range of loading rates, thereafter strength decreases 

with increase in loading speed. Cu-Al2O3 and Al-Al2O3 composites are seemingly loading rate 

sensitive materials. As the dislocation density evolution is different at different loading rates, 

these materials are loading rate sensitive. The flexural strength with respect to crosshead speed 

of copper and aluminium based composites varies with size and content of alumina particles. 

References 

[1] S. K. Paul, Predicting the flow behaviour of metals under different strain rate and 

temperature through phenomenological modelling, Comp. Mater. Sci. 65 (2012) 91-99. 

[2] Y. Zhou, Y. Xia, Experimental study of the rate sensitivity of SiCp /Al composites and the 

establishment of a dynamic constitutive equation, Compos. Sci. Tech. 60 (2000) 403-410. 

[3] J.A. Rodriguez-Martinez, M. Rodriguez-Millan, A. Rusinek, A. Arias, A dislocation-

based constitutive description for modelling the behaviour of FCC metals within wide 

ranges of strain rate and temperature, Mech. Mater. 43 (2011) 901-912. 



Chapter 3        Results and Discussion 

163 
 

[4] G. Bao, Z. Lin, High strain rate deformation in particle reinforced metal matrix 

composites, Acta. Mater. 44 (3) (1996) 1011-1019. 

[5] G.E. Dieter, Mechanical Metallurgy, McGraw- Hill, London, United Kingdom, Third 

Edition 1988. 

[6] S. Yadav, D.R. Chichili, K.T. Ramesh, The mechanical response of a 6061-T6 Al/Al2O3 

MMC at high rates of deformation, Acta. Metall. Mater. 43 (12) (1995) 4453-4464.  

[7] G. Q. Tong, K.C. Chan, High strain rate superplasticity of an Al-4.4Cu-1.5Mg/21SiCw 

composite sheet, Mat. Sci. Eng. A 286 (2000) 218-224.  



Chapter 4        Summary and Conclusions 

164 
 

 

Chapter 4 

Summary and Conclusions 

 

 

 

 

 

 

This thesis studies the problem of structural integrity with the variation of fabrication parameters 

and also by inducing thermal stresses in copper and aluminium matrix composites varying the 

reinforcement particle size (i.e. micro- and nano-particles) and volume fraction. The comparison 

in micro-structural integrity both for micro- and nano-composites have been recorded at all 

points of experimentation (i.e. for variation in fabrication parameters and thermal conditionings) 

with the help of electron microscopy. 

 Cu-5 vol. % Al2O3 and Al-5 vol.% Al2O3 micro-and nano-composites were fabricated by 

milling and blending of copper-alumina and aluminium-alumina powders followed by 

conventional sintering. Milling reduces the particle size of composite powders with 

increasing milling time. X-ray diffraction, particle size analysis and microstructure reveal 

particle size reduction and good distribution of alumina particles in copper and 

aluminium matrix powders. Microhardness values of milled samples are higher than 

blended samples. Blending of powders followed by sintering impart higher density than 
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milled and sintered samples. Grain refinement of copper and aluminium is observed with 

increasing milling time. Milling process demonstrates plastic deformation, micro-welding 

and particle fragmentation as evident from SEM micrographs. 

 The Cu-Al2O3 microcomposites fabricated via conventional sintering route in nitrogen, 

argon and hydrogen atmospheres yielded appreciable properties for hydrogen 

atmospheres. The densification process is more efficient in the case of hydrogen than in 

nitrogen or argon atmosphere. The microstructure of the composites sintered in hydrogen 

atmosphere reveals better matrix-reinforcement bonding. The problem of poor interfacial 

bonding in nitrogen and argon atmosphere has been addressed up to a certain extent using 

hydrogen atmosphere. The EDS analysis also proves the same. The formation of Cu2O 

during sintering in nitrogen and argon atmosphere reduced the extent of bonding between 

copper and alumina. The density and hardness values are also in accordance to the above 

fact.  

 

 The Cu-Al2O3 and Al-Al2O3 micro- and nano-composites were fabricated by blending-

compaction-sintering powder metallurgy route at different sintering temperatures. The 

microcomposites possess better properties (density and hardness) at higher sintering 

temperatures. Whereas the nanocomposites show appreciable properties at low 

temperatures. The incorporation of Al2O3 nanoparticles strengthens the matrix to a 

greater extent resulting in increase of microhardness compared to Al2O3 microparticles. 

The microstructures of micro- as well as nano-composites demonstrate better distribution 

in the later. Compressive strength is highest for the Cu-15 vol. % Al2O3 microcomposites. 

Flexural strength drops with increase in alumina content. Fractography of the 

microcomposites and nanocomposites revealed mixed mode of fracture in both the cases. 

The wear resistance of nanocomposites is higher than the microcomposites under the 

same experimental conditions. The rise in reinforcement content imparts higher 

microhardness, low density and high wear resistance values for both the systems. 

 

 Cu-Al2O3 and Al-Al2O3 micro-(1, 5, 20 vol. %) and nano-(0.5, 1, 3, 5, 7 vol. %) 

composites were fabricated by spark plasma sintering technique. In Cu-Al2O3 system, 



Chapter 4        Summary and Conclusions 

166 
 

XRD analysis shows the presence of Cu, Al2O3 and CuAlO2 in both the micro- as well as 

nano-composites. The SEM micrographs show the presence of annealing twins during 

fabrication by SPS in both nano- and micro-composites. TEM micrographs suggest the 

formation of a third phase i.e. CuAlO2 (copper aluminate) around the alumina particles. 

The hardness measurements show that the nanocomposites are harder than 

microcomposites. The wear resistance of microcomposites is higher than the 

nanocomposites. The possible wear mechanisms for both composites are microploughing, 

delamination as well as microcrack formation. The wear mechanisms operating in the 

micro- and nano-composites is dominated by the reinforcement particle size effect and 

their implications. We have obtained 95.82% densification and 93.17 HV0.3 hardness for 

spark plasma sintered Cu-20 vol. % Al2O3 microcomposite. The elastic modulus of Cu-

1% alumina nanocomposite is obtained as 128 GPa. The wear rate is appreciably low i.e. 

0.86 x 10
-4

 mm
3
N

-1
m

-1
 for 20 vol.% alumina reinforced copper microcomposite. 

 

 In Al-Al2O3 system, the distribution of alumina particles in the aluminium matrix is 

homogeneous and uniform both in nanocomposites and microcomposites (slightly better 

distribution in nanocomposites than microcomposite). The interface of aluminium and 

alumina in nanocomposites is seemingly sound than in the case of microcomposite i.e. 

the compatibility of alumina in aluminum matrix in nanocomposites is better than in the 

microcomposites. The TEM and SEM micrographs reveal a lack of intimate proximity 

between matrix and reinforcement entities in microcomposites. Almost full densification 

in case of 1 vol. % alumina reinforced nano- and microcomposites have been achieved. 

The density of microcomposites as well as nanocomposites decreases with increasing 

alumina content. The nanoindentation hardness of nanocomposites is higher than the 

corresponding microhardness values. The highest nanohardness recorded was 0.85 GPa 

for 7 vol. % Al-Al2O3 nancomposites. 

 

 

 Up- and down-thermal shock treatments enhance the ultimate flexural strength of Cu-

Al2O3 and Al-Al2O3 microcomposites.  The variation of flexural strength is contradictory 

and far from comprehensive conclusion in Cu-Al2O3 nanocomposites. Thermal 
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conditioning at +80°C temperature improves the ultimate flexural strength of Cu-Al2O3 

as well as Al-Al2O3 nanocomposites. Al-Al2O3 nanocomposites get thermally conditioned 

at -80°C too. At high operating temperatures (i.e. 250°C) the ultimate flexural strength of 

both Cu-Al2O3 micro- and nano-composites decreases. Al-Al2O3 nanocomposites show 

elevation of flexural strength at 100°C, whereas the strength again falls at 250°C, 

whereas the microcomposites show positive trend for both 100°C and 250°C 

temperatures. SEM micrographs reveal ductile mode of fracture for both micro- and 

nano-composites. Ductile fracture characteristics have been observed predominantly for 

Cu-Al2O3 and Al-Al2O3 microcomposites. Fracture characters visible in Cu-Al2O3 and 

Al-Al2O3 nanocomposites indicate ductile mode of failure. The fracture mechanisms 

demonstrated were interfacial de-cohesion, particle cracking, interfacial dis-integrity and 

particle pull-out. The nanoparticles in nanocomposites have higher surface area as 

compared to microparticles in microcomposites. So, the thermal shock induced stress in 

nanocomposites is more visible in terms of degradation and enhancement of flexural 

strength. The development and detoriation of physical integrity of composite is 

predominant in nanocomposites than microcomposites. Noticeable differences in the 

flexural strength in response to thermal exposures of the micro- and nano-composites 

have been observed, and have been explained in terms of difference in their fracture 

surface microstructures. 

 

 Cu-Al2O3 and Al-Al2O3 composites are loading rate sensitive materials. The flexural 

strength of copper and aluminium based composites varies with size and content of 

alumina particles. Loading rate sensitivity is evident at lower range of loading rates, 

thereafter strength decreases with increase in loading speed. As the dislocation density 

evolution is different at different loading rates, these materials are loading rate sensitive.  
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