
Generation and Prioritization of Test cases

using Simulink/Stateflow models

Basanti Minj

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela-769 008, Odisha, India

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/80147397?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Generation and Prioritization of Test cases

using Simulink/Stateflow models

Thesis submitted in partial fulfilment of the requirements for the degree of

Master of Technology

in

Computer Science and Engineering
(Specialization: Software Engineering)

by

Basanti Minj
(Roll No. 212cs3109)

under the supervision of

Dr. D. P. Mohapatra

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela, Odisha, 769 008, India

June 2014

Department of Computer Science and Engineering
National Institute of Technology Rourkela
Rourkela-769 008, Odisha, India.

Certificate

This is to certify that the work in the thesis entitled Generation and Prioriti-

zation of Test cases using Simulink/Stateflow models by Basanti Minj

is a record of an original research work carried out by her under my supervision

and guidance in partial fulfillment of the requirements for the award of the degree

of Master of Technology with the specialization of Software Engineering in the de-

partment of Computer Science and Engineering, National Institute of Technology

Rourkela. Neither this thesis nor any part of it has been submitted for any degree

or academic award elsewhere.

Place: NIT Rourkela Dr. D. P. Mohapatra
Date: June 2, 2014 Associate Professor, CSE Department

NIT Rourkela, Odisha

Acknowledgment

I am grateful to numerous local and global peers who have contributed towards

shaping this thesis. At the outset, I would like to express my sincere thanks to

Dr. D. P. Mohapatra for his advice during my thesis work. As my supervisor,

he has constantly encouraged me to remain focused on achieving my goal. His

observations and comments helped me to establish the overall direction of the

research and to move forward with investigation in depth. He has helped me

greatly and been a source of knowledge.

I extend my thanks to our HOD, Dr. S. K. Rath for his valuable advices and

encouragement.

My sincere thanks to everyone who has provided me with kind words, a wel-

come ear, new ideas, useful criticism, or their invaluable time, I am truly indebted.

I must acknowledge the academic resources that I have got from NIT Rourkela.

I would like to thank administrative and technical staff members of the Department

who have been kind enough to advise and help in their respective roles.

Last, but not the least, I would like to dedicate this thesis to my family, for

their love, patience, and understanding.

Basanti Minj

Roll: 212cs3109

Abstract

Embedded systems are mainly modeled by using MATLAB’s simulink and

stateflow tools. MATLAB’s simulink is a tool for modeling, simulating and analysing

software systems and stateflow is a control logic tool used to model event-driven

systems (Reactive systems) through state machines and flow charts within a

simulink model. In real-time, systems undergo frequent changes, thus complexity

of the systems grows and testing of the systems become time consuming and ex-

pensive even if changes occur in small parts of the system. So, these models need

formal verification. In this paper, we focus on event-driven systems which are

captured by stateflow model. For this, we propose an algorithm (GenerateGraph)

in which we first generate an XML file for the stateflow model of a system. Then,

we parse that XML file following top-down approach by using XML parser. Next,

we generate intermediate graph for the model, using the parsed information. By

using this graph, we generate test cases for the models of the systems having com-

posite states.

Keywords: MATLAB’s Simulink and Stateflow tools; Simulink/Stateflow

model; Composite systems; XML file; XML parser;

Contents

Certificate i

Acknowledgment ii

Abstract iii

List of Figures vi

List of Tables viii

1 Introduction 2

1.1 Introduction . 2

1.2 Motivation . 3

1.3 Basic Concepts . 3

1.3.1 Software Testing . 3

1.3.2 Simulink . 3

1.3.3 Simulink Stateflow . 6

1.3.4 Extensible Markup Language (XML) 8

1.3.5 Test case . 8

1.3.6 Graph visualization software(GraphViz) 8

1.4 Objective . 8

1.5 Problem Statement . 9

1.6 Thesis Organization . 9

2 Literature Review 11

2.1 Automated Translation of MATLAB Simulink/Stateflow Models to

an Intermediate Format in HyVisual 11

2.2 Regression Test Selection Based on Analysis of Simulink/Stateflow

Models . 12

iv

2.3 A Metamodel for Simulink/Stateflow Models and its Applications . 12

2.4 Operational semantics of hybrid systems 12

2.5 Slicing MATLAB Simulink Models 13

2.6 A Dynamic Slicing Technique for UML Architectural Models 13

3 Generation of Test cases using SL/SF 15

3.1 Algorithm . 16

3.2 Working of the Algorithm . 19

3.3 Implementation . 21

3.3.1 implementation steps: . 21

3.3.2 Examples . 22

3.3.3 Result . 32

4 Prioritization of Test cases using SL/SF 35

4.1 Prioritization steps: . 35

4.2 Example . 36

4.3 Result Analysis . 38

5 Conclusion 41

List of Figures

1.1 Inport block . 4

1.2 Constant block . 4

1.3 Clock block . 4

1.4 Outport block . 4

1.5 Scope block . 5

1.6 Display block . 5

1.7 Difference block . 5

1.8 Unit Delay block . 5

1.9 Integrator block . 5

1.10 Gain block . 6

1.11 Sum block . 6

1.12 Divide block . 6

1.13 Switch block . 6

3.1 Sample simulink model. 22

3.2 Sample stateflow model. 23

3.3 Generated XML file of sample simulink model. 23

3.4 Generated intermediate graph for sample stateflow model. 24

3.5 Generated Test cases for sample stateflow model. 24

3.6 Fan simulink model. 25

3.7 Fan stateflow model. 25

3.8 Generated XML file for Fan simulink model. 26

3.9 Generated intermediate graph for Fan stateflow model. 26

3.10 Generated Test cases for Fan stateflow model. 27

3.11 Boiler simulink model. 28

vi

3.12 Boiler stateflow model. 28

3.13 On state of Boiler stateflow model. 29

3.14 turn-boiler(mode) state of Boiler stateflow model. 29

3.15 flash-LED() state of Boiler stateflow model. 29

3.16 cold() state of Boiler stateflow model. 30

3.17 Generated XML file of Boiler simulink model. 30

3.18 Generated intermediate graph for Boiler stateflow model. 31

3.19 Generated Test cases for Boiler stateflow model. 31

List of Tables

3.1 Test cases for sample stateflow model 32

3.2 Test cases for Fan stateflow model 33

3.3 Test cases for Boiler stateflow model 33

4.1 Test cases for Boiler stateflow model 36

4.2 Computing IF value for each State 37

4.3 Prioritized Test cases for Boiler Stateflow model 38

4.4 Faults detected by non prioritized test cases 39

4.5 Faults detected by prioritized test cases 39

viii

Introduction

Introduction

Motivation

Basic Concepts

Problem Statement

Chapter 1

Introduction

1.1 Introduction

Every software product undergoes changes during their lifetime. These changes

occur due to various reasons such as enhancing functionalities of the existing one,

detecting defects in the software product, modification in existing functionalities,

etc. Every time whenever the changes occur in the software product, the changed

software product is to be tested so that the modified code does not negatively

affect the behavior of unmodified code. Due to changes, the software product size

increases and becomes complex during testing, so the use of appropriate design

models for software tasks has become important. Models of a system represents

the needed behavior of the system or to represent an approach for testing and we

can test this model through model based testing. Hence, we need formal verifica-

tion of the models against, stated specifications.

MATLAB’s Simulink software tool helps in modeling the systems, analyzing dy-

namic systems and simulating the systems. A Simulink library containing various

blocks by using these blocks we can design required behavior of a system un-

der consideration. To capture reactive states of a system, we use Stateflow in

Simulink. Stateflow provides an editor where we drag objects on editor from the

design palette to create Stateflow of the reactive systems. However, since the

Simulink model doesn’t have a textual view of the formal semantics, Simulink

model needs to be translated to an intermediate textual representation and from

this we can generate intermediate graph. Using this graph, we generate test cases

2

1.3 Basic Concepts

for the models of composite systems.

1.2 Motivation

MATLAB Simulink/Stateflow is one of the widely used industrial tools. It

helps in modeling systems, even if they are more complex. The resulting model

must be tested in order to detect faults in the systems. But, such model consists

of a large number of blocks, due to which the testing process becomes complex.

So we have to decrease the complexity of the models to handle large models and

to ensure the quality of the complex models.

1.3 Basic Concepts

In this section, we discuss the basic concepts required to understand our work.

1.3.1 Software Testing

It is needed to investigate whether the system under test meeting the desired

behavior and works as expected. Software Testing depends on the testing method

employed.

Model based testing

It is an application of model based design for designing and also executing

artifacts to perform system testing. Here, models are used to represent the desired

behavior of a System Under Test (SUT), or to represent testing strategies. This

model based testing using models for the generation of system testing procedures.

From these models, test cases are derived which are executed against systems

under test. Model based testing is very useful for small and large systems. Model

based testing has ability to accommodate frequent changes in the requirements.

1.3.2 Simulink

Simulink is a software tool provided by the Mathworks from which we can

model, simulate and analyze dynamic systems. Many embedded systems present in

3

1.3 Basic Concepts

real life are hybrid systems. Hybrid system consists of both continuous and discrete

nature. So, these systems can be modeled, simulated and analyzed using Simulink.

Systems can be modeled in Simulink by dragging blocks from the Simulink block

library and dropped into the GUI editor and connecting the appropriate ports

with the blocks.

Simulink/Stateflow libraries

1. Source library - It contains blocks that generate signals.

Example:

Inport block - It is the block which shows input going to the subsystem.

Figure 1.1: Inport block

Constant block - This block is used to generate constant value.

Figure 1.2: Constant block

Clock block -This block displays the simulation time.

Figure 1.3: Clock block

2. Sink library - It contains blocks that display output.

Example:

Outport block - It is the block which shows output coming from the subsystem.

Figure 1.4: Outport block

Scope block - It is the block which is used to display the signals.

4

1.3 Basic Concepts

Figure 1.5: Scope block

Display block - This block is used to Show the value of input.

Figure 1.6: Display block

3. Discrete library - It contains blocks that define discrete-time components.

Example:

Difference block - This block shows the output after subtracting the current

input value from the previous input value.

Figure 1.7: Difference block

Unit delay block - This block holds and delays its input by one sample

period.

Figure 1.8: Unit Delay block

4. Continuous library - It contains blocks that describe linear functions.

Example:

Integrator block - This block integrates its input signal with respect to time.

Figure 1.9: Integrator block

5. Math Operations library - This block performs mathematical calcula-

tions.

5

1.3 Basic Concepts

Example:

Gain block - It multiplies its input signal by a constant value (gain).

Figure 1.10: Gain block

Sum block - This block is used to perform addition or subtraction on its

inputs.

Figure 1.11: Sum block

Divide block - This block divides its first input by its second input and shows

the output.

Figure 1.12: Divide block

6. Non-linear library - It contains blocks that describe nonlinear functions.

Example:

Switch block - The Switch block passes through the first input or the third input

based on the value of the second input taking as Threshold parameters.

Figure 1.13: Switch block

1.3.3 Simulink Stateflow

It is a stateflow design tool from which we can draw a stateflow of the systems

and this stateflow design tool works with Simulink to capture the event-driven

behavior of the systems. Event-driven systems where system makes a transition

from one state to another state based on transition condition. It provides an editor

6

1.3 Basic Concepts

on which the stateflow objects dragged from the design palette to create stateflow

of the systems. Simulink Stateflow enables hierarchical states.

States has labels

Entry actions- It defines the action to be carried out when the state is entered

or activated.

During actions- It defines the set of actions to be taken when the state is already

active and some event occurs.

Exit actions- It defines the actions to be taken when the transition condition

become true and the state becomes inactive from active.

Transition

Transitions in Stateflow means a jump from some source state to some target

state. Transition label consists:

Event [condition]{condition action}/ transition action

Event- It specifies the event that should cause the transition to occur.

Condition- It specifies a boolean expression that needs to be evaluated to true

for the transition to take place.

Condition action- It specifies the action to be immediately executed when the

condition evaluates to true.

Transition action- It specifies the action to be executed when the transition

destination has been determined to be valid provided the condition is true, if

specified.

7

1.4 Objective

1.3.4 Extensible Markup Language (XML)

It is a markup language that defines the set of rules that is used for encoding

documents in a format that is readable by human and machine. It is a format

with the strong support of the Unicode Standard. The Unicode Standard consists

of an encoding method, set of standard character encodings, set of code charts for

viewable reference, etc.

� An intermediate representation of SL/SF model is an XML file that captures

all implicit and explicit dependencies.

� XML language syntax is simple and the model information can be easily

retrieved by the use of existing XML parsers.

SAX (Simple API for XML)

It is an event-based parser API for XML . SAX parsers read each piece of the

data from an XML document sequentially. SAX parser works as a stream parser

and it is unidirectional. The event includes XML element node, XML processing

instruction, etc. These events are fired when encounters by the XML parser.

1.3.5 Test case

A test case is a set of conditions under which whether one of software system

features is working as it was originally established for it to do.

1.3.6 Graph visualization software(GraphViz)

Graph visualization software(Graphviz) is a package of open source tools ini-

tiated by AT and T Labs Research for drawing graphs specified in DOT language

scripts. It consists of tools that process DOT files. DOT is a language that

describes graphs.

1.4 Objective

� To generate test cases for systems having composite states.

8

1.6 Thesis Organization

� To Prioritize the generated test cases.

1.5 Problem Statement

This thesis work focuses on generating test cases for composite systems prob-

lem. First we draw SL/SF model for composite systems using MATLAB’s Simulink

and Stateflow graphical design tool . From SL/SF model we generate XML speci-

fication of the model. Then, we draw intermediate graph through XML specifica-

tion. Then, we generate test cases by traversing each node of the generated graph.

Finally, we prioritized the generated test cases.

1.6 Thesis Organization

Organization of thesis is as follows: Chapter 2 describes literature review.

Chapter 3 describes generation of test cases. Chapter 4 describes prioritization of

test cases. Finally, Chapter 5 concludes the thesis work.

9

Literature Review

Chapter 2

Literature Review

2.1 Automated Translation of MATLAB Simulink/Stateflow

Models to an Intermediate Format in HyVi-

sual

This approach [1], specifies the requirements of the intermediate format in

HyVisual. In HyVisual model, they choose a network of Hybrid Automata rep-

resentation as the intermediate format. HyVisual models are represented in an

XML based language called Modeling Markup Language (MoML).

This paper also discusses the translator implementation. The MATLAB, Simulink

models are saved as .mdl files that contains all necessary information related to the

blocks and the connections present in the model which are needed for simulation

and visualization of the model in MATLAB. For the required information about

the Simulink models parser is needed for parsing the .mdl file. They implemented

a parser in Java using Jdk 1.6 and Jflex 1.4.1. The parser generates model Ob-

ject that is used by a Java class called GenMoMLCode that generates a HyVisual

model represented in MoML. The generated HyVisual model is a network of hy-

brid automata.

Advantages:

� Handling automata of a model is easier than the model itself.

� XML language is simple to understand and the model information can be

easily recovered from existing XML parsers.

11

2.4 Operational semantics of hybrid systems

2.2 Regression Test Selection Based on Analysis

of Simulink/Stateflow Models

This approach [2], presents Simulink/Stateflow Dependency Graph (SLDG)

metamodel. This model comprises of nodes representing different Simulink/Stateflow

(SL/SF) model elements along with dependencies capturing the relations between

SL/SF elements.

They used Model Extractor to parse the .mdl file of SL/SF model and gen-

erate an intermediate representation of the Simulink , Stateflow blocks and the

interconnection network of the model named as Simulink/Stateflow Dependency

Graph (SLDG).

2.3 A Metamodel for Simulink/Stateflow Mod-

els and its Applications

This approach [3], has developed a prototype tool for change impact visualiza-

tion based on the static analysis of a constructed Simulink/Stateflow Dependency

Graph (SLDG) for the SL/SF model.

2.4 Operational semantics of hybrid systems

This paper [4], consider an interpretation of Hybrid systems as executable

models. Hybrid systems consist of continuous-time subsystems combined with

discrete events.

In this paper, they focus on the simulation tools, they view that hybrid systems

are not much simulated as executed. The executable computational view of hy-

brid systems was simulated by the DARPA MoBIES (model based integration of

embedded software), which begins the challenging task of founding an interchange

format for hybrid systems. The intention was to provide an interchange of mod-

els and techniques between tools. The output was a Hybrid Systems Interchange

Format (HSIF).

12

2.6 A Dynamic Slicing Technique for UML Architectural Models

2.5 Slicing MATLAB Simulink Models

This paper [5], presents a static slicing method for MATLAB, Simulink models

using dependence graph based approach. They contributed to-

� Analyze the control and data dependencies present in the Simulink models.

� A slicing approach for Simulink model that holds all the semantics and

hierarchy of the model.

In order to lower the complexity of a model by removing those parts that do

not affect the control and data dependence.

2.6 A Dynamic Slicing Technique for UML Ar-

chitectural Models

This paper [6], presents a dynamic program slicing techniques to split big

architectures into small convenient portions. They used UML architectural models

for which they prepare an intermediate representation of the model named as a

Model Dependency Graph (MDG) that captures all existing dependencies between

model elements. Then, for any given slicing criteria they traverse the MDG to find

out the significant parts from an architectural model based on the dependencies

between them to figure out a dynamic slicing of the architectural model.

13

Generation of Test cases using SL/SF

Algorithm

Working of the Algorithm

Implementation

Chapter 3

Generation of Test cases using
SL/SF

In our work, we carried out the followings.

1. To construct an intermediate representation for representing systems under

consideration.

2. To translate the simulink model to the chosen intermediate representation.

3. To generate the intermediate graph by parsing XML file of simulink model.

4. To generate test cases from the intermediate graph.

To construct an intermediate representation for representing systems we choose

an XML file as an intermediate format for representing simulink model. We decide

this because simulink model is stored in .mdl file which does not give a textual

view only graphical view of the model. An XML language is simple to understand

so that model information are easily recovered by existing parsers.

To translate the simulink model to the chosen intermediate format we use

MATLAB command to generate XML file for simulink model. Then, we use this

XML file as an input in our proposed algorithm GenerateGraph.

To generate an intermediate graph by parsing XML file, we use our proposed

algorithm GenerateGraph which take an XML file as an input. Our algorithm

focus on stateflow part of the simulink model which captures the reactive states of

15

3.1 Algorithm

the model and generate intermediate graph for it. Then, we use generated graph

for generating Test cases.

To generate Test cases from the intermediate graph we first, traverse each

sourceNode present in linked list containing transition source ID. For each sourceNode

we find the transition destination id node, say TransitionNode. Then, adding that

TransitionNode to a new linked list, say stateEntered and We have to add Transi-

tionNode to a new linked list stateEntered till each TransitionNode stored in the

stateEntered linked list.

3.1 Algorithm

Here, we describe our algorithm step by step:

Algorithm: GenerateGraph

Input: XML file of simulink model

Output: Graph of the stateflow part of the simulink model.

step 1: Draw simulink model by using MATLAB simulink tool and stateflow

model is added to the simulink model by using MATLAB stateflow design tool.

Step 2: Generate XML file for the simulink model.

Step 3: Parse the generated XML file for stateflow states and transitions node

list.

step 4: Find a node list of source state and destination state of each transition.

Step 5: Generate an intermediate graph by using node list of source state and

destination state of transitions.

Step 6: Generate the test cases by using intermediate graph.

In this algorithm, we provide an approach that how we generate test cases

by using simulink models. Our algorithm name is GenerateGraph within this

algorithm two sub algorithm are there named as Extract (S-Name) and Gener-

ateTestCases. In GenerateGraph algorithm we parse the XML file (input file) to

16

3.1 Algorithm

create nodelist of transition source node, transition destination node and tran-

sition condition node. This GenerateGraph algorithm has sub algorithm called

Extract (S-Name) is used to extract the state attributes nodelist. Through these

nodelists we are generating intermediate graph from that XML file of the simulink

model. This generated intermediate graph is visualized and validated through an

open source tools package named as Graphviz. By visualizing this intermediate

graph and by sub algorithm GenerateTestCases we are generating test cases for

the dynamic systems.

17

3.1 Algorithm

Algorithm 1 GenerateGraph
Input: XML file.
Output: Graph of the stateflow part of the model.
Variables:

S-list: state node list.
T-list: transition node list.
P-list: P node list.
S-ID: state ID.
S-Name: state label.
T-Name: transition label.
T-ID: transition ID.
SIdList: state ID node list.
SnameList: state labelstring node list.
p-attr: attributes of p.
TconditionList: transition labelstring node list.
TIdList: transition ID node list.
Tsource: src tag of transition.
TranSidList: source-state ID list of transition.
Tdestination: dst tag of transition.
TranDidList: destination-state ID list of transitions.
Tdestination-ID: Transition’s destination-state ID node.
Tsource-ID: Transition’s source-state ID node.

1: begin

2: parse the xml file to maintain S-list and T-list.

3: for all s ∈ S-list do
4: read elements of s to maintain P-list.
5: for all p ∈ P-list do

6: if p-attr == S-ID then

7: Add S-ID in SIdList.
8: end if
9: if p-attr == S-Name then

10: Add S-Name in SnameList.
11: call extract(S-Name)

12: end if
13: end for
14: end for
15: for all t ∈ T-list do
16: read elements of t to maintain P-list.
17: for all p ∈ P-list do

18: if p-attr == T-Name then

19: Add T-Name in TconditionList
20: end if
21: if p-attr == T-ID then

22: Add T-ID in TIdList
23: end if
24: end for
25: read elements of t for Tsource
26: for Tsource do
27: read elements of Tsource to maintain P-list
28: for all p ∈ P-list do

29: if p-attr == Tsource-ID then

30: Add Tsource-ID in TranSidList
31: end if
32: end for
33: end for
34: read elements of t for Tdestination
35: for Tdestination do
36: read elements of Tdestination to maintain P-list
37: for all p ∈ P-list do

38: if p-attr == Tdestination-ID then

39: Add Tdestination-ID in TranDidList
40: end if
41: end for
42: end for
43: end for
44: call GenerateTestCases(TranSidList, TranDidList, TconditionList)

45: Exit

18

3.2 Working of the Algorithm

Algorithm 2 Extract
Input: String S-Name
Output: Tokens of state
Variables:

t = “ ”
t1 = “ ”
Tokenlist: Token node list.

1: begin

2: for all S-Name do
3: StringTokenizer(S-Name,“delimiter”)

4: t = getToken

5: Add t in Tokenlist.
6: while hasMoreTokens do
7: t1 = getToken

8: Add t1 in Tokenlist.
9: end while
10: end for

Algorithm 3 GenerateTestCases
Input: TranSidList, TranDidList, TconditionList
Output: Test Cases for the Stateflow model.
Variables:

trans = “ ”
stateEntered: Tdestination-ID node already traversed.
index = 0

1: begin

2: if TranSidList.get(0)==“start” then

3: trans = TranDidList.get(0)

4: add trans in stateEntered
5: index = TranSidList.indexof(trans)

6: if TranSidList.get(index) == trans then

7: repeat

8: perform entry action

9: perform during action

10: until TconditionList.get(index-1)==false

11: get valid input at S-ID = TranSidList.get(index)

12: if TconditionList.get(index-1)==true then

13: perform exit action

14: perform condition action

15: get valid input at S-ID = TranDidList.get(index)

16: end if
17: end if
18: trans = TranDidList.get(index)

19: if stateEntered.contains(trans)==false then

20: add trans in stateEntered
21: repeat steps 4 to 19

22: else
23: All states are travered.
24: end if
25: end if
26: Exit

3.2 Working of the Algorithm

In this subsection we explain our algorithms in theoretical manner.

Algorithm: GenerateGraph

In this algorithm we have taken an XML file as input. Here, we parse the XML

file for comparing string “state” with the tags in the XML file. If it matches, then

we maintain an S-list of tags. Then, for each s ∈ S-list we parse all the element

belong to s for string “P” tag and add to P-list. Then for each p ∈ P-list, we

19

3.2 Working of the Algorithm

parse all the attributes to get S-Name and S-ID. Then, we create SnameList and

SIdList for storing S-Name and S-ID respectively. This process continues till all

the s ∈ S-list are parsed.

In the same way we parse the XML file for comparing string “transition” with

the tags in the XML file to maintain T-list, which contains transition tags. Then,

for each t ∈ T-list we parse all the element belong to t for string “P” tag, src

tag and dst tag. The found P tag must be stored in a P-list. Then for each p

∈ P-list we parse all the attributes to get T-Name and T-ID. Then, we main-

tain a TconditionList and TIdList for T-Name and T-ID respectively. Then parse

elements of src tag for string “P” tag to maintain a P-list. Then for each p

∈ P-list, we parse all the attributes to get Tsource-ID and add to TranSidList.

Then parse the elements of dst tag for string “P” tag to maintain a P-list. Then

for each p ∈ P-list we parse all the attributes to get Tdestination-ID and create

a TranDidList. Now all the above lists are used for generating intermediate graph.

Algorithm: Extract

In this algorithm, we are taking S-Name as input. Here we use the tokenizer

to get tokens of the S-Name to maintain a Tokenlist. This Tokenlist is sent to the

calling algorithm.

Algorithm:GenerateTestCases

In this algorithm, we take TranSidList, TranDidList and TconditionList as in-

put. Here we traverse first Tsource-ID in TranSidList and first Tdestination-ID

in TranDidList. Then we add Tdestination-ID in stateEntered. Then we find

the index of Tdestination-ID in TranSidList . We perform an entry action and

during action until T-Name in TconditionList is true. If the T-Name is true, then

we perform exit action and condition action. Then we get the test case at S-ID

= TranSidList.get(index) to reach Tdestination-ID at TranDidList.get(index) and

again we add this Tdestination-ID in stateEntered. This process continues till all

Tdestination-ID in TranDidList is traversed once. In this way we get test cases

20

3.3 Implementation

for stateflow model.

3.3 Implementation

We are explaining our implementation step by step:

3.3.1 implementation steps:

1. Construct simulink model.

It is the model which is drawn in simulink software tool by dragging simulink

blocks from the simulink library and dropping into a GUI editor and connecting

ports to the blocks for external input and output. This simulink model also con-

tains chart block which is used to capture reactive systems in the simulink model.

This chart block is in a stateflow library from which we drag it and drop into a

GUI editor.

2. Construct stateflow model

It is the model which is drawn on the chart block present in the simulink

model. This model is drawn with the help of a stateflow design tool. This design

tool works with the simulink model because chart block is used only in a simulink

model. Here we drag states and transitions from the design palette of the design

tool to draw the stateflow of the reactive systems.

3. Generate XML file of simulink model

In this we generated XML file of simulink model. Here we have chosen XML file

as an intermediate format so that we have a specification of the simulink model.

Through this specification, we are generating intermediate graph of the stateflow

part of the simulink model. The advantage is that XML language is easy to un-

derstand thus analyzing it also become easy.

4. Generate intermediate graph for stateflow model

Here we parse the generated XML file to transform the stateflow part of the

21

3.3 Implementation

model into an intermediate graph. This intermediate graph represents possible

configuration of the reactive systems. From this graph we find Test cases.

5. Generation of Test cases for stateflow model

Here we generate Test cases by analyzing intermediate graph and searching the

executable transitions.

3.3.2 Examples

We are explaining our implementation by taking some Simulink/Stateflow models.

I. Sample of simulink/stateflow model that is a simple model.

1. Construct sample simulink model

It is the sample simulink model which is drawn with the help of simulink soft-

ware tool by dragging a chart block from stateflow library and dropped into it.

This chart block is used to capture reactive systems in the sample simulink model.

Figure 3.1: Sample simulink model.

2. Construct sample stateflow model

This model is drawn in the chart block by using the stateflow design tool. Here

we draw the sample stateflow model of the reactive systems. There are A, B and

C states. Where, each state contains an entry, during and exit action as required.

22

3.3 Implementation

Figure 3.2: Sample stateflow model.

3. Generate XML file for sample simulink model

Here, we generated XML file of the sample simulink model. By using this file

specification, we are generating intermediate graph for the sample stateflow of the

model.

Figure 3.3: Generated XML file of sample simulink model.

4. Generate intermediate graph for sample stateflow model

Here we parse the generated XML file to transform the sample stateflow model

into an intermediate graph to represent the possible design of the reactive systems

of the sample stateflow model.

23

3.3 Implementation

Figure 3.4: Generated intermediate graph for sample stateflow model.

5. Generation of Test cases for sample Stateflow model

Here we generate Test cases by analyzing intermediate graph and searching the

executable transitions.

Figure 3.5: Generated Test cases for sample stateflow model.

II.Simulink model of a composite object- Fan

24

3.3 Implementation

1. Construct Fan simulink model

It is the Fan simulink model which is drawn with the help of simulink software

tool by dragging simulink blocks such as signal Builder, Display blocks from the

simulink library and chart block from stateflow library which are dropped into a

GUI editor and connecting ports to the blocks for external input and output. This

chart block is used to capture reactive systems in the Fan simulink model.

Figure 3.6: Fan simulink model.

2. Construct Fan stateflow model

This Fan stateflow model is drawn on the chart block present in Fan simulink

model with the help of a stateflow design tool. Here we drag states and transitions

from design palette to draw the stateflow of the reactive systems. In the Fan state-

flow model, there are Off and On states where,On is a composite state because

it contains child states named as one, two, three and four working as regulator of

Fan.

Figure 3.7: Fan stateflow model.

25

3.3 Implementation

3. Generate XML file for Fan simulink model

In this we generated XML file of the Fan simulink model. By using this file

specification, we are generating intermediate graph for the Fan stateflow part of

the simulink model.

Figure 3.8: Generated XML file for Fan simulink model.

4. Generate intermediate graph for Fan stateflow model

Here we parse the generated XML file to transform the Fan stateflow model into

an intermediate graph. This intermediate graph represents possible configuration

of the Fan reactive systems.

Figure 3.9: Generated intermediate graph for Fan stateflow model.

26

3.3 Implementation

5. Generation of Test cases for Fan stateflow model

Here we generate Test cases by analyzing intermediate graph of the Fan reactive

systems and searching the executable transitions.

Figure 3.10: Generated Test cases for Fan stateflow model.

III. Simulink model of a composite object- Boiler.

1. Construct Boiler simulink model

It is the Boiler simulink model which is drawn with the help of simulink soft-

ware tool by dragging simulink blocks such as Constant, SubSystem, Scope blocks,

etc. from the simulink library and chart block from stateflow library which are

dropped into a GUI editor and connecting ports to the blocks for external input

and output. This chart block is used to capture reactive systems of the Boiler

simulink model.

27

3.3 Implementation

Figure 3.11: Boiler simulink model.

2. Construct Boiler stateflow model

It is the model which is drawn on the chart block present in the Boiler simulink

model with the help of a stateflow design tool. Here we drag states and transitions

from design palette to draw the stateflow of the Boiler reactive systems. In the

Boiler stateflow model, Heater state contains Off, On, Flash state where, Heater

state contains cold() function state, Off state contains turn-boiler(OFF) function

state, Flash state contains flash-LED() function state.

Figure 3.12: Boiler stateflow model.

In this, On state is a composite state because it contains child states named

as HIGH, NORM and function state named as turn-boiler(ON), flash-LED() and

warm().

28

3.3 Implementation

Figure 3.13: On state of Boiler stateflow model.

This turn-boiler(mode) function state contains junctions and transitions to

perform this particular function.

Figure 3.14: turn-boiler(mode) state of Boiler stateflow model.

This flash-LED() function state contains junctions and transitions to perform

the color changing operation of the LED.

Figure 3.15: flash-LED() state of Boiler stateflow model.

29

3.3 Implementation

This cold() function state contains junction and a default transition to compare

the input temperature with the given reference temperature of the Boiler.

Figure 3.16: cold() state of Boiler stateflow model.

3. Generate XML file for Boiler simulink model

In this we generated XML file of the Boiler simulink model. By using this file

specification, we are generating intermediate graph for the Boiler stateflow part

of the Simulink model.

Figure 3.17: Generated XML file of Boiler simulink model.

4. Generate intermediate graph for Boiler stateflow model

Here we parse the generated XML file to transform the Boiler stateflow model

into an intermediate graph. This intermediate graph represents possible configu-

ration of the Boiler reactive systems.

30

3.3 Implementation

Figure 3.18: Generated intermediate graph for Boiler stateflow model.

5. Generation of Test cases for Boiler stateflow model

Here we generate Test cases by analyzing intermediate graph of the Boiler

reactive systems and searching the executable transitions.

Figure 3.19: Generated Test cases for Boiler stateflow model.

31

3.3 Implementation

3.3.3 Result

In this, we represent our generated Test cases for the stateflow models in tab-

ular form.

Table 3.1 shows the Test cases for sample stateflow model.

Table 3.1: Test cases for sample stateflow model
State id Input Condition Exit action Condition

action
Expected
State id

a=a+1,b=b+1,c=a+b [c¿10]
1 a=0,b=0,c=0 False 1
1 a=1,b=1,c=2 False 1
1 a=2,b=2,c=4 False 1
1 a=3,b=3,c=6 False 1
1 a=4,b=4,c=8 False 1
1 a=5,b=5,c=10 False 1
1 a=6,b=6,c=12 True a=0 a=b+(1-a) 3

a=a+1,b=b+1,d=c-
(a+b)

[d¡=0]

3 a=7,b=6,c=12,d=-1 True c=0 2
d=d+5 [d¿50]

2 a=7,b=6,c=0,d=4 False 2
2 a=7,b=6,c=0,d=9 False 2
2 a=7,b=6,c=0,d=14 False 2
2 a=7,b=6,c=0,d=19 False 2
2 a=7,b=6,c=0,d=24 False 2
2 a=7,b=6,c=0,d=29 False 2
2 a=7,b=6,c=0,d=34 False 2
2 a=7,b=6,c=0,d=39 False 2
2 a=7,b=6,c=0,d=44 False 2
2 a=7,b=6,c=0,d=49 False 2
2 a=7,b=6,c=0,d=54 True 1

Table 3.2 shows the Test cases for Fan stateflow model.

32

3.3 Implementation

Table 3.2: Test cases for Fan stateflow model
TC id State Input Expected Output
1 start0 speed=0 Off
2 Off speed=0 On
3 On speed=1 one
4 one speed=2 two
5 two speed=3 three
6 three speed=4 four
7 four speed=1 one

Table 3.3 shows the Test Cases for Boiler Stateflow model.

Table 3.3: Test cases for Boiler stateflow model
TC id State Input Expected Out-

put
1 Flash after(5,sec) Flash
2 b=warm() b=!cold() junction1
3 NORM [Heater.On.warm()] On
4 HIGH [warm()] b=warm()
5 On after(20,sec) Off
6 junction10 after(40,sec)[cold()] b=cold
7 junction11 after(40,sec)[cold()] b=cold
8 On entry:turn-boiler(ON); turn-

boiler(mode)
9 Off entry:turn-boiler(OFF); turn-

boiler(mode)
10 On [Heater.On.warm()] Off
11 Off after(40,sec)[cold()] On
12 NORM [Heater.On.warm()] Off
13 Flash entry:flash-LED(); flash-LED
14 junction7 during:flash-LED(); Flash
15 junction2 [mode==ON] junction3
16 junction2 color=RED junction4
17 junction3 color=GREEN junction5
18 junction6 LED=color-boiler=mode junction7
19 junction8 [LED==OFF] junction9
20 junction8 LED=OFF junction11
21 junction9 LED=color junction10
22 b=cold b=temp¡=reference junction12

33

Prioritization of Test cases using SL/SF

Prioritization steps

Example

Result Analysis

Chapter 4

Prioritization of Test cases using
SL/SF

4.1 Prioritization steps:

1. Construct simulink model.

2. Generate XML file for the simulink model. 3. Generate intermediate graph

using XML file.

4. Compute Fan in for each state present in an intermediate graph.

5. Compute Fan out for each state present in an intermediate graph.

6. Compute product of Fan in and Fan out for finding information flow (IF) value

of each state.

7. State having higher IF value present in test case is prioritized first.

To compute Fan in for each state we have to compare each state with all the

transition destination nodes if state matches than we increases the count and this

counting continues till one iteration of transition destination nodes completed and

we store the count value in Fan in of a state. This process continues till we com-

pute Fan in for all state.

To compute Fan out for each state we have to compare each state with all

the transition source nodes if state matches than we increases the count and this

counting continues till one iteration of transition source nodes completed and we

store the count value in Fan out of a state. This process continues till we compute

35

4.2 Example

Fan out for all state.

For finding IF value of each state we are computing product of Fan in and

Fan out of each state.

IF (A) = Fan in(A) ∗ Fan out(A) (4.1)

where, Fan in(A)- Number of states calling state A.

Fan out(A)- Number of states called by state A.

IF (A)- Information flow value of state A.

State with higher IF value represents that the state having higher complexity

so the test cases are prioritized based on the higher IF value of the transition

source state.

4.2 Example

Considering, generated test cases for Boiler model.

Table 4.1: Test cases for Boiler stateflow model
TC
id

State Input Expected Out-
put

1 Flash after(5,sec) Flash
2 b=warm() b=!cold() junction1
3 NORM [Heater.On.warm()] On
4 HIGH [warm()] b=warm()
5 On after(20,sec) Off
6 junction10 after(40,sec)[cold()] b=cold
7 junction11 after(40,sec)[cold()] b=cold
8 On entry:turn-boiler(ON); turn-

boiler(mode)
9 Off entry:turn-boiler(OFF); turn-

boiler(mode)
10 On [Heater.On.warm()] Off
11 Off after(40,sec)[cold()] On
12 NORM [Heater.On.warm()] Off
13 Flash entry:flash-LED(); flash-LED
14 junction7 during:flash-LED(); Flash
15 junction2 [mode==ON] junction3

36

4.2 Example

16 junction2 color=RED junction4
17 junction3 color=GREEN junction5
18 junction6 LED=color-

boiler=mode
junction7

19 junction8 [LED==OFF] junction9
20 junction8 LED=OFF junction11
21 junction9 LED=color junction10
22 b=cold b=temp<=reference junction12

In table 4.2, we are computing Fan in and Fan out of each states to find IF

value of each states.

Table 4.2: Computing IF value for each State
State Fan in Fan out IF=Fan in*

Fan out
Heater 0 1 0
Off 4 2 8
Flash 3 3 9
On 5 4 20
HIGH 1 1 1
NORM 1 2 2
b=warm() 1 1 1
junction1 1 1 1
turn boiler(mode) 2 1 2
junction2 1 2 2
junction3 1 1 1
junction4 1 1 1
junction5 1 1 1
junction6 2 1 2
junction7 1 2 2
flash LED 2 1 2
junction8 1 2 2
junction9 1 1 1
junction10 1 2 2
junction11 1 2 2
b=cold 2 1 2
junction12 1 1 1

In table 4.3, we are prioritizing generated test cases based on the higher IF

value of source states.

37

4.3 Result Analysis

Table 4.3: Prioritized Test cases for Boiler Stateflow model
TC
id

State Input Expected
Output

1 On after(20,sec) Off
2 On entry:turn-boiler(ON); turn-

boiler(mode)
3 On [Heater.On.warm()] Off
4 Flash after(5,sec) Flash
5 Flash entry:flash-LED(); flash-LED
6 Off entry:turn-boiler(OFF); turn-

boiler(mode)
7 Off after(40,sec)[cold()] On
8 NORM [Heater.On.warm()] On
9 junction10 after(40,sec)[cold()] b=cold
10 junction11 after(40,sec)[cold()] b=cold
11 NORM [Heater.On.warm()] Off
12 junction7 during:flash-LED(); Flash
13 junction2 [mode==ON] junction3
14 junction2 color=RED junction4
15 junction6 LED=color-

boiler=mode
junction7

16 junction8 [LED==OFF] junction9
17 junction8 LED=OFF junction11
18 b=cold b=temp<=reference junction12
19 b=warm() b=!cold() junction1
20 HIGH [warm()] b=warm()
21 junction3 color=GREEN junction5
22 junction9 LED=color junction10

4.3 Result Analysis

Computing Average Percentage of Fault Detected (APFD) for non prioritized test

cases and prioritized test cases.

APFD = 1−
m∑
k=1

Pos(Fk)/nm + 1/2n (4.2)

where, n - number of test cases.

m - number of faults.

Pos(Fk) - the position of the first test case revealing the fault Fk.

38

4.3 Result Analysis

Table 4.4: Faults detected by non prioritized test cases
TC/
Fau-

lts 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
F1 *
F2 *
F3 * * * *
F4 * * *
F5 * * *
F6 * * *

APFD for non prioritized test cases:

APFD = 1-(5+14+3+6+8+13)/(22*6)+1/(2*22) APFD = 0.65

Table 4.5: Faults detected by prioritized test cases
TC/
Fau-

lts 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
F1 *
F2 *
F3 * * * *
F4 * * *
F5 * * *
F6 * * *

APFD for prioritized test cases:

APFD = 1-(1+12+3+9+2+5)/(22*6)+1/(2*22) APFD = 0.78

39

Conclusion

Chapter 5

Conclusion

Model based testing is growing more popular in the testing area, especially in

real time because as the size of software products increases the complexity is also

increasing. Therefore, an appropriate design model is required for software tasks

which can be tested for expected results. MATLAB’s simulink and stateflow is a

software which helps in modelling dynamic systems, but a simulink model may

have several levels of hierarchy with several types of implicit dependencies between

elements of the model that makes the model complex and difficult to perform any

analysis on it. So, the xml file of a model captures all implicit dependencies and

represents them explicitly, thus making it possible to perform several types of

analysis.

41

Bibliography

[1] Ray, Rajarshi. “Automated translation of matlab Simulink/Stateflow models

to an intermediate format in hyvisual.” Computer Science Department (2007).

[2] N. Vamshi Vijay. “Regression test selection based on analysis of

Simulink/stateflow models.”, M.Tech. thesis, IIT kharagpur, Computer Sci-

ence Department (2012).

[3] Suraj Nayak. “A Metamodel for Simulink/Stateflow models and its applica-

tions.”, M.Tech. thesis, IIT kharagpur, Computer Science Department (2013).

[4] Lee, Edward A., and Haiyang Zheng. “Operational semantics of hybrid sys-

tems.” Hybrid Systems: Computation and Control. Springer Berlin Heidelberg

(2005), pp. 25-53.

[5] Reicherdt, Robert, and Sabine Glesner. “Slicing MATLAB simulink models.”

Software Engineering (ICSE), (2012) 34th International Conference on, pp.

551-561. IEEE, (2012).

[6] Lallchandani, Jaiprakash T., and Mall, Rajib. “A dynamic slicing technique

for UML architectural models.” Software Engineering, IEEE Transactions on

37, no. 6 (2011), pp. 737-771.

[7] Sabharwal, Sangeeta, Ritu Sibal, and Chayanika Sharm. “Applying Genetic

Algorithm for Prioritization of Test Case Scenarios Derived from UML Di-

agrams.” International Journal of Computer Science Issues (IJCSI) 8, no. 3

(2011).

42

BIBLIOGRAPHY BIBLIOGRAPHY

[8] Kavitha, R., and N. Sureshkumar. “Test Case Prioritization for Regression

Testing based on Severity of Fault.” International Journal on Computer Science

& Engineering 2, no. 5 (2010).

[9] Agrawal, Aditya, Gyula Simon, and Gabor Karsai. “Semantic translation

of Simulink/Stateflow models to hybrid automata using graph transforma-

tions.”Electronic Notes in Theoretical Computer Science 109 (2004), pp. 43-

56.

[10] Bringmann, Eckard, and A. Kramer. “Model-based testing of automotive

systems.” In Software Testing, Verification, and Validation, (2008) 1st Inter-

national Conference on, pp. 485-493. IEEE, (2008).

[11] Andries, Marc, Gregor Engels, Annegret Habel, Berthold Hoffmann, Hans-Jrg

Kreowski, Sabine Kuske, Detlef Plump, Andy Schrr, and Gabriele Taentzer.

“Graph transformation for specification and programming.” Science of Com-

puter programming 34, no. 1 (1999), pp. 1-54.

[12] Korel, Bogdan, Inderdeep Singh, Luay Tahat, and Boris Vaysburg. “Slicing

of state-based models.” In Software Maintenance, (2003). ICSM (2003). Pro-

ceedings. International Conference on, pp. 34-43. IEEE, (2003).

[13] Mund, G. B., and Mall, Rajib. “An efficient interprocedural dynamic slicing

method.” Journal of Systems and Software 79, no. 6 (2006), pp. 791-806.

[14] Bates, Samuel, and Horwitz, Susan. “Incremental program testing using

program dependence graphs.” In Proceedings of the 20th ACM SIGPLAN-

SIGACT symposium on Principles of programming languages, (1993), pp. 384-

396.

[15] Liang, Donglin, and Harrold, Mary Jean. “Slicing objects using system de-

pendence graphs.” In Software Maintenance, 1998. Proceedings., International

Conference on, pp. 358-367. IEEE, (1998).

43

BIBLIOGRAPHY BIBLIOGRAPHY

[16] Korel, Bogdan, Singh Inderdeep, Tahat Luay , and Vaysburg Boris. “Slicing of

state-based models.” In Software Maintenance, 2003. ICSM 2003. Proceedings.

International Conference on, pp. 34-43. IEEE,(2003).

[17] Chen, Yanping, Robert L. Probert, and Ural Hasan. “Model-based regression

test suite generation using dependence analysis.” In Proceedings of the 3rd

international workshop on Advances in model-based testing, pp. 54-62. ACM,

(2007).

[18] Bringmann, Eckard, and Kramer Andreas. “Model-based testing of automo-

tive systems.” In Software Testing, Verification, and Validation, 2008 1st In-

ternational Conference on, pp. 485-493. IEEE, (2008).

[19] Lee, David, and Yannakakis Mihalis. “Principles and methods of testing finite

state machines-a survey.” Proceedings of the IEEE 84, no. 8 (1996), pp. 1090-

1123.

[20] Dalal, Siddhartha R., Ashish Jain, Nachimuthu Karunanithi, J. M. Leaton,

Christopher M. Lott, Gardner C. Patton, and Horowitz, Bruce M. “Model-

based testing in practice.” In Proceedings of the 21st international conference

on Software engineering, pp. 285-294. ACM, (1999).

[21] Utting, Mark, Alexander Pretschner, and Bruno Legeard. “A taxonomy of

model-based testing.” (2006).

[22] MathWorks, “Mathworks MATLAB Simulink.”

http://www.mathworks.com/products/simulink/

44

